Linux Audio

Check our new training course

Loading...
v6.8
   1/* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
   2/*
   3	Written 1998-2000 by Donald Becker.
   4
   5	Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
   6	send all bug reports to me, and not to Donald Becker, as this code
   7	has been heavily modified from Donald's original version.
   8
   9	This software may be used and distributed according to the terms of
  10	the GNU General Public License (GPL), incorporated herein by reference.
  11	Drivers based on or derived from this code fall under the GPL and must
  12	retain the authorship, copyright and license notice.  This file is not
  13	a complete program and may only be used when the entire operating
  14	system is licensed under the GPL.
  15
  16	The information below comes from Donald Becker's original driver:
  17
  18	The author may be reached as becker@scyld.com, or C/O
  19	Scyld Computing Corporation
  20	410 Severn Ave., Suite 210
  21	Annapolis MD 21403
  22
  23	Support and updates available at
  24	http://www.scyld.com/network/starfire.html
  25	[link no longer provides useful info -jgarzik]
  26
  27*/
  28
  29#define DRV_NAME	"starfire"
 
 
  30
  31#include <linux/interrupt.h>
  32#include <linux/module.h>
  33#include <linux/kernel.h>
  34#include <linux/pci.h>
  35#include <linux/netdevice.h>
  36#include <linux/etherdevice.h>
  37#include <linux/init.h>
  38#include <linux/delay.h>
  39#include <linux/crc32.h>
  40#include <linux/ethtool.h>
  41#include <linux/mii.h>
  42#include <linux/if_vlan.h>
  43#include <linux/mm.h>
  44#include <linux/firmware.h>
  45#include <asm/processor.h>		/* Processor type for cache alignment. */
  46#include <linux/uaccess.h>
  47#include <asm/io.h>
  48
  49/*
  50 * The current frame processor firmware fails to checksum a fragment
  51 * of length 1. If and when this is fixed, the #define below can be removed.
  52 */
  53#define HAS_BROKEN_FIRMWARE
  54
  55/*
  56 * If using the broken firmware, data must be padded to the next 32-bit boundary.
  57 */
  58#ifdef HAS_BROKEN_FIRMWARE
  59#define PADDING_MASK 3
  60#endif
  61
  62/*
  63 * Define this if using the driver with the zero-copy patch
  64 */
  65#define ZEROCOPY
  66
  67#if IS_ENABLED(CONFIG_VLAN_8021Q)
  68#define VLAN_SUPPORT
  69#endif
  70
  71/* The user-configurable values.
  72   These may be modified when a driver module is loaded.*/
  73
  74/* Used for tuning interrupt latency vs. overhead. */
  75static int intr_latency;
  76static int small_frames;
  77
  78static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
  79static int max_interrupt_work = 20;
  80static int mtu;
  81/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
  82   The Starfire has a 512 element hash table based on the Ethernet CRC. */
  83static const int multicast_filter_limit = 512;
  84/* Whether to do TCP/UDP checksums in hardware */
  85static int enable_hw_cksum = 1;
  86
  87#define PKT_BUF_SZ	1536		/* Size of each temporary Rx buffer.*/
  88/*
  89 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
  90 * Setting to > 1518 effectively disables this feature.
  91 *
  92 * NOTE:
  93 * The ia64 doesn't allow for unaligned loads even of integers being
  94 * misaligned on a 2 byte boundary. Thus always force copying of
  95 * packets as the starfire doesn't allow for misaligned DMAs ;-(
  96 * 23/10/2000 - Jes
  97 *
  98 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
  99 * at least, having unaligned frames leads to a rather serious performance
 100 * penalty. -Ion
 101 */
 102#if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
 103static int rx_copybreak = PKT_BUF_SZ;
 104#else
 105static int rx_copybreak /* = 0 */;
 106#endif
 107
 108/* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
 109#ifdef __sparc__
 110#define DMA_BURST_SIZE 64
 111#else
 112#define DMA_BURST_SIZE 128
 113#endif
 114
 115/* Operational parameters that are set at compile time. */
 116
 117/* The "native" ring sizes are either 256 or 2048.
 118   However in some modes a descriptor may be marked to wrap the ring earlier.
 119*/
 120#define RX_RING_SIZE	256
 121#define TX_RING_SIZE	32
 122/* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
 123#define DONE_Q_SIZE	1024
 124/* All queues must be aligned on a 256-byte boundary */
 125#define QUEUE_ALIGN	256
 126
 127#if RX_RING_SIZE > 256
 128#define RX_Q_ENTRIES Rx2048QEntries
 129#else
 130#define RX_Q_ENTRIES Rx256QEntries
 131#endif
 132
 133/* Operational parameters that usually are not changed. */
 134/* Time in jiffies before concluding the transmitter is hung. */
 135#define TX_TIMEOUT	(2 * HZ)
 136
 137#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 138/* 64-bit dma_addr_t */
 139#define ADDR_64BITS	/* This chip uses 64 bit addresses. */
 140#define netdrv_addr_t __le64
 141#define cpu_to_dma(x) cpu_to_le64(x)
 142#define dma_to_cpu(x) le64_to_cpu(x)
 143#define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
 144#define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
 145#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
 146#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
 147#define RX_DESC_ADDR_SIZE RxDescAddr64bit
 148#else  /* 32-bit dma_addr_t */
 149#define netdrv_addr_t __le32
 150#define cpu_to_dma(x) cpu_to_le32(x)
 151#define dma_to_cpu(x) le32_to_cpu(x)
 152#define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
 153#define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
 154#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
 155#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
 156#define RX_DESC_ADDR_SIZE RxDescAddr32bit
 157#endif
 158
 159#define skb_first_frag_len(skb)	skb_headlen(skb)
 160#define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
 161
 162/* Firmware names */
 163#define FIRMWARE_RX	"adaptec/starfire_rx.bin"
 164#define FIRMWARE_TX	"adaptec/starfire_tx.bin"
 165
 
 
 
 
 
 166MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 167MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
 168MODULE_LICENSE("GPL");
 
 169MODULE_FIRMWARE(FIRMWARE_RX);
 170MODULE_FIRMWARE(FIRMWARE_TX);
 171
 172module_param(max_interrupt_work, int, 0);
 173module_param(mtu, int, 0);
 174module_param(debug, int, 0);
 175module_param(rx_copybreak, int, 0);
 176module_param(intr_latency, int, 0);
 177module_param(small_frames, int, 0);
 178module_param(enable_hw_cksum, int, 0);
 179MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
 180MODULE_PARM_DESC(mtu, "MTU (all boards)");
 181MODULE_PARM_DESC(debug, "Debug level (0-6)");
 182MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
 183MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
 184MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
 185MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
 186
 187/*
 188				Theory of Operation
 189
 190I. Board Compatibility
 191
 192This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
 193
 194II. Board-specific settings
 195
 196III. Driver operation
 197
 198IIIa. Ring buffers
 199
 200The Starfire hardware uses multiple fixed-size descriptor queues/rings.  The
 201ring sizes are set fixed by the hardware, but may optionally be wrapped
 202earlier by the END bit in the descriptor.
 203This driver uses that hardware queue size for the Rx ring, where a large
 204number of entries has no ill effect beyond increases the potential backlog.
 205The Tx ring is wrapped with the END bit, since a large hardware Tx queue
 206disables the queue layer priority ordering and we have no mechanism to
 207utilize the hardware two-level priority queue.  When modifying the
 208RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
 209levels.
 210
 211IIIb/c. Transmit/Receive Structure
 212
 213See the Adaptec manual for the many possible structures, and options for
 214each structure.  There are far too many to document all of them here.
 215
 216For transmit this driver uses type 0/1 transmit descriptors (depending
 217on the 32/64 bitness of the architecture), and relies on automatic
 218minimum-length padding.  It does not use the completion queue
 219consumer index, but instead checks for non-zero status entries.
 220
 221For receive this driver uses type 2/3 receive descriptors.  The driver
 222allocates full frame size skbuffs for the Rx ring buffers, so all frames
 223should fit in a single descriptor.  The driver does not use the completion
 224queue consumer index, but instead checks for non-zero status entries.
 225
 226When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
 227is allocated and the frame is copied to the new skbuff.  When the incoming
 228frame is larger, the skbuff is passed directly up the protocol stack.
 229Buffers consumed this way are replaced by newly allocated skbuffs in a later
 230phase of receive.
 231
 232A notable aspect of operation is that unaligned buffers are not permitted by
 233the Starfire hardware.  Thus the IP header at offset 14 in an ethernet frame
 234isn't longword aligned, which may cause problems on some machine
 235e.g. Alphas and IA64. For these architectures, the driver is forced to copy
 236the frame into a new skbuff unconditionally. Copied frames are put into the
 237skbuff at an offset of "+2", thus 16-byte aligning the IP header.
 238
 239IIId. Synchronization
 240
 241The driver runs as two independent, single-threaded flows of control.  One
 242is the send-packet routine, which enforces single-threaded use by the
 243dev->tbusy flag.  The other thread is the interrupt handler, which is single
 244threaded by the hardware and interrupt handling software.
 245
 246The send packet thread has partial control over the Tx ring and the netif_queue
 247status. If the number of free Tx slots in the ring falls below a certain number
 248(currently hardcoded to 4), it signals the upper layer to stop the queue.
 249
 250The interrupt handler has exclusive control over the Rx ring and records stats
 251from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
 252empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
 253number of free Tx slow is above the threshold, it signals the upper layer to
 254restart the queue.
 255
 256IV. Notes
 257
 258IVb. References
 259
 260The Adaptec Starfire manuals, available only from Adaptec.
 261http://www.scyld.com/expert/100mbps.html
 262http://www.scyld.com/expert/NWay.html
 263
 264IVc. Errata
 265
 266- StopOnPerr is broken, don't enable
 267- Hardware ethernet padding exposes random data, perform software padding
 268  instead (unverified -- works correctly for all the hardware I have)
 269
 270*/
 271
 272
 273
 274enum chip_capability_flags {CanHaveMII=1, };
 275
 276enum chipset {
 277	CH_6915 = 0,
 278};
 279
 280static const struct pci_device_id starfire_pci_tbl[] = {
 281	{ PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
 282	{ 0, }
 283};
 284MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
 285
 286/* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
 287static const struct chip_info {
 288	const char *name;
 289	int drv_flags;
 290} netdrv_tbl[] = {
 291	{ "Adaptec Starfire 6915", CanHaveMII },
 292};
 293
 294
 295/* Offsets to the device registers.
 296   Unlike software-only systems, device drivers interact with complex hardware.
 297   It's not useful to define symbolic names for every register bit in the
 298   device.  The name can only partially document the semantics and make
 299   the driver longer and more difficult to read.
 300   In general, only the important configuration values or bits changed
 301   multiple times should be defined symbolically.
 302*/
 303enum register_offsets {
 304	PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
 305	IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
 306	MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
 307	GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
 308	TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
 309	TxRingHiAddr=0x5009C,		/* 64 bit address extension. */
 310	TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
 311	TxThreshold=0x500B0,
 312	CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
 313	RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
 314	CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
 315	RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
 316	RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
 317	TxMode=0x55000, VlanType=0x55064,
 318	PerfFilterTable=0x56000, HashTable=0x56100,
 319	TxGfpMem=0x58000, RxGfpMem=0x5a000,
 320};
 321
 322/*
 323 * Bits in the interrupt status/mask registers.
 324 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
 325 * enables all the interrupt sources that are or'ed into those status bits.
 326 */
 327enum intr_status_bits {
 328	IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
 329	IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
 330	IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
 331	IntrTxComplQLow=0x200000, IntrPCI=0x100000,
 332	IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
 333	IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
 334	IntrNormalSummary=0x8000, IntrTxDone=0x4000,
 335	IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
 336	IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
 337	IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
 338	IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
 339	IntrNoTxCsum=0x20, IntrTxBadID=0x10,
 340	IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
 341	IntrTxGfp=0x02, IntrPCIPad=0x01,
 342	/* not quite bits */
 343	IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
 344	IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
 345	IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
 346};
 347
 348/* Bits in the RxFilterMode register. */
 349enum rx_mode_bits {
 350	AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
 351	AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
 352	PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
 353	WakeupOnGFP=0x0800,
 354};
 355
 356/* Bits in the TxMode register */
 357enum tx_mode_bits {
 358	MiiSoftReset=0x8000, MIILoopback=0x4000,
 359	TxFlowEnable=0x0800, RxFlowEnable=0x0400,
 360	PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
 361};
 362
 363/* Bits in the TxDescCtrl register. */
 364enum tx_ctrl_bits {
 365	TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
 366	TxDescSpace128=0x30, TxDescSpace256=0x40,
 367	TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
 368	TxDescType3=0x03, TxDescType4=0x04,
 369	TxNoDMACompletion=0x08,
 370	TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
 371	TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
 372	TxDMABurstSizeShift=8,
 373};
 374
 375/* Bits in the RxDescQCtrl register. */
 376enum rx_ctrl_bits {
 377	RxBufferLenShift=16, RxMinDescrThreshShift=0,
 378	RxPrefetchMode=0x8000, RxVariableQ=0x2000,
 379	Rx2048QEntries=0x4000, Rx256QEntries=0,
 380	RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
 381	RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
 382	RxDescSpace4=0x000, RxDescSpace8=0x100,
 383	RxDescSpace16=0x200, RxDescSpace32=0x300,
 384	RxDescSpace64=0x400, RxDescSpace128=0x500,
 385	RxConsumerWrEn=0x80,
 386};
 387
 388/* Bits in the RxDMACtrl register. */
 389enum rx_dmactrl_bits {
 390	RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
 391	RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
 392	RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
 393	RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
 394	RxChecksumRejectTCPOnly=0x01000000,
 395	RxCompletionQ2Enable=0x800000,
 396	RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
 397	RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
 398	RxDMAQ2NonIP=0x400000,
 399	RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
 400	RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
 401	RxBurstSizeShift=0,
 402};
 403
 404/* Bits in the RxCompletionAddr register */
 405enum rx_compl_bits {
 406	RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
 407	RxComplProducerWrEn=0x40,
 408	RxComplType0=0x00, RxComplType1=0x10,
 409	RxComplType2=0x20, RxComplType3=0x30,
 410	RxComplThreshShift=0,
 411};
 412
 413/* Bits in the TxCompletionAddr register */
 414enum tx_compl_bits {
 415	TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
 416	TxComplProducerWrEn=0x40,
 417	TxComplIntrStatus=0x20,
 418	CommonQueueMode=0x10,
 419	TxComplThreshShift=0,
 420};
 421
 422/* Bits in the GenCtrl register */
 423enum gen_ctrl_bits {
 424	RxEnable=0x05, TxEnable=0x0a,
 425	RxGFPEnable=0x10, TxGFPEnable=0x20,
 426};
 427
 428/* Bits in the IntrTimerCtrl register */
 429enum intr_ctrl_bits {
 430	Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
 431	SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
 432	IntrLatencyMask=0x1f,
 433};
 434
 435/* The Rx and Tx buffer descriptors. */
 436struct starfire_rx_desc {
 437	netdrv_addr_t rxaddr;
 438};
 439enum rx_desc_bits {
 440	RxDescValid=1, RxDescEndRing=2,
 441};
 442
 443/* Completion queue entry. */
 444struct short_rx_done_desc {
 445	__le32 status;			/* Low 16 bits is length. */
 446};
 447struct basic_rx_done_desc {
 448	__le32 status;			/* Low 16 bits is length. */
 449	__le16 vlanid;
 450	__le16 status2;
 451};
 452struct csum_rx_done_desc {
 453	__le32 status;			/* Low 16 bits is length. */
 454	__le16 csum;			/* Partial checksum */
 455	__le16 status2;
 456};
 457struct full_rx_done_desc {
 458	__le32 status;			/* Low 16 bits is length. */
 459	__le16 status3;
 460	__le16 status2;
 461	__le16 vlanid;
 462	__le16 csum;			/* partial checksum */
 463	__le32 timestamp;
 464};
 465/* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
 466#ifdef VLAN_SUPPORT
 467typedef struct full_rx_done_desc rx_done_desc;
 468#define RxComplType RxComplType3
 469#else  /* not VLAN_SUPPORT */
 470typedef struct csum_rx_done_desc rx_done_desc;
 471#define RxComplType RxComplType2
 472#endif /* not VLAN_SUPPORT */
 473
 474enum rx_done_bits {
 475	RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
 476};
 477
 478/* Type 1 Tx descriptor. */
 479struct starfire_tx_desc_1 {
 480	__le32 status;			/* Upper bits are status, lower 16 length. */
 481	__le32 addr;
 482};
 483
 484/* Type 2 Tx descriptor. */
 485struct starfire_tx_desc_2 {
 486	__le32 status;			/* Upper bits are status, lower 16 length. */
 487	__le32 reserved;
 488	__le64 addr;
 489};
 490
 491#ifdef ADDR_64BITS
 492typedef struct starfire_tx_desc_2 starfire_tx_desc;
 493#define TX_DESC_TYPE TxDescType2
 494#else  /* not ADDR_64BITS */
 495typedef struct starfire_tx_desc_1 starfire_tx_desc;
 496#define TX_DESC_TYPE TxDescType1
 497#endif /* not ADDR_64BITS */
 498#define TX_DESC_SPACING TxDescSpaceUnlim
 499
 500enum tx_desc_bits {
 501	TxDescID=0xB0000000,
 502	TxCRCEn=0x01000000, TxDescIntr=0x08000000,
 503	TxRingWrap=0x04000000, TxCalTCP=0x02000000,
 504};
 505struct tx_done_desc {
 506	__le32 status;			/* timestamp, index. */
 507#if 0
 508	__le32 intrstatus;		/* interrupt status */
 509#endif
 510};
 511
 512struct rx_ring_info {
 513	struct sk_buff *skb;
 514	dma_addr_t mapping;
 515};
 516struct tx_ring_info {
 517	struct sk_buff *skb;
 518	dma_addr_t mapping;
 519	unsigned int used_slots;
 520};
 521
 522#define PHY_CNT		2
 523struct netdev_private {
 524	/* Descriptor rings first for alignment. */
 525	struct starfire_rx_desc *rx_ring;
 526	starfire_tx_desc *tx_ring;
 527	dma_addr_t rx_ring_dma;
 528	dma_addr_t tx_ring_dma;
 529	/* The addresses of rx/tx-in-place skbuffs. */
 530	struct rx_ring_info rx_info[RX_RING_SIZE];
 531	struct tx_ring_info tx_info[TX_RING_SIZE];
 532	/* Pointers to completion queues (full pages). */
 533	rx_done_desc *rx_done_q;
 534	dma_addr_t rx_done_q_dma;
 535	unsigned int rx_done;
 536	struct tx_done_desc *tx_done_q;
 537	dma_addr_t tx_done_q_dma;
 538	unsigned int tx_done;
 539	struct napi_struct napi;
 540	struct net_device *dev;
 541	struct pci_dev *pci_dev;
 542#ifdef VLAN_SUPPORT
 543	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
 544#endif
 545	void *queue_mem;
 546	dma_addr_t queue_mem_dma;
 547	size_t queue_mem_size;
 548
 549	/* Frequently used values: keep some adjacent for cache effect. */
 550	spinlock_t lock;
 551	unsigned int cur_rx, dirty_rx;	/* Producer/consumer ring indices */
 552	unsigned int cur_tx, dirty_tx, reap_tx;
 553	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
 554	/* These values keep track of the transceiver/media in use. */
 555	int speed100;			/* Set if speed == 100MBit. */
 556	u32 tx_mode;
 557	u32 intr_timer_ctrl;
 558	u8 tx_threshold;
 559	/* MII transceiver section. */
 560	struct mii_if_info mii_if;		/* MII lib hooks/info */
 561	int phy_cnt;			/* MII device addresses. */
 562	unsigned char phys[PHY_CNT];	/* MII device addresses. */
 563	void __iomem *base;
 564};
 565
 566
 567static int	mdio_read(struct net_device *dev, int phy_id, int location);
 568static void	mdio_write(struct net_device *dev, int phy_id, int location, int value);
 569static int	netdev_open(struct net_device *dev);
 570static void	check_duplex(struct net_device *dev);
 571static void	tx_timeout(struct net_device *dev, unsigned int txqueue);
 572static void	init_ring(struct net_device *dev);
 573static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
 574static irqreturn_t intr_handler(int irq, void *dev_instance);
 575static void	netdev_error(struct net_device *dev, int intr_status);
 576static int	__netdev_rx(struct net_device *dev, int *quota);
 577static int	netdev_poll(struct napi_struct *napi, int budget);
 578static void	refill_rx_ring(struct net_device *dev);
 579static void	netdev_error(struct net_device *dev, int intr_status);
 580static void	set_rx_mode(struct net_device *dev);
 581static struct net_device_stats *get_stats(struct net_device *dev);
 582static int	netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 583static int	netdev_close(struct net_device *dev);
 584static void	netdev_media_change(struct net_device *dev);
 585static const struct ethtool_ops ethtool_ops;
 586
 587
 588#ifdef VLAN_SUPPORT
 589static int netdev_vlan_rx_add_vid(struct net_device *dev,
 590				  __be16 proto, u16 vid)
 591{
 592	struct netdev_private *np = netdev_priv(dev);
 593
 594	spin_lock(&np->lock);
 595	if (debug > 1)
 596		printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
 597	set_bit(vid, np->active_vlans);
 598	set_rx_mode(dev);
 599	spin_unlock(&np->lock);
 600
 601	return 0;
 602}
 603
 604static int netdev_vlan_rx_kill_vid(struct net_device *dev,
 605				   __be16 proto, u16 vid)
 606{
 607	struct netdev_private *np = netdev_priv(dev);
 608
 609	spin_lock(&np->lock);
 610	if (debug > 1)
 611		printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
 612	clear_bit(vid, np->active_vlans);
 613	set_rx_mode(dev);
 614	spin_unlock(&np->lock);
 615
 616	return 0;
 617}
 618#endif /* VLAN_SUPPORT */
 619
 620
 621static const struct net_device_ops netdev_ops = {
 622	.ndo_open		= netdev_open,
 623	.ndo_stop		= netdev_close,
 624	.ndo_start_xmit		= start_tx,
 625	.ndo_tx_timeout		= tx_timeout,
 626	.ndo_get_stats		= get_stats,
 627	.ndo_set_rx_mode	= set_rx_mode,
 628	.ndo_eth_ioctl		= netdev_ioctl,
 
