Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice_lib.h"
   5#include "ice_switch.h"
   6
   7#define ICE_ETH_DA_OFFSET		0
   8#define ICE_ETH_ETHTYPE_OFFSET		12
   9#define ICE_ETH_VLAN_TCI_OFFSET		14
  10#define ICE_MAX_VLAN_ID			0xFFF
  11#define ICE_IPV6_ETHER_ID		0x86DD
  12
  13/* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
  14 * struct to configure any switch filter rules.
  15 * {DA (6 bytes), SA(6 bytes),
  16 * Ether type (2 bytes for header without VLAN tag) OR
  17 * VLAN tag (4 bytes for header with VLAN tag) }
  18 *
  19 * Word on Hardcoded values
  20 * byte 0 = 0x2: to identify it as locally administered DA MAC
  21 * byte 6 = 0x2: to identify it as locally administered SA MAC
  22 * byte 12 = 0x81 & byte 13 = 0x00:
  23 *      In case of VLAN filter first two bytes defines ether type (0x8100)
  24 *      and remaining two bytes are placeholder for programming a given VLAN ID
  25 *      In case of Ether type filter it is treated as header without VLAN tag
  26 *      and byte 12 and 13 is used to program a given Ether type instead
  27 */
  28static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
  29							0x2, 0, 0, 0, 0, 0,
  30							0x81, 0, 0, 0};
  31
  32enum {
  33	ICE_PKT_OUTER_IPV6	= BIT(0),
  34	ICE_PKT_TUN_GTPC	= BIT(1),
  35	ICE_PKT_TUN_GTPU	= BIT(2),
  36	ICE_PKT_TUN_NVGRE	= BIT(3),
  37	ICE_PKT_TUN_UDP		= BIT(4),
  38	ICE_PKT_INNER_IPV6	= BIT(5),
  39	ICE_PKT_INNER_TCP	= BIT(6),
  40	ICE_PKT_INNER_UDP	= BIT(7),
  41	ICE_PKT_GTP_NOPAY	= BIT(8),
  42	ICE_PKT_KMALLOC		= BIT(9),
  43	ICE_PKT_PPPOE		= BIT(10),
  44	ICE_PKT_L2TPV3		= BIT(11),
  45};
  46
  47struct ice_dummy_pkt_offsets {
  48	enum ice_protocol_type type;
  49	u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */
  50};
  51
  52struct ice_dummy_pkt_profile {
  53	const struct ice_dummy_pkt_offsets *offsets;
  54	const u8 *pkt;
  55	u32 match;
  56	u16 pkt_len;
  57	u16 offsets_len;
  58};
  59
  60#define ICE_DECLARE_PKT_OFFSETS(type)					\
  61	static const struct ice_dummy_pkt_offsets			\
  62	ice_dummy_##type##_packet_offsets[]
  63
  64#define ICE_DECLARE_PKT_TEMPLATE(type)					\
  65	static const u8 ice_dummy_##type##_packet[]
  66
  67#define ICE_PKT_PROFILE(type, m) {					\
  68	.match		= (m),						\
  69	.pkt		= ice_dummy_##type##_packet,			\
  70	.pkt_len	= sizeof(ice_dummy_##type##_packet),		\
  71	.offsets	= ice_dummy_##type##_packet_offsets,		\
  72	.offsets_len	= sizeof(ice_dummy_##type##_packet_offsets),	\
  73}
  74
  75ICE_DECLARE_PKT_OFFSETS(vlan) = {
  76	{ ICE_VLAN_OFOS,        12 },
  77};
  78
  79ICE_DECLARE_PKT_TEMPLATE(vlan) = {
  80	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_OFOS 12 */
  81};
  82
  83ICE_DECLARE_PKT_OFFSETS(qinq) = {
  84	{ ICE_VLAN_EX,          12 },
  85	{ ICE_VLAN_IN,          16 },
  86};
  87
  88ICE_DECLARE_PKT_TEMPLATE(qinq) = {
  89	0x91, 0x00, 0x00, 0x00, /* ICE_VLAN_EX 12 */
  90	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_IN 16 */
  91};
  92
  93ICE_DECLARE_PKT_OFFSETS(gre_tcp) = {
  94	{ ICE_MAC_OFOS,		0 },
  95	{ ICE_ETYPE_OL,		12 },
  96	{ ICE_IPV4_OFOS,	14 },
  97	{ ICE_NVGRE,		34 },
  98	{ ICE_MAC_IL,		42 },
  99	{ ICE_ETYPE_IL,		54 },
 100	{ ICE_IPV4_IL,		56 },
 101	{ ICE_TCP_IL,		76 },
 102	{ ICE_PROTOCOL_LAST,	0 },
 103};
 104
 105ICE_DECLARE_PKT_TEMPLATE(gre_tcp) = {
 106	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
 107	0x00, 0x00, 0x00, 0x00,
 108	0x00, 0x00, 0x00, 0x00,
 109
 110	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 111
 112	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
 113	0x00, 0x00, 0x00, 0x00,
 114	0x00, 0x2F, 0x00, 0x00,
 115	0x00, 0x00, 0x00, 0x00,
 116	0x00, 0x00, 0x00, 0x00,
 117
 118	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
 119	0x00, 0x00, 0x00, 0x00,
 120
 121	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
 122	0x00, 0x00, 0x00, 0x00,
 123	0x00, 0x00, 0x00, 0x00,
 124
 125	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
 126
 127	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
 128	0x00, 0x00, 0x00, 0x00,
 129	0x00, 0x06, 0x00, 0x00,
 130	0x00, 0x00, 0x00, 0x00,
 131	0x00, 0x00, 0x00, 0x00,
 132
 133	0x00, 0x00, 0x00, 0x00,	/* ICE_TCP_IL 76 */
 134	0x00, 0x00, 0x00, 0x00,
 135	0x00, 0x00, 0x00, 0x00,
 136	0x50, 0x02, 0x20, 0x00,
 137	0x00, 0x00, 0x00, 0x00
 138};
 139
 140ICE_DECLARE_PKT_OFFSETS(gre_udp) = {
 141	{ ICE_MAC_OFOS,		0 },
 142	{ ICE_ETYPE_OL,		12 },
 143	{ ICE_IPV4_OFOS,	14 },
 144	{ ICE_NVGRE,		34 },
 145	{ ICE_MAC_IL,		42 },
 146	{ ICE_ETYPE_IL,		54 },
 147	{ ICE_IPV4_IL,		56 },
 148	{ ICE_UDP_ILOS,		76 },
 149	{ ICE_PROTOCOL_LAST,	0 },
 150};
 151
 152ICE_DECLARE_PKT_TEMPLATE(gre_udp) = {
 153	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
 154	0x00, 0x00, 0x00, 0x00,
 155	0x00, 0x00, 0x00, 0x00,
 156
 157	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 158
 159	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
 160	0x00, 0x00, 0x00, 0x00,
 161	0x00, 0x2F, 0x00, 0x00,
 162	0x00, 0x00, 0x00, 0x00,
 163	0x00, 0x00, 0x00, 0x00,
 164
 165	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
 166	0x00, 0x00, 0x00, 0x00,
 167
 168	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
 169	0x00, 0x00, 0x00, 0x00,
 170	0x00, 0x00, 0x00, 0x00,
 171
 172	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
 173
 174	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
 175	0x00, 0x00, 0x00, 0x00,
 176	0x00, 0x11, 0x00, 0x00,
 177	0x00, 0x00, 0x00, 0x00,
 178	0x00, 0x00, 0x00, 0x00,
 179
 180	0x00, 0x00, 0x00, 0x00,	/* ICE_UDP_ILOS 76 */
 181	0x00, 0x08, 0x00, 0x00,
 182};
 183
 184ICE_DECLARE_PKT_OFFSETS(udp_tun_tcp) = {
 185	{ ICE_MAC_OFOS,		0 },
 186	{ ICE_ETYPE_OL,		12 },
 187	{ ICE_IPV4_OFOS,	14 },
 188	{ ICE_UDP_OF,		34 },
 189	{ ICE_VXLAN,		42 },
 190	{ ICE_GENEVE,		42 },
 191	{ ICE_VXLAN_GPE,	42 },
 192	{ ICE_MAC_IL,		50 },
 193	{ ICE_ETYPE_IL,		62 },
 194	{ ICE_IPV4_IL,		64 },
 195	{ ICE_TCP_IL,		84 },
 196	{ ICE_PROTOCOL_LAST,	0 },
 197};
 198
 199ICE_DECLARE_PKT_TEMPLATE(udp_tun_tcp) = {
 200	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
 201	0x00, 0x00, 0x00, 0x00,
 202	0x00, 0x00, 0x00, 0x00,
 203
 204	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 205
 206	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
 207	0x00, 0x01, 0x00, 0x00,
 208	0x40, 0x11, 0x00, 0x00,
 209	0x00, 0x00, 0x00, 0x00,
 210	0x00, 0x00, 0x00, 0x00,
 211
 212	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
 213	0x00, 0x46, 0x00, 0x00,
 214
 215	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
 216	0x00, 0x00, 0x00, 0x00,
 217
 218	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
 219	0x00, 0x00, 0x00, 0x00,
 220	0x00, 0x00, 0x00, 0x00,
 221
 222	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
 223
 224	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */
 225	0x00, 0x01, 0x00, 0x00,
 226	0x40, 0x06, 0x00, 0x00,
 227	0x00, 0x00, 0x00, 0x00,
 228	0x00, 0x00, 0x00, 0x00,
 229
 230	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */
 231	0x00, 0x00, 0x00, 0x00,
 232	0x00, 0x00, 0x00, 0x00,
 233	0x50, 0x02, 0x20, 0x00,
 234	0x00, 0x00, 0x00, 0x00
 235};
 236
 237ICE_DECLARE_PKT_OFFSETS(udp_tun_udp) = {
 238	{ ICE_MAC_OFOS,		0 },
 239	{ ICE_ETYPE_OL,		12 },
 240	{ ICE_IPV4_OFOS,	14 },
 241	{ ICE_UDP_OF,		34 },
 242	{ ICE_VXLAN,		42 },
 243	{ ICE_GENEVE,		42 },
 244	{ ICE_VXLAN_GPE,	42 },
 245	{ ICE_MAC_IL,		50 },
 246	{ ICE_ETYPE_IL,		62 },
 247	{ ICE_IPV4_IL,		64 },
 248	{ ICE_UDP_ILOS,		84 },
 249	{ ICE_PROTOCOL_LAST,	0 },
 250};
 251
 252ICE_DECLARE_PKT_TEMPLATE(udp_tun_udp) = {
 253	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
 254	0x00, 0x00, 0x00, 0x00,
 255	0x00, 0x00, 0x00, 0x00,
 256
 257	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 258
 259	0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */
 260	0x00, 0x01, 0x00, 0x00,
 261	0x00, 0x11, 0x00, 0x00,
 262	0x00, 0x00, 0x00, 0x00,
 263	0x00, 0x00, 0x00, 0x00,
 264
 265	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
 266	0x00, 0x3a, 0x00, 0x00,
 267
 268	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
 269	0x00, 0x00, 0x00, 0x00,
 270
 271	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
 272	0x00, 0x00, 0x00, 0x00,
 273	0x00, 0x00, 0x00, 0x00,
 274
 275	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
 276
 277	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */
 278	0x00, 0x01, 0x00, 0x00,
 279	0x00, 0x11, 0x00, 0x00,
 280	0x00, 0x00, 0x00, 0x00,
 281	0x00, 0x00, 0x00, 0x00,
 282
 283	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */
 284	0x00, 0x08, 0x00, 0x00,
 285};
 286
 287ICE_DECLARE_PKT_OFFSETS(gre_ipv6_tcp) = {
 288	{ ICE_MAC_OFOS,		0 },
 289	{ ICE_ETYPE_OL,		12 },
 290	{ ICE_IPV4_OFOS,	14 },
 291	{ ICE_NVGRE,		34 },
 292	{ ICE_MAC_IL,		42 },
 293	{ ICE_ETYPE_IL,		54 },
 294	{ ICE_IPV6_IL,		56 },
 295	{ ICE_TCP_IL,		96 },
 296	{ ICE_PROTOCOL_LAST,	0 },
 297};
 298
 299ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_tcp) = {
 300	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 301	0x00, 0x00, 0x00, 0x00,
 302	0x00, 0x00, 0x00, 0x00,
 303
 304	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 305
 306	0x45, 0x00, 0x00, 0x66, /* ICE_IPV4_OFOS 14 */
 307	0x00, 0x00, 0x00, 0x00,
 308	0x00, 0x2F, 0x00, 0x00,
 309	0x00, 0x00, 0x00, 0x00,
 310	0x00, 0x00, 0x00, 0x00,
 311
 312	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
 313	0x00, 0x00, 0x00, 0x00,
 314
 315	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
 316	0x00, 0x00, 0x00, 0x00,
 317	0x00, 0x00, 0x00, 0x00,
 318
 319	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
 320
 321	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
 322	0x00, 0x08, 0x06, 0x40,
 323	0x00, 0x00, 0x00, 0x00,
 324	0x00, 0x00, 0x00, 0x00,
 325	0x00, 0x00, 0x00, 0x00,
 326	0x00, 0x00, 0x00, 0x00,
 327	0x00, 0x00, 0x00, 0x00,
 328	0x00, 0x00, 0x00, 0x00,
 329	0x00, 0x00, 0x00, 0x00,
 330	0x00, 0x00, 0x00, 0x00,
 331
 332	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 96 */
 333	0x00, 0x00, 0x00, 0x00,
 334	0x00, 0x00, 0x00, 0x00,
 335	0x50, 0x02, 0x20, 0x00,
 336	0x00, 0x00, 0x00, 0x00
 337};
 338
 339ICE_DECLARE_PKT_OFFSETS(gre_ipv6_udp) = {
 340	{ ICE_MAC_OFOS,		0 },
 341	{ ICE_ETYPE_OL,		12 },
 342	{ ICE_IPV4_OFOS,	14 },
 343	{ ICE_NVGRE,		34 },
 344	{ ICE_MAC_IL,		42 },
 345	{ ICE_ETYPE_IL,		54 },
 346	{ ICE_IPV6_IL,		56 },
 347	{ ICE_UDP_ILOS,		96 },
 348	{ ICE_PROTOCOL_LAST,	0 },
 349};
 350
 351ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_udp) = {
 352	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 353	0x00, 0x00, 0x00, 0x00,
 354	0x00, 0x00, 0x00, 0x00,
 355
 356	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 357
 358	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
 359	0x00, 0x00, 0x00, 0x00,
 360	0x00, 0x2F, 0x00, 0x00,
 361	0x00, 0x00, 0x00, 0x00,
 362	0x00, 0x00, 0x00, 0x00,
 363
 364	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
 365	0x00, 0x00, 0x00, 0x00,
 366
 367	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
 368	0x00, 0x00, 0x00, 0x00,
 369	0x00, 0x00, 0x00, 0x00,
 370
 371	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
 372
 373	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
 374	0x00, 0x08, 0x11, 0x40,
 375	0x00, 0x00, 0x00, 0x00,
 376	0x00, 0x00, 0x00, 0x00,
 377	0x00, 0x00, 0x00, 0x00,
 378	0x00, 0x00, 0x00, 0x00,
 379	0x00, 0x00, 0x00, 0x00,
 380	0x00, 0x00, 0x00, 0x00,
 381	0x00, 0x00, 0x00, 0x00,
 382	0x00, 0x00, 0x00, 0x00,
 383
 384	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 96 */
 385	0x00, 0x08, 0x00, 0x00,
 386};
 387
 388ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_tcp) = {
 389	{ ICE_MAC_OFOS,		0 },
 390	{ ICE_ETYPE_OL,		12 },
 391	{ ICE_IPV4_OFOS,	14 },
 392	{ ICE_UDP_OF,		34 },
 393	{ ICE_VXLAN,		42 },
 394	{ ICE_GENEVE,		42 },
 395	{ ICE_VXLAN_GPE,	42 },
 396	{ ICE_MAC_IL,		50 },
 397	{ ICE_ETYPE_IL,		62 },
 398	{ ICE_IPV6_IL,		64 },
 399	{ ICE_TCP_IL,		104 },
 400	{ ICE_PROTOCOL_LAST,	0 },
 401};
 402
 403ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_tcp) = {
 404	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
 405	0x00, 0x00, 0x00, 0x00,
 406	0x00, 0x00, 0x00, 0x00,
 407
 408	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 409
 410	0x45, 0x00, 0x00, 0x6e, /* ICE_IPV4_OFOS 14 */
 411	0x00, 0x01, 0x00, 0x00,
 412	0x40, 0x11, 0x00, 0x00,
 413	0x00, 0x00, 0x00, 0x00,
 414	0x00, 0x00, 0x00, 0x00,
 415
 416	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
 417	0x00, 0x5a, 0x00, 0x00,
 418
 419	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
 420	0x00, 0x00, 0x00, 0x00,
 421
 422	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
 423	0x00, 0x00, 0x00, 0x00,
 424	0x00, 0x00, 0x00, 0x00,
 425
 426	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
 427
 428	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
 429	0x00, 0x08, 0x06, 0x40,
 430	0x00, 0x00, 0x00, 0x00,
 431	0x00, 0x00, 0x00, 0x00,
 432	0x00, 0x00, 0x00, 0x00,
 433	0x00, 0x00, 0x00, 0x00,
 434	0x00, 0x00, 0x00, 0x00,
 435	0x00, 0x00, 0x00, 0x00,
 436	0x00, 0x00, 0x00, 0x00,
 437	0x00, 0x00, 0x00, 0x00,
 438
 439	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 104 */
 440	0x00, 0x00, 0x00, 0x00,
 441	0x00, 0x00, 0x00, 0x00,
 442	0x50, 0x02, 0x20, 0x00,
 443	0x00, 0x00, 0x00, 0x00
 444};
 445
 446ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_udp) = {
 447	{ ICE_MAC_OFOS,		0 },
 448	{ ICE_ETYPE_OL,		12 },
 449	{ ICE_IPV4_OFOS,	14 },
 450	{ ICE_UDP_OF,		34 },
 451	{ ICE_VXLAN,		42 },
 452	{ ICE_GENEVE,		42 },
 453	{ ICE_VXLAN_GPE,	42 },
 454	{ ICE_MAC_IL,		50 },
 455	{ ICE_ETYPE_IL,		62 },
 456	{ ICE_IPV6_IL,		64 },
 457	{ ICE_UDP_ILOS,		104 },
 458	{ ICE_PROTOCOL_LAST,	0 },
 459};
 460
 461ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_udp) = {
 462	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
 463	0x00, 0x00, 0x00, 0x00,
 464	0x00, 0x00, 0x00, 0x00,
 465
 466	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 467
 468	0x45, 0x00, 0x00, 0x62, /* ICE_IPV4_OFOS 14 */
 469	0x00, 0x01, 0x00, 0x00,
 470	0x00, 0x11, 0x00, 0x00,
 471	0x00, 0x00, 0x00, 0x00,
 472	0x00, 0x00, 0x00, 0x00,
 473
 474	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
 475	0x00, 0x4e, 0x00, 0x00,
 476
 477	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
 478	0x00, 0x00, 0x00, 0x00,
 479
 480	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
 481	0x00, 0x00, 0x00, 0x00,
 482	0x00, 0x00, 0x00, 0x00,
 483
 484	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
 485
 486	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
 487	0x00, 0x08, 0x11, 0x40,
 488	0x00, 0x00, 0x00, 0x00,
 489	0x00, 0x00, 0x00, 0x00,
 490	0x00, 0x00, 0x00, 0x00,
 491	0x00, 0x00, 0x00, 0x00,
 492	0x00, 0x00, 0x00, 0x00,
 493	0x00, 0x00, 0x00, 0x00,
 494	0x00, 0x00, 0x00, 0x00,
 495	0x00, 0x00, 0x00, 0x00,
 496
 497	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 104 */
 498	0x00, 0x08, 0x00, 0x00,
 499};
 500
 501/* offset info for MAC + IPv4 + UDP dummy packet */
 502ICE_DECLARE_PKT_OFFSETS(udp) = {
 503	{ ICE_MAC_OFOS,		0 },
 504	{ ICE_ETYPE_OL,		12 },
 505	{ ICE_IPV4_OFOS,	14 },
 506	{ ICE_UDP_ILOS,		34 },
 507	{ ICE_PROTOCOL_LAST,	0 },
 508};
 509
 510/* Dummy packet for MAC + IPv4 + UDP */
 511ICE_DECLARE_PKT_TEMPLATE(udp) = {
 512	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 513	0x00, 0x00, 0x00, 0x00,
 514	0x00, 0x00, 0x00, 0x00,
 515
 516	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 517
 518	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */
 519	0x00, 0x01, 0x00, 0x00,
 520	0x00, 0x11, 0x00, 0x00,
 521	0x00, 0x00, 0x00, 0x00,
 522	0x00, 0x00, 0x00, 0x00,
 523
 524	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */
 525	0x00, 0x08, 0x00, 0x00,
 526
 527	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
 528};
 529
 530/* offset info for MAC + IPv4 + TCP dummy packet */
 531ICE_DECLARE_PKT_OFFSETS(tcp) = {
 532	{ ICE_MAC_OFOS,		0 },
 533	{ ICE_ETYPE_OL,		12 },
 534	{ ICE_IPV4_OFOS,	14 },
 535	{ ICE_TCP_IL,		34 },
 536	{ ICE_PROTOCOL_LAST,	0 },
 537};
 538
 539/* Dummy packet for MAC + IPv4 + TCP */
 540ICE_DECLARE_PKT_TEMPLATE(tcp) = {
 541	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 542	0x00, 0x00, 0x00, 0x00,
 543	0x00, 0x00, 0x00, 0x00,
 544
 545	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 546
 547	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */
 548	0x00, 0x01, 0x00, 0x00,
 549	0x00, 0x06, 0x00, 0x00,
 550	0x00, 0x00, 0x00, 0x00,
 551	0x00, 0x00, 0x00, 0x00,
 552
 553	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */
 554	0x00, 0x00, 0x00, 0x00,
 555	0x00, 0x00, 0x00, 0x00,
 556	0x50, 0x00, 0x00, 0x00,
 557	0x00, 0x00, 0x00, 0x00,
 558
 559	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
 560};
 561
 562ICE_DECLARE_PKT_OFFSETS(tcp_ipv6) = {
 563	{ ICE_MAC_OFOS,		0 },
 564	{ ICE_ETYPE_OL,		12 },
 565	{ ICE_IPV6_OFOS,	14 },
 566	{ ICE_TCP_IL,		54 },
 567	{ ICE_PROTOCOL_LAST,	0 },
 568};
 569
 570ICE_DECLARE_PKT_TEMPLATE(tcp_ipv6) = {
 571	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 572	0x00, 0x00, 0x00, 0x00,
 573	0x00, 0x00, 0x00, 0x00,
 574
 575	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
 576
 577	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
 578	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
 579	0x00, 0x00, 0x00, 0x00,
 580	0x00, 0x00, 0x00, 0x00,
 581	0x00, 0x00, 0x00, 0x00,
 582	0x00, 0x00, 0x00, 0x00,
 583	0x00, 0x00, 0x00, 0x00,
 584	0x00, 0x00, 0x00, 0x00,
 585	0x00, 0x00, 0x00, 0x00,
 586	0x00, 0x00, 0x00, 0x00,
 587
 588	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */
 589	0x00, 0x00, 0x00, 0x00,
 590	0x00, 0x00, 0x00, 0x00,
 591	0x50, 0x00, 0x00, 0x00,
 592	0x00, 0x00, 0x00, 0x00,
 593
 594	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 595};
 596
 597/* IPv6 + UDP */
 598ICE_DECLARE_PKT_OFFSETS(udp_ipv6) = {
 599	{ ICE_MAC_OFOS,		0 },
 600	{ ICE_ETYPE_OL,		12 },
 601	{ ICE_IPV6_OFOS,	14 },
 602	{ ICE_UDP_ILOS,		54 },
 603	{ ICE_PROTOCOL_LAST,	0 },
 604};
 605
 606/* IPv6 + UDP dummy packet */
 607ICE_DECLARE_PKT_TEMPLATE(udp_ipv6) = {
 608	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 609	0x00, 0x00, 0x00, 0x00,
 610	0x00, 0x00, 0x00, 0x00,
 611
 612	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
 613
 614	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
 615	0x00, 0x10, 0x11, 0x00, /* Next header UDP */
 616	0x00, 0x00, 0x00, 0x00,
 617	0x00, 0x00, 0x00, 0x00,
 618	0x00, 0x00, 0x00, 0x00,
 619	0x00, 0x00, 0x00, 0x00,
 620	0x00, 0x00, 0x00, 0x00,
 621	0x00, 0x00, 0x00, 0x00,
 622	0x00, 0x00, 0x00, 0x00,
 623	0x00, 0x00, 0x00, 0x00,
 624
 625	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */
 626	0x00, 0x10, 0x00, 0x00,
 627
 628	0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */
 629	0x00, 0x00, 0x00, 0x00,
 630
 631	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 632};
 633
 634/* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
 635ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_tcp) = {
 636	{ ICE_MAC_OFOS,		0 },
 637	{ ICE_IPV4_OFOS,	14 },
 638	{ ICE_UDP_OF,		34 },
 639	{ ICE_GTP,		42 },
 640	{ ICE_IPV4_IL,		62 },
 641	{ ICE_TCP_IL,		82 },
 642	{ ICE_PROTOCOL_LAST,	0 },
 643};
 644
 645ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_tcp) = {
 646	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 647	0x00, 0x00, 0x00, 0x00,
 648	0x00, 0x00, 0x00, 0x00,
 649	0x08, 0x00,
 650
 651	0x45, 0x00, 0x00, 0x58, /* IP 14 */
 652	0x00, 0x00, 0x00, 0x00,
 653	0x00, 0x11, 0x00, 0x00,
 654	0x00, 0x00, 0x00, 0x00,
 655	0x00, 0x00, 0x00, 0x00,
 656
 657	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
 658	0x00, 0x44, 0x00, 0x00,
 659
 660	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 42 */
 661	0x00, 0x00, 0x00, 0x00,
 662	0x00, 0x00, 0x00, 0x85,
 663
 664	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
 665	0x00, 0x00, 0x00, 0x00,
 666
 667	0x45, 0x00, 0x00, 0x28, /* IP 62 */
 668	0x00, 0x00, 0x00, 0x00,
 669	0x00, 0x06, 0x00, 0x00,
 670	0x00, 0x00, 0x00, 0x00,
 671	0x00, 0x00, 0x00, 0x00,
 672
 673	0x00, 0x00, 0x00, 0x00, /* TCP 82 */
 674	0x00, 0x00, 0x00, 0x00,
 675	0x00, 0x00, 0x00, 0x00,
 676	0x50, 0x00, 0x00, 0x00,
 677	0x00, 0x00, 0x00, 0x00,
 678
 679	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 680};
 681
 682/* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner UDP */
 683ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_udp) = {
 684	{ ICE_MAC_OFOS,		0 },
 685	{ ICE_IPV4_OFOS,	14 },
 686	{ ICE_UDP_OF,		34 },
 687	{ ICE_GTP,		42 },
 688	{ ICE_IPV4_IL,		62 },
 689	{ ICE_UDP_ILOS,		82 },
 690	{ ICE_PROTOCOL_LAST,	0 },
 691};
 692
 693ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_udp) = {
 694	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 695	0x00, 0x00, 0x00, 0x00,
 696	0x00, 0x00, 0x00, 0x00,
 697	0x08, 0x00,
 698
 699	0x45, 0x00, 0x00, 0x4c, /* IP 14 */
 700	0x00, 0x00, 0x00, 0x00,
 701	0x00, 0x11, 0x00, 0x00,
 702	0x00, 0x00, 0x00, 0x00,
 703	0x00, 0x00, 0x00, 0x00,
 704
 705	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
 706	0x00, 0x38, 0x00, 0x00,
 707
 708	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 42 */
 709	0x00, 0x00, 0x00, 0x00,
 710	0x00, 0x00, 0x00, 0x85,
 711
 712	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
 713	0x00, 0x00, 0x00, 0x00,
 714
 715	0x45, 0x00, 0x00, 0x1c, /* IP 62 */
 716	0x00, 0x00, 0x00, 0x00,
 717	0x00, 0x11, 0x00, 0x00,
 718	0x00, 0x00, 0x00, 0x00,
 719	0x00, 0x00, 0x00, 0x00,
 720
 721	0x00, 0x00, 0x00, 0x00, /* UDP 82 */
 722	0x00, 0x08, 0x00, 0x00,
 723
 724	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 725};
 726
 727/* Outer IPv6 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
 728ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_tcp) = {
 729	{ ICE_MAC_OFOS,		0 },
 730	{ ICE_IPV4_OFOS,	14 },
 731	{ ICE_UDP_OF,		34 },
 732	{ ICE_GTP,		42 },
 733	{ ICE_IPV6_IL,		62 },
 734	{ ICE_TCP_IL,		102 },
 735	{ ICE_PROTOCOL_LAST,	0 },
 736};
 737
 738ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_tcp) = {
 739	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 740	0x00, 0x00, 0x00, 0x00,
