Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include <linux/bitfield.h>
   5#include <linux/delay.h>
   6#include "i40e_alloc.h"
   7#include "i40e_prototype.h"
   8
   9/**
  10 * i40e_init_nvm - Initialize NVM function pointers
  11 * @hw: pointer to the HW structure
  12 *
  13 * Setup the function pointers and the NVM info structure. Should be called
  14 * once per NVM initialization, e.g. inside the i40e_init_shared_code().
  15 * Please notice that the NVM term is used here (& in all methods covered
  16 * in this file) as an equivalent of the FLASH part mapped into the SR.
  17 * We are accessing FLASH always thru the Shadow RAM.
  18 **/
  19int i40e_init_nvm(struct i40e_hw *hw)
  20{
  21	struct i40e_nvm_info *nvm = &hw->nvm;
  22	int ret_code = 0;
  23	u32 fla, gens;
  24	u8 sr_size;
  25
  26	/* The SR size is stored regardless of the nvm programming mode
  27	 * as the blank mode may be used in the factory line.
  28	 */
  29	gens = rd32(hw, I40E_GLNVM_GENS);
  30	sr_size = FIELD_GET(I40E_GLNVM_GENS_SR_SIZE_MASK, gens);
  31	/* Switching to words (sr_size contains power of 2KB) */
  32	nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
  33
  34	/* Check if we are in the normal or blank NVM programming mode */
  35	fla = rd32(hw, I40E_GLNVM_FLA);
  36	if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
  37		/* Max NVM timeout */
  38		nvm->timeout = I40E_MAX_NVM_TIMEOUT;
  39		nvm->blank_nvm_mode = false;
  40	} else { /* Blank programming mode */
  41		nvm->blank_nvm_mode = true;
  42		ret_code = -EIO;
  43		i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
  44	}
  45
  46	return ret_code;
  47}
  48
  49/**
  50 * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
  51 * @hw: pointer to the HW structure
  52 * @access: NVM access type (read or write)
  53 *
  54 * This function will request NVM ownership for reading
  55 * via the proper Admin Command.
  56 **/
  57int i40e_acquire_nvm(struct i40e_hw *hw,
  58		     enum i40e_aq_resource_access_type access)
  59{
  60	u64 gtime, timeout;
  61	u64 time_left = 0;
  62	int ret_code = 0;
  63
  64	if (hw->nvm.blank_nvm_mode)
  65		goto i40e_i40e_acquire_nvm_exit;
  66
  67	ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
  68					    0, &time_left, NULL);
  69	/* Reading the Global Device Timer */
  70	gtime = rd32(hw, I40E_GLVFGEN_TIMER);
  71
  72	/* Store the timeout */
  73	hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
  74
  75	if (ret_code)
  76		i40e_debug(hw, I40E_DEBUG_NVM,
  77			   "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
  78			   access, time_left, ret_code, hw->aq.asq_last_status);
  79
  80	if (ret_code && time_left) {
  81		/* Poll until the current NVM owner timeouts */
  82		timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
  83		while ((gtime < timeout) && time_left) {
  84			usleep_range(10000, 20000);
  85			gtime = rd32(hw, I40E_GLVFGEN_TIMER);
  86			ret_code = i40e_aq_request_resource(hw,
  87							I40E_NVM_RESOURCE_ID,
  88							access, 0, &time_left,
  89							NULL);
  90			if (!ret_code) {
  91				hw->nvm.hw_semaphore_timeout =
  92					    I40E_MS_TO_GTIME(time_left) + gtime;
  93				break;
  94			}
  95		}
  96		if (ret_code) {
  97			hw->nvm.hw_semaphore_timeout = 0;
  98			i40e_debug(hw, I40E_DEBUG_NVM,
  99				   "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
 100				   time_left, ret_code, hw->aq.asq_last_status);
 101		}
 102	}
 103
 104i40e_i40e_acquire_nvm_exit:
 105	return ret_code;
 106}
 107
 108/**
 109 * i40e_release_nvm - Generic request for releasing the NVM ownership
 110 * @hw: pointer to the HW structure
 111 *
 112 * This function will release NVM resource via the proper Admin Command.
 113 **/
 114void i40e_release_nvm(struct i40e_hw *hw)
 115{
 116	u32 total_delay = 0;
 117	int ret_code = 0;
 118
 119	if (hw->nvm.blank_nvm_mode)
 120		return;
 121
 122	ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
 123
 124	/* there are some rare cases when trying to release the resource
 125	 * results in an admin Q timeout, so handle them correctly
 126	 */
 127	while ((ret_code == -EIO) &&
 128	       (total_delay < hw->aq.asq_cmd_timeout)) {
 129		usleep_range(1000, 2000);
 130		ret_code = i40e_aq_release_resource(hw,
 131						    I40E_NVM_RESOURCE_ID,
 132						    0, NULL);
 133		total_delay++;
 134	}
 135}
 136
 137/**
 138 * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
 139 * @hw: pointer to the HW structure
 140 *
 141 * Polls the SRCTL Shadow RAM register done bit.
 142 **/
 143static int i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
 144{
 145	int ret_code = -EIO;
 146	u32 srctl, wait_cnt;
 147
 148	/* Poll the I40E_GLNVM_SRCTL until the done bit is set */
 149	for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
 150		srctl = rd32(hw, I40E_GLNVM_SRCTL);
 151		if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
 152			ret_code = 0;
 153			break;
 154		}
 155		udelay(5);
 156	}
 157	if (ret_code == -EIO)
 158		i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
 159	return ret_code;
 160}
 161
 162/**
 163 * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
 164 * @hw: pointer to the HW structure
 165 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 166 * @data: word read from the Shadow RAM
 167 *
 168 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
 169 **/
 170static int i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
 171				    u16 *data)
 172{
 173	int ret_code = -EIO;
 174	u32 sr_reg;
 175
 176	if (offset >= hw->nvm.sr_size) {
 177		i40e_debug(hw, I40E_DEBUG_NVM,
 178			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
 179			   offset, hw->nvm.sr_size);
 180		ret_code = -EINVAL;
 181		goto read_nvm_exit;
 182	}
 183
 184	/* Poll the done bit first */
 185	ret_code = i40e_poll_sr_srctl_done_bit(hw);
 186	if (!ret_code) {
 187		/* Write the address and start reading */
 188		sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
 189			 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
 190		wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
 191
 192		/* Poll I40E_GLNVM_SRCTL until the done bit is set */
 193		ret_code = i40e_poll_sr_srctl_done_bit(hw);
 194		if (!ret_code) {
 195			sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
 196			*data = FIELD_GET(I40E_GLNVM_SRDATA_RDDATA_MASK,
 197					  sr_reg);
 198		}
 199	}
 200	if (ret_code)
 201		i40e_debug(hw, I40E_DEBUG_NVM,
 202			   "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
 203			   offset);
 204
 205read_nvm_exit:
 206	return ret_code;
 207}
 208
 209/**
 210 * i40e_read_nvm_aq - Read Shadow RAM.
 211 * @hw: pointer to the HW structure.
 212 * @module_pointer: module pointer location in words from the NVM beginning
 213 * @offset: offset in words from module start
 214 * @words: number of words to read
 215 * @data: buffer with words to read to the Shadow RAM
 216 * @last_command: tells the AdminQ that this is the last command
 217 *
 218 * Reads a 16 bit words buffer to the Shadow RAM using the admin command.