 629	.ndo_set_mac_address	= eth_mac_addr,
 630	.ndo_validate_addr	= eth_validate_addr,
 631#ifdef VLAN_SUPPORT
 632	.ndo_vlan_rx_add_vid	= netdev_vlan_rx_add_vid,
 633	.ndo_vlan_rx_kill_vid	= netdev_vlan_rx_kill_vid,
 634#endif
 635};
 636
 637static int starfire_init_one(struct pci_dev *pdev,
 638			     const struct pci_device_id *ent)
 639{
 640	struct device *d = &pdev->dev;
 641	struct netdev_private *np;
 642	int i, irq, chip_idx = ent->driver_data;
 643	struct net_device *dev;
 644	u8 addr[ETH_ALEN];
 645	long ioaddr;
 646	void __iomem *base;
 647	int drv_flags, io_size;
 648	int boguscnt;
 649
 
 
 
 
 
 
 
 650	if (pci_enable_device (pdev))
 651		return -EIO;
 652
 653	ioaddr = pci_resource_start(pdev, 0);
 654	io_size = pci_resource_len(pdev, 0);
 655	if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
 656		dev_err(d, "no PCI MEM resources, aborting\n");
 657		return -ENODEV;
 658	}
 659
 660	dev = alloc_etherdev(sizeof(*np));
 661	if (!dev)
 662		return -ENOMEM;
 663
 664	SET_NETDEV_DEV(dev, &pdev->dev);
 665
 666	irq = pdev->irq;
 667
 668	if (pci_request_regions (pdev, DRV_NAME)) {
 669		dev_err(d, "cannot reserve PCI resources, aborting\n");
 670		goto err_out_free_netdev;
 671	}
 672
 673	base = ioremap(ioaddr, io_size);
 674	if (!base) {
 675		dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
 676			io_size, ioaddr);
 677		goto err_out_free_res;
 678	}
 679
 680	pci_set_master(pdev);
 681
 682	/* enable MWI -- it vastly improves Rx performance on sparc64 */
 683	pci_try_set_mwi(pdev);
 684
 685#ifdef ZEROCOPY
 686	/* Starfire can do TCP/UDP checksumming */
 687	if (enable_hw_cksum)
 688		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
 689#endif /* ZEROCOPY */
 690
 691#ifdef VLAN_SUPPORT
 692	dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
 693#endif /* VLAN_RX_KILL_VID */
 694#ifdef ADDR_64BITS
 695	dev->features |= NETIF_F_HIGHDMA;
 696#endif /* ADDR_64BITS */
 697
 698	/* Serial EEPROM reads are hidden by the hardware. */
 699	for (i = 0; i < 6; i++)
 700		addr[i] = readb(base + EEPROMCtrl + 20 - i);
 701	eth_hw_addr_set(dev, addr);
 702
 703#if ! defined(final_version) /* Dump the EEPROM contents during development. */
 704	if (debug > 4)
 705		for (i = 0; i < 0x20; i++)
 706			printk("%2.2x%s",
 707			       (unsigned int)readb(base + EEPROMCtrl + i),
 708			       i % 16 != 15 ? " " : "\n");
 709#endif
 710
 711	/* Issue soft reset */
 712	writel(MiiSoftReset, base + TxMode);
 713	udelay(1000);
 714	writel(0, base + TxMode);
 715
 716	/* Reset the chip to erase previous misconfiguration. */
 717	writel(1, base + PCIDeviceConfig);
 718	boguscnt = 1000;
 719	while (--boguscnt > 0) {
 720		udelay(10);
 721		if ((readl(base + PCIDeviceConfig) & 1) == 0)
 722			break;
 723	}
 724	if (boguscnt == 0)
 725		printk("%s: chipset reset never completed!\n", dev->name);
 726	/* wait a little longer */
 727	udelay(1000);
 728
 729	np = netdev_priv(dev);
 730	np->dev = dev;
 731	np->base = base;
 732	spin_lock_init(&np->lock);
 733	pci_set_drvdata(pdev, dev);
 734
 735	np->pci_dev = pdev;
 736
 737	np->mii_if.dev = dev;
 738	np->mii_if.mdio_read = mdio_read;
 739	np->mii_if.mdio_write = mdio_write;
 740	np->mii_if.phy_id_mask = 0x1f;
 741	np->mii_if.reg_num_mask = 0x1f;
 742
 743	drv_flags = netdrv_tbl[chip_idx].drv_flags;
 744
 745	np->speed100 = 1;
 746
 747	/* timer resolution is 128 * 0.8us */
 748	np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
 749		Timer10X | EnableIntrMasking;
 750
 751	if (small_frames > 0) {
 752		np->intr_timer_ctrl |= SmallFrameBypass;
 753		switch (small_frames) {
 754		case 1 ... 64:
 755			np->intr_timer_ctrl |= SmallFrame64;
 756			break;
 757		case 65 ... 128:
 758			np->intr_timer_ctrl |= SmallFrame128;
 759			break;
 760		case 129 ... 256:
 761			np->intr_timer_ctrl |= SmallFrame256;
 762			break;
 763		default:
 764			np->intr_timer_ctrl |= SmallFrame512;
 765			if (small_frames > 512)
 766				printk("Adjusting small_frames down to 512\n");
 767			break;
 768		}
 769	}
 770
 771	dev->netdev_ops = &netdev_ops;
 772	dev->watchdog_timeo = TX_TIMEOUT;
 773	dev->ethtool_ops = &ethtool_ops;
 774
 775	netif_napi_add_weight(dev, &np->napi, netdev_poll, max_interrupt_work);
 776
 777	if (mtu)
 778		dev->mtu = mtu;
 779
 780	if (register_netdev(dev))
 781		goto err_out_cleardev;
 782
 783	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
 784	       dev->name, netdrv_tbl[chip_idx].name, base,
 785	       dev->dev_addr, irq);
 786
 787	if (drv_flags & CanHaveMII) {
 788		int phy, phy_idx = 0;
 789		int mii_status;
 790		for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
 791			mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
 792			msleep(100);
 793			boguscnt = 1000;
 794			while (--boguscnt > 0)
 795				if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
 796					break;
 797			if (boguscnt == 0) {
 798				printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
 799				continue;
 800			}
 801			mii_status = mdio_read(dev, phy, MII_BMSR);
 802			if (mii_status != 0) {
 803				np->phys[phy_idx++] = phy;
 804				np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
 805				printk(KERN_INFO "%s: MII PHY found at address %d, status "
 806					   "%#4.4x advertising %#4.4x.\n",
 807					   dev->name, phy, mii_status, np->mii_if.advertising);
 808				/* there can be only one PHY on-board */
 809				break;
 810			}
 811		}
 812		np->phy_cnt = phy_idx;
 813		if (np->phy_cnt > 0)
 814			np->mii_if.phy_id = np->phys[0];
 815		else
 816			memset(&np->mii_if, 0, sizeof(np->mii_if));
 817	}
 818
 819	printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
 820	       dev->name, enable_hw_cksum ? "enabled" : "disabled");
 821	return 0;
 822
 823err_out_cleardev:
 
