Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2006 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4/* ethtool support for e1000 */
   5
   6#include "e1000.h"
   7#include <linux/jiffies.h>
   8#include <linux/uaccess.h>
   9
  10enum {NETDEV_STATS, E1000_STATS};
  11
  12struct e1000_stats {
  13	char stat_string[ETH_GSTRING_LEN];
  14	int type;
  15	int sizeof_stat;
  16	int stat_offset;
  17};
  18
  19#define E1000_STAT(m)		E1000_STATS, \
  20				sizeof(((struct e1000_adapter *)0)->m), \
  21				offsetof(struct e1000_adapter, m)
  22#define E1000_NETDEV_STAT(m)	NETDEV_STATS, \
  23				sizeof(((struct net_device *)0)->m), \
  24				offsetof(struct net_device, m)
  25
  26static const struct e1000_stats e1000_gstrings_stats[] = {
  27	{ "rx_packets", E1000_STAT(stats.gprc) },
  28	{ "tx_packets", E1000_STAT(stats.gptc) },
  29	{ "rx_bytes", E1000_STAT(stats.gorcl) },
  30	{ "tx_bytes", E1000_STAT(stats.gotcl) },
  31	{ "rx_broadcast", E1000_STAT(stats.bprc) },
  32	{ "tx_broadcast", E1000_STAT(stats.bptc) },
  33	{ "rx_multicast", E1000_STAT(stats.mprc) },
  34	{ "tx_multicast", E1000_STAT(stats.mptc) },
  35	{ "rx_errors", E1000_STAT(stats.rxerrc) },
  36	{ "tx_errors", E1000_STAT(stats.txerrc) },
  37	{ "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
  38	{ "multicast", E1000_STAT(stats.mprc) },
  39	{ "collisions", E1000_STAT(stats.colc) },
  40	{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
  41	{ "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
  42	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
  43	{ "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
  44	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
  45	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
  46	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
  47	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
  48	{ "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
  49	{ "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
  50	{ "tx_window_errors", E1000_STAT(stats.latecol) },
  51	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
  52	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
  53	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
  54	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
  55	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
  56	{ "tx_restart_queue", E1000_STAT(restart_queue) },
  57	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
  58	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
  59	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
  60	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
  61	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
  62	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
  63	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
  64	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
  65	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
  66	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
  67	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
  68	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
  69	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
  70	{ "tx_smbus", E1000_STAT(stats.mgptc) },
  71	{ "rx_smbus", E1000_STAT(stats.mgprc) },
  72	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
  73};
  74
  75#define E1000_QUEUE_STATS_LEN 0
  76#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
  77#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
  78static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
  79	"Register test  (offline)", "Eeprom test    (offline)",
  80	"Interrupt test (offline)", "Loopback test  (offline)",
  81	"Link test   (on/offline)"
  82};
  83
  84#define E1000_TEST_LEN	ARRAY_SIZE(e1000_gstrings_test)
  85
  86static int e1000_get_link_ksettings(struct net_device *netdev,
  87				    struct ethtool_link_ksettings *cmd)
  88{
  89	struct e1000_adapter *adapter = netdev_priv(netdev);
  90	struct e1000_hw *hw = &adapter->hw;
  91	u32 supported, advertising;
  92
  93	if (hw->media_type == e1000_media_type_copper) {
  94		supported = (SUPPORTED_10baseT_Half |
  95			     SUPPORTED_10baseT_Full |
  96			     SUPPORTED_100baseT_Half |
  97			     SUPPORTED_100baseT_Full |
  98			     SUPPORTED_1000baseT_Full|
  99			     SUPPORTED_Autoneg |
 100			     SUPPORTED_TP);
 101		advertising = ADVERTISED_TP;
 
 102
 103		if (hw->autoneg == 1) {
 104			advertising |= ADVERTISED_Autoneg;
 105			/* the e1000 autoneg seems to match ethtool nicely */
 106			advertising |= hw->autoneg_advertised;
 107		}
 108
 109		cmd->base.port = PORT_TP;
 110		cmd->base.phy_address = hw->phy_addr;
 
 
 
 
 
 
 111	} else {
 112		supported   = (SUPPORTED_1000baseT_Full |
 113			       SUPPORTED_FIBRE |
 114			       SUPPORTED_Autoneg);
 115
 116		advertising = (ADVERTISED_1000baseT_Full |
 117			       ADVERTISED_FIBRE |
 118			       ADVERTISED_Autoneg);
 
 
 119
 120		cmd->base.port = PORT_FIBRE;
 
 
 
 121	}
 122
 123	if (er32(STATUS) & E1000_STATUS_LU) {
 
 124		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
 125					   &adapter->link_duplex);
 126		cmd->base.speed = adapter->link_speed;
 127
 128		/* unfortunately FULL_DUPLEX != DUPLEX_FULL
 129		 * and HALF_DUPLEX != DUPLEX_HALF
 130		 */
 131		if (adapter->link_duplex == FULL_DUPLEX)
 132			cmd->base.duplex = DUPLEX_FULL;
 133		else
 134			cmd->base.duplex = DUPLEX_HALF;
 135	} else {
 136		cmd->base.speed = SPEED_UNKNOWN;
 137		cmd->base.duplex = DUPLEX_UNKNOWN;
 138	}
 139
 140	cmd->base.autoneg = ((hw->media_type == e1000_media_type_fiber) ||
 141			 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
 142
 143	/* MDI-X => 1; MDI => 0 */
 144	if ((hw->media_type == e1000_media_type_copper) &&
 145	    netif_carrier_ok(netdev))
 146		cmd->base.eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
 147				     ETH_TP_MDI_X : ETH_TP_MDI);
 148	else
 149		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
 150
 151	if (hw->mdix == AUTO_ALL_MODES)
 152		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
 153	else
 154		cmd->base.eth_tp_mdix_ctrl = hw->mdix;
 155
 156	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
 157						supported);
 158	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
 159						advertising);
 160
 161	return 0;
 162}
 163
 164static int e1000_set_link_ksettings(struct net_device *netdev,
 165				    const struct ethtool_link_ksettings *cmd)
 166{
 167	struct e1000_adapter *adapter = netdev_priv(netdev);
 168	struct e1000_hw *hw = &adapter->hw;
 169	u32 advertising;
 170
 171	ethtool_convert_link_mode_to_legacy_u32(&advertising,
 172						cmd->link_modes.advertising);
 173
 174	/* MDI setting is only allowed when autoneg enabled because
 175	 * some hardware doesn't allow MDI setting when speed or
 176	 * duplex is forced.
 177	 */
 178	if (cmd->base.eth_tp_mdix_ctrl) {
 179		if (hw->media_type != e1000_media_type_copper)
 180			return -EOPNOTSUPP;
 181
 182		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
 183		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
 184			e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
 185			return -EINVAL;
 186		}
 187	}
 188
 189	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 190		msleep(1);
 191
 192	if (cmd->base.autoneg == AUTONEG_ENABLE) {
 193		hw->autoneg = 1;
 194		if (hw->media_type == e1000_media_type_fiber)
 195			hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
 196						 ADVERTISED_FIBRE |
 197						 ADVERTISED_Autoneg;
 198		else
 199			hw->autoneg_advertised = advertising |
 200						 ADVERTISED_TP |
 201						 ADVERTISED_Autoneg;
 
 202	} else {
 203		u32 speed = cmd->base.speed;
 204		/* calling this overrides forced MDI setting */
 205		if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
 206			clear_bit(__E1000_RESETTING, &adapter->flags);
 207			return -EINVAL;
 208		}
 209	}
 210
 211	/* MDI-X => 2; MDI => 1; Auto => 3 */
 212	if (cmd->base.eth_tp_mdix_ctrl) {
 213		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
 214			hw->mdix = AUTO_ALL_MODES;
 215		else
 216			hw->mdix = cmd->base.eth_tp_mdix_ctrl;
 217	}
 218
 219	/* reset the link */
 220
 221	if (netif_running(adapter->netdev)) {
 222		e1000_down(adapter);
 223		e1000_up(adapter);
 224	} else {
 225		e1000_reset(adapter);
 226	}
 227	clear_bit(__E1000_RESETTING, &adapter->flags);
 228	return 0;
 229}
 230
 231static u32 e1000_get_link(struct net_device *netdev)
 232{
 233	struct e1000_adapter *adapter = netdev_priv(netdev);
 234
 235	/* If the link is not reported up to netdev, interrupts are disabled,
 
 236	 * and so the physical link state may have changed since we last
 237	 * looked. Set get_link_status to make sure that the true link
 238	 * state is interrogated, rather than pulling a cached and possibly
 239	 * stale link state from the driver.
 240	 */
 241	if (!netif_carrier_ok(netdev))
 242		adapter->hw.get_link_status = 1;
 243
 244	return e1000_has_link(adapter);
 245}
 246
 247static void e1000_get_pauseparam(struct net_device *netdev,
 248				 struct ethtool_pauseparam *pause)
 249{
 250	struct e1000_adapter *adapter = netdev_priv(netdev);
 251	struct e1000_hw *hw = &adapter->hw;
 252
 253	pause->autoneg =
 254		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 255
 256	if (hw->fc == E1000_FC_RX_PAUSE) {
 257		pause->rx_pause = 1;
 258	} else if (hw->fc == E1000_FC_TX_PAUSE) {
 259		pause->tx_pause = 1;
 260	} else if (hw->fc == E1000_FC_FULL) {
 261		pause->rx_pause = 1;
 262		pause->tx_pause = 1;
 263	}
 264}
 265
 266static int e1000_set_pauseparam(struct net_device *netdev,
 267				struct ethtool_pauseparam *pause)
 268{
 269	struct e1000_adapter *adapter = netdev_priv(netdev);
 270	struct e1000_hw *hw = &adapter->hw;
 271	int retval = 0;
 272
 273	adapter->fc_autoneg = pause->autoneg;
 274
 275	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 276		msleep(1);
 277
 278	if (pause->rx_pause && pause->tx_pause)
 279		hw->fc = E1000_FC_FULL;
 280	else if (pause->rx_pause && !pause->tx_pause)
 281		hw->fc = E1000_FC_RX_PAUSE;
 282	else if (!pause->rx_pause && pause->tx_pause)
 283		hw->fc = E1000_FC_TX_PAUSE;
 284	else if (!pause->rx_pause && !pause->tx_pause)
 285		hw->fc = E1000_FC_NONE;
 286
 287	hw->original_fc = hw->fc;
 288
 289	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 290		if (netif_running(adapter->netdev)) {
 291			e1000_down(adapter);
 292			e1000_up(adapter);
 293		} else {
 294			e1000_reset(adapter);
 295		}
 296	} else
 297		retval = ((hw->media_type == e1000_media_type_fiber) ?
 298			  e1000_setup_link(hw) : e1000_force_mac_fc(hw));
 299
 300	clear_bit(__E1000_RESETTING, &adapter->flags);
 301	return retval;
 302}
 303
 304static u32 e1000_get_msglevel(struct net_device *netdev)
 305{
 306	struct e1000_adapter *adapter = netdev_priv(netdev);
 307
 308	return adapter->msg_enable;
 309}
 310
 311static void e1000_set_msglevel(struct net_device *netdev, u32 data)
 312{
 313	struct e1000_adapter *adapter = netdev_priv(netdev);
 314
 315	adapter->msg_enable = data;
 316}
 317
 318static int e1000_get_regs_len(struct net_device *netdev)
 319{
 320#define E1000_REGS_LEN 32
 321	return E1000_REGS_LEN * sizeof(u32);
 322}
 323
 324static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
 325			   void *p)
 326{
 327	struct e1000_adapter *adapter = netdev_priv(netdev);
 328	struct e1000_hw *hw = &adapter->hw;
 329	u32 *regs_buff = p;
 330	u16 phy_data;
 331
 332	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
 333
 334	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
 335
 336	regs_buff[0]  = er32(CTRL);
 337	regs_buff[1]  = er32(STATUS);
 338
 339	regs_buff[2]  = er32(RCTL);
 340	regs_buff[3]  = er32(RDLEN);
 341	regs_buff[4]  = er32(RDH);
 342	regs_buff[5]  = er32(RDT);
 343	regs_buff[6]  = er32(RDTR);
 344
 345	regs_buff[7]  = er32(TCTL);
 346	regs_buff[8]  = er32(TDLEN);
 347	regs_buff[9]  = er32(TDH);
 348	regs_buff[10] = er32(TDT);
 349	regs_buff[11] = er32(TIDV);
 350
 351	regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
 352	if (hw->phy_type == e1000_phy_igp) {
 353		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 354				    IGP01E1000_PHY_AGC_A);
 355		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
 356				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 357		regs_buff[13] = (u32)phy_data; /* cable length */
 358		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 359				    IGP01E1000_PHY_AGC_B);
 360		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
 361				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 362		regs_buff[14] = (u32)phy_data; /* cable length */
 363		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 364				    IGP01E1000_PHY_AGC_C);
 365		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
 366				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 367		regs_buff[15] = (u32)phy_data; /* cable length */
 368		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 369				    IGP01E1000_PHY_AGC_D);
 370		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
 371				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 372		regs_buff[16] = (u32)phy_data; /* cable length */
 373		regs_buff[17] = 0; /* extended 10bt distance (not needed) */
 374		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
 375		e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
 376				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 377		regs_buff[18] = (u32)phy_data; /* cable polarity */
 378		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 379				    IGP01E1000_PHY_PCS_INIT_REG);
 380		e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
 381				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 382		regs_buff[19] = (u32)phy_data; /* cable polarity */
 383		regs_buff[20] = 0; /* polarity correction enabled (always) */
 384		regs_buff[22] = 0; /* phy receive errors (unavailable) */
 385		regs_buff[23] = regs_buff[18]; /* mdix mode */
 386		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
 387	} else {
 388		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
 389		regs_buff[13] = (u32)phy_data; /* cable length */
 390		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 391		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 392		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 393		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 394		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
 395		regs_buff[18] = regs_buff[13]; /* cable polarity */
 396		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 397		regs_buff[20] = regs_buff[17]; /* polarity correction */
 398		/* phy receive errors */
 399		regs_buff[22] = adapter->phy_stats.receive_errors;
 400		regs_buff[23] = regs_buff[13]; /* mdix mode */
 401	}
 402	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
 403	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
 404	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
 405	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
 406	if (hw->mac_type >= e1000_82540 &&
 407	    hw->media_type == e1000_media_type_copper) {
 408		regs_buff[26] = er32(MANC);
 409	}
 410}
 411
 412static int e1000_get_eeprom_len(struct net_device *netdev)
 413{
 414	struct e1000_adapter *adapter = netdev_priv(netdev);
 415	struct e1000_hw *hw = &adapter->hw;
 416
 417	return hw->eeprom.word_size * 2;
 418}
 419
 420static int e1000_get_eeprom(struct net_device *netdev,
 421			    struct ethtool_eeprom *eeprom, u8 *bytes)
 422{
 423	struct e1000_adapter *adapter = netdev_priv(netdev);
 424	struct e1000_hw *hw = &adapter->hw;
 425	u16 *eeprom_buff;
 426	int first_word, last_word;
 427	int ret_val = 0;
 428	u16 i;
 429
 430	if (eeprom->len == 0)
 431		return -EINVAL;
 432
 433	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
 434
 435	first_word = eeprom->offset >> 1;
 436	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 437
 438	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
 439				    GFP_KERNEL);
 440	if (!eeprom_buff)
 441		return -ENOMEM;
 442
 443	if (hw->eeprom.type == e1000_eeprom_spi)
 444		ret_val = e1000_read_eeprom(hw, first_word,
 445					    last_word - first_word + 1,
 446					    eeprom_buff);
 447	else {
 448		for (i = 0; i < last_word - first_word + 1; i++) {
 449			ret_val = e1000_read_eeprom(hw, first_word + i, 1,
 450						    &eeprom_buff[i]);
 451			if (ret_val)
 452				break;
 453		}
 454	}
 455
 456	/* Device's eeprom is always little-endian, word addressable */
 457	for (i = 0; i < last_word - first_word + 1; i++)
 458		le16_to_cpus(&eeprom_buff[i]);
 459
 460	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
 461	       eeprom->len);
 462	kfree(eeprom_buff);
 463
 464	return ret_val;
 465}
 466
 467static int e1000_set_eeprom(struct net_device *netdev,
 468			    struct ethtool_eeprom *eeprom, u8 *bytes)
 469{
 470	struct e1000_adapter *adapter = netdev_priv(netdev);
 471	struct e1000_hw *hw = &adapter->hw;
 472	u16 *eeprom_buff;
 473	void *ptr;
 474	int max_len, first_word, last_word, ret_val = 0;
 475	u16 i;
 476
 477	if (eeprom->len == 0)
 478		return -EOPNOTSUPP;
 479
 480	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
 481		return -EFAULT;
 482
 483	max_len = hw->eeprom.word_size * 2;
 484
 485	first_word = eeprom->offset >> 1;
 486	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 487	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 488	if (!eeprom_buff)
 489		return -ENOMEM;
 490
 491	ptr = (void *)eeprom_buff;
 492
 493	if (eeprom->offset & 1) {
 494		/* need read/modify/write of first changed EEPROM word
 495		 * only the second byte of the word is being modified
 496		 */
 497		ret_val = e1000_read_eeprom(hw, first_word, 1,
 498					    &eeprom_buff[0]);
 499		ptr++;
 500	}
 501	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
 502		/* need read/modify/write of last changed EEPROM word
 503		 * only the first byte of the word is being modified
 504		 */
 505		ret_val = e1000_read_eeprom(hw, last_word, 1,
 506					    &eeprom_buff[last_word - first_word]);
 507	}
 508
 509	/* Device's eeprom is always little-endian, word addressable */
 510	for (i = 0; i < last_word - first_word + 1; i++)
 511		le16_to_cpus(&eeprom_buff[i]);
 512
 513	memcpy(ptr, bytes, eeprom->len);
 514
 515	for (i = 0; i < last_word - first_word + 1; i++)
 516		cpu_to_le16s(&eeprom_buff[i]);
 517
 518	ret_val = e1000_write_eeprom(hw, first_word,
 519				     last_word - first_word + 1, eeprom_buff);
 520
 521	/* Update the checksum over the first part of the EEPROM if needed */
 522	if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
 523		e1000_update_eeprom_checksum(hw);
 524
 525	kfree(eeprom_buff);
 526	return ret_val;
 527}
 528
 529static void e1000_get_drvinfo(struct net_device *netdev,
 530			      struct ethtool_drvinfo *drvinfo)
 531{
 532	struct e1000_adapter *adapter = netdev_priv(netdev);
 533
 534	strscpy(drvinfo->driver,  e1000_driver_name,
 535		sizeof(drvinfo->driver));
 
