Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4/* 82571EB Gigabit Ethernet Controller
5 * 82571EB Gigabit Ethernet Controller (Copper)
6 * 82571EB Gigabit Ethernet Controller (Fiber)
7 * 82571EB Dual Port Gigabit Mezzanine Adapter
8 * 82571EB Quad Port Gigabit Mezzanine Adapter
9 * 82571PT Gigabit PT Quad Port Server ExpressModule
10 * 82572EI Gigabit Ethernet Controller (Copper)
11 * 82572EI Gigabit Ethernet Controller (Fiber)
12 * 82572EI Gigabit Ethernet Controller
13 * 82573V Gigabit Ethernet Controller (Copper)
14 * 82573E Gigabit Ethernet Controller (Copper)
15 * 82573L Gigabit Ethernet Controller
16 * 82574L Gigabit Network Connection
17 * 82583V Gigabit Network Connection
18 */
19
20#include "e1000.h"
21
22static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
23static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
24static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
25static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
26static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
27 u16 words, u16 *data);
28static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
29static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
30static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
31static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
32static s32 e1000_led_on_82574(struct e1000_hw *hw);
33static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
34static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
35static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
36static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
37static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
38static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
39static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
40
41/**
42 * e1000_init_phy_params_82571 - Init PHY func ptrs.
43 * @hw: pointer to the HW structure
44 **/
45static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
46{
47 struct e1000_phy_info *phy = &hw->phy;
48 s32 ret_val;
49
50 if (hw->phy.media_type != e1000_media_type_copper) {
51 phy->type = e1000_phy_none;
52 return 0;
53 }
54
55 phy->addr = 1;
56 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
57 phy->reset_delay_us = 100;
58
59 phy->ops.power_up = e1000_power_up_phy_copper;
60 phy->ops.power_down = e1000_power_down_phy_copper_82571;
61
62 switch (hw->mac.type) {
63 case e1000_82571:
64 case e1000_82572:
65 phy->type = e1000_phy_igp_2;
66 break;
67 case e1000_82573:
68 phy->type = e1000_phy_m88;
69 break;
70 case e1000_82574:
71 case e1000_82583:
72 phy->type = e1000_phy_bm;
73 phy->ops.acquire = e1000_get_hw_semaphore_82574;
74 phy->ops.release = e1000_put_hw_semaphore_82574;
75 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
76 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
77 break;
78 default:
79 return -E1000_ERR_PHY;
80 }
81
82 /* This can only be done after all function pointers are setup. */
83 ret_val = e1000_get_phy_id_82571(hw);
84 if (ret_val) {
85 e_dbg("Error getting PHY ID\n");
86 return ret_val;
87 }
88
89 /* Verify phy id */
90 switch (hw->mac.type) {
91 case e1000_82571:
92 case e1000_82572:
93 if (phy->id != IGP01E1000_I_PHY_ID)
94 ret_val = -E1000_ERR_PHY;
95 break;
96 case e1000_82573:
97 if (phy->id != M88E1111_I_PHY_ID)
98 ret_val = -E1000_ERR_PHY;
99 break;
100 case e1000_82574:
101 case e1000_82583:
102 if (phy->id != BME1000_E_PHY_ID_R2)
103 ret_val = -E1000_ERR_PHY;
104 break;
105 default:
106 ret_val = -E1000_ERR_PHY;
107 break;
108 }
109
110 if (ret_val)
111 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
112
113 return ret_val;
114}
115
116/**
117 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
118 * @hw: pointer to the HW structure
119 **/
120static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
121{
122 struct e1000_nvm_info *nvm = &hw->nvm;
123 u32 eecd = er32(EECD);
124 u16 size;
125
126 nvm->opcode_bits = 8;
127 nvm->delay_usec = 1;
128 switch (nvm->override) {
129 case e1000_nvm_override_spi_large:
130 nvm->page_size = 32;
131 nvm->address_bits = 16;
132 break;
133 case e1000_nvm_override_spi_small:
134 nvm->page_size = 8;
135 nvm->address_bits = 8;
136 break;
137 default:
138 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
139 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
140 break;
141 }
142
143 switch (hw->mac.type) {
144 case e1000_82573:
145 case e1000_82574:
146 case e1000_82583:
147 if (((eecd >> 15) & 0x3) == 0x3) {
148 nvm->type = e1000_nvm_flash_hw;
149 nvm->word_size = 2048;
150 /* Autonomous Flash update bit must be cleared due
151 * to Flash update issue.
152 */
153 eecd &= ~E1000_EECD_AUPDEN;
154 ew32(EECD, eecd);
155 break;
156 }
157 fallthrough;
158 default:
159 nvm->type = e1000_nvm_eeprom_spi;
160 size = (u16)FIELD_GET(E1000_EECD_SIZE_EX_MASK, eecd);
161 /* Added to a constant, "size" becomes the left-shift value
162 * for setting word_size.
163 */
164 size += NVM_WORD_SIZE_BASE_SHIFT;
165
166 /* EEPROM access above 16k is unsupported */
167 if (size > 14)
168 size = 14;
169 nvm->word_size = BIT(size);
170 break;
171 }
172
173 /* Function Pointers */
174 switch (hw->mac.type) {
175 case e1000_82574:
176 case e1000_82583:
177 nvm->ops.acquire = e1000_get_hw_semaphore_82574;
178 nvm->ops.release = e1000_put_hw_semaphore_82574;
179 break;
180 default:
181 break;
182 }
183
184 return 0;
185}
186
187/**
188 * e1000_init_mac_params_82571 - Init MAC func ptrs.
189 * @hw: pointer to the HW structure
190 **/
191static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
192{
193 struct e1000_mac_info *mac = &hw->mac;
194 u32 swsm = 0;
195 u32 swsm2 = 0;
196 bool force_clear_smbi = false;
197
198 /* Set media type and media-dependent function pointers */
199 switch (hw->adapter->pdev->device) {
200 case E1000_DEV_ID_82571EB_FIBER:
201 case E1000_DEV_ID_82572EI_FIBER:
202 case E1000_DEV_ID_82571EB_QUAD_FIBER:
203 hw->phy.media_type = e1000_media_type_fiber;
204 mac->ops.setup_physical_interface =
205 e1000_setup_fiber_serdes_link_82571;
206 mac->ops.check_for_link = e1000e_check_for_fiber_link;
207 mac->ops.get_link_up_info =
208 e1000e_get_speed_and_duplex_fiber_serdes;
209 break;
210 case E1000_DEV_ID_82571EB_SERDES:
211 case E1000_DEV_ID_82571EB_SERDES_DUAL:
212 case E1000_DEV_ID_82571EB_SERDES_QUAD:
213 case E1000_DEV_ID_82572EI_SERDES:
214 hw->phy.media_type = e1000_media_type_internal_serdes;
215 mac->ops.setup_physical_interface =
216 e1000_setup_fiber_serdes_link_82571;
217 mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
218 mac->ops.get_link_up_info =
219 e1000e_get_speed_and_duplex_fiber_serdes;
220 break;
221 default:
222 hw->phy.media_type = e1000_media_type_copper;
223 mac->ops.setup_physical_interface =
224 e1000_setup_copper_link_82571;
225 mac->ops.check_for_link = e1000e_check_for_copper_link;
226 mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
227 break;
228 }
229
230 /* Set mta register count */
231 mac->mta_reg_count = 128;
232 /* Set rar entry count */
233 mac->rar_entry_count = E1000_RAR_ENTRIES;
234 /* Adaptive IFS supported */
235 mac->adaptive_ifs = true;
236
237 /* MAC-specific function pointers */
238 switch (hw->mac.type) {
239 case e1000_82573:
240 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
241 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
242 mac->ops.led_on = e1000e_led_on_generic;
243 mac->ops.blink_led = e1000e_blink_led_generic;
244
245 /* FWSM register */
246 mac->has_fwsm = true;
247 /* ARC supported; valid only if manageability features are
248 * enabled.
249 */
250 mac->arc_subsystem_valid = !!(er32(FWSM) &
251 E1000_FWSM_MODE_MASK);
252 break;
253 case e1000_82574:
254 case e1000_82583:
255 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
256 mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
257 mac->ops.led_on = e1000_led_on_82574;
258 break;
259 default:
260 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
261 mac->ops.led_on = e1000e_led_on_generic;
262 mac->ops.blink_led = e1000e_blink_led_generic;
263
264 /* FWSM register */
265 mac->has_fwsm = true;
266 break;
267 }
268
269 /* Ensure that the inter-port SWSM.SMBI lock bit is clear before
270 * first NVM or PHY access. This should be done for single-port
271 * devices, and for one port only on dual-port devices so that
272 * for those devices we can still use the SMBI lock to synchronize
273 * inter-port accesses to the PHY & NVM.
274 */
275 switch (hw->mac.type) {
276 case e1000_82571:
277 case e1000_82572:
278 swsm2 = er32(SWSM2);
279
280 if (!(swsm2 & E1000_SWSM2_LOCK)) {
281 /* Only do this for the first interface on this card */
282 ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
283 force_clear_smbi = true;
284 } else {
285 force_clear_smbi = false;
286 }
287 break;
288 default:
289 force_clear_smbi = true;
290 break;
291 }
292
293 if (force_clear_smbi) {
294 /* Make sure SWSM.SMBI is clear */
295 swsm = er32(SWSM);
296 if (swsm & E1000_SWSM_SMBI) {
297 /* This bit should not be set on a first interface, and
298 * indicates that the bootagent or EFI code has
299 * improperly left this bit enabled
300 */
301 e_dbg("Please update your 82571 Bootagent\n");
302 }
303 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
304 }
305
306 /* Initialize device specific counter of SMBI acquisition timeouts. */
307 hw->dev_spec.e82571.smb_counter = 0;
308
309 return 0;
310}
311
312static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
313{
314 struct e1000_hw *hw = &adapter->hw;
315 static int global_quad_port_a; /* global port a indication */
316 struct pci_dev *pdev = adapter->pdev;
317 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
318 s32 rc;
319
320 rc = e1000_init_mac_params_82571(hw);
321 if (rc)
322 return rc;
323
324 rc = e1000_init_nvm_params_82571(hw);
325 if (rc)
326 return rc;
327
328 rc = e1000_init_phy_params_82571(hw);
329 if (rc)
330 return rc;
331
332 /* tag quad port adapters first, it's used below */
333 switch (pdev->device) {
334 case E1000_DEV_ID_82571EB_QUAD_COPPER:
335 case E1000_DEV_ID_82571EB_QUAD_FIBER:
336 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
337 case E1000_DEV_ID_82571PT_QUAD_COPPER:
338 adapter->flags |= FLAG_IS_QUAD_PORT;
339 /* mark the first port */
340 if (global_quad_port_a == 0)
341 adapter->flags |= FLAG_IS_QUAD_PORT_A;
342 /* Reset for multiple quad port adapters */
343 global_quad_port_a++;
344 if (global_quad_port_a == 4)
345 global_quad_port_a = 0;
346 break;
347 default:
348 break;
349 }
350
351 switch (adapter->hw.mac.type) {
352 case e1000_82571:
353 /* these dual ports don't have WoL on port B at all */
354 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
355 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
356 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
357 (is_port_b))
358 adapter->flags &= ~FLAG_HAS_WOL;
359 /* quad ports only support WoL on port A */
360 if (adapter->flags & FLAG_IS_QUAD_PORT &&
361 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
362 adapter->flags &= ~FLAG_HAS_WOL;
363 /* Does not support WoL on any port */
364 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
365 adapter->flags &= ~FLAG_HAS_WOL;
366 break;
367 case e1000_82573:
368 if (pdev->device == E1000_DEV_ID_82573L) {
369 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
370 adapter->max_hw_frame_size = DEFAULT_JUMBO;
371 }
372 break;
373 default:
374 break;
375 }
376
377 return 0;
378}
379
380/**
381 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
382 * @hw: pointer to the HW structure
383 *
384 * Reads the PHY registers and stores the PHY ID and possibly the PHY
385 * revision in the hardware structure.
386 **/
387static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
388{
389 struct e1000_phy_info *phy = &hw->phy;
390 s32 ret_val;
391 u16 phy_id = 0;
392
393 switch (hw->mac.type) {
394 case e1000_82571:
395 case e1000_82572:
396 /* The 82571 firmware may still be configuring the PHY.
397 * In this case, we cannot access the PHY until the
398 * configuration is done. So we explicitly set the
399 * PHY ID.
400 */
401 phy->id = IGP01E1000_I_PHY_ID;
402 break;
403 case e1000_82573:
404 return e1000e_get_phy_id(hw);
405 case e1000_82574:
406 case e1000_82583:
407 ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
408 if (ret_val)
409 return ret_val;
410
411 phy->id = (u32)(phy_id << 16);
412 usleep_range(20, 40);
413 ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
414 if (ret_val)
415 return ret_val;
416
417 phy->id |= (u32)(phy_id);
418 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
419 break;
420 default:
421 return -E1000_ERR_PHY;
422 }
423
424 return 0;
425}
426
427/**
428 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
429 * @hw: pointer to the HW structure
430 *
431 * Acquire the HW semaphore to access the PHY or NVM
432 **/
433static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
434{
435 u32 swsm;
436 s32 sw_timeout = hw->nvm.word_size + 1;
437 s32 fw_timeout = hw->nvm.word_size + 1;
438 s32 i = 0;
439
440 /* If we have timedout 3 times on trying to acquire
441 * the inter-port SMBI semaphore, there is old code
442 * operating on the other port, and it is not
443 * releasing SMBI. Modify the number of times that
444 * we try for the semaphore to interwork with this
445 * older code.
446 */
447 if (hw->dev_spec.e82571.smb_counter > 2)
448 sw_timeout = 1;
449
450 /* Get the SW semaphore */
451 while (i < sw_timeout) {
452 swsm = er32(SWSM);
453 if (!(swsm & E1000_SWSM_SMBI))
454 break;
455
456 usleep_range(50, 100);
457 i++;
458 }
459
460 if (i == sw_timeout) {
461 e_dbg("Driver can't access device - SMBI bit is set.\n");
462 hw->dev_spec.e82571.smb_counter++;
463 }
464 /* Get the FW semaphore. */
465 for (i = 0; i < fw_timeout; i++) {
466 swsm = er32(SWSM);
467 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
468
469 /* Semaphore acquired if bit latched */
470 if (er32(SWSM) & E1000_SWSM_SWESMBI)
471 break;
472
473 usleep_range(50, 100);
474 }
475
476 if (i == fw_timeout) {
477 /* Release semaphores */
478 e1000_put_hw_semaphore_82571(hw);
479 e_dbg("Driver can't access the NVM\n");
480 return -E1000_ERR_NVM;
481 }
482
483 return 0;
484}
485
486/**
487 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
488 * @hw: pointer to the HW structure
489 *
490 * Release hardware semaphore used to access the PHY or NVM
491 **/
492static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
493{
494 u32 swsm;
495
496 swsm = er32(SWSM);
497 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
498 ew32(SWSM, swsm);
499}
500
501/**
502 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
503 * @hw: pointer to the HW structure
504 *
505 * Acquire the HW semaphore during reset.
506 *
507 **/
508static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
509{
510 u32 extcnf_ctrl;
511 s32 i = 0;
512
513 extcnf_ctrl = er32(EXTCNF_CTRL);
514 do {
515 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
516 ew32(EXTCNF_CTRL, extcnf_ctrl);
517 extcnf_ctrl = er32(EXTCNF_CTRL);
518
519 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
520 break;
521
522 usleep_range(2000, 4000);
523 i++;
524 } while (i < MDIO_OWNERSHIP_TIMEOUT);
525
526 if (i == MDIO_OWNERSHIP_TIMEOUT) {
527 /* Release semaphores */
528 e1000_put_hw_semaphore_82573(hw);
529 e_dbg("Driver can't access the PHY\n");
530 return -E1000_ERR_PHY;
531 }
532
533 return 0;
534}
535
536/**
537 * e1000_put_hw_semaphore_82573 - Release hardware semaphore
538 * @hw: pointer to the HW structure
539 *
540 * Release hardware semaphore used during reset.