 741	0x00, 0x00, 0x00, 0x00,
 742	0x08, 0x00,
 743
 744	0x45, 0x00, 0x00, 0x6c, /* IP 14 */
 745	0x00, 0x00, 0x00, 0x00,
 746	0x00, 0x11, 0x00, 0x00,
 747	0x00, 0x00, 0x00, 0x00,
 748	0x00, 0x00, 0x00, 0x00,
 749
 750	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
 751	0x00, 0x58, 0x00, 0x00,
 752
 753	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 42 */
 754	0x00, 0x00, 0x00, 0x00,
 755	0x00, 0x00, 0x00, 0x85,
 756
 757	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
 758	0x00, 0x00, 0x00, 0x00,
 759
 760	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
 761	0x00, 0x14, 0x06, 0x00,
 762	0x00, 0x00, 0x00, 0x00,
 763	0x00, 0x00, 0x00, 0x00,
 764	0x00, 0x00, 0x00, 0x00,
 765	0x00, 0x00, 0x00, 0x00,
 766	0x00, 0x00, 0x00, 0x00,
 767	0x00, 0x00, 0x00, 0x00,
 768	0x00, 0x00, 0x00, 0x00,
 769	0x00, 0x00, 0x00, 0x00,
 770
 771	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
 772	0x00, 0x00, 0x00, 0x00,
 773	0x00, 0x00, 0x00, 0x00,
 774	0x50, 0x00, 0x00, 0x00,
 775	0x00, 0x00, 0x00, 0x00,
 776
 777	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 778};
 779
 780ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_udp) = {
 781	{ ICE_MAC_OFOS,		0 },
 782	{ ICE_IPV4_OFOS,	14 },
 783	{ ICE_UDP_OF,		34 },
 784	{ ICE_GTP,		42 },
 785	{ ICE_IPV6_IL,		62 },
 786	{ ICE_UDP_ILOS,		102 },
 787	{ ICE_PROTOCOL_LAST,	0 },
 788};
 789
 790ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_udp) = {
 791	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 792	0x00, 0x00, 0x00, 0x00,
 793	0x00, 0x00, 0x00, 0x00,
 794	0x08, 0x00,
 795
 796	0x45, 0x00, 0x00, 0x60, /* IP 14 */
 797	0x00, 0x00, 0x00, 0x00,
 798	0x00, 0x11, 0x00, 0x00,
 799	0x00, 0x00, 0x00, 0x00,
 800	0x00, 0x00, 0x00, 0x00,
 801
 802	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
 803	0x00, 0x4c, 0x00, 0x00,
 804
 805	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 42 */
 806	0x00, 0x00, 0x00, 0x00,
 807	0x00, 0x00, 0x00, 0x85,
 808
 809	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
 810	0x00, 0x00, 0x00, 0x00,
 811
 812	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
 813	0x00, 0x08, 0x11, 0x00,
 814	0x00, 0x00, 0x00, 0x00,
 815	0x00, 0x00, 0x00, 0x00,
 816	0x00, 0x00, 0x00, 0x00,
 817	0x00, 0x00, 0x00, 0x00,
 818	0x00, 0x00, 0x00, 0x00,
 819	0x00, 0x00, 0x00, 0x00,
 820	0x00, 0x00, 0x00, 0x00,
 821	0x00, 0x00, 0x00, 0x00,
 822
 823	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
 824	0x00, 0x08, 0x00, 0x00,
 825
 826	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 827};
 828
 829ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_tcp) = {
 830	{ ICE_MAC_OFOS,		0 },
 831	{ ICE_IPV6_OFOS,	14 },
 832	{ ICE_UDP_OF,		54 },
 833	{ ICE_GTP,		62 },
 834	{ ICE_IPV4_IL,		82 },
 835	{ ICE_TCP_IL,		102 },
 836	{ ICE_PROTOCOL_LAST,	0 },
 837};
 838
 839ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_tcp) = {
 840	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 841	0x00, 0x00, 0x00, 0x00,
 842	0x00, 0x00, 0x00, 0x00,
 843	0x86, 0xdd,
 844
 845	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
 846	0x00, 0x44, 0x11, 0x00,
 847	0x00, 0x00, 0x00, 0x00,
 848	0x00, 0x00, 0x00, 0x00,
 849	0x00, 0x00, 0x00, 0x00,
 850	0x00, 0x00, 0x00, 0x00,
 851	0x00, 0x00, 0x00, 0x00,
 852	0x00, 0x00, 0x00, 0x00,
 853	0x00, 0x00, 0x00, 0x00,
 854	0x00, 0x00, 0x00, 0x00,
 855
 856	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
 857	0x00, 0x44, 0x00, 0x00,
 858
 859	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 62 */
 860	0x00, 0x00, 0x00, 0x00,
 861	0x00, 0x00, 0x00, 0x85,
 862
 863	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
 864	0x00, 0x00, 0x00, 0x00,
 865
 866	0x45, 0x00, 0x00, 0x28, /* IP 82 */
 867	0x00, 0x00, 0x00, 0x00,
 868	0x00, 0x06, 0x00, 0x00,
 869	0x00, 0x00, 0x00, 0x00,
 870	0x00, 0x00, 0x00, 0x00,
 871
 872	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
 873	0x00, 0x00, 0x00, 0x00,
 874	0x00, 0x00, 0x00, 0x00,
 875	0x50, 0x00, 0x00, 0x00,
 876	0x00, 0x00, 0x00, 0x00,
 877
 878	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 879};
 880
 881ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_udp) = {
 882	{ ICE_MAC_OFOS,		0 },
 883	{ ICE_IPV6_OFOS,	14 },
 884	{ ICE_UDP_OF,		54 },
 885	{ ICE_GTP,		62 },
 886	{ ICE_IPV4_IL,		82 },
 887	{ ICE_UDP_ILOS,		102 },
 888	{ ICE_PROTOCOL_LAST,	0 },
 889};
 890
 891ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_udp) = {
 892	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 893	0x00, 0x00, 0x00, 0x00,
 894	0x00, 0x00, 0x00, 0x00,
 895	0x86, 0xdd,
 896
 897	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
 898	0x00, 0x38, 0x11, 0x00,
 899	0x00, 0x00, 0x00, 0x00,
 900	0x00, 0x00, 0x00, 0x00,
 901	0x00, 0x00, 0x00, 0x00,
 902	0x00, 0x00, 0x00, 0x00,
 903	0x00, 0x00, 0x00, 0x00,
 904	0x00, 0x00, 0x00, 0x00,
 905	0x00, 0x00, 0x00, 0x00,
 906	0x00, 0x00, 0x00, 0x00,
 907
 908	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
 909	0x00, 0x38, 0x00, 0x00,
 910
 911	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 62 */
 912	0x00, 0x00, 0x00, 0x00,
 913	0x00, 0x00, 0x00, 0x85,
 914
 915	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
 916	0x00, 0x00, 0x00, 0x00,
 917
 918	0x45, 0x00, 0x00, 0x1c, /* IP 82 */
 919	0x00, 0x00, 0x00, 0x00,
 920	0x00, 0x11, 0x00, 0x00,
 921	0x00, 0x00, 0x00, 0x00,
 922	0x00, 0x00, 0x00, 0x00,
 923
 924	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
 925	0x00, 0x08, 0x00, 0x00,
 926
 927	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 928};
 929
 930ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_tcp) = {
 931	{ ICE_MAC_OFOS,		0 },
 932	{ ICE_IPV6_OFOS,	14 },
 933	{ ICE_UDP_OF,		54 },
 934	{ ICE_GTP,		62 },
 935	{ ICE_IPV6_IL,		82 },
 936	{ ICE_TCP_IL,		122 },
 937	{ ICE_PROTOCOL_LAST,	0 },
 938};
 939
 940ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_tcp) = {
 941	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 942	0x00, 0x00, 0x00, 0x00,
 943	0x00, 0x00, 0x00, 0x00,
 944	0x86, 0xdd,
 945
 946	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
 947	0x00, 0x58, 0x11, 0x00,
 948	0x00, 0x00, 0x00, 0x00,
 949	0x00, 0x00, 0x00, 0x00,
 950	0x00, 0x00, 0x00, 0x00,
 951	0x00, 0x00, 0x00, 0x00,
 952	0x00, 0x00, 0x00, 0x00,
 953	0x00, 0x00, 0x00, 0x00,
 954	0x00, 0x00, 0x00, 0x00,
 955	0x00, 0x00, 0x00, 0x00,
 956
 957	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
 958	0x00, 0x58, 0x00, 0x00,
 959
 960	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 62 */
 961	0x00, 0x00, 0x00, 0x00,
 962	0x00, 0x00, 0x00, 0x85,
 963
 964	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
 965	0x00, 0x00, 0x00, 0x00,
 966
 967	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
 968	0x00, 0x14, 0x06, 0x00,
 969	0x00, 0x00, 0x00, 0x00,
 970	0x00, 0x00, 0x00, 0x00,
 971	0x00, 0x00, 0x00, 0x00,
 972	0x00, 0x00, 0x00, 0x00,
 973	0x00, 0x00, 0x00, 0x00,
 974	0x00, 0x00, 0x00, 0x00,
 975	0x00, 0x00, 0x00, 0x00,
 976	0x00, 0x00, 0x00, 0x00,
 977
 978	0x00, 0x00, 0x00, 0x00, /* TCP 122 */
 979	0x00, 0x00, 0x00, 0x00,
 980	0x00, 0x00, 0x00, 0x00,
 981	0x50, 0x00, 0x00, 0x00,
 982	0x00, 0x00, 0x00, 0x00,
 983
 984	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 985};
 986
 987ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_udp) = {
 988	{ ICE_MAC_OFOS,		0 },
 989	{ ICE_IPV6_OFOS,	14 },
 990	{ ICE_UDP_OF,		54 },
 991	{ ICE_GTP,		62 },
 992	{ ICE_IPV6_IL,		82 },
 993	{ ICE_UDP_ILOS,		122 },
 994	{ ICE_PROTOCOL_LAST,	0 },
 995};
 996
 997ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_udp) = {
 998	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 999	0x00, 0x00, 0x00, 0x00,
1000	0x00, 0x00, 0x00, 0x00,
1001	0x86, 0xdd,
1002
1003	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
1004	0x00, 0x4c, 0x11, 0x00,
1005	0x00, 0x00, 0x00, 0x00,
1006	0x00, 0x00, 0x00, 0x00,
1007	0x00, 0x00, 0x00, 0x00,
1008	0x00, 0x00, 0x00, 0x00,
1009	0x00, 0x00, 0x00, 0x00,
1010	0x00, 0x00, 0x00, 0x00,
1011	0x00, 0x00, 0x00, 0x00,
1012	0x00, 0x00, 0x00, 0x00,
1013
1014	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
1015	0x00, 0x4c, 0x00, 0x00,
1016
1017	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 62 */
1018	0x00, 0x00, 0x00, 0x00,
1019	0x00, 0x00, 0x00, 0x85,
1020
1021	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
1022	0x00, 0x00, 0x00, 0x00,
1023
1024	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
1025	0x00, 0x08, 0x11, 0x00,
1026	0x00, 0x00, 0x00, 0x00,
1027	0x00, 0x00, 0x00, 0x00,
1028	0x00, 0x00, 0x00, 0x00,
1029	0x00, 0x00, 0x00, 0x00,
1030	0x00, 0x00, 0x00, 0x00,
1031	0x00, 0x00, 0x00, 0x00,
1032	0x00, 0x00, 0x00, 0x00,
1033	0x00, 0x00, 0x00, 0x00,
1034
1035	0x00, 0x00, 0x00, 0x00, /* UDP 122 */
1036	0x00, 0x08, 0x00, 0x00,
1037
1038	0x00, 0x00, /* 2 bytes for 4 byte alignment */
1039};
1040
1041ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4) = {
1042	{ ICE_MAC_OFOS,		0 },
1043	{ ICE_IPV4_OFOS,	14 },
1044	{ ICE_UDP_OF,		34 },
1045	{ ICE_GTP_NO_PAY,	42 },
1046	{ ICE_PROTOCOL_LAST,	0 },
1047};
1048
1049ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4) = {
1050	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1051	0x00, 0x00, 0x00, 0x00,
1052	0x00, 0x00, 0x00, 0x00,
1053	0x08, 0x00,
1054
1055	0x45, 0x00, 0x00, 0x44, /* ICE_IPV4_OFOS 14 */
1056	0x00, 0x00, 0x40, 0x00,
1057	0x40, 0x11, 0x00, 0x00,
1058	0x00, 0x00, 0x00, 0x00,
1059	0x00, 0x00, 0x00, 0x00,
1060
1061	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */
1062	0x00, 0x00, 0x00, 0x00,
1063
1064	0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */
1065	0x00, 0x00, 0x00, 0x00,
1066	0x00, 0x00, 0x00, 0x85,
1067
1068	0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */
1069	0x00, 0x00, 0x00, 0x00,
1070
1071	0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 62 */
1072	0x00, 0x00, 0x40, 0x00,
1073	0x40, 0x00, 0x00, 0x00,
1074	0x00, 0x00, 0x00, 0x00,
1075	0x00, 0x00, 0x00, 0x00,
1076	0x00, 0x00,
1077};
1078
1079ICE_DECLARE_PKT_OFFSETS(ipv6_gtp) = {
1080	{ ICE_MAC_OFOS,		0 },
1081	{ ICE_IPV6_OFOS,	14 },
1082	{ ICE_UDP_OF,		54 },
1083	{ ICE_GTP_NO_PAY,	62 },
1084	{ ICE_PROTOCOL_LAST,	0 },
1085};
1086
1087ICE_DECLARE_PKT_TEMPLATE(ipv6_gtp) = {
1088	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1089	0x00, 0x00, 0x00, 0x00,
1090	0x00, 0x00, 0x00, 0x00,
1091	0x86, 0xdd,
1092
1093	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1094	0x00, 0x6c, 0x11, 0x00, /* Next header UDP*/
1095	0x00, 0x00, 0x00, 0x00,
1096	0x00, 0x00, 0x00, 0x00,
1097	0x00, 0x00, 0x00, 0x00,
1098	0x00, 0x00, 0x00, 0x00,
1099	0x00, 0x00, 0x00, 0x00,
1100	0x00, 0x00, 0x00, 0x00,
1101	0x00, 0x00, 0x00, 0x00,
1102	0x00, 0x00, 0x00, 0x00,
1103
1104	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */
1105	0x00, 0x00, 0x00, 0x00,
1106
1107	0x30, 0x00, 0x00, 0x28, /* ICE_GTP 62 */
1108	0x00, 0x00, 0x00, 0x00,
1109
1110	0x00, 0x00,
1111};
1112
1113ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_tcp) = {
1114	{ ICE_MAC_OFOS,		0 },
1115	{ ICE_ETYPE_OL,		12 },
1116	{ ICE_PPPOE,		14 },
1117	{ ICE_IPV4_OFOS,	22 },
1118	{ ICE_TCP_IL,		42 },
1119	{ ICE_PROTOCOL_LAST,	0 },
1120};
1121
1122ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_tcp) = {
1123	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1124	0x00, 0x00, 0x00, 0x00,
1125	0x00, 0x00, 0x00, 0x00,
1126
1127	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1128
1129	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1130	0x00, 0x16,
1131
1132	0x00, 0x21,		/* PPP Link Layer 20 */
1133
1134	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 22 */
1135	0x00, 0x01, 0x00, 0x00,
1136	0x00, 0x06, 0x00, 0x00,
1137	0x00, 0x00, 0x00, 0x00,
1138	0x00, 0x00, 0x00, 0x00,
1139
1140	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 42 */
1141	0x00, 0x00, 0x00, 0x00,
1142	0x00, 0x00, 0x00, 0x00,
1143	0x50, 0x00, 0x00, 0x00,
1144	0x00, 0x00, 0x00, 0x00,
1145
1146	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1147};
1148
1149ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_udp) = {
1150	{ ICE_MAC_OFOS,		0 },
1151	{ ICE_ETYPE_OL,		12 },
1152	{ ICE_PPPOE,		14 },
1153	{ ICE_IPV4_OFOS,	22 },
1154	{ ICE_UDP_ILOS,		42 },
1155	{ ICE_PROTOCOL_LAST,	0 },
1156};
1157
1158ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_udp) = {
1159	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1160	0x00, 0x00, 0x00, 0x00,
1161	0x00, 0x00, 0x00, 0x00,
1162
1163	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1164
1165	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1166	0x00, 0x16,
1167
1168	0x00, 0x21,		/* PPP Link Layer 20 */
1169
1170	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 22 */
1171	0x00, 0x01, 0x00, 0x00,
1172	0x00, 0x11, 0x00, 0x00,
1173	0x00, 0x00, 0x00, 0x00,
1174	0x00, 0x00, 0x00, 0x00,
1175
1176	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 42 */
1177	0x00, 0x08, 0x00, 0x00,
1178
1179	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1180};
1181
1182ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_tcp) = {
1183	{ ICE_MAC_OFOS,		0 },
1184	{ ICE_ETYPE_OL,		12 },
1185	{ ICE_PPPOE,		14 },
1186	{ ICE_IPV6_OFOS,	22 },
1187	{ ICE_TCP_IL,		62 },
1188	{ ICE_PROTOCOL_LAST,	0 },
1189};
1190
1191ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_tcp) = {
1192	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1193	0x00, 0x00, 0x00, 0x00,
1194	0x00, 0x00, 0x00, 0x00,
1195
1196	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1197
1198	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1199	0x00, 0x2a,
1200
1201	0x00, 0x57,		/* PPP Link Layer 20 */
1202
1203	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1204	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
1205	0x00, 0x00, 0x00, 0x00,
1206	0x00, 0x00, 0x00, 0x00,
1207	0x00, 0x00, 0x00, 0x00,
1208	0x00, 0x00, 0x00, 0x00,
1209	0x00, 0x00, 0x00, 0x00,
1210	0x00, 0x00, 0x00, 0x00,
1211	0x00, 0x00, 0x00, 0x00,
1212	0x00, 0x00, 0x00, 0x00,
1213
1214	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 62 */
1215	0x00, 0x00, 0x00, 0x00,
1216	0x00, 0x00, 0x00, 0x00,
1217	0x50, 0x00, 0x00, 0x00,
1218	0x00, 0x00, 0x00, 0x00,
1219
1220	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1221};
1222
1223ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_udp) = {
1224	{ ICE_MAC_OFOS,		0 },
1225	{ ICE_ETYPE_OL,		12 },
1226	{ ICE_PPPOE,		14 },
1227	{ ICE_IPV6_OFOS,	22 },
1228	{ ICE_UDP_ILOS,		62 },
1229	{ ICE_PROTOCOL_LAST,	0 },
1230};
1231
1232ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_udp) = {
1233	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1234	0x00, 0x00, 0x00, 0x00,
1235	0x00, 0x00, 0x00, 0x00,
1236
1237	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1238
1239	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1240	0x00, 0x2a,
1241
1242	0x00, 0x57,		/* PPP Link Layer 20 */
1243
1244	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1245	0x00, 0x08, 0x11, 0x00, /* Next header UDP*/
1246	0x00, 0x00, 0x00, 0x00,
1247	0x00, 0x00, 0x00, 0x00,
1248	0x00, 0x00, 0x00, 0x00,
1249	0x00, 0x00, 0x00, 0x00,
1250	0x00, 0x00, 0x00, 0x00,
1251	0x00, 0x00, 0x00, 0x00,
1252	0x00, 0x00, 0x00, 0x00,
1253	0x00, 0x00, 0x00, 0x00,
1254
1255	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 62 */
1256	0x00, 0x08, 0x00, 0x00,
1257
1258	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1259};
1260
1261ICE_DECLARE_PKT_OFFSETS(ipv4_l2tpv3) = {
1262	{ ICE_MAC_OFOS,		0 },
1263	{ ICE_ETYPE_OL,		12 },
1264	{ ICE_IPV4_OFOS,	14 },
1265	{ ICE_L2TPV3,		34 },
1266	{ ICE_PROTOCOL_LAST,	0 },
1267};
1268
1269ICE_DECLARE_PKT_TEMPLATE(ipv4_l2tpv3) = {
1270	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1271	0x00, 0x00, 0x00, 0x00,
1272	0x00, 0x00, 0x00, 0x00,
1273
1274	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
1275
1276	0x45, 0x00, 0x00, 0x20, /* ICE_IPV4_IL 14 */
1277	0x00, 0x00, 0x40, 0x00,
1278	0x40, 0x73, 0x00, 0x00,
1279	0x00, 0x00, 0x00, 0x00,
1280	0x00, 0x00, 0x00, 0x00,
1281
1282	0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 34 */
1283	0x00, 0x00, 0x00, 0x00,
1284	0x00, 0x00, 0x00, 0x00,
1285	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1286};
1287
1288ICE_DECLARE_PKT_OFFSETS(ipv6_l2tpv3) = {
1289	{ ICE_MAC_OFOS,		0 },
1290	{ ICE_ETYPE_OL,		12 },
1291	{ ICE_IPV6_OFOS,	14 },
1292	{ ICE_L2TPV3,		54 },
1293	{ ICE_PROTOCOL_LAST,	0 },
1294};
1295
1296ICE_DECLARE_PKT_TEMPLATE(ipv6_l2tpv3) = {
1297	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1298	0x00, 0x00, 0x00, 0x00,
1299	0x00, 0x00, 0x00, 0x00,
1300
1301	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
1302
1303	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 14 */
1304	0x00, 0x0c, 0x73, 0x40,
1305	0x00, 0x00, 0x00, 0x00,
1306	0x00, 0x00, 0x00, 0x00,
1307	0x00, 0x00, 0x00, 0x00,
1308	0x00, 0x00, 0x00, 0x00,
1309	0x00, 0x00, 0x00, 0x00,
1310	0x00, 0x00, 0x00, 0x00,
1311	0x00, 0x00, 0x00, 0x00,
1312	0x00, 0x00, 0x00, 0x00,
1313
1314	0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 54 */
1315	0x00, 0x00, 0x00, 0x00,
1316	0x00, 0x00, 0x00, 0x00,
1317	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1318};
1319
1320static const struct ice_dummy_pkt_profile ice_dummy_pkt_profiles[] = {
1321	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPU | ICE_PKT_OUTER_IPV6 |
1322				  ICE_PKT_GTP_NOPAY),
1323	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1324					    ICE_PKT_OUTER_IPV6 |
1325					    ICE_PKT_INNER_IPV6 |
1326					    ICE_PKT_INNER_UDP),
1327	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1328					    ICE_PKT_OUTER_IPV6 |
1329					    ICE_PKT_INNER_IPV6),
1330	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1331					    ICE_PKT_OUTER_IPV6 |
1332					    ICE_PKT_INNER_UDP),
1333	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU |
1334					    ICE_PKT_OUTER_IPV6),
1335	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPU | ICE_PKT_GTP_NOPAY),
1336	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1337					    ICE_PKT_INNER_IPV6 |
1338					    ICE_PKT_INNER_UDP),
1339	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1340					    ICE_PKT_INNER_IPV6),
1341	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1342					    ICE_PKT_INNER_UDP),
1343	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU),
1344	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPC | ICE_PKT_OUTER_IPV6),
1345	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPC),
1346	ICE_PKT_PROFILE(pppoe_ipv6_udp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6 |
1347					ICE_PKT_INNER_UDP),
1348	ICE_PKT_PROFILE(pppoe_ipv6_tcp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6),
1349	ICE_PKT_PROFILE(pppoe_ipv4_udp, ICE_PKT_PPPOE | ICE_PKT_INNER_UDP),
1350	ICE_PKT_PROFILE(pppoe_ipv4_tcp, ICE_PKT_PPPOE),
1351	ICE_PKT_PROFILE(gre_ipv6_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6 |
1352				      ICE_PKT_INNER_TCP),
1353	ICE_PKT_PROFILE(gre_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_TCP),
1354	ICE_PKT_PROFILE(gre_ipv6_udp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6),
1355	ICE_PKT_PROFILE(gre_udp, ICE_PKT_TUN_NVGRE),
1356	ICE_PKT_PROFILE(udp_tun_ipv6_tcp, ICE_PKT_TUN_UDP |
1357					  ICE_PKT_INNER_IPV6 |
1358					  ICE_PKT_INNER_TCP),
1359	ICE_PKT_PROFILE(ipv6_l2tpv3, ICE_PKT_L2TPV3 | ICE_PKT_OUTER_IPV6),
1360	ICE_PKT_PROFILE(ipv4_l2tpv3, ICE_PKT_L2TPV3),
1361	ICE_PKT_PROFILE(udp_tun_tcp, ICE_PKT_TUN_UDP | ICE_PKT_INNER_TCP),
1362	ICE_PKT_PROFILE(udp_tun_ipv6_udp, ICE_PKT_TUN_UDP |
1363					  ICE_PKT_INNER_IPV6),
1364	ICE_PKT_PROFILE(udp_tun_udp, ICE_PKT_TUN_UDP),
1365	ICE_PKT_PROFILE(udp_ipv6, ICE_PKT_OUTER_IPV6 | ICE_PKT_INNER_UDP),
1366	ICE_PKT_PROFILE(udp, ICE_PKT_INNER_UDP),
1367	ICE_PKT_PROFILE(tcp_ipv6, ICE_PKT_OUTER_IPV6),
1368	ICE_PKT_PROFILE(tcp, 0),
1369};
1370
1371/* this is a recipe to profile association bitmap */
1372static DECLARE_BITMAP(recipe_to_profile[ICE_MAX_NUM_RECIPES],
1373			  ICE_MAX_NUM_PROFILES);
1374
1375/* this is a profile to recipe association bitmap */
1376static DECLARE_BITMAP(profile_to_recipe[ICE_MAX_NUM_PROFILES],
1377			  ICE_MAX_NUM_RECIPES);
1378
1379/**
1380 * ice_init_def_sw_recp - initialize the recipe book keeping tables
1381 * @hw: pointer to the HW struct
1382 *
1383 * Allocate memory for the entire recipe table and initialize the structures/
1384 * entries corresponding to basic recipes.
1385 */
1386int ice_init_def_sw_recp(struct ice_hw *hw)
1387{
1388	struct ice_sw_recipe *recps;
1389	u8 i;
1390
1391	recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES,
1392			     sizeof(*recps), GFP_KERNEL);
1393	if (!recps)
1394		return -ENOMEM;
1395
1396	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
1397		recps[i].root_rid = i;
1398		INIT_LIST_HEAD(&recps[i].filt_rules);
1399		INIT_LIST_HEAD(&recps[i].filt_replay_rules);
1400		INIT_LIST_HEAD(&recps[i].rg_list);
1401		mutex_init(&recps[i].filt_rule_lock);
1402	}
1403
1404	hw->switch_info->recp_list = recps;
1405
1406	return 0;
1407}
1408
1409/**
1410 * ice_aq_get_sw_cfg - get switch configuration
1411 * @hw: pointer to the hardware structure
1412 * @buf: pointer to the result buffer
1413 * @buf_size: length of the buffer available for response
1414 * @req_desc: pointer to requested descriptor
1415 * @num_elems: pointer to number of elements
1416 * @cd: pointer to command details structure or NULL
1417 *
1418 * Get switch configuration (0x0200) to be placed in buf.
1419 * This admin command returns information such as initial VSI/port number
1420 * and switch ID it belongs to.
1421 *
1422 * NOTE: *req_desc is both an input/output parameter.
1423 * The caller of this function first calls this function with *request_desc set
1424 * to 0. If the response from f/w has *req_desc set to 0, all the switch
1425 * configuration information has been returned; if non-zero (meaning not all
1426 * the information was returned), the caller should call this function again
1427 * with *req_desc set to the previous value returned by f/w to get the
1428 * next block of switch configuration information.
1429 *
1430 * *num_elems is output only parameter. This reflects the number of elements
1431 * in response buffer. The caller of this function to use *num_elems while
1432 * parsing the response buffer.