 219 **/
 220static int i40e_read_nvm_aq(struct i40e_hw *hw,
 221			    u8 module_pointer, u32 offset,
 222			    u16 words, void *data,
 223			    bool last_command)
 224{
 225	struct i40e_asq_cmd_details cmd_details;
 226	int ret_code = -EIO;
 227
 228	memset(&cmd_details, 0, sizeof(cmd_details));
 229	cmd_details.wb_desc = &hw->nvm_wb_desc;
 230
 231	/* Here we are checking the SR limit only for the flat memory model.
 232	 * We cannot do it for the module-based model, as we did not acquire
 233	 * the NVM resource yet (we cannot get the module pointer value).
 234	 * Firmware will check the module-based model.
 235	 */
 236	if ((offset + words) > hw->nvm.sr_size)
 237		i40e_debug(hw, I40E_DEBUG_NVM,
 238			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
 239			   (offset + words), hw->nvm.sr_size);
 240	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
 241		/* We can read only up to 4KB (one sector), in one AQ write */
 242		i40e_debug(hw, I40E_DEBUG_NVM,
 243			   "NVM read fail error: tried to read %d words, limit is %d.\n",
 244			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
 245	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
 246		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
 247		/* A single read cannot spread over two sectors */
 248		i40e_debug(hw, I40E_DEBUG_NVM,
 249			   "NVM read error: cannot spread over two sectors in a single read offset=%d words=%d\n",
 250			   offset, words);
 251	else
 252		ret_code = i40e_aq_read_nvm(hw, module_pointer,
 253					    2 * offset,  /*bytes*/
 254					    2 * words,   /*bytes*/
 255					    data, last_command, &cmd_details);
 256
 257	return ret_code;
 258}
 259
 260/**
 261 * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
 262 * @hw: pointer to the HW structure
 263 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 264 * @data: word read from the Shadow RAM
 265 *
 266 * Reads one 16 bit word from the Shadow RAM using the AdminQ
 267 **/
 268static int i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
 269				 u16 *data)
 270{
 271	int ret_code = -EIO;
 272
 273	ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
 274	*data = le16_to_cpu(*(__le16 *)data);
 275
 276	return ret_code;
 277}
 278
 279/**
 280 * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking
 281 * @hw: pointer to the HW structure
 282 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 283 * @data: word read from the Shadow RAM
 284 *
 285 * Reads one 16 bit word from the Shadow RAM.
 286 *
 287 * Do not use this function except in cases where the nvm lock is already
 288 * taken via i40e_acquire_nvm().
 289 **/
 290static int __i40e_read_nvm_word(struct i40e_hw *hw,
 291				u16 offset, u16 *data)
 292{
 293	if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps))
 294		return i40e_read_nvm_word_aq(hw, offset, data);
 295
 296	return i40e_read_nvm_word_srctl(hw, offset, data);
 297}
 298
 299/**
 300 * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary
 301 * @hw: pointer to the HW structure
 302 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 303 * @data: word read from the Shadow RAM
 304 *
 305 * Reads one 16 bit word from the Shadow RAM.
 306 **/
 307int i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
 308		       u16 *data)
 309{
 310	int ret_code = 0;
 311
 312	if (test_bit(I40E_HW_CAP_NVM_READ_REQUIRES_LOCK, hw->caps))
 313		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 314	if (ret_code)
 315		return ret_code;
 316
 317	ret_code = __i40e_read_nvm_word(hw, offset, data);
 318
 319	if (test_bit(I40E_HW_CAP_NVM_READ_REQUIRES_LOCK, hw->caps))
 320		i40e_release_nvm(hw);
 321
 322	return ret_code;
 323}
 324
 325/**
 326 * i40e_read_nvm_module_data - Reads NVM Buffer to specified memory location
 327 * @hw: Pointer to the HW structure
 328 * @module_ptr: Pointer to module in words with respect to NVM beginning
 329 * @module_offset: Offset in words from module start
 330 * @data_offset: Offset in words from reading data area start
 331 * @words_data_size: Words to read from NVM
 332 * @data_ptr: Pointer to memory location where resulting buffer will be stored
 333 **/
 334int i40e_read_nvm_module_data(struct i40e_hw *hw,
 335			      u8 module_ptr,
 336			      u16 module_offset,
 337			      u16 data_offset,
 338			      u16 words_data_size,
 339			      u16 *data_ptr)
 340{
 341	u16 specific_ptr = 0;
 342	u16 ptr_value = 0;
 343	u32 offset = 0;
 344	int status;
 345
 346	if (module_ptr != 0) {
 347		status = i40e_read_nvm_word(hw, module_ptr, &ptr_value);
 348		if (status) {
 349			i40e_debug(hw, I40E_DEBUG_ALL,
 350				   "Reading nvm word failed.Error code: %d.\n",
 351				   status);
 352			return -EIO;
 353		}
 354	}
 355#define I40E_NVM_INVALID_PTR_VAL 0x7FFF
 356#define I40E_NVM_INVALID_VAL 0xFFFF
 357
 358	/* Pointer not initialized */
 359	if (ptr_value == I40E_NVM_INVALID_PTR_VAL ||
 360	    ptr_value == I40E_NVM_INVALID_VAL) {
 361		i40e_debug(hw, I40E_DEBUG_ALL, "Pointer not initialized.\n");
 362		return -EINVAL;
 363	}
 364
 365	/* Check whether the module is in SR mapped area or outside */
 366	if (ptr_value & I40E_PTR_TYPE) {
 367		/* Pointer points outside of the Shared RAM mapped area */
 368		i40e_debug(hw, I40E_DEBUG_ALL,
 369			   "Reading nvm data failed. Pointer points outside of the Shared RAM mapped area.\n");
 370
 371		return -EINVAL;
 372	} else {
 373		/* Read from the Shadow RAM */
 374
 375		status = i40e_read_nvm_word(hw, ptr_value + module_offset,
 376					    &specific_ptr);
 377		if (status) {
 378			i40e_debug(hw, I40E_DEBUG_ALL,
 379				   "Reading nvm word failed.Error code: %d.\n",
 380				   status);
 381			return -EIO;
 382		}
 383
 384		offset = ptr_value + module_offset + specific_ptr +
 385			data_offset;
 386
 387		status = i40e_read_nvm_buffer(hw, offset, &words_data_size,
 388					      data_ptr);
 389		if (status) {
 390			i40e_debug(hw, I40E_DEBUG_ALL,
 391				   "Reading nvm buffer failed.Error code: %d.\n",
 392				   status);
 393		}
 394	}
 395
 396	return status;
 397}
 398
 399/**
 400 * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
 401 * @hw: pointer to the HW structure
 402 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 403 * @words: (in) number of words to read; (out) number of words actually read
 404 * @data: words read from the Shadow RAM
 405 *
 406 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
 407 * method. The buffer read is preceded by the NVM ownership take
 408 * and followed by the release.