 
 536
 537	strscpy(drvinfo->bus_info, pci_name(adapter->pdev),
 538		sizeof(drvinfo->bus_info));
 
 
 539}
 540
 541static void e1000_get_ringparam(struct net_device *netdev,
 542				struct ethtool_ringparam *ring,
 543				struct kernel_ethtool_ringparam *kernel_ring,
 544				struct netlink_ext_ack *extack)
 545{
 546	struct e1000_adapter *adapter = netdev_priv(netdev);
 547	struct e1000_hw *hw = &adapter->hw;
 548	e1000_mac_type mac_type = hw->mac_type;
 549	struct e1000_tx_ring *txdr = adapter->tx_ring;
 550	struct e1000_rx_ring *rxdr = adapter->rx_ring;
 551
 552	ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
 553		E1000_MAX_82544_RXD;
 554	ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
 555		E1000_MAX_82544_TXD;
 556	ring->rx_pending = rxdr->count;
 557	ring->tx_pending = txdr->count;
 558}
 559
 560static int e1000_set_ringparam(struct net_device *netdev,
 561			       struct ethtool_ringparam *ring,
 562			       struct kernel_ethtool_ringparam *kernel_ring,
 563			       struct netlink_ext_ack *extack)
 564{
 565	struct e1000_adapter *adapter = netdev_priv(netdev);
 566	struct e1000_hw *hw = &adapter->hw;
 567	e1000_mac_type mac_type = hw->mac_type;
 568	struct e1000_tx_ring *txdr, *tx_old;
 569	struct e1000_rx_ring *rxdr, *rx_old;
 570	int i, err;
 571
 572	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 573		return -EINVAL;
 574
 575	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 576		msleep(1);
 577
 578	if (netif_running(adapter->netdev))
 579		e1000_down(adapter);
 580
 581	tx_old = adapter->tx_ring;
 582	rx_old = adapter->rx_ring;
 583
 584	err = -ENOMEM;
 585	txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
 586		       GFP_KERNEL);
 587	if (!txdr)
 588		goto err_alloc_tx;
 589
 590	rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
 591		       GFP_KERNEL);
 592	if (!rxdr)
 593		goto err_alloc_rx;
 594
 595	adapter->tx_ring = txdr;
 596	adapter->rx_ring = rxdr;
 597
 598	rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
 599	rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
 600			  E1000_MAX_RXD : E1000_MAX_82544_RXD));
 601	rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
 602	txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
 603	txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
 604			  E1000_MAX_TXD : E1000_MAX_82544_TXD));
 
 605	txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
 606
 607	for (i = 0; i < adapter->num_tx_queues; i++)
 608		txdr[i].count = txdr->count;
 609	for (i = 0; i < adapter->num_rx_queues; i++)
 610		rxdr[i].count = rxdr->count;
 611
 612	err = 0;
 613	if (netif_running(adapter->netdev)) {
 614		/* Try to get new resources before deleting old */
 615		err = e1000_setup_all_rx_resources(adapter);
 616		if (err)
 617			goto err_setup_rx;
 618		err = e1000_setup_all_tx_resources(adapter);
 619		if (err)
 620			goto err_setup_tx;
 621
 622		/* save the new, restore the old in order to free it,
 623		 * then restore the new back again
 624		 */
 625
 626		adapter->rx_ring = rx_old;
 627		adapter->tx_ring = tx_old;
 628		e1000_free_all_rx_resources(adapter);
 629		e1000_free_all_tx_resources(adapter);
 
 
 630		adapter->rx_ring = rxdr;
 631		adapter->tx_ring = txdr;
 632		err = e1000_up(adapter);
 
 
 633	}
 634	kfree(tx_old);
 635	kfree(rx_old);
 636
 637	clear_bit(__E1000_RESETTING, &adapter->flags);
 638	return err;
 639
 640err_setup_tx:
 641	e1000_free_all_rx_resources(adapter);
 642err_setup_rx:
 643	adapter->rx_ring = rx_old;
 644	adapter->tx_ring = tx_old;
 645	kfree(rxdr);
 646err_alloc_rx:
 647	kfree(txdr);
 648err_alloc_tx:
 649	if (netif_running(adapter->netdev))
 650		e1000_up(adapter);
 651	clear_bit(__E1000_RESETTING, &adapter->flags);
 652	return err;
 653}
 654
 655static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
 656			     u32 mask, u32 write)
 657{
 658	struct e1000_hw *hw = &adapter->hw;
 659	static const u32 test[] = {
 660		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
 661	};
 662	u8 __iomem *address = hw->hw_addr + reg;
 663	u32 read;
 664	int i;
 665
 666	for (i = 0; i < ARRAY_SIZE(test); i++) {
 667		writel(write & test[i], address);
 668		read = readl(address);
 669		if (read != (write & test[i] & mask)) {
 670			e_err(drv, "pattern test reg %04X failed: "
 671			      "got 0x%08X expected 0x%08X\n",
 672			      reg, read, (write & test[i] & mask));
 673			*data = reg;
 674			return true;
 675		}
 676	}
 677	return false;
 678}
 679
 680static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
 681			      u32 mask, u32 write)
 682{
 683	struct e1000_hw *hw = &adapter->hw;
 684	u8 __iomem *address = hw->hw_addr + reg;
 685	u32 read;
 686
 687	writel(write & mask, address);
 688	read = readl(address);
 689	if ((read & mask) != (write & mask)) {
 690		e_err(drv, "set/check reg %04X test failed: "
 691		      "got 0x%08X expected 0x%08X\n",
 692		      reg, (read & mask), (write & mask));
 693		*data = reg;
 694		return true;
 695	}
 696	return false;
 697}
 698
 699#define REG_PATTERN_TEST(reg, mask, write)			     \
 700	do {							     \
 701		if (reg_pattern_test(adapter, data,		     \
 702			     (hw->mac_type >= e1000_82543)   \
 703			     ? E1000_##reg : E1000_82542_##reg,	     \
 704			     mask, write))			     \
 705			return 1;				     \
 706	} while (0)
 707
 708#define REG_SET_AND_CHECK(reg, mask, write)			     \
 709	do {							     \
 710		if (reg_set_and_check(adapter, data,		     \
 711			      (hw->mac_type >= e1000_82543)  \
 712			      ? E1000_##reg : E1000_82542_##reg,     \
 713			      mask, write))			     \
 714			return 1;				     \
 715	} while (0)
 716
 717static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
 718{
 719	u32 value, before, after;
 720	u32 i, toggle;
 721	struct e1000_hw *hw = &adapter->hw;
 722
 723	/* The status register is Read Only, so a write should fail.
 724	 * Some bits that get toggled are ignored.
 725	 */
 726
 727	/* there are several bits on newer hardware that are r/w */
 728	toggle = 0xFFFFF833;
 729
 730	before = er32(STATUS);
 731	value = (er32(STATUS) & toggle);
 732	ew32(STATUS, toggle);
 733	after = er32(STATUS) & toggle;
 734	if (value != after) {
 735		e_err(drv, "failed STATUS register test got: "
 736		      "0x%08X expected: 0x%08X\n", after, value);
 737		*data = 1;
 738		return 1;
 739	}
 740	/* restore previous status */
 741	ew32(STATUS, before);
 742
 743	REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
 744	REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
 745	REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
 746	REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
 747
 748	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
 749	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
 750	REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
 751	REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
 752	REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
 753	REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
 754	REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
 755	REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
 756	REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
 757	REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
 758
 759	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
 760
 761	before = 0x06DFB3FE;
 762	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
 763	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
 764
 765	if (hw->mac_type >= e1000_82543) {
 
 766		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
 767		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
 768		REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
 769		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
 770		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
 771		value = E1000_RAR_ENTRIES;
 772		for (i = 0; i < value; i++) {
 773			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
 774					 0x8003FFFF, 0xFFFFFFFF);
 775		}
 
 776	} else {
 
 777		REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
 778		REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
 779		REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
 780		REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
 
 781	}
 782
 783	value = E1000_MC_TBL_SIZE;
 784	for (i = 0; i < value; i++)
 785		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
 786
 787	*data = 0;
 788	return 0;
 789}
 790
 791static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
 792{
 793	struct e1000_hw *hw = &adapter->hw;
 794	u16 temp;
 795	u16 checksum = 0;
 796	u16 i;
 797
 798	*data = 0;
 799	/* Read and add up the contents of the EEPROM */
 800	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
 801		if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
 802			*data = 1;
 803			break;
 804		}
 805		checksum += temp;
 806	}
 807
 808	/* If Checksum is not Correct return error else test passed */
 809	if ((checksum != (u16)EEPROM_SUM) && !(*data))
 810		*data = 2;
 811
 812	return *data;
 813}
 814
 815static irqreturn_t e1000_test_intr(int irq, void *data)
 816{
 817	struct net_device *netdev = (struct net_device *)data;
 818	struct e1000_adapter *adapter = netdev_priv(netdev);
 819	struct e1000_hw *hw = &adapter->hw;
 820
 821	adapter->test_icr |= er32(ICR);
 822
 823	return IRQ_HANDLED;
 824}
 825
 826static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
 827{
 828	struct net_device *netdev = adapter->netdev;
 829	u32 mask, i = 0;
 830	bool shared_int = true;
 831	u32 irq = adapter->pdev->irq;
 832	struct e1000_hw *hw = &adapter->hw;
 833
 834	*data = 0;
 835
 836	/* NOTE: we don't test MSI interrupts here, yet
 837	 * Hook up test interrupt handler just for this test
 838	 */
 839	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
 840			 netdev))
 841		shared_int = false;
 842	else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
 843			     netdev->name, netdev)) {
 844		*data = 1;
 845		return -1;
 846	}
 847	e_info(hw, "testing %s interrupt\n", (shared_int ?
 848	       "shared" : "unshared"));
 849
 850	/* Disable all the interrupts */
 851	ew32(IMC, 0xFFFFFFFF);
 852	E1000_WRITE_FLUSH();
 853	msleep(10);
 854
 855	/* Test each interrupt */
 856	for (; i < 10; i++) {
 
 857		/* Interrupt to test */
 858		mask = 1 << i;
 859
 860		if (!shared_int) {
 861			/* Disable the interrupt to be reported in
 862			 * the cause register and then force the same
 863			 * interrupt and see if one gets posted.  If
 864			 * an interrupt was posted to the bus, the
 865			 * test failed.
 866			 */
 867			adapter->test_icr = 0;
 868			ew32(IMC, mask);
 869			ew32(ICS, mask);
 870			E1000_WRITE_FLUSH();
 871			msleep(10);
 872
 873			if (adapter->test_icr & mask) {
 874				*data = 3;
 875				break;
 876			}
 877		}
 878
 879		/* Enable the interrupt to be reported in
 880		 * the cause register and then force the same
 881		 * interrupt and see if one gets posted.  If
 882		 * an interrupt was not posted to the bus, the
 883		 * test failed.
 884		 */
 885		adapter->test_icr = 0;
 886		ew32(IMS, mask);
 887		ew32(ICS, mask);
 888		E1000_WRITE_FLUSH();
 889		msleep(10);
 890
 891		if (!(adapter->test_icr & mask)) {
 892			*data = 4;
 893			break;
 894		}
 895
 896		if (!shared_int) {
 897			/* Disable the other interrupts to be reported in
 898			 * the cause register and then force the other
 899			 * interrupts and see if any get posted.  If
 900			 * an interrupt was posted to the bus, the
 901			 * test failed.
 902			 */
 903			adapter->test_icr = 0;
 904			ew32(IMC, ~mask & 0x00007FFF);
 905			ew32(ICS, ~mask & 0x00007FFF);
 906			E1000_WRITE_FLUSH();
 907			msleep(10);
 908
 909			if (adapter->test_icr) {
 910				*data = 5;
 911				break;
 912			}
 913		}
 914	}
 915
 916	/* Disable all the interrupts */
 917	ew32(IMC, 0xFFFFFFFF);
 918	E1000_WRITE_FLUSH();
 919	msleep(10);
 920
 921	/* Unhook test interrupt handler */
 922	free_irq(irq, netdev);
 923
 924	return *data;
 925}
 926
 927static void e1000_free_desc_rings(struct e1000_adapter *adapter)
 928{
 929	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
 930	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
 931	struct pci_dev *pdev = adapter->pdev;
 932	int i;
 933
 934	if (txdr->desc && txdr->buffer_info) {
 935		for (i = 0; i < txdr->count; i++) {
 936			if (txdr->buffer_info[i].dma)
 937				dma_unmap_single(&pdev->dev,
 938						 txdr->buffer_info[i].dma,
 939						 txdr->buffer_info[i].length,
 940						 DMA_TO_DEVICE);
 941			dev_kfree_skb(txdr->buffer_info[i].skb);
 
