Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/* Copyright(c) 2013 - 2018 Intel Corporation. */
  3
  4#ifndef _I40E_TXRX_H_
  5#define _I40E_TXRX_H_
  6
  7#include <net/xdp.h>
  8#include "i40e_type.h"
  9
 10/* Interrupt Throttling and Rate Limiting Goodies */
 11#define I40E_DEFAULT_IRQ_WORK      256
 12
 13/* The datasheet for the X710 and XL710 indicate that the maximum value for
 14 * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec
 15 * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing
 16 * the register value which is divided by 2 lets use the actual values and
 17 * avoid an excessive amount of translation.
 18 */
 19#define I40E_ITR_DYNAMIC	0x8000	/* use top bit as a flag */
 20#define I40E_ITR_MASK		0x1FFE	/* mask for ITR register value */
 21#define I40E_MIN_ITR		     2	/* reg uses 2 usec resolution */
 22#define I40E_ITR_20K		    50
 23#define I40E_ITR_8K		   122
 24#define I40E_MAX_ITR		  8160	/* maximum value as per datasheet */
 25#define ITR_TO_REG(setting) ((setting) & ~I40E_ITR_DYNAMIC)
 26#define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~I40E_ITR_MASK)
 27#define ITR_IS_DYNAMIC(setting) (!!((setting) & I40E_ITR_DYNAMIC))
 28
 29#define I40E_ITR_RX_DEF		(I40E_ITR_20K | I40E_ITR_DYNAMIC)
 30#define I40E_ITR_TX_DEF		(I40E_ITR_20K | I40E_ITR_DYNAMIC)
 31
 32/* 0x40 is the enable bit for interrupt rate limiting, and must be set if
 33 * the value of the rate limit is non-zero
 34 */
 35#define INTRL_ENA                  BIT(6)
 36#define I40E_MAX_INTRL             0x3B    /* reg uses 4 usec resolution */
 37#define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
 38
 39/**
 40 * i40e_intrl_usec_to_reg - convert interrupt rate limit to register
 41 * @intrl: interrupt rate limit to convert
 42 *
 43 * This function converts a decimal interrupt rate limit to the appropriate
 44 * register format expected by the firmware when setting interrupt rate limit.
 45 */
 46static inline u16 i40e_intrl_usec_to_reg(int intrl)
 47{
 48	if (intrl >> 2)
 49		return ((intrl >> 2) | INTRL_ENA);
 50	else
 51		return 0;
 52}
 53
 54#define I40E_QUEUE_END_OF_LIST 0x7FF
 55
 56/* this enum matches hardware bits and is meant to be used by DYN_CTLN
 57 * registers and QINT registers or more generally anywhere in the manual
 58 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
 59 * register but instead is a special value meaning "don't update" ITR0/1/2.
 60 */
 61enum i40e_dyn_idx {
 62	I40E_IDX_ITR0 = 0,
 63	I40E_IDX_ITR1 = 1,
 64	I40E_IDX_ITR2 = 2,
 65	I40E_ITR_NONE = 3	/* ITR_NONE must not be used as an index */
 66};
 67
 68/* these are indexes into ITRN registers */
 69#define I40E_RX_ITR    I40E_IDX_ITR0
 70#define I40E_TX_ITR    I40E_IDX_ITR1
 71
 72/* Supported RSS offloads */
 73#define I40E_DEFAULT_RSS_HENA ( \
 74	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
 75	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
 76	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
 77	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
 78	BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
 79	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
 80	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
 81	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
 82	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
 83	BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
 84	BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
 85
 86#define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
 87	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
 88	BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
 89	BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
 90	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
 91	BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
 92	BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
 93
 94#define i40e_pf_get_default_rss_hena(pf) \
 95	(test_bit(I40E_HW_CAP_MULTI_TCP_UDP_RSS_PCTYPE, (pf)->hw.caps) ? \
 96	 I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA)
 97
 98/* Supported Rx Buffer Sizes (a multiple of 128) */
 99#define I40E_RXBUFFER_256   256
100#define I40E_RXBUFFER_1536  1536  /* 128B aligned standard Ethernet frame */
101#define I40E_RXBUFFER_2048  2048
102#define I40E_RXBUFFER_3072  3072  /* Used for large frames w/ padding */
103#define I40E_MAX_RXBUFFER   9728  /* largest size for single descriptor */
104
105/* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
106 * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
107 * this adds up to 512 bytes of extra data meaning the smallest allocation
108 * we could have is 1K.