 409 **/
 410static int i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
 411				      u16 *words, u16 *data)
 412{
 413	int ret_code = 0;
 414	u16 index, word;
 415
 416	/* Loop thru the selected region */
 417	for (word = 0; word < *words; word++) {
 418		index = offset + word;
 419		ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
 420		if (ret_code)
 421			break;
 422	}
 423
 424	/* Update the number of words read from the Shadow RAM */
 425	*words = word;
 426
 427	return ret_code;
 428}
 429
 430/**
 431 * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
 432 * @hw: pointer to the HW structure
 433 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 434 * @words: (in) number of words to read; (out) number of words actually read
 435 * @data: words read from the Shadow RAM
 436 *
 437 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
 438 * method. The buffer read is preceded by the NVM ownership take
 439 * and followed by the release.
 440 **/
 441static int i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
 442				   u16 *words, u16 *data)
 443{
 444	bool last_cmd = false;
 445	u16 words_read = 0;
 446	u16 read_size;
 447	int ret_code;
 448	u16 i = 0;
 449
 450	do {
 451		/* Calculate number of bytes we should read in this step.
 452		 * FVL AQ do not allow to read more than one page at a time or
 453		 * to cross page boundaries.
 454		 */
 455		if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
 456			read_size = min(*words,
 457					(u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
 458				      (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
 459		else
 460			read_size = min((*words - words_read),
 461					I40E_SR_SECTOR_SIZE_IN_WORDS);
 462
 463		/* Check if this is last command, if so set proper flag */
 464		if ((words_read + read_size) >= *words)
 465			last_cmd = true;
 466
 467		ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
 468					    data + words_read, last_cmd);
 469		if (ret_code)
 470			goto read_nvm_buffer_aq_exit;
 471
 472		/* Increment counter for words already read and move offset to
 473		 * new read location
 474		 */
 475		words_read += read_size;
 476		offset += read_size;
 477	} while (words_read < *words);
 478
 479	for (i = 0; i < *words; i++)
 480		data[i] = le16_to_cpu(((__le16 *)data)[i]);
 481
 482read_nvm_buffer_aq_exit:
 483	*words = words_read;
 484	return ret_code;
 485}
 486
 487/**
 488 * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock
 489 * @hw: pointer to the HW structure
 490 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 491 * @words: (in) number of words to read; (out) number of words actually read
 492 * @data: words read from the Shadow RAM
 493 *
 494 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
 495 * method.
 496 **/
 497static int __i40e_read_nvm_buffer(struct i40e_hw *hw,
 498				  u16 offset, u16 *words,
 499				  u16 *data)
 500{
 501	if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps))
 502		return i40e_read_nvm_buffer_aq(hw, offset, words, data);
 503
 504	return i40e_read_nvm_buffer_srctl(hw, offset, words, data);
 505}
 506
 507/**
 508 * i40e_read_nvm_buffer - Reads Shadow RAM buffer and acquire lock if necessary
 509 * @hw: pointer to the HW structure
 510 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 511 * @words: (in) number of words to read; (out) number of words actually read
 512 * @data: words read from the Shadow RAM
 513 *
 514 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
 515 * method. The buffer read is preceded by the NVM ownership take
 516 * and followed by the release.
 517 **/
 518int i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset,
 519			 u16 *words, u16 *data)
 520{
 521	int ret_code = 0;
 522
 523	if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps)) {
 524		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 525		if (!ret_code) {
 526			ret_code = i40e_read_nvm_buffer_aq(hw, offset, words,
 527							   data);
 528			i40e_release_nvm(hw);
 529		}
 530	} else {
 531		ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data);
 532	}
 533
 534	return ret_code;
 535}
 536
 537/**
 538 * i40e_write_nvm_aq - Writes Shadow RAM.
 539 * @hw: pointer to the HW structure.
 540 * @module_pointer: module pointer location in words from the NVM beginning
 541 * @offset: offset in words from module start
 542 * @words: number of words to write
 543 * @data: buffer with words to write to the Shadow RAM
 544 * @last_command: tells the AdminQ that this is the last command
 545 *
 546 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
 547 **/
 548static int i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
 549			     u32 offset, u16 words, void *data,
 550			     bool last_command)
 551{
 552	struct i40e_asq_cmd_details cmd_details;
 553	int ret_code = -EIO;
 554
 555	memset(&cmd_details, 0, sizeof(cmd_details));
 556	cmd_details.wb_desc = &hw->nvm_wb_desc;
 557
 558	/* Here we are checking the SR limit only for the flat memory model.
 559	 * We cannot do it for the module-based model, as we did not acquire
 560	 * the NVM resource yet (we cannot get the module pointer value).
 561	 * Firmware will check the module-based model.
 562	 */
 563	if ((offset + words) > hw->nvm.sr_size)
 564		i40e_debug(hw, I40E_DEBUG_NVM,
 565			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
 566			   (offset + words), hw->nvm.sr_size);
 567	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
 568		/* We can write only up to 4KB (one sector), in one AQ write */
 569		i40e_debug(hw, I40E_DEBUG_NVM,
 570			   "NVM write fail error: tried to write %d words, limit is %d.\n",
 571			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
 572	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
 573		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
 574		/* A single write cannot spread over two sectors */
 575		i40e_debug(hw, I40E_DEBUG_NVM,
 576			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
 577			   offset, words);
 578	else
 579		ret_code = i40e_aq_update_nvm(hw, module_pointer,
 580					      2 * offset,  /*bytes*/
 581					      2 * words,   /*bytes*/
 582					      data, last_command, 0,
 583					      &cmd_details);
 584
 585	return ret_code;
 586}
 587
 588/**
 589 * i40e_calc_nvm_checksum - Calculates and returns the checksum
 590 * @hw: pointer to hardware structure
 591 * @checksum: pointer to the checksum
 592 *
 593 * This function calculates SW Checksum that covers the whole 64kB shadow RAM
 594 * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
 595 * is customer specific and unknown. Therefore, this function skips all maximum
 596 * possible size of VPD (1kB).
 597 **/
 598static int i40e_calc_nvm_checksum(struct i40e_hw *hw,
 599				  u16 *checksum)
 600{
 601	struct i40e_virt_mem vmem;
 602	u16 pcie_alt_module = 0;
 603	u16 checksum_local = 0;
 604	u16 vpd_module = 0;
 605	int ret_code;
 606	u16 *data;
 607	u16 i = 0;
 608
 609	ret_code = i40e_allocate_virt_mem(hw, &vmem,
 610				    I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
 611	if (ret_code)
 612		goto i40e_calc_nvm_checksum_exit;
 613	data = (u16 *)vmem.va;
 614
 615	/* read pointer to VPD area */
 616	ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
 617	if (ret_code) {
 618		ret_code = -EIO;
 619		goto i40e_calc_nvm_checksum_exit;
 620	}
 621
 622	/* read pointer to PCIe Alt Auto-load module */
 623	ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
 624					&pcie_alt_module);
 625	if (ret_code) {
 626		ret_code = -EIO;
 627		goto i40e_calc_nvm_checksum_exit;
 628	}
 629
 630	/* Calculate SW checksum that covers the whole 64kB shadow RAM
 631	 * except the VPD and PCIe ALT Auto-load modules
 632	 */
 633	for (i = 0; i < hw->nvm.sr_size; i++) {
 634		/* Read SR page */
 635		if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
 636			u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
 637
 638			ret_code = __i40e_read_nvm_buffer(hw, i, &words, data);
 639			if (ret_code) {
 640				ret_code = -EIO;
 641				goto i40e_calc_nvm_checksum_exit;
 642			}
 643		}
 644
 645		/* Skip Checksum word */
 646		if (i == I40E_SR_SW_CHECKSUM_WORD)
 647			continue;
 648		/* Skip VPD module (convert byte size to word count) */
 649		if ((i >= (u32)vpd_module) &&
 650		    (i < ((u32)vpd_module +
 651		     (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
 652			continue;
 653		}
 654		/* Skip PCIe ALT module (convert byte size to word count) */
 655		if ((i >= (u32)pcie_alt_module) &&
 656		    (i < ((u32)pcie_alt_module +
 657		     (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
 658			continue;
 659		}
 660
 661		checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
 662	}
 663
 664	*checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
 665
 666i40e_calc_nvm_checksum_exit:
 667	i40e_free_virt_mem(hw, &vmem);
 668	return ret_code;
 669}
 670
 671/**
 672 * i40e_update_nvm_checksum - Updates the NVM checksum
 673 * @hw: pointer to hardware structure
 674 *
 675 * NVM ownership must be acquired before calling this function and released
 676 * on ARQ completion event reception by caller.