541 *
542 **/
543static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
544{
545 u32 extcnf_ctrl;
546
547 extcnf_ctrl = er32(EXTCNF_CTRL);
548 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
549 ew32(EXTCNF_CTRL, extcnf_ctrl);
550}
551
552static DEFINE_MUTEX(swflag_mutex);
553
554/**
555 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
556 * @hw: pointer to the HW structure
557 *
558 * Acquire the HW semaphore to access the PHY or NVM.
559 *
560 **/
561static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
562{
563 s32 ret_val;
564
565 mutex_lock(&swflag_mutex);
566 ret_val = e1000_get_hw_semaphore_82573(hw);
567 if (ret_val)
568 mutex_unlock(&swflag_mutex);
569 return ret_val;
570}
571
572/**
573 * e1000_put_hw_semaphore_82574 - Release hardware semaphore
574 * @hw: pointer to the HW structure
575 *
576 * Release hardware semaphore used to access the PHY or NVM
577 *
578 **/
579static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
580{
581 e1000_put_hw_semaphore_82573(hw);
582 mutex_unlock(&swflag_mutex);
583}
584
585/**
586 * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
587 * @hw: pointer to the HW structure
588 * @active: true to enable LPLU, false to disable
589 *
590 * Sets the LPLU D0 state according to the active flag.
591 * LPLU will not be activated unless the
592 * device autonegotiation advertisement meets standards of
593 * either 10 or 10/100 or 10/100/1000 at all duplexes.
594 * This is a function pointer entry point only called by
595 * PHY setup routines.
596 **/
597static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
598{
599 u32 data = er32(POEMB);
600
601 if (active)
602 data |= E1000_PHY_CTRL_D0A_LPLU;
603 else
604 data &= ~E1000_PHY_CTRL_D0A_LPLU;
605
606 ew32(POEMB, data);
607 return 0;
608}
609
610/**
611 * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
612 * @hw: pointer to the HW structure
613 * @active: boolean used to enable/disable lplu
614 *
615 * The low power link up (lplu) state is set to the power management level D3
616 * when active is true, else clear lplu for D3. LPLU
617 * is used during Dx states where the power conservation is most important.
618 * During driver activity, SmartSpeed should be enabled so performance is
619 * maintained.
620 **/
621static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
622{
623 u32 data = er32(POEMB);
624
625 if (!active) {
626 data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
627 } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
628 (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
629 (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
630 data |= E1000_PHY_CTRL_NOND0A_LPLU;
631 }
632
633 ew32(POEMB, data);
634 return 0;
635}
636
637/**
638 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
639 * @hw: pointer to the HW structure
640 *
641 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
642 * Then for non-82573 hardware, set the EEPROM access request bit and wait
643 * for EEPROM access grant bit. If the access grant bit is not set, release
644 * hardware semaphore.
645 **/
646static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
647{
648 s32 ret_val;
649
650 ret_val = e1000_get_hw_semaphore_82571(hw);
651 if (ret_val)
652 return ret_val;
653
654 switch (hw->mac.type) {
655 case e1000_82573:
656 break;
657 default:
658 ret_val = e1000e_acquire_nvm(hw);
659 break;
660 }
661
662 if (ret_val)
663 e1000_put_hw_semaphore_82571(hw);
664
665 return ret_val;
666}
667
668/**
669 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
670 * @hw: pointer to the HW structure
671 *
672 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
673 **/
674static void e1000_release_nvm_82571(struct e1000_hw *hw)
675{
676 e1000e_release_nvm(hw);
677 e1000_put_hw_semaphore_82571(hw);
678}
679
680/**
681 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
682 * @hw: pointer to the HW structure
683 * @offset: offset within the EEPROM to be written to
684 * @words: number of words to write
685 * @data: 16 bit word(s) to be written to the EEPROM
686 *
687 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
688 *
689 * If e1000e_update_nvm_checksum is not called after this function, the
690 * EEPROM will most likely contain an invalid checksum.
691 **/
692static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
693 u16 *data)
694{
695 s32 ret_val;
696
697 switch (hw->mac.type) {
698 case e1000_82573:
699 case e1000_82574:
700 case e1000_82583:
701 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
702 break;
703 case e1000_82571:
704 case e1000_82572:
705 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
706 break;
707 default:
708 ret_val = -E1000_ERR_NVM;
709 break;
710 }
711
712 return ret_val;
713}
714
715/**
716 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
717 * @hw: pointer to the HW structure
718 *
719 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
720 * up to the checksum. Then calculates the EEPROM checksum and writes the
721 * value to the EEPROM.
722 **/
723static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
724{
725 u32 eecd;
726 s32 ret_val;
727 u16 i;
728
729 ret_val = e1000e_update_nvm_checksum_generic(hw);
730 if (ret_val)
731 return ret_val;
732
733 /* If our nvm is an EEPROM, then we're done
734 * otherwise, commit the checksum to the flash NVM.
735 */
736 if (hw->nvm.type != e1000_nvm_flash_hw)
737 return 0;
738
739 /* Check for pending operations. */
740 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
741 usleep_range(1000, 2000);
742 if (!(er32(EECD) & E1000_EECD_FLUPD))
743 break;
744 }
745
746 if (i == E1000_FLASH_UPDATES)
747 return -E1000_ERR_NVM;
748
749 /* Reset the firmware if using STM opcode. */
750 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
751 /* The enabling of and the actual reset must be done
752 * in two write cycles.
753 */
754 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
755 e1e_flush();
756 ew32(HICR, E1000_HICR_FW_RESET);
757 }
758
759 /* Commit the write to flash */
760 eecd = er32(EECD) | E1000_EECD_FLUPD;
761 ew32(EECD, eecd);
762
763 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
764 usleep_range(1000, 2000);
765 if (!(er32(EECD) & E1000_EECD_FLUPD))
766 break;
767 }
768
769 if (i == E1000_FLASH_UPDATES)
770 return -E1000_ERR_NVM;
771
772 return 0;
773}
774
775/**
776 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
777 * @hw: pointer to the HW structure
778 *
779 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
780 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
781 **/
782static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
783{
784 if (hw->nvm.type == e1000_nvm_flash_hw)
785 e1000_fix_nvm_checksum_82571(hw);
786
787 return e1000e_validate_nvm_checksum_generic(hw);
788}
789
790/**
791 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
792 * @hw: pointer to the HW structure
793 * @offset: offset within the EEPROM to be written to
794 * @words: number of words to write
795 * @data: 16 bit word(s) to be written to the EEPROM
796 *
797 * After checking for invalid values, poll the EEPROM to ensure the previous
798 * command has completed before trying to write the next word. After write
799 * poll for completion.
800 *
801 * If e1000e_update_nvm_checksum is not called after this function, the
802 * EEPROM will most likely contain an invalid checksum.
803 **/
804static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
805 u16 words, u16 *data)
806{
807 struct e1000_nvm_info *nvm = &hw->nvm;
808 u32 i, eewr = 0;
809 s32 ret_val = 0;
810
811 /* A check for invalid values: offset too large, too many words,
812 * and not enough words.
813 */
814 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
815 (words == 0)) {
816 e_dbg("nvm parameter(s) out of bounds\n");
817 return -E1000_ERR_NVM;
818 }
819
820 for (i = 0; i < words; i++) {
821 eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
822 ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
823 E1000_NVM_RW_REG_START);
824
825 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
826 if (ret_val)
827 break;
828
829 ew32(EEWR, eewr);
830
831 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
832 if (ret_val)
833 break;
834 }
835
836 return ret_val;
837}
838
839/**
840 * e1000_get_cfg_done_82571 - Poll for configuration done
841 * @hw: pointer to the HW structure
842 *
843 * Reads the management control register for the config done bit to be set.
844 **/
845static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
846{
847 s32 timeout = PHY_CFG_TIMEOUT;
848
849 while (timeout) {
850 if (er32(EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0)
851 break;
852 usleep_range(1000, 2000);
853 timeout--;
854 }
855 if (!timeout) {
856 e_dbg("MNG configuration cycle has not completed.\n");
857 return -E1000_ERR_RESET;
858 }
859
860 return 0;
861}
862
863/**
864 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
865 * @hw: pointer to the HW structure
866 * @active: true to enable LPLU, false to disable
867 *
868 * Sets the LPLU D0 state according to the active flag. When activating LPLU
869 * this function also disables smart speed and vice versa. LPLU will not be
870 * activated unless the device autonegotiation advertisement meets standards
871 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
872 * pointer entry point only called by PHY setup routines.
873 **/
874static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
875{
876 struct e1000_phy_info *phy = &hw->phy;
877 s32 ret_val;
878 u16 data;
879
880 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
881 if (ret_val)
882 return ret_val;
883
884 if (active) {
885 data |= IGP02E1000_PM_D0_LPLU;
886 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
887 if (ret_val)
888 return ret_val;
889
890 /* When LPLU is enabled, we should disable SmartSpeed */
891 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
892 if (ret_val)
893 return ret_val;
894 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
895 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
896 if (ret_val)
897 return ret_val;
898 } else {
899 data &= ~IGP02E1000_PM_D0_LPLU;
900 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
901 if (ret_val)
902 return ret_val;
903 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
904 * during Dx states where the power conservation is most
905 * important. During driver activity we should enable
906 * SmartSpeed, so performance is maintained.
907 */
908 if (phy->smart_speed == e1000_smart_speed_on) {
909 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
910 &data);
911 if (ret_val)
912 return ret_val;
913
914 data |= IGP01E1000_PSCFR_SMART_SPEED;
915 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
916 data);
917 if (ret_val)
918 return ret_val;
919 } else if (phy->smart_speed == e1000_smart_speed_off) {
920 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
921 &data);
922 if (ret_val)
923 return ret_val;
924
925 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
926 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
927 data);
928 if (ret_val)
929 return ret_val;
930 }
931 }
932
933 return 0;
934}
935
936/**
937 * e1000_reset_hw_82571 - Reset hardware
938 * @hw: pointer to the HW structure
939 *
940 * This resets the hardware into a known state.
941 **/
942static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
943{
944 u32 ctrl, ctrl_ext, eecd, tctl;
945 s32 ret_val;
946
947 /* Prevent the PCI-E bus from sticking if there is no TLP connection
948 * on the last TLP read/write transaction when MAC is reset.
949 */
950 ret_val = e1000e_disable_pcie_master(hw);
951 if (ret_val)
952 e_dbg("PCI-E Master disable polling has failed.\n");
953
954 e_dbg("Masking off all interrupts\n");
955 ew32(IMC, 0xffffffff);
956
957 ew32(RCTL, 0);
958 tctl = er32(TCTL);
959 tctl &= ~E1000_TCTL_EN;
960 ew32(TCTL, tctl);
961 e1e_flush();
962
963 usleep_range(10000, 11000);
964
965 /* Must acquire the MDIO ownership before MAC reset.
966 * Ownership defaults to firmware after a reset.
967 */
968 switch (hw->mac.type) {
969 case e1000_82573:
970 ret_val = e1000_get_hw_semaphore_82573(hw);
971 break;
972 case e1000_82574:
973 case e1000_82583:
974 ret_val = e1000_get_hw_semaphore_82574(hw);
975 break;
976 default:
977 break;
978 }
979
980 ctrl = er32(CTRL);
981
982 e_dbg("Issuing a global reset to MAC\n");
983 ew32(CTRL, ctrl | E1000_CTRL_RST);
984
985 /* Must release MDIO ownership and mutex after MAC reset. */
986 switch (hw->mac.type) {
987 case e1000_82573:
988 /* Release mutex only if the hw semaphore is acquired */
989 if (!ret_val)
990 e1000_put_hw_semaphore_82573(hw);
991 break;
992 case e1000_82574:
993 case e1000_82583:
994 /* Release mutex only if the hw semaphore is acquired */
995 if (!ret_val)
996 e1000_put_hw_semaphore_82574(hw);
997 break;
998 default:
999 break;
1000 }
1001
1002 if (hw->nvm.type == e1000_nvm_flash_hw) {
1003 usleep_range(10, 20);
1004 ctrl_ext = er32(CTRL_EXT);
1005 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1006 ew32(CTRL_EXT, ctrl_ext);
1007 e1e_flush();
1008 }
1009
1010 ret_val = e1000e_get_auto_rd_done(hw);
1011 if (ret_val)
1012 /* We don't want to continue accessing MAC registers. */
1013 return ret_val;
1014
1015 /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1016 * Need to wait for Phy configuration completion before accessing
1017 * NVM and Phy.
1018 */
1019
1020 switch (hw->mac.type) {
1021 case e1000_82571:
1022 case e1000_82572:
1023 /* REQ and GNT bits need to be cleared when using AUTO_RD
1024 * to access the EEPROM.
1025 */
1026 eecd = er32(EECD);
1027 eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1028 ew32(EECD, eecd);
1029 break;
1030 case e1000_82573:
1031 case e1000_82574:
1032 case e1000_82583:
1033 msleep(25);
1034 break;
1035 default:
1036 break;
1037 }
1038
1039 /* Clear any pending interrupt events. */
1040 ew32(IMC, 0xffffffff);
1041 er32(ICR);
1042
1043 if (hw->mac.type == e1000_82571) {
1044 /* Install any alternate MAC address into RAR0 */
1045 ret_val = e1000_check_alt_mac_addr_generic(hw);
1046 if (ret_val)
1047 return ret_val;
1048
1049 e1000e_set_laa_state_82571(hw, true);
1050 }
1051
1052 /* Reinitialize the 82571 serdes link state machine */
1053 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1054 hw->mac.serdes_link_state = e1000_serdes_link_down;
1055
1056 return 0;
1057}
1058
1059/**
1060 * e1000_init_hw_82571 - Initialize hardware
1061 * @hw: pointer to the HW structure
1062 *
1063 * This inits the hardware readying it for operation.
1064 **/
1065static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1066{
1067 struct e1000_mac_info *mac = &hw->mac;
1068 u32 reg_data;
1069 s32 ret_val;
1070 u16 i, rar_count = mac->rar_entry_count;
1071
1072 e1000_initialize_hw_bits_82571(hw);
1073
1074 /* Initialize identification LED */
1075 ret_val = mac->ops.id_led_init(hw);
1076 /* An error is not fatal and we should not stop init due to this */
1077 if (ret_val)
1078 e_dbg("Error initializing identification LED\n");
1079
1080 /* Disabling VLAN filtering */
1081 e_dbg("Initializing the IEEE VLAN\n");
1082 mac->ops.clear_vfta(hw);
1083
1084 /* Setup the receive address.
1085 * If, however, a locally administered address was assigned to the
1086 * 82571, we must reserve a RAR for it to work around an issue where
1087 * resetting one port will reload the MAC on the other port.
1088 */
1089 if (e1000e_get_laa_state_82571(hw))
1090 rar_count--;
1091 e1000e_init_rx_addrs(hw, rar_count);
1092
1093 /* Zero out the Multicast HASH table */
1094 e_dbg("Zeroing the MTA\n");
1095 for (i = 0; i < mac->mta_reg_count; i++)
1096 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1097
1098 /* Setup link and flow control */
1099 ret_val = mac->ops.setup_link(hw);
1100
1101 /* Set the transmit descriptor write-back policy */
1102 reg_data = er32(TXDCTL(0));
1103 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1104 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
1105 ew32(TXDCTL(0), reg_data);
1106
1107 /* ...for both queues. */
1108 switch (mac->type) {
1109 case e1000_82573:
1110 e1000e_enable_tx_pkt_filtering(hw);
1111 fallthrough;
1112 case e1000_82574:
1113 case e1000_82583:
1114 reg_data = er32(GCR);
1115 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1116 ew32(GCR, reg_data);
1117 break;
1118 default:
1119 reg_data = er32(TXDCTL(1));
1120 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1121 E1000_TXDCTL_FULL_TX_DESC_WB |
1122 E1000_TXDCTL_COUNT_DESC);
1123 ew32(TXDCTL(1), reg_data);
1124 break;
1125 }
1126
1127 /* Clear all of the statistics registers (clear on read). It is
1128 * important that we do this after we have tried to establish link
1129 * because the symbol error count will increment wildly if there
1130 * is no link.