 942		}
 943	}
 944
 945	if (rxdr->desc && rxdr->buffer_info) {
 946		for (i = 0; i < rxdr->count; i++) {
 947			if (rxdr->buffer_info[i].dma)
 948				dma_unmap_single(&pdev->dev,
 949						 rxdr->buffer_info[i].dma,
 950						 E1000_RXBUFFER_2048,
 951						 DMA_FROM_DEVICE);
 952			kfree(rxdr->buffer_info[i].rxbuf.data);
 
 953		}
 954	}
 955
 956	if (txdr->desc) {
 957		dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
 958				  txdr->dma);
 959		txdr->desc = NULL;
 960	}
 961	if (rxdr->desc) {
 962		dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
 963				  rxdr->dma);
 964		rxdr->desc = NULL;
 965	}
 966
 967	kfree(txdr->buffer_info);
 968	txdr->buffer_info = NULL;
 969	kfree(rxdr->buffer_info);
 970	rxdr->buffer_info = NULL;
 971}
 972
 973static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
 974{
 975	struct e1000_hw *hw = &adapter->hw;
 976	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
 977	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
 978	struct pci_dev *pdev = adapter->pdev;
 979	u32 rctl;
 980	int i, ret_val;
 981
 982	/* Setup Tx descriptor ring and Tx buffers */
 983
 984	if (!txdr->count)
 985		txdr->count = E1000_DEFAULT_TXD;
 986
 987	txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
 988				    GFP_KERNEL);
 989	if (!txdr->buffer_info) {
 990		ret_val = 1;
 991		goto err_nomem;
 992	}
 993
 994	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
 995	txdr->size = ALIGN(txdr->size, 4096);
 996	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
 997					GFP_KERNEL);
 998	if (!txdr->desc) {
 999		ret_val = 2;
1000		goto err_nomem;
1001	}
 
1002	txdr->next_to_use = txdr->next_to_clean = 0;
1003
1004	ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1005	ew32(TDBAH, ((u64)txdr->dma >> 32));
1006	ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1007	ew32(TDH, 0);
1008	ew32(TDT, 0);
1009	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1010	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1011	     E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1012
1013	for (i = 0; i < txdr->count; i++) {
1014		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1015		struct sk_buff *skb;
1016		unsigned int size = 1024;
1017
1018		skb = alloc_skb(size, GFP_KERNEL);
1019		if (!skb) {
1020			ret_val = 3;
1021			goto err_nomem;
1022		}
1023		skb_put(skb, size);
1024		txdr->buffer_info[i].skb = skb;
1025		txdr->buffer_info[i].length = skb->len;
1026		txdr->buffer_info[i].dma =
1027			dma_map_single(&pdev->dev, skb->data, skb->len,
1028				       DMA_TO_DEVICE);
1029		if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1030			ret_val = 4;
1031			goto err_nomem;
1032		}
1033		tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1034		tx_desc->lower.data = cpu_to_le32(skb->len);
1035		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1036						   E1000_TXD_CMD_IFCS |
1037						   E1000_TXD_CMD_RPS);
1038		tx_desc->upper.data = 0;
1039	}
1040
1041	/* Setup Rx descriptor ring and Rx buffers */
1042
1043	if (!rxdr->count)
1044		rxdr->count = E1000_DEFAULT_RXD;
1045
1046	rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
1047				    GFP_KERNEL);
1048	if (!rxdr->buffer_info) {
1049		ret_val = 5;
1050		goto err_nomem;
1051	}
1052
1053	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1054	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1055					GFP_KERNEL);
1056	if (!rxdr->desc) {
1057		ret_val = 6;
1058		goto err_nomem;
1059	}
 
1060	rxdr->next_to_use = rxdr->next_to_clean = 0;
1061
1062	rctl = er32(RCTL);
1063	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1064	ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1065	ew32(RDBAH, ((u64)rxdr->dma >> 32));
1066	ew32(RDLEN, rxdr->size);
1067	ew32(RDH, 0);
1068	ew32(RDT, 0);
1069	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1070		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1071		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1072	ew32(RCTL, rctl);
1073
1074	for (i = 0; i < rxdr->count; i++) {
1075		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1076		u8 *buf;
1077
1078		buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
1079			      GFP_KERNEL);
1080		if (!buf) {
1081			ret_val = 7;
1082			goto err_nomem;
1083		}
1084		rxdr->buffer_info[i].rxbuf.data = buf;
1085
 
1086		rxdr->buffer_info[i].dma =
1087			dma_map_single(&pdev->dev,
1088				       buf + NET_SKB_PAD + NET_IP_ALIGN,
1089				       E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1090		if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1091			ret_val = 8;
1092			goto err_nomem;
1093		}
1094		rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
 
1095	}
1096
1097	return 0;
1098
1099err_nomem:
1100	e1000_free_desc_rings(adapter);
1101	return ret_val;
1102}
1103
1104static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1105{
1106	struct e1000_hw *hw = &adapter->hw;
1107
1108	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1109	e1000_write_phy_reg(hw, 29, 0x001F);
1110	e1000_write_phy_reg(hw, 30, 0x8FFC);
1111	e1000_write_phy_reg(hw, 29, 0x001A);
1112	e1000_write_phy_reg(hw, 30, 0x8FF0);
1113}
1114
1115static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1116{
1117	struct e1000_hw *hw = &adapter->hw;
1118	u16 phy_reg;
1119
1120	/* Because we reset the PHY above, we need to re-force TX_CLK in the
1121	 * Extended PHY Specific Control Register to 25MHz clock.  This
1122	 * value defaults back to a 2.5MHz clock when the PHY is reset.
1123	 */
1124	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1125	phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1126	e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
 
1127
1128	/* In addition, because of the s/w reset above, we need to enable
1129	 * CRS on TX.  This must be set for both full and half duplex
1130	 * operation.
1131	 */
1132	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1133	phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1134	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
 
1135}
1136
1137static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1138{
1139	struct e1000_hw *hw = &adapter->hw;
1140	u32 ctrl_reg;
1141	u16 phy_reg;
1142
1143	/* Setup the Device Control Register for PHY loopback test. */
1144
1145	ctrl_reg = er32(CTRL);
1146	ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */
1147		     E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
1148		     E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
1149		     E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
1150		     E1000_CTRL_FD);		/* Force Duplex to FULL */
1151
1152	ew32(CTRL, ctrl_reg);
1153
1154	/* Read the PHY Specific Control Register (0x10) */
1155	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1156
1157	/* Clear Auto-Crossover bits in PHY Specific Control Register
1158	 * (bits 6:5).
1159	 */
1160	phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1161	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1162
1163	/* Perform software reset on the PHY */
1164	e1000_phy_reset(hw);
1165
1166	/* Have to setup TX_CLK and TX_CRS after software reset */
1167	e1000_phy_reset_clk_and_crs(adapter);
1168
1169	e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1170
1171	/* Wait for reset to complete. */
1172	udelay(500);
1173
1174	/* Have to setup TX_CLK and TX_CRS after software reset */
1175	e1000_phy_reset_clk_and_crs(adapter);
1176
1177	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1178	e1000_phy_disable_receiver(adapter);
1179
1180	/* Set the loopback bit in the PHY control register. */
1181	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1182	phy_reg |= MII_CR_LOOPBACK;
1183	e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1184
1185	/* Setup TX_CLK and TX_CRS one more time. */
1186	e1000_phy_reset_clk_and_crs(adapter);
1187
1188	/* Check Phy Configuration */
1189	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1190	if (phy_reg != 0x4100)
1191		return 9;
1192
1193	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1194	if (phy_reg != 0x0070)
1195		return 10;
1196
1197	e1000_read_phy_reg(hw, 29, &phy_reg);
1198	if (phy_reg != 0x001A)
1199		return 11;
1200
1201	return 0;
1202}
1203
1204static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1205{
1206	struct e1000_hw *hw = &adapter->hw;
1207	u32 ctrl_reg = 0;
1208	u32 stat_reg = 0;
1209
1210	hw->autoneg = false;
1211
1212	if (hw->phy_type == e1000_phy_m88) {
1213		/* Auto-MDI/MDIX Off */
1214		e1000_write_phy_reg(hw,
1215				    M88E1000_PHY_SPEC_CTRL, 0x0808);
1216		/* reset to update Auto-MDI/MDIX */
1217		e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1218		/* autoneg off */
1219		e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1220	}
1221
1222	ctrl_reg = er32(CTRL);
1223
1224	/* force 1000, set loopback */
1225	e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1226
1227	/* Now set up the MAC to the same speed/duplex as the PHY. */
1228	ctrl_reg = er32(CTRL);
1229	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1230	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1231			E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1232			E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1233			E1000_CTRL_FD); /* Force Duplex to FULL */
1234
1235	if (hw->media_type == e1000_media_type_copper &&
1236	    hw->phy_type == e1000_phy_m88)
1237		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1238	else {
1239		/* Set the ILOS bit on the fiber Nic is half
1240		 * duplex link is detected.
1241		 */
1242		stat_reg = er32(STATUS);
1243		if ((stat_reg & E1000_STATUS_FD) == 0)
1244			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1245	}
1246
1247	ew32(CTRL, ctrl_reg);
1248
1249	/* Disable the receiver on the PHY so when a cable is plugged in, the
1250	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1251	 */
1252	if (hw->phy_type == e1000_phy_m88)
1253		e1000_phy_disable_receiver(adapter);
1254
1255	udelay(500);
1256
1257	return 0;
1258}
1259
1260static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1261{
1262	struct e1000_hw *hw = &adapter->hw;
1263	u16 phy_reg = 0;
1264	u16 count = 0;
1265
1266	switch (hw->mac_type) {
1267	case e1000_82543:
1268		if (hw->media_type == e1000_media_type_copper) {
1269			/* Attempt to setup Loopback mode on Non-integrated PHY.
1270			 * Some PHY registers get corrupted at random, so
1271			 * attempt this 10 times.
1272			 */
1273			while (e1000_nonintegrated_phy_loopback(adapter) &&
1274			       count++ < 10);
1275			if (count < 11)
1276				return 0;
1277		}
1278		break;
1279
1280	case e1000_82544:
1281	case e1000_82540:
1282	case e1000_82545:
1283	case e1000_82545_rev_3:
1284	case e1000_82546:
1285	case e1000_82546_rev_3:
1286	case e1000_82541:
1287	case e1000_82541_rev_2:
1288	case e1000_82547:
1289	case e1000_82547_rev_2:
1290		return e1000_integrated_phy_loopback(adapter);
 
1291	default:
1292		/* Default PHY loopback work is to read the MII
1293		 * control register and assert bit 14 (loopback mode).
1294		 */
1295		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1296		phy_reg |= MII_CR_LOOPBACK;
1297		e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1298		return 0;
 
1299	}
1300
1301	return 8;
1302}
1303
1304static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1305{
1306	struct e1000_hw *hw = &adapter->hw;
1307	u32 rctl;
1308
1309	if (hw->media_type == e1000_media_type_fiber ||
1310	    hw->media_type == e1000_media_type_internal_serdes) {
1311		switch (hw->mac_type) {
1312		case e1000_82545:
1313		case e1000_82546:
1314		case e1000_82545_rev_3:
1315		case e1000_82546_rev_3:
1316			return e1000_set_phy_loopback(adapter);
 
1317		default:
1318			rctl = er32(RCTL);
1319			rctl |= E1000_RCTL_LBM_TCVR;
1320			ew32(RCTL, rctl);
1321			return 0;
1322		}
1323	} else if (hw->media_type == e1000_media_type_copper) {
1324		return e1000_set_phy_loopback(adapter);
1325	}
1326
1327	return 7;
1328}
1329
1330static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1331{
1332	struct e1000_hw *hw = &adapter->hw;
1333	u32 rctl;
1334	u16 phy_reg;
1335
1336	rctl = er32(RCTL);
1337	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1338	ew32(RCTL, rctl);
1339
1340	switch (hw->mac_type) {
1341	case e1000_82545:
1342	case e1000_82546:
1343	case e1000_82545_rev_3:
1344	case e1000_82546_rev_3:
1345	default:
1346		hw->autoneg = true;
1347		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1348		if (phy_reg & MII_CR_LOOPBACK) {
1349			phy_reg &= ~MII_CR_LOOPBACK;
1350			e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1351			e1000_phy_reset(hw);
1352		}
1353		break;
1354	}
1355}
1356
1357static void e1000_create_lbtest_frame(struct sk_buff *skb,
1358				      unsigned int frame_size)
1359{
1360	memset(skb->data, 0xFF, frame_size);
1361	frame_size &= ~1;
1362	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1363	skb->data[frame_size / 2 + 10] = 0xBE;
1364	skb->data[frame_size / 2 + 12] = 0xAF;
1365}
1366
1367static int e1000_check_lbtest_frame(const unsigned char *data,
1368				    unsigned int frame_size)
1369{
1370	frame_size &= ~1;
1371	if (*(data + 3) == 0xFF) {
1372		if ((*(data + frame_size / 2 + 10) == 0xBE) &&
1373		    (*(data + frame_size / 2 + 12) == 0xAF)) {
1374			return 0;
1375		}
1376	}
1377	return 13;
1378}
1379
1380static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1381{
1382	struct e1000_hw *hw = &adapter->hw;
1383	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1384	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1385	struct pci_dev *pdev = adapter->pdev;
1386	int i, j, k, l, lc, good_cnt, ret_val = 0;
1387	unsigned long time;
1388
1389	ew32(RDT, rxdr->count - 1);
1390
1391	/* Calculate the loop count based on the largest descriptor ring
1392	 * The idea is to wrap the largest ring a number of times using 64
1393	 * send/receive pairs during each loop
1394	 */
1395
1396	if (rxdr->count <= txdr->count)
1397		lc = ((txdr->count / 64) * 2) + 1;
1398	else
1399		lc = ((rxdr->count / 64) * 2) + 1;
1400
1401	k = l = 0;
1402	for (j = 0; j <= lc; j++) { /* loop count loop */
1403		for (i = 0; i < 64; i++) { /* send the packets */
1404			e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1405						  1024);
1406			dma_sync_single_for_device(&pdev->dev,
1407						   txdr->buffer_info[k].dma,
1408						   txdr->buffer_info[k].length,
1409						   DMA_TO_DEVICE);
1410			if (unlikely(++k == txdr->count))
1411				k = 0;
1412		}
1413		ew32(TDT, k);
1414		E1000_WRITE_FLUSH();
1415		msleep(200);
1416		time = jiffies; /* set the start time for the receive */
1417		good_cnt = 0;
1418		do { /* receive the sent packets */
1419			dma_sync_single_for_cpu(&pdev->dev,
1420						rxdr->buffer_info[l].dma,
1421						E1000_RXBUFFER_2048,
1422						DMA_FROM_DEVICE);
1423
1424			ret_val = e1000_check_lbtest_frame(
1425					rxdr->buffer_info[l].rxbuf.data +
1426					NET_SKB_PAD + NET_IP_ALIGN,
1427					1024);
1428			if (!ret_val)
1429				good_cnt++;
1430			if (unlikely(++l == rxdr->count))
1431				l = 0;
1432			/* time + 20 msecs (200 msecs on 2.4) is more than
1433			 * enough time to complete the receives, if it's
1434			 * exceeded, break and error off
1435			 */
1436		} while (good_cnt < 64 && time_after(time + 20, jiffies));
1437
1438		if (good_cnt != 64) {
1439			ret_val = 13; /* ret_val is the same as mis-compare */
1440			break;
1441		}
1442		if (time_after_eq(jiffies, time + 2)) {
1443			ret_val = 14; /* error code for time out error */
1444			break;
1445		}
1446	} /* end loop count loop */
1447	return ret_val;
1448}
1449
1450static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1451{
1452	*data = e1000_setup_desc_rings(adapter);
1453	if (*data)
1454		goto out;
1455	*data = e1000_setup_loopback_test(adapter);
1456	if (*data)
1457		goto err_loopback;
1458	*data = e1000_run_loopback_test(adapter);
1459	e1000_loopback_cleanup(adapter);
1460
1461err_loopback:
1462	e1000_free_desc_rings(adapter);
1463out:
1464	return *data;
1465}
1466
1467static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1468{
1469	struct e1000_hw *hw = &adapter->hw;
1470	*data = 0;
1471	if (hw->media_type == e1000_media_type_internal_serdes) {
1472		int i = 0;
1473
1474		hw->serdes_has_link = false;
1475
1476		/* On some blade server designs, link establishment
1477		 * could take as long as 2-3 minutes
1478		 */
1479		do {
1480			e1000_check_for_link(hw);
1481			if (hw->serdes_has_link)
1482				return *data;
1483			msleep(20);
1484		} while (i++ < 3750);
1485
1486		*data = 1;
1487	} else {
1488		e1000_check_for_link(hw);
1489		if (hw->autoneg)  /* if auto_neg is set wait for it */
1490			msleep(4000);
1491
1492		if (!(er32(STATUS) & E1000_STATUS_LU))
1493			*data = 1;
 