 677 * This function will commit SR to NVM.
 678 **/
 679int i40e_update_nvm_checksum(struct i40e_hw *hw)
 680{
 681	__le16 le_sum;
 682	int ret_code;
 683	u16 checksum;
 684
 685	ret_code = i40e_calc_nvm_checksum(hw, &checksum);
 686	if (!ret_code) {
 687		le_sum = cpu_to_le16(checksum);
 688		ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
 689					     1, &le_sum, true);
 690	}
 691
 692	return ret_code;
 693}
 694
 695/**
 696 * i40e_validate_nvm_checksum - Validate EEPROM checksum
 697 * @hw: pointer to hardware structure
 698 * @checksum: calculated checksum
 699 *
 700 * Performs checksum calculation and validates the NVM SW checksum. If the
 701 * caller does not need checksum, the value can be NULL.
 702 **/
 703int i40e_validate_nvm_checksum(struct i40e_hw *hw,
 704			       u16 *checksum)
 705{
 706	u16 checksum_local = 0;
 707	u16 checksum_sr = 0;
 708	int ret_code = 0;
 709
 710	/* We must acquire the NVM lock in order to correctly synchronize the
 711	 * NVM accesses across multiple PFs. Without doing so it is possible
 712	 * for one of the PFs to read invalid data potentially indicating that
 713	 * the checksum is invalid.
 714	 */
 715	ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 716	if (ret_code)
 717		return ret_code;
 718	ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
 719	__i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
 720	i40e_release_nvm(hw);
 721	if (ret_code)
 722		return ret_code;
 723
 724	/* Verify read checksum from EEPROM is the same as
 725	 * calculated checksum
 726	 */
 727	if (checksum_local != checksum_sr)
 728		ret_code = -EIO;
 729
 730	/* If the user cares, return the calculated checksum */
 731	if (checksum)
 732		*checksum = checksum_local;
 733
 734	return ret_code;
 735}
 736
 737static int i40e_nvmupd_state_init(struct i40e_hw *hw,
 738				  struct i40e_nvm_access *cmd,
 739				  u8 *bytes, int *perrno);
 740static int i40e_nvmupd_state_reading(struct i40e_hw *hw,
 741				     struct i40e_nvm_access *cmd,
 742				     u8 *bytes, int *perrno);
 743static int i40e_nvmupd_state_writing(struct i40e_hw *hw,
 744				     struct i40e_nvm_access *cmd,
 745				     u8 *bytes, int *errno);
 746static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
 747						struct i40e_nvm_access *cmd,
 748						int *perrno);
 749static int i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
 750				 struct i40e_nvm_access *cmd,
 751				 int *perrno);
 752static int i40e_nvmupd_nvm_write(struct i40e_hw *hw,
 753				 struct i40e_nvm_access *cmd,
 754				 u8 *bytes, int *perrno);
 755static int i40e_nvmupd_nvm_read(struct i40e_hw *hw,
 756				struct i40e_nvm_access *cmd,
 757				u8 *bytes, int *perrno);
 758static int i40e_nvmupd_exec_aq(struct i40e_hw *hw,
 759			       struct i40e_nvm_access *cmd,
 760			       u8 *bytes, int *perrno);
 761static int i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
 762				     struct i40e_nvm_access *cmd,
 763				     u8 *bytes, int *perrno);
 764static int i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
 765				    struct i40e_nvm_access *cmd,
 766				    u8 *bytes, int *perrno);
 767static inline u8 i40e_nvmupd_get_module(u32 val)
 768{
 769	return (u8)(val & I40E_NVM_MOD_PNT_MASK);
 770}
 771static inline u8 i40e_nvmupd_get_transaction(u32 val)
 772{
 773	return FIELD_GET(I40E_NVM_TRANS_MASK, val);
 774}
 775
 776static inline u8 i40e_nvmupd_get_preservation_flags(u32 val)
 777{
 778	return FIELD_GET(I40E_NVM_PRESERVATION_FLAGS_MASK, val);
 779}
 780
 781static const char * const i40e_nvm_update_state_str[] = {
 782	"I40E_NVMUPD_INVALID",
 783	"I40E_NVMUPD_READ_CON",
 784	"I40E_NVMUPD_READ_SNT",
 785	"I40E_NVMUPD_READ_LCB",
 786	"I40E_NVMUPD_READ_SA",
 787	"I40E_NVMUPD_WRITE_ERA",
 788	"I40E_NVMUPD_WRITE_CON",
 789	"I40E_NVMUPD_WRITE_SNT",
 790	"I40E_NVMUPD_WRITE_LCB",
 791	"I40E_NVMUPD_WRITE_SA",
 792	"I40E_NVMUPD_CSUM_CON",
 793	"I40E_NVMUPD_CSUM_SA",
 794	"I40E_NVMUPD_CSUM_LCB",
 795	"I40E_NVMUPD_STATUS",
 796	"I40E_NVMUPD_EXEC_AQ",
 797	"I40E_NVMUPD_GET_AQ_RESULT",
 798	"I40E_NVMUPD_GET_AQ_EVENT",
 799};
 800
 801/**
 802 * i40e_nvmupd_command - Process an NVM update command
 803 * @hw: pointer to hardware structure
 804 * @cmd: pointer to nvm update command
 805 * @bytes: pointer to the data buffer
 806 * @perrno: pointer to return error code
 807 *
 808 * Dispatches command depending on what update state is current
 809 **/
 810int i40e_nvmupd_command(struct i40e_hw *hw,
 811			struct i40e_nvm_access *cmd,
 812			u8 *bytes, int *perrno)
 813{
 814	enum i40e_nvmupd_cmd upd_cmd;
 815	int status;
 816
 817	/* assume success */
 818	*perrno = 0;
 819
 820	/* early check for status command and debug msgs */
 821	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
 822
 823	i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n",
 824		   i40e_nvm_update_state_str[upd_cmd],
 825		   hw->nvmupd_state,
 826		   hw->nvm_release_on_done, hw->nvm_wait_opcode,
 827		   cmd->command, cmd->config, cmd->offset, cmd->data_size);
 828
 829	if (upd_cmd == I40E_NVMUPD_INVALID) {
 830		*perrno = -EFAULT;
 831		i40e_debug(hw, I40E_DEBUG_NVM,
 832			   "i40e_nvmupd_validate_command returns %d errno %d\n",
 833			   upd_cmd, *perrno);
 834	}
 835
 836	/* a status request returns immediately rather than
 837	 * going into the state machine
 838	 */
 839	if (upd_cmd == I40E_NVMUPD_STATUS) {
 840		if (!cmd->data_size) {
 841			*perrno = -EFAULT;
 842			return -EINVAL;
 843		}
 844
 845		bytes[0] = hw->nvmupd_state;
 846
 847		if (cmd->data_size >= 4) {
 848			bytes[1] = 0;
 849			*((u16 *)&bytes[2]) = hw->nvm_wait_opcode;
 850		}
 851
 852		/* Clear error status on read */
 853		if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR)
 854			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
 855
 856		return 0;
 857	}
 858
 859	/* Clear status even it is not read and log */
 860	if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) {
 861		i40e_debug(hw, I40E_DEBUG_NVM,
 862			   "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n");
 863		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
 864	}
 865
 866	/* Acquire lock to prevent race condition where adminq_task
 867	 * can execute after i40e_nvmupd_nvm_read/write but before state
 868	 * variables (nvm_wait_opcode, nvm_release_on_done) are updated.