1131 */
1132 e1000_clear_hw_cntrs_82571(hw);
1133
1134 return ret_val;
1135}
1136
1137/**
1138 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1139 * @hw: pointer to the HW structure
1140 *
1141 * Initializes required hardware-dependent bits needed for normal operation.
1142 **/
1143static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1144{
1145 u32 reg;
1146
1147 /* Transmit Descriptor Control 0 */
1148 reg = er32(TXDCTL(0));
1149 reg |= BIT(22);
1150 ew32(TXDCTL(0), reg);
1151
1152 /* Transmit Descriptor Control 1 */
1153 reg = er32(TXDCTL(1));
1154 reg |= BIT(22);
1155 ew32(TXDCTL(1), reg);
1156
1157 /* Transmit Arbitration Control 0 */
1158 reg = er32(TARC(0));
1159 reg &= ~(0xF << 27); /* 30:27 */
1160 switch (hw->mac.type) {
1161 case e1000_82571:
1162 case e1000_82572:
1163 reg |= BIT(23) | BIT(24) | BIT(25) | BIT(26);
1164 break;
1165 case e1000_82574:
1166 case e1000_82583:
1167 reg |= BIT(26);
1168 break;
1169 default:
1170 break;
1171 }
1172 ew32(TARC(0), reg);
1173
1174 /* Transmit Arbitration Control 1 */
1175 reg = er32(TARC(1));
1176 switch (hw->mac.type) {
1177 case e1000_82571:
1178 case e1000_82572:
1179 reg &= ~(BIT(29) | BIT(30));
1180 reg |= BIT(22) | BIT(24) | BIT(25) | BIT(26);
1181 if (er32(TCTL) & E1000_TCTL_MULR)
1182 reg &= ~BIT(28);
1183 else
1184 reg |= BIT(28);
1185 ew32(TARC(1), reg);
1186 break;
1187 default:
1188 break;
1189 }
1190
1191 /* Device Control */
1192 switch (hw->mac.type) {
1193 case e1000_82573:
1194 case e1000_82574:
1195 case e1000_82583:
1196 reg = er32(CTRL);
1197 reg &= ~BIT(29);
1198 ew32(CTRL, reg);
1199 break;
1200 default:
1201 break;
1202 }
1203
1204 /* Extended Device Control */
1205 switch (hw->mac.type) {
1206 case e1000_82573:
1207 case e1000_82574:
1208 case e1000_82583:
1209 reg = er32(CTRL_EXT);
1210 reg &= ~BIT(23);
1211 reg |= BIT(22);
1212 ew32(CTRL_EXT, reg);
1213 break;
1214 default:
1215 break;
1216 }
1217
1218 if (hw->mac.type == e1000_82571) {
1219 reg = er32(PBA_ECC);
1220 reg |= E1000_PBA_ECC_CORR_EN;
1221 ew32(PBA_ECC, reg);
1222 }
1223
1224 /* Workaround for hardware errata.
1225 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1226 */
1227 if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1228 reg = er32(CTRL_EXT);
1229 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1230 ew32(CTRL_EXT, reg);
1231 }
1232
1233 /* Disable IPv6 extension header parsing because some malformed
1234 * IPv6 headers can hang the Rx.
1235 */
1236 if (hw->mac.type <= e1000_82573) {
1237 reg = er32(RFCTL);
1238 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1239 ew32(RFCTL, reg);
1240 }
1241
1242 /* PCI-Ex Control Registers */
1243 switch (hw->mac.type) {
1244 case e1000_82574:
1245 case e1000_82583:
1246 reg = er32(GCR);
1247 reg |= BIT(22);
1248 ew32(GCR, reg);
1249
1250 /* Workaround for hardware errata.
1251 * apply workaround for hardware errata documented in errata
1252 * docs Fixes issue where some error prone or unreliable PCIe
1253 * completions are occurring, particularly with ASPM enabled.
1254 * Without fix, issue can cause Tx timeouts.
1255 */
1256 reg = er32(GCR2);
1257 reg |= 1;
1258 ew32(GCR2, reg);
1259 break;
1260 default:
1261 break;
1262 }
1263}
1264
1265/**
1266 * e1000_clear_vfta_82571 - Clear VLAN filter table
1267 * @hw: pointer to the HW structure
1268 *
1269 * Clears the register array which contains the VLAN filter table by
1270 * setting all the values to 0.
1271 **/
1272static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1273{
1274 u32 offset;
1275 u32 vfta_value = 0;
1276 u32 vfta_offset = 0;
1277 u32 vfta_bit_in_reg = 0;
1278
1279 switch (hw->mac.type) {
1280 case e1000_82573:
1281 case e1000_82574:
1282 case e1000_82583:
1283 if (hw->mng_cookie.vlan_id != 0) {
1284 /* The VFTA is a 4096b bit-field, each identifying
1285 * a single VLAN ID. The following operations
1286 * determine which 32b entry (i.e. offset) into the
1287 * array we want to set the VLAN ID (i.e. bit) of
1288 * the manageability unit.
1289 */
1290 vfta_offset = (hw->mng_cookie.vlan_id >>
1291 E1000_VFTA_ENTRY_SHIFT) &
1292 E1000_VFTA_ENTRY_MASK;
1293 vfta_bit_in_reg =
1294 BIT(hw->mng_cookie.vlan_id &
1295 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1296 }
1297 break;
1298 default:
1299 break;
1300 }
1301 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1302 /* If the offset we want to clear is the same offset of the
1303 * manageability VLAN ID, then clear all bits except that of
1304 * the manageability unit.
1305 */
1306 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1307 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1308 e1e_flush();
1309 }
1310}
1311
1312/**
1313 * e1000_check_mng_mode_82574 - Check manageability is enabled
1314 * @hw: pointer to the HW structure
1315 *
1316 * Reads the NVM Initialization Control Word 2 and returns true
1317 * (>0) if any manageability is enabled, else false (0).
1318 **/
1319static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1320{
1321 u16 data;
1322
1323 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1324 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1325}
1326
1327/**
1328 * e1000_led_on_82574 - Turn LED on
1329 * @hw: pointer to the HW structure
1330 *
1331 * Turn LED on.
1332 **/
1333static s32 e1000_led_on_82574(struct e1000_hw *hw)
1334{
1335 u32 ctrl;
1336 u32 i;
1337
1338 ctrl = hw->mac.ledctl_mode2;
1339 if (!(E1000_STATUS_LU & er32(STATUS))) {
1340 /* If no link, then turn LED on by setting the invert bit
1341 * for each LED that's "on" (0x0E) in ledctl_mode2.
1342 */
1343 for (i = 0; i < 4; i++)
1344 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1345 E1000_LEDCTL_MODE_LED_ON)
1346 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1347 }
1348 ew32(LEDCTL, ctrl);
1349
1350 return 0;
1351}
1352
1353/**
1354 * e1000_check_phy_82574 - check 82574 phy hung state
1355 * @hw: pointer to the HW structure
1356 *
1357 * Returns whether phy is hung or not
1358 **/
1359bool e1000_check_phy_82574(struct e1000_hw *hw)
1360{
1361 u16 status_1kbt = 0;
1362 u16 receive_errors = 0;
1363 s32 ret_val;
1364
1365 /* Read PHY Receive Error counter first, if its is max - all F's then
1366 * read the Base1000T status register If both are max then PHY is hung.
1367 */
1368 ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1369 if (ret_val)
1370 return false;
1371 if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1372 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1373 if (ret_val)
1374 return false;
1375 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1376 E1000_IDLE_ERROR_COUNT_MASK)
1377 return true;
1378 }
1379
1380 return false;
1381}
1382
1383/**
1384 * e1000_setup_link_82571 - Setup flow control and link settings
1385 * @hw: pointer to the HW structure
1386 *
1387 * Determines which flow control settings to use, then configures flow
1388 * control. Calls the appropriate media-specific link configuration
1389 * function. Assuming the adapter has a valid link partner, a valid link
1390 * should be established. Assumes the hardware has previously been reset
1391 * and the transmitter and receiver are not enabled.
1392 **/
1393static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1394{
1395 /* 82573 does not have a word in the NVM to determine
1396 * the default flow control setting, so we explicitly
1397 * set it to full.
1398 */
1399 switch (hw->mac.type) {
1400 case e1000_82573:
1401 case e1000_82574:
1402 case e1000_82583:
1403 if (hw->fc.requested_mode == e1000_fc_default)
1404 hw->fc.requested_mode = e1000_fc_full;
1405 break;
1406 default:
1407 break;
1408 }
1409
1410 return e1000e_setup_link_generic(hw);
1411}
1412
1413/**
1414 * e1000_setup_copper_link_82571 - Configure copper link settings
1415 * @hw: pointer to the HW structure
1416 *
1417 * Configures the link for auto-neg or forced speed and duplex. Then we check
1418 * for link, once link is established calls to configure collision distance
1419 * and flow control are called.
1420 **/
1421static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1422{
1423 u32 ctrl;
1424 s32 ret_val;
1425
1426 ctrl = er32(CTRL);
1427 ctrl |= E1000_CTRL_SLU;
1428 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1429 ew32(CTRL, ctrl);
1430
1431 switch (hw->phy.type) {
1432 case e1000_phy_m88:
1433 case e1000_phy_bm:
1434 ret_val = e1000e_copper_link_setup_m88(hw);
1435 break;
1436 case e1000_phy_igp_2:
1437 ret_val = e1000e_copper_link_setup_igp(hw);
1438 break;
1439 default:
1440 return -E1000_ERR_PHY;
1441 }
1442
1443 if (ret_val)
1444 return ret_val;
1445
1446 return e1000e_setup_copper_link(hw);
1447}
1448
1449/**
1450 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1451 * @hw: pointer to the HW structure
1452 *
1453 * Configures collision distance and flow control for fiber and serdes links.
1454 * Upon successful setup, poll for link.
1455 **/
1456static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1457{
1458 switch (hw->mac.type) {
1459 case e1000_82571:
1460 case e1000_82572:
1461 /* If SerDes loopback mode is entered, there is no form
1462 * of reset to take the adapter out of that mode. So we
1463 * have to explicitly take the adapter out of loopback
1464 * mode. This prevents drivers from twiddling their thumbs
1465 * if another tool failed to take it out of loopback mode.
1466 */
1467 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1468 break;
1469 default:
1470 break;
1471 }
1472
1473 return e1000e_setup_fiber_serdes_link(hw);
1474}
1475
1476/**
1477 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1478 * @hw: pointer to the HW structure
1479 *
1480 * Reports the link state as up or down.
1481 *
1482 * If autonegotiation is supported by the link partner, the link state is
1483 * determined by the result of autonegotiation. This is the most likely case.
1484 * If autonegotiation is not supported by the link partner, and the link
1485 * has a valid signal, force the link up.
1486 *
1487 * The link state is represented internally here by 4 states:
1488 *
1489 * 1) down
1490 * 2) autoneg_progress
1491 * 3) autoneg_complete (the link successfully autonegotiated)
1492 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1493 *
1494 **/
1495static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1496{
1497 struct e1000_mac_info *mac = &hw->mac;
1498 u32 rxcw;
1499 u32 ctrl;
1500 u32 status;
1501 u32 txcw;
1502 u32 i;
1503 s32 ret_val = 0;
1504
1505 ctrl = er32(CTRL);
1506 status = er32(STATUS);
1507 er32(RXCW);
1508 /* SYNCH bit and IV bit are sticky */
1509 usleep_range(10, 20);
1510 rxcw = er32(RXCW);
1511
1512 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1513 /* Receiver is synchronized with no invalid bits. */
1514 switch (mac->serdes_link_state) {
1515 case e1000_serdes_link_autoneg_complete:
1516 if (!(status & E1000_STATUS_LU)) {
1517 /* We have lost link, retry autoneg before
1518 * reporting link failure
1519 */
1520 mac->serdes_link_state =
1521 e1000_serdes_link_autoneg_progress;
1522 mac->serdes_has_link = false;
1523 e_dbg("AN_UP -> AN_PROG\n");
1524 } else {
1525 mac->serdes_has_link = true;
1526 }
1527 break;
1528
1529 case e1000_serdes_link_forced_up:
1530 /* If we are receiving /C/ ordered sets, re-enable
1531 * auto-negotiation in the TXCW register and disable
1532 * forced link in the Device Control register in an
1533 * attempt to auto-negotiate with our link partner.
1534 */
1535 if (rxcw & E1000_RXCW_C) {
1536 /* Enable autoneg, and unforce link up */
1537 ew32(TXCW, mac->txcw);
1538 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1539 mac->serdes_link_state =
1540 e1000_serdes_link_autoneg_progress;
1541 mac->serdes_has_link = false;
1542 e_dbg("FORCED_UP -> AN_PROG\n");
1543 } else {
1544 mac->serdes_has_link = true;
1545 }
1546 break;
1547
1548 case e1000_serdes_link_autoneg_progress:
1549 if (rxcw & E1000_RXCW_C) {
1550 /* We received /C/ ordered sets, meaning the
1551 * link partner has autonegotiated, and we can
1552 * trust the Link Up (LU) status bit.
1553 */
1554 if (status & E1000_STATUS_LU) {
1555 mac->serdes_link_state =
1556 e1000_serdes_link_autoneg_complete;
1557 e_dbg("AN_PROG -> AN_UP\n");
1558 mac->serdes_has_link = true;
1559 } else {
1560 /* Autoneg completed, but failed. */
1561 mac->serdes_link_state =
1562 e1000_serdes_link_down;
1563 e_dbg("AN_PROG -> DOWN\n");
1564 }
1565 } else {
1566 /* The link partner did not autoneg.
1567 * Force link up and full duplex, and change
1568 * state to forced.
1569 */
1570 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1571 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1572 ew32(CTRL, ctrl);
1573
1574 /* Configure Flow Control after link up. */
1575 ret_val = e1000e_config_fc_after_link_up(hw);
1576 if (ret_val) {
1577 e_dbg("Error config flow control\n");
1578 break;
1579 }
1580 mac->serdes_link_state =
1581 e1000_serdes_link_forced_up;
1582 mac->serdes_has_link = true;
1583 e_dbg("AN_PROG -> FORCED_UP\n");
1584 }
1585 break;
1586
1587 case e1000_serdes_link_down:
1588 default:
1589 /* The link was down but the receiver has now gained
1590 * valid sync, so lets see if we can bring the link
1591 * up.
1592 */
1593 ew32(TXCW, mac->txcw);
1594 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1595 mac->serdes_link_state =
1596 e1000_serdes_link_autoneg_progress;
1597 mac->serdes_has_link = false;
1598 e_dbg("DOWN -> AN_PROG\n");
1599 break;
1600 }
1601 } else {
1602 if (!(rxcw & E1000_RXCW_SYNCH)) {
1603 mac->serdes_has_link = false;
1604 mac->serdes_link_state = e1000_serdes_link_down;
1605 e_dbg("ANYSTATE -> DOWN\n");
1606 } else {
1607 /* Check several times, if SYNCH bit and CONFIG
1608 * bit both are consistently 1 then simply ignore
1609 * the IV bit and restart Autoneg
1610 */
1611 for (i = 0; i < AN_RETRY_COUNT; i++) {
1612 usleep_range(10, 20);
1613 rxcw = er32(RXCW);
1614 if ((rxcw & E1000_RXCW_SYNCH) &&
1615 (rxcw & E1000_RXCW_C))
1616 continue;
1617
1618 if (rxcw & E1000_RXCW_IV) {
1619 mac->serdes_has_link = false;
1620 mac->serdes_link_state =
1621 e1000_serdes_link_down;
1622 e_dbg("ANYSTATE -> DOWN\n");
1623 break;
1624 }
1625 }
1626
1627 if (i == AN_RETRY_COUNT) {
1628 txcw = er32(TXCW);
1629 txcw |= E1000_TXCW_ANE;
1630 ew32(TXCW, txcw);
1631 mac->serdes_link_state =
1632 e1000_serdes_link_autoneg_progress;
1633 mac->serdes_has_link = false;
1634 e_dbg("ANYSTATE -> AN_PROG\n");
1635 }
1636 }
1637 }
1638
1639 return ret_val;
1640}
1641
1642/**
1643 * e1000_valid_led_default_82571 - Verify a valid default LED config
1644 * @hw: pointer to the HW structure
1645 * @data: pointer to the NVM (EEPROM)
1646 *
1647 * Read the EEPROM for the current default LED configuration. If the
1648 * LED configuration is not valid, set to a valid LED configuration.