 824	iounmap(base);
 825err_out_free_res:
 826	pci_release_regions (pdev);
 827err_out_free_netdev:
 828	free_netdev(dev);
 829	return -ENODEV;
 830}
 831
 832
 833/* Read the MII Management Data I/O (MDIO) interfaces. */
 834static int mdio_read(struct net_device *dev, int phy_id, int location)
 835{
 836	struct netdev_private *np = netdev_priv(dev);
 837	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
 838	int result, boguscnt=1000;
 839	/* ??? Should we add a busy-wait here? */
 840	do {
 841		result = readl(mdio_addr);
 842	} while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
 843	if (boguscnt == 0)
 844		return 0;
 845	if ((result & 0xffff) == 0xffff)
 846		return 0;
 847	return result & 0xffff;
 848}
 849
 850
 851static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
 852{
 853	struct netdev_private *np = netdev_priv(dev);
 854	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
 855	writel(value, mdio_addr);
 856	/* The busy-wait will occur before a read. */
 857}
 858
 859
 860static int netdev_open(struct net_device *dev)
 861{
 862	const struct firmware *fw_rx, *fw_tx;
 863	const __be32 *fw_rx_data, *fw_tx_data;
 864	struct netdev_private *np = netdev_priv(dev);
 865	void __iomem *ioaddr = np->base;
 866	const int irq = np->pci_dev->irq;
 867	int i, retval;
 868	size_t tx_size, rx_size;
 869	size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
 870
 871	/* Do we ever need to reset the chip??? */
 872
 873	retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
 874	if (retval)
 875		return retval;
 876
 877	/* Disable the Rx and Tx, and reset the chip. */
 878	writel(0, ioaddr + GenCtrl);
 879	writel(1, ioaddr + PCIDeviceConfig);
 880	if (debug > 1)
 881		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
 882		       dev->name, irq);
 883
 884	/* Allocate the various queues. */
 885	if (!np->queue_mem) {
 886		tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
 887		rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
 888		tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
 889		rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
 890		np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
 891		np->queue_mem = dma_alloc_coherent(&np->pci_dev->dev,
 892						   np->queue_mem_size,
 893						   &np->queue_mem_dma, GFP_ATOMIC);
 894		if (np->queue_mem == NULL) {
 895			free_irq(irq, dev);
 896			return -ENOMEM;
 897		}
 898
 899		np->tx_done_q     = np->queue_mem;
 900		np->tx_done_q_dma = np->queue_mem_dma;
 901		np->rx_done_q     = (void *) np->tx_done_q + tx_done_q_size;
 902		np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
 903		np->tx_ring       = (void *) np->rx_done_q + rx_done_q_size;
 904		np->tx_ring_dma   = np->rx_done_q_dma + rx_done_q_size;
 905		np->rx_ring       = (void *) np->tx_ring + tx_ring_size;
 906		np->rx_ring_dma   = np->tx_ring_dma + tx_ring_size;
 907	}
 908
 909	/* Start with no carrier, it gets adjusted later */
 910	netif_carrier_off(dev);
 911	init_ring(dev);
 912	/* Set the size of the Rx buffers. */
 913	writel((np->rx_buf_sz << RxBufferLenShift) |
 914	       (0 << RxMinDescrThreshShift) |
 915	       RxPrefetchMode | RxVariableQ |
 916	       RX_Q_ENTRIES |
 917	       RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
 918	       RxDescSpace4,
 919	       ioaddr + RxDescQCtrl);
 920
 921	/* Set up the Rx DMA controller. */
 922	writel(RxChecksumIgnore |
 923	       (0 << RxEarlyIntThreshShift) |
 924	       (6 << RxHighPrioThreshShift) |
 925	       ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
 926	       ioaddr + RxDMACtrl);
 927
 928	/* Set Tx descriptor */
 929	writel((2 << TxHiPriFIFOThreshShift) |
 930	       (0 << TxPadLenShift) |
 931	       ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
 932	       TX_DESC_Q_ADDR_SIZE |
 933	       TX_DESC_SPACING | TX_DESC_TYPE,
 934	       ioaddr + TxDescCtrl);
 935
 936	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
 937	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
 938	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
 939	writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
 940	writel(np->tx_ring_dma, ioaddr + TxRingPtr);
 941
 942	writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
 943	writel(np->rx_done_q_dma |
 944	       RxComplType |
 945	       (0 << RxComplThreshShift),
 946	       ioaddr + RxCompletionAddr);
 947
 948	if (debug > 1)
 949		printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
 950
 951	/* Fill both the Tx SA register and the Rx perfect filter. */
 952	for (i = 0; i < 6; i++)
 953		writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
 954	/* The first entry is special because it bypasses the VLAN filter.
 955	   Don't use it. */
 956	writew(0, ioaddr + PerfFilterTable);
 957	writew(0, ioaddr + PerfFilterTable + 4);
 958	writew(0, ioaddr + PerfFilterTable + 8);
 959	for (i = 1; i < 16; i++) {
 960		const __be16 *eaddrs = (const __be16 *)dev->dev_addr;
 961		void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
 962		writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
 963		writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
 964		writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
 965	}
 966
 967	/* Initialize other registers. */
 968	/* Configure the PCI bus bursts and FIFO thresholds. */
 969	np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable;	/* modified when link is up. */
 970	writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
 971	udelay(1000);
 972	writel(np->tx_mode, ioaddr + TxMode);
 973	np->tx_threshold = 4;
 974	writel(np->tx_threshold, ioaddr + TxThreshold);
 975
 976	writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
 977
 978	napi_enable(&np->napi);
 979
 980	netif_start_queue(dev);
 981
 982	if (debug > 1)
 983		printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
 984	set_rx_mode(dev);
 985
 986	np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
 987	check_duplex(dev);
 988
 989	/* Enable GPIO interrupts on link change */
 990	writel(0x0f00ff00, ioaddr + GPIOCtrl);
 991
 992	/* Set the interrupt mask */
 993	writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
 994	       IntrTxDMADone | IntrStatsMax | IntrLinkChange |
 995	       IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
 996	       ioaddr + IntrEnable);
 997	/* Enable PCI interrupts. */
 998	writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
 999	       ioaddr + PCIDeviceConfig);
1000
1001#ifdef VLAN_SUPPORT
1002	/* Set VLAN type to 802.1q */
1003	writel(ETH_P_8021Q, ioaddr + VlanType);
1004#endif /* VLAN_SUPPORT */
1005
1006	retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1007	if (retval) {
1008		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1009		       FIRMWARE_RX);
1010		goto out_init;
1011	}
1012	if (fw_rx->size % 4) {
1013		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1014		       fw_rx->size, FIRMWARE_RX);
1015		retval = -EINVAL;
1016		goto out_rx;
1017	}
1018	retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1019	if (retval) {
1020		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1021		       FIRMWARE_TX);
1022		goto out_rx;
1023	}
1024	if (fw_tx->size % 4) {
1025		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1026		       fw_tx->size, FIRMWARE_TX);
1027		retval = -EINVAL;
1028		goto out_tx;
1029	}
1030	fw_rx_data = (const __be32 *)&fw_rx->data[0];
1031	fw_tx_data = (const __be32 *)&fw_tx->data[0];
1032	rx_size = fw_rx->size / 4;
1033	tx_size = fw_tx->size / 4;
1034
1035	/* Load Rx/Tx firmware into the frame processors */
1036	for (i = 0; i < rx_size; i++)
1037		writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1038	for (i = 0; i < tx_size; i++)
1039		writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1040	if (enable_hw_cksum)
1041		/* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1042		writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1043	else
1044		/* Enable the Rx and Tx units only. */
1045		writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1046
1047	if (debug > 1)
1048		printk(KERN_DEBUG "%s: Done netdev_open().\n",
1049		       dev->name);
1050
1051out_tx:
1052	release_firmware(fw_tx);
1053out_rx:
1054	release_firmware(fw_rx);
1055out_init:
1056	if (retval)
1057		netdev_close(dev);
1058	return retval;
1059}
1060
1061
1062static void check_duplex(struct net_device *dev)
1063{
1064	struct netdev_private *np = netdev_priv(dev);
1065	u16 reg0;
1066	int silly_count = 1000;
1067
1068	mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1069	mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1070	udelay(500);
1071	while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1072		/* do nothing */;
1073	if (!silly_count) {
1074		printk("%s: MII reset failed!\n", dev->name);
1075		return;
1076	}
1077
1078	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1079
1080	if (!np->mii_if.force_media) {
1081		reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1082	} else {
1083		reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1084		if (np->speed100)
1085			reg0 |= BMCR_SPEED100;
1086		if (np->mii_if.full_duplex)
1087			reg0 |= BMCR_FULLDPLX;
1088		printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1089		       dev->name,
1090		       np->speed100 ? "100" : "10",
1091		       np->mii_if.full_duplex ? "full" : "half");
1092	}
1093	mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1094}
1095
1096
1097static void tx_timeout(struct net_device *dev, unsigned int txqueue)
1098{
1099	struct netdev_private *np = netdev_priv(dev);
1100	void __iomem *ioaddr = np->base;
1101	int old_debug;
1102
1103	printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1104	       "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1105
1106	/* Perhaps we should reinitialize the hardware here. */
1107
1108	/*
1109	 * Stop and restart the interface.
1110	 * Cheat and increase the debug level temporarily.
1111	 */
1112	old_debug = debug;
1113	debug = 2;
1114	netdev_close(dev);
1115	netdev_open(dev);
1116	debug = old_debug;
1117
1118	/* Trigger an immediate transmit demand. */
1119
1120	netif_trans_update(dev); /* prevent tx timeout */
1121	dev->stats.tx_errors++;
1122	netif_wake_queue(dev);
1123}
1124
1125
1126/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1127static void init_ring(struct net_device *dev)
1128{
1129	struct netdev_private *np = netdev_priv(dev);
1130	int i;
1131
1132	np->cur_rx = np->cur_tx = np->reap_tx = 0;
1133	np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1134
1135	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1136
1137	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
1138	for (i = 0; i < RX_RING_SIZE; i++) {
1139		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1140		np->rx_info[i].skb = skb;
1141		if (skb == NULL)
1142			break;
1143		np->rx_info[i].mapping = dma_map_single(&np->pci_dev->dev,
1144							skb->data,
1145							np->rx_buf_sz,
1146							DMA_FROM_DEVICE);
1147		if (dma_mapping_error(&np->pci_dev->dev, np->rx_info[i].mapping)) {
1148			dev_kfree_skb(skb);
1149			np->rx_info[i].skb = NULL;
1150			break;
1151		}
1152		/* Grrr, we cannot offset to correctly align the IP header. */
1153		np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1154	}
1155	writew(i - 1, np->base + RxDescQIdx);
1156	np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1157
1158	/* Clear the remainder of the Rx buffer ring. */
1159	for (  ; i < RX_RING_SIZE; i++) {
1160		np->rx_ring[i].rxaddr = 0;
1161		np->rx_info[i].skb = NULL;
1162		np->rx_info[i].mapping = 0;
1163	}
1164	/* Mark the last entry as wrapping the ring. */
1165	np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1166
1167	/* Clear the completion rings. */
1168	for (i = 0; i < DONE_Q_SIZE; i++) {
1169		np->rx_done_q[i].status = 0;
1170		np->tx_done_q[i].status = 0;
1171	}
1172
1173	for (i = 0; i < TX_RING_SIZE; i++)
1174		memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1175}
1176
1177
1178static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1179{
1180	struct netdev_private *np = netdev_priv(dev);
1181	unsigned int entry;
1182	unsigned int prev_tx;
1183	u32 status;
1184	int i, j;
1185
1186	/*
1187	 * be cautious here, wrapping the queue has weird semantics
1188	 * and we may not have enough slots even when it seems we do.
1189	 */
1190	if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1191		netif_stop_queue(dev);
1192		return NETDEV_TX_BUSY;
1193	}
1194
1195#if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1196	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1197		if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1198			return NETDEV_TX_OK;
1199	}
1200#endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1201
1202	prev_tx = np->cur_tx;
1203	entry = np->cur_tx % TX_RING_SIZE;
1204	for (i = 0; i < skb_num_frags(skb); i++) {
1205		int wrap_ring = 0;
1206		status = TxDescID;
1207
1208		if (i == 0) {
1209			np->tx_info[entry].skb = skb;
1210			status |= TxCRCEn;
1211			if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1212				status |= TxRingWrap;
1213				wrap_ring = 1;
1214			}
1215			if (np->reap_tx) {
1216				status |= TxDescIntr;
1217				np->reap_tx = 0;
1218			}
1219			if (skb->ip_summed == CHECKSUM_PARTIAL) {
1220				status |= TxCalTCP;
1221				dev->stats.tx_compressed++;
1222			}
1223			status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1224
1225			np->tx_info[entry].mapping =
1226				dma_map_single(&np->pci_dev->dev, skb->data,
1227					       skb_first_frag_len(skb),
1228					       DMA_TO_DEVICE);
1229		} else {
1230			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1231			status |= skb_frag_size(this_frag);
1232			np->tx_info[entry].mapping =
1233				dma_map_single(&np->pci_dev->dev,
1234					       skb_frag_address(this_frag),
1235					       skb_frag_size(this_frag),
1236					       DMA_TO_DEVICE);
1237		}
1238		if (dma_mapping_error(&np->pci_dev->dev, np->tx_info[entry].mapping)) {
1239			dev->stats.tx_dropped++;
1240			goto err_out;
1241		}
1242
1243		np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1244		np->tx_ring[entry].status = cpu_to_le32(status);
1245		if (debug > 3)
1246			printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1247			       dev->name, np->cur_tx, np->dirty_tx,
1248			       entry, status);
1249		if (wrap_ring) {
1250			np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1251			np->cur_tx += np->tx_info[entry].used_slots;
1252			entry = 0;
1253		} else {
1254			np->tx_info[entry].used_slots = 1;
1255			np->cur_tx += np->tx_info[entry].used_slots;
1256			entry++;
1257		}
1258		/* scavenge the tx descriptors twice per TX_RING_SIZE */
1259		if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1260			np->reap_tx = 1;
1261	}
1262
1263	/* Non-x86: explicitly flush descriptor cache lines here. */
1264	/* Ensure all descriptors are written back before the transmit is
1265	   initiated. - Jes */
1266	wmb();
1267
1268	/* Update the producer index. */
1269	writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1270
1271	/* 4 is arbitrary, but should be ok */
1272	if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1273		netif_stop_queue(dev);
1274
1275	return NETDEV_TX_OK;
1276
1277err_out:
1278	entry = prev_tx % TX_RING_SIZE;
1279	np->tx_info[entry].skb = NULL;
1280	if (i > 0) {
1281		dma_unmap_single(&np->pci_dev->dev,
1282				 np->tx_info[entry].mapping,
1283				 skb_first_frag_len(skb), DMA_TO_DEVICE);
1284		np->tx_info[entry].mapping = 0;
1285		entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1286		for (j = 1; j < i; j++) {
1287			dma_unmap_single(&np->pci_dev->dev,
1288					 np->tx_info[entry].mapping,
1289					 skb_frag_size(&skb_shinfo(skb)->frags[j - 1]),
1290					 DMA_TO_DEVICE);
1291			entry++;
1292		}
1293	}
1294	dev_kfree_skb_any(skb);
1295	np->cur_tx = prev_tx;
1296	return NETDEV_TX_OK;
1297}
1298
 