1494	}
1495	return *data;
1496}
1497
1498static int e1000_get_sset_count(struct net_device *netdev, int sset)
1499{
1500	switch (sset) {
1501	case ETH_SS_TEST:
1502		return E1000_TEST_LEN;
1503	case ETH_SS_STATS:
1504		return E1000_STATS_LEN;
1505	default:
1506		return -EOPNOTSUPP;
1507	}
1508}
1509
1510static void e1000_diag_test(struct net_device *netdev,
1511			    struct ethtool_test *eth_test, u64 *data)
1512{
1513	struct e1000_adapter *adapter = netdev_priv(netdev);
1514	struct e1000_hw *hw = &adapter->hw;
1515	bool if_running = netif_running(netdev);
1516
1517	set_bit(__E1000_TESTING, &adapter->flags);
1518	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1519		/* Offline tests */
1520
1521		/* save speed, duplex, autoneg settings */
1522		u16 autoneg_advertised = hw->autoneg_advertised;
1523		u8 forced_speed_duplex = hw->forced_speed_duplex;
1524		u8 autoneg = hw->autoneg;
1525
1526		e_info(hw, "offline testing starting\n");
1527
1528		/* Link test performed before hardware reset so autoneg doesn't
1529		 * interfere with test result
1530		 */
1531		if (e1000_link_test(adapter, &data[4]))
1532			eth_test->flags |= ETH_TEST_FL_FAILED;
1533
1534		if (if_running)
1535			/* indicate we're in test mode */
1536			e1000_close(netdev);
1537		else
1538			e1000_reset(adapter);
1539
1540		if (e1000_reg_test(adapter, &data[0]))
1541			eth_test->flags |= ETH_TEST_FL_FAILED;
1542
1543		e1000_reset(adapter);
1544		if (e1000_eeprom_test(adapter, &data[1]))
1545			eth_test->flags |= ETH_TEST_FL_FAILED;
1546
1547		e1000_reset(adapter);
1548		if (e1000_intr_test(adapter, &data[2]))
1549			eth_test->flags |= ETH_TEST_FL_FAILED;
1550
1551		e1000_reset(adapter);
1552		/* make sure the phy is powered up */
1553		e1000_power_up_phy(adapter);
1554		if (e1000_loopback_test(adapter, &data[3]))
1555			eth_test->flags |= ETH_TEST_FL_FAILED;
1556
1557		/* restore speed, duplex, autoneg settings */
1558		hw->autoneg_advertised = autoneg_advertised;
1559		hw->forced_speed_duplex = forced_speed_duplex;
1560		hw->autoneg = autoneg;
1561
1562		e1000_reset(adapter);
1563		clear_bit(__E1000_TESTING, &adapter->flags);
1564		if (if_running)
1565			e1000_open(netdev);
1566	} else {
1567		e_info(hw, "online testing starting\n");
1568		/* Online tests */
1569		if (e1000_link_test(adapter, &data[4]))
1570			eth_test->flags |= ETH_TEST_FL_FAILED;
1571
1572		/* Online tests aren't run; pass by default */
1573		data[0] = 0;
1574		data[1] = 0;
1575		data[2] = 0;
1576		data[3] = 0;
1577
1578		clear_bit(__E1000_TESTING, &adapter->flags);
1579	}
1580	msleep_interruptible(4 * 1000);
1581}
1582
1583static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1584			       struct ethtool_wolinfo *wol)
1585{
1586	struct e1000_hw *hw = &adapter->hw;
1587	int retval = 1; /* fail by default */
1588
1589	switch (hw->device_id) {
1590	case E1000_DEV_ID_82542:
1591	case E1000_DEV_ID_82543GC_FIBER:
1592	case E1000_DEV_ID_82543GC_COPPER:
1593	case E1000_DEV_ID_82544EI_FIBER:
1594	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1595	case E1000_DEV_ID_82545EM_FIBER:
1596	case E1000_DEV_ID_82545EM_COPPER:
1597	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1598	case E1000_DEV_ID_82546GB_PCIE:
1599		/* these don't support WoL at all */
1600		wol->supported = 0;
1601		break;
1602	case E1000_DEV_ID_82546EB_FIBER:
1603	case E1000_DEV_ID_82546GB_FIBER:
1604		/* Wake events not supported on port B */
1605		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1606			wol->supported = 0;
1607			break;
1608		}
1609		/* return success for non excluded adapter ports */
1610		retval = 0;
1611		break;
1612	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1613		/* quad port adapters only support WoL on port A */
1614		if (!adapter->quad_port_a) {
1615			wol->supported = 0;
1616			break;
1617		}
1618		/* return success for non excluded adapter ports */
1619		retval = 0;
1620		break;
1621	default:
1622		/* dual port cards only support WoL on port A from now on
1623		 * unless it was enabled in the eeprom for port B
1624		 * so exclude FUNC_1 ports from having WoL enabled
1625		 */
1626		if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1627		    !adapter->eeprom_wol) {
1628			wol->supported = 0;
1629			break;
1630		}
1631
1632		retval = 0;
1633	}
1634
1635	return retval;
1636}
1637
1638static void e1000_get_wol(struct net_device *netdev,
1639			  struct ethtool_wolinfo *wol)
1640{
1641	struct e1000_adapter *adapter = netdev_priv(netdev);
1642	struct e1000_hw *hw = &adapter->hw;
1643
1644	wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
 
1645	wol->wolopts = 0;
1646
1647	/* this function will set ->supported = 0 and return 1 if wol is not
1648	 * supported by this hardware
1649	 */
1650	if (e1000_wol_exclusion(adapter, wol) ||
1651	    !device_can_wakeup(&adapter->pdev->dev))
1652		return;
1653
1654	/* apply any specific unsupported masks here */
1655	switch (hw->device_id) {
1656	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1657		/* KSP3 does not support UCAST wake-ups */
1658		wol->supported &= ~WAKE_UCAST;
1659
1660		if (adapter->wol & E1000_WUFC_EX)
1661			e_err(drv, "Interface does not support directed "
1662			      "(unicast) frame wake-up packets\n");
1663		break;
1664	default:
1665		break;
1666	}
1667
1668	if (adapter->wol & E1000_WUFC_EX)
1669		wol->wolopts |= WAKE_UCAST;
1670	if (adapter->wol & E1000_WUFC_MC)
1671		wol->wolopts |= WAKE_MCAST;
1672	if (adapter->wol & E1000_WUFC_BC)
1673		wol->wolopts |= WAKE_BCAST;
1674	if (adapter->wol & E1000_WUFC_MAG)
1675		wol->wolopts |= WAKE_MAGIC;
1676}
1677
1678static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1679{
1680	struct e1000_adapter *adapter = netdev_priv(netdev);
1681	struct e1000_hw *hw = &adapter->hw;
1682
1683	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1684		return -EOPNOTSUPP;
1685
1686	if (e1000_wol_exclusion(adapter, wol) ||
1687	    !device_can_wakeup(&adapter->pdev->dev))
1688		return wol->wolopts ? -EOPNOTSUPP : 0;
1689
1690	switch (hw->device_id) {
1691	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1692		if (wol->wolopts & WAKE_UCAST) {
1693			e_err(drv, "Interface does not support directed "
1694			      "(unicast) frame wake-up packets\n");
1695			return -EOPNOTSUPP;
1696		}
1697		break;
1698	default:
1699		break;
1700	}
1701
1702	/* these settings will always override what we currently have */
1703	adapter->wol = 0;
1704
1705	if (wol->wolopts & WAKE_UCAST)
1706		adapter->wol |= E1000_WUFC_EX;
1707	if (wol->wolopts & WAKE_MCAST)
1708		adapter->wol |= E1000_WUFC_MC;
1709	if (wol->wolopts & WAKE_BCAST)
1710		adapter->wol |= E1000_WUFC_BC;
1711	if (wol->wolopts & WAKE_MAGIC)
1712		adapter->wol |= E1000_WUFC_MAG;
1713
1714	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1715
1716	return 0;
1717}
1718
1719static int e1000_set_phys_id(struct net_device *netdev,
1720			     enum ethtool_phys_id_state state)
1721{
1722	struct e1000_adapter *adapter = netdev_priv(netdev);
1723	struct e1000_hw *hw = &adapter->hw;
1724
1725	switch (state) {
1726	case ETHTOOL_ID_ACTIVE:
1727		e1000_setup_led(hw);
1728		return 2;
1729
1730	case ETHTOOL_ID_ON:
1731		e1000_led_on(hw);
1732		break;
1733
1734	case ETHTOOL_ID_OFF:
1735		e1000_led_off(hw);
1736		break;
1737
1738	case ETHTOOL_ID_INACTIVE:
1739		e1000_cleanup_led(hw);
1740	}
1741
1742	return 0;
1743}
1744
1745static int e1000_get_coalesce(struct net_device *netdev,
1746			      struct ethtool_coalesce *ec,
1747			      struct kernel_ethtool_coalesce *kernel_coal,
1748			      struct netlink_ext_ack *extack)
1749{
1750	struct e1000_adapter *adapter = netdev_priv(netdev);
1751
1752	if (adapter->hw.mac_type < e1000_82545)
1753		return -EOPNOTSUPP;
1754
1755	if (adapter->itr_setting <= 4)
1756		ec->rx_coalesce_usecs = adapter->itr_setting;
1757	else
1758		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1759
1760	return 0;
1761}
1762
1763static int e1000_set_coalesce(struct net_device *netdev,
1764			      struct ethtool_coalesce *ec,
1765			      struct kernel_ethtool_coalesce *kernel_coal,
1766			      struct netlink_ext_ack *extack)
1767{
1768	struct e1000_adapter *adapter = netdev_priv(netdev);
1769	struct e1000_hw *hw = &adapter->hw;
1770
1771	if (hw->mac_type < e1000_82545)
1772		return -EOPNOTSUPP;
1773
1774	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1775	    ((ec->rx_coalesce_usecs > 4) &&
1776	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1777	    (ec->rx_coalesce_usecs == 2))
1778		return -EINVAL;
1779
1780	if (ec->rx_coalesce_usecs == 4) {
1781		adapter->itr = adapter->itr_setting = 4;
1782	} else if (ec->rx_coalesce_usecs <= 3) {
1783		adapter->itr = 20000;
1784		adapter->itr_setting = ec->rx_coalesce_usecs;
1785	} else {
1786		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1787		adapter->itr_setting = adapter->itr & ~3;
1788	}
1789
1790	if (adapter->itr_setting != 0)
1791		ew32(ITR, 1000000000 / (adapter->itr * 256));
1792	else
1793		ew32(ITR, 0);
1794
1795	return 0;
1796}
1797
1798static int e1000_nway_reset(struct net_device *netdev)
1799{
1800	struct e1000_adapter *adapter = netdev_priv(netdev);
1801
1802	if (netif_running(netdev))
1803		e1000_reinit_locked(adapter);
1804	return 0;
1805}
1806
1807static void e1000_get_ethtool_stats(struct net_device *netdev,
1808				    struct ethtool_stats *stats, u64 *data)
1809{
1810	struct e1000_adapter *adapter = netdev_priv(netdev);
1811	int i;
1812	const struct e1000_stats *stat = e1000_gstrings_stats;
1813
1814	e1000_update_stats(adapter);
1815	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++, stat++) {
1816		char *p;
1817
1818		switch (stat->type) {
1819		case NETDEV_STATS:
1820			p = (char *)netdev + stat->stat_offset;
 
1821			break;
1822		case E1000_STATS:
1823			p = (char *)adapter + stat->stat_offset;
 
1824			break;
1825		default:
1826			netdev_WARN_ONCE(netdev, "Invalid E1000 stat type: %u index %d\n",
1827					 stat->type, i);
1828			continue;
1829		}
1830
1831		if (stat->sizeof_stat == sizeof(u64))
1832			data[i] = *(u64 *)p;
1833		else
1834			data[i] = *(u32 *)p;
1835	}
1836/* BUG_ON(i != E1000_STATS_LEN); */
1837}
1838
1839static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1840			      u8 *data)
1841{
1842	u8 *p = data;
1843	int i;
1844
1845	switch (stringset) {
1846	case ETH_SS_TEST:
1847		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
 
1848		break;
1849	case ETH_SS_STATS:
1850		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1851			memcpy(p, e1000_gstrings_stats[i].stat_string,
1852			       ETH_GSTRING_LEN);
1853			p += ETH_GSTRING_LEN;
1854		}
1855		/* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1856		break;
1857	}
1858}
1859
1860static const struct ethtool_ops e1000_ethtool_ops = {
1861	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
1862	.get_drvinfo		= e1000_get_drvinfo,
1863	.get_regs_len		= e1000_get_regs_len,
1864	.get_regs		= e1000_get_regs,
1865	.get_wol		= e1000_get_wol,
1866	.set_wol		= e1000_set_wol,
1867	.get_msglevel		= e1000_get_msglevel,
1868	.set_msglevel		= e1000_set_msglevel,
1869	.nway_reset		= e1000_nway_reset,
1870	.get_link		= e1000_get_link,
1871	.get_eeprom_len		= e1000_get_eeprom_len,
1872	.get_eeprom		= e1000_get_eeprom,
1873	.set_eeprom		= e1000_set_eeprom,
1874	.get_ringparam		= e1000_get_ringparam,
1875	.set_ringparam		= e1000_set_ringparam,
1876	.get_pauseparam		= e1000_get_pauseparam,
1877	.set_pauseparam		= e1000_set_pauseparam,
1878	.self_test		= e1000_diag_test,
1879	.get_strings		= e1000_get_strings,
1880	.set_phys_id		= e1000_set_phys_id,
1881	.get_ethtool_stats	= e1000_get_ethtool_stats,
1882	.get_sset_count		= e1000_get_sset_count,
1883	.get_coalesce		= e1000_get_coalesce,
1884	.set_coalesce		= e1000_set_coalesce,
1885	.get_ts_info		= ethtool_op_get_ts_info,
1886	.get_link_ksettings	= e1000_get_link_ksettings,
1887	.set_link_ksettings	= e1000_set_link_ksettings,
1888};
1889
1890void e1000_set_ethtool_ops(struct net_device *netdev)
1891{
1892	netdev->ethtool_ops = &e1000_ethtool_ops;
1893}
v3.5.6
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2006 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29/* ethtool support for e1000 */
  30
  31#include "e1000.h"
  32#include <asm/uaccess.h>
 