1649 **/
1650static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1651{
1652 s32 ret_val;
1653
1654 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1655 if (ret_val) {
1656 e_dbg("NVM Read Error\n");
1657 return ret_val;
1658 }
1659
1660 switch (hw->mac.type) {
1661 case e1000_82573:
1662 case e1000_82574:
1663 case e1000_82583:
1664 if (*data == ID_LED_RESERVED_F746)
1665 *data = ID_LED_DEFAULT_82573;
1666 break;
1667 default:
1668 if (*data == ID_LED_RESERVED_0000 ||
1669 *data == ID_LED_RESERVED_FFFF)
1670 *data = ID_LED_DEFAULT;
1671 break;
1672 }
1673
1674 return 0;
1675}
1676
1677/**
1678 * e1000e_get_laa_state_82571 - Get locally administered address state
1679 * @hw: pointer to the HW structure
1680 *
1681 * Retrieve and return the current locally administered address state.
1682 **/
1683bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1684{
1685 if (hw->mac.type != e1000_82571)
1686 return false;
1687
1688 return hw->dev_spec.e82571.laa_is_present;
1689}
1690
1691/**
1692 * e1000e_set_laa_state_82571 - Set locally administered address state
1693 * @hw: pointer to the HW structure
1694 * @state: enable/disable locally administered address
1695 *
1696 * Enable/Disable the current locally administered address state.
1697 **/
1698void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1699{
1700 if (hw->mac.type != e1000_82571)
1701 return;
1702
1703 hw->dev_spec.e82571.laa_is_present = state;
1704
1705 /* If workaround is activated... */
1706 if (state)
1707 /* Hold a copy of the LAA in RAR[14] This is done so that
1708 * between the time RAR[0] gets clobbered and the time it
1709 * gets fixed, the actual LAA is in one of the RARs and no
1710 * incoming packets directed to this port are dropped.
1711 * Eventually the LAA will be in RAR[0] and RAR[14].
1712 */
1713 hw->mac.ops.rar_set(hw, hw->mac.addr,
1714 hw->mac.rar_entry_count - 1);
1715}
1716
1717/**
1718 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1719 * @hw: pointer to the HW structure
1720 *
1721 * Verifies that the EEPROM has completed the update. After updating the
1722 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1723 * the checksum fix is not implemented, we need to set the bit and update
1724 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1725 * we need to return bad checksum.
1726 **/
1727static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1728{
1729 struct e1000_nvm_info *nvm = &hw->nvm;
1730 s32 ret_val;
1731 u16 data;
1732
1733 if (nvm->type != e1000_nvm_flash_hw)
1734 return 0;
1735
1736 /* Check bit 4 of word 10h. If it is 0, firmware is done updating
1737 * 10h-12h. Checksum may need to be fixed.
1738 */
1739 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1740 if (ret_val)
1741 return ret_val;
1742
1743 if (!(data & 0x10)) {
1744 /* Read 0x23 and check bit 15. This bit is a 1
1745 * when the checksum has already been fixed. If
1746 * the checksum is still wrong and this bit is a
1747 * 1, we need to return bad checksum. Otherwise,
1748 * we need to set this bit to a 1 and update the
1749 * checksum.
1750 */
1751 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1752 if (ret_val)
1753 return ret_val;
1754
1755 if (!(data & 0x8000)) {
1756 data |= 0x8000;
1757 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1758 if (ret_val)
1759 return ret_val;
1760 ret_val = e1000e_update_nvm_checksum(hw);
1761 if (ret_val)
1762 return ret_val;
1763 }
1764 }
1765
1766 return 0;
1767}
1768
1769/**
1770 * e1000_read_mac_addr_82571 - Read device MAC address
1771 * @hw: pointer to the HW structure
1772 **/
1773static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1774{
1775 if (hw->mac.type == e1000_82571) {
1776 s32 ret_val;
1777
1778 /* If there's an alternate MAC address place it in RAR0
1779 * so that it will override the Si installed default perm
1780 * address.
1781 */
1782 ret_val = e1000_check_alt_mac_addr_generic(hw);
1783 if (ret_val)
1784 return ret_val;
1785 }
1786
1787 return e1000_read_mac_addr_generic(hw);
1788}
1789
1790/**
1791 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1792 * @hw: pointer to the HW structure
1793 *
1794 * In the case of a PHY power down to save power, or to turn off link during a
1795 * driver unload, or wake on lan is not enabled, remove the link.
1796 **/
1797static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1798{
1799 struct e1000_phy_info *phy = &hw->phy;
1800 struct e1000_mac_info *mac = &hw->mac;
1801
1802 if (!phy->ops.check_reset_block)
1803 return;
1804
1805 /* If the management interface is not enabled, then power down */
1806 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1807 e1000_power_down_phy_copper(hw);
1808}
1809
1810/**
1811 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1812 * @hw: pointer to the HW structure
1813 *
1814 * Clears the hardware counters by reading the counter registers.
1815 **/
1816static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1817{
1818 e1000e_clear_hw_cntrs_base(hw);
1819
1820 er32(PRC64);
1821 er32(PRC127);
1822 er32(PRC255);
1823 er32(PRC511);
1824 er32(PRC1023);
1825 er32(PRC1522);
1826 er32(PTC64);
1827 er32(PTC127);
1828 er32(PTC255);
1829 er32(PTC511);
1830 er32(PTC1023);
1831 er32(PTC1522);
1832
1833 er32(ALGNERRC);
1834 er32(RXERRC);
1835 er32(TNCRS);
1836 er32(CEXTERR);
1837 er32(TSCTC);
1838 er32(TSCTFC);
1839
1840 er32(MGTPRC);
1841 er32(MGTPDC);
1842 er32(MGTPTC);
1843
1844 er32(IAC);
1845 er32(ICRXOC);
1846
1847 er32(ICRXPTC);
1848 er32(ICRXATC);
1849 er32(ICTXPTC);
1850 er32(ICTXATC);
1851 er32(ICTXQEC);
1852 er32(ICTXQMTC);
1853 er32(ICRXDMTC);
1854}
1855
1856static const struct e1000_mac_operations e82571_mac_ops = {
1857 /* .check_mng_mode: mac type dependent */
1858 /* .check_for_link: media type dependent */
1859 .id_led_init = e1000e_id_led_init_generic,
1860 .cleanup_led = e1000e_cleanup_led_generic,
1861 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1862 .get_bus_info = e1000e_get_bus_info_pcie,
1863 .set_lan_id = e1000_set_lan_id_multi_port_pcie,
1864 /* .get_link_up_info: media type dependent */
1865 /* .led_on: mac type dependent */
1866 .led_off = e1000e_led_off_generic,
1867 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
1868 .write_vfta = e1000_write_vfta_generic,
1869 .clear_vfta = e1000_clear_vfta_82571,
1870 .reset_hw = e1000_reset_hw_82571,
1871 .init_hw = e1000_init_hw_82571,
1872 .setup_link = e1000_setup_link_82571,
1873 /* .setup_physical_interface: media type dependent */
1874 .setup_led = e1000e_setup_led_generic,
1875 .config_collision_dist = e1000e_config_collision_dist_generic,
1876 .read_mac_addr = e1000_read_mac_addr_82571,
1877 .rar_set = e1000e_rar_set_generic,
1878 .rar_get_count = e1000e_rar_get_count_generic,
1879};
1880
1881static const struct e1000_phy_operations e82_phy_ops_igp = {
1882 .acquire = e1000_get_hw_semaphore_82571,
1883 .check_polarity = e1000_check_polarity_igp,
1884 .check_reset_block = e1000e_check_reset_block_generic,
1885 .commit = NULL,
1886 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1887 .get_cfg_done = e1000_get_cfg_done_82571,
1888 .get_cable_length = e1000e_get_cable_length_igp_2,
1889 .get_info = e1000e_get_phy_info_igp,
1890 .read_reg = e1000e_read_phy_reg_igp,
1891 .release = e1000_put_hw_semaphore_82571,
1892 .reset = e1000e_phy_hw_reset_generic,
1893 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1894 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1895 .write_reg = e1000e_write_phy_reg_igp,
1896 .cfg_on_link_up = NULL,
1897};
1898
1899static const struct e1000_phy_operations e82_phy_ops_m88 = {
1900 .acquire = e1000_get_hw_semaphore_82571,
1901 .check_polarity = e1000_check_polarity_m88,
1902 .check_reset_block = e1000e_check_reset_block_generic,
1903 .commit = e1000e_phy_sw_reset,
1904 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1905 .get_cfg_done = e1000e_get_cfg_done_generic,
1906 .get_cable_length = e1000e_get_cable_length_m88,
1907 .get_info = e1000e_get_phy_info_m88,
1908 .read_reg = e1000e_read_phy_reg_m88,
1909 .release = e1000_put_hw_semaphore_82571,
1910 .reset = e1000e_phy_hw_reset_generic,
1911 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1912 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1913 .write_reg = e1000e_write_phy_reg_m88,
1914 .cfg_on_link_up = NULL,
1915};
1916
1917static const struct e1000_phy_operations e82_phy_ops_bm = {
1918 .acquire = e1000_get_hw_semaphore_82571,
1919 .check_polarity = e1000_check_polarity_m88,
1920 .check_reset_block = e1000e_check_reset_block_generic,
1921 .commit = e1000e_phy_sw_reset,
1922 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1923 .get_cfg_done = e1000e_get_cfg_done_generic,
1924 .get_cable_length = e1000e_get_cable_length_m88,
1925 .get_info = e1000e_get_phy_info_m88,
1926 .read_reg = e1000e_read_phy_reg_bm2,
1927 .release = e1000_put_hw_semaphore_82571,
1928 .reset = e1000e_phy_hw_reset_generic,
1929 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1930 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1931 .write_reg = e1000e_write_phy_reg_bm2,
1932 .cfg_on_link_up = NULL,
1933};
1934
1935static const struct e1000_nvm_operations e82571_nvm_ops = {
1936 .acquire = e1000_acquire_nvm_82571,
1937 .read = e1000e_read_nvm_eerd,
1938 .release = e1000_release_nvm_82571,
1939 .reload = e1000e_reload_nvm_generic,
1940 .update = e1000_update_nvm_checksum_82571,
1941 .valid_led_default = e1000_valid_led_default_82571,
1942 .validate = e1000_validate_nvm_checksum_82571,
1943 .write = e1000_write_nvm_82571,
1944};
1945
1946const struct e1000_info e1000_82571_info = {
1947 .mac = e1000_82571,
1948 .flags = FLAG_HAS_HW_VLAN_FILTER
1949 | FLAG_HAS_JUMBO_FRAMES
1950 | FLAG_HAS_WOL
1951 | FLAG_APME_IN_CTRL3
1952 | FLAG_HAS_CTRLEXT_ON_LOAD
1953 | FLAG_HAS_SMART_POWER_DOWN
1954 | FLAG_RESET_OVERWRITES_LAA /* errata */
1955 | FLAG_TARC_SPEED_MODE_BIT /* errata */
1956 | FLAG_APME_CHECK_PORT_B,
1957 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1958 | FLAG2_DMA_BURST,
1959 .pba = 38,
1960 .max_hw_frame_size = DEFAULT_JUMBO,
1961 .get_variants = e1000_get_variants_82571,
1962 .mac_ops = &e82571_mac_ops,
1963 .phy_ops = &e82_phy_ops_igp,
1964 .nvm_ops = &e82571_nvm_ops,
1965};
1966
1967const struct e1000_info e1000_82572_info = {
1968 .mac = e1000_82572,
1969 .flags = FLAG_HAS_HW_VLAN_FILTER
1970 | FLAG_HAS_JUMBO_FRAMES
1971 | FLAG_HAS_WOL
1972 | FLAG_APME_IN_CTRL3
1973 | FLAG_HAS_CTRLEXT_ON_LOAD
1974 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1975 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1976 | FLAG2_DMA_BURST,
1977 .pba = 38,
1978 .max_hw_frame_size = DEFAULT_JUMBO,
1979 .get_variants = e1000_get_variants_82571,
1980 .mac_ops = &e82571_mac_ops,
1981 .phy_ops = &e82_phy_ops_igp,
1982 .nvm_ops = &e82571_nvm_ops,
1983};
1984
1985const struct e1000_info e1000_82573_info = {
1986 .mac = e1000_82573,
1987 .flags = FLAG_HAS_HW_VLAN_FILTER
1988 | FLAG_HAS_WOL
1989 | FLAG_APME_IN_CTRL3
1990 | FLAG_HAS_SMART_POWER_DOWN
1991 | FLAG_HAS_AMT
1992 | FLAG_HAS_SWSM_ON_LOAD,
1993 .flags2 = FLAG2_DISABLE_ASPM_L1
1994 | FLAG2_DISABLE_ASPM_L0S,
1995 .pba = 20,
1996 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
1997 .get_variants = e1000_get_variants_82571,
1998 .mac_ops = &e82571_mac_ops,
1999 .phy_ops = &e82_phy_ops_m88,
2000 .nvm_ops = &e82571_nvm_ops,
2001};
2002
2003const struct e1000_info e1000_82574_info = {
2004 .mac = e1000_82574,
2005 .flags = FLAG_HAS_HW_VLAN_FILTER
2006 | FLAG_HAS_MSIX
2007 | FLAG_HAS_JUMBO_FRAMES
2008 | FLAG_HAS_WOL
2009 | FLAG_HAS_HW_TIMESTAMP
2010 | FLAG_APME_IN_CTRL3
2011 | FLAG_HAS_SMART_POWER_DOWN
2012 | FLAG_HAS_AMT
2013 | FLAG_HAS_CTRLEXT_ON_LOAD,
2014 .flags2 = FLAG2_CHECK_PHY_HANG
2015 | FLAG2_DISABLE_ASPM_L0S
2016 | FLAG2_DISABLE_ASPM_L1
2017 | FLAG2_NO_DISABLE_RX
2018 | FLAG2_DMA_BURST
2019 | FLAG2_CHECK_SYSTIM_OVERFLOW,
2020 .pba = 32,
2021 .max_hw_frame_size = DEFAULT_JUMBO,
2022 .get_variants = e1000_get_variants_82571,
2023 .mac_ops = &e82571_mac_ops,
2024 .phy_ops = &e82_phy_ops_bm,
2025 .nvm_ops = &e82571_nvm_ops,
2026};
2027
2028const struct e1000_info e1000_82583_info = {
2029 .mac = e1000_82583,
2030 .flags = FLAG_HAS_HW_VLAN_FILTER
2031 | FLAG_HAS_WOL
2032 | FLAG_HAS_HW_TIMESTAMP
2033 | FLAG_APME_IN_CTRL3
2034 | FLAG_HAS_SMART_POWER_DOWN
2035 | FLAG_HAS_AMT
2036 | FLAG_HAS_JUMBO_FRAMES
2037 | FLAG_HAS_CTRLEXT_ON_LOAD,
2038 .flags2 = FLAG2_DISABLE_ASPM_L0S
2039 | FLAG2_DISABLE_ASPM_L1
2040 | FLAG2_NO_DISABLE_RX
2041 | FLAG2_CHECK_SYSTIM_OVERFLOW,
2042 .pba = 32,
2043 .max_hw_frame_size = DEFAULT_JUMBO,
2044 .get_variants = e1000_get_variants_82571,
2045 .mac_ops = &e82571_mac_ops,
2046 .phy_ops = &e82_phy_ops_bm,
2047 .nvm_ops = &e82571_nvm_ops,
2048};
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * 82571EB Gigabit Ethernet Controller
31 * 82571EB Gigabit Ethernet Controller (Copper)
32 * 82571EB Gigabit Ethernet Controller (Fiber)
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
42 * 82574L Gigabit Network Connection
43 * 82583V Gigabit Network Connection
44 */
45
46#include "e1000.h"
47
48#define ID_LED_RESERVED_F746 0xF746
49#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50 (ID_LED_OFF1_ON2 << 8) | \
51 (ID_LED_DEF1_DEF2 << 4) | \
52 (ID_LED_DEF1_DEF2))
53
54#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55#define AN_RETRY_COUNT 5 /* Autoneg Retry Count value */
56#define E1000_BASE1000T_STATUS 10
57#define E1000_IDLE_ERROR_COUNT_MASK 0xFF
58#define E1000_RECEIVE_ERROR_COUNTER 21
59#define E1000_RECEIVE_ERROR_MAX 0xFFFF
60
61#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
62
63static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
64static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
65static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
66static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
67static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
68 u16 words, u16 *data);
69static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
70static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
71static s32 e1000_setup_link_82571(struct e1000_hw *hw);
72static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
73static void e1000_clear_vfta_82571(struct e1000_hw *hw);
74static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
75static s32 e1000_led_on_82574(struct e1000_hw *hw);
76static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
77static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
78static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
79static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
80static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
81static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
82static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
83
84/**
85 * e1000_init_phy_params_82571 - Init PHY func ptrs.