1433 */
1434static int
1435ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
1436		  u16 buf_size, u16 *req_desc, u16 *num_elems,
1437		  struct ice_sq_cd *cd)
1438{
1439	struct ice_aqc_get_sw_cfg *cmd;
1440	struct ice_aq_desc desc;
1441	int status;
1442
1443	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
1444	cmd = &desc.params.get_sw_conf;
1445	cmd->element = cpu_to_le16(*req_desc);
1446
1447	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1448	if (!status) {
1449		*req_desc = le16_to_cpu(cmd->element);
1450		*num_elems = le16_to_cpu(cmd->num_elems);
1451	}
1452
1453	return status;
1454}
1455
1456/**
1457 * ice_aq_add_vsi
1458 * @hw: pointer to the HW struct
1459 * @vsi_ctx: pointer to a VSI context struct
1460 * @cd: pointer to command details structure or NULL
1461 *
1462 * Add a VSI context to the hardware (0x0210)
1463 */
1464static int
1465ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1466	       struct ice_sq_cd *cd)
1467{
1468	struct ice_aqc_add_update_free_vsi_resp *res;
1469	struct ice_aqc_add_get_update_free_vsi *cmd;
1470	struct ice_aq_desc desc;
1471	int status;
1472
1473	cmd = &desc.params.vsi_cmd;
1474	res = &desc.params.add_update_free_vsi_res;
1475
1476	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
1477
1478	if (!vsi_ctx->alloc_from_pool)
1479		cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num |
1480					   ICE_AQ_VSI_IS_VALID);
1481	cmd->vf_id = vsi_ctx->vf_num;
1482
1483	cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
1484
1485	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1486
1487	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1488				 sizeof(vsi_ctx->info), cd);
1489
1490	if (!status) {
1491		vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M;
1492		vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used);
1493		vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free);
1494	}
1495
1496	return status;
1497}
1498
1499/**
1500 * ice_aq_free_vsi
1501 * @hw: pointer to the HW struct
1502 * @vsi_ctx: pointer to a VSI context struct
1503 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1504 * @cd: pointer to command details structure or NULL
1505 *
1506 * Free VSI context info from hardware (0x0213)
1507 */
1508static int
1509ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1510		bool keep_vsi_alloc, struct ice_sq_cd *cd)
1511{
1512	struct ice_aqc_add_update_free_vsi_resp *resp;
1513	struct ice_aqc_add_get_update_free_vsi *cmd;
1514	struct ice_aq_desc desc;
1515	int status;
1516
1517	cmd = &desc.params.vsi_cmd;
1518	resp = &desc.params.add_update_free_vsi_res;
1519
1520	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
1521
1522	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1523	if (keep_vsi_alloc)
1524		cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC);
1525
1526	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1527	if (!status) {
1528		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1529		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1530	}
1531
1532	return status;
1533}
1534
1535/**
1536 * ice_aq_update_vsi
1537 * @hw: pointer to the HW struct
1538 * @vsi_ctx: pointer to a VSI context struct
1539 * @cd: pointer to command details structure or NULL
1540 *
1541 * Update VSI context in the hardware (0x0211)
1542 */
1543static int
1544ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1545		  struct ice_sq_cd *cd)
1546{
1547	struct ice_aqc_add_update_free_vsi_resp *resp;
1548	struct ice_aqc_add_get_update_free_vsi *cmd;
1549	struct ice_aq_desc desc;
1550	int status;
1551
1552	cmd = &desc.params.vsi_cmd;
1553	resp = &desc.params.add_update_free_vsi_res;
1554
1555	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
1556
1557	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1558
1559	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1560
1561	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1562				 sizeof(vsi_ctx->info), cd);
1563
1564	if (!status) {
1565		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1566		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1567	}
1568
1569	return status;
1570}
1571
1572/**
1573 * ice_is_vsi_valid - check whether the VSI is valid or not
1574 * @hw: pointer to the HW struct
1575 * @vsi_handle: VSI handle
1576 *
1577 * check whether the VSI is valid or not
1578 */
1579bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
1580{
1581	return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
1582}
1583
1584/**
1585 * ice_get_hw_vsi_num - return the HW VSI number
1586 * @hw: pointer to the HW struct
1587 * @vsi_handle: VSI handle
1588 *
1589 * return the HW VSI number
1590 * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
1591 */
1592u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
1593{
1594	return hw->vsi_ctx[vsi_handle]->vsi_num;
1595}
1596
1597/**
1598 * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
1599 * @hw: pointer to the HW struct
1600 * @vsi_handle: VSI handle
1601 *
1602 * return the VSI context entry for a given VSI handle
1603 */
1604struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1605{
1606	return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
1607}
1608
1609/**
1610 * ice_save_vsi_ctx - save the VSI context for a given VSI handle
1611 * @hw: pointer to the HW struct
1612 * @vsi_handle: VSI handle
1613 * @vsi: VSI context pointer
1614 *
1615 * save the VSI context entry for a given VSI handle
1616 */
1617static void
1618ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
1619{
1620	hw->vsi_ctx[vsi_handle] = vsi;
1621}
1622
1623/**
1624 * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
1625 * @hw: pointer to the HW struct
1626 * @vsi_handle: VSI handle
1627 */
1628static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
1629{
1630	struct ice_vsi_ctx *vsi = ice_get_vsi_ctx(hw, vsi_handle);
1631	u8 i;
1632
1633	if (!vsi)
1634		return;
1635	ice_for_each_traffic_class(i) {
1636		devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]);
1637		vsi->lan_q_ctx[i] = NULL;
1638		devm_kfree(ice_hw_to_dev(hw), vsi->rdma_q_ctx[i]);
1639		vsi->rdma_q_ctx[i] = NULL;
1640	}
1641}
1642
1643/**
1644 * ice_clear_vsi_ctx - clear the VSI context entry
1645 * @hw: pointer to the HW struct
1646 * @vsi_handle: VSI handle
1647 *
1648 * clear the VSI context entry
1649 */
1650static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1651{
1652	struct ice_vsi_ctx *vsi;
1653
1654	vsi = ice_get_vsi_ctx(hw, vsi_handle);
1655	if (vsi) {
1656		ice_clear_vsi_q_ctx(hw, vsi_handle);
1657		devm_kfree(ice_hw_to_dev(hw), vsi);
1658		hw->vsi_ctx[vsi_handle] = NULL;
1659	}
1660}
1661
1662/**
1663 * ice_clear_all_vsi_ctx - clear all the VSI context entries
1664 * @hw: pointer to the HW struct
1665 */
1666void ice_clear_all_vsi_ctx(struct ice_hw *hw)
1667{
1668	u16 i;
1669
1670	for (i = 0; i < ICE_MAX_VSI; i++)
1671		ice_clear_vsi_ctx(hw, i);
1672}
1673
1674/**
1675 * ice_add_vsi - add VSI context to the hardware and VSI handle list
1676 * @hw: pointer to the HW struct
1677 * @vsi_handle: unique VSI handle provided by drivers
1678 * @vsi_ctx: pointer to a VSI context struct
1679 * @cd: pointer to command details structure or NULL
1680 *
1681 * Add a VSI context to the hardware also add it into the VSI handle list.
1682 * If this function gets called after reset for existing VSIs then update
1683 * with the new HW VSI number in the corresponding VSI handle list entry.
1684 */
1685int
1686ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1687	    struct ice_sq_cd *cd)
1688{
1689	struct ice_vsi_ctx *tmp_vsi_ctx;
1690	int status;
1691
1692	if (vsi_handle >= ICE_MAX_VSI)
1693		return -EINVAL;
1694	status = ice_aq_add_vsi(hw, vsi_ctx, cd);
1695	if (status)
1696		return status;
1697	tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1698	if (!tmp_vsi_ctx) {
1699		/* Create a new VSI context */
1700		tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw),
1701					   sizeof(*tmp_vsi_ctx), GFP_KERNEL);
1702		if (!tmp_vsi_ctx) {
1703			ice_aq_free_vsi(hw, vsi_ctx, false, cd);
1704			return -ENOMEM;
1705		}
1706		*tmp_vsi_ctx = *vsi_ctx;
1707		ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
1708	} else {
1709		/* update with new HW VSI num */
1710		tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
1711	}
1712
1713	return 0;
1714}
1715
1716/**
1717 * ice_free_vsi- free VSI context from hardware and VSI handle list
1718 * @hw: pointer to the HW struct
1719 * @vsi_handle: unique VSI handle
1720 * @vsi_ctx: pointer to a VSI context struct
1721 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1722 * @cd: pointer to command details structure or NULL
1723 *
1724 * Free VSI context info from hardware as well as from VSI handle list
1725 */
1726int
1727ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1728	     bool keep_vsi_alloc, struct ice_sq_cd *cd)
1729{
1730	int status;
1731
1732	if (!ice_is_vsi_valid(hw, vsi_handle))
1733		return -EINVAL;
1734	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1735	status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
1736	if (!status)
1737		ice_clear_vsi_ctx(hw, vsi_handle);
1738	return status;
1739}
1740
1741/**
1742 * ice_update_vsi
1743 * @hw: pointer to the HW struct
1744 * @vsi_handle: unique VSI handle
1745 * @vsi_ctx: pointer to a VSI context struct
1746 * @cd: pointer to command details structure or NULL
1747 *
1748 * Update VSI context in the hardware
1749 */
1750int
1751ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1752	       struct ice_sq_cd *cd)
1753{
1754	if (!ice_is_vsi_valid(hw, vsi_handle))
1755		return -EINVAL;
1756	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1757	return ice_aq_update_vsi(hw, vsi_ctx, cd);
1758}
1759
1760/**
1761 * ice_cfg_rdma_fltr - enable/disable RDMA filtering on VSI
1762 * @hw: pointer to HW struct
1763 * @vsi_handle: VSI SW index
1764 * @enable: boolean for enable/disable
1765 */
1766int
1767ice_cfg_rdma_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable)
1768{
1769	struct ice_vsi_ctx *ctx, *cached_ctx;
1770	int status;
1771
1772	cached_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1773	if (!cached_ctx)
1774		return -ENOENT;
1775
1776	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1777	if (!ctx)
1778		return -ENOMEM;
1779
1780	ctx->info.q_opt_rss = cached_ctx->info.q_opt_rss;
1781	ctx->info.q_opt_tc = cached_ctx->info.q_opt_tc;
1782	ctx->info.q_opt_flags = cached_ctx->info.q_opt_flags;
1783
1784	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1785
1786	if (enable)
1787		ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1788	else
1789		ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1790
1791	status = ice_update_vsi(hw, vsi_handle, ctx, NULL);
1792	if (!status) {
1793		cached_ctx->info.q_opt_flags = ctx->info.q_opt_flags;
1794		cached_ctx->info.valid_sections |= ctx->info.valid_sections;
1795	}
1796
1797	kfree(ctx);
1798	return status;
1799}
1800
1801/**
1802 * ice_aq_alloc_free_vsi_list
1803 * @hw: pointer to the HW struct
1804 * @vsi_list_id: VSI list ID returned or used for lookup
1805 * @lkup_type: switch rule filter lookup type
1806 * @opc: switch rules population command type - pass in the command opcode
1807 *
1808 * allocates or free a VSI list resource
1809 */
1810static int
1811ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
1812			   enum ice_sw_lkup_type lkup_type,
1813			   enum ice_adminq_opc opc)
1814{
1815	DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
1816	u16 buf_len = __struct_size(sw_buf);
1817	struct ice_aqc_res_elem *vsi_ele;
1818	int status;
1819
1820	sw_buf->num_elems = cpu_to_le16(1);
1821
1822	if (lkup_type == ICE_SW_LKUP_MAC ||
1823	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1824	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1825	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1826	    lkup_type == ICE_SW_LKUP_PROMISC ||
1827	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1828	    lkup_type == ICE_SW_LKUP_DFLT) {
1829		sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
1830	} else if (lkup_type == ICE_SW_LKUP_VLAN) {
1831		if (opc == ice_aqc_opc_alloc_res)
1832			sw_buf->res_type =
1833				cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE |
1834					    ICE_AQC_RES_TYPE_FLAG_SHARED);
1835		else
1836			sw_buf->res_type =
1837				cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
1838	} else {
1839		return -EINVAL;
1840	}
1841
1842	if (opc == ice_aqc_opc_free_res)
1843		sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id);
1844
1845	status = ice_aq_alloc_free_res(hw, sw_buf, buf_len, opc);
1846	if (status)
1847		return status;
1848
1849	if (opc == ice_aqc_opc_alloc_res) {
1850		vsi_ele = &sw_buf->elem[0];
1851		*vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp);
1852	}
1853
1854	return 0;
1855}
1856
1857/**
1858 * ice_aq_sw_rules - add/update/remove switch rules
1859 * @hw: pointer to the HW struct
1860 * @rule_list: pointer to switch rule population list
1861 * @rule_list_sz: total size of the rule list in bytes
1862 * @num_rules: number of switch rules in the rule_list
1863 * @opc: switch rules population command type - pass in the command opcode
1864 * @cd: pointer to command details structure or NULL
1865 *
1866 * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
1867 */
1868int
1869ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
1870		u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1871{
1872	struct ice_aq_desc desc;
1873	int status;
1874
1875	if (opc != ice_aqc_opc_add_sw_rules &&
1876	    opc != ice_aqc_opc_update_sw_rules &&
1877	    opc != ice_aqc_opc_remove_sw_rules)
1878		return -EINVAL;
1879
1880	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1881
1882	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1883	desc.params.sw_rules.num_rules_fltr_entry_index =
1884		cpu_to_le16(num_rules);
1885	status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
1886	if (opc != ice_aqc_opc_add_sw_rules &&
1887	    hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
1888		status = -ENOENT;
1889
1890	return status;
1891}
1892
1893/**
1894 * ice_aq_add_recipe - add switch recipe
1895 * @hw: pointer to the HW struct
1896 * @s_recipe_list: pointer to switch rule population list
1897 * @num_recipes: number of switch recipes in the list
1898 * @cd: pointer to command details structure or NULL
1899 *
1900 * Add(0x0290)
1901 */
1902int
1903ice_aq_add_recipe(struct ice_hw *hw,
1904		  struct ice_aqc_recipe_data_elem *s_recipe_list,
1905		  u16 num_recipes, struct ice_sq_cd *cd)
1906{
1907	struct ice_aqc_add_get_recipe *cmd;
1908	struct ice_aq_desc desc;
1909	u16 buf_size;
1910
1911	cmd = &desc.params.add_get_recipe;
1912	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe);
1913
1914	cmd->num_sub_recipes = cpu_to_le16(num_recipes);
1915	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1916
1917	buf_size = num_recipes * sizeof(*s_recipe_list);
1918
1919	return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1920}
1921
1922/**
1923 * ice_aq_get_recipe - get switch recipe
1924 * @hw: pointer to the HW struct
1925 * @s_recipe_list: pointer to switch rule population list
1926 * @num_recipes: pointer to the number of recipes (input and output)
1927 * @recipe_root: root recipe number of recipe(s) to retrieve
1928 * @cd: pointer to command details structure or NULL
1929 *
1930 * Get(0x0292)
1931 *
1932 * On input, *num_recipes should equal the number of entries in s_recipe_list.
1933 * On output, *num_recipes will equal the number of entries returned in
1934 * s_recipe_list.
1935 *
1936 * The caller must supply enough space in s_recipe_list to hold all possible
1937 * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES.
1938 */
1939int
1940ice_aq_get_recipe(struct ice_hw *hw,
1941		  struct ice_aqc_recipe_data_elem *s_recipe_list,
1942		  u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd)
1943{
1944	struct ice_aqc_add_get_recipe *cmd;
1945	struct ice_aq_desc desc;
1946	u16 buf_size;
1947	int status;
1948
1949	if (*num_recipes != ICE_MAX_NUM_RECIPES)
1950		return -EINVAL;
1951
1952	cmd = &desc.params.add_get_recipe;
1953	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe);
1954
1955	cmd->return_index = cpu_to_le16(recipe_root);
1956	cmd->num_sub_recipes = 0;
1957
1958	buf_size = *num_recipes * sizeof(*s_recipe_list);
1959
1960	status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1961	*num_recipes = le16_to_cpu(cmd->num_sub_recipes);
1962
1963	return status;
1964}
1965
1966/**
1967 * ice_update_recipe_lkup_idx - update a default recipe based on the lkup_idx
1968 * @hw: pointer to the HW struct
1969 * @params: parameters used to update the default recipe
1970 *
1971 * This function only supports updating default recipes and it only supports
1972 * updating a single recipe based on the lkup_idx at a time.
1973 *
1974 * This is done as a read-modify-write operation. First, get the current recipe
1975 * contents based on the recipe's ID. Then modify the field vector index and
1976 * mask if it's valid at the lkup_idx. Finally, use the add recipe AQ to update
1977 * the pre-existing recipe with the modifications.
1978 */
1979int
1980ice_update_recipe_lkup_idx(struct ice_hw *hw,
1981			   struct ice_update_recipe_lkup_idx_params *params)
1982{
1983	struct ice_aqc_recipe_data_elem *rcp_list;
1984	u16 num_recps = ICE_MAX_NUM_RECIPES;
1985	int status;
1986
1987	rcp_list = kcalloc(num_recps, sizeof(*rcp_list), GFP_KERNEL);
1988	if (!rcp_list)
1989		return -ENOMEM;
1990
1991	/* read current recipe list from firmware */
1992	rcp_list->recipe_indx = params->rid;
1993	status = ice_aq_get_recipe(hw, rcp_list, &num_recps, params->rid, NULL);
1994	if (status) {
1995		ice_debug(hw, ICE_DBG_SW, "Failed to get recipe %d, status %d\n",
1996			  params->rid, status);
1997		goto error_out;
1998	}
1999
2000	/* only modify existing recipe's lkup_idx and mask if valid, while
2001	 * leaving all other fields the same, then update the recipe firmware
2002	 */
2003	rcp_list->content.lkup_indx[params->lkup_idx] = params->fv_idx;
2004	if (params->mask_valid)
2005		rcp_list->content.mask[params->lkup_idx] =
2006			cpu_to_le16(params->mask);
2007
2008	if (params->ignore_valid)
2009		rcp_list->content.lkup_indx[params->lkup_idx] |=
2010			ICE_AQ_RECIPE_LKUP_IGNORE;
2011
2012	status = ice_aq_add_recipe(hw, &rcp_list[0], 1, NULL);
2013	if (status)
2014		ice_debug(hw, ICE_DBG_SW, "Failed to update recipe %d lkup_idx %d fv_idx %d mask %d mask_valid %s, status %d\n",
2015			  params->rid, params->lkup_idx, params->fv_idx,
2016			  params->mask, params->mask_valid ? "true" : "false",
2017			  status);
2018
2019error_out:
2020	kfree(rcp_list);
2021	return status;
2022}
2023
2024/**
2025 * ice_aq_map_recipe_to_profile - Map recipe to packet profile
2026 * @hw: pointer to the HW struct
2027 * @profile_id: package profile ID to associate the recipe with
2028 * @r_bitmap: Recipe bitmap filled in and need to be returned as response
2029 * @cd: pointer to command details structure or NULL
2030 * Recipe to profile association (0x0291)
2031 */
2032int
2033ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap,
2034			     struct ice_sq_cd *cd)
2035{
2036	struct ice_aqc_recipe_to_profile *cmd;
2037	struct ice_aq_desc desc;
2038
2039	cmd = &desc.params.recipe_to_profile;
2040	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile);
2041	cmd->profile_id = cpu_to_le16(profile_id);
2042	/* Set the recipe ID bit in the bitmask to let the device know which
2043	 * profile we are associating the recipe to
2044	 */
2045	memcpy(cmd->recipe_assoc, r_bitmap, sizeof(cmd->recipe_assoc));
2046
2047	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2048}
2049
2050/**
2051 * ice_aq_get_recipe_to_profile - Map recipe to packet profile
2052 * @hw: pointer to the HW struct
2053 * @profile_id: package profile ID to associate the recipe with
2054 * @r_bitmap: Recipe bitmap filled in and need to be returned as response
2055 * @cd: pointer to command details structure or NULL
2056 * Associate profile ID with given recipe (0x0293)
2057 */
2058int
2059ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap,
2060			     struct ice_sq_cd *cd)
2061{
2062	struct ice_aqc_recipe_to_profile *cmd;
2063	struct ice_aq_desc desc;
2064	int status;
2065
2066	cmd = &desc.params.recipe_to_profile;
2067	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile);
2068	cmd->profile_id = cpu_to_le16(profile_id);
2069
2070	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2071	if (!status)
2072		memcpy(r_bitmap, cmd->recipe_assoc, sizeof(cmd->recipe_assoc));
2073
2074	return status;
2075}
2076
2077/**
2078 * ice_alloc_recipe - add recipe resource
2079 * @hw: pointer to the hardware structure
2080 * @rid: recipe ID returned as response to AQ call
2081 */
2082int ice_alloc_recipe(struct ice_hw *hw, u16 *rid)
2083{
2084	DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
2085	u16 buf_len = __struct_size(sw_buf);
2086	int status;
2087
2088	sw_buf->num_elems = cpu_to_le16(1);
2089	sw_buf->res_type = cpu_to_le16((ICE_AQC_RES_TYPE_RECIPE <<
2090					ICE_AQC_RES_TYPE_S) |
2091					ICE_AQC_RES_TYPE_FLAG_SHARED);
2092	status = ice_aq_alloc_free_res(hw, sw_buf, buf_len,
2093				       ice_aqc_opc_alloc_res);
2094	if (!status)
2095		*rid = le16_to_cpu(sw_buf->elem[0].e.sw_resp);
2096
2097	return status;
2098}
2099
2100/**
2101 * ice_get_recp_to_prof_map - updates recipe to profile mapping
2102 * @hw: pointer to hardware structure
2103 *
2104 * This function is used to populate recipe_to_profile matrix where index to
2105 * this array is the recipe ID and the element is the mapping of which profiles
2106 * is this recipe mapped to.
2107 */
2108static void ice_get_recp_to_prof_map(struct ice_hw *hw)
2109{
2110	DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
2111	u16 i;
2112
2113	for (i = 0; i < hw->switch_info->max_used_prof_index + 1; i++) {
2114		u16 j;
2115
2116		bitmap_zero(profile_to_recipe[i], ICE_MAX_NUM_RECIPES);
2117		bitmap_zero(r_bitmap, ICE_MAX_NUM_RECIPES);
2118		if (ice_aq_get_recipe_to_profile(hw, i, (u8 *)r_bitmap, NULL))
2119			continue;
2120		bitmap_copy(profile_to_recipe[i], r_bitmap,
2121			    ICE_MAX_NUM_RECIPES);
2122		for_each_set_bit(j, r_bitmap, ICE_MAX_NUM_RECIPES)
2123			set_bit(i, recipe_to_profile[j]);
2124	}
2125}
2126
2127/**
2128 * ice_collect_result_idx - copy result index values
2129 * @buf: buffer that contains the result index
2130 * @recp: the recipe struct to copy data into
2131 */
2132static void
2133ice_collect_result_idx(struct ice_aqc_recipe_data_elem *buf,
2134		       struct ice_sw_recipe *recp)
2135{
2136	if (buf->content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2137		set_bit(buf->content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2138			recp->res_idxs);
2139}
2140
2141/**
2142 * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries
2143 * @hw: pointer to hardware structure
2144 * @recps: struct that we need to populate
2145 * @rid: recipe ID that we are populating
2146 * @refresh_required: true if we should get recipe to profile mapping from FW
2147 *
2148 * This function is used to populate all the necessary entries into our
2149 * bookkeeping so that we have a current list of all the recipes that are
2150 * programmed in the firmware.
2151 */
2152static int
2153ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid,
2154		    bool *refresh_required)
2155{
2156	DECLARE_BITMAP(result_bm, ICE_MAX_FV_WORDS);
2157	struct ice_aqc_recipe_data_elem *tmp;
2158	u16 num_recps = ICE_MAX_NUM_RECIPES;
2159	struct ice_prot_lkup_ext *lkup_exts;
2160	u8 fv_word_idx = 0;
2161	u16 sub_recps;
2162	int status;
2163
2164	bitmap_zero(result_bm, ICE_MAX_FV_WORDS);
2165
2166	/* we need a buffer big enough to accommodate all the recipes */
2167	tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
2168	if (!tmp)
2169		return -ENOMEM;
2170
2171	tmp[0].recipe_indx = rid;
2172	status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL);
2173	/* non-zero status meaning recipe doesn't exist */
2174	if (status)
2175		goto err_unroll;
2176
2177	/* Get recipe to profile map so that we can get the fv from lkups that
2178	 * we read for a recipe from FW. Since we want to minimize the number of
2179	 * times we make this FW call, just make one call and cache the copy
2180	 * until a new recipe is added. This operation is only required the
2181	 * first time to get the changes from FW. Then to search existing
2182	 * entries we don't need to update the cache again until another recipe
2183	 * gets added.
2184	 */
2185	if (*refresh_required) {
2186		ice_get_recp_to_prof_map(hw);
2187		*refresh_required = false;
2188	}
2189
2190	/* Start populating all the entries for recps[rid] based on lkups from
2191	 * firmware. Note that we are only creating the root recipe in our
2192	 * database.
2193	 */
2194	lkup_exts = &recps[rid].lkup_exts;
2195
2196	for (sub_recps = 0; sub_recps < num_recps; sub_recps++) {
2197		struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps];
2198		struct ice_recp_grp_entry *rg_entry;
2199		u8 i, prof, idx, prot = 0;
2200		bool is_root;
2201		u16 off = 0;
2202
2203		rg_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rg_entry),
2204					GFP_KERNEL);
2205		if (!rg_entry) {
2206			status = -ENOMEM;
2207			goto err_unroll;
2208		}
2209
2210		idx = root_bufs.recipe_indx;
2211		is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT;
2212
2213		/* Mark all result indices in this chain */
2214		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2215			set_bit(root_bufs.content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2216				result_bm);
2217
2218		/* get the first profile that is associated with rid */
2219		prof = find_first_bit(recipe_to_profile[idx],
2220				      ICE_MAX_NUM_PROFILES);
2221		for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
2222			u8 lkup_indx = root_bufs.content.lkup_indx[i + 1];
2223
2224			rg_entry->fv_idx[i] = lkup_indx;
2225			rg_entry->fv_mask[i] =
2226				le16_to_cpu(root_bufs.content.mask[i + 1]);
2227
2228			/* If the recipe is a chained recipe then all its
2229			 * child recipe's result will have a result index.
2230			 * To fill fv_words we should not use those result
2231			 * index, we only need the protocol ids and offsets.
2232			 * We will skip all the fv_idx which stores result
2233			 * index in them. We also need to skip any fv_idx which
2234			 * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a
2235			 * valid offset value.
2236			 */
2237			if (test_bit(rg_entry->fv_idx[i], hw->switch_info->prof_res_bm[prof]) ||
2238			    rg_entry->fv_idx[i] & ICE_AQ_RECIPE_LKUP_IGNORE ||
2239			    rg_entry->fv_idx[i] == 0)
2240				continue;
2241
2242			ice_find_prot_off(hw, ICE_BLK_SW, prof,
2243					  rg_entry->fv_idx[i], &prot, &off);
2244			lkup_exts->fv_words[fv_word_idx].prot_id = prot;
2245			lkup_exts->fv_words[fv_word_idx].off = off;
2246			lkup_exts->field_mask[fv_word_idx] =
2247				rg_entry->fv_mask[i];
2248			fv_word_idx++;
2249		}
2250		/* populate rg_list with the data from the child entry of this
2251		 * recipe
2252		 */
2253		list_add(&rg_entry->l_entry, &recps[rid].rg_list);
2254
2255		/* Propagate some data to the recipe database */
2256		recps[idx].is_root = !!is_root;
2257		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2258		recps[idx].need_pass_l2 = root_bufs.content.act_ctrl &
2259					  ICE_AQ_RECIPE_ACT_NEED_PASS_L2;
2260		recps[idx].allow_pass_l2 = root_bufs.content.act_ctrl &
2261					   ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2;
2262		bitmap_zero(recps[idx].res_idxs, ICE_MAX_FV_WORDS);
2263		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) {
2264			recps[idx].chain_idx = root_bufs.content.result_indx &
2265				~ICE_AQ_RECIPE_RESULT_EN;
2266			set_bit(recps[idx].chain_idx, recps[idx].res_idxs);
2267		} else {
2268			recps[idx].chain_idx = ICE_INVAL_CHAIN_IND;
2269		}
2270
2271		if (!is_root)
2272			continue;
2273
2274		/* Only do the following for root recipes entries */
2275		memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap,
2276		       sizeof(recps[idx].r_bitmap));
2277		recps[idx].root_rid = root_bufs.content.rid &
2278			~ICE_AQ_RECIPE_ID_IS_ROOT;
2279		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2280	}
2281
2282	/* Complete initialization of the root recipe entry */
2283	lkup_exts->n_val_words = fv_word_idx;
2284	recps[rid].big_recp = (num_recps > 1);
2285	recps[rid].n_grp_count = (u8)num_recps;
2286	recps[rid].root_buf = devm_kmemdup(ice_hw_to_dev(hw), tmp,
2287					   recps[rid].n_grp_count * sizeof(*recps[rid].root_buf),
2288					   GFP_KERNEL);
2289	if (!recps[rid].root_buf) {
2290		status = -ENOMEM;
2291		goto err_unroll;
2292	}
2293
2294	/* Copy result indexes */
2295	bitmap_copy(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS);
2296	recps[rid].recp_created = true;
2297
2298err_unroll:
2299	kfree(tmp);
2300	return status;
2301}
2302
2303/* ice_init_port_info - Initialize port_info with switch configuration data
2304 * @pi: pointer to port_info
2305 * @vsi_port_num: VSI number or port number
2306 * @type: Type of switch element (port or VSI)
2307 * @swid: switch ID of the switch the element is attached to
2308 * @pf_vf_num: PF or VF number
2309 * @is_vf: true if the element is a VF, false otherwise
2310 */
2311static void
2312ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
2313		   u16 swid, u16 pf_vf_num, bool is_vf)
2314{
2315	switch (type) {
2316	case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
2317		pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
2318		pi->sw_id = swid;
2319		pi->pf_vf_num = pf_vf_num;
2320		pi->is_vf = is_vf;
2321		break;
2322	default:
2323		ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n");
2324		break;
2325	}
2326}
2327
2328/* ice_get_initial_sw_cfg - Get initial port and default VSI data
2329 * @hw: pointer to the hardware structure
2330 */
2331int ice_get_initial_sw_cfg(struct ice_hw *hw)
2332{
2333	struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
2334	u16 req_desc = 0;
2335	u16 num_elems;
2336	int status;
2337	u16 i;
2338
2339	rbuf = kzalloc(ICE_SW_CFG_MAX_BUF_LEN, GFP_KERNEL);
2340	if (!rbuf)
2341		return -ENOMEM;
2342
2343	/* Multiple calls to ice_aq_get_sw_cfg may be required
2344	 * to get all the switch configuration information. The need
2345	 * for additional calls is indicated by ice_aq_get_sw_cfg
2346	 * writing a non-zero value in req_desc
2347	 */
2348	do {
2349		struct ice_aqc_get_sw_cfg_resp_elem *ele;
2350
2351		status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
2352					   &req_desc, &num_elems, NULL);
2353
2354		if (status)
2355			break;
2356
2357		for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
2358			u16 pf_vf_num, swid, vsi_port_num;
2359			bool is_vf = false;
2360			u8 res_type;
2361
2362			vsi_port_num = le16_to_cpu(ele->vsi_port_num) &
2363				ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
2364
2365			pf_vf_num = le16_to_cpu(ele->pf_vf_num) &
2366				ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
2367
2368			swid = le16_to_cpu(ele->swid);
2369
2370			if (le16_to_cpu(ele->pf_vf_num) &
2371			    ICE_AQC_GET_SW_CONF_RESP_IS_VF)
2372				is_vf = true;
2373
2374			res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >>
2375					ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
2376
2377			if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) {
2378				/* FW VSI is not needed. Just continue. */
2379				continue;
2380			}
2381
2382			ice_init_port_info(hw->port_info, vsi_port_num,
2383					   res_type, swid, pf_vf_num, is_vf);
2384		}
2385	} while (req_desc && !status);
2386
2387	kfree(rbuf);
2388	return status;
2389}
2390
2391/**
2392 * ice_fill_sw_info - Helper function to populate lb_en and lan_en
2393 * @hw: pointer to the hardware structure
2394 * @fi: filter info structure to fill/update
2395 *
2396 * This helper function populates the lb_en and lan_en elements of the provided
2397 * ice_fltr_info struct using the switch's type and characteristics of the
2398 * switch rule being configured.
2399 */
2400static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
2401{
2402	fi->lb_en = false;
2403	fi->lan_en = false;
2404	if ((fi->flag & ICE_FLTR_TX) &&
2405	    (fi->fltr_act == ICE_FWD_TO_VSI ||
2406	     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2407	     fi->fltr_act == ICE_FWD_TO_Q ||
2408	     fi->fltr_act == ICE_FWD_TO_QGRP)) {
2409		/* Setting LB for prune actions will result in replicated
2410		 * packets to the internal switch that will be dropped.
2411		 */
2412		if (fi->lkup_type != ICE_SW_LKUP_VLAN)
2413			fi->lb_en = true;
2414
2415		/* Set lan_en to TRUE if
2416		 * 1. The switch is a VEB AND
2417		 * 2
2418		 * 2.1 The lookup is a directional lookup like ethertype,
2419		 * promiscuous, ethertype-MAC, promiscuous-VLAN
2420		 * and default-port OR
2421		 * 2.2 The lookup is VLAN, OR
2422		 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
2423		 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
2424		 *
2425		 * OR
2426		 *
2427		 * The switch is a VEPA.