  33
  34enum {NETDEV_STATS, E1000_STATS};
  35
  36struct e1000_stats {
  37	char stat_string[ETH_GSTRING_LEN];
  38	int type;
  39	int sizeof_stat;
  40	int stat_offset;
  41};
  42
  43#define E1000_STAT(m)		E1000_STATS, \
  44				sizeof(((struct e1000_adapter *)0)->m), \
  45		      		offsetof(struct e1000_adapter, m)
  46#define E1000_NETDEV_STAT(m)	NETDEV_STATS, \
  47				sizeof(((struct net_device *)0)->m), \
  48				offsetof(struct net_device, m)
  49
  50static const struct e1000_stats e1000_gstrings_stats[] = {
  51	{ "rx_packets", E1000_STAT(stats.gprc) },
  52	{ "tx_packets", E1000_STAT(stats.gptc) },
  53	{ "rx_bytes", E1000_STAT(stats.gorcl) },
  54	{ "tx_bytes", E1000_STAT(stats.gotcl) },
  55	{ "rx_broadcast", E1000_STAT(stats.bprc) },
  56	{ "tx_broadcast", E1000_STAT(stats.bptc) },
  57	{ "rx_multicast", E1000_STAT(stats.mprc) },
  58	{ "tx_multicast", E1000_STAT(stats.mptc) },
  59	{ "rx_errors", E1000_STAT(stats.rxerrc) },
  60	{ "tx_errors", E1000_STAT(stats.txerrc) },
  61	{ "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
  62	{ "multicast", E1000_STAT(stats.mprc) },
  63	{ "collisions", E1000_STAT(stats.colc) },
  64	{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
  65	{ "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
  66	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
  67	{ "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
  68	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
  69	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
  70	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
  71	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
  72	{ "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
  73	{ "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
  74	{ "tx_window_errors", E1000_STAT(stats.latecol) },
  75	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
  76	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
  77	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
  78	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
  79	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
  80	{ "tx_restart_queue", E1000_STAT(restart_queue) },
  81	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
  82	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
  83	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
  84	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
  85	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
  86	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
  87	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
  88	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
  89	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
  90	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
  91	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
  92	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
  93	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
  94	{ "tx_smbus", E1000_STAT(stats.mgptc) },
  95	{ "rx_smbus", E1000_STAT(stats.mgprc) },
  96	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
  97};
  98
  99#define E1000_QUEUE_STATS_LEN 0
 100#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
 101#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
 102static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
 103	"Register test  (offline)", "Eeprom test    (offline)",
 104	"Interrupt test (offline)", "Loopback test  (offline)",
 105	"Link test   (on/offline)"
 106};
 
 107#define E1000_TEST_LEN	ARRAY_SIZE(e1000_gstrings_test)
 108
 109static int e1000_get_settings(struct net_device *netdev,
 110			      struct ethtool_cmd *ecmd)
 111{
 112	struct e1000_adapter *adapter = netdev_priv(netdev);
 113	struct e1000_hw *hw = &adapter->hw;
 
 114
 115	if (hw->media_type == e1000_media_type_copper) {
 116
 117		ecmd->supported = (SUPPORTED_10baseT_Half |
 118		                   SUPPORTED_10baseT_Full |
 119		                   SUPPORTED_100baseT_Half |
 120		                   SUPPORTED_100baseT_Full |
 121		                   SUPPORTED_1000baseT_Full|
 122		                   SUPPORTED_Autoneg |
 123		                   SUPPORTED_TP);
 124		ecmd->advertising = ADVERTISED_TP;
 125
 126		if (hw->autoneg == 1) {
 127			ecmd->advertising |= ADVERTISED_Autoneg;
 128			/* the e1000 autoneg seems to match ethtool nicely */
 129			ecmd->advertising |= hw->autoneg_advertised;
 130		}
 131
 132		ecmd->port = PORT_TP;
 133		ecmd->phy_address = hw->phy_addr;
 134
 135		if (hw->mac_type == e1000_82543)
 136			ecmd->transceiver = XCVR_EXTERNAL;
 137		else
 138			ecmd->transceiver = XCVR_INTERNAL;
 139
 140	} else {
 141		ecmd->supported   = (SUPPORTED_1000baseT_Full |
 142				     SUPPORTED_FIBRE |
 143				     SUPPORTED_Autoneg);
 144
 145		ecmd->advertising = (ADVERTISED_1000baseT_Full |
 146				     ADVERTISED_FIBRE |
 147				     ADVERTISED_Autoneg);
 148
 149		ecmd->port = PORT_FIBRE;
 150
 151		if (hw->mac_type >= e1000_82545)
 152			ecmd->transceiver = XCVR_INTERNAL;
 153		else
 154			ecmd->transceiver = XCVR_EXTERNAL;
 155	}
 156
 157	if (er32(STATUS) & E1000_STATUS_LU) {
 158
 159		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
 160		                                   &adapter->link_duplex);
 161		ethtool_cmd_speed_set(ecmd, adapter->link_speed);
 162
 163		/* unfortunately FULL_DUPLEX != DUPLEX_FULL
 164		 *          and HALF_DUPLEX != DUPLEX_HALF */
 165
 166		if (adapter->link_duplex == FULL_DUPLEX)
 167			ecmd->duplex = DUPLEX_FULL;
 168		else
 169			ecmd->duplex = DUPLEX_HALF;
 170	} else {
 171		ethtool_cmd_speed_set(ecmd, -1);
 172		ecmd->duplex = -1;
 173	}
 174
 175	ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
 176			 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 177	return 0;
 178}
 179
 180static int e1000_set_settings(struct net_device *netdev,
 181			      struct ethtool_cmd *ecmd)
 182{
 183	struct e1000_adapter *adapter = netdev_priv(netdev);
 184	struct e1000_hw *hw = &adapter->hw;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 185
 186	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 187		msleep(1);
 188
 189	if (ecmd->autoneg == AUTONEG_ENABLE) {
 190		hw->autoneg = 1;
 191		if (hw->media_type == e1000_media_type_fiber)
 192			hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
 193				     ADVERTISED_FIBRE |
 194				     ADVERTISED_Autoneg;
 195		else
 196			hw->autoneg_advertised = ecmd->advertising |
 197			                         ADVERTISED_TP |
 198			                         ADVERTISED_Autoneg;
 199		ecmd->advertising = hw->autoneg_advertised;
 200	} else {
 201		u32 speed = ethtool_cmd_speed(ecmd);
 202		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
 
 203			clear_bit(__E1000_RESETTING, &adapter->flags);
 204			return -EINVAL;
 205		}
 206	}
 207
 
 
 
 
 
 
 
 
 208	/* reset the link */
 209
 210	if (netif_running(adapter->netdev)) {
 211		e1000_down(adapter);
 212		e1000_up(adapter);
 213	} else
 214		e1000_reset(adapter);
 215
 216	clear_bit(__E1000_RESETTING, &adapter->flags);
 217	return 0;
 218}
 219
 220static u32 e1000_get_link(struct net_device *netdev)
 221{
 222	struct e1000_adapter *adapter = netdev_priv(netdev);
 223
 224	/*
 225	 * If the link is not reported up to netdev, interrupts are disabled,
 226	 * and so the physical link state may have changed since we last
 227	 * looked. Set get_link_status to make sure that the true link
 228	 * state is interrogated, rather than pulling a cached and possibly
 229	 * stale link state from the driver.
 230	 */
 231	if (!netif_carrier_ok(netdev))
 232		adapter->hw.get_link_status = 1;
 233
 234	return e1000_has_link(adapter);
 235}
 236
 237static void e1000_get_pauseparam(struct net_device *netdev,
 238				 struct ethtool_pauseparam *pause)
 239{
 240	struct e1000_adapter *adapter = netdev_priv(netdev);
 241	struct e1000_hw *hw = &adapter->hw;
 242
 243	pause->autoneg =
 244		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 245
 246	if (hw->fc == E1000_FC_RX_PAUSE)
 247		pause->rx_pause = 1;
 248	else if (hw->fc == E1000_FC_TX_PAUSE)
 249		pause->tx_pause = 1;
 250	else if (hw->fc == E1000_FC_FULL) {
 251		pause->rx_pause = 1;
 252		pause->tx_pause = 1;
 253	}
 254}
 255
 256static int e1000_set_pauseparam(struct net_device *netdev,
 257				struct ethtool_pauseparam *pause)
 258{
 259	struct e1000_adapter *adapter = netdev_priv(netdev);
 260	struct e1000_hw *hw = &adapter->hw;
 261	int retval = 0;
 262
 263	adapter->fc_autoneg = pause->autoneg;
 264
 265	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 266		msleep(1);
 267
 268	if (pause->rx_pause && pause->tx_pause)
 269		hw->fc = E1000_FC_FULL;
 270	else if (pause->rx_pause && !pause->tx_pause)
 271		hw->fc = E1000_FC_RX_PAUSE;
 272	else if (!pause->rx_pause && pause->tx_pause)
 273		hw->fc = E1000_FC_TX_PAUSE;
 274	else if (!pause->rx_pause && !pause->tx_pause)
 275		hw->fc = E1000_FC_NONE;
 276
 277	hw->original_fc = hw->fc;
 278
 279	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 280		if (netif_running(adapter->netdev)) {
 281			e1000_down(adapter);
 282			e1000_up(adapter);
 283		} else
 284			e1000_reset(adapter);
 
 285	} else
 286		retval = ((hw->media_type == e1000_media_type_fiber) ?
 287			  e1000_setup_link(hw) : e1000_force_mac_fc(hw));
 288
 289	clear_bit(__E1000_RESETTING, &adapter->flags);
 290	return retval;
 291}
 292
 293static u32 e1000_get_msglevel(struct net_device *netdev)
 294{
 295	struct e1000_adapter *adapter = netdev_priv(netdev);
 
 296	return adapter->msg_enable;
 297}
 298
 299static void e1000_set_msglevel(struct net_device *netdev, u32 data)
 300{
 301	struct e1000_adapter *adapter = netdev_priv(netdev);
 
 302	adapter->msg_enable = data;
 303}
 304
 305static int e1000_get_regs_len(struct net_device *netdev)
 306{
 307#define E1000_REGS_LEN 32
 308	return E1000_REGS_LEN * sizeof(u32);
 309}
 310
 311static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
 312			   void *p)
 313{
 314	struct e1000_adapter *adapter = netdev_priv(netdev);
 315	struct e1000_hw *hw = &adapter->hw;
 316	u32 *regs_buff = p;
 317	u16 phy_data;
 318
 319	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
 320
 321	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
 322
 323	regs_buff[0]  = er32(CTRL);
 324	regs_buff[1]  = er32(STATUS);
 325
 326	regs_buff[2]  = er32(RCTL);
 327	regs_buff[3]  = er32(RDLEN);
 328	regs_buff[4]  = er32(RDH);
 329	regs_buff[5]  = er32(RDT);
 330	regs_buff[6]  = er32(RDTR);
 331
 332	regs_buff[7]  = er32(TCTL);
 333	regs_buff[8]  = er32(TDLEN);
 334	regs_buff[9]  = er32(TDH);
 335	regs_buff[10] = er32(TDT);
 336	regs_buff[11] = er32(TIDV);
 337
 338	regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
 339	if (hw->phy_type == e1000_phy_igp) {
 340		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 341				    IGP01E1000_PHY_AGC_A);
 342		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
 343				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 344		regs_buff[13] = (u32)phy_data; /* cable length */
 345		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 346				    IGP01E1000_PHY_AGC_B);
 347		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
 348				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 349		regs_buff[14] = (u32)phy_data; /* cable length */
 350		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 351				    IGP01E1000_PHY_AGC_C);
 352		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
 353				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 354		regs_buff[15] = (u32)phy_data; /* cable length */
 355		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 356				    IGP01E1000_PHY_AGC_D);
 357		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
 358				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 359		regs_buff[16] = (u32)phy_data; /* cable length */
 360		regs_buff[17] = 0; /* extended 10bt distance (not needed) */
 361		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
 362		e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
 363				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 364		regs_buff[18] = (u32)phy_data; /* cable polarity */
 365		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 366				    IGP01E1000_PHY_PCS_INIT_REG);
 367		e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
 368				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 369		regs_buff[19] = (u32)phy_data; /* cable polarity */
 370		regs_buff[20] = 0; /* polarity correction enabled (always) */
 371		regs_buff[22] = 0; /* phy receive errors (unavailable) */
 372		regs_buff[23] = regs_buff[18]; /* mdix mode */
 373		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
 374	} else {
 375		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
 376		regs_buff[13] = (u32)phy_data; /* cable length */
 377		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 378		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 379		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 380		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 381		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
 382		regs_buff[18] = regs_buff[13]; /* cable polarity */
 383		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 384		regs_buff[20] = regs_buff[17]; /* polarity correction */
 385		/* phy receive errors */
 386		regs_buff[22] = adapter->phy_stats.receive_errors;
 387		regs_buff[23] = regs_buff[13]; /* mdix mode */
 388	}
 389	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
 390	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
 391	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
 392	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
 393	if (hw->mac_type >= e1000_82540 &&
 394	    hw->media_type == e1000_media_type_copper) {
 395		regs_buff[26] = er32(MANC);
 396	}
 397}
 398
 399static int e1000_get_eeprom_len(struct net_device *netdev)
 400{
 401	struct e1000_adapter *adapter = netdev_priv(netdev);
 402	struct e1000_hw *hw = &adapter->hw;
 403
 404	return hw->eeprom.word_size * 2;
 405}
 406
 407static int e1000_get_eeprom(struct net_device *netdev,
 408			    struct ethtool_eeprom *eeprom, u8 *bytes)
 409{
 410	struct e1000_adapter *adapter = netdev_priv(netdev);
 411	struct e1000_hw *hw = &adapter->hw;
 412	u16 *eeprom_buff;
 413	int first_word, last_word;
 414	int ret_val = 0;
 415	u16 i;
 416
 417	if (eeprom->len == 0)
 418		return -EINVAL;
 419
 420	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
 421
 422	first_word = eeprom->offset >> 1;
 423	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 424
 425	eeprom_buff = kmalloc(sizeof(u16) *
 426			(last_word - first_word + 1), GFP_KERNEL);
 427	if (!eeprom_buff)
 428		return -ENOMEM;
 429
 430	if (hw->eeprom.type == e1000_eeprom_spi)
 431		ret_val = e1000_read_eeprom(hw, first_word,
 432					    last_word - first_word + 1,
 433					    eeprom_buff);
 434	else {
 435		for (i = 0; i < last_word - first_word + 1; i++) {
 436			ret_val = e1000_read_eeprom(hw, first_word + i, 1,
 437						    &eeprom_buff[i]);
 438			if (ret_val)
 439				break;
 440		}
 441	}
 442
 443	/* Device's eeprom is always little-endian, word addressable */
 444	for (i = 0; i < last_word - first_word + 1; i++)
 445		le16_to_cpus(&eeprom_buff[i]);
 446
 447	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
 448			eeprom->len);
 449	kfree(eeprom_buff);
 450
 451	return ret_val;
 452}
 453
 454static int e1000_set_eeprom(struct net_device *netdev,
 455			    struct ethtool_eeprom *eeprom, u8 *bytes)
 456{
 457	struct e1000_adapter *adapter = netdev_priv(netdev);
 458	struct e1000_hw *hw = &adapter->hw;
 459	u16 *eeprom_buff;
 460	void *ptr;
 461	int max_len, first_word, last_word, ret_val = 0;
 462	u16 i;
 463
 464	if (eeprom->len == 0)
 465		return -EOPNOTSUPP;
 466
 467	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
 468		return -EFAULT;
 469
 470	max_len = hw->eeprom.word_size * 2;
 471
 472	first_word = eeprom->offset >> 1;
 473	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 474	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 475	if (!eeprom_buff)
 476		return -ENOMEM;
 477
 478	ptr = (void *)eeprom_buff;
 479
 480	if (eeprom->offset & 1) {
 481		/* need read/modify/write of first changed EEPROM word */
 482		/* only the second byte of the word is being modified */
 