86 * @hw: pointer to the HW structure
87 **/
88static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
89{
90 struct e1000_phy_info *phy = &hw->phy;
91 s32 ret_val;
92
93 if (hw->phy.media_type != e1000_media_type_copper) {
94 phy->type = e1000_phy_none;
95 return 0;
96 }
97
98 phy->addr = 1;
99 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
100 phy->reset_delay_us = 100;
101
102 phy->ops.power_up = e1000_power_up_phy_copper;
103 phy->ops.power_down = e1000_power_down_phy_copper_82571;
104
105 switch (hw->mac.type) {
106 case e1000_82571:
107 case e1000_82572:
108 phy->type = e1000_phy_igp_2;
109 break;
110 case e1000_82573:
111 phy->type = e1000_phy_m88;
112 break;
113 case e1000_82574:
114 case e1000_82583:
115 phy->type = e1000_phy_bm;
116 phy->ops.acquire = e1000_get_hw_semaphore_82574;
117 phy->ops.release = e1000_put_hw_semaphore_82574;
118 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
119 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
120 break;
121 default:
122 return -E1000_ERR_PHY;
123 break;
124 }
125
126 /* This can only be done after all function pointers are setup. */
127 ret_val = e1000_get_phy_id_82571(hw);
128 if (ret_val) {
129 e_dbg("Error getting PHY ID\n");
130 return ret_val;
131 }
132
133 /* Verify phy id */
134 switch (hw->mac.type) {
135 case e1000_82571:
136 case e1000_82572:
137 if (phy->id != IGP01E1000_I_PHY_ID)
138 ret_val = -E1000_ERR_PHY;
139 break;
140 case e1000_82573:
141 if (phy->id != M88E1111_I_PHY_ID)
142 ret_val = -E1000_ERR_PHY;
143 break;
144 case e1000_82574:
145 case e1000_82583:
146 if (phy->id != BME1000_E_PHY_ID_R2)
147 ret_val = -E1000_ERR_PHY;
148 break;
149 default:
150 ret_val = -E1000_ERR_PHY;
151 break;
152 }
153
154 if (ret_val)
155 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
156
157 return ret_val;
158}
159
160/**
161 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
162 * @hw: pointer to the HW structure
163 **/
164static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
165{
166 struct e1000_nvm_info *nvm = &hw->nvm;
167 u32 eecd = er32(EECD);
168 u16 size;
169
170 nvm->opcode_bits = 8;
171 nvm->delay_usec = 1;
172 switch (nvm->override) {
173 case e1000_nvm_override_spi_large:
174 nvm->page_size = 32;
175 nvm->address_bits = 16;
176 break;
177 case e1000_nvm_override_spi_small:
178 nvm->page_size = 8;
179 nvm->address_bits = 8;
180 break;
181 default:
182 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
183 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
184 break;
185 }
186
187 switch (hw->mac.type) {
188 case e1000_82573:
189 case e1000_82574:
190 case e1000_82583:
191 if (((eecd >> 15) & 0x3) == 0x3) {
192 nvm->type = e1000_nvm_flash_hw;
193 nvm->word_size = 2048;
194 /*
195 * Autonomous Flash update bit must be cleared due
196 * to Flash update issue.
197 */
198 eecd &= ~E1000_EECD_AUPDEN;
199 ew32(EECD, eecd);
200 break;
201 }
202 /* Fall Through */
203 default:
204 nvm->type = e1000_nvm_eeprom_spi;
205 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
206 E1000_EECD_SIZE_EX_SHIFT);
207 /*
208 * Added to a constant, "size" becomes the left-shift value
209 * for setting word_size.
210 */
211 size += NVM_WORD_SIZE_BASE_SHIFT;
212
213 /* EEPROM access above 16k is unsupported */
214 if (size > 14)
215 size = 14;
216 nvm->word_size = 1 << size;
217 break;
218 }
219
220 /* Function Pointers */
221 switch (hw->mac.type) {
222 case e1000_82574:
223 case e1000_82583:
224 nvm->ops.acquire = e1000_get_hw_semaphore_82574;
225 nvm->ops.release = e1000_put_hw_semaphore_82574;
226 break;
227 default:
228 break;
229 }
230
231 return 0;
232}
233
234/**
235 * e1000_init_mac_params_82571 - Init MAC func ptrs.
236 * @hw: pointer to the HW structure
237 **/
238static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
239{
240 struct e1000_mac_info *mac = &hw->mac;
241 u32 swsm = 0;
242 u32 swsm2 = 0;
243 bool force_clear_smbi = false;
244
245 /* Set media type and media-dependent function pointers */
246 switch (hw->adapter->pdev->device) {
247 case E1000_DEV_ID_82571EB_FIBER:
248 case E1000_DEV_ID_82572EI_FIBER:
249 case E1000_DEV_ID_82571EB_QUAD_FIBER:
250 hw->phy.media_type = e1000_media_type_fiber;
251 mac->ops.setup_physical_interface =
252 e1000_setup_fiber_serdes_link_82571;
253 mac->ops.check_for_link = e1000e_check_for_fiber_link;
254 mac->ops.get_link_up_info =
255 e1000e_get_speed_and_duplex_fiber_serdes;
256 break;
257 case E1000_DEV_ID_82571EB_SERDES:
258 case E1000_DEV_ID_82571EB_SERDES_DUAL:
259 case E1000_DEV_ID_82571EB_SERDES_QUAD:
260 case E1000_DEV_ID_82572EI_SERDES:
261 hw->phy.media_type = e1000_media_type_internal_serdes;
262 mac->ops.setup_physical_interface =
263 e1000_setup_fiber_serdes_link_82571;
264 mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
265 mac->ops.get_link_up_info =
266 e1000e_get_speed_and_duplex_fiber_serdes;
267 break;
268 default:
269 hw->phy.media_type = e1000_media_type_copper;
270 mac->ops.setup_physical_interface =
271 e1000_setup_copper_link_82571;
272 mac->ops.check_for_link = e1000e_check_for_copper_link;
273 mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
274 break;
275 }
276
277 /* Set mta register count */
278 mac->mta_reg_count = 128;
279 /* Set rar entry count */
280 mac->rar_entry_count = E1000_RAR_ENTRIES;
281 /* Adaptive IFS supported */
282 mac->adaptive_ifs = true;
283
284 /* MAC-specific function pointers */
285 switch (hw->mac.type) {
286 case e1000_82573:
287 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
288 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
289 mac->ops.led_on = e1000e_led_on_generic;
290 mac->ops.blink_led = e1000e_blink_led_generic;
291
292 /* FWSM register */
293 mac->has_fwsm = true;
294 /*
295 * ARC supported; valid only if manageability features are
296 * enabled.
297 */
298 mac->arc_subsystem_valid = !!(er32(FWSM) &
299 E1000_FWSM_MODE_MASK);
300 break;
301 case e1000_82574:
302 case e1000_82583:
303 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
304 mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
305 mac->ops.led_on = e1000_led_on_82574;
306 break;
307 default:
308 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
309 mac->ops.led_on = e1000e_led_on_generic;
310 mac->ops.blink_led = e1000e_blink_led_generic;
311
312 /* FWSM register */
313 mac->has_fwsm = true;
314 break;
315 }
316
317 /*
318 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
319 * first NVM or PHY access. This should be done for single-port
320 * devices, and for one port only on dual-port devices so that
321 * for those devices we can still use the SMBI lock to synchronize
322 * inter-port accesses to the PHY & NVM.
323 */
324 switch (hw->mac.type) {
325 case e1000_82571:
326 case e1000_82572:
327 swsm2 = er32(SWSM2);
328
329 if (!(swsm2 & E1000_SWSM2_LOCK)) {
330 /* Only do this for the first interface on this card */
331 ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
332 force_clear_smbi = true;
333 } else {
334 force_clear_smbi = false;
335 }
336 break;
337 default:
338 force_clear_smbi = true;
339 break;
340 }
341
342 if (force_clear_smbi) {
343 /* Make sure SWSM.SMBI is clear */
344 swsm = er32(SWSM);
345 if (swsm & E1000_SWSM_SMBI) {
346 /* This bit should not be set on a first interface, and
347 * indicates that the bootagent or EFI code has
348 * improperly left this bit enabled
349 */
350 e_dbg("Please update your 82571 Bootagent\n");
351 }
352 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
353 }
354
355 /*
356 * Initialize device specific counter of SMBI acquisition
357 * timeouts.
358 */
359 hw->dev_spec.e82571.smb_counter = 0;
360
361 return 0;
362}
363
364static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
365{
366 struct e1000_hw *hw = &adapter->hw;
367 static int global_quad_port_a; /* global port a indication */
368 struct pci_dev *pdev = adapter->pdev;
369 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
370 s32 rc;
371
372 rc = e1000_init_mac_params_82571(hw);
373 if (rc)
374 return rc;
375
376 rc = e1000_init_nvm_params_82571(hw);
377 if (rc)
378 return rc;
379
380 rc = e1000_init_phy_params_82571(hw);
381 if (rc)
382 return rc;
383
384 /* tag quad port adapters first, it's used below */
385 switch (pdev->device) {
386 case E1000_DEV_ID_82571EB_QUAD_COPPER:
387 case E1000_DEV_ID_82571EB_QUAD_FIBER:
388 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
389 case E1000_DEV_ID_82571PT_QUAD_COPPER:
390 adapter->flags |= FLAG_IS_QUAD_PORT;
391 /* mark the first port */
392 if (global_quad_port_a == 0)
393 adapter->flags |= FLAG_IS_QUAD_PORT_A;
394 /* Reset for multiple quad port adapters */
395 global_quad_port_a++;
396 if (global_quad_port_a == 4)
397 global_quad_port_a = 0;
398 break;
399 default:
400 break;
401 }
402
403 switch (adapter->hw.mac.type) {
404 case e1000_82571:
405 /* these dual ports don't have WoL on port B at all */
406 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
407 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
408 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
409 (is_port_b))
410 adapter->flags &= ~FLAG_HAS_WOL;
411 /* quad ports only support WoL on port A */
412 if (adapter->flags & FLAG_IS_QUAD_PORT &&
413 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
414 adapter->flags &= ~FLAG_HAS_WOL;
415 /* Does not support WoL on any port */
416 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
417 adapter->flags &= ~FLAG_HAS_WOL;
418 break;
419 case e1000_82573:
420 if (pdev->device == E1000_DEV_ID_82573L) {
421 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
422 adapter->max_hw_frame_size = DEFAULT_JUMBO;
423 }
424 break;
425 default:
426 break;
427 }
428
429 return 0;
430}
431
432/**
433 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
434 * @hw: pointer to the HW structure
435 *
436 * Reads the PHY registers and stores the PHY ID and possibly the PHY
437 * revision in the hardware structure.
438 **/
439static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
440{
441 struct e1000_phy_info *phy = &hw->phy;
442 s32 ret_val;
443 u16 phy_id = 0;
444
445 switch (hw->mac.type) {
446 case e1000_82571:
447 case e1000_82572:
448 /*
449 * The 82571 firmware may still be configuring the PHY.
450 * In this case, we cannot access the PHY until the
451 * configuration is done. So we explicitly set the
452 * PHY ID.
453 */
454 phy->id = IGP01E1000_I_PHY_ID;
455 break;
456 case e1000_82573:
457 return e1000e_get_phy_id(hw);
458 break;
459 case e1000_82574:
460 case e1000_82583:
461 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
462 if (ret_val)
463 return ret_val;
464
465 phy->id = (u32)(phy_id << 16);
466 udelay(20);
467 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
468 if (ret_val)
469 return ret_val;
470
471 phy->id |= (u32)(phy_id);
472 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
473 break;
474 default:
475 return -E1000_ERR_PHY;
476 break;
477 }
478
479 return 0;
480}
481
482/**
483 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
484 * @hw: pointer to the HW structure
485 *
486 * Acquire the HW semaphore to access the PHY or NVM
487 **/
488static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
489{
490 u32 swsm;
491 s32 sw_timeout = hw->nvm.word_size + 1;
492 s32 fw_timeout = hw->nvm.word_size + 1;
493 s32 i = 0;
494
495 /*
496 * If we have timedout 3 times on trying to acquire
497 * the inter-port SMBI semaphore, there is old code
498 * operating on the other port, and it is not
499 * releasing SMBI. Modify the number of times that
500 * we try for the semaphore to interwork with this
501 * older code.
502 */
503 if (hw->dev_spec.e82571.smb_counter > 2)
504 sw_timeout = 1;
505
506 /* Get the SW semaphore */
507 while (i < sw_timeout) {
508 swsm = er32(SWSM);
509 if (!(swsm & E1000_SWSM_SMBI))
510 break;
511
512 udelay(50);
513 i++;
514 }
515
516 if (i == sw_timeout) {
517 e_dbg("Driver can't access device - SMBI bit is set.\n");
518 hw->dev_spec.e82571.smb_counter++;
519 }
520 /* Get the FW semaphore. */
521 for (i = 0; i < fw_timeout; i++) {
522 swsm = er32(SWSM);
523 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
524
525 /* Semaphore acquired if bit latched */
526 if (er32(SWSM) & E1000_SWSM_SWESMBI)
527 break;
528
529 udelay(50);
530 }
531
532 if (i == fw_timeout) {
533 /* Release semaphores */
534 e1000_put_hw_semaphore_82571(hw);
535 e_dbg("Driver can't access the NVM\n");
536 return -E1000_ERR_NVM;
537 }
538
539 return 0;
540}
541
542/**
543 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
544 * @hw: pointer to the HW structure
545 *
546 * Release hardware semaphore used to access the PHY or NVM
547 **/
548static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
549{
550 u32 swsm;
551
552 swsm = er32(SWSM);
553 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
554 ew32(SWSM, swsm);
555}
556/**
557 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
558 * @hw: pointer to the HW structure
559 *
560 * Acquire the HW semaphore during reset.
561 *
562 **/
563static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
564{
565 u32 extcnf_ctrl;
566 s32 i = 0;
567
568 extcnf_ctrl = er32(EXTCNF_CTRL);
569 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
570 do {
571 ew32(EXTCNF_CTRL, extcnf_ctrl);
572 extcnf_ctrl = er32(EXTCNF_CTRL);
573
574 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
575 break;
576
577 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
578
579 usleep_range(2000, 4000);
580 i++;
581 } while (i < MDIO_OWNERSHIP_TIMEOUT);
582
583 if (i == MDIO_OWNERSHIP_TIMEOUT) {
584 /* Release semaphores */
585 e1000_put_hw_semaphore_82573(hw);
586 e_dbg("Driver can't access the PHY\n");
587 return -E1000_ERR_PHY;
588 }
589
590 return 0;
591}
592
593/**
594 * e1000_put_hw_semaphore_82573 - Release hardware semaphore
595 * @hw: pointer to the HW structure
596 *
597 * Release hardware semaphore used during reset.