1299/* The interrupt handler does all of the Rx thread work and cleans up
1300   after the Tx thread. */
1301static irqreturn_t intr_handler(int irq, void *dev_instance)
1302{
1303	struct net_device *dev = dev_instance;
1304	struct netdev_private *np = netdev_priv(dev);
1305	void __iomem *ioaddr = np->base;
1306	int boguscnt = max_interrupt_work;
1307	int consumer;
1308	int tx_status;
1309	int handled = 0;
1310
1311	do {
1312		u32 intr_status = readl(ioaddr + IntrClear);
1313
1314		if (debug > 4)
1315			printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1316			       dev->name, intr_status);
1317
1318		if (intr_status == 0 || intr_status == (u32) -1)
1319			break;
1320
1321		handled = 1;
1322
1323		if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1324			u32 enable;
1325
1326			if (likely(napi_schedule_prep(&np->napi))) {
1327				__napi_schedule(&np->napi);
1328				enable = readl(ioaddr + IntrEnable);
1329				enable &= ~(IntrRxDone | IntrRxEmpty);
1330				writel(enable, ioaddr + IntrEnable);
1331				/* flush PCI posting buffers */
1332				readl(ioaddr + IntrEnable);
1333			} else {
1334				/* Paranoia check */
1335				enable = readl(ioaddr + IntrEnable);
1336				if (enable & (IntrRxDone | IntrRxEmpty)) {
1337					printk(KERN_INFO
1338					       "%s: interrupt while in poll!\n",
1339					       dev->name);
1340					enable &= ~(IntrRxDone | IntrRxEmpty);
1341					writel(enable, ioaddr + IntrEnable);
1342				}
1343			}
1344		}
1345
1346		/* Scavenge the skbuff list based on the Tx-done queue.
1347		   There are redundant checks here that may be cleaned up
1348		   after the driver has proven to be reliable. */
1349		consumer = readl(ioaddr + TxConsumerIdx);
1350		if (debug > 3)
1351			printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1352			       dev->name, consumer);
1353
1354		while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1355			if (debug > 3)
1356				printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1357				       dev->name, np->dirty_tx, np->tx_done, tx_status);
1358			if ((tx_status & 0xe0000000) == 0xa0000000) {
1359				dev->stats.tx_packets++;
1360			} else if ((tx_status & 0xe0000000) == 0x80000000) {
1361				u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1362				struct sk_buff *skb = np->tx_info[entry].skb;
1363				np->tx_info[entry].skb = NULL;
1364				dma_unmap_single(&np->pci_dev->dev,
1365						 np->tx_info[entry].mapping,
1366						 skb_first_frag_len(skb),
1367						 DMA_TO_DEVICE);
1368				np->tx_info[entry].mapping = 0;
1369				np->dirty_tx += np->tx_info[entry].used_slots;
1370				entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1371				{
1372					int i;
1373					for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1374						dma_unmap_single(&np->pci_dev->dev,
1375								 np->tx_info[entry].mapping,
1376								 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1377								 DMA_TO_DEVICE);
1378						np->dirty_tx++;
1379						entry++;
1380					}
1381				}
1382
1383				dev_consume_skb_irq(skb);
1384			}
1385			np->tx_done_q[np->tx_done].status = 0;
1386			np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1387		}
1388		writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1389
1390		if (netif_queue_stopped(dev) &&
1391		    (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1392			/* The ring is no longer full, wake the queue. */
1393			netif_wake_queue(dev);
1394		}
1395
1396		/* Stats overflow */
1397		if (intr_status & IntrStatsMax)
1398			get_stats(dev);
1399
1400		/* Media change interrupt. */
1401		if (intr_status & IntrLinkChange)
1402			netdev_media_change(dev);
1403
1404		/* Abnormal error summary/uncommon events handlers. */
1405		if (intr_status & IntrAbnormalSummary)
1406			netdev_error(dev, intr_status);
1407
1408		if (--boguscnt < 0) {
1409			if (debug > 1)
1410				printk(KERN_WARNING "%s: Too much work at interrupt, "
1411				       "status=%#8.8x.\n",
1412				       dev->name, intr_status);
1413			break;
1414		}
1415	} while (1);
1416
1417	if (debug > 4)
1418		printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1419		       dev->name, (int) readl(ioaddr + IntrStatus));
1420	return IRQ_RETVAL(handled);
1421}
1422
1423
1424/*
1425 * This routine is logically part of the interrupt/poll handler, but separated
1426 * for clarity and better register allocation.
1427 */
1428static int __netdev_rx(struct net_device *dev, int *quota)
1429{
1430	struct netdev_private *np = netdev_priv(dev);
1431	u32 desc_status;
1432	int retcode = 0;
1433
1434	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1435	while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1436		struct sk_buff *skb;
1437		u16 pkt_len;
1438		int entry;
1439		rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1440
1441		if (debug > 4)
1442			printk(KERN_DEBUG "  netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1443		if (!(desc_status & RxOK)) {
1444			/* There was an error. */
1445			if (debug > 2)
1446				printk(KERN_DEBUG "  netdev_rx() Rx error was %#8.8x.\n", desc_status);
1447			dev->stats.rx_errors++;
1448			if (desc_status & RxFIFOErr)
1449				dev->stats.rx_fifo_errors++;
1450			goto next_rx;
1451		}
1452
1453		if (*quota <= 0) {	/* out of rx quota */
1454			retcode = 1;
1455			goto out;
1456		}
1457		(*quota)--;
1458
1459		pkt_len = desc_status;	/* Implicitly Truncate */
1460		entry = (desc_status >> 16) & 0x7ff;
1461
1462		if (debug > 4)
1463			printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1464		/* Check if the packet is long enough to accept without copying
1465		   to a minimally-sized skbuff. */
1466		if (pkt_len < rx_copybreak &&
1467		    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1468			skb_reserve(skb, 2);	/* 16 byte align the IP header */
1469			dma_sync_single_for_cpu(&np->pci_dev->dev,
1470						np->rx_info[entry].mapping,
1471						pkt_len, DMA_FROM_DEVICE);
1472			skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1473			dma_sync_single_for_device(&np->pci_dev->dev,
1474						   np->rx_info[entry].mapping,
1475						   pkt_len, DMA_FROM_DEVICE);
1476			skb_put(skb, pkt_len);
1477		} else {
1478			dma_unmap_single(&np->pci_dev->dev,
1479					 np->rx_info[entry].mapping,
1480					 np->rx_buf_sz, DMA_FROM_DEVICE);
1481			skb = np->rx_info[entry].skb;
1482			skb_put(skb, pkt_len);
1483			np->rx_info[entry].skb = NULL;
1484			np->rx_info[entry].mapping = 0;
1485		}
1486#ifndef final_version			/* Remove after testing. */
1487		/* You will want this info for the initial debug. */
1488		if (debug > 5) {
1489			printk(KERN_DEBUG "  Rx data %pM %pM %2.2x%2.2x.\n",
1490			       skb->data, skb->data + 6,
1491			       skb->data[12], skb->data[13]);
1492		}
1493#endif
1494
1495		skb->protocol = eth_type_trans(skb, dev);
1496#ifdef VLAN_SUPPORT
1497		if (debug > 4)
1498			printk(KERN_DEBUG "  netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1499#endif
1500		if (le16_to_cpu(desc->status2) & 0x0100) {
1501			skb->ip_summed = CHECKSUM_UNNECESSARY;
1502			dev->stats.rx_compressed++;
1503		}
1504		/*
1505		 * This feature doesn't seem to be working, at least
1506		 * with the two firmware versions I have. If the GFP sees
1507		 * an IP fragment, it either ignores it completely, or reports
1508		 * "bad checksum" on it.
1509		 *
1510		 * Maybe I missed something -- corrections are welcome.
1511		 * Until then, the printk stays. :-) -Ion
1512		 */
1513		else if (le16_to_cpu(desc->status2) & 0x0040) {
1514			skb->ip_summed = CHECKSUM_COMPLETE;
1515			skb->csum = le16_to_cpu(desc->csum);
1516			printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1517		}
1518#ifdef VLAN_SUPPORT
1519		if (le16_to_cpu(desc->status2) & 0x0200) {
1520			u16 vlid = le16_to_cpu(desc->vlanid);
1521
1522			if (debug > 4) {
1523				printk(KERN_DEBUG "  netdev_rx() vlanid = %d\n",
1524				       vlid);
1525			}
1526			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid);
1527		}
1528#endif /* VLAN_SUPPORT */
1529		netif_receive_skb(skb);
1530		dev->stats.rx_packets++;
1531
1532	next_rx:
1533		np->cur_rx++;
1534		desc->status = 0;
1535		np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1536	}
1537
1538	if (*quota == 0) {	/* out of rx quota */
1539		retcode = 1;
1540		goto out;
1541	}
1542	writew(np->rx_done, np->base + CompletionQConsumerIdx);
1543
1544 out:
1545	refill_rx_ring(dev);
1546	if (debug > 5)
1547		printk(KERN_DEBUG "  exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1548		       retcode, np->rx_done, desc_status);
1549	return retcode;
1550}
1551
1552static int netdev_poll(struct napi_struct *napi, int budget)
1553{
1554	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1555	struct net_device *dev = np->dev;
1556	u32 intr_status;
1557	void __iomem *ioaddr = np->base;
1558	int quota = budget;
1559
1560	do {
1561		writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1562
1563		if (__netdev_rx(dev, &quota))
1564			goto out;
1565
1566		intr_status = readl(ioaddr + IntrStatus);
1567	} while (intr_status & (IntrRxDone | IntrRxEmpty));
1568
1569	napi_complete(napi);
1570	intr_status = readl(ioaddr + IntrEnable);
1571	intr_status |= IntrRxDone | IntrRxEmpty;
1572	writel(intr_status, ioaddr + IntrEnable);
1573
1574 out:
1575	if (debug > 5)
1576		printk(KERN_DEBUG "  exiting netdev_poll(): %d.\n",
1577		       budget - quota);
1578
1579	/* Restart Rx engine if stopped. */
1580	return budget - quota;
1581}
1582
1583static void refill_rx_ring(struct net_device *dev)
1584{
1585	struct netdev_private *np = netdev_priv(dev);
1586	struct sk_buff *skb;
1587	int entry = -1;
1588
1589	/* Refill the Rx ring buffers. */
1590	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1591		entry = np->dirty_rx % RX_RING_SIZE;
1592		if (np->rx_info[entry].skb == NULL) {
1593			skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1594			np->rx_info[entry].skb = skb;
1595			if (skb == NULL)
1596				break;	/* Better luck next round. */
1597			np->rx_info[entry].mapping =
1598				dma_map_single(&np->pci_dev->dev, skb->data,
1599					       np->rx_buf_sz, DMA_FROM_DEVICE);
1600			if (dma_mapping_error(&np->pci_dev->dev, np->rx_info[entry].mapping)) {
1601				dev_kfree_skb(skb);
1602				np->rx_info[entry].skb = NULL;
1603				break;
1604			}
1605			np->rx_ring[entry].rxaddr =
1606				cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1607		}
1608		if (entry == RX_RING_SIZE - 1)
1609			np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1610	}
1611	if (entry >= 0)
1612		writew(entry, np->base + RxDescQIdx);
1613}
1614
1615
1616static void netdev_media_change(struct net_device *dev)
1617{
1618	struct netdev_private *np = netdev_priv(dev);
1619	void __iomem *ioaddr = np->base;
1620	u16 reg0, reg1, reg4, reg5;
1621	u32 new_tx_mode;
1622	u32 new_intr_timer_ctrl;
1623
1624	/* reset status first */
1625	mdio_read(dev, np->phys[0], MII_BMCR);
1626	mdio_read(dev, np->phys[0], MII_BMSR);
1627
1628	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1629	reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1630
1631	if (reg1 & BMSR_LSTATUS) {
1632		/* link is up */
1633		if (reg0 & BMCR_ANENABLE) {
1634			/* autonegotiation is enabled */
1635			reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1636			reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1637			if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1638				np->speed100 = 1;
1639				np->mii_if.full_duplex = 1;
1640			} else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1641				np->speed100 = 1;
1642				np->mii_if.full_duplex = 0;
1643			} else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1644				np->speed100 = 0;
1645				np->mii_if.full_duplex = 1;
1646			} else {
1647				np->speed100 = 0;
1648				np->mii_if.full_duplex = 0;
1649			}
1650		} else {
1651			/* autonegotiation is disabled */
1652			if (reg0 & BMCR_SPEED100)
1653				np->speed100 = 1;
1654			else
1655				np->speed100 = 0;
1656			if (reg0 & BMCR_FULLDPLX)
1657				np->mii_if.full_duplex = 1;
1658			else
1659				np->mii_if.full_duplex = 0;
1660		}
1661		netif_carrier_on(dev);
1662		printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1663		       dev->name,
1664		       np->speed100 ? "100" : "10",
1665		       np->mii_if.full_duplex ? "full" : "half");
1666
1667		new_tx_mode = np->tx_mode & ~FullDuplex;	/* duplex setting */
1668		if (np->mii_if.full_duplex)
1669			new_tx_mode |= FullDuplex;
1670		if (np->tx_mode != new_tx_mode) {
1671			np->tx_mode = new_tx_mode;
1672			writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1673			udelay(1000);
1674			writel(np->tx_mode, ioaddr + TxMode);
1675		}
1676
1677		new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1678		if (np->speed100)
1679			new_intr_timer_ctrl |= Timer10X;
1680		if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1681			np->intr_timer_ctrl = new_intr_timer_ctrl;
1682			writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1683		}
1684	} else {
1685		netif_carrier_off(dev);
1686		printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1687	}
1688}
1689
1690
1691static void netdev_error(struct net_device *dev, int intr_status)
1692{
1693	struct netdev_private *np = netdev_priv(dev);
1694
1695	/* Came close to underrunning the Tx FIFO, increase threshold. */
1696	if (intr_status & IntrTxDataLow) {
1697		if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1698			writel(++np->tx_threshold, np->base + TxThreshold);
1699			printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1700			       dev->name, np->tx_threshold * 16);
1701		} else
1702			printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1703	}
1704	if (intr_status & IntrRxGFPDead) {
1705		dev->stats.rx_fifo_errors++;
1706		dev->stats.rx_errors++;
1707	}
1708	if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1709		dev->stats.tx_fifo_errors++;
1710		dev->stats.tx_errors++;
1711	}
1712	if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1713		printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1714		       dev->name, intr_status);
1715}
1716
1717
1718static struct net_device_stats *get_stats(struct net_device *dev)
1719{
1720	struct netdev_private *np = netdev_priv(dev);
1721	void __iomem *ioaddr = np->base;
1722
1723	/* This adapter architecture needs no SMP locks. */
1724	dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1725	dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1726	dev->stats.tx_packets = readl(ioaddr + 0x57000);
1727	dev->stats.tx_aborted_errors =
1728		readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1729	dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1730	dev->stats.collisions =
1731		readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1732
1733	/* The chip only need report frame silently dropped. */
1734	dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1735	writew(0, ioaddr + RxDMAStatus);
1736	dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1737	dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1738	dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1739	dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1740
1741	return &dev->stats;
1742}
1743
1744#ifdef VLAN_SUPPORT
1745static u32 set_vlan_mode(struct netdev_private *np)
1746{
1747	u32 ret = VlanMode;
1748	u16 vid;
1749	void __iomem *filter_addr = np->base + HashTable + 8;
1750	int vlan_count = 0;
1751
1752	for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1753		if (vlan_count == 32)
1754			break;
1755		writew(vid, filter_addr);
1756		filter_addr += 16;
1757		vlan_count++;
1758	}
1759	if (vlan_count == 32) {
1760		ret |= PerfectFilterVlan;
1761		while (vlan_count < 32) {
1762			writew(0, filter_addr);
1763			filter_addr += 16;
1764			vlan_count++;
1765		}
1766	}
1767	return ret;
1768}
1769#endif /* VLAN_SUPPORT */
1770
1771static void set_rx_mode(struct net_device *dev)
1772{
1773	struct netdev_private *np = netdev_priv(dev);
1774	void __iomem *ioaddr = np->base;
1775	u32 rx_mode = MinVLANPrio;
1776	struct netdev_hw_addr *ha;
1777	int i;
1778
1779#ifdef VLAN_SUPPORT
1780	rx_mode |= set_vlan_mode(np);
1781#endif /* VLAN_SUPPORT */
1782
1783	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1784		rx_mode |= AcceptAll;
1785	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1786		   (dev->flags & IFF_ALLMULTI)) {
1787		/* Too many to match, or accept all multicasts. */
1788		rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1789	} else if (netdev_mc_count(dev) <= 14) {
1790		/* Use the 16 element perfect filter, skip first two entries. */
1791		void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1792		const __be16 *eaddrs;
1793		netdev_for_each_mc_addr(ha, dev) {
1794			eaddrs = (__be16 *) ha->addr;
1795			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1796			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1797			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1798		}
1799		eaddrs = (const __be16 *)dev->dev_addr;
1800		i = netdev_mc_count(dev) + 2;
1801		while (i++ < 16) {
1802			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1803			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1804			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1805		}
1806		rx_mode |= AcceptBroadcast|PerfectFilter;
1807	} else {
1808		/* Must use a multicast hash table. */
1809		void __iomem *filter_addr;
1810		const __be16 *eaddrs;
1811		__le16 mc_filter[32] __attribute__ ((aligned(sizeof(long))));	/* Multicast hash filter */
1812
1813		memset(mc_filter, 0, sizeof(mc_filter));
1814		netdev_for_each_mc_addr(ha, dev) {
1815			/* The chip uses the upper 9 CRC bits
1816			   as index into the hash table */
1817			int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1818			__le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1819
1820			*fptr |= cpu_to_le32(1 << (bit_nr & 31));
1821		}
1822		/* Clear the perfect filter list, skip first two entries. */
1823		filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1824		eaddrs = (const __be16 *)dev->dev_addr;
1825		for (i = 2; i < 16; i++) {
1826			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1827			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1828			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1829		}
1830		for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1831			writew(mc_filter[i], filter_addr);
1832		rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1833	}
1834	writel(rx_mode, ioaddr + RxFilterMode);
1835}
1836
1837static int check_if_running(struct net_device *dev)
1838{
1839	if (!netif_running(dev))
1840		return -EINVAL;
1841	return 0;
1842}
1843
1844static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1845{
1846	struct netdev_private *np = netdev_priv(dev);
1847	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1848	strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
 
1849}
1850
1851static int get_link_ksettings(struct net_device *dev,
1852			      struct ethtool_link_ksettings *cmd)
1853{
1854	struct netdev_private *np = netdev_priv(dev);
1855	spin_lock_irq(&np->lock);
1856	mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1857	spin_unlock_irq(&np->lock);
1858	return 0;
1859}
1860
1861static int set_link_ksettings(struct net_device *dev,
1862			      const struct ethtool_link_ksettings *cmd)
1863{
1864	struct netdev_private *np = netdev_priv(dev);
1865	int res;
1866	spin_lock_irq(&np->lock);
1867	res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1868	spin_unlock_irq(&np->lock);
1869	check_duplex(dev);
1870	return res;
1871}
1872
1873static int nway_reset(struct net_device *dev)
1874{
1875	struct netdev_private *np = netdev_priv(dev);
1876	return mii_nway_restart(&np->mii_if);
1877}
1878
1879static u32 get_link(struct net_device *dev)
1880{
1881	struct netdev_private *np = netdev_priv(dev);
1882	return mii_link_ok(&np->mii_if);
1883}
1884
1885static u32 get_msglevel(struct net_device *dev)
1886{
1887	return debug;
1888}
1889
1890static void set_msglevel(struct net_device *dev, u32 val)
1891{
1892	debug = val;
1893}
1894
1895static const struct ethtool_ops ethtool_ops = {
1896	.begin = check_if_running,
1897	.get_drvinfo = get_drvinfo,
 
 
1898	.nway_reset = nway_reset,
1899	.get_link = get_link,
1900	.get_msglevel = get_msglevel,
1901	.set_msglevel = set_msglevel,
1902	.get_link_ksettings = get_link_ksettings,
1903	.set_link_ksettings = set_link_ksettings,
1904};
1905
1906static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1907{
1908	struct netdev_private *np = netdev_priv(dev);
1909	struct mii_ioctl_data *data = if_mii(rq);
1910	int rc;
1911
1912	if (!netif_running(dev))
1913		return -EINVAL;
1914
1915	spin_lock_irq(&np->lock);
1916	rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1917	spin_unlock_irq(&np->lock);
1918
1919	if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1920		check_duplex(dev);
1921
1922	return rc;
1923}
1924
1925static int netdev_close(struct net_device *dev)
1926{
1927	struct netdev_private *np = netdev_priv(dev);
1928	void __iomem *ioaddr = np->base;
1929	int i;
1930
1931	netif_stop_queue(dev);
1932
1933	napi_disable(&np->napi);
1934
1935	if (debug > 1) {
1936		printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1937			   dev->name, (int) readl(ioaddr + IntrStatus));
1938		printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1939		       dev->name, np->cur_tx, np->dirty_tx,
1940		       np->cur_rx, np->dirty_rx);
1941	}
1942
1943	/* Disable interrupts by clearing the interrupt mask. */
1944	writel(0, ioaddr + IntrEnable);
1945
1946	/* Stop the chip's Tx and Rx processes. */
1947	writel(0, ioaddr + GenCtrl);
1948	readl(ioaddr + GenCtrl);
1949
1950	if (debug > 5) {
1951		printk(KERN_DEBUG"  Tx ring at %#llx:\n",
1952		       (long long) np->tx_ring_dma);
1953		for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1954			printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1955			       i, le32_to_cpu(np->tx_ring[i].status),
1956			       (long long) dma_to_cpu(np->tx_ring[i].addr),
1957			       le32_to_cpu(np->tx_done_q[i].status));
1958		printk(KERN_DEBUG "  Rx ring at %#llx -> %p:\n",
1959		       (long long) np->rx_ring_dma, np->rx_done_q);
1960		if (np->rx_done_q)
1961			for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1962				printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1963				       i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1964		}
1965	}
1966
1967	free_irq(np->pci_dev->irq, dev);
1968
1969	/* Free all the skbuffs in the Rx queue. */
1970	for (i = 0; i < RX_RING_SIZE; i++) {
1971		np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1972		if (np->rx_info[i].skb != NULL) {
1973			dma_unmap_single(&np->pci_dev->dev,
1974					 np->rx_info[i].mapping,
1975					 np->rx_buf_sz, DMA_FROM_DEVICE);
1976			dev_kfree_skb(np->rx_info[i].skb);
1977		}
1978		np->rx_info[i].skb = NULL;
1979		np->rx_info[i].mapping = 0;
1980	}
1981	for (i = 0; i < TX_RING_SIZE; i++) {
1982		struct sk_buff *skb = np->tx_info[i].skb;
1983		if (skb == NULL)
1984			continue;
1985		dma_unmap_single(&np->pci_dev->dev, np->tx_info[i].mapping,
1986				 skb_first_frag_len(skb), DMA_TO_DEVICE);
 
1987		np->tx_info[i].mapping = 0;
1988		dev_kfree_skb(skb);
1989		np->tx_info[i].skb = NULL;
1990	}
1991
1992	return 0;
1993}
1994
1995static int __maybe_unused starfire_suspend(struct device *dev_d)
 
1996{
1997	struct net_device *dev = dev_get_drvdata(dev_d);
1998
1999	if (netif_running(dev)) {
2000		netif_device_detach(dev);
2001		netdev_close(dev);
2002	}
2003
 
 
 
2004	return 0;
2005}
2006
2007static int __maybe_unused starfire_resume(struct device *dev_d)
2008{
2009	struct net_device *dev = dev_get_drvdata(dev_d);
 
 
 
2010
2011	if (netif_running(dev)) {
2012		netdev_open(dev);
2013		netif_device_attach(dev);
2014	}
2015
2016	return 0;
2017}
 
2018
2019static void starfire_remove_one(struct pci_dev *pdev)
 
2020{
2021	struct net_device *dev = pci_get_drvdata(pdev);
2022	struct netdev_private *np = netdev_priv(dev);
2023
2024	BUG_ON(!dev);
2025
2026	unregister_netdev(dev);
2027
2028	if (np->queue_mem)
2029		dma_free_coherent(&pdev->dev, np->queue_mem_size,
2030				  np->queue_mem, np->queue_mem_dma);
2031
2032
2033	/* XXX: add wakeup code -- requires firmware for MagicPacket */
2034	pci_set_power_state(pdev, PCI_D3hot);	/* go to sleep in D3 mode */
2035	pci_disable_device(pdev);
2036
2037	iounmap(np->base);
2038	pci_release_regions(pdev);
2039
 