2428		 *
2429		 * In all other cases, the LAN enable has to be set to false.
2430		 */
2431		if (hw->evb_veb) {
2432			if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2433			    fi->lkup_type == ICE_SW_LKUP_PROMISC ||
2434			    fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2435			    fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2436			    fi->lkup_type == ICE_SW_LKUP_DFLT ||
2437			    fi->lkup_type == ICE_SW_LKUP_VLAN ||
2438			    (fi->lkup_type == ICE_SW_LKUP_MAC &&
2439			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) ||
2440			    (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
2441			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)))
2442				fi->lan_en = true;
2443		} else {
2444			fi->lan_en = true;
2445		}
2446	}
2447}
2448
2449/**
2450 * ice_fill_eth_hdr - helper to copy dummy_eth_hdr into supplied buffer
2451 * @eth_hdr: pointer to buffer to populate
2452 */
2453void ice_fill_eth_hdr(u8 *eth_hdr)
2454{
2455	memcpy(eth_hdr, dummy_eth_header, DUMMY_ETH_HDR_LEN);
2456}
2457
2458/**
2459 * ice_fill_sw_rule - Helper function to fill switch rule structure
2460 * @hw: pointer to the hardware structure
2461 * @f_info: entry containing packet forwarding information
2462 * @s_rule: switch rule structure to be filled in based on mac_entry
2463 * @opc: switch rules population command type - pass in the command opcode
2464 */
2465static void
2466ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
2467		 struct ice_sw_rule_lkup_rx_tx *s_rule,
2468		 enum ice_adminq_opc opc)
2469{
2470	u16 vlan_id = ICE_MAX_VLAN_ID + 1;
2471	u16 vlan_tpid = ETH_P_8021Q;
2472	void *daddr = NULL;
2473	u16 eth_hdr_sz;
2474	u8 *eth_hdr;
2475	u32 act = 0;
2476	__be16 *off;
2477	u8 q_rgn;
2478
2479	if (opc == ice_aqc_opc_remove_sw_rules) {
2480		s_rule->act = 0;
2481		s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2482		s_rule->hdr_len = 0;
2483		return;
2484	}
2485
2486	eth_hdr_sz = sizeof(dummy_eth_header);
2487	eth_hdr = s_rule->hdr_data;
2488
2489	/* initialize the ether header with a dummy header */
2490	memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz);
2491	ice_fill_sw_info(hw, f_info);
2492
2493	switch (f_info->fltr_act) {
2494	case ICE_FWD_TO_VSI:
2495		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
2496				  f_info->fwd_id.hw_vsi_id);
2497		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2498			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2499				ICE_SINGLE_ACT_VALID_BIT;
2500		break;
2501	case ICE_FWD_TO_VSI_LIST:
2502		act |= ICE_SINGLE_ACT_VSI_LIST;
2503		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_LIST_ID_M,
2504				  f_info->fwd_id.vsi_list_id);
2505		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2506			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2507				ICE_SINGLE_ACT_VALID_BIT;
2508		break;
2509	case ICE_FWD_TO_Q:
2510		act |= ICE_SINGLE_ACT_TO_Q;
2511		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
2512				  f_info->fwd_id.q_id);
2513		break;
2514	case ICE_DROP_PACKET:
2515		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
2516			ICE_SINGLE_ACT_VALID_BIT;
2517		break;
2518	case ICE_FWD_TO_QGRP:
2519		q_rgn = f_info->qgrp_size > 0 ?
2520			(u8)ilog2(f_info->qgrp_size) : 0;
2521		act |= ICE_SINGLE_ACT_TO_Q;
2522		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
2523				  f_info->fwd_id.q_id);
2524		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn);
2525		break;
2526	default:
2527		return;
2528	}
2529
2530	if (f_info->lb_en)
2531		act |= ICE_SINGLE_ACT_LB_ENABLE;
2532	if (f_info->lan_en)
2533		act |= ICE_SINGLE_ACT_LAN_ENABLE;
2534
2535	switch (f_info->lkup_type) {
2536	case ICE_SW_LKUP_MAC:
2537		daddr = f_info->l_data.mac.mac_addr;
2538		break;
2539	case ICE_SW_LKUP_VLAN:
2540		vlan_id = f_info->l_data.vlan.vlan_id;
2541		if (f_info->l_data.vlan.tpid_valid)
2542			vlan_tpid = f_info->l_data.vlan.tpid;
2543		if (f_info->fltr_act == ICE_FWD_TO_VSI ||
2544		    f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
2545			act |= ICE_SINGLE_ACT_PRUNE;
2546			act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
2547		}
2548		break;
2549	case ICE_SW_LKUP_ETHERTYPE_MAC:
2550		daddr = f_info->l_data.ethertype_mac.mac_addr;
2551		fallthrough;
2552	case ICE_SW_LKUP_ETHERTYPE:
2553		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2554		*off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype);
2555		break;
2556	case ICE_SW_LKUP_MAC_VLAN:
2557		daddr = f_info->l_data.mac_vlan.mac_addr;
2558		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2559		break;
2560	case ICE_SW_LKUP_PROMISC_VLAN:
2561		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2562		fallthrough;
2563	case ICE_SW_LKUP_PROMISC:
2564		daddr = f_info->l_data.mac_vlan.mac_addr;
2565		break;
2566	default:
2567		break;
2568	}
2569
2570	s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ?
2571		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) :
2572		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
2573
2574	/* Recipe set depending on lookup type */
2575	s_rule->recipe_id = cpu_to_le16(f_info->lkup_type);
2576	s_rule->src = cpu_to_le16(f_info->src);
2577	s_rule->act = cpu_to_le32(act);
2578
2579	if (daddr)
2580		ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr);
2581
2582	if (!(vlan_id > ICE_MAX_VLAN_ID)) {
2583		off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
2584		*off = cpu_to_be16(vlan_id);
2585		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2586		*off = cpu_to_be16(vlan_tpid);
2587	}
2588
2589	/* Create the switch rule with the final dummy Ethernet header */
2590	if (opc != ice_aqc_opc_update_sw_rules)
2591		s_rule->hdr_len = cpu_to_le16(eth_hdr_sz);
2592}
2593
2594/**
2595 * ice_add_marker_act
2596 * @hw: pointer to the hardware structure
2597 * @m_ent: the management entry for which sw marker needs to be added
2598 * @sw_marker: sw marker to tag the Rx descriptor with
2599 * @l_id: large action resource ID
2600 *
2601 * Create a large action to hold software marker and update the switch rule
2602 * entry pointed by m_ent with newly created large action
2603 */
2604static int
2605ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
2606		   u16 sw_marker, u16 l_id)
2607{
2608	struct ice_sw_rule_lkup_rx_tx *rx_tx;
2609	struct ice_sw_rule_lg_act *lg_act;
2610	/* For software marker we need 3 large actions
2611	 * 1. FWD action: FWD TO VSI or VSI LIST
2612	 * 2. GENERIC VALUE action to hold the profile ID
2613	 * 3. GENERIC VALUE action to hold the software marker ID
2614	 */
2615	const u16 num_lg_acts = 3;
2616	u16 lg_act_size;
2617	u16 rules_size;
2618	int status;
2619	u32 act;
2620	u16 id;
2621
2622	if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
2623		return -EINVAL;
2624
2625	/* Create two back-to-back switch rules and submit them to the HW using
2626	 * one memory buffer:
2627	 *    1. Large Action
2628	 *    2. Look up Tx Rx
2629	 */
2630	lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(lg_act, num_lg_acts);
2631	rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(rx_tx);
2632	lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL);
2633	if (!lg_act)
2634		return -ENOMEM;
2635
2636	rx_tx = (typeof(rx_tx))((u8 *)lg_act + lg_act_size);
2637
2638	/* Fill in the first switch rule i.e. large action */
2639	lg_act->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT);
2640	lg_act->index = cpu_to_le16(l_id);
2641	lg_act->size = cpu_to_le16(num_lg_acts);
2642
2643	/* First action VSI forwarding or VSI list forwarding depending on how
2644	 * many VSIs
2645	 */
2646	id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
2647		m_ent->fltr_info.fwd_id.hw_vsi_id;
2648
2649	act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
2650	act |= FIELD_PREP(ICE_LG_ACT_VSI_LIST_ID_M, id);
2651	if (m_ent->vsi_count > 1)
2652		act |= ICE_LG_ACT_VSI_LIST;
2653	lg_act->act[0] = cpu_to_le32(act);
2654
2655	/* Second action descriptor type */
2656	act = ICE_LG_ACT_GENERIC;
2657
2658	act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, 1);
2659	lg_act->act[1] = cpu_to_le32(act);
2660
2661	act = FIELD_PREP(ICE_LG_ACT_GENERIC_OFFSET_M,
2662			 ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX);
2663
2664	/* Third action Marker value */
2665	act |= ICE_LG_ACT_GENERIC;
2666	act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, sw_marker);
2667
2668	lg_act->act[2] = cpu_to_le32(act);
2669
2670	/* call the fill switch rule to fill the lookup Tx Rx structure */
2671	ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
2672			 ice_aqc_opc_update_sw_rules);
2673
2674	/* Update the action to point to the large action ID */
2675	act = ICE_SINGLE_ACT_PTR;
2676	act |= FIELD_PREP(ICE_SINGLE_ACT_PTR_VAL_M, l_id);
2677	rx_tx->act = cpu_to_le32(act);
2678
2679	/* Use the filter rule ID of the previously created rule with single
2680	 * act. Once the update happens, hardware will treat this as large
2681	 * action
2682	 */
2683	rx_tx->index = cpu_to_le16(m_ent->fltr_info.fltr_rule_id);
2684
2685	status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
2686				 ice_aqc_opc_update_sw_rules, NULL);
2687	if (!status) {
2688		m_ent->lg_act_idx = l_id;
2689		m_ent->sw_marker_id = sw_marker;
2690	}
2691
2692	devm_kfree(ice_hw_to_dev(hw), lg_act);
2693	return status;
2694}
2695
2696/**
2697 * ice_create_vsi_list_map
2698 * @hw: pointer to the hardware structure
2699 * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
2700 * @num_vsi: number of VSI handles in the array
2701 * @vsi_list_id: VSI list ID generated as part of allocate resource
2702 *
2703 * Helper function to create a new entry of VSI list ID to VSI mapping
2704 * using the given VSI list ID
2705 */
2706static struct ice_vsi_list_map_info *
2707ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2708			u16 vsi_list_id)
2709{
2710	struct ice_switch_info *sw = hw->switch_info;
2711	struct ice_vsi_list_map_info *v_map;
2712	int i;
2713
2714	v_map = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*v_map), GFP_KERNEL);
2715	if (!v_map)
2716		return NULL;
2717
2718	v_map->vsi_list_id = vsi_list_id;
2719	v_map->ref_cnt = 1;
2720	for (i = 0; i < num_vsi; i++)
2721		set_bit(vsi_handle_arr[i], v_map->vsi_map);
2722
2723	list_add(&v_map->list_entry, &sw->vsi_list_map_head);
2724	return v_map;
2725}
2726
2727/**
2728 * ice_update_vsi_list_rule
2729 * @hw: pointer to the hardware structure
2730 * @vsi_handle_arr: array of VSI handles to form a VSI list
2731 * @num_vsi: number of VSI handles in the array
2732 * @vsi_list_id: VSI list ID generated as part of allocate resource
2733 * @remove: Boolean value to indicate if this is a remove action
2734 * @opc: switch rules population command type - pass in the command opcode
2735 * @lkup_type: lookup type of the filter
2736 *
2737 * Call AQ command to add a new switch rule or update existing switch rule
2738 * using the given VSI list ID
2739 */
2740static int
2741ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2742			 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
2743			 enum ice_sw_lkup_type lkup_type)
2744{
2745	struct ice_sw_rule_vsi_list *s_rule;
2746	u16 s_rule_size;
2747	u16 rule_type;
2748	int status;
2749	int i;
2750
2751	if (!num_vsi)
2752		return -EINVAL;
2753
2754	if (lkup_type == ICE_SW_LKUP_MAC ||
2755	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
2756	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2757	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2758	    lkup_type == ICE_SW_LKUP_PROMISC ||
2759	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2760	    lkup_type == ICE_SW_LKUP_DFLT)
2761		rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
2762			ICE_AQC_SW_RULES_T_VSI_LIST_SET;
2763	else if (lkup_type == ICE_SW_LKUP_VLAN)
2764		rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
2765			ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
2766	else
2767		return -EINVAL;
2768
2769	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, num_vsi);
2770	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
2771	if (!s_rule)
2772		return -ENOMEM;
2773	for (i = 0; i < num_vsi; i++) {
2774		if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
2775			status = -EINVAL;
2776			goto exit;
2777		}
2778		/* AQ call requires hw_vsi_id(s) */
2779		s_rule->vsi[i] =
2780			cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
2781	}
2782
2783	s_rule->hdr.type = cpu_to_le16(rule_type);
2784	s_rule->number_vsi = cpu_to_le16(num_vsi);
2785	s_rule->index = cpu_to_le16(vsi_list_id);
2786
2787	status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
2788
2789exit:
2790	devm_kfree(ice_hw_to_dev(hw), s_rule);
2791	return status;
2792}
2793
2794/**
2795 * ice_create_vsi_list_rule - Creates and populates a VSI list rule
2796 * @hw: pointer to the HW struct
2797 * @vsi_handle_arr: array of VSI handles to form a VSI list
2798 * @num_vsi: number of VSI handles in the array
2799 * @vsi_list_id: stores the ID of the VSI list to be created
2800 * @lkup_type: switch rule filter's lookup type
2801 */
2802static int
2803ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2804			 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
2805{
2806	int status;
2807
2808	status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
2809					    ice_aqc_opc_alloc_res);
2810	if (status)
2811		return status;
2812
2813	/* Update the newly created VSI list to include the specified VSIs */
2814	return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
2815					*vsi_list_id, false,
2816					ice_aqc_opc_add_sw_rules, lkup_type);
2817}
2818
2819/**
2820 * ice_create_pkt_fwd_rule
2821 * @hw: pointer to the hardware structure
2822 * @f_entry: entry containing packet forwarding information
2823 *
2824 * Create switch rule with given filter information and add an entry
2825 * to the corresponding filter management list to track this switch rule
2826 * and VSI mapping
2827 */
2828static int
2829ice_create_pkt_fwd_rule(struct ice_hw *hw,
2830			struct ice_fltr_list_entry *f_entry)
2831{
2832	struct ice_fltr_mgmt_list_entry *fm_entry;
2833	struct ice_sw_rule_lkup_rx_tx *s_rule;
2834	enum ice_sw_lkup_type l_type;
2835	struct ice_sw_recipe *recp;
2836	int status;
2837
2838	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2839			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2840			      GFP_KERNEL);
2841	if (!s_rule)
2842		return -ENOMEM;
2843	fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry),
2844				GFP_KERNEL);
2845	if (!fm_entry) {
2846		status = -ENOMEM;
2847		goto ice_create_pkt_fwd_rule_exit;
2848	}
2849
2850	fm_entry->fltr_info = f_entry->fltr_info;
2851
2852	/* Initialize all the fields for the management entry */
2853	fm_entry->vsi_count = 1;
2854	fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
2855	fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
2856	fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
2857
2858	ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
2859			 ice_aqc_opc_add_sw_rules);
2860
2861	status = ice_aq_sw_rules(hw, s_rule,
2862				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2863				 ice_aqc_opc_add_sw_rules, NULL);
2864	if (status) {
2865		devm_kfree(ice_hw_to_dev(hw), fm_entry);
2866		goto ice_create_pkt_fwd_rule_exit;
2867	}
2868
2869	f_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2870	fm_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2871
2872	/* The book keeping entries will get removed when base driver
2873	 * calls remove filter AQ command
2874	 */
2875	l_type = fm_entry->fltr_info.lkup_type;
2876	recp = &hw->switch_info->recp_list[l_type];
2877	list_add(&fm_entry->list_entry, &recp->filt_rules);
2878
2879ice_create_pkt_fwd_rule_exit:
2880	devm_kfree(ice_hw_to_dev(hw), s_rule);
2881	return status;
2882}
2883
2884/**
2885 * ice_update_pkt_fwd_rule
2886 * @hw: pointer to the hardware structure
2887 * @f_info: filter information for switch rule
2888 *
2889 * Call AQ command to update a previously created switch rule with a
2890 * VSI list ID
2891 */
2892static int
2893ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
2894{
2895	struct ice_sw_rule_lkup_rx_tx *s_rule;
2896	int status;
2897
2898	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2899			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2900			      GFP_KERNEL);
2901	if (!s_rule)
2902		return -ENOMEM;
2903
2904	ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
2905
2906	s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2907
2908	/* Update switch rule with new rule set to forward VSI list */
2909	status = ice_aq_sw_rules(hw, s_rule,
2910				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2911				 ice_aqc_opc_update_sw_rules, NULL);
2912
2913	devm_kfree(ice_hw_to_dev(hw), s_rule);
2914	return status;
2915}
2916
2917/**
2918 * ice_update_sw_rule_bridge_mode
2919 * @hw: pointer to the HW struct
2920 *
2921 * Updates unicast switch filter rules based on VEB/VEPA mode
2922 */
2923int ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
2924{
2925	struct ice_switch_info *sw = hw->switch_info;
2926	struct ice_fltr_mgmt_list_entry *fm_entry;
2927	struct list_head *rule_head;
2928	struct mutex *rule_lock; /* Lock to protect filter rule list */
2929	int status = 0;
2930
2931	rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
2932	rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
2933
2934	mutex_lock(rule_lock);
2935	list_for_each_entry(fm_entry, rule_head, list_entry) {
2936		struct ice_fltr_info *fi = &fm_entry->fltr_info;
2937		u8 *addr = fi->l_data.mac.mac_addr;
2938
2939		/* Update unicast Tx rules to reflect the selected
2940		 * VEB/VEPA mode
2941		 */
2942		if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) &&
2943		    (fi->fltr_act == ICE_FWD_TO_VSI ||
2944		     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2945		     fi->fltr_act == ICE_FWD_TO_Q ||
2946		     fi->fltr_act == ICE_FWD_TO_QGRP)) {
2947			status = ice_update_pkt_fwd_rule(hw, fi);
2948			if (status)
2949				break;
2950		}
2951	}
2952
2953	mutex_unlock(rule_lock);
2954
2955	return status;
2956}
2957
2958/**
2959 * ice_add_update_vsi_list
2960 * @hw: pointer to the hardware structure
2961 * @m_entry: pointer to current filter management list entry
2962 * @cur_fltr: filter information from the book keeping entry
2963 * @new_fltr: filter information with the new VSI to be added
2964 *
2965 * Call AQ command to add or update previously created VSI list with new VSI.
2966 *
2967 * Helper function to do book keeping associated with adding filter information
2968 * The algorithm to do the book keeping is described below :
2969 * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
2970 *	if only one VSI has been added till now
2971 *		Allocate a new VSI list and add two VSIs
2972 *		to this list using switch rule command
2973 *		Update the previously created switch rule with the
2974 *		newly created VSI list ID
2975 *	if a VSI list was previously created
2976 *		Add the new VSI to the previously created VSI list set
2977 *		using the update switch rule command
2978 */
2979static int
2980ice_add_update_vsi_list(struct ice_hw *hw,
2981			struct ice_fltr_mgmt_list_entry *m_entry,
2982			struct ice_fltr_info *cur_fltr,
2983			struct ice_fltr_info *new_fltr)
2984{
2985	u16 vsi_list_id = 0;
2986	int status = 0;
2987
2988	if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
2989	     cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
2990		return -EOPNOTSUPP;
2991
2992	if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
2993	     new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
2994	    (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
2995	     cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
2996		return -EOPNOTSUPP;
2997
2998	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
2999		/* Only one entry existed in the mapping and it was not already
3000		 * a part of a VSI list. So, create a VSI list with the old and
3001		 * new VSIs.
3002		 */
3003		struct ice_fltr_info tmp_fltr;
3004		u16 vsi_handle_arr[2];
3005
3006		/* A rule already exists with the new VSI being added */
3007		if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
3008			return -EEXIST;
3009
3010		vsi_handle_arr[0] = cur_fltr->vsi_handle;
3011		vsi_handle_arr[1] = new_fltr->vsi_handle;
3012		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3013						  &vsi_list_id,
3014						  new_fltr->lkup_type);
3015		if (status)
3016			return status;
3017
3018		tmp_fltr = *new_fltr;
3019		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
3020		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3021		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3022		/* Update the previous switch rule of "MAC forward to VSI" to
3023		 * "MAC fwd to VSI list"
3024		 */
3025		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3026		if (status)
3027			return status;
3028
3029		cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
3030		cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3031		m_entry->vsi_list_info =
3032			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3033						vsi_list_id);
3034
3035		if (!m_entry->vsi_list_info)
3036			return -ENOMEM;
3037
3038		/* If this entry was large action then the large action needs
3039		 * to be updated to point to FWD to VSI list
3040		 */
3041		if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
3042			status =
3043			    ice_add_marker_act(hw, m_entry,
3044					       m_entry->sw_marker_id,
3045					       m_entry->lg_act_idx);
3046	} else {
3047		u16 vsi_handle = new_fltr->vsi_handle;
3048		enum ice_adminq_opc opcode;
3049
3050		if (!m_entry->vsi_list_info)
3051			return -EIO;
3052
3053		/* A rule already exists with the new VSI being added */
3054		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
3055			return 0;
3056
3057		/* Update the previously created VSI list set with
3058		 * the new VSI ID passed in
3059		 */
3060		vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
3061		opcode = ice_aqc_opc_update_sw_rules;
3062
3063		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
3064						  vsi_list_id, false, opcode,
3065						  new_fltr->lkup_type);
3066		/* update VSI list mapping info with new VSI ID */
3067		if (!status)
3068			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
3069	}
3070	if (!status)
3071		m_entry->vsi_count++;
3072	return status;
3073}
3074
3075/**
3076 * ice_find_rule_entry - Search a rule entry
3077 * @hw: pointer to the hardware structure
3078 * @recp_id: lookup type for which the specified rule needs to be searched
3079 * @f_info: rule information
3080 *
3081 * Helper function to search for a given rule entry
3082 * Returns pointer to entry storing the rule if found
3083 */
3084static struct ice_fltr_mgmt_list_entry *
3085ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info)
3086{
3087	struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
3088	struct ice_switch_info *sw = hw->switch_info;
3089	struct list_head *list_head;
3090
3091	list_head = &sw->recp_list[recp_id].filt_rules;
3092	list_for_each_entry(list_itr, list_head, list_entry) {
3093		if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
3094			    sizeof(f_info->l_data)) &&
3095		    f_info->flag == list_itr->fltr_info.flag) {
3096			ret = list_itr;
3097			break;
3098		}
3099	}
3100	return ret;
3101}
3102
3103/**
3104 * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
3105 * @hw: pointer to the hardware structure
3106 * @recp_id: lookup type for which VSI lists needs to be searched
3107 * @vsi_handle: VSI handle to be found in VSI list
3108 * @vsi_list_id: VSI list ID found containing vsi_handle
3109 *
3110 * Helper function to search a VSI list with single entry containing given VSI
3111 * handle element. This can be extended further to search VSI list with more
3112 * than 1 vsi_count. Returns pointer to VSI list entry if found.
3113 */
3114struct ice_vsi_list_map_info *
3115ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle,
3116			u16 *vsi_list_id)
3117{
3118	struct ice_vsi_list_map_info *map_info = NULL;
3119	struct ice_switch_info *sw = hw->switch_info;
3120	struct ice_fltr_mgmt_list_entry *list_itr;
3121	struct list_head *list_head;
3122
3123	list_head = &sw->recp_list[recp_id].filt_rules;
3124	list_for_each_entry(list_itr, list_head, list_entry) {
3125		if (list_itr->vsi_list_info) {
3126			map_info = list_itr->vsi_list_info;
3127			if (test_bit(vsi_handle, map_info->vsi_map)) {
3128				*vsi_list_id = map_info->vsi_list_id;
3129				return map_info;
3130			}
3131		}
3132	}
3133	return NULL;
3134}
3135
3136/**
3137 * ice_add_rule_internal - add rule for a given lookup type
3138 * @hw: pointer to the hardware structure
3139 * @recp_id: lookup type (recipe ID) for which rule has to be added
3140 * @f_entry: structure containing MAC forwarding information
3141 *
3142 * Adds or updates the rule lists for a given recipe
3143 */
3144static int
3145ice_add_rule_internal(struct ice_hw *hw, u8 recp_id,
3146		      struct ice_fltr_list_entry *f_entry)
3147{
3148	struct ice_switch_info *sw = hw->switch_info;
3149	struct ice_fltr_info *new_fltr, *cur_fltr;
3150	struct ice_fltr_mgmt_list_entry *m_entry;
3151	struct mutex *rule_lock; /* Lock to protect filter rule list */
3152	int status = 0;
3153
3154	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3155		return -EINVAL;
3156	f_entry->fltr_info.fwd_id.hw_vsi_id =
3157		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3158
3159	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3160
3161	mutex_lock(rule_lock);
3162	new_fltr = &f_entry->fltr_info;
3163	if (new_fltr->flag & ICE_FLTR_RX)
3164		new_fltr->src = hw->port_info->lport;
3165	else if (new_fltr->flag & ICE_FLTR_TX)
3166		new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id;
3167
3168	m_entry = ice_find_rule_entry(hw, recp_id, new_fltr);
3169	if (!m_entry) {
3170		mutex_unlock(rule_lock);
3171		return ice_create_pkt_fwd_rule(hw, f_entry);
3172	}
3173
3174	cur_fltr = &m_entry->fltr_info;
3175	status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
3176	mutex_unlock(rule_lock);
3177
3178	return status;
3179}
3180
3181/**
3182 * ice_remove_vsi_list_rule
3183 * @hw: pointer to the hardware structure
3184 * @vsi_list_id: VSI list ID generated as part of allocate resource
3185 * @lkup_type: switch rule filter lookup type
3186 *
3187 * The VSI list should be emptied before this function is called to remove the
3188 * VSI list.
3189 */
3190static int
3191ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
3192			 enum ice_sw_lkup_type lkup_type)
3193{
3194	struct ice_sw_rule_vsi_list *s_rule;
3195	u16 s_rule_size;
3196	int status;
3197
3198	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, 0);
3199	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
3200	if (!s_rule)
3201		return -ENOMEM;
3202
3203	s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR);
3204	s_rule->index = cpu_to_le16(vsi_list_id);
3205
3206	/* Free the vsi_list resource that we allocated. It is assumed that the
3207	 * list is empty at this point.
3208	 */
3209	status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
3210					    ice_aqc_opc_free_res);
3211
3212	devm_kfree(ice_hw_to_dev(hw), s_rule);
3213	return status;
3214}
3215
3216/**
3217 * ice_rem_update_vsi_list
3218 * @hw: pointer to the hardware structure
3219 * @vsi_handle: VSI handle of the VSI to remove
3220 * @fm_list: filter management entry for which the VSI list management needs to
3221 *           be done
3222 */
3223static int
3224ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
3225			struct ice_fltr_mgmt_list_entry *fm_list)
3226{
3227	enum ice_sw_lkup_type lkup_type;
3228	u16 vsi_list_id;
3229	int status = 0;
3230
3231	if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
3232	    fm_list->vsi_count == 0)
3233		return -EINVAL;
3234
3235	/* A rule with the VSI being removed does not exist */
3236	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
3237		return -ENOENT;
3238
3239	lkup_type = fm_list->fltr_info.lkup_type;
3240	vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
3241	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
3242					  ice_aqc_opc_update_sw_rules,
3243					  lkup_type);
3244	if (status)
3245		return status;
3246
3247	fm_list->vsi_count--;
3248	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
3249
3250	if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
3251		struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
3252		struct ice_vsi_list_map_info *vsi_list_info =
3253			fm_list->vsi_list_info;
3254		u16 rem_vsi_handle;
3255
3256		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
3257						ICE_MAX_VSI);
3258		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
3259			return -EIO;
3260
3261		/* Make sure VSI list is empty before removing it below */
3262		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
3263						  vsi_list_id, true,
3264						  ice_aqc_opc_update_sw_rules,
3265						  lkup_type);
3266		if (status)
3267			return status;
3268
3269		tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
3270		tmp_fltr_info.fwd_id.hw_vsi_id =
3271			ice_get_hw_vsi_num(hw, rem_vsi_handle);
3272		tmp_fltr_info.vsi_handle = rem_vsi_handle;
3273		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
3274		if (status) {
3275			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
3276				  tmp_fltr_info.fwd_id.hw_vsi_id, status);
3277			return status;
3278		}
3279
3280		fm_list->fltr_info = tmp_fltr_info;
3281	}
3282
3283	if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
3284	    (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
3285		struct ice_vsi_list_map_info *vsi_list_info =
3286			fm_list->vsi_list_info;
3287
3288		/* Remove the VSI list since it is no longer used */
3289		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
3290		if (status) {
3291			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
3292				  vsi_list_id, status);
3293			return status;
3294		}
3295
3296		list_del(&vsi_list_info->list_entry);
3297		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
3298		fm_list->vsi_list_info = NULL;
3299	}
3300
3301	return status;
3302}
3303
3304/**
3305 * ice_remove_rule_internal - Remove a filter rule of a given type
3306 * @hw: pointer to the hardware structure
3307 * @recp_id: recipe ID for which the rule needs to removed
3308 * @f_entry: rule entry containing filter information
3309 */
3310static int
3311ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id,
3312			 struct ice_fltr_list_entry *f_entry)
3313{
3314	struct ice_switch_info *sw = hw->switch_info;
3315	struct ice_fltr_mgmt_list_entry *list_elem;
3316	struct mutex *rule_lock; /* Lock to protect filter rule list */
3317	bool remove_rule = false;
3318	u16 vsi_handle;
3319	int status = 0;
3320
3321	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3322		return -EINVAL;
3323	f_entry->fltr_info.fwd_id.hw_vsi_id =
3324		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3325
3326	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3327	mutex_lock(rule_lock);
3328	list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info);
3329	if (!list_elem) {
3330		status = -ENOENT;
3331		goto exit;
3332	}
3333
3334	if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
3335		remove_rule = true;
3336	} else if (!list_elem->vsi_list_info) {
3337		status = -ENOENT;
3338		goto exit;
3339	} else if (list_elem->vsi_list_info->ref_cnt > 1) {
3340		/* a ref_cnt > 1 indicates that the vsi_list is being
3341		 * shared by multiple rules. Decrement the ref_cnt and
3342		 * remove this rule, but do not modify the list, as it
3343		 * is in-use by other rules.