598 *
599 **/
600static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
601{
602 u32 extcnf_ctrl;
603
604 extcnf_ctrl = er32(EXTCNF_CTRL);
605 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
606 ew32(EXTCNF_CTRL, extcnf_ctrl);
607}
608
609static DEFINE_MUTEX(swflag_mutex);
610
611/**
612 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
613 * @hw: pointer to the HW structure
614 *
615 * Acquire the HW semaphore to access the PHY or NVM.
616 *
617 **/
618static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
619{
620 s32 ret_val;
621
622 mutex_lock(&swflag_mutex);
623 ret_val = e1000_get_hw_semaphore_82573(hw);
624 if (ret_val)
625 mutex_unlock(&swflag_mutex);
626 return ret_val;
627}
628
629/**
630 * e1000_put_hw_semaphore_82574 - Release hardware semaphore
631 * @hw: pointer to the HW structure
632 *
633 * Release hardware semaphore used to access the PHY or NVM
634 *
635 **/
636static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
637{
638 e1000_put_hw_semaphore_82573(hw);
639 mutex_unlock(&swflag_mutex);
640}
641
642/**
643 * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
644 * @hw: pointer to the HW structure
645 * @active: true to enable LPLU, false to disable
646 *
647 * Sets the LPLU D0 state according to the active flag.
648 * LPLU will not be activated unless the
649 * device autonegotiation advertisement meets standards of
650 * either 10 or 10/100 or 10/100/1000 at all duplexes.
651 * This is a function pointer entry point only called by
652 * PHY setup routines.
653 **/
654static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
655{
656 u16 data = er32(POEMB);
657
658 if (active)
659 data |= E1000_PHY_CTRL_D0A_LPLU;
660 else
661 data &= ~E1000_PHY_CTRL_D0A_LPLU;
662
663 ew32(POEMB, data);
664 return 0;
665}
666
667/**
668 * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
669 * @hw: pointer to the HW structure
670 * @active: boolean used to enable/disable lplu
671 *
672 * The low power link up (lplu) state is set to the power management level D3
673 * when active is true, else clear lplu for D3. LPLU
674 * is used during Dx states where the power conservation is most important.
675 * During driver activity, SmartSpeed should be enabled so performance is
676 * maintained.
677 **/
678static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
679{
680 u16 data = er32(POEMB);
681
682 if (!active) {
683 data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
684 } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
685 (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
686 (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
687 data |= E1000_PHY_CTRL_NOND0A_LPLU;
688 }
689
690 ew32(POEMB, data);
691 return 0;
692}
693
694/**
695 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
696 * @hw: pointer to the HW structure
697 *
698 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
699 * Then for non-82573 hardware, set the EEPROM access request bit and wait
700 * for EEPROM access grant bit. If the access grant bit is not set, release
701 * hardware semaphore.
702 **/
703static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
704{
705 s32 ret_val;
706
707 ret_val = e1000_get_hw_semaphore_82571(hw);
708 if (ret_val)
709 return ret_val;
710
711 switch (hw->mac.type) {
712 case e1000_82573:
713 break;
714 default:
715 ret_val = e1000e_acquire_nvm(hw);
716 break;
717 }
718
719 if (ret_val)
720 e1000_put_hw_semaphore_82571(hw);
721
722 return ret_val;
723}
724
725/**
726 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
727 * @hw: pointer to the HW structure
728 *
729 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
730 **/
731static void e1000_release_nvm_82571(struct e1000_hw *hw)
732{
733 e1000e_release_nvm(hw);
734 e1000_put_hw_semaphore_82571(hw);
735}
736
737/**
738 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
739 * @hw: pointer to the HW structure
740 * @offset: offset within the EEPROM to be written to
741 * @words: number of words to write
742 * @data: 16 bit word(s) to be written to the EEPROM
743 *
744 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
745 *
746 * If e1000e_update_nvm_checksum is not called after this function, the
747 * EEPROM will most likely contain an invalid checksum.
748 **/
749static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
750 u16 *data)
751{
752 s32 ret_val;
753
754 switch (hw->mac.type) {
755 case e1000_82573:
756 case e1000_82574:
757 case e1000_82583:
758 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
759 break;
760 case e1000_82571:
761 case e1000_82572:
762 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
763 break;
764 default:
765 ret_val = -E1000_ERR_NVM;
766 break;
767 }
768
769 return ret_val;
770}
771
772/**
773 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
774 * @hw: pointer to the HW structure
775 *
776 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
777 * up to the checksum. Then calculates the EEPROM checksum and writes the
778 * value to the EEPROM.
779 **/
780static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
781{
782 u32 eecd;
783 s32 ret_val;
784 u16 i;
785
786 ret_val = e1000e_update_nvm_checksum_generic(hw);
787 if (ret_val)
788 return ret_val;
789
790 /*
791 * If our nvm is an EEPROM, then we're done
792 * otherwise, commit the checksum to the flash NVM.
793 */
794 if (hw->nvm.type != e1000_nvm_flash_hw)
795 return 0;
796
797 /* Check for pending operations. */
798 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
799 usleep_range(1000, 2000);
800 if (!(er32(EECD) & E1000_EECD_FLUPD))
801 break;
802 }
803
804 if (i == E1000_FLASH_UPDATES)
805 return -E1000_ERR_NVM;
806
807 /* Reset the firmware if using STM opcode. */
808 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
809 /*
810 * The enabling of and the actual reset must be done
811 * in two write cycles.
812 */
813 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
814 e1e_flush();
815 ew32(HICR, E1000_HICR_FW_RESET);
816 }
817
818 /* Commit the write to flash */
819 eecd = er32(EECD) | E1000_EECD_FLUPD;
820 ew32(EECD, eecd);
821
822 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
823 usleep_range(1000, 2000);
824 if (!(er32(EECD) & E1000_EECD_FLUPD))
825 break;
826 }
827
828 if (i == E1000_FLASH_UPDATES)
829 return -E1000_ERR_NVM;
830
831 return 0;
832}
833
834/**
835 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
836 * @hw: pointer to the HW structure
837 *
838 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
839 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
840 **/
841static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
842{
843 if (hw->nvm.type == e1000_nvm_flash_hw)
844 e1000_fix_nvm_checksum_82571(hw);
845
846 return e1000e_validate_nvm_checksum_generic(hw);
847}
848
849/**
850 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
851 * @hw: pointer to the HW structure
852 * @offset: offset within the EEPROM to be written to
853 * @words: number of words to write
854 * @data: 16 bit word(s) to be written to the EEPROM
855 *
856 * After checking for invalid values, poll the EEPROM to ensure the previous
857 * command has completed before trying to write the next word. After write
858 * poll for completion.
859 *
860 * If e1000e_update_nvm_checksum is not called after this function, the
861 * EEPROM will most likely contain an invalid checksum.
862 **/
863static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
864 u16 words, u16 *data)
865{
866 struct e1000_nvm_info *nvm = &hw->nvm;
867 u32 i, eewr = 0;
868 s32 ret_val = 0;
869
870 /*
871 * A check for invalid values: offset too large, too many words,
872 * and not enough words.
873 */
874 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
875 (words == 0)) {
876 e_dbg("nvm parameter(s) out of bounds\n");
877 return -E1000_ERR_NVM;
878 }
879
880 for (i = 0; i < words; i++) {
881 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
882 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
883 E1000_NVM_RW_REG_START;
884
885 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
886 if (ret_val)
887 break;
888
889 ew32(EEWR, eewr);
890
891 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
892 if (ret_val)
893 break;
894 }
895
896 return ret_val;
897}
898
899/**
900 * e1000_get_cfg_done_82571 - Poll for configuration done
901 * @hw: pointer to the HW structure
902 *
903 * Reads the management control register for the config done bit to be set.
904 **/
905static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
906{
907 s32 timeout = PHY_CFG_TIMEOUT;
908
909 while (timeout) {
910 if (er32(EEMNGCTL) &
911 E1000_NVM_CFG_DONE_PORT_0)
912 break;
913 usleep_range(1000, 2000);
914 timeout--;
915 }
916 if (!timeout) {
917 e_dbg("MNG configuration cycle has not completed.\n");
918 return -E1000_ERR_RESET;
919 }
920
921 return 0;
922}
923
924/**
925 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
926 * @hw: pointer to the HW structure
927 * @active: true to enable LPLU, false to disable
928 *
929 * Sets the LPLU D0 state according to the active flag. When activating LPLU
930 * this function also disables smart speed and vice versa. LPLU will not be
931 * activated unless the device autonegotiation advertisement meets standards
932 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
933 * pointer entry point only called by PHY setup routines.
934 **/
935static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
936{
937 struct e1000_phy_info *phy = &hw->phy;
938 s32 ret_val;
939 u16 data;
940
941 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
942 if (ret_val)
943 return ret_val;
944
945 if (active) {
946 data |= IGP02E1000_PM_D0_LPLU;
947 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
948 if (ret_val)
949 return ret_val;
950
951 /* When LPLU is enabled, we should disable SmartSpeed */
952 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
953 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
954 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
955 if (ret_val)
956 return ret_val;
957 } else {
958 data &= ~IGP02E1000_PM_D0_LPLU;
959 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
960 /*
961 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
962 * during Dx states where the power conservation is most
963 * important. During driver activity we should enable
964 * SmartSpeed, so performance is maintained.
965 */
966 if (phy->smart_speed == e1000_smart_speed_on) {
967 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
968 &data);
969 if (ret_val)
970 return ret_val;
971
972 data |= IGP01E1000_PSCFR_SMART_SPEED;
973 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
974 data);
975 if (ret_val)
976 return ret_val;
977 } else if (phy->smart_speed == e1000_smart_speed_off) {
978 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
979 &data);
980 if (ret_val)
981 return ret_val;
982
983 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
984 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
985 data);
986 if (ret_val)
987 return ret_val;
988 }
989 }
990
991 return 0;
992}
993
994/**
995 * e1000_reset_hw_82571 - Reset hardware
996 * @hw: pointer to the HW structure
997 *
998 * This resets the hardware into a known state.
999 **/
1000static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
1001{
1002 u32 ctrl, ctrl_ext, eecd;
1003 s32 ret_val;
1004
1005 /*
1006 * Prevent the PCI-E bus from sticking if there is no TLP connection
1007 * on the last TLP read/write transaction when MAC is reset.
1008 */
1009 ret_val = e1000e_disable_pcie_master(hw);
1010 if (ret_val)
1011 e_dbg("PCI-E Master disable polling has failed.\n");
1012
1013 e_dbg("Masking off all interrupts\n");
1014 ew32(IMC, 0xffffffff);
1015
1016 ew32(RCTL, 0);
1017 ew32(TCTL, E1000_TCTL_PSP);
1018 e1e_flush();
1019
1020 usleep_range(10000, 20000);
1021
1022 /*
1023 * Must acquire the MDIO ownership before MAC reset.
1024 * Ownership defaults to firmware after a reset.
1025 */
1026 switch (hw->mac.type) {
1027 case e1000_82573:
1028 ret_val = e1000_get_hw_semaphore_82573(hw);
1029 break;
1030 case e1000_82574:
1031 case e1000_82583:
1032 ret_val = e1000_get_hw_semaphore_82574(hw);
1033 break;
1034 default:
1035 break;
1036 }
1037 if (ret_val)
1038 e_dbg("Cannot acquire MDIO ownership\n");
1039
1040 ctrl = er32(CTRL);
1041
1042 e_dbg("Issuing a global reset to MAC\n");
1043 ew32(CTRL, ctrl | E1000_CTRL_RST);
1044
1045 /* Must release MDIO ownership and mutex after MAC reset. */
1046 switch (hw->mac.type) {
1047 case e1000_82574:
1048 case e1000_82583:
1049 e1000_put_hw_semaphore_82574(hw);
1050 break;
1051 default:
1052 break;
1053 }
1054
1055 if (hw->nvm.type == e1000_nvm_flash_hw) {
1056 udelay(10);
1057 ctrl_ext = er32(CTRL_EXT);
1058 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1059 ew32(CTRL_EXT, ctrl_ext);
1060 e1e_flush();
1061 }
1062
1063 ret_val = e1000e_get_auto_rd_done(hw);
1064 if (ret_val)
1065 /* We don't want to continue accessing MAC registers. */
1066 return ret_val;
1067
1068 /*
1069 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1070 * Need to wait for Phy configuration completion before accessing
1071 * NVM and Phy.
1072 */
1073
1074 switch (hw->mac.type) {
1075 case e1000_82571:
1076 case e1000_82572:
1077 /*
1078 * REQ and GNT bits need to be cleared when using AUTO_RD
1079 * to access the EEPROM.
1080 */
1081 eecd = er32(EECD);
1082 eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1083 ew32(EECD, eecd);
1084 break;
1085 case e1000_82573:
1086 case e1000_82574:
1087 case e1000_82583:
1088 msleep(25);
1089 break;
1090 default:
1091 break;
1092 }
1093
1094 /* Clear any pending interrupt events. */
1095 ew32(IMC, 0xffffffff);
1096 er32(ICR);
1097
1098 if (hw->mac.type == e1000_82571) {
1099 /* Install any alternate MAC address into RAR0 */
1100 ret_val = e1000_check_alt_mac_addr_generic(hw);
1101 if (ret_val)
1102 return ret_val;
1103
1104 e1000e_set_laa_state_82571(hw, true);
1105 }
1106
1107 /* Reinitialize the 82571 serdes link state machine */
1108 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1109 hw->mac.serdes_link_state = e1000_serdes_link_down;
1110
1111 return 0;
1112}
1113
1114/**
1115 * e1000_init_hw_82571 - Initialize hardware
1116 * @hw: pointer to the HW structure
1117 *
1118 * This inits the hardware readying it for operation.
1119 **/
1120static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1121{
1122 struct e1000_mac_info *mac = &hw->mac;
1123 u32 reg_data;
1124 s32 ret_val;
1125 u16 i, rar_count = mac->rar_entry_count;
1126
1127 e1000_initialize_hw_bits_82571(hw);
1128
1129 /* Initialize identification LED */
1130 ret_val = mac->ops.id_led_init(hw);
1131 if (ret_val)
1132 e_dbg("Error initializing identification LED\n");
1133 /* This is not fatal and we should not stop init due to this */
1134
1135 /* Disabling VLAN filtering */
1136 e_dbg("Initializing the IEEE VLAN\n");
1137 mac->ops.clear_vfta(hw);
1138
1139 /* Setup the receive address. */
1140 /*
1141 * If, however, a locally administered address was assigned to the
1142 * 82571, we must reserve a RAR for it to work around an issue where
1143 * resetting one port will reload the MAC on the other port.
1144 */
1145 if (e1000e_get_laa_state_82571(hw))
1146 rar_count--;
1147 e1000e_init_rx_addrs(hw, rar_count);
1148
1149 /* Zero out the Multicast HASH table */
1150 e_dbg("Zeroing the MTA\n");
1151 for (i = 0; i < mac->mta_reg_count; i++)
1152 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1153
1154 /* Setup link and flow control */
1155 ret_val = mac->ops.setup_link(hw);
1156
1157 /* Set the transmit descriptor write-back policy */
1158 reg_data = er32(TXDCTL(0));
1159 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1160 E1000_TXDCTL_FULL_TX_DESC_WB |
1161 E1000_TXDCTL_COUNT_DESC;
1162 ew32(TXDCTL(0), reg_data);
1163
1164 /* ...for both queues. */
1165 switch (mac->type) {
1166 case e1000_82573:
1167 e1000e_enable_tx_pkt_filtering(hw);
1168 /* fall through */
1169 case e1000_82574:
1170 case e1000_82583:
1171 reg_data = er32(GCR);
1172 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1173 ew32(GCR, reg_data);
1174 break;
1175 default:
1176 reg_data = er32(TXDCTL(1));
1177 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1178 E1000_TXDCTL_FULL_TX_DESC_WB |
1179 E1000_TXDCTL_COUNT_DESC;
1180 ew32(TXDCTL(1), reg_data);
1181 break;
1182 }
1183
1184 /*
1185 * Clear all of the statistics registers (clear on read). It is
1186 * important that we do this after we have tried to establish link
1187 * because the symbol error count will increment wildly if there
1188 * is no link.