2040	free_netdev(dev);			/* Will also free np!! */
2041}
2042
2043static SIMPLE_DEV_PM_OPS(starfire_pm_ops, starfire_suspend, starfire_resume);
2044
2045static struct pci_driver starfire_driver = {
2046	.name		= DRV_NAME,
2047	.probe		= starfire_init_one,
2048	.remove		= starfire_remove_one,
2049	.driver.pm	= &starfire_pm_ops,
 
 
 
2050	.id_table	= starfire_pci_tbl,
2051};
2052
2053
2054static int __init starfire_init (void)
2055{
2056/* when a module, this is printed whether or not devices are found in probe */
2057#ifdef MODULE
 
 
2058	printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2059#endif
2060
2061	BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2062
2063	return pci_register_driver(&starfire_driver);
2064}
2065
2066
2067static void __exit starfire_cleanup (void)
2068{
2069	pci_unregister_driver (&starfire_driver);
2070}
2071
2072
2073module_init(starfire_init);
2074module_exit(starfire_cleanup);
v3.5.6
   1/* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
   2/*
   3	Written 1998-2000 by Donald Becker.
   4
   5	Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
   6	send all bug reports to me, and not to Donald Becker, as this code
   7	has been heavily modified from Donald's original version.
   8
   9	This software may be used and distributed according to the terms of
  10	the GNU General Public License (GPL), incorporated herein by reference.
  11	Drivers based on or derived from this code fall under the GPL and must
  12	retain the authorship, copyright and license notice.  This file is not
  13	a complete program and may only be used when the entire operating
  14	system is licensed under the GPL.
  15
  16	The information below comes from Donald Becker's original driver:
  17
  18	The author may be reached as becker@scyld.com, or C/O
  19	Scyld Computing Corporation
  20	410 Severn Ave., Suite 210
  21	Annapolis MD 21403
  22
  23	Support and updates available at
  24	http://www.scyld.com/network/starfire.html
  25	[link no longer provides useful info -jgarzik]
  26
  27*/
  28
  29#define DRV_NAME	"starfire"
  30#define DRV_VERSION	"2.1"
  31#define DRV_RELDATE	"July  6, 2008"
  32
  33#include <linux/interrupt.h>
  34#include <linux/module.h>
  35#include <linux/kernel.h>
  36#include <linux/pci.h>
  37#include <linux/netdevice.h>
  38#include <linux/etherdevice.h>
  39#include <linux/init.h>
  40#include <linux/delay.h>
  41#include <linux/crc32.h>
  42#include <linux/ethtool.h>
  43#include <linux/mii.h>
  44#include <linux/if_vlan.h>
  45#include <linux/mm.h>
  46#include <linux/firmware.h>
  47#include <asm/processor.h>		/* Processor type for cache alignment. */
  48#include <asm/uaccess.h>
  49#include <asm/io.h>
  50
  51/*
  52 * The current frame processor firmware fails to checksum a fragment
  53 * of length 1. If and when this is fixed, the #define below can be removed.
  54 */
  55#define HAS_BROKEN_FIRMWARE
  56
  57/*
  58 * If using the broken firmware, data must be padded to the next 32-bit boundary.
  59 */
  60#ifdef HAS_BROKEN_FIRMWARE
  61#define PADDING_MASK 3
  62#endif
  63
  64/*
  65 * Define this if using the driver with the zero-copy patch
  66 */
  67#define ZEROCOPY
  68
  69#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  70#define VLAN_SUPPORT
  71#endif
  72
  73/* The user-configurable values.
  74   These may be modified when a driver module is loaded.*/
  75
  76/* Used for tuning interrupt latency vs. overhead. */
  77static int intr_latency;
  78static int small_frames;
  79
  80static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
  81static int max_interrupt_work = 20;
  82static int mtu;
  83/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
  84   The Starfire has a 512 element hash table based on the Ethernet CRC. */
  85static const int multicast_filter_limit = 512;
  86/* Whether to do TCP/UDP checksums in hardware */
  87static int enable_hw_cksum = 1;
  88
  89#define PKT_BUF_SZ	1536		/* Size of each temporary Rx buffer.*/
  90/*
  91 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
  92 * Setting to > 1518 effectively disables this feature.
  93 *
  94 * NOTE:
  95 * The ia64 doesn't allow for unaligned loads even of integers being
  96 * misaligned on a 2 byte boundary. Thus always force copying of
  97 * packets as the starfire doesn't allow for misaligned DMAs ;-(
  98 * 23/10/2000 - Jes
  99 *
 100 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
 101 * at least, having unaligned frames leads to a rather serious performance
 102 * penalty. -Ion
 103 */
 104#if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
 105static int rx_copybreak = PKT_BUF_SZ;
 106#else
 107static int rx_copybreak /* = 0 */;
 108#endif
 109
 110/* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
 111#ifdef __sparc__
 112#define DMA_BURST_SIZE 64
 113#else
 114#define DMA_BURST_SIZE 128
 115#endif
 116
 117/* Operational parameters that are set at compile time. */
 118
 119/* The "native" ring sizes are either 256 or 2048.
 120   However in some modes a descriptor may be marked to wrap the ring earlier.
 121*/
 122#define RX_RING_SIZE	256
 123#define TX_RING_SIZE	32
 124/* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
 125#define DONE_Q_SIZE	1024
 126/* All queues must be aligned on a 256-byte boundary */
 127#define QUEUE_ALIGN	256
 128
 129#if RX_RING_SIZE > 256
 130#define RX_Q_ENTRIES Rx2048QEntries
 131#else
 132#define RX_Q_ENTRIES Rx256QEntries
 133#endif
 134
 135/* Operational parameters that usually are not changed. */
 136/* Time in jiffies before concluding the transmitter is hung. */
 137#define TX_TIMEOUT	(2 * HZ)
 138
 139#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 140/* 64-bit dma_addr_t */
 141#define ADDR_64BITS	/* This chip uses 64 bit addresses. */
 142#define netdrv_addr_t __le64
 143#define cpu_to_dma(x) cpu_to_le64(x)
 144#define dma_to_cpu(x) le64_to_cpu(x)
 145#define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
 146#define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
 147#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
 148#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
 149#define RX_DESC_ADDR_SIZE RxDescAddr64bit
 150#else  /* 32-bit dma_addr_t */
 151#define netdrv_addr_t __le32
 152#define cpu_to_dma(x) cpu_to_le32(x)
 153#define dma_to_cpu(x) le32_to_cpu(x)
 154#define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
 155#define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
 156#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
 157#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
 158#define RX_DESC_ADDR_SIZE RxDescAddr32bit
 159#endif
 160
 161#define skb_first_frag_len(skb)	skb_headlen(skb)
 162#define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
 163
 164/* Firmware names */
 165#define FIRMWARE_RX	"adaptec/starfire_rx.bin"
 166#define FIRMWARE_TX	"adaptec/starfire_tx.bin"
 167
 168/* These identify the driver base version and may not be removed. */
 169static const char version[] __devinitconst =
 170KERN_INFO "starfire.c:v1.03 7/26/2000  Written by Donald Becker <becker@scyld.com>\n"
 171" (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
 172
 173MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 174MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
 175MODULE_LICENSE("GPL");
 176MODULE_VERSION(DRV_VERSION);
 177MODULE_FIRMWARE(FIRMWARE_RX);
 178MODULE_FIRMWARE(FIRMWARE_TX);
 179
 180module_param(max_interrupt_work, int, 0);
 181module_param(mtu, int, 0);
 182module_param(debug, int, 0);
 183module_param(rx_copybreak, int, 0);
 184module_param(intr_latency, int, 0);
 185module_param(small_frames, int, 0);
 186module_param(enable_hw_cksum, int, 0);
 187MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
 188MODULE_PARM_DESC(mtu, "MTU (all boards)");
 189MODULE_PARM_DESC(debug, "Debug level (0-6)");
 190MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
 191MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
 192MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
 193MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
 194
 195/*
 196				Theory of Operation
 197
 198I. Board Compatibility
 199
 200This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
 201
 202II. Board-specific settings
 203
 204III. Driver operation
 205
 206IIIa. Ring buffers
 207
 208The Starfire hardware uses multiple fixed-size descriptor queues/rings.  The
 209ring sizes are set fixed by the hardware, but may optionally be wrapped
 210earlier by the END bit in the descriptor.
 211This driver uses that hardware queue size for the Rx ring, where a large
 212number of entries has no ill effect beyond increases the potential backlog.
 213The Tx ring is wrapped with the END bit, since a large hardware Tx queue
 214disables the queue layer priority ordering and we have no mechanism to
 215utilize the hardware two-level priority queue.  When modifying the
 216RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
 217levels.
 218
 219IIIb/c. Transmit/Receive Structure
 220
 221See the Adaptec manual for the many possible structures, and options for
 222each structure.  There are far too many to document all of them here.
 223
 224For transmit this driver uses type 0/1 transmit descriptors (depending
 225on the 32/64 bitness of the architecture), and relies on automatic
 226minimum-length padding.  It does not use the completion queue
 227consumer index, but instead checks for non-zero status entries.
 228
 229For receive this driver uses type 2/3 receive descriptors.  The driver
 230allocates full frame size skbuffs for the Rx ring buffers, so all frames
 231should fit in a single descriptor.  The driver does not use the completion
 232queue consumer index, but instead checks for non-zero status entries.
 233
 234When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
 235is allocated and the frame is copied to the new skbuff.  When the incoming
 236frame is larger, the skbuff is passed directly up the protocol stack.
 237Buffers consumed this way are replaced by newly allocated skbuffs in a later
 238phase of receive.
 239
 240A notable aspect of operation is that unaligned buffers are not permitted by
 241the Starfire hardware.  Thus the IP header at offset 14 in an ethernet frame
 242isn't longword aligned, which may cause problems on some machine
 243e.g. Alphas and IA64. For these architectures, the driver is forced to copy
 244the frame into a new skbuff unconditionally. Copied frames are put into the
 245skbuff at an offset of "+2", thus 16-byte aligning the IP header.
 246
 247IIId. Synchronization
 248
 249The driver runs as two independent, single-threaded flows of control.  One
 250is the send-packet routine, which enforces single-threaded use by the
 251dev->tbusy flag.  The other thread is the interrupt handler, which is single
 252threaded by the hardware and interrupt handling software.
 253
 254The send packet thread has partial control over the Tx ring and the netif_queue
 255status. If the number of free Tx slots in the ring falls below a certain number
 256(currently hardcoded to 4), it signals the upper layer to stop the queue.
 257
 258The interrupt handler has exclusive control over the Rx ring and records stats
 259from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
 260empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
 261number of free Tx slow is above the threshold, it signals the upper layer to
 262restart the queue.
 263
 264IV. Notes
 265
 266IVb. References
 267
 268The Adaptec Starfire manuals, available only from Adaptec.
 269http://www.scyld.com/expert/100mbps.html
 270http://www.scyld.com/expert/NWay.html
 271
 272IVc. Errata
 273
 274- StopOnPerr is broken, don't enable
 275- Hardware ethernet padding exposes random data, perform software padding
 276  instead (unverified -- works correctly for all the hardware I have)
 277
 278*/
 279
 280
 281
 282enum chip_capability_flags {CanHaveMII=1, };
 283
 284enum chipset {
 285	CH_6915 = 0,
 286};
 287
 288static DEFINE_PCI_DEVICE_TABLE(starfire_pci_tbl) = {
 289	{ PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
 290	{ 0, }
 291};
 292MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
 293
 294/* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
 295static const struct chip_info {
 296	const char *name;
 297	int drv_flags;
 298} netdrv_tbl[] __devinitdata = {
 299	{ "Adaptec Starfire 6915", CanHaveMII },
 300};
 301
 302
 303/* Offsets to the device registers.
 304   Unlike software-only systems, device drivers interact with complex hardware.
 305   It's not useful to define symbolic names for every register bit in the
 306   device.  The name can only partially document the semantics and make
 307   the driver longer and more difficult to read.
 308   In general, only the important configuration values or bits changed
 309   multiple times should be defined symbolically.
 310*/
 311enum register_offsets {
 312	PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
 313	IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
 314	MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
 315	GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
 316	TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
 317	TxRingHiAddr=0x5009C,		/* 64 bit address extension. */
 318	TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
 319	TxThreshold=0x500B0,
 320	CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
 321	RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
 322	CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
 323	RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
 324	RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
 325	TxMode=0x55000, VlanType=0x55064,
 326	PerfFilterTable=0x56000, HashTable=0x56100,
 327	TxGfpMem=0x58000, RxGfpMem=0x5a000,
 328};
 329
 330/*
 331 * Bits in the interrupt status/mask registers.
 332 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
 333 * enables all the interrupt sources that are or'ed into those status bits.
 334 */
 335enum intr_status_bits {
 336	IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
 337	IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
 338	IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
 339	IntrTxComplQLow=0x200000, IntrPCI=0x100000,
 340	IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
 341	IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
 342	IntrNormalSummary=0x8000, IntrTxDone=0x4000,
 343	IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
 344	IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
 345	IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
 346	IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
 347	IntrNoTxCsum=0x20, IntrTxBadID=0x10,
 348	IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
 349	IntrTxGfp=0x02, IntrPCIPad=0x01,
 350	/* not quite bits */
 351	IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
 352	IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
 353	IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
 354};
 355
 356/* Bits in the RxFilterMode register. */
 357enum rx_mode_bits {
 358	AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
 359	AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
 360	PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
 361	WakeupOnGFP=0x0800,
 362};
 363
 364/* Bits in the TxMode register */
 365enum tx_mode_bits {
 366	MiiSoftReset=0x8000, MIILoopback=0x4000,
 367	TxFlowEnable=0x0800, RxFlowEnable=0x0400,
 368	PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
 369};
 370
 371/* Bits in the TxDescCtrl register. */
 372enum tx_ctrl_bits {
 373	TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
 374	TxDescSpace128=0x30, TxDescSpace256=0x40,
 375	TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
 376	TxDescType3=0x03, TxDescType4=0x04,
 377	TxNoDMACompletion=0x08,
 378	TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
 379	TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
 380	TxDMABurstSizeShift=8,
 381};
 382
 383/* Bits in the RxDescQCtrl register. */
 384enum rx_ctrl_bits {
 385	RxBufferLenShift=16, RxMinDescrThreshShift=0,
 386	RxPrefetchMode=0x8000, RxVariableQ=0x2000,
 387	Rx2048QEntries=0x4000, Rx256QEntries=0,
 388	RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
 389	RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
 390	RxDescSpace4=0x000, RxDescSpace8=0x100,
 391	RxDescSpace16=0x200, RxDescSpace32=0x300,
 392	RxDescSpace64=0x400, RxDescSpace128=0x500,
 393	RxConsumerWrEn=0x80,
 394};
 395
 396/* Bits in the RxDMACtrl register. */
 397enum rx_dmactrl_bits {
 398	RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
 399	RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
 400	RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
 401	RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
 402	RxChecksumRejectTCPOnly=0x01000000,
 403	RxCompletionQ2Enable=0x800000,
 404	RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
 405	RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
 406	RxDMAQ2NonIP=0x400000,
 407	RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
 408	RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
 409	RxBurstSizeShift=0,
 410};
 411
 412/* Bits in the RxCompletionAddr register */
 413enum rx_compl_bits {
 414	RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
 415	RxComplProducerWrEn=0x40,
 416	RxComplType0=0x00, RxComplType1=0x10,
 417	RxComplType2=0x20, RxComplType3=0x30,
 418	RxComplThreshShift=0,
 419};
 420
 421/* Bits in the TxCompletionAddr register */
 422enum tx_compl_bits {
 423	TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
 424	TxComplProducerWrEn=0x40,
 425	TxComplIntrStatus=0x20,
 426	CommonQueueMode=0x10,
 427	TxComplThreshShift=0,
 428};
 429
 430/* Bits in the GenCtrl register */
 431enum gen_ctrl_bits {
 432	RxEnable=0x05, TxEnable=0x0a,
 433	RxGFPEnable=0x10, TxGFPEnable=0x20,
 434};
 435
 436/* Bits in the IntrTimerCtrl register */
 437enum intr_ctrl_bits {
 438	Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
 439	SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
 440	IntrLatencyMask=0x1f,
 441};
 442
 443/* The Rx and Tx buffer descriptors. */
 444struct starfire_rx_desc {
 445	netdrv_addr_t rxaddr;
 446};
 447enum rx_desc_bits {
 448	RxDescValid=1, RxDescEndRing=2,
 449};
 450
 451/* Completion queue entry. */
 452struct short_rx_done_desc {
 453	__le32 status;			/* Low 16 bits is length. */
 454};
 455struct basic_rx_done_desc {
 456	__le32 status;			/* Low 16 bits is length. */
 457	__le16 vlanid;
 458	__le16 status2;
 459};
 460struct csum_rx_done_desc {
 461	__le32 status;			/* Low 16 bits is length. */
 462	__le16 csum;			/* Partial checksum */
 463	__le16 status2;
 464};
 465struct full_rx_done_desc {
 466	__le32 status;			/* Low 16 bits is length. */
 467	__le16 status3;
 468	__le16 status2;
 469	__le16 vlanid;
 470	__le16 csum;			/* partial checksum */
 471	__le32 timestamp;
 472};
 473/* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
 474#ifdef VLAN_SUPPORT
 475typedef struct full_rx_done_desc rx_done_desc;
 476#define RxComplType RxComplType3
 477#else  /* not VLAN_SUPPORT */
 478typedef struct csum_rx_done_desc rx_done_desc;
 479#define RxComplType RxComplType2
 480#endif /* not VLAN_SUPPORT */
 481
 482enum rx_done_bits {
 483	RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
 484};
 485
 486/* Type 1 Tx descriptor. */
 487struct starfire_tx_desc_1 {
 488	__le32 status;			/* Upper bits are status, lower 16 length. */
 489	__le32 addr;
 490};
 491
 492/* Type 2 Tx descriptor. */
 493struct starfire_tx_desc_2 {
 494	__le32 status;			/* Upper bits are status, lower 16 length. */
 495	__le32 reserved;
 496	__le64 addr;
 497};
 498
 499#ifdef ADDR_64BITS
 500typedef struct starfire_tx_desc_2 starfire_tx_desc;
 501#define TX_DESC_TYPE TxDescType2
 502#else  /* not ADDR_64BITS */
 503typedef struct starfire_tx_desc_1 starfire_tx_desc;
 504#define TX_DESC_TYPE TxDescType1
 505#endif /* not ADDR_64BITS */
 506#define TX_DESC_SPACING TxDescSpaceUnlim
 507
 508enum tx_desc_bits {
 509	TxDescID=0xB0000000,
 510	TxCRCEn=0x01000000, TxDescIntr=0x08000000,
 511	TxRingWrap=0x04000000, TxCalTCP=0x02000000,
 512};
 513struct tx_done_desc {
 514	__le32 status;			/* timestamp, index. */
 515#if 0
 516	__le32 intrstatus;		/* interrupt status */
 517#endif
 518};
 519
 520struct rx_ring_info {
 521	struct sk_buff *skb;
 522	dma_addr_t mapping;
 523};
 524struct tx_ring_info {
 525	struct sk_buff *skb;
 526	dma_addr_t mapping;
 527	unsigned int used_slots;
 528};
 529
 530#define PHY_CNT		2
 531struct netdev_private {
 532	/* Descriptor rings first for alignment. */
 533	struct starfire_rx_desc *rx_ring;
 534	starfire_tx_desc *tx_ring;
 535	dma_addr_t rx_ring_dma;
 536	dma_addr_t tx_ring_dma;
 537	/* The addresses of rx/tx-in-place skbuffs. */
 538	struct rx_ring_info rx_info[RX_RING_SIZE];
 539	struct tx_ring_info tx_info[TX_RING_SIZE];
 540	/* Pointers to completion queues (full pages). */
 541	rx_done_desc *rx_done_q;
 542	dma_addr_t rx_done_q_dma;
 543	unsigned int rx_done;
 544	struct tx_done_desc *tx_done_q;
 545	dma_addr_t tx_done_q_dma;
 546	unsigned int tx_done;
 547	struct napi_struct napi;
 548	struct net_device *dev;
 549	struct pci_dev *pci_dev;
 550#ifdef VLAN_SUPPORT
 551	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
 552#endif
 553	void *queue_mem;
 554	dma_addr_t queue_mem_dma;
 555	size_t queue_mem_size;
 556
 557	/* Frequently used values: keep some adjacent for cache effect. */
 558	spinlock_t lock;
 559	unsigned int cur_rx, dirty_rx;	/* Producer/consumer ring indices */
 560	unsigned int cur_tx, dirty_tx, reap_tx;
 561	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
 562	/* These values keep track of the transceiver/media in use. */
 563	int speed100;			/* Set if speed == 100MBit. */
 564	u32 tx_mode;
 565	u32 intr_timer_ctrl;
 566	u8 tx_threshold;
 567	/* MII transceiver section. */
 568	struct mii_if_info mii_if;		/* MII lib hooks/info */
 569	int phy_cnt;			/* MII device addresses. */
 570	unsigned char phys[PHY_CNT];	/* MII device addresses. */
 571	void __iomem *base;
 572};
 573
 574
 575static int	mdio_read(struct net_device *dev, int phy_id, int location);
 576static void	mdio_write(struct net_device *dev, int phy_id, int location, int value);
 577static int	netdev_open(struct net_device *dev);
 578static void	check_duplex(struct net_device *dev);
 579static void	tx_timeout(struct net_device *dev);
 580static void	init_ring(struct net_device *dev);
 581static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
 582static irqreturn_t intr_handler(int irq, void *dev_instance);
 583static void	netdev_error(struct net_device *dev, int intr_status);
 584static int	__netdev_rx(struct net_device *dev, int *quota);
 585static int	netdev_poll(struct napi_struct *napi, int budget);
 586static void	refill_rx_ring(struct net_device *dev);
 587static void	netdev_error(struct net_device *dev, int intr_status);
 588static void	set_rx_mode(struct net_device *dev);
 589static struct net_device_stats *get_stats(struct net_device *dev);
 590static int	netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 591static int	netdev_close(struct net_device *dev);
 592static void	netdev_media_change(struct net_device *dev);
 593static const struct ethtool_ops ethtool_ops;
 594
 595
 596#ifdef VLAN_SUPPORT
 597static int netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
 