 869	 *
 870	 * During NVMUpdate, it is observed that lock could be held for
 871	 * ~5ms for most commands. However lock is held for ~60ms for
 872	 * NVMUPD_CSUM_LCB command.
 873	 */
 874	mutex_lock(&hw->aq.arq_mutex);
 875	switch (hw->nvmupd_state) {
 876	case I40E_NVMUPD_STATE_INIT:
 877		status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
 878		break;
 879
 880	case I40E_NVMUPD_STATE_READING:
 881		status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
 882		break;
 883
 884	case I40E_NVMUPD_STATE_WRITING:
 885		status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
 886		break;
 887
 888	case I40E_NVMUPD_STATE_INIT_WAIT:
 889	case I40E_NVMUPD_STATE_WRITE_WAIT:
 890		/* if we need to stop waiting for an event, clear
 891		 * the wait info and return before doing anything else
 892		 */
 893		if (cmd->offset == 0xffff) {
 894			i40e_nvmupd_clear_wait_state(hw);
 895			status = 0;
 896			break;
 897		}
 898
 899		status = -EBUSY;
 900		*perrno = -EBUSY;
 901		break;
 902
 903	default:
 904		/* invalid state, should never happen */
 905		i40e_debug(hw, I40E_DEBUG_NVM,
 906			   "NVMUPD: no such state %d\n", hw->nvmupd_state);
 907		status = -EOPNOTSUPP;
 908		*perrno = -ESRCH;
 909		break;
 910	}
 911
 912	mutex_unlock(&hw->aq.arq_mutex);
 913	return status;
 914}
 915
 916/**
 917 * i40e_nvmupd_state_init - Handle NVM update state Init
 918 * @hw: pointer to hardware structure
 919 * @cmd: pointer to nvm update command buffer
 920 * @bytes: pointer to the data buffer
 921 * @perrno: pointer to return error code
 922 *
 923 * Process legitimate commands of the Init state and conditionally set next
 924 * state. Reject all other commands.
 925 **/
 926static int i40e_nvmupd_state_init(struct i40e_hw *hw,
 927				  struct i40e_nvm_access *cmd,
 928				  u8 *bytes, int *perrno)
 929{
 930	enum i40e_nvmupd_cmd upd_cmd;
 931	int status = 0;
 932
 933	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
 934
 935	switch (upd_cmd) {
 936	case I40E_NVMUPD_READ_SA:
 937		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 938		if (status) {
 939			*perrno = i40e_aq_rc_to_posix(status,
 940						     hw->aq.asq_last_status);
 941		} else {
 942			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
 943			i40e_release_nvm(hw);
 944		}
 945		break;
 946
 947	case I40E_NVMUPD_READ_SNT:
 948		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 949		if (status) {
 950			*perrno = i40e_aq_rc_to_posix(status,
 951						     hw->aq.asq_last_status);
 952		} else {
 953			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
 954			if (status)
 955				i40e_release_nvm(hw);
 956			else
 957				hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
 958		}
 959		break;
 960
 961	case I40E_NVMUPD_WRITE_ERA:
 962		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
 963		if (status) {
 964			*perrno = i40e_aq_rc_to_posix(status,
 965						     hw->aq.asq_last_status);
 966		} else {
 967			status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
 968			if (status) {
 969				i40e_release_nvm(hw);
 970			} else {
 971				hw->nvm_release_on_done = true;
 972				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase;
 973				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
 974			}
 975		}
 976		break;
 977
 978	case I40E_NVMUPD_WRITE_SA:
 979		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
 980		if (status) {
 981			*perrno = i40e_aq_rc_to_posix(status,
 982						     hw->aq.asq_last_status);
 983		} else {
 984			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
 985			if (status) {
 986				i40e_release_nvm(hw);
 987			} else {
 988				hw->nvm_release_on_done = true;
 989				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
 990				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
 991			}
 992		}
 993		break;
 994
 995	case I40E_NVMUPD_WRITE_SNT:
 996		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
 997		if (status) {
 998			*perrno = i40e_aq_rc_to_posix(status,
 999						     hw->aq.asq_last_status);
1000		} else {
1001			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1002			if (status) {
1003				i40e_release_nvm(hw);
1004			} else {
1005				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1006				hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1007			}
1008		}
1009		break;
1010
1011	case I40E_NVMUPD_CSUM_SA:
1012		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1013		if (status) {
1014			*perrno = i40e_aq_rc_to_posix(status,
1015						     hw->aq.asq_last_status);
1016		} else {
1017			status = i40e_update_nvm_checksum(hw);
1018			if (status) {
1019				*perrno = hw->aq.asq_last_status ?
1020				   i40e_aq_rc_to_posix(status,
1021						       hw->aq.asq_last_status) :
1022				   -EIO;
1023				i40e_release_nvm(hw);
1024			} else {
1025				hw->nvm_release_on_done = true;
1026				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1027				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1028			}
1029		}
1030		break;
1031
1032	case I40E_NVMUPD_EXEC_AQ:
1033		status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
1034		break;
1035
1036	case I40E_NVMUPD_GET_AQ_RESULT:
1037		status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
1038		break;
1039
1040	case I40E_NVMUPD_GET_AQ_EVENT:
1041		status = i40e_nvmupd_get_aq_event(hw, cmd, bytes, perrno);
1042		break;
1043
1044	default:
1045		i40e_debug(hw, I40E_DEBUG_NVM,
1046			   "NVMUPD: bad cmd %s in init state\n",
1047			   i40e_nvm_update_state_str[upd_cmd]);
1048		status = -EIO;
1049		*perrno = -ESRCH;
1050		break;
1051	}
1052	return status;
1053}
1054
1055/**
1056 * i40e_nvmupd_state_reading - Handle NVM update state Reading
1057 * @hw: pointer to hardware structure
1058 * @cmd: pointer to nvm update command buffer
1059 * @bytes: pointer to the data buffer
1060 * @perrno: pointer to return error code
1061 *
1062 * NVM ownership is already held.  Process legitimate commands and set any
1063 * change in state; reject all other commands.