3344		 */
3345		list_elem->vsi_list_info->ref_cnt--;
3346		remove_rule = true;
3347	} else {
3348		/* a ref_cnt of 1 indicates the vsi_list is only used
3349		 * by one rule. However, the original removal request is only
3350		 * for a single VSI. Update the vsi_list first, and only
3351		 * remove the rule if there are no further VSIs in this list.
3352		 */
3353		vsi_handle = f_entry->fltr_info.vsi_handle;
3354		status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
3355		if (status)
3356			goto exit;
3357		/* if VSI count goes to zero after updating the VSI list */
3358		if (list_elem->vsi_count == 0)
3359			remove_rule = true;
3360	}
3361
3362	if (remove_rule) {
3363		/* Remove the lookup rule */
3364		struct ice_sw_rule_lkup_rx_tx *s_rule;
3365
3366		s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3367				      ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3368				      GFP_KERNEL);
3369		if (!s_rule) {
3370			status = -ENOMEM;
3371			goto exit;
3372		}
3373
3374		ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
3375				 ice_aqc_opc_remove_sw_rules);
3376
3377		status = ice_aq_sw_rules(hw, s_rule,
3378					 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3379					 1, ice_aqc_opc_remove_sw_rules, NULL);
3380
3381		/* Remove a book keeping from the list */
3382		devm_kfree(ice_hw_to_dev(hw), s_rule);
3383
3384		if (status)
3385			goto exit;
3386
3387		list_del(&list_elem->list_entry);
3388		devm_kfree(ice_hw_to_dev(hw), list_elem);
3389	}
3390exit:
3391	mutex_unlock(rule_lock);
3392	return status;
3393}
3394
3395/**
3396 * ice_vlan_fltr_exist - does this VLAN filter exist for given VSI
3397 * @hw: pointer to the hardware structure
3398 * @vlan_id: VLAN ID
3399 * @vsi_handle: check MAC filter for this VSI
3400 */
3401bool ice_vlan_fltr_exist(struct ice_hw *hw, u16 vlan_id, u16 vsi_handle)
3402{
3403	struct ice_fltr_mgmt_list_entry *entry;
3404	struct list_head *rule_head;
3405	struct ice_switch_info *sw;
3406	struct mutex *rule_lock; /* Lock to protect filter rule list */
3407	u16 hw_vsi_id;
3408
3409	if (vlan_id > ICE_MAX_VLAN_ID)
3410		return false;
3411
3412	if (!ice_is_vsi_valid(hw, vsi_handle))
3413		return false;
3414
3415	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3416	sw = hw->switch_info;
3417	rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3418	if (!rule_head)
3419		return false;
3420
3421	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3422	mutex_lock(rule_lock);
3423	list_for_each_entry(entry, rule_head, list_entry) {
3424		struct ice_fltr_info *f_info = &entry->fltr_info;
3425		u16 entry_vlan_id = f_info->l_data.vlan.vlan_id;
3426		struct ice_vsi_list_map_info *map_info;
3427
3428		if (entry_vlan_id > ICE_MAX_VLAN_ID)
3429			continue;
3430
3431		if (f_info->flag != ICE_FLTR_TX ||
3432		    f_info->src_id != ICE_SRC_ID_VSI ||
3433		    f_info->lkup_type != ICE_SW_LKUP_VLAN)
3434			continue;
3435
3436		/* Only allowed filter action are FWD_TO_VSI/_VSI_LIST */
3437		if (f_info->fltr_act != ICE_FWD_TO_VSI &&
3438		    f_info->fltr_act != ICE_FWD_TO_VSI_LIST)
3439			continue;
3440
3441		if (f_info->fltr_act == ICE_FWD_TO_VSI) {
3442			if (hw_vsi_id != f_info->fwd_id.hw_vsi_id)
3443				continue;
3444		} else if (f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
3445			/* If filter_action is FWD_TO_VSI_LIST, make sure
3446			 * that VSI being checked is part of VSI list
3447			 */
3448			if (entry->vsi_count == 1 &&
3449			    entry->vsi_list_info) {
3450				map_info = entry->vsi_list_info;
3451				if (!test_bit(vsi_handle, map_info->vsi_map))
3452					continue;
3453			}
3454		}
3455
3456		if (vlan_id == entry_vlan_id) {
3457			mutex_unlock(rule_lock);
3458			return true;
3459		}
3460	}
3461	mutex_unlock(rule_lock);
3462
3463	return false;
3464}
3465
3466/**
3467 * ice_add_mac - Add a MAC address based filter rule
3468 * @hw: pointer to the hardware structure
3469 * @m_list: list of MAC addresses and forwarding information
3470 */
3471int ice_add_mac(struct ice_hw *hw, struct list_head *m_list)
3472{
3473	struct ice_fltr_list_entry *m_list_itr;
3474	int status = 0;
3475
3476	if (!m_list || !hw)
3477		return -EINVAL;
3478
3479	list_for_each_entry(m_list_itr, m_list, list_entry) {
3480		u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
3481		u16 vsi_handle;
3482		u16 hw_vsi_id;
3483
3484		m_list_itr->fltr_info.flag = ICE_FLTR_TX;
3485		vsi_handle = m_list_itr->fltr_info.vsi_handle;
3486		if (!ice_is_vsi_valid(hw, vsi_handle))
3487			return -EINVAL;
3488		hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3489		m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
3490		/* update the src in case it is VSI num */
3491		if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
3492			return -EINVAL;
3493		m_list_itr->fltr_info.src = hw_vsi_id;
3494		if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
3495		    is_zero_ether_addr(add))
3496			return -EINVAL;
3497
3498		m_list_itr->status = ice_add_rule_internal(hw, ICE_SW_LKUP_MAC,
3499							   m_list_itr);
3500		if (m_list_itr->status)
3501			return m_list_itr->status;
3502	}
3503
3504	return status;
3505}
3506
3507/**
3508 * ice_add_vlan_internal - Add one VLAN based filter rule
3509 * @hw: pointer to the hardware structure
3510 * @f_entry: filter entry containing one VLAN information
3511 */
3512static int
3513ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry)
3514{
3515	struct ice_switch_info *sw = hw->switch_info;
3516	struct ice_fltr_mgmt_list_entry *v_list_itr;
3517	struct ice_fltr_info *new_fltr, *cur_fltr;
3518	enum ice_sw_lkup_type lkup_type;
3519	u16 vsi_list_id = 0, vsi_handle;
3520	struct mutex *rule_lock; /* Lock to protect filter rule list */
3521	int status = 0;
3522
3523	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3524		return -EINVAL;
3525
3526	f_entry->fltr_info.fwd_id.hw_vsi_id =
3527		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3528	new_fltr = &f_entry->fltr_info;
3529
3530	/* VLAN ID should only be 12 bits */
3531	if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
3532		return -EINVAL;
3533
3534	if (new_fltr->src_id != ICE_SRC_ID_VSI)
3535		return -EINVAL;
3536
3537	new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
3538	lkup_type = new_fltr->lkup_type;
3539	vsi_handle = new_fltr->vsi_handle;
3540	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3541	mutex_lock(rule_lock);
3542	v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr);
3543	if (!v_list_itr) {
3544		struct ice_vsi_list_map_info *map_info = NULL;
3545
3546		if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
3547			/* All VLAN pruning rules use a VSI list. Check if
3548			 * there is already a VSI list containing VSI that we
3549			 * want to add. If found, use the same vsi_list_id for
3550			 * this new VLAN rule or else create a new list.
3551			 */
3552			map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN,
3553							   vsi_handle,
3554							   &vsi_list_id);
3555			if (!map_info) {
3556				status = ice_create_vsi_list_rule(hw,
3557								  &vsi_handle,
3558								  1,
3559								  &vsi_list_id,
3560								  lkup_type);
3561				if (status)
3562					goto exit;
3563			}
3564			/* Convert the action to forwarding to a VSI list. */
3565			new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3566			new_fltr->fwd_id.vsi_list_id = vsi_list_id;
3567		}
3568
3569		status = ice_create_pkt_fwd_rule(hw, f_entry);
3570		if (!status) {
3571			v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN,
3572							 new_fltr);
3573			if (!v_list_itr) {
3574				status = -ENOENT;
3575				goto exit;
3576			}
3577			/* reuse VSI list for new rule and increment ref_cnt */
3578			if (map_info) {
3579				v_list_itr->vsi_list_info = map_info;
3580				map_info->ref_cnt++;
3581			} else {
3582				v_list_itr->vsi_list_info =
3583					ice_create_vsi_list_map(hw, &vsi_handle,
3584								1, vsi_list_id);
3585			}
3586		}
3587	} else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
3588		/* Update existing VSI list to add new VSI ID only if it used
3589		 * by one VLAN rule.
3590		 */
3591		cur_fltr = &v_list_itr->fltr_info;
3592		status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
3593						 new_fltr);
3594	} else {
3595		/* If VLAN rule exists and VSI list being used by this rule is
3596		 * referenced by more than 1 VLAN rule. Then create a new VSI
3597		 * list appending previous VSI with new VSI and update existing
3598		 * VLAN rule to point to new VSI list ID
3599		 */
3600		struct ice_fltr_info tmp_fltr;
3601		u16 vsi_handle_arr[2];
3602		u16 cur_handle;
3603
3604		/* Current implementation only supports reusing VSI list with
3605		 * one VSI count. We should never hit below condition
3606		 */
3607		if (v_list_itr->vsi_count > 1 &&
3608		    v_list_itr->vsi_list_info->ref_cnt > 1) {
3609			ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
3610			status = -EIO;
3611			goto exit;
3612		}
3613
3614		cur_handle =
3615			find_first_bit(v_list_itr->vsi_list_info->vsi_map,
3616				       ICE_MAX_VSI);
3617
3618		/* A rule already exists with the new VSI being added */
3619		if (cur_handle == vsi_handle) {
3620			status = -EEXIST;
3621			goto exit;
3622		}
3623
3624		vsi_handle_arr[0] = cur_handle;
3625		vsi_handle_arr[1] = vsi_handle;
3626		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3627						  &vsi_list_id, lkup_type);
3628		if (status)
3629			goto exit;
3630
3631		tmp_fltr = v_list_itr->fltr_info;
3632		tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
3633		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3634		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3635		/* Update the previous switch rule to a new VSI list which
3636		 * includes current VSI that is requested
3637		 */
3638		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3639		if (status)
3640			goto exit;
3641
3642		/* before overriding VSI list map info. decrement ref_cnt of
3643		 * previous VSI list
3644		 */
3645		v_list_itr->vsi_list_info->ref_cnt--;
3646
3647		/* now update to newly created list */
3648		v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
3649		v_list_itr->vsi_list_info =
3650			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3651						vsi_list_id);
3652		v_list_itr->vsi_count++;
3653	}
3654
3655exit:
3656	mutex_unlock(rule_lock);
3657	return status;
3658}
3659
3660/**
3661 * ice_add_vlan - Add VLAN based filter rule
3662 * @hw: pointer to the hardware structure
3663 * @v_list: list of VLAN entries and forwarding information
3664 */
3665int ice_add_vlan(struct ice_hw *hw, struct list_head *v_list)
3666{
3667	struct ice_fltr_list_entry *v_list_itr;
3668
3669	if (!v_list || !hw)
3670		return -EINVAL;
3671
3672	list_for_each_entry(v_list_itr, v_list, list_entry) {
3673		if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
3674			return -EINVAL;
3675		v_list_itr->fltr_info.flag = ICE_FLTR_TX;
3676		v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr);
3677		if (v_list_itr->status)
3678			return v_list_itr->status;
3679	}
3680	return 0;
3681}
3682
3683/**
3684 * ice_add_eth_mac - Add ethertype and MAC based filter rule
3685 * @hw: pointer to the hardware structure
3686 * @em_list: list of ether type MAC filter, MAC is optional
3687 *
3688 * This function requires the caller to populate the entries in
3689 * the filter list with the necessary fields (including flags to
3690 * indicate Tx or Rx rules).
3691 */
3692int ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3693{
3694	struct ice_fltr_list_entry *em_list_itr;
3695
3696	if (!em_list || !hw)
3697		return -EINVAL;
3698
3699	list_for_each_entry(em_list_itr, em_list, list_entry) {
3700		enum ice_sw_lkup_type l_type =
3701			em_list_itr->fltr_info.lkup_type;
3702
3703		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3704		    l_type != ICE_SW_LKUP_ETHERTYPE)
3705			return -EINVAL;
3706
3707		em_list_itr->status = ice_add_rule_internal(hw, l_type,
3708							    em_list_itr);
3709		if (em_list_itr->status)
3710			return em_list_itr->status;
3711	}
3712	return 0;
3713}
3714
3715/**
3716 * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule
3717 * @hw: pointer to the hardware structure
3718 * @em_list: list of ethertype or ethertype MAC entries
3719 */
3720int ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3721{
3722	struct ice_fltr_list_entry *em_list_itr, *tmp;
3723
3724	if (!em_list || !hw)
3725		return -EINVAL;
3726
3727	list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) {
3728		enum ice_sw_lkup_type l_type =
3729			em_list_itr->fltr_info.lkup_type;
3730
3731		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3732		    l_type != ICE_SW_LKUP_ETHERTYPE)
3733			return -EINVAL;
3734
3735		em_list_itr->status = ice_remove_rule_internal(hw, l_type,
3736							       em_list_itr);
3737		if (em_list_itr->status)
3738			return em_list_itr->status;
3739	}
3740	return 0;
3741}
3742
3743/**
3744 * ice_rem_sw_rule_info
3745 * @hw: pointer to the hardware structure
3746 * @rule_head: pointer to the switch list structure that we want to delete
3747 */
3748static void
3749ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3750{
3751	if (!list_empty(rule_head)) {
3752		struct ice_fltr_mgmt_list_entry *entry;
3753		struct ice_fltr_mgmt_list_entry *tmp;
3754
3755		list_for_each_entry_safe(entry, tmp, rule_head, list_entry) {
3756			list_del(&entry->list_entry);
3757			devm_kfree(ice_hw_to_dev(hw), entry);
3758		}
3759	}
3760}
3761
3762/**
3763 * ice_rem_adv_rule_info
3764 * @hw: pointer to the hardware structure
3765 * @rule_head: pointer to the switch list structure that we want to delete
3766 */
3767static void
3768ice_rem_adv_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3769{
3770	struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
3771	struct ice_adv_fltr_mgmt_list_entry *lst_itr;
3772
3773	if (list_empty(rule_head))
3774		return;
3775
3776	list_for_each_entry_safe(lst_itr, tmp_entry, rule_head, list_entry) {
3777		list_del(&lst_itr->list_entry);
3778		devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
3779		devm_kfree(ice_hw_to_dev(hw), lst_itr);
3780	}
3781}
3782
3783/**
3784 * ice_cfg_dflt_vsi - change state of VSI to set/clear default
3785 * @pi: pointer to the port_info structure
3786 * @vsi_handle: VSI handle to set as default
3787 * @set: true to add the above mentioned switch rule, false to remove it
3788 * @direction: ICE_FLTR_RX or ICE_FLTR_TX
3789 *
3790 * add filter rule to set/unset given VSI as default VSI for the switch
3791 * (represented by swid)
3792 */
3793int
3794ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
3795		 u8 direction)
3796{
3797	struct ice_fltr_list_entry f_list_entry;
3798	struct ice_fltr_info f_info;
3799	struct ice_hw *hw = pi->hw;
3800	u16 hw_vsi_id;
3801	int status;
3802
3803	if (!ice_is_vsi_valid(hw, vsi_handle))
3804		return -EINVAL;
3805
3806	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3807
3808	memset(&f_info, 0, sizeof(f_info));
3809
3810	f_info.lkup_type = ICE_SW_LKUP_DFLT;
3811	f_info.flag = direction;
3812	f_info.fltr_act = ICE_FWD_TO_VSI;
3813	f_info.fwd_id.hw_vsi_id = hw_vsi_id;
3814	f_info.vsi_handle = vsi_handle;
3815
3816	if (f_info.flag & ICE_FLTR_RX) {
3817		f_info.src = hw->port_info->lport;
3818		f_info.src_id = ICE_SRC_ID_LPORT;
3819	} else if (f_info.flag & ICE_FLTR_TX) {
3820		f_info.src_id = ICE_SRC_ID_VSI;
3821		f_info.src = hw_vsi_id;
3822	}
3823	f_list_entry.fltr_info = f_info;
3824
3825	if (set)
3826		status = ice_add_rule_internal(hw, ICE_SW_LKUP_DFLT,
3827					       &f_list_entry);
3828	else
3829		status = ice_remove_rule_internal(hw, ICE_SW_LKUP_DFLT,
3830						  &f_list_entry);
3831
3832	return status;
3833}
3834
3835/**
3836 * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3837 * @fm_entry: filter entry to inspect
3838 * @vsi_handle: VSI handle to compare with filter info
3839 */
3840static bool
3841ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3842{
3843	return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3844		 fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3845		(fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3846		 fm_entry->vsi_list_info &&
3847		 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map))));
3848}
3849
3850/**
3851 * ice_check_if_dflt_vsi - check if VSI is default VSI
3852 * @pi: pointer to the port_info structure
3853 * @vsi_handle: vsi handle to check for in filter list
3854 * @rule_exists: indicates if there are any VSI's in the rule list
3855 *
3856 * checks if the VSI is in a default VSI list, and also indicates
3857 * if the default VSI list is empty
3858 */
3859bool
3860ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle,
3861		      bool *rule_exists)
3862{
3863	struct ice_fltr_mgmt_list_entry *fm_entry;
3864	struct ice_sw_recipe *recp_list;
3865	struct list_head *rule_head;
3866	struct mutex *rule_lock; /* Lock to protect filter rule list */
3867	bool ret = false;
3868
3869	recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT];
3870	rule_lock = &recp_list->filt_rule_lock;
3871	rule_head = &recp_list->filt_rules;
3872
3873	mutex_lock(rule_lock);
3874
3875	if (rule_exists && !list_empty(rule_head))
3876		*rule_exists = true;
3877
3878	list_for_each_entry(fm_entry, rule_head, list_entry) {
3879		if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) {
3880			ret = true;
3881			break;
3882		}
3883	}
3884
3885	mutex_unlock(rule_lock);
3886
3887	return ret;
3888}
3889
3890/**
3891 * ice_remove_mac - remove a MAC address based filter rule
3892 * @hw: pointer to the hardware structure
3893 * @m_list: list of MAC addresses and forwarding information
3894 *
3895 * This function removes either a MAC filter rule or a specific VSI from a
3896 * VSI list for a multicast MAC address.
3897 *
3898 * Returns -ENOENT if a given entry was not added by ice_add_mac. Caller should
3899 * be aware that this call will only work if all the entries passed into m_list
3900 * were added previously. It will not attempt to do a partial remove of entries
3901 * that were found.
3902 */
3903int ice_remove_mac(struct ice_hw *hw, struct list_head *m_list)
3904{
3905	struct ice_fltr_list_entry *list_itr, *tmp;
3906
3907	if (!m_list)
3908		return -EINVAL;
3909
3910	list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) {
3911		enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
3912		u16 vsi_handle;
3913
3914		if (l_type != ICE_SW_LKUP_MAC)
3915			return -EINVAL;
3916
3917		vsi_handle = list_itr->fltr_info.vsi_handle;
3918		if (!ice_is_vsi_valid(hw, vsi_handle))
3919			return -EINVAL;
3920
3921		list_itr->fltr_info.fwd_id.hw_vsi_id =
3922					ice_get_hw_vsi_num(hw, vsi_handle);
3923
3924		list_itr->status = ice_remove_rule_internal(hw,
3925							    ICE_SW_LKUP_MAC,
3926							    list_itr);
3927		if (list_itr->status)
3928			return list_itr->status;
3929	}
3930	return 0;
3931}
3932
3933/**
3934 * ice_remove_vlan - Remove VLAN based filter rule
3935 * @hw: pointer to the hardware structure
3936 * @v_list: list of VLAN entries and forwarding information
3937 */
3938int ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list)
3939{
3940	struct ice_fltr_list_entry *v_list_itr, *tmp;
3941
3942	if (!v_list || !hw)
3943		return -EINVAL;
3944
3945	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
3946		enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
3947
3948		if (l_type != ICE_SW_LKUP_VLAN)
3949			return -EINVAL;
3950		v_list_itr->status = ice_remove_rule_internal(hw,
3951							      ICE_SW_LKUP_VLAN,
3952							      v_list_itr);
3953		if (v_list_itr->status)
3954			return v_list_itr->status;
3955	}
3956	return 0;
3957}
3958
3959/**
3960 * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
3961 * @hw: pointer to the hardware structure
3962 * @vsi_handle: VSI handle to remove filters from
3963 * @vsi_list_head: pointer to the list to add entry to
3964 * @fi: pointer to fltr_info of filter entry to copy & add
3965 *
3966 * Helper function, used when creating a list of filters to remove from
3967 * a specific VSI. The entry added to vsi_list_head is a COPY of the
3968 * original filter entry, with the exception of fltr_info.fltr_act and
3969 * fltr_info.fwd_id fields. These are set such that later logic can
3970 * extract which VSI to remove the fltr from, and pass on that information.
3971 */
3972static int
3973ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
3974			       struct list_head *vsi_list_head,
3975			       struct ice_fltr_info *fi)
3976{
3977	struct ice_fltr_list_entry *tmp;
3978
3979	/* this memory is freed up in the caller function
3980	 * once filters for this VSI are removed
3981	 */
3982	tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL);
3983	if (!tmp)
3984		return -ENOMEM;
3985
3986	tmp->fltr_info = *fi;
3987
3988	/* Overwrite these fields to indicate which VSI to remove filter from,
3989	 * so find and remove logic can extract the information from the
3990	 * list entries. Note that original entries will still have proper
3991	 * values.
3992	 */
3993	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
3994	tmp->fltr_info.vsi_handle = vsi_handle;
3995	tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3996
3997	list_add(&tmp->list_entry, vsi_list_head);
3998
3999	return 0;
4000}
4001
4002/**
4003 * ice_add_to_vsi_fltr_list - Add VSI filters to the list
4004 * @hw: pointer to the hardware structure
4005 * @vsi_handle: VSI handle to remove filters from
4006 * @lkup_list_head: pointer to the list that has certain lookup type filters
4007 * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
4008 *
4009 * Locates all filters in lkup_list_head that are used by the given VSI,
4010 * and adds COPIES of those entries to vsi_list_head (intended to be used
4011 * to remove the listed filters).
4012 * Note that this means all entries in vsi_list_head must be explicitly
4013 * deallocated by the caller when done with list.
4014 */
4015static int
4016ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4017			 struct list_head *lkup_list_head,
4018			 struct list_head *vsi_list_head)
4019{
4020	struct ice_fltr_mgmt_list_entry *fm_entry;
4021	int status = 0;
4022
4023	/* check to make sure VSI ID is valid and within boundary */
4024	if (!ice_is_vsi_valid(hw, vsi_handle))
4025		return -EINVAL;
4026
4027	list_for_each_entry(fm_entry, lkup_list_head, list_entry) {
4028		if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
4029			continue;
4030
4031		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4032							vsi_list_head,
4033							&fm_entry->fltr_info);
4034		if (status)
4035			return status;
4036	}
4037	return status;
4038}
4039
4040/**
4041 * ice_determine_promisc_mask
4042 * @fi: filter info to parse
4043 *
4044 * Helper function to determine which ICE_PROMISC_ mask corresponds
4045 * to given filter into.
4046 */
4047static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi)
4048{
4049	u16 vid = fi->l_data.mac_vlan.vlan_id;
4050	u8 *macaddr = fi->l_data.mac.mac_addr;
4051	bool is_tx_fltr = false;
4052	u8 promisc_mask = 0;
4053
4054	if (fi->flag == ICE_FLTR_TX)
4055		is_tx_fltr = true;
4056
4057	if (is_broadcast_ether_addr(macaddr))
4058		promisc_mask |= is_tx_fltr ?
4059			ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX;
4060	else if (is_multicast_ether_addr(macaddr))
4061		promisc_mask |= is_tx_fltr ?
4062			ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX;
4063	else if (is_unicast_ether_addr(macaddr))
4064		promisc_mask |= is_tx_fltr ?
4065			ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX;
4066	if (vid)
4067		promisc_mask |= is_tx_fltr ?
4068			ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX;
4069
4070	return promisc_mask;
4071}
4072
4073/**
4074 * ice_remove_promisc - Remove promisc based filter rules
4075 * @hw: pointer to the hardware structure
4076 * @recp_id: recipe ID for which the rule needs to removed
4077 * @v_list: list of promisc entries
4078 */
4079static int
4080ice_remove_promisc(struct ice_hw *hw, u8 recp_id, struct list_head *v_list)
4081{
4082	struct ice_fltr_list_entry *v_list_itr, *tmp;
4083
4084	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4085		v_list_itr->status =
4086			ice_remove_rule_internal(hw, recp_id, v_list_itr);
4087		if (v_list_itr->status)
4088			return v_list_itr->status;
4089	}
4090	return 0;
4091}
4092
4093/**
4094 * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
4095 * @hw: pointer to the hardware structure
4096 * @vsi_handle: VSI handle to clear mode
4097 * @promisc_mask: mask of promiscuous config bits to clear
4098 * @vid: VLAN ID to clear VLAN promiscuous
4099 */
4100int
4101ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4102		      u16 vid)
4103{
4104	struct ice_switch_info *sw = hw->switch_info;
4105	struct ice_fltr_list_entry *fm_entry, *tmp;
4106	struct list_head remove_list_head;
4107	struct ice_fltr_mgmt_list_entry *itr;
4108	struct list_head *rule_head;
4109	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4110	int status = 0;
4111	u8 recipe_id;
4112
4113	if (!ice_is_vsi_valid(hw, vsi_handle))
4114		return -EINVAL;
4115
4116	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX))
4117		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4118	else
4119		recipe_id = ICE_SW_LKUP_PROMISC;
4120
4121	rule_head = &sw->recp_list[recipe_id].filt_rules;
4122	rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
4123
4124	INIT_LIST_HEAD(&remove_list_head);
4125
4126	mutex_lock(rule_lock);
4127	list_for_each_entry(itr, rule_head, list_entry) {
4128		struct ice_fltr_info *fltr_info;
4129		u8 fltr_promisc_mask = 0;
4130
4131		if (!ice_vsi_uses_fltr(itr, vsi_handle))
4132			continue;
4133		fltr_info = &itr->fltr_info;
4134
4135		if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
4136		    vid != fltr_info->l_data.mac_vlan.vlan_id)
4137			continue;
4138
4139		fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info);
4140
4141		/* Skip if filter is not completely specified by given mask */
4142		if (fltr_promisc_mask & ~promisc_mask)
4143			continue;
4144
4145		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4146							&remove_list_head,
4147							fltr_info);
4148		if (status) {
4149			mutex_unlock(rule_lock);
4150			goto free_fltr_list;
4151		}
4152	}
4153	mutex_unlock(rule_lock);
4154
4155	status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
4156
4157free_fltr_list:
4158	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4159		list_del(&fm_entry->list_entry);
4160		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4161	}
4162
4163	return status;
4164}
4165
4166/**
4167 * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
4168 * @hw: pointer to the hardware structure
4169 * @vsi_handle: VSI handle to configure
4170 * @promisc_mask: mask of promiscuous config bits
4171 * @vid: VLAN ID to set VLAN promiscuous
4172 */
4173int
4174ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid)
4175{
4176	enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
4177	struct ice_fltr_list_entry f_list_entry;
4178	struct ice_fltr_info new_fltr;
4179	bool is_tx_fltr;
4180	int status = 0;
4181	u16 hw_vsi_id;
4182	int pkt_type;
4183	u8 recipe_id;
4184
4185	if (!ice_is_vsi_valid(hw, vsi_handle))
4186		return -EINVAL;
4187	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4188
4189	memset(&new_fltr, 0, sizeof(new_fltr));
4190
4191	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) {
4192		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
4193		new_fltr.l_data.mac_vlan.vlan_id = vid;
4194		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4195	} else {
4196		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
4197		recipe_id = ICE_SW_LKUP_PROMISC;
4198	}
4199
4200	/* Separate filters must be set for each direction/packet type
4201	 * combination, so we will loop over the mask value, store the
4202	 * individual type, and clear it out in the input mask as it
4203	 * is found.