 483		ret_val = e1000_read_eeprom(hw, first_word, 1,
 484					    &eeprom_buff[0]);
 485		ptr++;
 486	}
 487	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
 488		/* need read/modify/write of last changed EEPROM word */
 489		/* only the first byte of the word is being modified */
 
 490		ret_val = e1000_read_eeprom(hw, last_word, 1,
 491		                  &eeprom_buff[last_word - first_word]);
 492	}
 493
 494	/* Device's eeprom is always little-endian, word addressable */
 495	for (i = 0; i < last_word - first_word + 1; i++)
 496		le16_to_cpus(&eeprom_buff[i]);
 497
 498	memcpy(ptr, bytes, eeprom->len);
 499
 500	for (i = 0; i < last_word - first_word + 1; i++)
 501		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
 502
 503	ret_val = e1000_write_eeprom(hw, first_word,
 504				     last_word - first_word + 1, eeprom_buff);
 505
 506	/* Update the checksum over the first part of the EEPROM if needed */
 507	if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
 508		e1000_update_eeprom_checksum(hw);
 509
 510	kfree(eeprom_buff);
 511	return ret_val;
 512}
 513
 514static void e1000_get_drvinfo(struct net_device *netdev,
 515			      struct ethtool_drvinfo *drvinfo)
 516{
 517	struct e1000_adapter *adapter = netdev_priv(netdev);
 518
 519	strlcpy(drvinfo->driver,  e1000_driver_name,
 520		sizeof(drvinfo->driver));
 521	strlcpy(drvinfo->version, e1000_driver_version,
 522		sizeof(drvinfo->version));
 523
 524	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
 525		sizeof(drvinfo->bus_info));
 526	drvinfo->regdump_len = e1000_get_regs_len(netdev);
 527	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
 528}
 529
 530static void e1000_get_ringparam(struct net_device *netdev,
 531				struct ethtool_ringparam *ring)
 
 
 532{
 533	struct e1000_adapter *adapter = netdev_priv(netdev);
 534	struct e1000_hw *hw = &adapter->hw;
 535	e1000_mac_type mac_type = hw->mac_type;
 536	struct e1000_tx_ring *txdr = adapter->tx_ring;
 537	struct e1000_rx_ring *rxdr = adapter->rx_ring;
 538
 539	ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
 540		E1000_MAX_82544_RXD;
 541	ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
 542		E1000_MAX_82544_TXD;
 543	ring->rx_pending = rxdr->count;
 544	ring->tx_pending = txdr->count;
 545}
 546
 547static int e1000_set_ringparam(struct net_device *netdev,
 548			       struct ethtool_ringparam *ring)
 
 
 549{
 550	struct e1000_adapter *adapter = netdev_priv(netdev);
 551	struct e1000_hw *hw = &adapter->hw;
 552	e1000_mac_type mac_type = hw->mac_type;
 553	struct e1000_tx_ring *txdr, *tx_old;
 554	struct e1000_rx_ring *rxdr, *rx_old;
 555	int i, err;
 556
 557	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 558		return -EINVAL;
 559
 560	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 561		msleep(1);
 562
 563	if (netif_running(adapter->netdev))
 564		e1000_down(adapter);
 565
 566	tx_old = adapter->tx_ring;
 567	rx_old = adapter->rx_ring;
 568
 569	err = -ENOMEM;
 570	txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
 
 571	if (!txdr)
 572		goto err_alloc_tx;
 573
 574	rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
 
 575	if (!rxdr)
 576		goto err_alloc_rx;
 577
 578	adapter->tx_ring = txdr;
 579	adapter->rx_ring = rxdr;
 580
 581	rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
 582	rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
 583		E1000_MAX_RXD : E1000_MAX_82544_RXD));
 584	rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
 585
 586	txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
 587	txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
 588		E1000_MAX_TXD : E1000_MAX_82544_TXD));
 589	txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
 590
 591	for (i = 0; i < adapter->num_tx_queues; i++)
 592		txdr[i].count = txdr->count;
 593	for (i = 0; i < adapter->num_rx_queues; i++)
 594		rxdr[i].count = rxdr->count;
 595
 
 596	if (netif_running(adapter->netdev)) {
 597		/* Try to get new resources before deleting old */
 598		err = e1000_setup_all_rx_resources(adapter);
 599		if (err)
 600			goto err_setup_rx;
 601		err = e1000_setup_all_tx_resources(adapter);
 602		if (err)
 603			goto err_setup_tx;
 604
 605		/* save the new, restore the old in order to free it,
 606		 * then restore the new back again */
 
 607
 608		adapter->rx_ring = rx_old;
 609		adapter->tx_ring = tx_old;
 610		e1000_free_all_rx_resources(adapter);
 611		e1000_free_all_tx_resources(adapter);
 612		kfree(tx_old);
 613		kfree(rx_old);
 614		adapter->rx_ring = rxdr;
 615		adapter->tx_ring = txdr;
 616		err = e1000_up(adapter);
 617		if (err)
 618			goto err_setup;
 619	}
 
 
 620
 621	clear_bit(__E1000_RESETTING, &adapter->flags);
 622	return 0;
 
 623err_setup_tx:
 624	e1000_free_all_rx_resources(adapter);
 625err_setup_rx:
 626	adapter->rx_ring = rx_old;
 627	adapter->tx_ring = tx_old;
 628	kfree(rxdr);
 629err_alloc_rx:
 630	kfree(txdr);
 631err_alloc_tx:
 632	e1000_up(adapter);
 633err_setup:
 634	clear_bit(__E1000_RESETTING, &adapter->flags);
 635	return err;
 636}
 637
 638static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
 639			     u32 mask, u32 write)
 640{
 641	struct e1000_hw *hw = &adapter->hw;
 642	static const u32 test[] =
 643		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
 
 644	u8 __iomem *address = hw->hw_addr + reg;
 645	u32 read;
 646	int i;
 647
 648	for (i = 0; i < ARRAY_SIZE(test); i++) {
 649		writel(write & test[i], address);
 650		read = readl(address);
 651		if (read != (write & test[i] & mask)) {
 652			e_err(drv, "pattern test reg %04X failed: "
 653			      "got 0x%08X expected 0x%08X\n",
 654			      reg, read, (write & test[i] & mask));
 655			*data = reg;
 656			return true;
 657		}
 658	}
 659	return false;
 660}
 661
 662static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
 663			      u32 mask, u32 write)
 664{
 665	struct e1000_hw *hw = &adapter->hw;
 666	u8 __iomem *address = hw->hw_addr + reg;
 667	u32 read;
 668
 669	writel(write & mask, address);
 670	read = readl(address);
 671	if ((read & mask) != (write & mask)) {
 672		e_err(drv, "set/check reg %04X test failed: "
 673		      "got 0x%08X expected 0x%08X\n",
 674		      reg, (read & mask), (write & mask));
 675		*data = reg;
 676		return true;
 677	}
 678	return false;
 679}
 680
 681#define REG_PATTERN_TEST(reg, mask, write)			     \
 682	do {							     \
 683		if (reg_pattern_test(adapter, data,		     \
 684			     (hw->mac_type >= e1000_82543)   \
 685			     ? E1000_##reg : E1000_82542_##reg,	     \
 686			     mask, write))			     \
 687			return 1;				     \
 688	} while (0)
 689
 690#define REG_SET_AND_CHECK(reg, mask, write)			     \
 691	do {							     \
 692		if (reg_set_and_check(adapter, data,		     \
 693			      (hw->mac_type >= e1000_82543)  \
 694			      ? E1000_##reg : E1000_82542_##reg,     \
 695			      mask, write))			     \
 696			return 1;				     \
 697	} while (0)
 698
 699static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
 700{
 701	u32 value, before, after;
 702	u32 i, toggle;
 703	struct e1000_hw *hw = &adapter->hw;
 704
 705	/* The status register is Read Only, so a write should fail.
 706	 * Some bits that get toggled are ignored.
 707	 */
 708
 709	/* there are several bits on newer hardware that are r/w */
 710	toggle = 0xFFFFF833;
 711
 712	before = er32(STATUS);
 713	value = (er32(STATUS) & toggle);
 714	ew32(STATUS, toggle);
 715	after = er32(STATUS) & toggle;
 716	if (value != after) {
 717		e_err(drv, "failed STATUS register test got: "
 718		      "0x%08X expected: 0x%08X\n", after, value);
 719		*data = 1;
 720		return 1;
 721	}
 722	/* restore previous status */
 723	ew32(STATUS, before);
 724
 725	REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
 726	REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
 727	REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
 728	REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
 729
 730	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
 731	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
 732	REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
 733	REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
 734	REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
 735	REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
 736	REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
 737	REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
 738	REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
 739	REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
 740
 741	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
 742
 743	before = 0x06DFB3FE;
 744	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
 745	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
 746
 747	if (hw->mac_type >= e1000_82543) {
 748
 749		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
 750		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
 751		REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
 752		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
 753		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
 754		value = E1000_RAR_ENTRIES;
 755		for (i = 0; i < value; i++) {
 756			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
 757			                 0xFFFFFFFF);
 758		}
 759
 760	} else {
 761
 762		REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
 763		REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
 764		REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
 765		REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
 766
 767	}
 768
 769	value = E1000_MC_TBL_SIZE;
 770	for (i = 0; i < value; i++)
 771		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
 772
 773	*data = 0;
 774	return 0;
 775}
 776
 777static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
 778{
 779	struct e1000_hw *hw = &adapter->hw;
 780	u16 temp;
 781	u16 checksum = 0;
 782	u16 i;
 783
 784	*data = 0;
 785	/* Read and add up the contents of the EEPROM */
 786	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
 787		if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
 788			*data = 1;
 789			break;
 790		}
 791		checksum += temp;
 792	}
 793
 794	/* If Checksum is not Correct return error else test passed */
 795	if ((checksum != (u16)EEPROM_SUM) && !(*data))
 796		*data = 2;
 797
 798	return *data;
 799}
 800
 801static irqreturn_t e1000_test_intr(int irq, void *data)
 802{
 803	struct net_device *netdev = (struct net_device *)data;
 804	struct e1000_adapter *adapter = netdev_priv(netdev);
 805	struct e1000_hw *hw = &adapter->hw;
 806
 807	adapter->test_icr |= er32(ICR);
 808
 809	return IRQ_HANDLED;
 810}
 811
 812static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
 813{
 814	struct net_device *netdev = adapter->netdev;
 815	u32 mask, i = 0;
 816	bool shared_int = true;
 817	u32 irq = adapter->pdev->irq;
 818	struct e1000_hw *hw = &adapter->hw;
 819
 820	*data = 0;
 821
 822	/* NOTE: we don't test MSI interrupts here, yet */
 823	/* Hook up test interrupt handler just for this test */
 