1064 **/
1065static int i40e_nvmupd_state_reading(struct i40e_hw *hw,
1066				     struct i40e_nvm_access *cmd,
1067				     u8 *bytes, int *perrno)
1068{
1069	enum i40e_nvmupd_cmd upd_cmd;
1070	int status = 0;
1071
1072	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1073
1074	switch (upd_cmd) {
1075	case I40E_NVMUPD_READ_SA:
1076	case I40E_NVMUPD_READ_CON:
1077		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1078		break;
1079
1080	case I40E_NVMUPD_READ_LCB:
1081		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1082		i40e_release_nvm(hw);
1083		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1084		break;
1085
1086	default:
1087		i40e_debug(hw, I40E_DEBUG_NVM,
1088			   "NVMUPD: bad cmd %s in reading state.\n",
1089			   i40e_nvm_update_state_str[upd_cmd]);
1090		status = -EOPNOTSUPP;
1091		*perrno = -ESRCH;
1092		break;
1093	}
1094	return status;
1095}
1096
1097/**
1098 * i40e_nvmupd_state_writing - Handle NVM update state Writing
1099 * @hw: pointer to hardware structure
1100 * @cmd: pointer to nvm update command buffer
1101 * @bytes: pointer to the data buffer
1102 * @perrno: pointer to return error code
1103 *
1104 * NVM ownership is already held.  Process legitimate commands and set any
1105 * change in state; reject all other commands
1106 **/
1107static int i40e_nvmupd_state_writing(struct i40e_hw *hw,
1108				     struct i40e_nvm_access *cmd,
1109				     u8 *bytes, int *perrno)
1110{
1111	enum i40e_nvmupd_cmd upd_cmd;
1112	bool retry_attempt = false;
1113	int status = 0;
1114
1115	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1116
1117retry:
1118	switch (upd_cmd) {
1119	case I40E_NVMUPD_WRITE_CON:
1120		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1121		if (!status) {
1122			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1123			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1124		}
1125		break;
1126
1127	case I40E_NVMUPD_WRITE_LCB:
1128		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1129		if (status) {
1130			*perrno = hw->aq.asq_last_status ?
1131				   i40e_aq_rc_to_posix(status,
1132						       hw->aq.asq_last_status) :
1133				   -EIO;
1134			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1135		} else {
1136			hw->nvm_release_on_done = true;
1137			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1138			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1139		}
1140		break;
1141
1142	case I40E_NVMUPD_CSUM_CON:
1143		/* Assumes the caller has acquired the nvm */
1144		status = i40e_update_nvm_checksum(hw);
1145		if (status) {
1146			*perrno = hw->aq.asq_last_status ?
1147				   i40e_aq_rc_to_posix(status,
1148						       hw->aq.asq_last_status) :
1149				   -EIO;
1150			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1151		} else {
1152			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1153			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1154		}
1155		break;
1156
1157	case I40E_NVMUPD_CSUM_LCB:
1158		/* Assumes the caller has acquired the nvm */
1159		status = i40e_update_nvm_checksum(hw);
1160		if (status) {
1161			*perrno = hw->aq.asq_last_status ?
1162				   i40e_aq_rc_to_posix(status,
1163						       hw->aq.asq_last_status) :
1164				   -EIO;
1165			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1166		} else {
1167			hw->nvm_release_on_done = true;
1168			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1169			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1170		}
1171		break;
1172
1173	default:
1174		i40e_debug(hw, I40E_DEBUG_NVM,
1175			   "NVMUPD: bad cmd %s in writing state.\n",
1176			   i40e_nvm_update_state_str[upd_cmd]);
1177		status = -EOPNOTSUPP;
1178		*perrno = -ESRCH;
1179		break;
1180	}
1181
1182	/* In some circumstances, a multi-write transaction takes longer
1183	 * than the default 3 minute timeout on the write semaphore.  If
1184	 * the write failed with an EBUSY status, this is likely the problem,
1185	 * so here we try to reacquire the semaphore then retry the write.
1186	 * We only do one retry, then give up.
1187	 */
1188	if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) &&
1189	    !retry_attempt) {
1190		u32 old_asq_status = hw->aq.asq_last_status;
1191		int old_status = status;
1192		u32 gtime;
1193
1194		gtime = rd32(hw, I40E_GLVFGEN_TIMER);
1195		if (gtime >= hw->nvm.hw_semaphore_timeout) {
1196			i40e_debug(hw, I40E_DEBUG_ALL,
1197				   "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
1198				   gtime, hw->nvm.hw_semaphore_timeout);
1199			i40e_release_nvm(hw);
1200			status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1201			if (status) {
1202				i40e_debug(hw, I40E_DEBUG_ALL,
1203					   "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
1204					   hw->aq.asq_last_status);
1205				status = old_status;
1206				hw->aq.asq_last_status = old_asq_status;
1207			} else {
1208				retry_attempt = true;
1209				goto retry;
1210			}
1211		}
1212	}
1213
1214	return status;
1215}
1216
1217/**
1218 * i40e_nvmupd_clear_wait_state - clear wait state on hw
1219 * @hw: pointer to the hardware structure
1220 **/
1221void i40e_nvmupd_clear_wait_state(struct i40e_hw *hw)
1222{
1223	i40e_debug(hw, I40E_DEBUG_NVM,
1224		   "NVMUPD: clearing wait on opcode 0x%04x\n",
1225		   hw->nvm_wait_opcode);
1226
1227	if (hw->nvm_release_on_done) {
1228		i40e_release_nvm(hw);
1229		hw->nvm_release_on_done = false;
1230	}
1231	hw->nvm_wait_opcode = 0;
1232
1233	if (hw->aq.arq_last_status) {
1234		hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR;
1235		return;
1236	}
1237
1238	switch (hw->nvmupd_state) {
1239	case I40E_NVMUPD_STATE_INIT_WAIT:
1240		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1241		break;
1242
1243	case I40E_NVMUPD_STATE_WRITE_WAIT:
1244		hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING;
1245		break;
1246
1247	default:
1248		break;
1249	}
1250}
1251
1252/**
1253 * i40e_nvmupd_check_wait_event - handle NVM update operation events
1254 * @hw: pointer to the hardware structure
1255 * @opcode: the event that just happened
1256 * @desc: AdminQ descriptor
1257 **/
1258void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode,
1259				  struct i40e_aq_desc *desc)
1260{
1261	u32 aq_desc_len = sizeof(struct i40e_aq_desc);
1262
1263	if (opcode == hw->nvm_wait_opcode) {