4204	 */
4205	while (promisc_mask) {
4206		u8 *mac_addr;
4207
4208		pkt_type = 0;
4209		is_tx_fltr = false;
4210
4211		if (promisc_mask & ICE_PROMISC_UCAST_RX) {
4212			promisc_mask &= ~ICE_PROMISC_UCAST_RX;
4213			pkt_type = UCAST_FLTR;
4214		} else if (promisc_mask & ICE_PROMISC_UCAST_TX) {
4215			promisc_mask &= ~ICE_PROMISC_UCAST_TX;
4216			pkt_type = UCAST_FLTR;
4217			is_tx_fltr = true;
4218		} else if (promisc_mask & ICE_PROMISC_MCAST_RX) {
4219			promisc_mask &= ~ICE_PROMISC_MCAST_RX;
4220			pkt_type = MCAST_FLTR;
4221		} else if (promisc_mask & ICE_PROMISC_MCAST_TX) {
4222			promisc_mask &= ~ICE_PROMISC_MCAST_TX;
4223			pkt_type = MCAST_FLTR;
4224			is_tx_fltr = true;
4225		} else if (promisc_mask & ICE_PROMISC_BCAST_RX) {
4226			promisc_mask &= ~ICE_PROMISC_BCAST_RX;
4227			pkt_type = BCAST_FLTR;
4228		} else if (promisc_mask & ICE_PROMISC_BCAST_TX) {
4229			promisc_mask &= ~ICE_PROMISC_BCAST_TX;
4230			pkt_type = BCAST_FLTR;
4231			is_tx_fltr = true;
4232		}
4233
4234		/* Check for VLAN promiscuous flag */
4235		if (promisc_mask & ICE_PROMISC_VLAN_RX) {
4236			promisc_mask &= ~ICE_PROMISC_VLAN_RX;
4237		} else if (promisc_mask & ICE_PROMISC_VLAN_TX) {
4238			promisc_mask &= ~ICE_PROMISC_VLAN_TX;
4239			is_tx_fltr = true;
4240		}
4241
4242		/* Set filter DA based on packet type */
4243		mac_addr = new_fltr.l_data.mac.mac_addr;
4244		if (pkt_type == BCAST_FLTR) {
4245			eth_broadcast_addr(mac_addr);
4246		} else if (pkt_type == MCAST_FLTR ||
4247			   pkt_type == UCAST_FLTR) {
4248			/* Use the dummy ether header DA */
4249			ether_addr_copy(mac_addr, dummy_eth_header);
4250			if (pkt_type == MCAST_FLTR)
4251				mac_addr[0] |= 0x1;	/* Set multicast bit */
4252		}
4253
4254		/* Need to reset this to zero for all iterations */
4255		new_fltr.flag = 0;
4256		if (is_tx_fltr) {
4257			new_fltr.flag |= ICE_FLTR_TX;
4258			new_fltr.src = hw_vsi_id;
4259		} else {
4260			new_fltr.flag |= ICE_FLTR_RX;
4261			new_fltr.src = hw->port_info->lport;
4262		}
4263
4264		new_fltr.fltr_act = ICE_FWD_TO_VSI;
4265		new_fltr.vsi_handle = vsi_handle;
4266		new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
4267		f_list_entry.fltr_info = new_fltr;
4268
4269		status = ice_add_rule_internal(hw, recipe_id, &f_list_entry);
4270		if (status)
4271			goto set_promisc_exit;
4272	}
4273
4274set_promisc_exit:
4275	return status;
4276}
4277
4278/**
4279 * ice_set_vlan_vsi_promisc
4280 * @hw: pointer to the hardware structure
4281 * @vsi_handle: VSI handle to configure
4282 * @promisc_mask: mask of promiscuous config bits
4283 * @rm_vlan_promisc: Clear VLANs VSI promisc mode
4284 *
4285 * Configure VSI with all associated VLANs to given promiscuous mode(s)
4286 */
4287int
4288ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4289			 bool rm_vlan_promisc)
4290{
4291	struct ice_switch_info *sw = hw->switch_info;
4292	struct ice_fltr_list_entry *list_itr, *tmp;
4293	struct list_head vsi_list_head;
4294	struct list_head *vlan_head;
4295	struct mutex *vlan_lock; /* Lock to protect filter rule list */
4296	u16 vlan_id;
4297	int status;
4298
4299	INIT_LIST_HEAD(&vsi_list_head);
4300	vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
4301	vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
4302	mutex_lock(vlan_lock);
4303	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
4304					  &vsi_list_head);
4305	mutex_unlock(vlan_lock);
4306	if (status)
4307		goto free_fltr_list;
4308
4309	list_for_each_entry(list_itr, &vsi_list_head, list_entry) {
4310		/* Avoid enabling or disabling VLAN zero twice when in double
4311		 * VLAN mode
4312		 */
4313		if (ice_is_dvm_ena(hw) &&
4314		    list_itr->fltr_info.l_data.vlan.tpid == 0)
4315			continue;
4316
4317		vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
4318		if (rm_vlan_promisc)
4319			status = ice_clear_vsi_promisc(hw, vsi_handle,
4320						       promisc_mask, vlan_id);
4321		else
4322			status = ice_set_vsi_promisc(hw, vsi_handle,
4323						     promisc_mask, vlan_id);
4324		if (status && status != -EEXIST)
4325			break;
4326	}
4327
4328free_fltr_list:
4329	list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) {
4330		list_del(&list_itr->list_entry);
4331		devm_kfree(ice_hw_to_dev(hw), list_itr);
4332	}
4333	return status;
4334}
4335
4336/**
4337 * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
4338 * @hw: pointer to the hardware structure
4339 * @vsi_handle: VSI handle to remove filters from
4340 * @lkup: switch rule filter lookup type
4341 */
4342static void
4343ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
4344			 enum ice_sw_lkup_type lkup)
4345{
4346	struct ice_switch_info *sw = hw->switch_info;
4347	struct ice_fltr_list_entry *fm_entry;
4348	struct list_head remove_list_head;
4349	struct list_head *rule_head;
4350	struct ice_fltr_list_entry *tmp;
4351	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4352	int status;
4353
4354	INIT_LIST_HEAD(&remove_list_head);
4355	rule_lock = &sw->recp_list[lkup].filt_rule_lock;
4356	rule_head = &sw->recp_list[lkup].filt_rules;
4357	mutex_lock(rule_lock);
4358	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
4359					  &remove_list_head);
4360	mutex_unlock(rule_lock);
4361	if (status)
4362		goto free_fltr_list;
4363
4364	switch (lkup) {
4365	case ICE_SW_LKUP_MAC:
4366		ice_remove_mac(hw, &remove_list_head);
4367		break;
4368	case ICE_SW_LKUP_VLAN:
4369		ice_remove_vlan(hw, &remove_list_head);
4370		break;
4371	case ICE_SW_LKUP_PROMISC:
4372	case ICE_SW_LKUP_PROMISC_VLAN:
4373		ice_remove_promisc(hw, lkup, &remove_list_head);
4374		break;
4375	case ICE_SW_LKUP_MAC_VLAN:
4376	case ICE_SW_LKUP_ETHERTYPE:
4377	case ICE_SW_LKUP_ETHERTYPE_MAC:
4378	case ICE_SW_LKUP_DFLT:
4379	case ICE_SW_LKUP_LAST:
4380	default:
4381		ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup);
4382		break;
4383	}
4384
4385free_fltr_list:
4386	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4387		list_del(&fm_entry->list_entry);
4388		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4389	}
4390}
4391
4392/**
4393 * ice_remove_vsi_fltr - Remove all filters for a VSI
4394 * @hw: pointer to the hardware structure
4395 * @vsi_handle: VSI handle to remove filters from
4396 */
4397void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
4398{
4399	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC);
4400	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN);
4401	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC);
4402	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN);
4403	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT);
4404	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE);
4405	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC);
4406	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN);
4407}
4408
4409/**
4410 * ice_alloc_res_cntr - allocating resource counter
4411 * @hw: pointer to the hardware structure
4412 * @type: type of resource
4413 * @alloc_shared: if set it is shared else dedicated
4414 * @num_items: number of entries requested for FD resource type
4415 * @counter_id: counter index returned by AQ call
4416 */
4417int
4418ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4419		   u16 *counter_id)
4420{
4421	DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4422	u16 buf_len = __struct_size(buf);
4423	int status;
4424
4425	buf->num_elems = cpu_to_le16(num_items);
4426	buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) |
4427				    alloc_shared);
4428
4429	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
4430	if (status)
4431		return status;
4432
4433	*counter_id = le16_to_cpu(buf->elem[0].e.sw_resp);
4434	return status;
4435}
4436
4437/**
4438 * ice_free_res_cntr - free resource counter
4439 * @hw: pointer to the hardware structure
4440 * @type: type of resource
4441 * @alloc_shared: if set it is shared else dedicated
4442 * @num_items: number of entries to be freed for FD resource type
4443 * @counter_id: counter ID resource which needs to be freed
4444 */
4445int
4446ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4447		  u16 counter_id)
4448{
4449	DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4450	u16 buf_len = __struct_size(buf);
4451	int status;
4452
4453	buf->num_elems = cpu_to_le16(num_items);
4454	buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) |
4455				    alloc_shared);
4456	buf->elem[0].e.sw_resp = cpu_to_le16(counter_id);
4457
4458	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
4459	if (status)
4460		ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n");
4461
4462	return status;
4463}
4464
4465#define ICE_PROTOCOL_ENTRY(id, ...) {		\
4466	.prot_type	= id,			\
4467	.offs		= {__VA_ARGS__},	\
4468}
4469
4470/**
4471 * ice_share_res - set a resource as shared or dedicated
4472 * @hw: hw struct of original owner of resource
4473 * @type: resource type
4474 * @shared: is the resource being set to shared
4475 * @res_id: resource id (descriptor)
4476 */
4477int ice_share_res(struct ice_hw *hw, u16 type, u8 shared, u16 res_id)
4478{
4479	DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4480	u16 buf_len = __struct_size(buf);
4481	u16 res_type;
4482	int status;
4483
4484	buf->num_elems = cpu_to_le16(1);
4485	res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, type);
4486	if (shared)
4487		res_type |= ICE_AQC_RES_TYPE_FLAG_SHARED;
4488
4489	buf->res_type = cpu_to_le16(res_type);
4490	buf->elem[0].e.sw_resp = cpu_to_le16(res_id);
4491	status = ice_aq_alloc_free_res(hw, buf, buf_len,
4492				       ice_aqc_opc_share_res);
4493	if (status)
4494		ice_debug(hw, ICE_DBG_SW, "Could not set resource type %u id %u to %s\n",
4495			  type, res_id, shared ? "SHARED" : "DEDICATED");
4496
4497	return status;
4498}
4499
4500/* This is mapping table entry that maps every word within a given protocol
4501 * structure to the real byte offset as per the specification of that
4502 * protocol header.
4503 * for example dst address is 3 words in ethertype header and corresponding
4504 * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8
4505 * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a
4506 * matching entry describing its field. This needs to be updated if new
4507 * structure is added to that union.
4508 */
4509static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = {
4510	ICE_PROTOCOL_ENTRY(ICE_MAC_OFOS, 0, 2, 4, 6, 8, 10, 12),
4511	ICE_PROTOCOL_ENTRY(ICE_MAC_IL, 0, 2, 4, 6, 8, 10, 12),
4512	ICE_PROTOCOL_ENTRY(ICE_ETYPE_OL, 0),
4513	ICE_PROTOCOL_ENTRY(ICE_ETYPE_IL, 0),
4514	ICE_PROTOCOL_ENTRY(ICE_VLAN_OFOS, 2, 0),
4515	ICE_PROTOCOL_ENTRY(ICE_IPV4_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4516	ICE_PROTOCOL_ENTRY(ICE_IPV4_IL,	0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4517	ICE_PROTOCOL_ENTRY(ICE_IPV6_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18,
4518			   20, 22, 24, 26, 28, 30, 32, 34, 36, 38),
4519	ICE_PROTOCOL_ENTRY(ICE_IPV6_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20,
4520			   22, 24, 26, 28, 30, 32, 34, 36, 38),
4521	ICE_PROTOCOL_ENTRY(ICE_TCP_IL, 0, 2),
4522	ICE_PROTOCOL_ENTRY(ICE_UDP_OF, 0, 2),
4523	ICE_PROTOCOL_ENTRY(ICE_UDP_ILOS, 0, 2),
4524	ICE_PROTOCOL_ENTRY(ICE_VXLAN, 8, 10, 12, 14),
4525	ICE_PROTOCOL_ENTRY(ICE_GENEVE, 8, 10, 12, 14),
4526	ICE_PROTOCOL_ENTRY(ICE_NVGRE, 0, 2, 4, 6),
4527	ICE_PROTOCOL_ENTRY(ICE_GTP, 8, 10, 12, 14, 16, 18, 20, 22),
4528	ICE_PROTOCOL_ENTRY(ICE_GTP_NO_PAY, 8, 10, 12, 14),
4529	ICE_PROTOCOL_ENTRY(ICE_PPPOE, 0, 2, 4, 6),
4530	ICE_PROTOCOL_ENTRY(ICE_L2TPV3, 0, 2, 4, 6, 8, 10),
4531	ICE_PROTOCOL_ENTRY(ICE_VLAN_EX, 2, 0),
4532	ICE_PROTOCOL_ENTRY(ICE_VLAN_IN, 2, 0),
4533	ICE_PROTOCOL_ENTRY(ICE_HW_METADATA,
4534			   ICE_SOURCE_PORT_MDID_OFFSET,
4535			   ICE_PTYPE_MDID_OFFSET,
4536			   ICE_PACKET_LENGTH_MDID_OFFSET,
4537			   ICE_SOURCE_VSI_MDID_OFFSET,
4538			   ICE_PKT_VLAN_MDID_OFFSET,
4539			   ICE_PKT_TUNNEL_MDID_OFFSET,
4540			   ICE_PKT_TCP_MDID_OFFSET,
4541			   ICE_PKT_ERROR_MDID_OFFSET),
4542};
4543
4544static struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = {
4545	{ ICE_MAC_OFOS,		ICE_MAC_OFOS_HW },
4546	{ ICE_MAC_IL,		ICE_MAC_IL_HW },
4547	{ ICE_ETYPE_OL,		ICE_ETYPE_OL_HW },
4548	{ ICE_ETYPE_IL,		ICE_ETYPE_IL_HW },
4549	{ ICE_VLAN_OFOS,	ICE_VLAN_OL_HW },
4550	{ ICE_IPV4_OFOS,	ICE_IPV4_OFOS_HW },
4551	{ ICE_IPV4_IL,		ICE_IPV4_IL_HW },
4552	{ ICE_IPV6_OFOS,	ICE_IPV6_OFOS_HW },
4553	{ ICE_IPV6_IL,		ICE_IPV6_IL_HW },
4554	{ ICE_TCP_IL,		ICE_TCP_IL_HW },
4555	{ ICE_UDP_OF,		ICE_UDP_OF_HW },
4556	{ ICE_UDP_ILOS,		ICE_UDP_ILOS_HW },
4557	{ ICE_VXLAN,		ICE_UDP_OF_HW },
4558	{ ICE_GENEVE,		ICE_UDP_OF_HW },
4559	{ ICE_NVGRE,		ICE_GRE_OF_HW },
4560	{ ICE_GTP,		ICE_UDP_OF_HW },
4561	{ ICE_GTP_NO_PAY,	ICE_UDP_ILOS_HW },
4562	{ ICE_PPPOE,		ICE_PPPOE_HW },
4563	{ ICE_L2TPV3,		ICE_L2TPV3_HW },
4564	{ ICE_VLAN_EX,          ICE_VLAN_OF_HW },
4565	{ ICE_VLAN_IN,          ICE_VLAN_OL_HW },
4566	{ ICE_HW_METADATA,      ICE_META_DATA_ID_HW },
4567};
4568
4569/**
4570 * ice_find_recp - find a recipe
4571 * @hw: pointer to the hardware structure
4572 * @lkup_exts: extension sequence to match
4573 * @rinfo: information regarding the rule e.g. priority and action info
4574 *
4575 * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found.
4576 */
4577static u16
4578ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts,
4579	      const struct ice_adv_rule_info *rinfo)
4580{
4581	bool refresh_required = true;
4582	struct ice_sw_recipe *recp;
4583	u8 i;
4584
4585	/* Walk through existing recipes to find a match */
4586	recp = hw->switch_info->recp_list;
4587	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4588		/* If recipe was not created for this ID, in SW bookkeeping,
4589		 * check if FW has an entry for this recipe. If the FW has an
4590		 * entry update it in our SW bookkeeping and continue with the
4591		 * matching.
4592		 */
4593		if (!recp[i].recp_created)
4594			if (ice_get_recp_frm_fw(hw,
4595						hw->switch_info->recp_list, i,
4596						&refresh_required))
4597				continue;
4598
4599		/* Skip inverse action recipes */
4600		if (recp[i].root_buf && recp[i].root_buf->content.act_ctrl &
4601		    ICE_AQ_RECIPE_ACT_INV_ACT)
4602			continue;
4603
4604		/* if number of words we are looking for match */
4605		if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) {
4606			struct ice_fv_word *ar = recp[i].lkup_exts.fv_words;
4607			struct ice_fv_word *be = lkup_exts->fv_words;
4608			u16 *cr = recp[i].lkup_exts.field_mask;
4609			u16 *de = lkup_exts->field_mask;
4610			bool found = true;
4611			u8 pe, qr;
4612
4613			/* ar, cr, and qr are related to the recipe words, while
4614			 * be, de, and pe are related to the lookup words
4615			 */
4616			for (pe = 0; pe < lkup_exts->n_val_words; pe++) {
4617				for (qr = 0; qr < recp[i].lkup_exts.n_val_words;
4618				     qr++) {
4619					if (ar[qr].off == be[pe].off &&
4620					    ar[qr].prot_id == be[pe].prot_id &&
4621					    cr[qr] == de[pe])
4622						/* Found the "pe"th word in the
4623						 * given recipe
4624						 */
4625						break;
4626				}
4627				/* After walking through all the words in the
4628				 * "i"th recipe if "p"th word was not found then
4629				 * this recipe is not what we are looking for.
4630				 * So break out from this loop and try the next
4631				 * recipe
4632				 */
4633				if (qr >= recp[i].lkup_exts.n_val_words) {
4634					found = false;
4635					break;
4636				}
4637			}
4638			/* If for "i"th recipe the found was never set to false
4639			 * then it means we found our match
4640			 * Also tun type and *_pass_l2 of recipe needs to be
4641			 * checked
4642			 */
4643			if (found && recp[i].tun_type == rinfo->tun_type &&
4644			    recp[i].need_pass_l2 == rinfo->need_pass_l2 &&
4645			    recp[i].allow_pass_l2 == rinfo->allow_pass_l2)
4646				return i; /* Return the recipe ID */
4647		}
4648	}
4649	return ICE_MAX_NUM_RECIPES;
4650}
4651
4652/**
4653 * ice_change_proto_id_to_dvm - change proto id in prot_id_tbl
4654 *
4655 * As protocol id for outer vlan is different in dvm and svm, if dvm is
4656 * supported protocol array record for outer vlan has to be modified to
4657 * reflect the value proper for DVM.
4658 */
4659void ice_change_proto_id_to_dvm(void)
4660{
4661	u8 i;
4662
4663	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4664		if (ice_prot_id_tbl[i].type == ICE_VLAN_OFOS &&
4665		    ice_prot_id_tbl[i].protocol_id != ICE_VLAN_OF_HW)
4666			ice_prot_id_tbl[i].protocol_id = ICE_VLAN_OF_HW;
4667}
4668
4669/**
4670 * ice_prot_type_to_id - get protocol ID from protocol type
4671 * @type: protocol type
4672 * @id: pointer to variable that will receive the ID
4673 *
4674 * Returns true if found, false otherwise
4675 */
4676static bool ice_prot_type_to_id(enum ice_protocol_type type, u8 *id)
4677{
4678	u8 i;
4679
4680	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4681		if (ice_prot_id_tbl[i].type == type) {
4682			*id = ice_prot_id_tbl[i].protocol_id;
4683			return true;
4684		}
4685	return false;
4686}
4687
4688/**
4689 * ice_fill_valid_words - count valid words
4690 * @rule: advanced rule with lookup information
4691 * @lkup_exts: byte offset extractions of the words that are valid
4692 *
4693 * calculate valid words in a lookup rule using mask value
4694 */
4695static u8
4696ice_fill_valid_words(struct ice_adv_lkup_elem *rule,
4697		     struct ice_prot_lkup_ext *lkup_exts)
4698{
4699	u8 j, word, prot_id, ret_val;
4700
4701	if (!ice_prot_type_to_id(rule->type, &prot_id))
4702		return 0;
4703
4704	word = lkup_exts->n_val_words;
4705
4706	for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++)
4707		if (((u16 *)&rule->m_u)[j] &&
4708		    rule->type < ARRAY_SIZE(ice_prot_ext)) {
4709			/* No more space to accommodate */
4710			if (word >= ICE_MAX_CHAIN_WORDS)
4711				return 0;
4712			lkup_exts->fv_words[word].off =
4713				ice_prot_ext[rule->type].offs[j];
4714			lkup_exts->fv_words[word].prot_id =
4715				ice_prot_id_tbl[rule->type].protocol_id;
4716			lkup_exts->field_mask[word] =
4717				be16_to_cpu(((__force __be16 *)&rule->m_u)[j]);
4718			word++;
4719		}
4720
4721	ret_val = word - lkup_exts->n_val_words;
4722	lkup_exts->n_val_words = word;
4723
4724	return ret_val;
4725}
4726
4727/**
4728 * ice_create_first_fit_recp_def - Create a recipe grouping
4729 * @hw: pointer to the hardware structure
4730 * @lkup_exts: an array of protocol header extractions
4731 * @rg_list: pointer to a list that stores new recipe groups
4732 * @recp_cnt: pointer to a variable that stores returned number of recipe groups
4733 *
4734 * Using first fit algorithm, take all the words that are still not done
4735 * and start grouping them in 4-word groups. Each group makes up one
4736 * recipe.
4737 */
4738static int
4739ice_create_first_fit_recp_def(struct ice_hw *hw,
4740			      struct ice_prot_lkup_ext *lkup_exts,
4741			      struct list_head *rg_list,
4742			      u8 *recp_cnt)
4743{
4744	struct ice_pref_recipe_group *grp = NULL;
4745	u8 j;
4746
4747	*recp_cnt = 0;
4748
4749	/* Walk through every word in the rule to check if it is not done. If so
4750	 * then this word needs to be part of a new recipe.
4751	 */
4752	for (j = 0; j < lkup_exts->n_val_words; j++)
4753		if (!test_bit(j, lkup_exts->done)) {
4754			if (!grp ||
4755			    grp->n_val_pairs == ICE_NUM_WORDS_RECIPE) {
4756				struct ice_recp_grp_entry *entry;
4757
4758				entry = devm_kzalloc(ice_hw_to_dev(hw),
4759						     sizeof(*entry),
4760						     GFP_KERNEL);
4761				if (!entry)
4762					return -ENOMEM;
4763				list_add(&entry->l_entry, rg_list);
4764				grp = &entry->r_group;
4765				(*recp_cnt)++;
4766			}
4767
4768			grp->pairs[grp->n_val_pairs].prot_id =
4769				lkup_exts->fv_words[j].prot_id;
4770			grp->pairs[grp->n_val_pairs].off =
4771				lkup_exts->fv_words[j].off;
4772			grp->mask[grp->n_val_pairs] = lkup_exts->field_mask[j];
4773			grp->n_val_pairs++;
4774		}
4775
4776	return 0;
4777}
4778
4779/**
4780 * ice_fill_fv_word_index - fill in the field vector indices for a recipe group
4781 * @hw: pointer to the hardware structure
4782 * @fv_list: field vector with the extraction sequence information
4783 * @rg_list: recipe groupings with protocol-offset pairs
4784 *
4785 * Helper function to fill in the field vector indices for protocol-offset
4786 * pairs. These indexes are then ultimately programmed into a recipe.
4787 */
4788static int
4789ice_fill_fv_word_index(struct ice_hw *hw, struct list_head *fv_list,
4790		       struct list_head *rg_list)
4791{
4792	struct ice_sw_fv_list_entry *fv;
4793	struct ice_recp_grp_entry *rg;
4794	struct ice_fv_word *fv_ext;
4795
4796	if (list_empty(fv_list))
4797		return 0;
4798
4799	fv = list_first_entry(fv_list, struct ice_sw_fv_list_entry,
4800			      list_entry);
4801	fv_ext = fv->fv_ptr->ew;
4802
4803	list_for_each_entry(rg, rg_list, l_entry) {
4804		u8 i;
4805
4806		for (i = 0; i < rg->r_group.n_val_pairs; i++) {
4807			struct ice_fv_word *pr;
4808			bool found = false;
4809			u16 mask;
4810			u8 j;
4811
4812			pr = &rg->r_group.pairs[i];
4813			mask = rg->r_group.mask[i];
4814
4815			for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
4816				if (fv_ext[j].prot_id == pr->prot_id &&
4817				    fv_ext[j].off == pr->off) {
4818					found = true;
4819
4820					/* Store index of field vector */
4821					rg->fv_idx[i] = j;
4822					rg->fv_mask[i] = mask;
4823					break;
4824				}
4825
4826			/* Protocol/offset could not be found, caller gave an
4827			 * invalid pair
4828			 */
4829			if (!found)
4830				return -EINVAL;
4831		}
4832	}
4833
4834	return 0;
4835}
4836
4837/**
4838 * ice_find_free_recp_res_idx - find free result indexes for recipe
4839 * @hw: pointer to hardware structure
4840 * @profiles: bitmap of profiles that will be associated with the new recipe
4841 * @free_idx: pointer to variable to receive the free index bitmap
4842 *
4843 * The algorithm used here is:
4844 *	1. When creating a new recipe, create a set P which contains all
4845 *	   Profiles that will be associated with our new recipe
4846 *
4847 *	2. For each Profile p in set P:
4848 *	    a. Add all recipes associated with Profile p into set R
4849 *	    b. Optional : PossibleIndexes &= profile[p].possibleIndexes
4850 *		[initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF]
4851 *		i. Or just assume they all have the same possible indexes:
4852 *			44, 45, 46, 47
4853 *			i.e., PossibleIndexes = 0x0000F00000000000
4854 *
4855 *	3. For each Recipe r in set R:
4856 *	    a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes
4857 *	    b. FreeIndexes = UsedIndexes ^ PossibleIndexes
4858 *
4859 *	FreeIndexes will contain the bits indicating the indexes free for use,
4860 *      then the code needs to update the recipe[r].used_result_idx_bits to
4861 *      indicate which indexes were selected for use by this recipe.
4862 */
4863static u16
4864ice_find_free_recp_res_idx(struct ice_hw *hw, const unsigned long *profiles,
4865			   unsigned long *free_idx)
4866{
4867	DECLARE_BITMAP(possible_idx, ICE_MAX_FV_WORDS);
4868	DECLARE_BITMAP(recipes, ICE_MAX_NUM_RECIPES);
4869	DECLARE_BITMAP(used_idx, ICE_MAX_FV_WORDS);
4870	u16 bit;
4871
4872	bitmap_zero(recipes, ICE_MAX_NUM_RECIPES);
4873	bitmap_zero(used_idx, ICE_MAX_FV_WORDS);
4874
4875	bitmap_fill(possible_idx, ICE_MAX_FV_WORDS);
4876
4877	/* For each profile we are going to associate the recipe with, add the
4878	 * recipes that are associated with that profile. This will give us
4879	 * the set of recipes that our recipe may collide with. Also, determine
4880	 * what possible result indexes are usable given this set of profiles.
4881	 */
4882	for_each_set_bit(bit, profiles, ICE_MAX_NUM_PROFILES) {
4883		bitmap_or(recipes, recipes, profile_to_recipe[bit],
4884			  ICE_MAX_NUM_RECIPES);
4885		bitmap_and(possible_idx, possible_idx,
4886			   hw->switch_info->prof_res_bm[bit],
4887			   ICE_MAX_FV_WORDS);
4888	}
4889
4890	/* For each recipe that our new recipe may collide with, determine
4891	 * which indexes have been used.
4892	 */
4893	for_each_set_bit(bit, recipes, ICE_MAX_NUM_RECIPES)
4894		bitmap_or(used_idx, used_idx,
4895			  hw->switch_info->recp_list[bit].res_idxs,
4896			  ICE_MAX_FV_WORDS);
4897
4898	bitmap_xor(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS);
4899
4900	/* return number of free indexes */
4901	return (u16)bitmap_weight(free_idx, ICE_MAX_FV_WORDS);
4902}
4903
4904/**
4905 * ice_add_sw_recipe - function to call AQ calls to create switch recipe
4906 * @hw: pointer to hardware structure
4907 * @rm: recipe management list entry
4908 * @profiles: bitmap of profiles that will be associated.
4909 */
4910static int
4911ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm,
4912		  unsigned long *profiles)
4913{
4914	DECLARE_BITMAP(result_idx_bm, ICE_MAX_FV_WORDS);
4915	struct ice_aqc_recipe_content *content;
4916	struct ice_aqc_recipe_data_elem *tmp;
4917	struct ice_aqc_recipe_data_elem *buf;
4918	struct ice_recp_grp_entry *entry;
4919	u16 free_res_idx;
4920	u16 recipe_count;
4921	u8 chain_idx;
4922	u8 recps = 0;
4923	int status;
4924
4925	/* When more than one recipe are required, another recipe is needed to
4926	 * chain them together. Matching a tunnel metadata ID takes up one of
4927	 * the match fields in the chaining recipe reducing the number of
4928	 * chained recipes by one.
4929	 */
4930	 /* check number of free result indices */
4931	bitmap_zero(result_idx_bm, ICE_MAX_FV_WORDS);
4932	free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm);
4933
4934	ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n",
4935		  free_res_idx, rm->n_grp_count);
4936
4937	if (rm->n_grp_count > 1) {
4938		if (rm->n_grp_count > free_res_idx)
4939			return -ENOSPC;
4940
4941		rm->n_grp_count++;
4942	}
4943
4944	if (rm->n_grp_count > ICE_MAX_CHAIN_RECIPE)
4945		return -ENOSPC;
4946
4947	tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
4948	if (!tmp)
4949		return -ENOMEM;
4950
4951	buf = devm_kcalloc(ice_hw_to_dev(hw), rm->n_grp_count, sizeof(*buf),
4952			   GFP_KERNEL);
4953	if (!buf) {
4954		status = -ENOMEM;
4955		goto err_mem;
4956	}
4957
4958	bitmap_zero(rm->r_bitmap, ICE_MAX_NUM_RECIPES);
4959	recipe_count = ICE_MAX_NUM_RECIPES;
4960	status = ice_aq_get_recipe(hw, tmp, &recipe_count, ICE_SW_LKUP_MAC,
4961				   NULL);
4962	if (status || recipe_count == 0)
4963		goto err_unroll;
4964
4965	/* Allocate the recipe resources, and configure them according to the
4966	 * match fields from protocol headers and extracted field vectors.
4967	 */
4968	chain_idx = find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS);
4969	list_for_each_entry(entry, &rm->rg_list, l_entry) {
4970		u8 i;
4971
4972		status = ice_alloc_recipe(hw, &entry->rid);
4973		if (status)
4974			goto err_unroll;
4975
4976		content = &buf[recps].content;
4977
4978		/* Clear the result index of the located recipe, as this will be
4979		 * updated, if needed, later in the recipe creation process.