1189 */
1190 e1000_clear_hw_cntrs_82571(hw);
1191
1192 return ret_val;
1193}
1194
1195/**
1196 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1197 * @hw: pointer to the HW structure
1198 *
1199 * Initializes required hardware-dependent bits needed for normal operation.
1200 **/
1201static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1202{
1203 u32 reg;
1204
1205 /* Transmit Descriptor Control 0 */
1206 reg = er32(TXDCTL(0));
1207 reg |= (1 << 22);
1208 ew32(TXDCTL(0), reg);
1209
1210 /* Transmit Descriptor Control 1 */
1211 reg = er32(TXDCTL(1));
1212 reg |= (1 << 22);
1213 ew32(TXDCTL(1), reg);
1214
1215 /* Transmit Arbitration Control 0 */
1216 reg = er32(TARC(0));
1217 reg &= ~(0xF << 27); /* 30:27 */
1218 switch (hw->mac.type) {
1219 case e1000_82571:
1220 case e1000_82572:
1221 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1222 break;
1223 case e1000_82574:
1224 case e1000_82583:
1225 reg |= (1 << 26);
1226 break;
1227 default:
1228 break;
1229 }
1230 ew32(TARC(0), reg);
1231
1232 /* Transmit Arbitration Control 1 */
1233 reg = er32(TARC(1));
1234 switch (hw->mac.type) {
1235 case e1000_82571:
1236 case e1000_82572:
1237 reg &= ~((1 << 29) | (1 << 30));
1238 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1239 if (er32(TCTL) & E1000_TCTL_MULR)
1240 reg &= ~(1 << 28);
1241 else
1242 reg |= (1 << 28);
1243 ew32(TARC(1), reg);
1244 break;
1245 default:
1246 break;
1247 }
1248
1249 /* Device Control */
1250 switch (hw->mac.type) {
1251 case e1000_82573:
1252 case e1000_82574:
1253 case e1000_82583:
1254 reg = er32(CTRL);
1255 reg &= ~(1 << 29);
1256 ew32(CTRL, reg);
1257 break;
1258 default:
1259 break;
1260 }
1261
1262 /* Extended Device Control */
1263 switch (hw->mac.type) {
1264 case e1000_82573:
1265 case e1000_82574:
1266 case e1000_82583:
1267 reg = er32(CTRL_EXT);
1268 reg &= ~(1 << 23);
1269 reg |= (1 << 22);
1270 ew32(CTRL_EXT, reg);
1271 break;
1272 default:
1273 break;
1274 }
1275
1276 if (hw->mac.type == e1000_82571) {
1277 reg = er32(PBA_ECC);
1278 reg |= E1000_PBA_ECC_CORR_EN;
1279 ew32(PBA_ECC, reg);
1280 }
1281
1282 /*
1283 * Workaround for hardware errata.
1284 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1285 */
1286 if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1287 reg = er32(CTRL_EXT);
1288 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1289 ew32(CTRL_EXT, reg);
1290 }
1291
1292 /*
1293 * Disable IPv6 extension header parsing because some malformed
1294 * IPv6 headers can hang the Rx.
1295 */
1296 if (hw->mac.type <= e1000_82573) {
1297 reg = er32(RFCTL);
1298 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1299 ew32(RFCTL, reg);
1300 }
1301
1302 /* PCI-Ex Control Registers */
1303 switch (hw->mac.type) {
1304 case e1000_82574:
1305 case e1000_82583:
1306 reg = er32(GCR);
1307 reg |= (1 << 22);
1308 ew32(GCR, reg);
1309
1310 /*
1311 * Workaround for hardware errata.
1312 * apply workaround for hardware errata documented in errata
1313 * docs Fixes issue where some error prone or unreliable PCIe
1314 * completions are occurring, particularly with ASPM enabled.
1315 * Without fix, issue can cause Tx timeouts.
1316 */
1317 reg = er32(GCR2);
1318 reg |= 1;
1319 ew32(GCR2, reg);
1320 break;
1321 default:
1322 break;
1323 }
1324}
1325
1326/**
1327 * e1000_clear_vfta_82571 - Clear VLAN filter table
1328 * @hw: pointer to the HW structure
1329 *
1330 * Clears the register array which contains the VLAN filter table by
1331 * setting all the values to 0.
1332 **/
1333static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1334{
1335 u32 offset;
1336 u32 vfta_value = 0;
1337 u32 vfta_offset = 0;
1338 u32 vfta_bit_in_reg = 0;
1339
1340 switch (hw->mac.type) {
1341 case e1000_82573:
1342 case e1000_82574:
1343 case e1000_82583:
1344 if (hw->mng_cookie.vlan_id != 0) {
1345 /*
1346 * The VFTA is a 4096b bit-field, each identifying
1347 * a single VLAN ID. The following operations
1348 * determine which 32b entry (i.e. offset) into the
1349 * array we want to set the VLAN ID (i.e. bit) of
1350 * the manageability unit.
1351 */
1352 vfta_offset = (hw->mng_cookie.vlan_id >>
1353 E1000_VFTA_ENTRY_SHIFT) &
1354 E1000_VFTA_ENTRY_MASK;
1355 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1356 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1357 }
1358 break;
1359 default:
1360 break;
1361 }
1362 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1363 /*
1364 * If the offset we want to clear is the same offset of the
1365 * manageability VLAN ID, then clear all bits except that of
1366 * the manageability unit.
1367 */
1368 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1369 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1370 e1e_flush();
1371 }
1372}
1373
1374/**
1375 * e1000_check_mng_mode_82574 - Check manageability is enabled
1376 * @hw: pointer to the HW structure
1377 *
1378 * Reads the NVM Initialization Control Word 2 and returns true
1379 * (>0) if any manageability is enabled, else false (0).
1380 **/
1381static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1382{
1383 u16 data;
1384
1385 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1386 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1387}
1388
1389/**
1390 * e1000_led_on_82574 - Turn LED on
1391 * @hw: pointer to the HW structure
1392 *
1393 * Turn LED on.
1394 **/
1395static s32 e1000_led_on_82574(struct e1000_hw *hw)
1396{
1397 u32 ctrl;
1398 u32 i;
1399
1400 ctrl = hw->mac.ledctl_mode2;
1401 if (!(E1000_STATUS_LU & er32(STATUS))) {
1402 /*
1403 * If no link, then turn LED on by setting the invert bit
1404 * for each LED that's "on" (0x0E) in ledctl_mode2.
1405 */
1406 for (i = 0; i < 4; i++)
1407 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1408 E1000_LEDCTL_MODE_LED_ON)
1409 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1410 }
1411 ew32(LEDCTL, ctrl);
1412
1413 return 0;
1414}
1415
1416/**
1417 * e1000_check_phy_82574 - check 82574 phy hung state
1418 * @hw: pointer to the HW structure
1419 *
1420 * Returns whether phy is hung or not
1421 **/
1422bool e1000_check_phy_82574(struct e1000_hw *hw)
1423{
1424 u16 status_1kbt = 0;
1425 u16 receive_errors = 0;
1426 s32 ret_val = 0;
1427
1428 /*
1429 * Read PHY Receive Error counter first, if its is max - all F's then
1430 * read the Base1000T status register If both are max then PHY is hung.
1431 */
1432 ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1433 if (ret_val)
1434 return false;
1435 if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1436 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1437 if (ret_val)
1438 return false;
1439 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1440 E1000_IDLE_ERROR_COUNT_MASK)
1441 return true;
1442 }
1443
1444 return false;
1445}
1446
1447/**
1448 * e1000_setup_link_82571 - Setup flow control and link settings
1449 * @hw: pointer to the HW structure
1450 *
1451 * Determines which flow control settings to use, then configures flow
1452 * control. Calls the appropriate media-specific link configuration
1453 * function. Assuming the adapter has a valid link partner, a valid link
1454 * should be established. Assumes the hardware has previously been reset
1455 * and the transmitter and receiver are not enabled.
1456 **/
1457static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1458{
1459 /*
1460 * 82573 does not have a word in the NVM to determine
1461 * the default flow control setting, so we explicitly
1462 * set it to full.
1463 */
1464 switch (hw->mac.type) {
1465 case e1000_82573:
1466 case e1000_82574:
1467 case e1000_82583:
1468 if (hw->fc.requested_mode == e1000_fc_default)
1469 hw->fc.requested_mode = e1000_fc_full;
1470 break;
1471 default:
1472 break;
1473 }
1474
1475 return e1000e_setup_link_generic(hw);
1476}
1477
1478/**
1479 * e1000_setup_copper_link_82571 - Configure copper link settings
1480 * @hw: pointer to the HW structure
1481 *
1482 * Configures the link for auto-neg or forced speed and duplex. Then we check
1483 * for link, once link is established calls to configure collision distance
1484 * and flow control are called.
1485 **/
1486static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1487{
1488 u32 ctrl;
1489 s32 ret_val;
1490
1491 ctrl = er32(CTRL);
1492 ctrl |= E1000_CTRL_SLU;
1493 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1494 ew32(CTRL, ctrl);
1495
1496 switch (hw->phy.type) {
1497 case e1000_phy_m88:
1498 case e1000_phy_bm:
1499 ret_val = e1000e_copper_link_setup_m88(hw);
1500 break;
1501 case e1000_phy_igp_2:
1502 ret_val = e1000e_copper_link_setup_igp(hw);
1503 break;
1504 default:
1505 return -E1000_ERR_PHY;
1506 break;
1507 }
1508
1509 if (ret_val)
1510 return ret_val;
1511
1512 return e1000e_setup_copper_link(hw);
1513}
1514
1515/**
1516 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1517 * @hw: pointer to the HW structure
1518 *
1519 * Configures collision distance and flow control for fiber and serdes links.
1520 * Upon successful setup, poll for link.
1521 **/
1522static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1523{
1524 switch (hw->mac.type) {
1525 case e1000_82571:
1526 case e1000_82572:
1527 /*
1528 * If SerDes loopback mode is entered, there is no form
1529 * of reset to take the adapter out of that mode. So we
1530 * have to explicitly take the adapter out of loopback
1531 * mode. This prevents drivers from twiddling their thumbs
1532 * if another tool failed to take it out of loopback mode.
1533 */
1534 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1535 break;
1536 default:
1537 break;
1538 }
1539
1540 return e1000e_setup_fiber_serdes_link(hw);
1541}
1542
1543/**
1544 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1545 * @hw: pointer to the HW structure
1546 *
1547 * Reports the link state as up or down.
1548 *
1549 * If autonegotiation is supported by the link partner, the link state is
1550 * determined by the result of autonegotiation. This is the most likely case.
1551 * If autonegotiation is not supported by the link partner, and the link
1552 * has a valid signal, force the link up.
1553 *
1554 * The link state is represented internally here by 4 states:
1555 *
1556 * 1) down
1557 * 2) autoneg_progress
1558 * 3) autoneg_complete (the link successfully autonegotiated)
1559 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1560 *
1561 **/
1562static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1563{
1564 struct e1000_mac_info *mac = &hw->mac;
1565 u32 rxcw;
1566 u32 ctrl;
1567 u32 status;
1568 u32 txcw;
1569 u32 i;
1570 s32 ret_val = 0;
1571
1572 ctrl = er32(CTRL);
1573 status = er32(STATUS);
1574 rxcw = er32(RXCW);
1575 /* SYNCH bit and IV bit are sticky */
1576 udelay(10);
1577 rxcw = er32(RXCW);
1578
1579 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1580
1581 /* Receiver is synchronized with no invalid bits. */
1582 switch (mac->serdes_link_state) {
1583 case e1000_serdes_link_autoneg_complete:
1584 if (!(status & E1000_STATUS_LU)) {
1585 /*
1586 * We have lost link, retry autoneg before
1587 * reporting link failure
1588 */
1589 mac->serdes_link_state =
1590 e1000_serdes_link_autoneg_progress;
1591 mac->serdes_has_link = false;
1592 e_dbg("AN_UP -> AN_PROG\n");
1593 } else {
1594 mac->serdes_has_link = true;
1595 }
1596 break;
1597
1598 case e1000_serdes_link_forced_up:
1599 /*
1600 * If we are receiving /C/ ordered sets, re-enable
1601 * auto-negotiation in the TXCW register and disable
1602 * forced link in the Device Control register in an
1603 * attempt to auto-negotiate with our link partner.
1604 */
1605 if (rxcw & E1000_RXCW_C) {
1606 /* Enable autoneg, and unforce link up */
1607 ew32(TXCW, mac->txcw);
1608 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1609 mac->serdes_link_state =
1610 e1000_serdes_link_autoneg_progress;
1611 mac->serdes_has_link = false;
1612 e_dbg("FORCED_UP -> AN_PROG\n");
1613 } else {
1614 mac->serdes_has_link = true;
1615 }
1616 break;
1617
1618 case e1000_serdes_link_autoneg_progress:
1619 if (rxcw & E1000_RXCW_C) {
1620 /*
1621 * We received /C/ ordered sets, meaning the
1622 * link partner has autonegotiated, and we can
1623 * trust the Link Up (LU) status bit.
1624 */
1625 if (status & E1000_STATUS_LU) {
1626 mac->serdes_link_state =
1627 e1000_serdes_link_autoneg_complete;
1628 e_dbg("AN_PROG -> AN_UP\n");
1629 mac->serdes_has_link = true;
1630 } else {
1631 /* Autoneg completed, but failed. */
1632 mac->serdes_link_state =
1633 e1000_serdes_link_down;
1634 e_dbg("AN_PROG -> DOWN\n");
1635 }
1636 } else {
1637 /*
1638 * The link partner did not autoneg.
1639 * Force link up and full duplex, and change
1640 * state to forced.
1641 */
1642 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1643 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1644 ew32(CTRL, ctrl);
1645
1646 /* Configure Flow Control after link up. */
1647 ret_val = e1000e_config_fc_after_link_up(hw);
1648 if (ret_val) {
1649 e_dbg("Error config flow control\n");
1650 break;
1651 }
1652 mac->serdes_link_state =
1653 e1000_serdes_link_forced_up;
1654 mac->serdes_has_link = true;
1655 e_dbg("AN_PROG -> FORCED_UP\n");
1656 }
1657 break;
1658
1659 case e1000_serdes_link_down:
1660 default:
1661 /*
1662 * The link was down but the receiver has now gained
1663 * valid sync, so lets see if we can bring the link
1664 * up.
1665 */
1666 ew32(TXCW, mac->txcw);
1667 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1668 mac->serdes_link_state =
1669 e1000_serdes_link_autoneg_progress;
1670 mac->serdes_has_link = false;
1671 e_dbg("DOWN -> AN_PROG\n");
1672 break;
1673 }
1674 } else {
1675 if (!(rxcw & E1000_RXCW_SYNCH)) {
1676 mac->serdes_has_link = false;
1677 mac->serdes_link_state = e1000_serdes_link_down;
1678 e_dbg("ANYSTATE -> DOWN\n");
1679 } else {
1680 /*
1681 * Check several times, if Sync and Config
1682 * both are consistently 1 then simply ignore
1683 * the Invalid bit and restart Autoneg
1684 */
1685 for (i = 0; i < AN_RETRY_COUNT; i++) {
1686 udelay(10);
1687 rxcw = er32(RXCW);
1688 if ((rxcw & E1000_RXCW_IV) &&
1689 !((rxcw & E1000_RXCW_SYNCH) &&
1690 (rxcw & E1000_RXCW_C))) {
1691 mac->serdes_has_link = false;
1692 mac->serdes_link_state =
1693 e1000_serdes_link_down;
1694 e_dbg("ANYSTATE -> DOWN\n");
1695 break;
1696 }
1697 }
1698
1699 if (i == AN_RETRY_COUNT) {
1700 txcw = er32(TXCW);
1701 txcw |= E1000_TXCW_ANE;
1702 ew32(TXCW, txcw);
1703 mac->serdes_link_state =
1704 e1000_serdes_link_autoneg_progress;
1705 mac->serdes_has_link = false;
1706 e_dbg("ANYSTATE -> AN_PROG\n");
1707 }
1708 }
1709 }
1710
1711 return ret_val;
1712}
1713
1714/**
1715 * e1000_valid_led_default_82571 - Verify a valid default LED config
1716 * @hw: pointer to the HW structure
1717 * @data: pointer to the NVM (EEPROM)
1718 *
1719 * Read the EEPROM for the current default LED configuration. If the
1720 * LED configuration is not valid, set to a valid LED configuration.