 598{
 599	struct netdev_private *np = netdev_priv(dev);
 600
 601	spin_lock(&np->lock);
 602	if (debug > 1)
 603		printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
 604	set_bit(vid, np->active_vlans);
 605	set_rx_mode(dev);
 606	spin_unlock(&np->lock);
 607
 608	return 0;
 609}
 610
 611static int netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
 
 612{
 613	struct netdev_private *np = netdev_priv(dev);
 614
 615	spin_lock(&np->lock);
 616	if (debug > 1)
 617		printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
 618	clear_bit(vid, np->active_vlans);
 619	set_rx_mode(dev);
 620	spin_unlock(&np->lock);
 621
 622	return 0;
 623}
 624#endif /* VLAN_SUPPORT */
 625
 626
 627static const struct net_device_ops netdev_ops = {
 628	.ndo_open		= netdev_open,
 629	.ndo_stop		= netdev_close,
 630	.ndo_start_xmit		= start_tx,
 631	.ndo_tx_timeout		= tx_timeout,
 632	.ndo_get_stats		= get_stats,
 633	.ndo_set_rx_mode	= set_rx_mode,
 634	.ndo_do_ioctl		= netdev_ioctl,
 635	.ndo_change_mtu		= eth_change_mtu,
 636	.ndo_set_mac_address	= eth_mac_addr,
 637	.ndo_validate_addr	= eth_validate_addr,
 638#ifdef VLAN_SUPPORT
 639	.ndo_vlan_rx_add_vid	= netdev_vlan_rx_add_vid,
 640	.ndo_vlan_rx_kill_vid	= netdev_vlan_rx_kill_vid,
 641#endif
 642};
 643
 644static int __devinit starfire_init_one(struct pci_dev *pdev,
 645				       const struct pci_device_id *ent)
 646{
 647	struct device *d = &pdev->dev;
 648	struct netdev_private *np;
 649	int i, irq, chip_idx = ent->driver_data;
 650	struct net_device *dev;
 
 651	long ioaddr;
 652	void __iomem *base;
 653	int drv_flags, io_size;
 654	int boguscnt;
 655
 656/* when built into the kernel, we only print version if device is found */
 657#ifndef MODULE
 658	static int printed_version;
 659	if (!printed_version++)
 660		printk(version);
 661#endif
 662
 663	if (pci_enable_device (pdev))
 664		return -EIO;
 665
 666	ioaddr = pci_resource_start(pdev, 0);
 667	io_size = pci_resource_len(pdev, 0);
 668	if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
 669		dev_err(d, "no PCI MEM resources, aborting\n");
 670		return -ENODEV;
 671	}
 672
 673	dev = alloc_etherdev(sizeof(*np));
 674	if (!dev)
 675		return -ENOMEM;
 676
 677	SET_NETDEV_DEV(dev, &pdev->dev);
 678
 679	irq = pdev->irq;
 680
 681	if (pci_request_regions (pdev, DRV_NAME)) {
 682		dev_err(d, "cannot reserve PCI resources, aborting\n");
 683		goto err_out_free_netdev;
 684	}
 685
 686	base = ioremap(ioaddr, io_size);
 687	if (!base) {
 688		dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
 689			io_size, ioaddr);
 690		goto err_out_free_res;
 691	}
 692
 693	pci_set_master(pdev);
 694
 695	/* enable MWI -- it vastly improves Rx performance on sparc64 */
 696	pci_try_set_mwi(pdev);
 697
 698#ifdef ZEROCOPY
 699	/* Starfire can do TCP/UDP checksumming */
 700	if (enable_hw_cksum)
 701		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
 702#endif /* ZEROCOPY */
 703
 704#ifdef VLAN_SUPPORT
 705	dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
 706#endif /* VLAN_RX_KILL_VID */
 707#ifdef ADDR_64BITS
 708	dev->features |= NETIF_F_HIGHDMA;
 709#endif /* ADDR_64BITS */
 710
 711	/* Serial EEPROM reads are hidden by the hardware. */
 712	for (i = 0; i < 6; i++)
 713		dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
 
 714
 715#if ! defined(final_version) /* Dump the EEPROM contents during development. */
 716	if (debug > 4)
 717		for (i = 0; i < 0x20; i++)
 718			printk("%2.2x%s",
 719			       (unsigned int)readb(base + EEPROMCtrl + i),
 720			       i % 16 != 15 ? " " : "\n");
 721#endif
 722
 723	/* Issue soft reset */
 724	writel(MiiSoftReset, base + TxMode);
 725	udelay(1000);
 726	writel(0, base + TxMode);
 727
 728	/* Reset the chip to erase previous misconfiguration. */
 729	writel(1, base + PCIDeviceConfig);
 730	boguscnt = 1000;
 731	while (--boguscnt > 0) {
 732		udelay(10);
 733		if ((readl(base + PCIDeviceConfig) & 1) == 0)
 734			break;
 735	}
 736	if (boguscnt == 0)
 737		printk("%s: chipset reset never completed!\n", dev->name);
 738	/* wait a little longer */
 739	udelay(1000);
 740
 741	np = netdev_priv(dev);
 742	np->dev = dev;
 743	np->base = base;
 744	spin_lock_init(&np->lock);
 745	pci_set_drvdata(pdev, dev);
 746
 747	np->pci_dev = pdev;
 748
 749	np->mii_if.dev = dev;
 750	np->mii_if.mdio_read = mdio_read;
 751	np->mii_if.mdio_write = mdio_write;
 752	np->mii_if.phy_id_mask = 0x1f;
 753	np->mii_if.reg_num_mask = 0x1f;
 754
 755	drv_flags = netdrv_tbl[chip_idx].drv_flags;
 756
 757	np->speed100 = 1;
 758
 759	/* timer resolution is 128 * 0.8us */
 760	np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
 761		Timer10X | EnableIntrMasking;
 762
 763	if (small_frames > 0) {
 764		np->intr_timer_ctrl |= SmallFrameBypass;
 765		switch (small_frames) {
 766		case 1 ... 64:
 767			np->intr_timer_ctrl |= SmallFrame64;
 768			break;
 769		case 65 ... 128:
 770			np->intr_timer_ctrl |= SmallFrame128;
 771			break;
 772		case 129 ... 256:
 773			np->intr_timer_ctrl |= SmallFrame256;
 774			break;
 775		default:
 776			np->intr_timer_ctrl |= SmallFrame512;
 777			if (small_frames > 512)
 778				printk("Adjusting small_frames down to 512\n");
 779			break;
 780		}
 781	}
 782
 783	dev->netdev_ops = &netdev_ops;
 784	dev->watchdog_timeo = TX_TIMEOUT;
 785	SET_ETHTOOL_OPS(dev, &ethtool_ops);
 786
 787	netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
 788
 789	if (mtu)
 790		dev->mtu = mtu;
 791
 792	if (register_netdev(dev))
 793		goto err_out_cleardev;
 794
 795	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
 796	       dev->name, netdrv_tbl[chip_idx].name, base,
 797	       dev->dev_addr, irq);
 798
 799	if (drv_flags & CanHaveMII) {
 800		int phy, phy_idx = 0;
 801		int mii_status;
 802		for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
 803			mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
 804			mdelay(100);
 805			boguscnt = 1000;
 806			while (--boguscnt > 0)
 807				if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
 808					break;
 809			if (boguscnt == 0) {
 810				printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
 811				continue;
 812			}
 813			mii_status = mdio_read(dev, phy, MII_BMSR);
 814			if (mii_status != 0) {
 815				np->phys[phy_idx++] = phy;
 816				np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
 817				printk(KERN_INFO "%s: MII PHY found at address %d, status "
 818					   "%#4.4x advertising %#4.4x.\n",
 819					   dev->name, phy, mii_status, np->mii_if.advertising);
 820				/* there can be only one PHY on-board */
 821				break;
 822			}
 823		}
 824		np->phy_cnt = phy_idx;
 825		if (np->phy_cnt > 0)
 826			np->mii_if.phy_id = np->phys[0];
 827		else
 828			memset(&np->mii_if, 0, sizeof(np->mii_if));
 829	}
 830
 831	printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
 832	       dev->name, enable_hw_cksum ? "enabled" : "disabled");
 833	return 0;
 834
 835err_out_cleardev:
 836	pci_set_drvdata(pdev, NULL);
 837	iounmap(base);
 838err_out_free_res:
 839	pci_release_regions (pdev);
 840err_out_free_netdev:
 841	free_netdev(dev);
 842	return -ENODEV;
 843}
 844
 845
 846/* Read the MII Management Data I/O (MDIO) interfaces. */
 847static int mdio_read(struct net_device *dev, int phy_id, int location)
 848{
 849	struct netdev_private *np = netdev_priv(dev);
 850	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
 851	int result, boguscnt=1000;
 852	/* ??? Should we add a busy-wait here? */
 853	do {
 854		result = readl(mdio_addr);
 855	} while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
 856	if (boguscnt == 0)
 857		return 0;
 858	if ((result & 0xffff) == 0xffff)
 859		return 0;
 860	return result & 0xffff;
 861}
 862
 863
 864static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
 865{
 866	struct netdev_private *np = netdev_priv(dev);
 867	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
 868	writel(value, mdio_addr);
 869	/* The busy-wait will occur before a read. */
 870}
 871
 872
 873static int netdev_open(struct net_device *dev)
 874{
 875	const struct firmware *fw_rx, *fw_tx;
 876	const __be32 *fw_rx_data, *fw_tx_data;
 877	struct netdev_private *np = netdev_priv(dev);
 878	void __iomem *ioaddr = np->base;
 879	const int irq = np->pci_dev->irq;
 880	int i, retval;
 881	size_t tx_size, rx_size;
 882	size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
 883
 884	/* Do we ever need to reset the chip??? */
 885
 886	retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
 887	if (retval)
 888		return retval;
 889
 890	/* Disable the Rx and Tx, and reset the chip. */
 891	writel(0, ioaddr + GenCtrl);
 892	writel(1, ioaddr + PCIDeviceConfig);
 893	if (debug > 1)
 894		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
 895		       dev->name, irq);
 896
 897	/* Allocate the various queues. */
 898	if (!np->queue_mem) {
 899		tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
 900		rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
 901		tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
 902		rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
 903		np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
 904		np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
 