1264		memcpy(&hw->nvm_aq_event_desc, desc, aq_desc_len);
1265		i40e_nvmupd_clear_wait_state(hw);
1266	}
1267}
1268
1269/**
1270 * i40e_nvmupd_validate_command - Validate given command
1271 * @hw: pointer to hardware structure
1272 * @cmd: pointer to nvm update command buffer
1273 * @perrno: pointer to return error code
1274 *
1275 * Return one of the valid command types or I40E_NVMUPD_INVALID
1276 **/
1277static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
1278						 struct i40e_nvm_access *cmd,
1279						 int *perrno)
1280{
1281	enum i40e_nvmupd_cmd upd_cmd;
1282	u8 module, transaction;
1283
1284	/* anything that doesn't match a recognized case is an error */
1285	upd_cmd = I40E_NVMUPD_INVALID;
1286
1287	transaction = i40e_nvmupd_get_transaction(cmd->config);
1288	module = i40e_nvmupd_get_module(cmd->config);
1289
1290	/* limits on data size */
1291	if ((cmd->data_size < 1) ||
1292	    (cmd->data_size > I40E_NVMUPD_MAX_DATA)) {
1293		i40e_debug(hw, I40E_DEBUG_NVM,
1294			   "i40e_nvmupd_validate_command data_size %d\n",
1295			   cmd->data_size);
1296		*perrno = -EFAULT;
1297		return I40E_NVMUPD_INVALID;
1298	}
1299
1300	switch (cmd->command) {
1301	case I40E_NVM_READ:
1302		switch (transaction) {
1303		case I40E_NVM_CON:
1304			upd_cmd = I40E_NVMUPD_READ_CON;
1305			break;
1306		case I40E_NVM_SNT:
1307			upd_cmd = I40E_NVMUPD_READ_SNT;
1308			break;
1309		case I40E_NVM_LCB:
1310			upd_cmd = I40E_NVMUPD_READ_LCB;
1311			break;
1312		case I40E_NVM_SA:
1313			upd_cmd = I40E_NVMUPD_READ_SA;
1314			break;
1315		case I40E_NVM_EXEC:
1316			if (module == 0xf)
1317				upd_cmd = I40E_NVMUPD_STATUS;
1318			else if (module == 0)
1319				upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
1320			break;
1321		case I40E_NVM_AQE:
1322			upd_cmd = I40E_NVMUPD_GET_AQ_EVENT;
1323			break;
1324		}
1325		break;
1326
1327	case I40E_NVM_WRITE:
1328		switch (transaction) {
1329		case I40E_NVM_CON:
1330			upd_cmd = I40E_NVMUPD_WRITE_CON;
1331			break;
1332		case I40E_NVM_SNT:
1333			upd_cmd = I40E_NVMUPD_WRITE_SNT;
1334			break;
1335		case I40E_NVM_LCB:
1336			upd_cmd = I40E_NVMUPD_WRITE_LCB;
1337			break;
1338		case I40E_NVM_SA:
1339			upd_cmd = I40E_NVMUPD_WRITE_SA;
1340			break;
1341		case I40E_NVM_ERA:
1342			upd_cmd = I40E_NVMUPD_WRITE_ERA;
1343			break;
1344		case I40E_NVM_CSUM:
1345			upd_cmd = I40E_NVMUPD_CSUM_CON;
1346			break;
1347		case (I40E_NVM_CSUM|I40E_NVM_SA):
1348			upd_cmd = I40E_NVMUPD_CSUM_SA;
1349			break;
1350		case (I40E_NVM_CSUM|I40E_NVM_LCB):
1351			upd_cmd = I40E_NVMUPD_CSUM_LCB;
1352			break;
1353		case I40E_NVM_EXEC:
1354			if (module == 0)
1355				upd_cmd = I40E_NVMUPD_EXEC_AQ;
1356			break;
1357		}
1358		break;
1359	}
1360
1361	return upd_cmd;
1362}
1363
1364/**
1365 * i40e_nvmupd_exec_aq - Run an AQ command
1366 * @hw: pointer to hardware structure
1367 * @cmd: pointer to nvm update command buffer
1368 * @bytes: pointer to the data buffer
1369 * @perrno: pointer to return error code
1370 *
1371 * cmd structure contains identifiers and data buffer
1372 **/
1373static int i40e_nvmupd_exec_aq(struct i40e_hw *hw,
1374			       struct i40e_nvm_access *cmd,
1375			       u8 *bytes, int *perrno)
1376{
1377	struct i40e_asq_cmd_details cmd_details;
1378	struct i40e_aq_desc *aq_desc;
1379	u32 buff_size = 0;
1380	u8 *buff = NULL;
1381	u32 aq_desc_len;
1382	u32 aq_data_len;
1383	int status;
1384
1385	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1386	if (cmd->offset == 0xffff)
1387		return 0;
1388
1389	memset(&cmd_details, 0, sizeof(cmd_details));
1390	cmd_details.wb_desc = &hw->nvm_wb_desc;
1391
1392	aq_desc_len = sizeof(struct i40e_aq_desc);
1393	memset(&hw->nvm_wb_desc, 0, aq_desc_len);
1394
1395	/* get the aq descriptor */
1396	if (cmd->data_size < aq_desc_len) {
1397		i40e_debug(hw, I40E_DEBUG_NVM,
1398			   "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1399			   cmd->data_size, aq_desc_len);
1400		*perrno = -EINVAL;
1401		return -EINVAL;
1402	}
1403	aq_desc = (struct i40e_aq_desc *)bytes;
1404
1405	/* if data buffer needed, make sure it's ready */
1406	aq_data_len = cmd->data_size - aq_desc_len;
1407	buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1408	if (buff_size) {
1409		if (!hw->nvm_buff.va) {
1410			status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1411							hw->aq.asq_buf_size);
1412			if (status)
1413				i40e_debug(hw, I40E_DEBUG_NVM,
1414					   "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1415					   status);
1416		}
1417
1418		if (hw->nvm_buff.va) {
1419			buff = hw->nvm_buff.va;
1420			memcpy(buff, &bytes[aq_desc_len], aq_data_len);
1421		}
1422	}
1423
1424	if (cmd->offset)
1425		memset(&hw->nvm_aq_event_desc, 0, aq_desc_len);
1426
1427	/* and away we go! */
1428	status = i40e_asq_send_command(hw, aq_desc, buff,
1429				       buff_size, &cmd_details);
1430	if (status) {
1431		i40e_debug(hw, I40E_DEBUG_NVM,
1432			   "%s err %pe aq_err %s\n",
1433			   __func__, ERR_PTR(status),
1434			   i40e_aq_str(hw, hw->aq.asq_last_status));
1435		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1436		return status;
1437	}
1438
1439	/* should we wait for a followup event? */
1440	if (cmd->offset) {
1441		hw->nvm_wait_opcode = cmd->offset;
1442		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1443	}
1444
1445	return status;
1446}
1447
1448/**
1449 * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1450 * @hw: pointer to hardware structure
1451 * @cmd: pointer to nvm update command buffer
1452 * @bytes: pointer to the data buffer
1453 * @perrno: pointer to return error code
1454 *
1455 * cmd structure contains identifiers and data buffer
1456 **/
1457static int i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1458				     struct i40e_nvm_access *cmd,
1459				     u8 *bytes, int *perrno)
1460{
1461	u32 aq_total_len;
1462	u32 aq_desc_len;
1463	int remainder;
1464	u8 *buff;
1465
1466	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1467
1468	aq_desc_len = sizeof(struct i40e_aq_desc);
1469	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1470
1471	/* check offset range */
1472	if (cmd->offset > aq_total_len) {
1473		i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1474			   __func__, cmd->offset, aq_total_len);
1475		*perrno = -EINVAL;
1476		return -EINVAL;
1477	}
1478
1479	/* check copylength range */