109 * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
110 * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
111 */
112#define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
113#define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
114#define i40e_rx_desc i40e_16byte_rx_desc
115
116#define I40E_RX_DMA_ATTR \
117	(DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
118
119/* Attempt to maximize the headroom available for incoming frames.  We
120 * use a 2K buffer for receives and need 1536/1534 to store the data for
121 * the frame.  This leaves us with 512 bytes of room.  From that we need
122 * to deduct the space needed for the shared info and the padding needed
123 * to IP align the frame.
124 *
125 * Note: For cache line sizes 256 or larger this value is going to end
126 *	 up negative.  In these cases we should fall back to the legacy
127 *	 receive path.
128 */
129#if (PAGE_SIZE < 8192)
130#define I40E_2K_TOO_SMALL_WITH_PADDING \
131((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048))
132
133static inline int i40e_compute_pad(int rx_buf_len)
134{
135	int page_size, pad_size;
136
137	page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
138	pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len;
139
140	return pad_size;
141}
142
143static inline int i40e_skb_pad(void)
144{
145	int rx_buf_len;
146
147	/* If a 2K buffer cannot handle a standard Ethernet frame then
148	 * optimize padding for a 3K buffer instead of a 1.5K buffer.
149	 *
150	 * For a 3K buffer we need to add enough padding to allow for
151	 * tailroom due to NET_IP_ALIGN possibly shifting us out of
152	 * cache-line alignment.
153	 */
154	if (I40E_2K_TOO_SMALL_WITH_PADDING)
155		rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
156	else
157		rx_buf_len = I40E_RXBUFFER_1536;
158
159	/* if needed make room for NET_IP_ALIGN */
160	rx_buf_len -= NET_IP_ALIGN;
161
162	return i40e_compute_pad(rx_buf_len);
163}
164
165#define I40E_SKB_PAD i40e_skb_pad()
166#else
167#define I40E_2K_TOO_SMALL_WITH_PADDING false
168#define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
169#endif
170
171/**
172 * i40e_test_staterr - tests bits in Rx descriptor status and error fields
173 * @rx_desc: pointer to receive descriptor (in le64 format)
174 * @stat_err_bits: value to mask
175 *
176 * This function does some fast chicanery in order to return the
177 * value of the mask which is really only used for boolean tests.
178 * The status_error_len doesn't need to be shifted because it begins
179 * at offset zero.
180 */
181static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
182				     const u64 stat_err_bits)
183{
184	return !!(rx_desc->wb.qword1.status_error_len &
185		  cpu_to_le64(stat_err_bits));
186}
187
188/* How many Rx Buffers do we bundle into one write to the hardware ? */
189#define I40E_RX_BUFFER_WRITE	32	/* Must be power of 2 */
190
191#define I40E_RX_NEXT_DESC(r, i, n)		\
192	do {					\
193		(i)++;				\
194		if ((i) == (r)->count)		\
195			i = 0;			\
196		(n) = I40E_RX_DESC((r), (i));	\
197	} while (0)
198
199
200#define I40E_MAX_BUFFER_TXD	8
201#define I40E_MIN_TX_LEN		17
202
203/* The size limit for a transmit buffer in a descriptor is (16K - 1).
204 * In order to align with the read requests we will align the value to
205 * the nearest 4K which represents our maximum read request size.
206 */
207#define I40E_MAX_READ_REQ_SIZE		4096
208#define I40E_MAX_DATA_PER_TXD		(16 * 1024 - 1)
209#define I40E_MAX_DATA_PER_TXD_ALIGNED \
210	(I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
211
212/**
213 * i40e_txd_use_count  - estimate the number of descriptors needed for Tx
214 * @size: transmit request size in bytes
215 *
216 * Due to hardware alignment restrictions (4K alignment), we need to
217 * assume that we can have no more than 12K of data per descriptor, even
218 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
219 * Thus, we need to divide by 12K. But division is slow! Instead,
220 * we decompose the operation into shifts and one relatively cheap
221 * multiply operation.