 824	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
 825	                 netdev))
 826		shared_int = false;
 827	else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
 828	         netdev->name, netdev)) {
 829		*data = 1;
 830		return -1;
 831	}
 832	e_info(hw, "testing %s interrupt\n", (shared_int ?
 833	       "shared" : "unshared"));
 834
 835	/* Disable all the interrupts */
 836	ew32(IMC, 0xFFFFFFFF);
 837	E1000_WRITE_FLUSH();
 838	msleep(10);
 839
 840	/* Test each interrupt */
 841	for (; i < 10; i++) {
 842
 843		/* Interrupt to test */
 844		mask = 1 << i;
 845
 846		if (!shared_int) {
 847			/* Disable the interrupt to be reported in
 848			 * the cause register and then force the same
 849			 * interrupt and see if one gets posted.  If
 850			 * an interrupt was posted to the bus, the
 851			 * test failed.
 852			 */
 853			adapter->test_icr = 0;
 854			ew32(IMC, mask);
 855			ew32(ICS, mask);
 856			E1000_WRITE_FLUSH();
 857			msleep(10);
 858
 859			if (adapter->test_icr & mask) {
 860				*data = 3;
 861				break;
 862			}
 863		}
 864
 865		/* Enable the interrupt to be reported in
 866		 * the cause register and then force the same
 867		 * interrupt and see if one gets posted.  If
 868		 * an interrupt was not posted to the bus, the
 869		 * test failed.
 870		 */
 871		adapter->test_icr = 0;
 872		ew32(IMS, mask);
 873		ew32(ICS, mask);
 874		E1000_WRITE_FLUSH();
 875		msleep(10);
 876
 877		if (!(adapter->test_icr & mask)) {
 878			*data = 4;
 879			break;
 880		}
 881
 882		if (!shared_int) {
 883			/* Disable the other interrupts to be reported in
 884			 * the cause register and then force the other
 885			 * interrupts and see if any get posted.  If
 886			 * an interrupt was posted to the bus, the
 887			 * test failed.
 888			 */
 889			adapter->test_icr = 0;
 890			ew32(IMC, ~mask & 0x00007FFF);
 891			ew32(ICS, ~mask & 0x00007FFF);
 892			E1000_WRITE_FLUSH();
 893			msleep(10);
 894
 895			if (adapter->test_icr) {
 896				*data = 5;
 897				break;
 898			}
 899		}
 900	}
 901
 902	/* Disable all the interrupts */
 903	ew32(IMC, 0xFFFFFFFF);
 904	E1000_WRITE_FLUSH();
 905	msleep(10);
 906
 907	/* Unhook test interrupt handler */
 908	free_irq(irq, netdev);
 909
 910	return *data;
 911}
 912
 913static void e1000_free_desc_rings(struct e1000_adapter *adapter)
 914{
 915	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
 916	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
 917	struct pci_dev *pdev = adapter->pdev;
 918	int i;
 919
 920	if (txdr->desc && txdr->buffer_info) {
 921		for (i = 0; i < txdr->count; i++) {
 922			if (txdr->buffer_info[i].dma)
 923				dma_unmap_single(&pdev->dev,
 924						 txdr->buffer_info[i].dma,
 925						 txdr->buffer_info[i].length,
 926						 DMA_TO_DEVICE);
 927			if (txdr->buffer_info[i].skb)
 928				dev_kfree_skb(txdr->buffer_info[i].skb);
 929		}
 930	}
 931
 932	if (rxdr->desc && rxdr->buffer_info) {
 933		for (i = 0; i < rxdr->count; i++) {
 934			if (rxdr->buffer_info[i].dma)
 935				dma_unmap_single(&pdev->dev,
 936						 rxdr->buffer_info[i].dma,
 937						 rxdr->buffer_info[i].length,
 938						 DMA_FROM_DEVICE);
 939			if (rxdr->buffer_info[i].skb)
 940				dev_kfree_skb(rxdr->buffer_info[i].skb);
 941		}
 942	}
 943
 944	if (txdr->desc) {
 945		dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
 946				  txdr->dma);
 947		txdr->desc = NULL;
 948	}
 949	if (rxdr->desc) {
 950		dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
 951				  rxdr->dma);
 952		rxdr->desc = NULL;
 953	}
 954
 955	kfree(txdr->buffer_info);
 956	txdr->buffer_info = NULL;
 957	kfree(rxdr->buffer_info);
 958	rxdr->buffer_info = NULL;
 959}
 960
 961static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
 962{
 963	struct e1000_hw *hw = &adapter->hw;
 964	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
 965	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
 966	struct pci_dev *pdev = adapter->pdev;
 967	u32 rctl;
 968	int i, ret_val;
 969
 970	/* Setup Tx descriptor ring and Tx buffers */
 971
 972	if (!txdr->count)
 973		txdr->count = E1000_DEFAULT_TXD;
 974
 975	txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
 976				    GFP_KERNEL);
 977	if (!txdr->buffer_info) {
 978		ret_val = 1;
 979		goto err_nomem;
 980	}
 981
 982	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
 983	txdr->size = ALIGN(txdr->size, 4096);
 984	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
 985					GFP_KERNEL);
 986	if (!txdr->desc) {
 987		ret_val = 2;
 988		goto err_nomem;
 989	}
 990	memset(txdr->desc, 0, txdr->size);
 991	txdr->next_to_use = txdr->next_to_clean = 0;
 992
 993	ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
 994	ew32(TDBAH, ((u64)txdr->dma >> 32));
 995	ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
 996	ew32(TDH, 0);
 997	ew32(TDT, 0);
 998	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
 999	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1000	     E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1001
1002	for (i = 0; i < txdr->count; i++) {
1003		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1004		struct sk_buff *skb;
1005		unsigned int size = 1024;
1006
1007		skb = alloc_skb(size, GFP_KERNEL);
1008		if (!skb) {
1009			ret_val = 3;
1010			goto err_nomem;
1011		}
1012		skb_put(skb, size);
1013		txdr->buffer_info[i].skb = skb;
1014		txdr->buffer_info[i].length = skb->len;
1015		txdr->buffer_info[i].dma =
1016			dma_map_single(&pdev->dev, skb->data, skb->len,
1017				       DMA_TO_DEVICE);
 
 
 
 
1018		tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1019		tx_desc->lower.data = cpu_to_le32(skb->len);
1020		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1021						   E1000_TXD_CMD_IFCS |
1022						   E1000_TXD_CMD_RPS);
1023		tx_desc->upper.data = 0;
1024	}
1025
1026	/* Setup Rx descriptor ring and Rx buffers */
1027
1028	if (!rxdr->count)
1029		rxdr->count = E1000_DEFAULT_RXD;
1030
1031	rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
1032				    GFP_KERNEL);
1033	if (!rxdr->buffer_info) {
1034		ret_val = 4;
1035		goto err_nomem;
1036	}
1037
1038	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1039	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1040					GFP_KERNEL);
1041	if (!rxdr->desc) {
1042		ret_val = 5;
1043		goto err_nomem;
1044	}
1045	memset(rxdr->desc, 0, rxdr->size);
1046	rxdr->next_to_use = rxdr->next_to_clean = 0;
1047
1048	rctl = er32(RCTL);
1049	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1050	ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1051	ew32(RDBAH, ((u64)rxdr->dma >> 32));
1052	ew32(RDLEN, rxdr->size);
1053	ew32(RDH, 0);
1054	ew32(RDT, 0);
1055	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1056		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1057		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1058	ew32(RCTL, rctl);
1059
1060	for (i = 0; i < rxdr->count; i++) {
1061		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1062		struct sk_buff *skb;
1063
1064		skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
1065		if (!skb) {
1066			ret_val = 6;
 
1067			goto err_nomem;
1068		}
1069		skb_reserve(skb, NET_IP_ALIGN);
1070		rxdr->buffer_info[i].skb = skb;
1071		rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1072		rxdr->buffer_info[i].dma =
1073			dma_map_single(&pdev->dev, skb->data,
 
1074				       E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
 
 
 
 
1075		rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1076		memset(skb->data, 0x00, skb->len);
1077	}
1078
1079	return 0;
1080
1081err_nomem:
1082	e1000_free_desc_rings(adapter);
1083	return ret_val;
1084}
1085
1086static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1087{
1088	struct e1000_hw *hw = &adapter->hw;
1089
1090	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1091	e1000_write_phy_reg(hw, 29, 0x001F);
1092	e1000_write_phy_reg(hw, 30, 0x8FFC);
1093	e1000_write_phy_reg(hw, 29, 0x001A);
1094	e1000_write_phy_reg(hw, 30, 0x8FF0);
1095}
1096
1097static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1098{
1099	struct e1000_hw *hw = &adapter->hw;
1100	u16 phy_reg;
1101
1102	/* Because we reset the PHY above, we need to re-force TX_CLK in the
1103	 * Extended PHY Specific Control Register to 25MHz clock.  This
1104	 * value defaults back to a 2.5MHz clock when the PHY is reset.
1105	 */
1106	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1107	phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1108	e1000_write_phy_reg(hw,
1109		M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1110
1111	/* In addition, because of the s/w reset above, we need to enable
1112	 * CRS on TX.  This must be set for both full and half duplex
1113	 * operation.
1114	 */
1115	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1116	phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1117	e1000_write_phy_reg(hw,
1118		M88E1000_PHY_SPEC_CTRL, phy_reg);
1119}
1120
1121static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1122{
1123	struct e1000_hw *hw = &adapter->hw;
1124	u32 ctrl_reg;
1125	u16 phy_reg;
1126
1127	/* Setup the Device Control Register for PHY loopback test. */
1128
1129	ctrl_reg = er32(CTRL);
1130	ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */
1131		     E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
1132		     E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
1133		     E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
1134		     E1000_CTRL_FD);		/* Force Duplex to FULL */
1135
1136	ew32(CTRL, ctrl_reg);
1137
1138	/* Read the PHY Specific Control Register (0x10) */
1139	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1140
1141	/* Clear Auto-Crossover bits in PHY Specific Control Register
1142	 * (bits 6:5).
1143	 */
1144	phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1145	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1146
1147	/* Perform software reset on the PHY */
1148	e1000_phy_reset(hw);
1149
1150	/* Have to setup TX_CLK and TX_CRS after software reset */
1151	e1000_phy_reset_clk_and_crs(adapter);
1152
1153	e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1154
1155	/* Wait for reset to complete. */
1156	udelay(500);
1157
1158	/* Have to setup TX_CLK and TX_CRS after software reset */
1159	e1000_phy_reset_clk_and_crs(adapter);
1160
1161	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1162	e1000_phy_disable_receiver(adapter);
1163
1164	/* Set the loopback bit in the PHY control register. */
1165	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1166	phy_reg |= MII_CR_LOOPBACK;
1167	e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1168
1169	/* Setup TX_CLK and TX_CRS one more time. */
1170	e1000_phy_reset_clk_and_crs(adapter);
1171
1172	/* Check Phy Configuration */
1173	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1174	if (phy_reg != 0x4100)
1175		 return 9;
1176
1177	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1178	if (phy_reg != 0x0070)
1179		return 10;
1180
1181	e1000_read_phy_reg(hw, 29, &phy_reg);
1182	if (phy_reg != 0x001A)
1183		return 11;
1184
1185	return 0;
1186}
1187
1188static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1189{
1190	struct e1000_hw *hw = &adapter->hw;
1191	u32 ctrl_reg = 0;
1192	u32 stat_reg = 0;
1193
1194	hw->autoneg = false;
1195
1196	if (hw->phy_type == e1000_phy_m88) {
1197		/* Auto-MDI/MDIX Off */
1198		e1000_write_phy_reg(hw,
1199				    M88E1000_PHY_SPEC_CTRL, 0x0808);
1200		/* reset to update Auto-MDI/MDIX */
1201		e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1202		/* autoneg off */
1203		e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1204	}
1205
1206	ctrl_reg = er32(CTRL);
1207
1208	/* force 1000, set loopback */
1209	e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1210
1211	/* Now set up the MAC to the same speed/duplex as the PHY. */
1212	ctrl_reg = er32(CTRL);
1213	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1214	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1215			E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1216			E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1217			E1000_CTRL_FD);	 /* Force Duplex to FULL */
1218
1219	if (hw->media_type == e1000_media_type_copper &&
1220	   hw->phy_type == e1000_phy_m88)
1221		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1222	else {
1223		/* Set the ILOS bit on the fiber Nic is half
1224		 * duplex link is detected. */
 
1225		stat_reg = er32(STATUS);
1226		if ((stat_reg & E1000_STATUS_FD) == 0)
1227			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1228	}
1229
1230	ew32(CTRL, ctrl_reg);
1231
1232	/* Disable the receiver on the PHY so when a cable is plugged in, the
1233	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1234	 */
1235	if (hw->phy_type == e1000_phy_m88)
1236		e1000_phy_disable_receiver(adapter);
1237
1238	udelay(500);
1239
1240	return 0;
1241}
1242
1243static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1244{
1245	struct e1000_hw *hw = &adapter->hw;
1246	u16 phy_reg = 0;
1247	u16 count = 0;
1248
1249	switch (hw->mac_type) {
1250	case e1000_82543:
1251		if (hw->media_type == e1000_media_type_copper) {
1252			/* Attempt to setup Loopback mode on Non-integrated PHY.
1253			 * Some PHY registers get corrupted at random, so
1254			 * attempt this 10 times.
1255			 */
1256			while (e1000_nonintegrated_phy_loopback(adapter) &&
1257			      count++ < 10);
1258			if (count < 11)
1259				return 0;
1260		}
1261		break;
1262
1263	case e1000_82544:
1264	case e1000_82540:
1265	case e1000_82545:
1266	case e1000_82545_rev_3:
1267	case e1000_82546:
1268	case e1000_82546_rev_3:
1269	case e1000_82541:
1270	case e1000_82541_rev_2:
1271	case e1000_82547:
1272	case e1000_82547_rev_2:
1273		return e1000_integrated_phy_loopback(adapter);
1274		break;
1275	default:
1276		/* Default PHY loopback work is to read the MII
1277		 * control register and assert bit 14 (loopback mode).
1278		 */
1279		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1280		phy_reg |= MII_CR_LOOPBACK;
1281		e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1282		return 0;
1283		break;
1284	}
1285
1286	return 8;
1287}
1288
1289static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1290{
1291	struct e1000_hw *hw = &adapter->hw;
1292	u32 rctl;
1293
1294	if (hw->media_type == e1000_media_type_fiber ||
1295	    hw->media_type == e1000_media_type_internal_serdes) {
1296		switch (hw->mac_type) {
1297		case e1000_82545:
1298		case e1000_82546:
1299		case e1000_82545_rev_3:
1300		case e1000_82546_rev_3:
1301			return e1000_set_phy_loopback(adapter);
1302			break;
1303		default:
1304			rctl = er32(RCTL);
1305			rctl |= E1000_RCTL_LBM_TCVR;
1306			ew32(RCTL, rctl);
1307			return 0;
1308		}
1309	} else if (hw->media_type == e1000_media_type_copper)
1310		return e1000_set_phy_loopback(adapter);
 
1311
1312	return 7;
1313}
1314
1315static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1316{
1317	struct e1000_hw *hw = &adapter->hw;
1318	u32 rctl;
1319	u16 phy_reg;
1320
1321	rctl = er32(RCTL);
1322	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1323	ew32(RCTL, rctl);
1324
1325	switch (hw->mac_type) {
1326	case e1000_82545:
1327	case e1000_82546:
1328	case e1000_82545_rev_3:
1329	case e1000_82546_rev_3:
1330	default:
1331		hw->autoneg = true;
1332		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1333		if (phy_reg & MII_CR_LOOPBACK) {
1334			phy_reg &= ~MII_CR_LOOPBACK;
1335			e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1336			e1000_phy_reset(hw);
1337		}
1338		break;
1339	}
1340}
1341
1342static void e1000_create_lbtest_frame(struct sk_buff *skb,
1343				      unsigned int frame_size)
1344{
1345	memset(skb->data, 0xFF, frame_size);
1346	frame_size &= ~1;
1347	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1348	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1349	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1350}
1351
1352static int e1000_check_lbtest_frame(struct sk_buff *skb,
1353				    unsigned int frame_size)
1354{
1355	frame_size &= ~1;
1356	if (*(skb->data + 3) == 0xFF) {
1357		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1358		   (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1359			return 0;
1360		}
1361	}
1362	return 13;
1363}
1364
1365static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1366{
1367	struct e1000_hw *hw = &adapter->hw;
1368	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1369	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1370	struct pci_dev *pdev = adapter->pdev;
1371	int i, j, k, l, lc, good_cnt, ret_val=0;
1372	unsigned long time;
1373
1374	ew32(RDT, rxdr->count - 1);
1375
1376	/* Calculate the loop count based on the largest descriptor ring
1377	 * The idea is to wrap the largest ring a number of times using 64
1378	 * send/receive pairs during each loop
1379	 */
1380
1381	if (rxdr->count <= txdr->count)
1382		lc = ((txdr->count / 64) * 2) + 1;
1383	else
1384		lc = ((rxdr->count / 64) * 2) + 1;
1385
1386	k = l = 0;
1387	for (j = 0; j <= lc; j++) { /* loop count loop */
1388		for (i = 0; i < 64; i++) { /* send the packets */
1389			e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1390					1024);
1391			dma_sync_single_for_device(&pdev->dev,
1392						   txdr->buffer_info[k].dma,
1393						   txdr->buffer_info[k].length,
1394						   DMA_TO_DEVICE);
1395			if (unlikely(++k == txdr->count)) k = 0;
 
1396		}
1397		ew32(TDT, k);
1398		E1000_WRITE_FLUSH();
1399		msleep(200);
1400		time = jiffies; /* set the start time for the receive */
1401		good_cnt = 0;
1402		do { /* receive the sent packets */
1403			dma_sync_single_for_cpu(&pdev->dev,
1404						rxdr->buffer_info[l].dma,
1405						rxdr->buffer_info[l].length,
1406						DMA_FROM_DEVICE);
1407
1408			ret_val = e1000_check_lbtest_frame(
1409					rxdr->buffer_info[l].skb,
1410				   	1024);
 
1411			if (!ret_val)
1412				good_cnt++;
1413			if (unlikely(++l == rxdr->count)) l = 0;
 
1414			/* time + 20 msecs (200 msecs on 2.4) is more than
1415			 * enough time to complete the receives, if it's
1416			 * exceeded, break and error off
1417			 */
1418		} while (good_cnt < 64 && jiffies < (time + 20));
 