1480	if (cmd->data_size > (aq_total_len - cmd->offset)) {
1481		int new_len = aq_total_len - cmd->offset;
1482
1483		i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1484			   __func__, cmd->data_size, new_len);
1485		cmd->data_size = new_len;
1486	}
1487
1488	remainder = cmd->data_size;
1489	if (cmd->offset < aq_desc_len) {
1490		u32 len = aq_desc_len - cmd->offset;
1491
1492		len = min(len, cmd->data_size);
1493		i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1494			   __func__, cmd->offset, cmd->offset + len);
1495
1496		buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1497		memcpy(bytes, buff, len);
1498
1499		bytes += len;
1500		remainder -= len;
1501		buff = hw->nvm_buff.va;
1502	} else {
1503		buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1504	}
1505
1506	if (remainder > 0) {
1507		int start_byte = buff - (u8 *)hw->nvm_buff.va;
1508
1509		i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1510			   __func__, start_byte, start_byte + remainder);
1511		memcpy(bytes, buff, remainder);
1512	}
1513
1514	return 0;
1515}
1516
1517/**
1518 * i40e_nvmupd_get_aq_event - Get the Admin Queue event from previous exec_aq
1519 * @hw: pointer to hardware structure
1520 * @cmd: pointer to nvm update command buffer
1521 * @bytes: pointer to the data buffer
1522 * @perrno: pointer to return error code
1523 *
1524 * cmd structure contains identifiers and data buffer
1525 **/
1526static int i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
1527				    struct i40e_nvm_access *cmd,
1528				    u8 *bytes, int *perrno)
1529{
1530	u32 aq_total_len;
1531	u32 aq_desc_len;
1532
1533	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1534
1535	aq_desc_len = sizeof(struct i40e_aq_desc);
1536	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_aq_event_desc.datalen);
1537
1538	/* check copylength range */
1539	if (cmd->data_size > aq_total_len) {
1540		i40e_debug(hw, I40E_DEBUG_NVM,
1541			   "%s: copy length %d too big, trimming to %d\n",
1542			   __func__, cmd->data_size, aq_total_len);
1543		cmd->data_size = aq_total_len;
1544	}
1545
1546	memcpy(bytes, &hw->nvm_aq_event_desc, cmd->data_size);
1547
1548	return 0;
1549}
1550
1551/**
1552 * i40e_nvmupd_nvm_read - Read NVM
1553 * @hw: pointer to hardware structure
1554 * @cmd: pointer to nvm update command buffer
1555 * @bytes: pointer to the data buffer
1556 * @perrno: pointer to return error code
1557 *
1558 * cmd structure contains identifiers and data buffer
1559 **/
1560static int i40e_nvmupd_nvm_read(struct i40e_hw *hw,
1561				struct i40e_nvm_access *cmd,
1562				u8 *bytes, int *perrno)
1563{
1564	struct i40e_asq_cmd_details cmd_details;
1565	u8 module, transaction;
1566	int status;
1567	bool last;
1568
1569	transaction = i40e_nvmupd_get_transaction(cmd->config);
1570	module = i40e_nvmupd_get_module(cmd->config);
1571	last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
1572
1573	memset(&cmd_details, 0, sizeof(cmd_details));
1574	cmd_details.wb_desc = &hw->nvm_wb_desc;
1575
1576	status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1577				  bytes, last, &cmd_details);
1578	if (status) {
1579		i40e_debug(hw, I40E_DEBUG_NVM,
1580			   "i40e_nvmupd_nvm_read mod 0x%x  off 0x%x  len 0x%x\n",
1581			   module, cmd->offset, cmd->data_size);
1582		i40e_debug(hw, I40E_DEBUG_NVM,
1583			   "i40e_nvmupd_nvm_read status %d aq %d\n",
1584			   status, hw->aq.asq_last_status);
1585		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1586	}
1587
1588	return status;
1589}
1590
1591/**
1592 * i40e_nvmupd_nvm_erase - Erase an NVM module
1593 * @hw: pointer to hardware structure
1594 * @cmd: pointer to nvm update command buffer
1595 * @perrno: pointer to return error code
1596 *
1597 * module, offset, data_size and data are in cmd structure
1598 **/
1599static int i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
1600				 struct i40e_nvm_access *cmd,
1601				 int *perrno)
1602{
1603	struct i40e_asq_cmd_details cmd_details;
1604	u8 module, transaction;
1605	int status = 0;
1606	bool last;
1607
1608	transaction = i40e_nvmupd_get_transaction(cmd->config);
1609	module = i40e_nvmupd_get_module(cmd->config);
1610	last = (transaction & I40E_NVM_LCB);
1611
1612	memset(&cmd_details, 0, sizeof(cmd_details));
1613	cmd_details.wb_desc = &hw->nvm_wb_desc;
1614
1615	status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1616				   last, &cmd_details);
1617	if (status) {
1618		i40e_debug(hw, I40E_DEBUG_NVM,
1619			   "i40e_nvmupd_nvm_erase mod 0x%x  off 0x%x len 0x%x\n",
1620			   module, cmd->offset, cmd->data_size);
1621		i40e_debug(hw, I40E_DEBUG_NVM,
1622			   "i40e_nvmupd_nvm_erase status %d aq %d\n",
1623			   status, hw->aq.asq_last_status);
1624		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1625	}
1626
1627	return status;
1628}
1629
1630/**
1631 * i40e_nvmupd_nvm_write - Write NVM
1632 * @hw: pointer to hardware structure
1633 * @cmd: pointer to nvm update command buffer
1634 * @bytes: pointer to the data buffer
1635 * @perrno: pointer to return error code
1636 *
1637 * module, offset, data_size and data are in cmd structure
1638 **/
1639static int i40e_nvmupd_nvm_write(struct i40e_hw *hw,
1640				 struct i40e_nvm_access *cmd,
1641				 u8 *bytes, int *perrno)
1642{
1643	struct i40e_asq_cmd_details cmd_details;
1644	u8 module, transaction;
1645	u8 preservation_flags;
1646	int status = 0;
1647	bool last;
1648
1649	transaction = i40e_nvmupd_get_transaction(cmd->config);
1650	module = i40e_nvmupd_get_module(cmd->config);
1651	last = (transaction & I40E_NVM_LCB);
1652	preservation_flags = i40e_nvmupd_get_preservation_flags(cmd->config);
1653
1654	memset(&cmd_details, 0, sizeof(cmd_details));
1655	cmd_details.wb_desc = &hw->nvm_wb_desc;
1656
1657	status = i40e_aq_update_nvm(hw, module, cmd->offset,
1658				    (u16)cmd->data_size, bytes, last,
1659				    preservation_flags, &cmd_details);
1660	if (status) {
1661		i40e_debug(hw, I40E_DEBUG_NVM,
1662			   "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n",
1663			   module, cmd->offset, cmd->data_size);
1664		i40e_debug(hw, I40E_DEBUG_NVM,
1665			   "i40e_nvmupd_nvm_write status %d aq %d\n",
1666			   status, hw->aq.asq_last_status);
1667		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1668	}
1669
1670	return status;
1671}