4980		 */
4981		tmp[0].content.result_indx = 0;
4982
4983		buf[recps] = tmp[0];
4984		buf[recps].recipe_indx = (u8)entry->rid;
4985		/* if the recipe is a non-root recipe RID should be programmed
4986		 * as 0 for the rules to be applied correctly.
4987		 */
4988		content->rid = 0;
4989		memset(&content->lkup_indx, 0,
4990		       sizeof(content->lkup_indx));
4991
4992		/* All recipes use look-up index 0 to match switch ID. */
4993		content->lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
4994		content->mask[0] = cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
4995		/* Setup lkup_indx 1..4 to INVALID/ignore and set the mask
4996		 * to be 0
4997		 */
4998		for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
4999			content->lkup_indx[i] = 0x80;
5000			content->mask[i] = 0;
5001		}
5002
5003		for (i = 0; i < entry->r_group.n_val_pairs; i++) {
5004			content->lkup_indx[i + 1] = entry->fv_idx[i];
5005			content->mask[i + 1] = cpu_to_le16(entry->fv_mask[i]);
5006		}
5007
5008		if (rm->n_grp_count > 1) {
5009			/* Checks to see if there really is a valid result index
5010			 * that can be used.
5011			 */
5012			if (chain_idx >= ICE_MAX_FV_WORDS) {
5013				ice_debug(hw, ICE_DBG_SW, "No chain index available\n");
5014				status = -ENOSPC;
5015				goto err_unroll;
5016			}
5017
5018			entry->chain_idx = chain_idx;
5019			content->result_indx =
5020				ICE_AQ_RECIPE_RESULT_EN |
5021				FIELD_PREP(ICE_AQ_RECIPE_RESULT_DATA_M,
5022					   chain_idx);
5023			clear_bit(chain_idx, result_idx_bm);
5024			chain_idx = find_first_bit(result_idx_bm,
5025						   ICE_MAX_FV_WORDS);
5026		}
5027
5028		/* fill recipe dependencies */
5029		bitmap_zero((unsigned long *)buf[recps].recipe_bitmap,
5030			    ICE_MAX_NUM_RECIPES);
5031		set_bit(buf[recps].recipe_indx,
5032			(unsigned long *)buf[recps].recipe_bitmap);
5033		content->act_ctrl_fwd_priority = rm->priority;
5034
5035		if (rm->need_pass_l2)
5036			content->act_ctrl |= ICE_AQ_RECIPE_ACT_NEED_PASS_L2;
5037
5038		if (rm->allow_pass_l2)
5039			content->act_ctrl |= ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2;
5040		recps++;
5041	}
5042
5043	if (rm->n_grp_count == 1) {
5044		rm->root_rid = buf[0].recipe_indx;
5045		set_bit(buf[0].recipe_indx, rm->r_bitmap);
5046		buf[0].content.rid = rm->root_rid | ICE_AQ_RECIPE_ID_IS_ROOT;
5047		if (sizeof(buf[0].recipe_bitmap) >= sizeof(rm->r_bitmap)) {
5048			memcpy(buf[0].recipe_bitmap, rm->r_bitmap,
5049			       sizeof(buf[0].recipe_bitmap));
5050		} else {
5051			status = -EINVAL;
5052			goto err_unroll;
5053		}
5054		/* Applicable only for ROOT_RECIPE, set the fwd_priority for
5055		 * the recipe which is getting created if specified
5056		 * by user. Usually any advanced switch filter, which results
5057		 * into new extraction sequence, ended up creating a new recipe
5058		 * of type ROOT and usually recipes are associated with profiles
5059		 * Switch rule referreing newly created recipe, needs to have
5060		 * either/or 'fwd' or 'join' priority, otherwise switch rule
5061		 * evaluation will not happen correctly. In other words, if
5062		 * switch rule to be evaluated on priority basis, then recipe
5063		 * needs to have priority, otherwise it will be evaluated last.
5064		 */
5065		buf[0].content.act_ctrl_fwd_priority = rm->priority;
5066	} else {
5067		struct ice_recp_grp_entry *last_chain_entry;
5068		u16 rid, i;
5069
5070		/* Allocate the last recipe that will chain the outcomes of the
5071		 * other recipes together
5072		 */
5073		status = ice_alloc_recipe(hw, &rid);
5074		if (status)
5075			goto err_unroll;
5076
5077		content = &buf[recps].content;
5078
5079		buf[recps].recipe_indx = (u8)rid;
5080		content->rid = (u8)rid;
5081		content->rid |= ICE_AQ_RECIPE_ID_IS_ROOT;
5082		/* the new entry created should also be part of rg_list to
5083		 * make sure we have complete recipe
5084		 */
5085		last_chain_entry = devm_kzalloc(ice_hw_to_dev(hw),
5086						sizeof(*last_chain_entry),
5087						GFP_KERNEL);
5088		if (!last_chain_entry) {
5089			status = -ENOMEM;
5090			goto err_unroll;
5091		}
5092		last_chain_entry->rid = rid;
5093		memset(&content->lkup_indx, 0, sizeof(content->lkup_indx));
5094		/* All recipes use look-up index 0 to match switch ID. */
5095		content->lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
5096		content->mask[0] = cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
5097		for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
5098			content->lkup_indx[i] = ICE_AQ_RECIPE_LKUP_IGNORE;
5099			content->mask[i] = 0;
5100		}
5101
5102		i = 1;
5103		/* update r_bitmap with the recp that is used for chaining */
5104		set_bit(rid, rm->r_bitmap);
5105		/* this is the recipe that chains all the other recipes so it
5106		 * should not have a chaining ID to indicate the same
5107		 */
5108		last_chain_entry->chain_idx = ICE_INVAL_CHAIN_IND;
5109		list_for_each_entry(entry, &rm->rg_list, l_entry) {
5110			last_chain_entry->fv_idx[i] = entry->chain_idx;
5111			content->lkup_indx[i] = entry->chain_idx;
5112			content->mask[i++] = cpu_to_le16(0xFFFF);
5113			set_bit(entry->rid, rm->r_bitmap);
5114		}
5115		list_add(&last_chain_entry->l_entry, &rm->rg_list);
5116		if (sizeof(buf[recps].recipe_bitmap) >=
5117		    sizeof(rm->r_bitmap)) {
5118			memcpy(buf[recps].recipe_bitmap, rm->r_bitmap,
5119			       sizeof(buf[recps].recipe_bitmap));
5120		} else {
5121			status = -EINVAL;
5122			goto err_unroll;
5123		}
5124		content->act_ctrl_fwd_priority = rm->priority;
5125
5126		recps++;
5127		rm->root_rid = (u8)rid;
5128	}
5129	status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5130	if (status)
5131		goto err_unroll;
5132
5133	status = ice_aq_add_recipe(hw, buf, rm->n_grp_count, NULL);
5134	ice_release_change_lock(hw);
5135	if (status)
5136		goto err_unroll;
5137
5138	/* Every recipe that just got created add it to the recipe
5139	 * book keeping list
5140	 */
5141	list_for_each_entry(entry, &rm->rg_list, l_entry) {
5142		struct ice_switch_info *sw = hw->switch_info;
5143		bool is_root, idx_found = false;
5144		struct ice_sw_recipe *recp;
5145		u16 idx, buf_idx = 0;
5146
5147		/* find buffer index for copying some data */
5148		for (idx = 0; idx < rm->n_grp_count; idx++)
5149			if (buf[idx].recipe_indx == entry->rid) {
5150				buf_idx = idx;
5151				idx_found = true;
5152			}
5153
5154		if (!idx_found) {
5155			status = -EIO;
5156			goto err_unroll;
5157		}
5158
5159		recp = &sw->recp_list[entry->rid];
5160		is_root = (rm->root_rid == entry->rid);
5161		recp->is_root = is_root;
5162
5163		recp->root_rid = entry->rid;
5164		recp->big_recp = (is_root && rm->n_grp_count > 1);
5165
5166		memcpy(&recp->ext_words, entry->r_group.pairs,
5167		       entry->r_group.n_val_pairs * sizeof(struct ice_fv_word));
5168
5169		memcpy(recp->r_bitmap, buf[buf_idx].recipe_bitmap,
5170		       sizeof(recp->r_bitmap));
5171
5172		/* Copy non-result fv index values and masks to recipe. This
5173		 * call will also update the result recipe bitmask.
5174		 */
5175		ice_collect_result_idx(&buf[buf_idx], recp);
5176
5177		/* for non-root recipes, also copy to the root, this allows
5178		 * easier matching of a complete chained recipe
5179		 */
5180		if (!is_root)
5181			ice_collect_result_idx(&buf[buf_idx],
5182					       &sw->recp_list[rm->root_rid]);
5183
5184		recp->n_ext_words = entry->r_group.n_val_pairs;
5185		recp->chain_idx = entry->chain_idx;
5186		recp->priority = buf[buf_idx].content.act_ctrl_fwd_priority;
5187		recp->n_grp_count = rm->n_grp_count;
5188		recp->tun_type = rm->tun_type;
5189		recp->need_pass_l2 = rm->need_pass_l2;
5190		recp->allow_pass_l2 = rm->allow_pass_l2;
5191		recp->recp_created = true;
5192	}
5193	rm->root_buf = buf;
5194	kfree(tmp);
5195	return status;
5196
5197err_unroll:
5198err_mem:
5199	kfree(tmp);
5200	devm_kfree(ice_hw_to_dev(hw), buf);
5201	return status;
5202}
5203
5204/**
5205 * ice_create_recipe_group - creates recipe group
5206 * @hw: pointer to hardware structure
5207 * @rm: recipe management list entry
5208 * @lkup_exts: lookup elements
5209 */
5210static int
5211ice_create_recipe_group(struct ice_hw *hw, struct ice_sw_recipe *rm,
5212			struct ice_prot_lkup_ext *lkup_exts)
5213{
5214	u8 recp_count = 0;
5215	int status;
5216
5217	rm->n_grp_count = 0;
5218
5219	/* Create recipes for words that are marked not done by packing them
5220	 * as best fit.
5221	 */
5222	status = ice_create_first_fit_recp_def(hw, lkup_exts,
5223					       &rm->rg_list, &recp_count);
5224	if (!status) {
5225		rm->n_grp_count += recp_count;
5226		rm->n_ext_words = lkup_exts->n_val_words;
5227		memcpy(&rm->ext_words, lkup_exts->fv_words,
5228		       sizeof(rm->ext_words));
5229		memcpy(rm->word_masks, lkup_exts->field_mask,
5230		       sizeof(rm->word_masks));
5231	}
5232
5233	return status;
5234}
5235
5236/* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule
5237 * @hw: pointer to hardware structure
5238 * @rinfo: other information regarding the rule e.g. priority and action info
5239 * @bm: pointer to memory for returning the bitmap of field vectors
5240 */
5241static void
5242ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo,
5243			 unsigned long *bm)
5244{
5245	enum ice_prof_type prof_type;
5246
5247	bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
5248
5249	switch (rinfo->tun_type) {
5250	case ICE_NON_TUN:
5251		prof_type = ICE_PROF_NON_TUN;
5252		break;
5253	case ICE_ALL_TUNNELS:
5254		prof_type = ICE_PROF_TUN_ALL;
5255		break;
5256	case ICE_SW_TUN_GENEVE:
5257	case ICE_SW_TUN_VXLAN:
5258		prof_type = ICE_PROF_TUN_UDP;
5259		break;
5260	case ICE_SW_TUN_NVGRE:
5261		prof_type = ICE_PROF_TUN_GRE;
5262		break;
5263	case ICE_SW_TUN_GTPU:
5264		prof_type = ICE_PROF_TUN_GTPU;
5265		break;
5266	case ICE_SW_TUN_GTPC:
5267		prof_type = ICE_PROF_TUN_GTPC;
5268		break;
5269	case ICE_SW_TUN_AND_NON_TUN:
5270	default:
5271		prof_type = ICE_PROF_ALL;
5272		break;
5273	}
5274
5275	ice_get_sw_fv_bitmap(hw, prof_type, bm);
5276}
5277
5278/**
5279 * ice_add_adv_recipe - Add an advanced recipe that is not part of the default
5280 * @hw: pointer to hardware structure
5281 * @lkups: lookup elements or match criteria for the advanced recipe, one
5282 *  structure per protocol header
5283 * @lkups_cnt: number of protocols
5284 * @rinfo: other information regarding the rule e.g. priority and action info
5285 * @rid: return the recipe ID of the recipe created
5286 */
5287static int
5288ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5289		   u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid)
5290{
5291	DECLARE_BITMAP(fv_bitmap, ICE_MAX_NUM_PROFILES);
5292	DECLARE_BITMAP(profiles, ICE_MAX_NUM_PROFILES);
5293	struct ice_prot_lkup_ext *lkup_exts;
5294	struct ice_recp_grp_entry *r_entry;
5295	struct ice_sw_fv_list_entry *fvit;
5296	struct ice_recp_grp_entry *r_tmp;
5297	struct ice_sw_fv_list_entry *tmp;
5298	struct ice_sw_recipe *rm;
5299	int status = 0;
5300	u8 i;
5301
5302	if (!lkups_cnt)
5303		return -EINVAL;
5304
5305	lkup_exts = kzalloc(sizeof(*lkup_exts), GFP_KERNEL);
5306	if (!lkup_exts)
5307		return -ENOMEM;
5308
5309	/* Determine the number of words to be matched and if it exceeds a
5310	 * recipe's restrictions
5311	 */
5312	for (i = 0; i < lkups_cnt; i++) {
5313		u16 count;
5314
5315		if (lkups[i].type >= ICE_PROTOCOL_LAST) {
5316			status = -EIO;
5317			goto err_free_lkup_exts;
5318		}
5319
5320		count = ice_fill_valid_words(&lkups[i], lkup_exts);
5321		if (!count) {
5322			status = -EIO;
5323			goto err_free_lkup_exts;
5324		}
5325	}
5326
5327	rm = kzalloc(sizeof(*rm), GFP_KERNEL);
5328	if (!rm) {
5329		status = -ENOMEM;
5330		goto err_free_lkup_exts;
5331	}
5332
5333	/* Get field vectors that contain fields extracted from all the protocol
5334	 * headers being programmed.
5335	 */
5336	INIT_LIST_HEAD(&rm->fv_list);
5337	INIT_LIST_HEAD(&rm->rg_list);
5338
5339	/* Get bitmap of field vectors (profiles) that are compatible with the
5340	 * rule request; only these will be searched in the subsequent call to
5341	 * ice_get_sw_fv_list.
5342	 */
5343	ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap);
5344
5345	status = ice_get_sw_fv_list(hw, lkup_exts, fv_bitmap, &rm->fv_list);
5346	if (status)
5347		goto err_unroll;
5348
5349	/* Group match words into recipes using preferred recipe grouping
5350	 * criteria.
5351	 */
5352	status = ice_create_recipe_group(hw, rm, lkup_exts);
5353	if (status)
5354		goto err_unroll;
5355
5356	/* set the recipe priority if specified */
5357	rm->priority = (u8)rinfo->priority;
5358
5359	rm->need_pass_l2 = rinfo->need_pass_l2;
5360	rm->allow_pass_l2 = rinfo->allow_pass_l2;
5361
5362	/* Find offsets from the field vector. Pick the first one for all the
5363	 * recipes.
5364	 */
5365	status = ice_fill_fv_word_index(hw, &rm->fv_list, &rm->rg_list);
5366	if (status)
5367		goto err_unroll;
5368
5369	/* get bitmap of all profiles the recipe will be associated with */
5370	bitmap_zero(profiles, ICE_MAX_NUM_PROFILES);
5371	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5372		ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id);
5373		set_bit((u16)fvit->profile_id, profiles);
5374	}
5375
5376	/* Look for a recipe which matches our requested fv / mask list */
5377	*rid = ice_find_recp(hw, lkup_exts, rinfo);
5378	if (*rid < ICE_MAX_NUM_RECIPES)
5379		/* Success if found a recipe that match the existing criteria */
5380		goto err_unroll;
5381
5382	rm->tun_type = rinfo->tun_type;
5383	/* Recipe we need does not exist, add a recipe */
5384	status = ice_add_sw_recipe(hw, rm, profiles);
5385	if (status)
5386		goto err_unroll;
5387
5388	/* Associate all the recipes created with all the profiles in the
5389	 * common field vector.
5390	 */
5391	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5392		DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
5393		u16 j;
5394
5395		status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id,
5396						      (u8 *)r_bitmap, NULL);
5397		if (status)
5398			goto err_unroll;
5399
5400		bitmap_or(r_bitmap, r_bitmap, rm->r_bitmap,
5401			  ICE_MAX_NUM_RECIPES);
5402		status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5403		if (status)
5404			goto err_unroll;
5405
5406		status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id,
5407						      (u8 *)r_bitmap,
5408						      NULL);
5409		ice_release_change_lock(hw);
5410
5411		if (status)
5412			goto err_unroll;
5413
5414		/* Update profile to recipe bitmap array */
5415		bitmap_copy(profile_to_recipe[fvit->profile_id], r_bitmap,
5416			    ICE_MAX_NUM_RECIPES);
5417
5418		/* Update recipe to profile bitmap array */
5419		for_each_set_bit(j, rm->r_bitmap, ICE_MAX_NUM_RECIPES)
5420			set_bit((u16)fvit->profile_id, recipe_to_profile[j]);
5421	}
5422
5423	*rid = rm->root_rid;
5424	memcpy(&hw->switch_info->recp_list[*rid].lkup_exts, lkup_exts,
5425	       sizeof(*lkup_exts));
5426err_unroll:
5427	list_for_each_entry_safe(r_entry, r_tmp, &rm->rg_list, l_entry) {
5428		list_del(&r_entry->l_entry);
5429		devm_kfree(ice_hw_to_dev(hw), r_entry);
5430	}
5431
5432	list_for_each_entry_safe(fvit, tmp, &rm->fv_list, list_entry) {
5433		list_del(&fvit->list_entry);
5434		devm_kfree(ice_hw_to_dev(hw), fvit);
5435	}
5436
5437	devm_kfree(ice_hw_to_dev(hw), rm->root_buf);
5438	kfree(rm);
5439
5440err_free_lkup_exts:
5441	kfree(lkup_exts);
5442
5443	return status;
5444}
5445
5446/**
5447 * ice_dummy_packet_add_vlan - insert VLAN header to dummy pkt
5448 *
5449 * @dummy_pkt: dummy packet profile pattern to which VLAN tag(s) will be added
5450 * @num_vlan: number of VLAN tags
5451 */
5452static struct ice_dummy_pkt_profile *
5453ice_dummy_packet_add_vlan(const struct ice_dummy_pkt_profile *dummy_pkt,
5454			  u32 num_vlan)
5455{
5456	struct ice_dummy_pkt_profile *profile;
5457	struct ice_dummy_pkt_offsets *offsets;
5458	u32 buf_len, off, etype_off, i;
5459	u8 *pkt;
5460
5461	if (num_vlan < 1 || num_vlan > 2)
5462		return ERR_PTR(-EINVAL);
5463
5464	off = num_vlan * VLAN_HLEN;
5465
5466	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet_offsets)) +
5467		  dummy_pkt->offsets_len;
5468	offsets = kzalloc(buf_len, GFP_KERNEL);
5469	if (!offsets)
5470		return ERR_PTR(-ENOMEM);
5471
5472	offsets[0] = dummy_pkt->offsets[0];
5473	if (num_vlan == 2) {
5474		offsets[1] = ice_dummy_qinq_packet_offsets[0];
5475		offsets[2] = ice_dummy_qinq_packet_offsets[1];
5476	} else if (num_vlan == 1) {
5477		offsets[1] = ice_dummy_vlan_packet_offsets[0];
5478	}
5479
5480	for (i = 1; dummy_pkt->offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5481		offsets[i + num_vlan].type = dummy_pkt->offsets[i].type;
5482		offsets[i + num_vlan].offset =
5483			dummy_pkt->offsets[i].offset + off;
5484	}
5485	offsets[i + num_vlan] = dummy_pkt->offsets[i];
5486
5487	etype_off = dummy_pkt->offsets[1].offset;
5488
5489	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet)) +
5490		  dummy_pkt->pkt_len;
5491	pkt = kzalloc(buf_len, GFP_KERNEL);
5492	if (!pkt) {
5493		kfree(offsets);
5494		return ERR_PTR(-ENOMEM);
5495	}
5496
5497	memcpy(pkt, dummy_pkt->pkt, etype_off);
5498	memcpy(pkt + etype_off,
5499	       num_vlan == 2 ? ice_dummy_qinq_packet : ice_dummy_vlan_packet,
5500	       off);
5501	memcpy(pkt + etype_off + off, dummy_pkt->pkt + etype_off,
5502	       dummy_pkt->pkt_len - etype_off);
5503
5504	profile = kzalloc(sizeof(*profile), GFP_KERNEL);
5505	if (!profile) {
5506		kfree(offsets);
5507		kfree(pkt);
5508		return ERR_PTR(-ENOMEM);
5509	}
5510
5511	profile->offsets = offsets;
5512	profile->pkt = pkt;
5513	profile->pkt_len = buf_len;
5514	profile->match |= ICE_PKT_KMALLOC;
5515
5516	return profile;
5517}
5518
5519/**
5520 * ice_find_dummy_packet - find dummy packet
5521 *
5522 * @lkups: lookup elements or match criteria for the advanced recipe, one
5523 *	   structure per protocol header
5524 * @lkups_cnt: number of protocols
5525 * @tun_type: tunnel type
5526 *
5527 * Returns the &ice_dummy_pkt_profile corresponding to these lookup params.
5528 */
5529static const struct ice_dummy_pkt_profile *
5530ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5531		      enum ice_sw_tunnel_type tun_type)
5532{
5533	const struct ice_dummy_pkt_profile *ret = ice_dummy_pkt_profiles;
5534	u32 match = 0, vlan_count = 0;
5535	u16 i;
5536
5537	switch (tun_type) {
5538	case ICE_SW_TUN_GTPC:
5539		match |= ICE_PKT_TUN_GTPC;
5540		break;
5541	case ICE_SW_TUN_GTPU:
5542		match |= ICE_PKT_TUN_GTPU;
5543		break;
5544	case ICE_SW_TUN_NVGRE:
5545		match |= ICE_PKT_TUN_NVGRE;
5546		break;
5547	case ICE_SW_TUN_GENEVE:
5548	case ICE_SW_TUN_VXLAN:
5549		match |= ICE_PKT_TUN_UDP;
5550		break;
5551	default:
5552		break;
5553	}
5554
5555	for (i = 0; i < lkups_cnt; i++) {
5556		if (lkups[i].type == ICE_UDP_ILOS)
5557			match |= ICE_PKT_INNER_UDP;
5558		else if (lkups[i].type == ICE_TCP_IL)
5559			match |= ICE_PKT_INNER_TCP;
5560		else if (lkups[i].type == ICE_IPV6_OFOS)
5561			match |= ICE_PKT_OUTER_IPV6;
5562		else if (lkups[i].type == ICE_VLAN_OFOS ||
5563			 lkups[i].type == ICE_VLAN_EX)
5564			vlan_count++;
5565		else if (lkups[i].type == ICE_VLAN_IN)
5566			vlan_count++;
5567		else if (lkups[i].type == ICE_ETYPE_OL &&
5568			 lkups[i].h_u.ethertype.ethtype_id ==
5569				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5570			 lkups[i].m_u.ethertype.ethtype_id ==
5571				cpu_to_be16(0xFFFF))
5572			match |= ICE_PKT_OUTER_IPV6;
5573		else if (lkups[i].type == ICE_ETYPE_IL &&
5574			 lkups[i].h_u.ethertype.ethtype_id ==
5575				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5576			 lkups[i].m_u.ethertype.ethtype_id ==
5577				cpu_to_be16(0xFFFF))
5578			match |= ICE_PKT_INNER_IPV6;
5579		else if (lkups[i].type == ICE_IPV6_IL)
5580			match |= ICE_PKT_INNER_IPV6;
5581		else if (lkups[i].type == ICE_GTP_NO_PAY)
5582			match |= ICE_PKT_GTP_NOPAY;
5583		else if (lkups[i].type == ICE_PPPOE) {
5584			match |= ICE_PKT_PPPOE;
5585			if (lkups[i].h_u.pppoe_hdr.ppp_prot_id ==
5586			    htons(PPP_IPV6))
5587				match |= ICE_PKT_OUTER_IPV6;
5588		} else if (lkups[i].type == ICE_L2TPV3)
5589			match |= ICE_PKT_L2TPV3;
5590	}
5591
5592	while (ret->match && (match & ret->match) != ret->match)
5593		ret++;
5594
5595	if (vlan_count != 0)
5596		ret = ice_dummy_packet_add_vlan(ret, vlan_count);
5597
5598	return ret;
5599}
5600
5601/**
5602 * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria
5603 *
5604 * @lkups: lookup elements or match criteria for the advanced recipe, one
5605 *	   structure per protocol header
5606 * @lkups_cnt: number of protocols
5607 * @s_rule: stores rule information from the match criteria
5608 * @profile: dummy packet profile (the template, its size and header offsets)
5609 */
5610static int
5611ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5612			  struct ice_sw_rule_lkup_rx_tx *s_rule,
5613			  const struct ice_dummy_pkt_profile *profile)
5614{
5615	u8 *pkt;
5616	u16 i;
5617
5618	/* Start with a packet with a pre-defined/dummy content. Then, fill
5619	 * in the header values to be looked up or matched.
5620	 */
5621	pkt = s_rule->hdr_data;
5622
5623	memcpy(pkt, profile->pkt, profile->pkt_len);
5624
5625	for (i = 0; i < lkups_cnt; i++) {
5626		const struct ice_dummy_pkt_offsets *offsets = profile->offsets;
5627		enum ice_protocol_type type;
5628		u16 offset = 0, len = 0, j;
5629		bool found = false;
5630
5631		/* find the start of this layer; it should be found since this
5632		 * was already checked when search for the dummy packet
5633		 */
5634		type = lkups[i].type;
5635		/* metadata isn't present in the packet */
5636		if (type == ICE_HW_METADATA)
5637			continue;
5638
5639		for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) {
5640			if (type == offsets[j].type) {
5641				offset = offsets[j].offset;
5642				found = true;
5643				break;
5644			}
5645		}
5646		/* this should never happen in a correct calling sequence */
5647		if (!found)
5648			return -EINVAL;
5649
5650		switch (lkups[i].type) {
5651		case ICE_MAC_OFOS:
5652		case ICE_MAC_IL:
5653			len = sizeof(struct ice_ether_hdr);
5654			break;
5655		case ICE_ETYPE_OL:
5656		case ICE_ETYPE_IL:
5657			len = sizeof(struct ice_ethtype_hdr);
5658			break;
5659		case ICE_VLAN_OFOS:
5660		case ICE_VLAN_EX:
5661		case ICE_VLAN_IN:
5662			len = sizeof(struct ice_vlan_hdr);
5663			break;
5664		case ICE_IPV4_OFOS:
5665		case ICE_IPV4_IL:
5666			len = sizeof(struct ice_ipv4_hdr);
5667			break;
5668		case ICE_IPV6_OFOS:
5669		case ICE_IPV6_IL:
5670			len = sizeof(struct ice_ipv6_hdr);
5671			break;
5672		case ICE_TCP_IL:
5673		case ICE_UDP_OF:
5674		case ICE_UDP_ILOS:
5675			len = sizeof(struct ice_l4_hdr);
5676			break;
5677		case ICE_SCTP_IL:
5678			len = sizeof(struct ice_sctp_hdr);
5679			break;
5680		case ICE_NVGRE:
5681			len = sizeof(struct ice_nvgre_hdr);
5682			break;
5683		case ICE_VXLAN:
5684		case ICE_GENEVE:
5685			len = sizeof(struct ice_udp_tnl_hdr);
5686			break;
5687		case ICE_GTP_NO_PAY:
5688		case ICE_GTP:
5689			len = sizeof(struct ice_udp_gtp_hdr);
5690			break;
5691		case ICE_PPPOE:
5692			len = sizeof(struct ice_pppoe_hdr);
5693			break;
5694		case ICE_L2TPV3:
5695			len = sizeof(struct ice_l2tpv3_sess_hdr);
5696			break;
5697		default:
5698			return -EINVAL;
5699		}
5700
5701		/* the length should be a word multiple */
5702		if (len % ICE_BYTES_PER_WORD)
5703			return -EIO;
5704
5705		/* We have the offset to the header start, the length, the
5706		 * caller's header values and mask. Use this information to
5707		 * copy the data into the dummy packet appropriately based on
5708		 * the mask. Note that we need to only write the bits as
5709		 * indicated by the mask to make sure we don't improperly write
5710		 * over any significant packet data.