 
 905		if (np->queue_mem == NULL) {
 906			free_irq(irq, dev);
 907			return -ENOMEM;
 908		}
 909
 910		np->tx_done_q     = np->queue_mem;
 911		np->tx_done_q_dma = np->queue_mem_dma;
 912		np->rx_done_q     = (void *) np->tx_done_q + tx_done_q_size;
 913		np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
 914		np->tx_ring       = (void *) np->rx_done_q + rx_done_q_size;
 915		np->tx_ring_dma   = np->rx_done_q_dma + rx_done_q_size;
 916		np->rx_ring       = (void *) np->tx_ring + tx_ring_size;
 917		np->rx_ring_dma   = np->tx_ring_dma + tx_ring_size;
 918	}
 919
 920	/* Start with no carrier, it gets adjusted later */
 921	netif_carrier_off(dev);
 922	init_ring(dev);
 923	/* Set the size of the Rx buffers. */
 924	writel((np->rx_buf_sz << RxBufferLenShift) |
 925	       (0 << RxMinDescrThreshShift) |
 926	       RxPrefetchMode | RxVariableQ |
 927	       RX_Q_ENTRIES |
 928	       RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
 929	       RxDescSpace4,
 930	       ioaddr + RxDescQCtrl);
 931
 932	/* Set up the Rx DMA controller. */
 933	writel(RxChecksumIgnore |
 934	       (0 << RxEarlyIntThreshShift) |
 935	       (6 << RxHighPrioThreshShift) |
 936	       ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
 937	       ioaddr + RxDMACtrl);
 938
 939	/* Set Tx descriptor */
 940	writel((2 << TxHiPriFIFOThreshShift) |
 941	       (0 << TxPadLenShift) |
 942	       ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
 943	       TX_DESC_Q_ADDR_SIZE |
 944	       TX_DESC_SPACING | TX_DESC_TYPE,
 945	       ioaddr + TxDescCtrl);
 946
 947	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
 948	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
 949	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
 950	writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
 951	writel(np->tx_ring_dma, ioaddr + TxRingPtr);
 952
 953	writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
 954	writel(np->rx_done_q_dma |
 955	       RxComplType |
 956	       (0 << RxComplThreshShift),
 957	       ioaddr + RxCompletionAddr);
 958
 959	if (debug > 1)
 960		printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
 961
 962	/* Fill both the Tx SA register and the Rx perfect filter. */
 963	for (i = 0; i < 6; i++)
 964		writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
 965	/* The first entry is special because it bypasses the VLAN filter.
 966	   Don't use it. */
 967	writew(0, ioaddr + PerfFilterTable);
 968	writew(0, ioaddr + PerfFilterTable + 4);
 969	writew(0, ioaddr + PerfFilterTable + 8);
 970	for (i = 1; i < 16; i++) {
 971		__be16 *eaddrs = (__be16 *)dev->dev_addr;
 972		void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
 973		writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
 974		writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
 975		writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
 976	}
 977
 978	/* Initialize other registers. */
 979	/* Configure the PCI bus bursts and FIFO thresholds. */
 980	np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable;	/* modified when link is up. */
 981	writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
 982	udelay(1000);
 983	writel(np->tx_mode, ioaddr + TxMode);
 984	np->tx_threshold = 4;
 985	writel(np->tx_threshold, ioaddr + TxThreshold);
 986
 987	writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
 988
 989	napi_enable(&np->napi);
 990
 991	netif_start_queue(dev);
 992
 993	if (debug > 1)
 994		printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
 995	set_rx_mode(dev);
 996
 997	np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
 998	check_duplex(dev);
 999
1000	/* Enable GPIO interrupts on link change */
1001	writel(0x0f00ff00, ioaddr + GPIOCtrl);
1002
1003	/* Set the interrupt mask */
1004	writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1005	       IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1006	       IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1007	       ioaddr + IntrEnable);
1008	/* Enable PCI interrupts. */
1009	writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1010	       ioaddr + PCIDeviceConfig);
1011
1012#ifdef VLAN_SUPPORT
1013	/* Set VLAN type to 802.1q */
1014	writel(ETH_P_8021Q, ioaddr + VlanType);
1015#endif /* VLAN_SUPPORT */
1016
1017	retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1018	if (retval) {
1019		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1020		       FIRMWARE_RX);
1021		goto out_init;
1022	}
1023	if (fw_rx->size % 4) {
1024		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1025		       fw_rx->size, FIRMWARE_RX);
1026		retval = -EINVAL;
1027		goto out_rx;
1028	}
1029	retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1030	if (retval) {
1031		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1032		       FIRMWARE_TX);
1033		goto out_rx;
1034	}
1035	if (fw_tx->size % 4) {
1036		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1037		       fw_tx->size, FIRMWARE_TX);
1038		retval = -EINVAL;
1039		goto out_tx;
1040	}
1041	fw_rx_data = (const __be32 *)&fw_rx->data[0];
1042	fw_tx_data = (const __be32 *)&fw_tx->data[0];
1043	rx_size = fw_rx->size / 4;
1044	tx_size = fw_tx->size / 4;
1045
1046	/* Load Rx/Tx firmware into the frame processors */
1047	for (i = 0; i < rx_size; i++)
1048		writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1049	for (i = 0; i < tx_size; i++)
1050		writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1051	if (enable_hw_cksum)
1052		/* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1053		writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1054	else
1055		/* Enable the Rx and Tx units only. */
1056		writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1057
1058	if (debug > 1)
1059		printk(KERN_DEBUG "%s: Done netdev_open().\n",
1060		       dev->name);
1061
1062out_tx:
1063	release_firmware(fw_tx);
1064out_rx:
1065	release_firmware(fw_rx);
1066out_init:
1067	if (retval)
1068		netdev_close(dev);
1069	return retval;
1070}
1071
1072
1073static void check_duplex(struct net_device *dev)
1074{
1075	struct netdev_private *np = netdev_priv(dev);
1076	u16 reg0;
1077	int silly_count = 1000;
1078
1079	mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1080	mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1081	udelay(500);
1082	while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1083		/* do nothing */;
1084	if (!silly_count) {
1085		printk("%s: MII reset failed!\n", dev->name);
1086		return;
1087	}
1088
1089	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1090
1091	if (!np->mii_if.force_media) {
1092		reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1093	} else {
1094		reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1095		if (np->speed100)
1096			reg0 |= BMCR_SPEED100;
1097		if (np->mii_if.full_duplex)
1098			reg0 |= BMCR_FULLDPLX;
1099		printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1100		       dev->name,
1101		       np->speed100 ? "100" : "10",
1102		       np->mii_if.full_duplex ? "full" : "half");
1103	}
1104	mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1105}
1106
1107
1108static void tx_timeout(struct net_device *dev)
1109{
1110	struct netdev_private *np = netdev_priv(dev);
1111	void __iomem *ioaddr = np->base;
1112	int old_debug;
1113
1114	printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1115	       "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1116
1117	/* Perhaps we should reinitialize the hardware here. */
1118
1119	/*
1120	 * Stop and restart the interface.
1121	 * Cheat and increase the debug level temporarily.
1122	 */
1123	old_debug = debug;
1124	debug = 2;
1125	netdev_close(dev);
1126	netdev_open(dev);
1127	debug = old_debug;
1128
1129	/* Trigger an immediate transmit demand. */
1130
1131	dev->trans_start = jiffies; /* prevent tx timeout */
1132	dev->stats.tx_errors++;
1133	netif_wake_queue(dev);
1134}
1135
1136
1137/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1138static void init_ring(struct net_device *dev)
1139{
1140	struct netdev_private *np = netdev_priv(dev);
1141	int i;
1142
1143	np->cur_rx = np->cur_tx = np->reap_tx = 0;
1144	np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1145
1146	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1147
1148	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
1149	for (i = 0; i < RX_RING_SIZE; i++) {
1150		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1151		np->rx_info[i].skb = skb;
1152		if (skb == NULL)
1153			break;
1154		np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
 
 
 
 
 
 
 
 
1155		/* Grrr, we cannot offset to correctly align the IP header. */
1156		np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1157	}
1158	writew(i - 1, np->base + RxDescQIdx);
1159	np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1160
1161	/* Clear the remainder of the Rx buffer ring. */
1162	for (  ; i < RX_RING_SIZE; i++) {
1163		np->rx_ring[i].rxaddr = 0;
1164		np->rx_info[i].skb = NULL;
1165		np->rx_info[i].mapping = 0;
1166	}
1167	/* Mark the last entry as wrapping the ring. */
1168	np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1169
1170	/* Clear the completion rings. */
1171	for (i = 0; i < DONE_Q_SIZE; i++) {
1172		np->rx_done_q[i].status = 0;
1173		np->tx_done_q[i].status = 0;
1174	}
1175
1176	for (i = 0; i < TX_RING_SIZE; i++)
1177		memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1178}
1179
1180
1181static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1182{
1183	struct netdev_private *np = netdev_priv(dev);
1184	unsigned int entry;
 
1185	u32 status;
1186	int i;
1187
1188	/*
1189	 * be cautious here, wrapping the queue has weird semantics
1190	 * and we may not have enough slots even when it seems we do.
1191	 */
1192	if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1193		netif_stop_queue(dev);
1194		return NETDEV_TX_BUSY;
1195	}
1196
1197#if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1198	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1199		if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1200			return NETDEV_TX_OK;
1201	}
1202#endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1203
 
1204	entry = np->cur_tx % TX_RING_SIZE;
1205	for (i = 0; i < skb_num_frags(skb); i++) {
1206		int wrap_ring = 0;
1207		status = TxDescID;
1208
1209		if (i == 0) {
1210			np->tx_info[entry].skb = skb;
1211			status |= TxCRCEn;
1212			if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1213				status |= TxRingWrap;
1214				wrap_ring = 1;
1215			}
1216			if (np->reap_tx) {
1217				status |= TxDescIntr;
1218				np->reap_tx = 0;
1219			}
1220			if (skb->ip_summed == CHECKSUM_PARTIAL) {
1221				status |= TxCalTCP;
1222				dev->stats.tx_compressed++;
1223			}
1224			status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1225
1226			np->tx_info[entry].mapping =
1227				pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
 
 
1228		} else {
1229			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1230			status |= skb_frag_size(this_frag);
1231			np->tx_info[entry].mapping =
1232				pci_map_single(np->pci_dev,
1233					       skb_frag_address(this_frag),
1234					       skb_frag_size(this_frag),
1235					       PCI_DMA_TODEVICE);
 
 
 
 
1236		}
1237
1238		np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1239		np->tx_ring[entry].status = cpu_to_le32(status);
1240		if (debug > 3)
1241			printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1242			       dev->name, np->cur_tx, np->dirty_tx,
1243			       entry, status);
1244		if (wrap_ring) {
1245			np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1246			np->cur_tx += np->tx_info[entry].used_slots;
1247			entry = 0;
1248		} else {
1249			np->tx_info[entry].used_slots = 1;
1250			np->cur_tx += np->tx_info[entry].used_slots;
1251			entry++;
1252		}
1253		/* scavenge the tx descriptors twice per TX_RING_SIZE */
1254		if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1255			np->reap_tx = 1;
1256	}
1257
1258	/* Non-x86: explicitly flush descriptor cache lines here. */
1259	/* Ensure all descriptors are written back before the transmit is
1260	   initiated. - Jes */
1261	wmb();
1262
1263	/* Update the producer index. */
1264	writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1265
1266	/* 4 is arbitrary, but should be ok */
1267	if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1268		netif_stop_queue(dev);
1269
1270	return NETDEV_TX_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1271}
1272
1273
1274/* The interrupt handler does all of the Rx thread work and cleans up
1275   after the Tx thread. */
1276static irqreturn_t intr_handler(int irq, void *dev_instance)
1277{
1278	struct net_device *dev = dev_instance;
1279	struct netdev_private *np = netdev_priv(dev);
1280	void __iomem *ioaddr = np->base;
1281	int boguscnt = max_interrupt_work;
1282	int consumer;
1283	int tx_status;
1284	int handled = 0;
1285
1286	do {
1287		u32 intr_status = readl(ioaddr + IntrClear);
1288
1289		if (debug > 4)
1290			printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1291			       dev->name, intr_status);
1292
1293		if (intr_status == 0 || intr_status == (u32) -1)
1294			break;
1295
1296		handled = 1;
1297
1298		if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1299			u32 enable;
1300
1301			if (likely(napi_schedule_prep(&np->napi))) {
1302				__napi_schedule(&np->napi);
1303				enable = readl(ioaddr + IntrEnable);
1304				enable &= ~(IntrRxDone | IntrRxEmpty);
1305				writel(enable, ioaddr + IntrEnable);
1306				/* flush PCI posting buffers */
1307				readl(ioaddr + IntrEnable);
1308			} else {
1309				/* Paranoia check */
1310				enable = readl(ioaddr + IntrEnable);
1311				if (enable & (IntrRxDone | IntrRxEmpty)) {
1312					printk(KERN_INFO
1313					       "%s: interrupt while in poll!\n",
1314					       dev->name);
1315					enable &= ~(IntrRxDone | IntrRxEmpty);
1316					writel(enable, ioaddr + IntrEnable);
1317				}
1318			}
1319		}
1320
1321		/* Scavenge the skbuff list based on the Tx-done queue.
1322		   There are redundant checks here that may be cleaned up
1323		   after the driver has proven to be reliable. */
1324		consumer = readl(ioaddr + TxConsumerIdx);
1325		if (debug > 3)
1326			printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1327			       dev->name, consumer);
1328
1329		while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1330			if (debug > 3)
1331				printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1332				       dev->name, np->dirty_tx, np->tx_done, tx_status);
1333			if ((tx_status & 0xe0000000) == 0xa0000000) {
1334				dev->stats.tx_packets++;
1335			} else if ((tx_status & 0xe0000000) == 0x80000000) {
1336				u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1337				struct sk_buff *skb = np->tx_info[entry].skb;
1338				np->tx_info[entry].skb = NULL;
1339				pci_unmap_single(np->pci_dev,
1340						 np->tx_info[entry].mapping,
1341						 skb_first_frag_len(skb),
1342						 PCI_DMA_TODEVICE);
1343				np->tx_info[entry].mapping = 0;
1344				np->dirty_tx += np->tx_info[entry].used_slots;
1345				entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1346				{
1347					int i;
1348					for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1349						pci_unmap_single(np->pci_dev,
1350								 np->tx_info[entry].mapping,
1351								 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1352								 PCI_DMA_TODEVICE);
1353						np->dirty_tx++;
1354						entry++;
1355					}
1356				}
1357
1358				dev_kfree_skb_irq(skb);
1359			}
1360			np->tx_done_q[np->tx_done].status = 0;
1361			np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1362		}
1363		writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1364
1365		if (netif_queue_stopped(dev) &&
1366		    (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1367			/* The ring is no longer full, wake the queue. */
1368			netif_wake_queue(dev);
1369		}
1370
1371		/* Stats overflow */
1372		if (intr_status & IntrStatsMax)
1373			get_stats(dev);
1374
1375		/* Media change interrupt. */
1376		if (intr_status & IntrLinkChange)
1377			netdev_media_change(dev);
1378
1379		/* Abnormal error summary/uncommon events handlers. */
1380		if (intr_status & IntrAbnormalSummary)
1381			netdev_error(dev, intr_status);
1382
1383		if (--boguscnt < 0) {
1384			if (debug > 1)
1385				printk(KERN_WARNING "%s: Too much work at interrupt, "
1386				       "status=%#8.8x.\n",
1387				       dev->name, intr_status);
1388			break;
1389		}
1390	} while (1);
1391
1392	if (debug > 4)
1393		printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1394		       dev->name, (int) readl(ioaddr + IntrStatus));
1395	return IRQ_RETVAL(handled);
1396}
1397
1398
1399/*
1400 * This routine is logically part of the interrupt/poll handler, but separated
1401 * for clarity and better register allocation.
1402 */
1403static int __netdev_rx(struct net_device *dev, int *quota)
1404{
1405	struct netdev_private *np = netdev_priv(dev);
1406	u32 desc_status;
1407	int retcode = 0;
1408
1409	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1410	while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1411		struct sk_buff *skb;
1412		u16 pkt_len;
1413		int entry;
1414		rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1415
1416		if (debug > 4)
1417			printk(KERN_DEBUG "  netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1418		if (!(desc_status & RxOK)) {
1419			/* There was an error. */
1420			if (debug > 2)
1421				printk(KERN_DEBUG "  netdev_rx() Rx error was %#8.8x.\n", desc_status);
1422			dev->stats.rx_errors++;
1423			if (desc_status & RxFIFOErr)
1424				dev->stats.rx_fifo_errors++;
1425			goto next_rx;
1426		}
1427
1428		if (*quota <= 0) {	/* out of rx quota */
1429			retcode = 1;
1430			goto out;
1431		}
1432		(*quota)--;
1433
1434		pkt_len = desc_status;	/* Implicitly Truncate */
1435		entry = (desc_status >> 16) & 0x7ff;
1436
1437		if (debug > 4)
1438			printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1439		/* Check if the packet is long enough to accept without copying
1440		   to a minimally-sized skbuff. */
1441		if (pkt_len < rx_copybreak &&
1442		    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1443			skb_reserve(skb, 2);	/* 16 byte align the IP header */
1444			pci_dma_sync_single_for_cpu(np->pci_dev,
1445						    np->rx_info[entry].mapping,
1446						    pkt_len, PCI_DMA_FROMDEVICE);
1447			skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1448			pci_dma_sync_single_for_device(np->pci_dev,
1449						       np->rx_info[entry].mapping,
1450						       pkt_len, PCI_DMA_FROMDEVICE);
1451			skb_put(skb, pkt_len);
1452		} else {
1453			pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
 