222 *
223 * To divide by 12K, we first divide by 4K, then divide by 3:
224 *     To divide by 4K, shift right by 12 bits
225 *     To divide by 3, multiply by 85, then divide by 256
226 *     (Divide by 256 is done by shifting right by 8 bits)
227 * Finally, we add one to round up. Because 256 isn't an exact multiple of
228 * 3, we'll underestimate near each multiple of 12K. This is actually more
229 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
230 * segment.  For our purposes this is accurate out to 1M which is orders of
231 * magnitude greater than our largest possible GSO size.
232 *
233 * This would then be implemented as:
234 *     return (((size >> 12) * 85) >> 8) + 1;
235 *
236 * Since multiplication and division are commutative, we can reorder
237 * operations into:
238 *     return ((size * 85) >> 20) + 1;
239 */
240static inline unsigned int i40e_txd_use_count(unsigned int size)
241{
242	return ((size * 85) >> 20) + 1;
243}
244
245/* Tx Descriptors needed, worst case */
246#define DESC_NEEDED (MAX_SKB_FRAGS + 6)
247
248#define I40E_TX_FLAGS_HW_VLAN		BIT(1)
249#define I40E_TX_FLAGS_SW_VLAN		BIT(2)
250#define I40E_TX_FLAGS_TSO		BIT(3)
251#define I40E_TX_FLAGS_IPV4		BIT(4)
252#define I40E_TX_FLAGS_IPV6		BIT(5)
253#define I40E_TX_FLAGS_TSYN		BIT(8)
254#define I40E_TX_FLAGS_FD_SB		BIT(9)
255#define I40E_TX_FLAGS_UDP_TUNNEL	BIT(10)
256#define I40E_TX_FLAGS_VLAN_MASK		0xffff0000
257#define I40E_TX_FLAGS_VLAN_PRIO_MASK	0xe0000000
258#define I40E_TX_FLAGS_VLAN_PRIO_SHIFT	29
259#define I40E_TX_FLAGS_VLAN_SHIFT	16
260
261struct i40e_tx_buffer {
262	struct i40e_tx_desc *next_to_watch;
263	union {
264		struct xdp_frame *xdpf;
265		struct sk_buff *skb;
266		void *raw_buf;
267	};
268	unsigned int bytecount;
269	unsigned short gso_segs;
270
271	DEFINE_DMA_UNMAP_ADDR(dma);
272	DEFINE_DMA_UNMAP_LEN(len);
273	u32 tx_flags;
274};
275
276struct i40e_rx_buffer {
277	dma_addr_t dma;
278	struct page *page;
279	__u32 page_offset;
280	__u16 pagecnt_bias;
281	__u32 page_count;
282};
283
284struct i40e_queue_stats {
285	u64 packets;
286	u64 bytes;
287};
288
289struct i40e_tx_queue_stats {
290	u64 restart_queue;
291	u64 tx_busy;
292	u64 tx_done_old;
293	u64 tx_linearize;
294	u64 tx_force_wb;
295	u64 tx_stopped;
296	int prev_pkt_ctr;
297};
298
299struct i40e_rx_queue_stats {
300	u64 non_eop_descs;
301	u64 alloc_page_failed;
302	u64 alloc_buff_failed;
303	u64 page_reuse_count;
304	u64 page_alloc_count;
305	u64 page_waive_count;
306	u64 page_busy_count;
307};
308
309enum i40e_ring_state {
310	__I40E_TX_FDIR_INIT_DONE,
311	__I40E_TX_XPS_INIT_DONE,
312	__I40E_RING_STATE_NBITS /* must be last */
313};
314
315/* some useful defines for virtchannel interface, which
316 * is the only remaining user of header split
317 */
318#define I40E_RX_DTYPE_HEADER_SPLIT  1
319#define I40E_RX_SPLIT_L2      0x1
320#define I40E_RX_SPLIT_IP      0x2
321#define I40E_RX_SPLIT_TCP_UDP 0x4
322#define I40E_RX_SPLIT_SCTP    0x8
323
324/* struct that defines a descriptor ring, associated with a VSI */
325struct i40e_ring {
326	struct i40e_ring *next;		/* pointer to next ring in q_vector */
327	void *desc;			/* Descriptor ring memory */
328	struct device *dev;		/* Used for DMA mapping */
329	struct net_device *netdev;	/* netdev ring maps to */
330	struct bpf_prog *xdp_prog;
331	union {
332		struct i40e_tx_buffer *tx_bi;
333		struct i40e_rx_buffer *rx_bi;
334		struct xdp_buff **rx_bi_zc;
335	};
336	DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS);
337	u16 queue_index;		/* Queue number of ring */
338	u8 dcb_tc;			/* Traffic class of ring */
339	u8 __iomem *tail;
340
341	/* Storing xdp_buff on ring helps in saving the state of partially built
342	 * packet when i40e_clean_rx_ring_irq() must return before it sees EOP
343	 * and to resume packet building for this ring in the next call to
344	 * i40e_clean_rx_ring_irq().