1721 **/
1722static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1723{
1724 s32 ret_val;
1725
1726 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1727 if (ret_val) {
1728 e_dbg("NVM Read Error\n");
1729 return ret_val;
1730 }
1731
1732 switch (hw->mac.type) {
1733 case e1000_82573:
1734 case e1000_82574:
1735 case e1000_82583:
1736 if (*data == ID_LED_RESERVED_F746)
1737 *data = ID_LED_DEFAULT_82573;
1738 break;
1739 default:
1740 if (*data == ID_LED_RESERVED_0000 ||
1741 *data == ID_LED_RESERVED_FFFF)
1742 *data = ID_LED_DEFAULT;
1743 break;
1744 }
1745
1746 return 0;
1747}
1748
1749/**
1750 * e1000e_get_laa_state_82571 - Get locally administered address state
1751 * @hw: pointer to the HW structure
1752 *
1753 * Retrieve and return the current locally administered address state.
1754 **/
1755bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1756{
1757 if (hw->mac.type != e1000_82571)
1758 return false;
1759
1760 return hw->dev_spec.e82571.laa_is_present;
1761}
1762
1763/**
1764 * e1000e_set_laa_state_82571 - Set locally administered address state
1765 * @hw: pointer to the HW structure
1766 * @state: enable/disable locally administered address
1767 *
1768 * Enable/Disable the current locally administered address state.
1769 **/
1770void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1771{
1772 if (hw->mac.type != e1000_82571)
1773 return;
1774
1775 hw->dev_spec.e82571.laa_is_present = state;
1776
1777 /* If workaround is activated... */
1778 if (state)
1779 /*
1780 * Hold a copy of the LAA in RAR[14] This is done so that
1781 * between the time RAR[0] gets clobbered and the time it
1782 * gets fixed, the actual LAA is in one of the RARs and no
1783 * incoming packets directed to this port are dropped.
1784 * Eventually the LAA will be in RAR[0] and RAR[14].
1785 */
1786 hw->mac.ops.rar_set(hw, hw->mac.addr,
1787 hw->mac.rar_entry_count - 1);
1788}
1789
1790/**
1791 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1792 * @hw: pointer to the HW structure
1793 *
1794 * Verifies that the EEPROM has completed the update. After updating the
1795 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1796 * the checksum fix is not implemented, we need to set the bit and update
1797 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1798 * we need to return bad checksum.
1799 **/
1800static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1801{
1802 struct e1000_nvm_info *nvm = &hw->nvm;
1803 s32 ret_val;
1804 u16 data;
1805
1806 if (nvm->type != e1000_nvm_flash_hw)
1807 return 0;
1808
1809 /*
1810 * Check bit 4 of word 10h. If it is 0, firmware is done updating
1811 * 10h-12h. Checksum may need to be fixed.
1812 */
1813 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1814 if (ret_val)
1815 return ret_val;
1816
1817 if (!(data & 0x10)) {
1818 /*
1819 * Read 0x23 and check bit 15. This bit is a 1
1820 * when the checksum has already been fixed. If
1821 * the checksum is still wrong and this bit is a
1822 * 1, we need to return bad checksum. Otherwise,
1823 * we need to set this bit to a 1 and update the
1824 * checksum.
1825 */
1826 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1827 if (ret_val)
1828 return ret_val;
1829
1830 if (!(data & 0x8000)) {
1831 data |= 0x8000;
1832 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1833 if (ret_val)
1834 return ret_val;
1835 ret_val = e1000e_update_nvm_checksum(hw);
1836 }
1837 }
1838
1839 return 0;
1840}
1841
1842/**
1843 * e1000_read_mac_addr_82571 - Read device MAC address
1844 * @hw: pointer to the HW structure
1845 **/
1846static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1847{
1848 if (hw->mac.type == e1000_82571) {
1849 s32 ret_val = 0;
1850
1851 /*
1852 * If there's an alternate MAC address place it in RAR0
1853 * so that it will override the Si installed default perm
1854 * address.
1855 */
1856 ret_val = e1000_check_alt_mac_addr_generic(hw);
1857 if (ret_val)
1858 return ret_val;
1859 }
1860
1861 return e1000_read_mac_addr_generic(hw);
1862}
1863
1864/**
1865 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1866 * @hw: pointer to the HW structure
1867 *
1868 * In the case of a PHY power down to save power, or to turn off link during a
1869 * driver unload, or wake on lan is not enabled, remove the link.
1870 **/
1871static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1872{
1873 struct e1000_phy_info *phy = &hw->phy;
1874 struct e1000_mac_info *mac = &hw->mac;
1875
1876 if (!phy->ops.check_reset_block)
1877 return;
1878
1879 /* If the management interface is not enabled, then power down */
1880 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1881 e1000_power_down_phy_copper(hw);
1882}
1883
1884/**
1885 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1886 * @hw: pointer to the HW structure
1887 *
1888 * Clears the hardware counters by reading the counter registers.
1889 **/
1890static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1891{
1892 e1000e_clear_hw_cntrs_base(hw);
1893
1894 er32(PRC64);
1895 er32(PRC127);
1896 er32(PRC255);
1897 er32(PRC511);
1898 er32(PRC1023);
1899 er32(PRC1522);
1900 er32(PTC64);
1901 er32(PTC127);
1902 er32(PTC255);
1903 er32(PTC511);
1904 er32(PTC1023);
1905 er32(PTC1522);
1906
1907 er32(ALGNERRC);
1908 er32(RXERRC);
1909 er32(TNCRS);
1910 er32(CEXTERR);
1911 er32(TSCTC);
1912 er32(TSCTFC);
1913
1914 er32(MGTPRC);
1915 er32(MGTPDC);
1916 er32(MGTPTC);
1917
1918 er32(IAC);
1919 er32(ICRXOC);
1920
1921 er32(ICRXPTC);
1922 er32(ICRXATC);
1923 er32(ICTXPTC);
1924 er32(ICTXATC);
1925 er32(ICTXQEC);
1926 er32(ICTXQMTC);
1927 er32(ICRXDMTC);
1928}
1929
1930static const struct e1000_mac_operations e82571_mac_ops = {
1931 /* .check_mng_mode: mac type dependent */
1932 /* .check_for_link: media type dependent */
1933 .id_led_init = e1000e_id_led_init_generic,
1934 .cleanup_led = e1000e_cleanup_led_generic,
1935 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1936 .get_bus_info = e1000e_get_bus_info_pcie,
1937 .set_lan_id = e1000_set_lan_id_multi_port_pcie,
1938 /* .get_link_up_info: media type dependent */
1939 /* .led_on: mac type dependent */
1940 .led_off = e1000e_led_off_generic,
1941 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
1942 .write_vfta = e1000_write_vfta_generic,
1943 .clear_vfta = e1000_clear_vfta_82571,
1944 .reset_hw = e1000_reset_hw_82571,
1945 .init_hw = e1000_init_hw_82571,
1946 .setup_link = e1000_setup_link_82571,
1947 /* .setup_physical_interface: media type dependent */
1948 .setup_led = e1000e_setup_led_generic,
1949 .config_collision_dist = e1000e_config_collision_dist_generic,
1950 .read_mac_addr = e1000_read_mac_addr_82571,
1951 .rar_set = e1000e_rar_set_generic,
1952};
1953
1954static const struct e1000_phy_operations e82_phy_ops_igp = {
1955 .acquire = e1000_get_hw_semaphore_82571,
1956 .check_polarity = e1000_check_polarity_igp,
1957 .check_reset_block = e1000e_check_reset_block_generic,
1958 .commit = NULL,
1959 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1960 .get_cfg_done = e1000_get_cfg_done_82571,
1961 .get_cable_length = e1000e_get_cable_length_igp_2,
1962 .get_info = e1000e_get_phy_info_igp,
1963 .read_reg = e1000e_read_phy_reg_igp,
1964 .release = e1000_put_hw_semaphore_82571,
1965 .reset = e1000e_phy_hw_reset_generic,
1966 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1967 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1968 .write_reg = e1000e_write_phy_reg_igp,
1969 .cfg_on_link_up = NULL,
1970};
1971
1972static const struct e1000_phy_operations e82_phy_ops_m88 = {
1973 .acquire = e1000_get_hw_semaphore_82571,
1974 .check_polarity = e1000_check_polarity_m88,
1975 .check_reset_block = e1000e_check_reset_block_generic,
1976 .commit = e1000e_phy_sw_reset,
1977 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1978 .get_cfg_done = e1000e_get_cfg_done,
1979 .get_cable_length = e1000e_get_cable_length_m88,
1980 .get_info = e1000e_get_phy_info_m88,
1981 .read_reg = e1000e_read_phy_reg_m88,
1982 .release = e1000_put_hw_semaphore_82571,
1983 .reset = e1000e_phy_hw_reset_generic,
1984 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1985 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1986 .write_reg = e1000e_write_phy_reg_m88,
1987 .cfg_on_link_up = NULL,
1988};
1989
1990static const struct e1000_phy_operations e82_phy_ops_bm = {
1991 .acquire = e1000_get_hw_semaphore_82571,
1992 .check_polarity = e1000_check_polarity_m88,
1993 .check_reset_block = e1000e_check_reset_block_generic,
1994 .commit = e1000e_phy_sw_reset,
1995 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1996 .get_cfg_done = e1000e_get_cfg_done,
1997 .get_cable_length = e1000e_get_cable_length_m88,
1998 .get_info = e1000e_get_phy_info_m88,
1999 .read_reg = e1000e_read_phy_reg_bm2,
2000 .release = e1000_put_hw_semaphore_82571,
2001 .reset = e1000e_phy_hw_reset_generic,
2002 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
2003 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
2004 .write_reg = e1000e_write_phy_reg_bm2,
2005 .cfg_on_link_up = NULL,
2006};
2007
2008static const struct e1000_nvm_operations e82571_nvm_ops = {
2009 .acquire = e1000_acquire_nvm_82571,
2010 .read = e1000e_read_nvm_eerd,
2011 .release = e1000_release_nvm_82571,
2012 .reload = e1000e_reload_nvm_generic,
2013 .update = e1000_update_nvm_checksum_82571,
2014 .valid_led_default = e1000_valid_led_default_82571,
2015 .validate = e1000_validate_nvm_checksum_82571,
2016 .write = e1000_write_nvm_82571,
2017};
2018
2019const struct e1000_info e1000_82571_info = {
2020 .mac = e1000_82571,
2021 .flags = FLAG_HAS_HW_VLAN_FILTER
2022 | FLAG_HAS_JUMBO_FRAMES
2023 | FLAG_HAS_WOL
2024 | FLAG_APME_IN_CTRL3
2025 | FLAG_HAS_CTRLEXT_ON_LOAD
2026 | FLAG_HAS_SMART_POWER_DOWN
2027 | FLAG_RESET_OVERWRITES_LAA /* errata */
2028 | FLAG_TARC_SPEED_MODE_BIT /* errata */
2029 | FLAG_APME_CHECK_PORT_B,
2030 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
2031 | FLAG2_DMA_BURST,
2032 .pba = 38,
2033 .max_hw_frame_size = DEFAULT_JUMBO,
2034 .get_variants = e1000_get_variants_82571,
2035 .mac_ops = &e82571_mac_ops,
2036 .phy_ops = &e82_phy_ops_igp,
2037 .nvm_ops = &e82571_nvm_ops,
2038};
2039
2040const struct e1000_info e1000_82572_info = {
2041 .mac = e1000_82572,
2042 .flags = FLAG_HAS_HW_VLAN_FILTER
2043 | FLAG_HAS_JUMBO_FRAMES
2044 | FLAG_HAS_WOL
2045 | FLAG_APME_IN_CTRL3
2046 | FLAG_HAS_CTRLEXT_ON_LOAD
2047 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
2048 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
2049 | FLAG2_DMA_BURST,
2050 .pba = 38,
2051 .max_hw_frame_size = DEFAULT_JUMBO,
2052 .get_variants = e1000_get_variants_82571,
2053 .mac_ops = &e82571_mac_ops,
2054 .phy_ops = &e82_phy_ops_igp,
2055 .nvm_ops = &e82571_nvm_ops,
2056};
2057
2058const struct e1000_info e1000_82573_info = {
2059 .mac = e1000_82573,
2060 .flags = FLAG_HAS_HW_VLAN_FILTER
2061 | FLAG_HAS_WOL
2062 | FLAG_APME_IN_CTRL3
2063 | FLAG_HAS_SMART_POWER_DOWN
2064 | FLAG_HAS_AMT
2065 | FLAG_HAS_SWSM_ON_LOAD,
2066 .flags2 = FLAG2_DISABLE_ASPM_L1
2067 | FLAG2_DISABLE_ASPM_L0S,
2068 .pba = 20,
2069 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
2070 .get_variants = e1000_get_variants_82571,
2071 .mac_ops = &e82571_mac_ops,
2072 .phy_ops = &e82_phy_ops_m88,
2073 .nvm_ops = &e82571_nvm_ops,
2074};
2075
2076const struct e1000_info e1000_82574_info = {
2077 .mac = e1000_82574,
2078 .flags = FLAG_HAS_HW_VLAN_FILTER
2079 | FLAG_HAS_MSIX
2080 | FLAG_HAS_JUMBO_FRAMES
2081 | FLAG_HAS_WOL
2082 | FLAG_APME_IN_CTRL3
2083 | FLAG_HAS_SMART_POWER_DOWN
2084 | FLAG_HAS_AMT
2085 | FLAG_HAS_CTRLEXT_ON_LOAD,
2086 .flags2 = FLAG2_CHECK_PHY_HANG
2087 | FLAG2_DISABLE_ASPM_L0S
2088 | FLAG2_DISABLE_ASPM_L1
2089 | FLAG2_NO_DISABLE_RX
2090 | FLAG2_DMA_BURST,
2091 .pba = 32,
2092 .max_hw_frame_size = DEFAULT_JUMBO,
2093 .get_variants = e1000_get_variants_82571,
2094 .mac_ops = &e82571_mac_ops,
2095 .phy_ops = &e82_phy_ops_bm,
2096 .nvm_ops = &e82571_nvm_ops,
2097};
2098
2099const struct e1000_info e1000_82583_info = {
2100 .mac = e1000_82583,
2101 .flags = FLAG_HAS_HW_VLAN_FILTER
2102 | FLAG_HAS_WOL
2103 | FLAG_APME_IN_CTRL3
2104 | FLAG_HAS_SMART_POWER_DOWN
2105 | FLAG_HAS_AMT
2106 | FLAG_HAS_JUMBO_FRAMES
2107 | FLAG_HAS_CTRLEXT_ON_LOAD,
2108 .flags2 = FLAG2_DISABLE_ASPM_L0S
2109 | FLAG2_NO_DISABLE_RX,
2110 .pba = 32,
2111 .max_hw_frame_size = DEFAULT_JUMBO,
2112 .get_variants = e1000_get_variants_82571,
2113 .mac_ops = &e82571_mac_ops,
2114 .phy_ops = &e82_phy_ops_bm,
2115 .nvm_ops = &e82571_nvm_ops,
2116};
2117