5711		 */
5712		for (j = 0; j < len / sizeof(u16); j++) {
5713			u16 *ptr = (u16 *)(pkt + offset);
5714			u16 mask = lkups[i].m_raw[j];
5715
5716			if (!mask)
5717				continue;
5718
5719			ptr[j] = (ptr[j] & ~mask) | (lkups[i].h_raw[j] & mask);
5720		}
5721	}
5722
5723	s_rule->hdr_len = cpu_to_le16(profile->pkt_len);
5724
5725	return 0;
5726}
5727
5728/**
5729 * ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port
5730 * @hw: pointer to the hardware structure
5731 * @tun_type: tunnel type
5732 * @pkt: dummy packet to fill in
5733 * @offsets: offset info for the dummy packet
5734 */
5735static int
5736ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type,
5737			u8 *pkt, const struct ice_dummy_pkt_offsets *offsets)
5738{
5739	u16 open_port, i;
5740
5741	switch (tun_type) {
5742	case ICE_SW_TUN_VXLAN:
5743		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_VXLAN))
5744			return -EIO;
5745		break;
5746	case ICE_SW_TUN_GENEVE:
5747		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_GENEVE))
5748			return -EIO;
5749		break;
5750	default:
5751		/* Nothing needs to be done for this tunnel type */
5752		return 0;
5753	}
5754
5755	/* Find the outer UDP protocol header and insert the port number */
5756	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5757		if (offsets[i].type == ICE_UDP_OF) {
5758			struct ice_l4_hdr *hdr;
5759			u16 offset;
5760
5761			offset = offsets[i].offset;
5762			hdr = (struct ice_l4_hdr *)&pkt[offset];
5763			hdr->dst_port = cpu_to_be16(open_port);
5764
5765			return 0;
5766		}
5767	}
5768
5769	return -EIO;
5770}
5771
5772/**
5773 * ice_fill_adv_packet_vlan - fill dummy packet with VLAN tag type
5774 * @hw: pointer to hw structure
5775 * @vlan_type: VLAN tag type
5776 * @pkt: dummy packet to fill in
5777 * @offsets: offset info for the dummy packet
5778 */
5779static int
5780ice_fill_adv_packet_vlan(struct ice_hw *hw, u16 vlan_type, u8 *pkt,
5781			 const struct ice_dummy_pkt_offsets *offsets)
5782{
5783	u16 i;
5784
5785	/* Check if there is something to do */
5786	if (!vlan_type || !ice_is_dvm_ena(hw))
5787		return 0;
5788
5789	/* Find VLAN header and insert VLAN TPID */
5790	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5791		if (offsets[i].type == ICE_VLAN_OFOS ||
5792		    offsets[i].type == ICE_VLAN_EX) {
5793			struct ice_vlan_hdr *hdr;
5794			u16 offset;
5795
5796			offset = offsets[i].offset;
5797			hdr = (struct ice_vlan_hdr *)&pkt[offset];
5798			hdr->type = cpu_to_be16(vlan_type);
5799
5800			return 0;
5801		}
5802	}
5803
5804	return -EIO;
5805}
5806
5807static bool ice_rules_equal(const struct ice_adv_rule_info *first,
5808			    const struct ice_adv_rule_info *second)
5809{
5810	return first->sw_act.flag == second->sw_act.flag &&
5811	       first->tun_type == second->tun_type &&
5812	       first->vlan_type == second->vlan_type &&
5813	       first->src_vsi == second->src_vsi &&
5814	       first->need_pass_l2 == second->need_pass_l2 &&
5815	       first->allow_pass_l2 == second->allow_pass_l2;
5816}
5817
5818/**
5819 * ice_find_adv_rule_entry - Search a rule entry
5820 * @hw: pointer to the hardware structure
5821 * @lkups: lookup elements or match criteria for the advanced recipe, one
5822 *	   structure per protocol header
5823 * @lkups_cnt: number of protocols
5824 * @recp_id: recipe ID for which we are finding the rule
5825 * @rinfo: other information regarding the rule e.g. priority and action info
5826 *
5827 * Helper function to search for a given advance rule entry
5828 * Returns pointer to entry storing the rule if found
5829 */
5830static struct ice_adv_fltr_mgmt_list_entry *
5831ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5832			u16 lkups_cnt, u16 recp_id,
5833			struct ice_adv_rule_info *rinfo)
5834{
5835	struct ice_adv_fltr_mgmt_list_entry *list_itr;
5836	struct ice_switch_info *sw = hw->switch_info;
5837	int i;
5838
5839	list_for_each_entry(list_itr, &sw->recp_list[recp_id].filt_rules,
5840			    list_entry) {
5841		bool lkups_matched = true;
5842
5843		if (lkups_cnt != list_itr->lkups_cnt)
5844			continue;
5845		for (i = 0; i < list_itr->lkups_cnt; i++)
5846			if (memcmp(&list_itr->lkups[i], &lkups[i],
5847				   sizeof(*lkups))) {
5848				lkups_matched = false;
5849				break;
5850			}
5851		if (ice_rules_equal(rinfo, &list_itr->rule_info) &&
5852		    lkups_matched)
5853			return list_itr;
5854	}
5855	return NULL;
5856}
5857
5858/**
5859 * ice_adv_add_update_vsi_list
5860 * @hw: pointer to the hardware structure
5861 * @m_entry: pointer to current adv filter management list entry
5862 * @cur_fltr: filter information from the book keeping entry
5863 * @new_fltr: filter information with the new VSI to be added
5864 *
5865 * Call AQ command to add or update previously created VSI list with new VSI.
5866 *
5867 * Helper function to do book keeping associated with adding filter information
5868 * The algorithm to do the booking keeping is described below :
5869 * When a VSI needs to subscribe to a given advanced filter
5870 *	if only one VSI has been added till now
5871 *		Allocate a new VSI list and add two VSIs
5872 *		to this list using switch rule command
5873 *		Update the previously created switch rule with the
5874 *		newly created VSI list ID
5875 *	if a VSI list was previously created
5876 *		Add the new VSI to the previously created VSI list set
5877 *		using the update switch rule command
5878 */
5879static int
5880ice_adv_add_update_vsi_list(struct ice_hw *hw,
5881			    struct ice_adv_fltr_mgmt_list_entry *m_entry,
5882			    struct ice_adv_rule_info *cur_fltr,
5883			    struct ice_adv_rule_info *new_fltr)
5884{
5885	u16 vsi_list_id = 0;
5886	int status;
5887
5888	if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5889	    cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
5890	    cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET)
5891		return -EOPNOTSUPP;
5892
5893	if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5894	     new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) &&
5895	    (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI ||
5896	     cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST))
5897		return -EOPNOTSUPP;
5898
5899	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
5900		 /* Only one entry existed in the mapping and it was not already
5901		  * a part of a VSI list. So, create a VSI list with the old and
5902		  * new VSIs.
5903		  */
5904		struct ice_fltr_info tmp_fltr;
5905		u16 vsi_handle_arr[2];
5906
5907		/* A rule already exists with the new VSI being added */
5908		if (cur_fltr->sw_act.fwd_id.hw_vsi_id ==
5909		    new_fltr->sw_act.fwd_id.hw_vsi_id)
5910			return -EEXIST;
5911
5912		vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle;
5913		vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle;
5914		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
5915						  &vsi_list_id,
5916						  ICE_SW_LKUP_LAST);
5917		if (status)
5918			return status;
5919
5920		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
5921		tmp_fltr.flag = m_entry->rule_info.sw_act.flag;
5922		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
5923		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
5924		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
5925		tmp_fltr.lkup_type = ICE_SW_LKUP_LAST;
5926
5927		/* Update the previous switch rule of "forward to VSI" to
5928		 * "fwd to VSI list"
5929		 */
5930		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
5931		if (status)
5932			return status;
5933
5934		cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id;
5935		cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST;
5936		m_entry->vsi_list_info =
5937			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
5938						vsi_list_id);
5939	} else {
5940		u16 vsi_handle = new_fltr->sw_act.vsi_handle;
5941
5942		if (!m_entry->vsi_list_info)
5943			return -EIO;
5944
5945		/* A rule already exists with the new VSI being added */
5946		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
5947			return 0;
5948
5949		/* Update the previously created VSI list set with
5950		 * the new VSI ID passed in
5951		 */
5952		vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id;
5953
5954		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
5955						  vsi_list_id, false,
5956						  ice_aqc_opc_update_sw_rules,
5957						  ICE_SW_LKUP_LAST);
5958		/* update VSI list mapping info with new VSI ID */
5959		if (!status)
5960			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
5961	}
5962	if (!status)
5963		m_entry->vsi_count++;
5964	return status;
5965}
5966
5967void ice_rule_add_tunnel_metadata(struct ice_adv_lkup_elem *lkup)
5968{
5969	lkup->type = ICE_HW_METADATA;
5970	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID21] |=
5971		cpu_to_be16(ICE_PKT_TUNNEL_MASK);
5972}
5973
5974void ice_rule_add_direction_metadata(struct ice_adv_lkup_elem *lkup)
5975{
5976	lkup->type = ICE_HW_METADATA;
5977	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
5978		cpu_to_be16(ICE_PKT_FROM_NETWORK);
5979}
5980
5981void ice_rule_add_vlan_metadata(struct ice_adv_lkup_elem *lkup)
5982{
5983	lkup->type = ICE_HW_METADATA;
5984	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
5985		cpu_to_be16(ICE_PKT_VLAN_MASK);
5986}
5987
5988void ice_rule_add_src_vsi_metadata(struct ice_adv_lkup_elem *lkup)
5989{
5990	lkup->type = ICE_HW_METADATA;
5991	lkup->m_u.metadata.source_vsi = cpu_to_be16(ICE_MDID_SOURCE_VSI_MASK);
5992}
5993
5994/**
5995 * ice_add_adv_rule - helper function to create an advanced switch rule
5996 * @hw: pointer to the hardware structure
5997 * @lkups: information on the words that needs to be looked up. All words
5998 * together makes one recipe
5999 * @lkups_cnt: num of entries in the lkups array
6000 * @rinfo: other information related to the rule that needs to be programmed
6001 * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be
6002 *               ignored is case of error.
6003 *
6004 * This function can program only 1 rule at a time. The lkups is used to
6005 * describe the all the words that forms the "lookup" portion of the recipe.
6006 * These words can span multiple protocols. Callers to this function need to
6007 * pass in a list of protocol headers with lookup information along and mask
6008 * that determines which words are valid from the given protocol header.
6009 * rinfo describes other information related to this rule such as forwarding
6010 * IDs, priority of this rule, etc.
6011 */
6012int
6013ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6014		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo,
6015		 struct ice_rule_query_data *added_entry)
6016{
6017	struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL;
6018	struct ice_sw_rule_lkup_rx_tx *s_rule = NULL;
6019	const struct ice_dummy_pkt_profile *profile;
6020	u16 rid = 0, i, rule_buf_sz, vsi_handle;
6021	struct list_head *rule_head;
6022	struct ice_switch_info *sw;
6023	u16 word_cnt;
6024	u32 act = 0;
6025	int status;
6026	u8 q_rgn;
6027
6028	/* Initialize profile to result index bitmap */
6029	if (!hw->switch_info->prof_res_bm_init) {
6030		hw->switch_info->prof_res_bm_init = 1;
6031		ice_init_prof_result_bm(hw);
6032	}
6033
6034	if (!lkups_cnt)
6035		return -EINVAL;
6036
6037	/* get # of words we need to match */
6038	word_cnt = 0;
6039	for (i = 0; i < lkups_cnt; i++) {
6040		u16 j;
6041
6042		for (j = 0; j < ARRAY_SIZE(lkups->m_raw); j++)
6043			if (lkups[i].m_raw[j])
6044				word_cnt++;
6045	}
6046
6047	if (!word_cnt)
6048		return -EINVAL;
6049
6050	if (word_cnt > ICE_MAX_CHAIN_WORDS)
6051		return -ENOSPC;
6052
6053	/* locate a dummy packet */
6054	profile = ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type);
6055	if (IS_ERR(profile))
6056		return PTR_ERR(profile);
6057
6058	if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6059	      rinfo->sw_act.fltr_act == ICE_FWD_TO_Q ||
6060	      rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
6061	      rinfo->sw_act.fltr_act == ICE_DROP_PACKET ||
6062	      rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET ||
6063	      rinfo->sw_act.fltr_act == ICE_NOP)) {
6064		status = -EIO;
6065		goto free_pkt_profile;
6066	}
6067
6068	vsi_handle = rinfo->sw_act.vsi_handle;
6069	if (!ice_is_vsi_valid(hw, vsi_handle)) {
6070		status =  -EINVAL;
6071		goto free_pkt_profile;
6072	}
6073
6074	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6075	    rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET ||
6076	    rinfo->sw_act.fltr_act == ICE_NOP) {
6077		rinfo->sw_act.fwd_id.hw_vsi_id =
6078			ice_get_hw_vsi_num(hw, vsi_handle);
6079	}
6080
6081	if (rinfo->src_vsi)
6082		rinfo->sw_act.src = ice_get_hw_vsi_num(hw, rinfo->src_vsi);
6083	else
6084		rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle);
6085
6086	status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid);
6087	if (status)
6088		goto free_pkt_profile;
6089	m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6090	if (m_entry) {
6091		/* we have to add VSI to VSI_LIST and increment vsi_count.
6092		 * Also Update VSI list so that we can change forwarding rule
6093		 * if the rule already exists, we will check if it exists with
6094		 * same vsi_id, if not then add it to the VSI list if it already
6095		 * exists if not then create a VSI list and add the existing VSI
6096		 * ID and the new VSI ID to the list
6097		 * We will add that VSI to the list
6098		 */
6099		status = ice_adv_add_update_vsi_list(hw, m_entry,
6100						     &m_entry->rule_info,
6101						     rinfo);
6102		if (added_entry) {
6103			added_entry->rid = rid;
6104			added_entry->rule_id = m_entry->rule_info.fltr_rule_id;
6105			added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6106		}
6107		goto free_pkt_profile;
6108	}
6109	rule_buf_sz = ICE_SW_RULE_RX_TX_HDR_SIZE(s_rule, profile->pkt_len);
6110	s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6111	if (!s_rule) {
6112		status = -ENOMEM;
6113		goto free_pkt_profile;
6114	}
6115
6116	if (rinfo->sw_act.fltr_act != ICE_MIRROR_PACKET) {
6117		if (!rinfo->flags_info.act_valid) {
6118			act |= ICE_SINGLE_ACT_LAN_ENABLE;
6119			act |= ICE_SINGLE_ACT_LB_ENABLE;
6120		} else {
6121			act |= rinfo->flags_info.act & (ICE_SINGLE_ACT_LAN_ENABLE |
6122							ICE_SINGLE_ACT_LB_ENABLE);
6123		}
6124	}
6125
6126	switch (rinfo->sw_act.fltr_act) {
6127	case ICE_FWD_TO_VSI:
6128		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6129				  rinfo->sw_act.fwd_id.hw_vsi_id);
6130		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT;
6131		break;
6132	case ICE_FWD_TO_Q:
6133		act |= ICE_SINGLE_ACT_TO_Q;
6134		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
6135				  rinfo->sw_act.fwd_id.q_id);
6136		break;
6137	case ICE_FWD_TO_QGRP:
6138		q_rgn = rinfo->sw_act.qgrp_size > 0 ?
6139			(u8)ilog2(rinfo->sw_act.qgrp_size) : 0;
6140		act |= ICE_SINGLE_ACT_TO_Q;
6141		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
6142				  rinfo->sw_act.fwd_id.q_id);
6143		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn);
6144		break;
6145	case ICE_DROP_PACKET:
6146		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
6147		       ICE_SINGLE_ACT_VALID_BIT;
6148		break;
6149	case ICE_MIRROR_PACKET:
6150		act |= ICE_SINGLE_ACT_OTHER_ACTS;
6151		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6152				  rinfo->sw_act.fwd_id.hw_vsi_id);
6153		break;
6154	case ICE_NOP:
6155		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6156				  rinfo->sw_act.fwd_id.hw_vsi_id);
6157		act &= ~ICE_SINGLE_ACT_VALID_BIT;
6158		break;
6159	default:
6160		status = -EIO;
6161		goto err_ice_add_adv_rule;
6162	}
6163
6164	/* If there is no matching criteria for direction there
6165	 * is only one difference between Rx and Tx:
6166	 * - get switch id base on VSI number from source field (Tx)
6167	 * - get switch id base on port number (Rx)
6168	 *
6169	 * If matching on direction metadata is chose rule direction is
6170	 * extracted from type value set here.
6171	 */
6172	if (rinfo->sw_act.flag & ICE_FLTR_TX) {
6173		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
6174		s_rule->src = cpu_to_le16(rinfo->sw_act.src);
6175	} else {
6176		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX);
6177		s_rule->src = cpu_to_le16(hw->port_info->lport);
6178	}
6179
6180	s_rule->recipe_id = cpu_to_le16(rid);
6181	s_rule->act = cpu_to_le32(act);
6182
6183	status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, profile);
6184	if (status)
6185		goto err_ice_add_adv_rule;
6186
6187	status = ice_fill_adv_packet_tun(hw, rinfo->tun_type, s_rule->hdr_data,
6188					 profile->offsets);
6189	if (status)
6190		goto err_ice_add_adv_rule;
6191
6192	status = ice_fill_adv_packet_vlan(hw, rinfo->vlan_type,
6193					  s_rule->hdr_data,
6194					  profile->offsets);
6195	if (status)
6196		goto err_ice_add_adv_rule;
6197
6198	status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6199				 rule_buf_sz, 1, ice_aqc_opc_add_sw_rules,
6200				 NULL);
6201	if (status)
6202		goto err_ice_add_adv_rule;
6203	adv_fltr = devm_kzalloc(ice_hw_to_dev(hw),
6204				sizeof(struct ice_adv_fltr_mgmt_list_entry),
6205				GFP_KERNEL);
6206	if (!adv_fltr) {
6207		status = -ENOMEM;
6208		goto err_ice_add_adv_rule;
6209	}
6210
6211	adv_fltr->lkups = devm_kmemdup(ice_hw_to_dev(hw), lkups,
6212				       lkups_cnt * sizeof(*lkups), GFP_KERNEL);
6213	if (!adv_fltr->lkups) {
6214		status = -ENOMEM;
6215		goto err_ice_add_adv_rule;
6216	}
6217
6218	adv_fltr->lkups_cnt = lkups_cnt;
6219	adv_fltr->rule_info = *rinfo;
6220	adv_fltr->rule_info.fltr_rule_id = le16_to_cpu(s_rule->index);
6221	sw = hw->switch_info;
6222	sw->recp_list[rid].adv_rule = true;
6223	rule_head = &sw->recp_list[rid].filt_rules;
6224
6225	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
6226		adv_fltr->vsi_count = 1;
6227
6228	/* Add rule entry to book keeping list */
6229	list_add(&adv_fltr->list_entry, rule_head);
6230	if (added_entry) {
6231		added_entry->rid = rid;
6232		added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id;
6233		added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6234	}
6235err_ice_add_adv_rule:
6236	if (status && adv_fltr) {
6237		devm_kfree(ice_hw_to_dev(hw), adv_fltr->lkups);
6238		devm_kfree(ice_hw_to_dev(hw), adv_fltr);
6239	}
6240
6241	kfree(s_rule);
6242
6243free_pkt_profile:
6244	if (profile->match & ICE_PKT_KMALLOC) {
6245		kfree(profile->offsets);
6246		kfree(profile->pkt);
6247		kfree(profile);
6248	}
6249
6250	return status;
6251}
6252
6253/**
6254 * ice_replay_vsi_fltr - Replay filters for requested VSI
6255 * @hw: pointer to the hardware structure
6256 * @vsi_handle: driver VSI handle
6257 * @recp_id: Recipe ID for which rules need to be replayed
6258 * @list_head: list for which filters need to be replayed
6259 *
6260 * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
6261 * It is required to pass valid VSI handle.
6262 */
6263static int
6264ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id,
6265		    struct list_head *list_head)
6266{
6267	struct ice_fltr_mgmt_list_entry *itr;
6268	int status = 0;
6269	u16 hw_vsi_id;
6270
6271	if (list_empty(list_head))
6272		return status;
6273	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
6274
6275	list_for_each_entry(itr, list_head, list_entry) {
6276		struct ice_fltr_list_entry f_entry;
6277
6278		f_entry.fltr_info = itr->fltr_info;
6279		if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
6280		    itr->fltr_info.vsi_handle == vsi_handle) {
6281			/* update the src in case it is VSI num */
6282			if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6283				f_entry.fltr_info.src = hw_vsi_id;
6284			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6285			if (status)
6286				goto end;
6287			continue;
6288		}
6289		if (!itr->vsi_list_info ||
6290		    !test_bit(vsi_handle, itr->vsi_list_info->vsi_map))
6291			continue;
6292		/* Clearing it so that the logic can add it back */
6293		clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
6294		f_entry.fltr_info.vsi_handle = vsi_handle;
6295		f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
6296		/* update the src in case it is VSI num */
6297		if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6298			f_entry.fltr_info.src = hw_vsi_id;
6299		if (recp_id == ICE_SW_LKUP_VLAN)
6300			status = ice_add_vlan_internal(hw, &f_entry);
6301		else
6302			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6303		if (status)
6304			goto end;
6305	}
6306end:
6307	return status;
6308}
6309
6310/**
6311 * ice_adv_rem_update_vsi_list
6312 * @hw: pointer to the hardware structure
6313 * @vsi_handle: VSI handle of the VSI to remove
6314 * @fm_list: filter management entry for which the VSI list management needs to
6315 *	     be done
6316 */
6317static int
6318ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
6319			    struct ice_adv_fltr_mgmt_list_entry *fm_list)
6320{
6321	struct ice_vsi_list_map_info *vsi_list_info;
6322	enum ice_sw_lkup_type lkup_type;
6323	u16 vsi_list_id;
6324	int status;
6325
6326	if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST ||
6327	    fm_list->vsi_count == 0)
6328		return -EINVAL;
6329
6330	/* A rule with the VSI being removed does not exist */
6331	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
6332		return -ENOENT;
6333
6334	lkup_type = ICE_SW_LKUP_LAST;
6335	vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id;
6336	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
6337					  ice_aqc_opc_update_sw_rules,
6338					  lkup_type);
6339	if (status)
6340		return status;
6341
6342	fm_list->vsi_count--;
6343	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
6344	vsi_list_info = fm_list->vsi_list_info;
6345	if (fm_list->vsi_count == 1) {
6346		struct ice_fltr_info tmp_fltr;
6347		u16 rem_vsi_handle;
6348
6349		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
6350						ICE_MAX_VSI);
6351		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
6352			return -EIO;
6353
6354		/* Make sure VSI list is empty before removing it below */
6355		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
6356						  vsi_list_id, true,
6357						  ice_aqc_opc_update_sw_rules,
6358						  lkup_type);
6359		if (status)
6360			return status;
6361
6362		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
6363		tmp_fltr.flag = fm_list->rule_info.sw_act.flag;
6364		tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id;
6365		fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI;
6366		tmp_fltr.fltr_act = ICE_FWD_TO_VSI;
6367		tmp_fltr.fwd_id.hw_vsi_id =
6368			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6369		fm_list->rule_info.sw_act.fwd_id.hw_vsi_id =
6370			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6371		fm_list->rule_info.sw_act.vsi_handle = rem_vsi_handle;
6372
6373		/* Update the previous switch rule of "MAC forward to VSI" to
6374		 * "MAC fwd to VSI list"
6375		 */
6376		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
6377		if (status) {
6378			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
6379				  tmp_fltr.fwd_id.hw_vsi_id, status);
6380			return status;
6381		}
6382		fm_list->vsi_list_info->ref_cnt--;
6383
6384		/* Remove the VSI list since it is no longer used */
6385		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
6386		if (status) {
6387			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
6388				  vsi_list_id, status);
6389			return status;
6390		}
6391
6392		list_del(&vsi_list_info->list_entry);
6393		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
6394		fm_list->vsi_list_info = NULL;
6395	}
6396
6397	return status;
6398}
6399
6400/**
6401 * ice_rem_adv_rule - removes existing advanced switch rule
6402 * @hw: pointer to the hardware structure
6403 * @lkups: information on the words that needs to be looked up. All words
6404 *         together makes one recipe
6405 * @lkups_cnt: num of entries in the lkups array
6406 * @rinfo: Its the pointer to the rule information for the rule
6407 *
6408 * This function can be used to remove 1 rule at a time. The lkups is
6409 * used to describe all the words that forms the "lookup" portion of the
6410 * rule. These words can span multiple protocols. Callers to this function
6411 * need to pass in a list of protocol headers with lookup information along
6412 * and mask that determines which words are valid from the given protocol
6413 * header. rinfo describes other information related to this rule such as
6414 * forwarding IDs, priority of this rule, etc.
6415 */
6416static int
6417ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6418		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo)
6419{
6420	struct ice_adv_fltr_mgmt_list_entry *list_elem;
6421	struct ice_prot_lkup_ext lkup_exts;
6422	bool remove_rule = false;
6423	struct mutex *rule_lock; /* Lock to protect filter rule list */
6424	u16 i, rid, vsi_handle;
6425	int status = 0;
6426
6427	memset(&lkup_exts, 0, sizeof(lkup_exts));
6428	for (i = 0; i < lkups_cnt; i++) {
6429		u16 count;
6430
6431		if (lkups[i].type >= ICE_PROTOCOL_LAST)
6432			return -EIO;
6433
6434		count = ice_fill_valid_words(&lkups[i], &lkup_exts);
6435		if (!count)
6436			return -EIO;
6437	}
6438
6439	rid = ice_find_recp(hw, &lkup_exts, rinfo);
6440	/* If did not find a recipe that match the existing criteria */
6441	if (rid == ICE_MAX_NUM_RECIPES)
6442		return -EINVAL;
6443
6444	rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock;
6445	list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6446	/* the rule is already removed */
6447	if (!list_elem)
6448		return 0;
6449	mutex_lock(rule_lock);
6450	if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) {
6451		remove_rule = true;
6452	} else if (list_elem->vsi_count > 1) {
6453		remove_rule = false;
6454		vsi_handle = rinfo->sw_act.vsi_handle;
6455		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6456	} else {
6457		vsi_handle = rinfo->sw_act.vsi_handle;
6458		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6459		if (status) {
6460			mutex_unlock(rule_lock);
6461			return status;
6462		}
6463		if (list_elem->vsi_count == 0)
6464			remove_rule = true;
6465	}
6466	mutex_unlock(rule_lock);
6467	if (remove_rule) {
6468		struct ice_sw_rule_lkup_rx_tx *s_rule;
6469		u16 rule_buf_sz;
6470
6471		rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule);
6472		s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6473		if (!s_rule)
6474			return -ENOMEM;
6475		s_rule->act = 0;
6476		s_rule->index = cpu_to_le16(list_elem->rule_info.fltr_rule_id);
6477		s_rule->hdr_len = 0;
6478		status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6479					 rule_buf_sz, 1,
6480					 ice_aqc_opc_remove_sw_rules, NULL);
6481		if (!status || status == -ENOENT) {
6482			struct ice_switch_info *sw = hw->switch_info;
6483
6484			mutex_lock(rule_lock);
6485			list_del(&list_elem->list_entry);
6486			devm_kfree(ice_hw_to_dev(hw), list_elem->lkups);
6487			devm_kfree(ice_hw_to_dev(hw), list_elem);
6488			mutex_unlock(rule_lock);
6489			if (list_empty(&sw->recp_list[rid].filt_rules))
6490				sw->recp_list[rid].adv_rule = false;
6491		}
6492		kfree(s_rule);
6493	}
6494	return status;
6495}
6496
6497/**
6498 * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID
6499 * @hw: pointer to the hardware structure
6500 * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID
6501 *
6502 * This function is used to remove 1 rule at a time. The removal is based on
6503 * the remove_entry parameter. This function will remove rule for a given
6504 * vsi_handle with a given rule_id which is passed as parameter in remove_entry
6505 */
6506int
6507ice_rem_adv_rule_by_id(struct ice_hw *hw,
6508		       struct ice_rule_query_data *remove_entry)
6509{
6510	struct ice_adv_fltr_mgmt_list_entry *list_itr;
6511	struct list_head *list_head;
6512	struct ice_adv_rule_info rinfo;
6513	struct ice_switch_info *sw;
6514
6515	sw = hw->switch_info;
6516	if (!sw->recp_list[remove_entry->rid].recp_created)
6517		return -EINVAL;
6518	list_head = &sw->recp_list[remove_entry->rid].filt_rules;
6519	list_for_each_entry(list_itr, list_head, list_entry) {
6520		if (list_itr->rule_info.fltr_rule_id ==
6521		    remove_entry->rule_id) {
6522			rinfo = list_itr->rule_info;
6523			rinfo.sw_act.vsi_handle = remove_entry->vsi_handle;
6524			return ice_rem_adv_rule(hw, list_itr->lkups,
6525						list_itr->lkups_cnt, &rinfo);
6526		}
6527	}
6528	/* either list is empty or unable to find rule */
6529	return -ENOENT;
6530}
6531
6532/**
6533 * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI
6534 * @hw: pointer to the hardware structure
6535 * @vsi_handle: driver VSI handle
6536 * @list_head: list for which filters need to be replayed
6537 *
6538 * Replay the advanced rule for the given VSI.
6539 */
6540static int
6541ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle,
6542			struct list_head *list_head)
6543{
6544	struct ice_rule_query_data added_entry = { 0 };
6545	struct ice_adv_fltr_mgmt_list_entry *adv_fltr;
6546	int status = 0;
6547
6548	if (list_empty(list_head))
6549		return status;
6550	list_for_each_entry(adv_fltr, list_head, list_entry) {
6551		struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info;
6552		u16 lk_cnt = adv_fltr->lkups_cnt;
6553
6554		if (vsi_handle != rinfo->sw_act.vsi_handle)
6555			continue;
6556		status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo,
6557					  &added_entry);
6558		if (status)
6559			break;
6560	}
6561	return status;
6562}
6563
6564/**
6565 * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
6566 * @hw: pointer to the hardware structure
6567 * @vsi_handle: driver VSI handle
6568 *
6569 * Replays filters for requested VSI via vsi_handle.
6570 */
6571int ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle)
6572{
6573	struct ice_switch_info *sw = hw->switch_info;
6574	int status;
6575	u8 i;
6576
6577	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6578		struct list_head *head;
6579
6580		head = &sw->recp_list[i].filt_replay_rules;
6581		if (!sw->recp_list[i].adv_rule)
6582			status = ice_replay_vsi_fltr(hw, vsi_handle, i, head);
6583		else
6584			status = ice_replay_vsi_adv_rule(hw, vsi_handle, head);
6585		if (status)
6586			return status;
6587	}
6588	return status;
6589}
6590
6591/**
6592 * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
6593 * @hw: pointer to the HW struct
6594 *
6595 * Deletes the filter replay rules.
6596 */
6597void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
6598{
6599	struct ice_switch_info *sw = hw->switch_info;
6600	u8 i;
6601
6602	if (!sw)
6603		return;
6604
6605	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6606		if (!list_empty(&sw->recp_list[i].filt_replay_rules)) {
6607			struct list_head *l_head;
6608
6609			l_head = &sw->recp_list[i].filt_replay_rules;
6610			if (!sw->recp_list[i].adv_rule)
6611				ice_rem_sw_rule_info(hw, l_head);
6612			else
6613				ice_rem_adv_rule_info(hw, l_head);
6614		}
6615	}
6616}