345	 */
346	struct xdp_buff xdp;
347
348	/* Next descriptor to be processed; next_to_clean is updated only on
349	 * processing EOP descriptor
350	 */
351	u16 next_to_process;
352	/* high bit set means dynamic, use accessor routines to read/write.
353	 * hardware only supports 2us resolution for the ITR registers.
354	 * these values always store the USER setting, and must be converted
355	 * before programming to a register.
356	 */
357	u16 itr_setting;
358
359	u16 count;			/* Number of descriptors */
360	u16 reg_idx;			/* HW register index of the ring */
361	u16 rx_buf_len;
362
363	/* used in interrupt processing */
364	u16 next_to_use;
365	u16 next_to_clean;
366	u16 xdp_tx_active;
367
368	u8 atr_sample_rate;
369	u8 atr_count;
370
371	bool ring_active;		/* is ring online or not */
372	bool arm_wb;		/* do something to arm write back */
373	u8 packet_stride;
374
375	u16 flags;
376#define I40E_TXR_FLAGS_WB_ON_ITR		BIT(0)
377#define I40E_RXR_FLAGS_BUILD_SKB_ENABLED	BIT(1)
378#define I40E_TXR_FLAGS_XDP			BIT(2)
379
380	/* stats structs */
381	struct i40e_queue_stats	stats;
382	struct u64_stats_sync syncp;
383	union {
384		struct i40e_tx_queue_stats tx_stats;
385		struct i40e_rx_queue_stats rx_stats;
386	};
387
388	unsigned int size;		/* length of descriptor ring in bytes */
389	dma_addr_t dma;			/* physical address of ring */
390
391	struct i40e_vsi *vsi;		/* Backreference to associated VSI */
392	struct i40e_q_vector *q_vector;	/* Backreference to associated vector */
393
394	struct rcu_head rcu;		/* to avoid race on free */
395	u16 next_to_alloc;
396
397	struct i40e_channel *ch;
398	u16 rx_offset;
399	struct xdp_rxq_info xdp_rxq;
400	struct xsk_buff_pool *xsk_pool;
401} ____cacheline_internodealigned_in_smp;
402
403static inline bool ring_uses_build_skb(struct i40e_ring *ring)
404{
405	return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED);
406}
407
408static inline void set_ring_build_skb_enabled(struct i40e_ring *ring)
409{
410	ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
411}
412
413static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring)
414{
415	ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
416}
417
418static inline bool ring_is_xdp(struct i40e_ring *ring)
419{
420	return !!(ring->flags & I40E_TXR_FLAGS_XDP);
421}
422
423static inline void set_ring_xdp(struct i40e_ring *ring)
424{
425	ring->flags |= I40E_TXR_FLAGS_XDP;
426}
427
428#define I40E_ITR_ADAPTIVE_MIN_INC	0x0002
429#define I40E_ITR_ADAPTIVE_MIN_USECS	0x0002
430#define I40E_ITR_ADAPTIVE_MAX_USECS	0x007e
431#define I40E_ITR_ADAPTIVE_LATENCY	0x8000
432#define I40E_ITR_ADAPTIVE_BULK		0x0000
433
434struct i40e_ring_container {
435	struct i40e_ring *ring;		/* pointer to linked list of ring(s) */
436	unsigned long next_update;	/* jiffies value of next update */
437	unsigned int total_bytes;	/* total bytes processed this int */
438	unsigned int total_packets;	/* total packets processed this int */
439	u16 count;
440	u16 target_itr;			/* target ITR setting for ring(s) */
441	u16 current_itr;		/* current ITR setting for ring(s) */
442};
443
444/* iterator for handling rings in ring container */
445#define i40e_for_each_ring(pos, head) \
446	for (pos = (head).ring; pos != NULL; pos = pos->next)
447
448static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring)
449{
450#if (PAGE_SIZE < 8192)
451	if (ring->rx_buf_len > (PAGE_SIZE / 2))
452		return 1;
453#endif
454	return 0;
455}
456
457#define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring))
458
459bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
460netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
461u16 i40e_lan_select_queue(struct net_device *netdev, struct sk_buff *skb,
462			  struct net_device *sb_dev);
463void i40e_clean_tx_ring(struct i40e_ring *tx_ring);
464void i40e_clean_rx_ring(struct i40e_ring *rx_ring);
465int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring);
466int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring);
467void i40e_free_tx_resources(struct i40e_ring *tx_ring);
468void i40e_free_rx_resources(struct i40e_ring *rx_ring);
469int i40e_napi_poll(struct napi_struct *napi, int budget);
470void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
471u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw);
472void i40e_detect_recover_hung(struct i40e_vsi *vsi);
473int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
474bool __i40e_chk_linearize(struct sk_buff *skb);
475int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
476		  u32 flags);
477bool i40e_is_non_eop(struct i40e_ring *rx_ring,
478		     union i40e_rx_desc *rx_desc);
479
480/**
481 * i40e_get_head - Retrieve head from head writeback
482 * @tx_ring:  tx ring to fetch head of
483 *
484 * Returns value of Tx ring head based on value stored
485 * in head write-back location
486 **/
487static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
488{
489	void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
490
491	return le32_to_cpu(*(volatile __le32 *)head);
492}
493
494/**
495 * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
496 * @skb:     send buffer
497 *
498 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
499 * there is not enough descriptors available in this ring since we need at least
500 * one descriptor.
501 **/
502static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
503{
504	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
505	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
506	int count = 0, size = skb_headlen(skb);
507
508	for (;;) {
509		count += i40e_txd_use_count(size);
510
511		if (!nr_frags--)
512			break;
513
514		size = skb_frag_size(frag++);
515	}
516
517	return count;
518}
519
520/**
521 * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
522 * @tx_ring: the ring to be checked
523 * @size:    the size buffer we want to assure is available
524 *
525 * Returns 0 if stop is not needed
526 **/
527static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
528{
529	if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
530		return 0;
531	return __i40e_maybe_stop_tx(tx_ring, size);
532}
533
534/**
535 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
536 * @skb:      send buffer
537 * @count:    number of buffers used
538 *
539 * Note: Our HW can't scatter-gather more than 8 fragments to build
540 * a packet on the wire and so we need to figure out the cases where we
541 * need to linearize the skb.
542 **/
543static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
544{
545	/* Both TSO and single send will work if count is less than 8 */
546	if (likely(count < I40E_MAX_BUFFER_TXD))
547		return false;
548
549	if (skb_is_gso(skb))
550		return __i40e_chk_linearize(skb);
551
552	/* we can support up to 8 data buffers for a single send */
553	return count != I40E_MAX_BUFFER_TXD;
554}
555
556/**
557 * txring_txq - Find the netdev Tx ring based on the i40e Tx ring
558 * @ring: Tx ring to find the netdev equivalent of
559 **/
560static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
561{
562	return netdev_get_tx_queue(ring->netdev, ring->queue_index);
563}
564#endif /* _I40E_TXRX_H_ */