 
1454			skb = np->rx_info[entry].skb;
1455			skb_put(skb, pkt_len);
1456			np->rx_info[entry].skb = NULL;
1457			np->rx_info[entry].mapping = 0;
1458		}
1459#ifndef final_version			/* Remove after testing. */
1460		/* You will want this info for the initial debug. */
1461		if (debug > 5) {
1462			printk(KERN_DEBUG "  Rx data %pM %pM %2.2x%2.2x.\n",
1463			       skb->data, skb->data + 6,
1464			       skb->data[12], skb->data[13]);
1465		}
1466#endif
1467
1468		skb->protocol = eth_type_trans(skb, dev);
1469#ifdef VLAN_SUPPORT
1470		if (debug > 4)
1471			printk(KERN_DEBUG "  netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1472#endif
1473		if (le16_to_cpu(desc->status2) & 0x0100) {
1474			skb->ip_summed = CHECKSUM_UNNECESSARY;
1475			dev->stats.rx_compressed++;
1476		}
1477		/*
1478		 * This feature doesn't seem to be working, at least
1479		 * with the two firmware versions I have. If the GFP sees
1480		 * an IP fragment, it either ignores it completely, or reports
1481		 * "bad checksum" on it.
1482		 *
1483		 * Maybe I missed something -- corrections are welcome.
1484		 * Until then, the printk stays. :-) -Ion
1485		 */
1486		else if (le16_to_cpu(desc->status2) & 0x0040) {
1487			skb->ip_summed = CHECKSUM_COMPLETE;
1488			skb->csum = le16_to_cpu(desc->csum);
1489			printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1490		}
1491#ifdef VLAN_SUPPORT
1492		if (le16_to_cpu(desc->status2) & 0x0200) {
1493			u16 vlid = le16_to_cpu(desc->vlanid);
1494
1495			if (debug > 4) {
1496				printk(KERN_DEBUG "  netdev_rx() vlanid = %d\n",
1497				       vlid);
1498			}
1499			__vlan_hwaccel_put_tag(skb, vlid);
1500		}
1501#endif /* VLAN_SUPPORT */
1502		netif_receive_skb(skb);
1503		dev->stats.rx_packets++;
1504
1505	next_rx:
1506		np->cur_rx++;
1507		desc->status = 0;
1508		np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1509	}
1510
1511	if (*quota == 0) {	/* out of rx quota */
1512		retcode = 1;
1513		goto out;
1514	}
1515	writew(np->rx_done, np->base + CompletionQConsumerIdx);
1516
1517 out:
1518	refill_rx_ring(dev);
1519	if (debug > 5)
1520		printk(KERN_DEBUG "  exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1521		       retcode, np->rx_done, desc_status);
1522	return retcode;
1523}
1524
1525static int netdev_poll(struct napi_struct *napi, int budget)
1526{
1527	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1528	struct net_device *dev = np->dev;
1529	u32 intr_status;
1530	void __iomem *ioaddr = np->base;
1531	int quota = budget;
1532
1533	do {
1534		writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1535
1536		if (__netdev_rx(dev, &quota))
1537			goto out;
1538
1539		intr_status = readl(ioaddr + IntrStatus);
1540	} while (intr_status & (IntrRxDone | IntrRxEmpty));
1541
1542	napi_complete(napi);
1543	intr_status = readl(ioaddr + IntrEnable);
1544	intr_status |= IntrRxDone | IntrRxEmpty;
1545	writel(intr_status, ioaddr + IntrEnable);
1546
1547 out:
1548	if (debug > 5)
1549		printk(KERN_DEBUG "  exiting netdev_poll(): %d.\n",
1550		       budget - quota);
1551
1552	/* Restart Rx engine if stopped. */
1553	return budget - quota;
1554}
1555
1556static void refill_rx_ring(struct net_device *dev)
1557{
1558	struct netdev_private *np = netdev_priv(dev);
1559	struct sk_buff *skb;
1560	int entry = -1;
1561
1562	/* Refill the Rx ring buffers. */
1563	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1564		entry = np->dirty_rx % RX_RING_SIZE;
1565		if (np->rx_info[entry].skb == NULL) {
1566			skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1567			np->rx_info[entry].skb = skb;
1568			if (skb == NULL)
1569				break;	/* Better luck next round. */
1570			np->rx_info[entry].mapping =
1571				pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
 
 
 
 
 
 
1572			np->rx_ring[entry].rxaddr =
1573				cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1574		}
1575		if (entry == RX_RING_SIZE - 1)
1576			np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1577	}
1578	if (entry >= 0)
1579		writew(entry, np->base + RxDescQIdx);
1580}
1581
1582
1583static void netdev_media_change(struct net_device *dev)
1584{
1585	struct netdev_private *np = netdev_priv(dev);
1586	void __iomem *ioaddr = np->base;
1587	u16 reg0, reg1, reg4, reg5;
1588	u32 new_tx_mode;
1589	u32 new_intr_timer_ctrl;
1590
1591	/* reset status first */
1592	mdio_read(dev, np->phys[0], MII_BMCR);
1593	mdio_read(dev, np->phys[0], MII_BMSR);
1594
1595	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1596	reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1597
1598	if (reg1 & BMSR_LSTATUS) {
1599		/* link is up */
1600		if (reg0 & BMCR_ANENABLE) {
1601			/* autonegotiation is enabled */
1602			reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1603			reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1604			if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1605				np->speed100 = 1;
1606				np->mii_if.full_duplex = 1;
1607			} else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1608				np->speed100 = 1;
1609				np->mii_if.full_duplex = 0;
1610			} else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1611				np->speed100 = 0;
1612				np->mii_if.full_duplex = 1;
1613			} else {
1614				np->speed100 = 0;
1615				np->mii_if.full_duplex = 0;
1616			}
1617		} else {
1618			/* autonegotiation is disabled */
1619			if (reg0 & BMCR_SPEED100)
1620				np->speed100 = 1;
1621			else
1622				np->speed100 = 0;
1623			if (reg0 & BMCR_FULLDPLX)
1624				np->mii_if.full_duplex = 1;
1625			else
1626				np->mii_if.full_duplex = 0;
1627		}
1628		netif_carrier_on(dev);
1629		printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1630		       dev->name,
1631		       np->speed100 ? "100" : "10",
1632		       np->mii_if.full_duplex ? "full" : "half");
1633
1634		new_tx_mode = np->tx_mode & ~FullDuplex;	/* duplex setting */
1635		if (np->mii_if.full_duplex)
1636			new_tx_mode |= FullDuplex;
1637		if (np->tx_mode != new_tx_mode) {
1638			np->tx_mode = new_tx_mode;
1639			writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1640			udelay(1000);
1641			writel(np->tx_mode, ioaddr + TxMode);
1642		}
1643
1644		new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1645		if (np->speed100)
1646			new_intr_timer_ctrl |= Timer10X;
1647		if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1648			np->intr_timer_ctrl = new_intr_timer_ctrl;
1649			writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1650		}
1651	} else {
1652		netif_carrier_off(dev);
1653		printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1654	}
1655}
1656
1657
1658static void netdev_error(struct net_device *dev, int intr_status)
1659{
1660	struct netdev_private *np = netdev_priv(dev);
1661
1662	/* Came close to underrunning the Tx FIFO, increase threshold. */
1663	if (intr_status & IntrTxDataLow) {
1664		if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1665			writel(++np->tx_threshold, np->base + TxThreshold);
1666			printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1667			       dev->name, np->tx_threshold * 16);
1668		} else
1669			printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1670	}
1671	if (intr_status & IntrRxGFPDead) {
1672		dev->stats.rx_fifo_errors++;
1673		dev->stats.rx_errors++;
1674	}
1675	if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1676		dev->stats.tx_fifo_errors++;
1677		dev->stats.tx_errors++;
1678	}
1679	if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1680		printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1681		       dev->name, intr_status);
1682}
1683
1684
1685static struct net_device_stats *get_stats(struct net_device *dev)
1686{
1687	struct netdev_private *np = netdev_priv(dev);
1688	void __iomem *ioaddr = np->base;
1689
1690	/* This adapter architecture needs no SMP locks. */
1691	dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1692	dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1693	dev->stats.tx_packets = readl(ioaddr + 0x57000);
1694	dev->stats.tx_aborted_errors =
1695		readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1696	dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1697	dev->stats.collisions =
1698		readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1699
1700	/* The chip only need report frame silently dropped. */
1701	dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1702	writew(0, ioaddr + RxDMAStatus);
1703	dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1704	dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1705	dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1706	dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1707
1708	return &dev->stats;
1709}
1710
1711#ifdef VLAN_SUPPORT
1712static u32 set_vlan_mode(struct netdev_private *np)
1713{
1714	u32 ret = VlanMode;
1715	u16 vid;
1716	void __iomem *filter_addr = np->base + HashTable + 8;
1717	int vlan_count = 0;
1718
1719	for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1720		if (vlan_count == 32)
1721			break;
1722		writew(vid, filter_addr);
1723		filter_addr += 16;
1724		vlan_count++;
1725	}
1726	if (vlan_count == 32) {
1727		ret |= PerfectFilterVlan;
1728		while (vlan_count < 32) {
1729			writew(0, filter_addr);
1730			filter_addr += 16;
1731			vlan_count++;
1732		}
1733	}
1734	return ret;
1735}
1736#endif /* VLAN_SUPPORT */
1737
1738static void set_rx_mode(struct net_device *dev)
1739{
1740	struct netdev_private *np = netdev_priv(dev);
1741	void __iomem *ioaddr = np->base;
1742	u32 rx_mode = MinVLANPrio;
1743	struct netdev_hw_addr *ha;
1744	int i;
1745
1746#ifdef VLAN_SUPPORT
1747	rx_mode |= set_vlan_mode(np);
1748#endif /* VLAN_SUPPORT */
1749
1750	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1751		rx_mode |= AcceptAll;
1752	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1753		   (dev->flags & IFF_ALLMULTI)) {
1754		/* Too many to match, or accept all multicasts. */
1755		rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1756	} else if (netdev_mc_count(dev) <= 14) {
1757		/* Use the 16 element perfect filter, skip first two entries. */
1758		void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1759		__be16 *eaddrs;
1760		netdev_for_each_mc_addr(ha, dev) {
1761			eaddrs = (__be16 *) ha->addr;
1762			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1763			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1764			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1765		}
1766		eaddrs = (__be16 *)dev->dev_addr;
1767		i = netdev_mc_count(dev) + 2;
1768		while (i++ < 16) {
1769			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1770			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1771			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1772		}
1773		rx_mode |= AcceptBroadcast|PerfectFilter;
1774	} else {
1775		/* Must use a multicast hash table. */
1776		void __iomem *filter_addr;
1777		__be16 *eaddrs;
1778		__le16 mc_filter[32] __attribute__ ((aligned(sizeof(long))));	/* Multicast hash filter */
1779
1780		memset(mc_filter, 0, sizeof(mc_filter));
1781		netdev_for_each_mc_addr(ha, dev) {
1782			/* The chip uses the upper 9 CRC bits
1783			   as index into the hash table */
1784			int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1785			__le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1786
1787			*fptr |= cpu_to_le32(1 << (bit_nr & 31));
1788		}
1789		/* Clear the perfect filter list, skip first two entries. */
1790		filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1791		eaddrs = (__be16 *)dev->dev_addr;
1792		for (i = 2; i < 16; i++) {
1793			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1794			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1795			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1796		}
1797		for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1798			writew(mc_filter[i], filter_addr);
1799		rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1800	}
1801	writel(rx_mode, ioaddr + RxFilterMode);
1802}
1803
1804static int check_if_running(struct net_device *dev)
1805{
1806	if (!netif_running(dev))
1807		return -EINVAL;
1808	return 0;
1809}
1810
1811static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1812{
1813	struct netdev_private *np = netdev_priv(dev);
1814	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1815	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1816	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1817}
1818
1819static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
 
1820{
1821	struct netdev_private *np = netdev_priv(dev);
1822	spin_lock_irq(&np->lock);
1823	mii_ethtool_gset(&np->mii_if, ecmd);
1824	spin_unlock_irq(&np->lock);
1825	return 0;
1826}
1827
1828static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
 
1829{
1830	struct netdev_private *np = netdev_priv(dev);
1831	int res;
1832	spin_lock_irq(&np->lock);
1833	res = mii_ethtool_sset(&np->mii_if, ecmd);
1834	spin_unlock_irq(&np->lock);
1835	check_duplex(dev);
1836	return res;
1837}
1838
1839static int nway_reset(struct net_device *dev)
1840{
1841	struct netdev_private *np = netdev_priv(dev);
1842	return mii_nway_restart(&np->mii_if);
1843}
1844
1845static u32 get_link(struct net_device *dev)
1846{
1847	struct netdev_private *np = netdev_priv(dev);
1848	return mii_link_ok(&np->mii_if);
1849}
1850
1851static u32 get_msglevel(struct net_device *dev)
1852{
1853	return debug;
1854}
1855
1856static void set_msglevel(struct net_device *dev, u32 val)
1857{
1858	debug = val;
1859}
1860
1861static const struct ethtool_ops ethtool_ops = {
1862	.begin = check_if_running,
1863	.get_drvinfo = get_drvinfo,
1864	.get_settings = get_settings,
1865	.set_settings = set_settings,
1866	.nway_reset = nway_reset,
1867	.get_link = get_link,
1868	.get_msglevel = get_msglevel,
1869	.set_msglevel = set_msglevel,
 
 
1870};
1871
1872static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1873{
1874	struct netdev_private *np = netdev_priv(dev);
1875	struct mii_ioctl_data *data = if_mii(rq);
1876	int rc;
1877
1878	if (!netif_running(dev))
1879		return -EINVAL;
1880
1881	spin_lock_irq(&np->lock);
1882	rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1883	spin_unlock_irq(&np->lock);
1884
1885	if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1886		check_duplex(dev);
1887
1888	return rc;
1889}
1890
1891static int netdev_close(struct net_device *dev)
1892{
1893	struct netdev_private *np = netdev_priv(dev);
1894	void __iomem *ioaddr = np->base;
1895	int i;
1896
1897	netif_stop_queue(dev);
1898
1899	napi_disable(&np->napi);
1900
1901	if (debug > 1) {
1902		printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1903			   dev->name, (int) readl(ioaddr + IntrStatus));
1904		printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1905		       dev->name, np->cur_tx, np->dirty_tx,
1906		       np->cur_rx, np->dirty_rx);
1907	}
1908
1909	/* Disable interrupts by clearing the interrupt mask. */
1910	writel(0, ioaddr + IntrEnable);
1911
1912	/* Stop the chip's Tx and Rx processes. */
1913	writel(0, ioaddr + GenCtrl);
1914	readl(ioaddr + GenCtrl);
1915
1916	if (debug > 5) {
1917		printk(KERN_DEBUG"  Tx ring at %#llx:\n",
1918		       (long long) np->tx_ring_dma);
1919		for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1920			printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1921			       i, le32_to_cpu(np->tx_ring[i].status),
1922			       (long long) dma_to_cpu(np->tx_ring[i].addr),
1923			       le32_to_cpu(np->tx_done_q[i].status));
1924		printk(KERN_DEBUG "  Rx ring at %#llx -> %p:\n",
1925		       (long long) np->rx_ring_dma, np->rx_done_q);
1926		if (np->rx_done_q)
1927			for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1928				printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1929				       i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1930		}
1931	}
1932
1933	free_irq(np->pci_dev->irq, dev);
1934
1935	/* Free all the skbuffs in the Rx queue. */
1936	for (i = 0; i < RX_RING_SIZE; i++) {
1937		np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1938		if (np->rx_info[i].skb != NULL) {
1939			pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
 
 
1940			dev_kfree_skb(np->rx_info[i].skb);
1941		}
1942		np->rx_info[i].skb = NULL;
1943		np->rx_info[i].mapping = 0;
1944	}
1945	for (i = 0; i < TX_RING_SIZE; i++) {
1946		struct sk_buff *skb = np->tx_info[i].skb;
1947		if (skb == NULL)
1948			continue;
1949		pci_unmap_single(np->pci_dev,
1950				 np->tx_info[i].mapping,
1951				 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1952		np->tx_info[i].mapping = 0;
1953		dev_kfree_skb(skb);
1954		np->tx_info[i].skb = NULL;
1955	}
1956
1957	return 0;
1958}
1959
1960#ifdef CONFIG_PM
1961static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1962{
1963	struct net_device *dev = pci_get_drvdata(pdev);
1964
1965	if (netif_running(dev)) {
1966		netif_device_detach(dev);
1967		netdev_close(dev);
1968	}
1969
1970	pci_save_state(pdev);
1971	pci_set_power_state(pdev, pci_choose_state(pdev,state));
1972
1973	return 0;
1974}
1975
1976static int starfire_resume(struct pci_dev *pdev)
1977{
1978	struct net_device *dev = pci_get_drvdata(pdev);
1979
1980	pci_set_power_state(pdev, PCI_D0);
1981	pci_restore_state(pdev);
1982
1983	if (netif_running(dev)) {
1984		netdev_open(dev);
1985		netif_device_attach(dev);
1986	}
1987
1988	return 0;
1989}
1990#endif /* CONFIG_PM */
1991
1992
1993static void __devexit starfire_remove_one (struct pci_dev *pdev)
1994{
1995	struct net_device *dev = pci_get_drvdata(pdev);
1996	struct netdev_private *np = netdev_priv(dev);
1997
1998	BUG_ON(!dev);
1999
2000	unregister_netdev(dev);
2001
2002	if (np->queue_mem)
2003		pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
 
2004
2005
2006	/* XXX: add wakeup code -- requires firmware for MagicPacket */
2007	pci_set_power_state(pdev, PCI_D3hot);	/* go to sleep in D3 mode */
2008	pci_disable_device(pdev);
2009
2010	iounmap(np->base);
2011	pci_release_regions(pdev);
2012
2013	pci_set_drvdata(pdev, NULL);
2014	free_netdev(dev);			/* Will also free np!! */
2015}
2016
 
2017
2018static struct pci_driver starfire_driver = {
2019	.name		= DRV_NAME,
2020	.probe		= starfire_init_one,
2021	.remove		= __devexit_p(starfire_remove_one),
2022#ifdef CONFIG_PM
2023	.suspend	= starfire_suspend,
2024	.resume		= starfire_resume,
2025#endif /* CONFIG_PM */
2026	.id_table	= starfire_pci_tbl,
2027};
2028
2029
2030static int __init starfire_init (void)
2031{
2032/* when a module, this is printed whether or not devices are found in probe */
2033#ifdef MODULE
2034	printk(version);
2035
2036	printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2037#endif
2038
2039	BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2040
2041	return pci_register_driver(&starfire_driver);
2042}
2043
2044
2045static void __exit starfire_cleanup (void)
2046{
2047	pci_unregister_driver (&starfire_driver);
2048}
2049
2050
2051module_init(starfire_init);
2052module_exit(starfire_cleanup);
2053
2054
2055/*
2056 * Local variables:
2057 *  c-basic-offset: 8
2058 *  tab-width: 8
2059 * End:
2060 */