1419		if (good_cnt != 64) {
1420			ret_val = 13; /* ret_val is the same as mis-compare */
1421			break;
1422		}
1423		if (jiffies >= (time + 2)) {
1424			ret_val = 14; /* error code for time out error */
1425			break;
1426		}
1427	} /* end loop count loop */
1428	return ret_val;
1429}
1430
1431static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1432{
1433	*data = e1000_setup_desc_rings(adapter);
1434	if (*data)
1435		goto out;
1436	*data = e1000_setup_loopback_test(adapter);
1437	if (*data)
1438		goto err_loopback;
1439	*data = e1000_run_loopback_test(adapter);
1440	e1000_loopback_cleanup(adapter);
1441
1442err_loopback:
1443	e1000_free_desc_rings(adapter);
1444out:
1445	return *data;
1446}
1447
1448static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1449{
1450	struct e1000_hw *hw = &adapter->hw;
1451	*data = 0;
1452	if (hw->media_type == e1000_media_type_internal_serdes) {
1453		int i = 0;
 
1454		hw->serdes_has_link = false;
1455
1456		/* On some blade server designs, link establishment
1457		 * could take as long as 2-3 minutes */
 
1458		do {
1459			e1000_check_for_link(hw);
1460			if (hw->serdes_has_link)
1461				return *data;
1462			msleep(20);
1463		} while (i++ < 3750);
1464
1465		*data = 1;
1466	} else {
1467		e1000_check_for_link(hw);
1468		if (hw->autoneg)  /* if auto_neg is set wait for it */
1469			msleep(4000);
1470
1471		if (!(er32(STATUS) & E1000_STATUS_LU)) {
1472			*data = 1;
1473		}
1474	}
1475	return *data;
1476}
1477
1478static int e1000_get_sset_count(struct net_device *netdev, int sset)
1479{
1480	switch (sset) {
1481	case ETH_SS_TEST:
1482		return E1000_TEST_LEN;
1483	case ETH_SS_STATS:
1484		return E1000_STATS_LEN;
1485	default:
1486		return -EOPNOTSUPP;
1487	}
1488}
1489
1490static void e1000_diag_test(struct net_device *netdev,
1491			    struct ethtool_test *eth_test, u64 *data)
1492{
1493	struct e1000_adapter *adapter = netdev_priv(netdev);
1494	struct e1000_hw *hw = &adapter->hw;
1495	bool if_running = netif_running(netdev);
1496
1497	set_bit(__E1000_TESTING, &adapter->flags);
1498	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1499		/* Offline tests */
1500
1501		/* save speed, duplex, autoneg settings */
1502		u16 autoneg_advertised = hw->autoneg_advertised;
1503		u8 forced_speed_duplex = hw->forced_speed_duplex;
1504		u8 autoneg = hw->autoneg;
1505
1506		e_info(hw, "offline testing starting\n");
1507
1508		/* Link test performed before hardware reset so autoneg doesn't
1509		 * interfere with test result */
 
1510		if (e1000_link_test(adapter, &data[4]))
1511			eth_test->flags |= ETH_TEST_FL_FAILED;
1512
1513		if (if_running)
1514			/* indicate we're in test mode */
1515			dev_close(netdev);
1516		else
1517			e1000_reset(adapter);
1518
1519		if (e1000_reg_test(adapter, &data[0]))
1520			eth_test->flags |= ETH_TEST_FL_FAILED;
1521
1522		e1000_reset(adapter);
1523		if (e1000_eeprom_test(adapter, &data[1]))
1524			eth_test->flags |= ETH_TEST_FL_FAILED;
1525
1526		e1000_reset(adapter);
1527		if (e1000_intr_test(adapter, &data[2]))
1528			eth_test->flags |= ETH_TEST_FL_FAILED;
1529
1530		e1000_reset(adapter);
1531		/* make sure the phy is powered up */
1532		e1000_power_up_phy(adapter);
1533		if (e1000_loopback_test(adapter, &data[3]))
1534			eth_test->flags |= ETH_TEST_FL_FAILED;
1535
1536		/* restore speed, duplex, autoneg settings */
1537		hw->autoneg_advertised = autoneg_advertised;
1538		hw->forced_speed_duplex = forced_speed_duplex;
1539		hw->autoneg = autoneg;
1540
1541		e1000_reset(adapter);
1542		clear_bit(__E1000_TESTING, &adapter->flags);
1543		if (if_running)
1544			dev_open(netdev);
1545	} else {
1546		e_info(hw, "online testing starting\n");
1547		/* Online tests */
1548		if (e1000_link_test(adapter, &data[4]))
1549			eth_test->flags |= ETH_TEST_FL_FAILED;
1550
1551		/* Online tests aren't run; pass by default */
1552		data[0] = 0;
1553		data[1] = 0;
1554		data[2] = 0;
1555		data[3] = 0;
1556
1557		clear_bit(__E1000_TESTING, &adapter->flags);
1558	}
1559	msleep_interruptible(4 * 1000);
1560}
1561
1562static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1563			       struct ethtool_wolinfo *wol)
1564{
1565	struct e1000_hw *hw = &adapter->hw;
1566	int retval = 1; /* fail by default */
1567
1568	switch (hw->device_id) {
1569	case E1000_DEV_ID_82542:
1570	case E1000_DEV_ID_82543GC_FIBER:
1571	case E1000_DEV_ID_82543GC_COPPER:
1572	case E1000_DEV_ID_82544EI_FIBER:
1573	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1574	case E1000_DEV_ID_82545EM_FIBER:
1575	case E1000_DEV_ID_82545EM_COPPER:
1576	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1577	case E1000_DEV_ID_82546GB_PCIE:
1578		/* these don't support WoL at all */
1579		wol->supported = 0;
1580		break;
1581	case E1000_DEV_ID_82546EB_FIBER:
1582	case E1000_DEV_ID_82546GB_FIBER:
1583		/* Wake events not supported on port B */
1584		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1585			wol->supported = 0;
1586			break;
1587		}
1588		/* return success for non excluded adapter ports */
1589		retval = 0;
1590		break;
1591	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1592		/* quad port adapters only support WoL on port A */
1593		if (!adapter->quad_port_a) {
1594			wol->supported = 0;
1595			break;
1596		}
1597		/* return success for non excluded adapter ports */
1598		retval = 0;
1599		break;
1600	default:
1601		/* dual port cards only support WoL on port A from now on
1602		 * unless it was enabled in the eeprom for port B
1603		 * so exclude FUNC_1 ports from having WoL enabled */
 
1604		if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1605		    !adapter->eeprom_wol) {
1606			wol->supported = 0;
1607			break;
1608		}
1609
1610		retval = 0;
1611	}
1612
1613	return retval;
1614}
1615
1616static void e1000_get_wol(struct net_device *netdev,
1617			  struct ethtool_wolinfo *wol)
1618{
1619	struct e1000_adapter *adapter = netdev_priv(netdev);
1620	struct e1000_hw *hw = &adapter->hw;
1621
1622	wol->supported = WAKE_UCAST | WAKE_MCAST |
1623	                 WAKE_BCAST | WAKE_MAGIC;
1624	wol->wolopts = 0;
1625
1626	/* this function will set ->supported = 0 and return 1 if wol is not
1627	 * supported by this hardware */
 
1628	if (e1000_wol_exclusion(adapter, wol) ||
1629	    !device_can_wakeup(&adapter->pdev->dev))
1630		return;
1631
1632	/* apply any specific unsupported masks here */
1633	switch (hw->device_id) {
1634	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1635		/* KSP3 does not suppport UCAST wake-ups */
1636		wol->supported &= ~WAKE_UCAST;
1637
1638		if (adapter->wol & E1000_WUFC_EX)
1639			e_err(drv, "Interface does not support directed "
1640			      "(unicast) frame wake-up packets\n");
1641		break;
1642	default:
1643		break;
1644	}
1645
1646	if (adapter->wol & E1000_WUFC_EX)
1647		wol->wolopts |= WAKE_UCAST;
1648	if (adapter->wol & E1000_WUFC_MC)
1649		wol->wolopts |= WAKE_MCAST;
1650	if (adapter->wol & E1000_WUFC_BC)
1651		wol->wolopts |= WAKE_BCAST;
1652	if (adapter->wol & E1000_WUFC_MAG)
1653		wol->wolopts |= WAKE_MAGIC;
1654}
1655
1656static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1657{
1658	struct e1000_adapter *adapter = netdev_priv(netdev);
1659	struct e1000_hw *hw = &adapter->hw;
1660
1661	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1662		return -EOPNOTSUPP;
1663
1664	if (e1000_wol_exclusion(adapter, wol) ||
1665	    !device_can_wakeup(&adapter->pdev->dev))
1666		return wol->wolopts ? -EOPNOTSUPP : 0;
1667
1668	switch (hw->device_id) {
1669	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1670		if (wol->wolopts & WAKE_UCAST) {
1671			e_err(drv, "Interface does not support directed "
1672			      "(unicast) frame wake-up packets\n");
1673			return -EOPNOTSUPP;
1674		}
1675		break;
1676	default:
1677		break;
1678	}
1679
1680	/* these settings will always override what we currently have */
1681	adapter->wol = 0;
1682
1683	if (wol->wolopts & WAKE_UCAST)
1684		adapter->wol |= E1000_WUFC_EX;
1685	if (wol->wolopts & WAKE_MCAST)
1686		adapter->wol |= E1000_WUFC_MC;
1687	if (wol->wolopts & WAKE_BCAST)
1688		adapter->wol |= E1000_WUFC_BC;
1689	if (wol->wolopts & WAKE_MAGIC)
1690		adapter->wol |= E1000_WUFC_MAG;
1691
1692	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1693
1694	return 0;
1695}
1696
1697static int e1000_set_phys_id(struct net_device *netdev,
1698			     enum ethtool_phys_id_state state)
1699{
1700	struct e1000_adapter *adapter = netdev_priv(netdev);
1701	struct e1000_hw *hw = &adapter->hw;
1702
1703	switch (state) {
1704	case ETHTOOL_ID_ACTIVE:
1705		e1000_setup_led(hw);
1706		return 2;
1707
1708	case ETHTOOL_ID_ON:
1709		e1000_led_on(hw);
1710		break;
1711
1712	case ETHTOOL_ID_OFF:
1713		e1000_led_off(hw);
1714		break;
1715
1716	case ETHTOOL_ID_INACTIVE:
1717		e1000_cleanup_led(hw);
1718	}
1719
1720	return 0;
1721}
1722
1723static int e1000_get_coalesce(struct net_device *netdev,
1724			      struct ethtool_coalesce *ec)
 
 
1725{
1726	struct e1000_adapter *adapter = netdev_priv(netdev);
1727
1728	if (adapter->hw.mac_type < e1000_82545)
1729		return -EOPNOTSUPP;
1730
1731	if (adapter->itr_setting <= 4)
1732		ec->rx_coalesce_usecs = adapter->itr_setting;
1733	else
1734		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1735
1736	return 0;
1737}
1738
1739static int e1000_set_coalesce(struct net_device *netdev,
1740			      struct ethtool_coalesce *ec)
 
 
1741{
1742	struct e1000_adapter *adapter = netdev_priv(netdev);
1743	struct e1000_hw *hw = &adapter->hw;
1744
1745	if (hw->mac_type < e1000_82545)
1746		return -EOPNOTSUPP;
1747
1748	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1749	    ((ec->rx_coalesce_usecs > 4) &&
1750	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1751	    (ec->rx_coalesce_usecs == 2))
1752		return -EINVAL;
1753
1754	if (ec->rx_coalesce_usecs == 4) {
1755		adapter->itr = adapter->itr_setting = 4;
1756	} else if (ec->rx_coalesce_usecs <= 3) {
1757		adapter->itr = 20000;
1758		adapter->itr_setting = ec->rx_coalesce_usecs;
1759	} else {
1760		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1761		adapter->itr_setting = adapter->itr & ~3;
1762	}
1763
1764	if (adapter->itr_setting != 0)
1765		ew32(ITR, 1000000000 / (adapter->itr * 256));
1766	else
1767		ew32(ITR, 0);
1768
1769	return 0;
1770}
1771
1772static int e1000_nway_reset(struct net_device *netdev)
1773{
1774	struct e1000_adapter *adapter = netdev_priv(netdev);
 
1775	if (netif_running(netdev))
1776		e1000_reinit_locked(adapter);
1777	return 0;
1778}
1779
1780static void e1000_get_ethtool_stats(struct net_device *netdev,
1781				    struct ethtool_stats *stats, u64 *data)
1782{
1783	struct e1000_adapter *adapter = netdev_priv(netdev);
1784	int i;
1785	char *p = NULL;
1786
1787	e1000_update_stats(adapter);
1788	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1789		switch (e1000_gstrings_stats[i].type) {
 
 
1790		case NETDEV_STATS:
1791			p = (char *) netdev +
1792					e1000_gstrings_stats[i].stat_offset;
1793			break;
1794		case E1000_STATS:
1795			p = (char *) adapter +
1796					e1000_gstrings_stats[i].stat_offset;
1797			break;
 
 
 
 
1798		}
1799
1800		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1801			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
 
 
1802	}
1803/*	BUG_ON(i != E1000_STATS_LEN); */
1804}
1805
1806static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1807			      u8 *data)
1808{
1809	u8 *p = data;
1810	int i;
1811
1812	switch (stringset) {
1813	case ETH_SS_TEST:
1814		memcpy(data, *e1000_gstrings_test,
1815			sizeof(e1000_gstrings_test));
1816		break;
1817	case ETH_SS_STATS:
1818		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1819			memcpy(p, e1000_gstrings_stats[i].stat_string,
1820			       ETH_GSTRING_LEN);
1821			p += ETH_GSTRING_LEN;
1822		}
1823/*		BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1824		break;
1825	}
1826}
1827
1828static const struct ethtool_ops e1000_ethtool_ops = {
1829	.get_settings           = e1000_get_settings,
1830	.set_settings           = e1000_set_settings,
1831	.get_drvinfo            = e1000_get_drvinfo,
1832	.get_regs_len           = e1000_get_regs_len,
1833	.get_regs               = e1000_get_regs,
1834	.get_wol                = e1000_get_wol,
1835	.set_wol                = e1000_set_wol,
1836	.get_msglevel           = e1000_get_msglevel,
1837	.set_msglevel           = e1000_set_msglevel,
1838	.nway_reset             = e1000_nway_reset,
1839	.get_link               = e1000_get_link,
1840	.get_eeprom_len         = e1000_get_eeprom_len,
1841	.get_eeprom             = e1000_get_eeprom,
1842	.set_eeprom             = e1000_set_eeprom,
1843	.get_ringparam          = e1000_get_ringparam,
1844	.set_ringparam          = e1000_set_ringparam,
1845	.get_pauseparam         = e1000_get_pauseparam,
1846	.set_pauseparam         = e1000_set_pauseparam,
1847	.self_test              = e1000_diag_test,
1848	.get_strings            = e1000_get_strings,
1849	.set_phys_id            = e1000_set_phys_id,
1850	.get_ethtool_stats      = e1000_get_ethtool_stats,
1851	.get_sset_count         = e1000_get_sset_count,
1852	.get_coalesce           = e1000_get_coalesce,
1853	.set_coalesce           = e1000_set_coalesce,
 
 
1854};
1855
1856void e1000_set_ethtool_ops(struct net_device *netdev)
1857{
1858	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1859}