Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright (C) 2017 Free Electrons
  4 * Copyright (C) 2017 NextThing Co
  5 *
  6 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
  7 */
  8
  9#include <linux/sizes.h>
 10#include <linux/slab.h>
 11
 12#include "internals.h"
 13
 14#define NAND_HYNIX_CMD_SET_PARAMS	0x36
 15#define NAND_HYNIX_CMD_APPLY_PARAMS	0x16
 16
 17#define NAND_HYNIX_1XNM_RR_REPEAT	8
 18
 19/**
 20 * struct hynix_read_retry - read-retry data
 21 * @nregs: number of register to set when applying a new read-retry mode
 22 * @regs: register offsets (NAND chip dependent)
 23 * @values: array of values to set in registers. The array size is equal to
 24 *	    (nregs * nmodes)
 25 */
 26struct hynix_read_retry {
 27	int nregs;
 28	const u8 *regs;
 29	u8 values[];
 30};
 31
 32/**
 33 * struct hynix_nand - private Hynix NAND struct
 34 * @nand_technology: manufacturing process expressed in picometer
 35 * @read_retry: read-retry information
 36 */
 37struct hynix_nand {
 38	const struct hynix_read_retry *read_retry;
 39};
 40
 41/**
 42 * struct hynix_read_retry_otp - structure describing how the read-retry OTP
 43 *				 area
 44 * @nregs: number of hynix private registers to set before reading the reading
 45 *	   the OTP area
 46 * @regs: registers that should be configured
 47 * @values: values that should be set in regs
 48 * @page: the address to pass to the READ_PAGE command. Depends on the NAND
 49 *	  chip
 50 * @size: size of the read-retry OTP section
 51 */
 52struct hynix_read_retry_otp {
 53	int nregs;
 54	const u8 *regs;
 55	const u8 *values;
 56	int page;
 57	int size;
 58};
 59
 60static bool hynix_nand_has_valid_jedecid(struct nand_chip *chip)
 61{
 62	u8 jedecid[5] = { };
 63	int ret;
 64
 65	ret = nand_readid_op(chip, 0x40, jedecid, sizeof(jedecid));
 66	if (ret)
 67		return false;
 68
 69	return !strncmp("JEDEC", jedecid, sizeof(jedecid));
 70}
 71
 72static int hynix_nand_cmd_op(struct nand_chip *chip, u8 cmd)
 73{
 74	if (nand_has_exec_op(chip)) {
 75		struct nand_op_instr instrs[] = {
 76			NAND_OP_CMD(cmd, 0),
 77		};
 78		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
 79
 80		return nand_exec_op(chip, &op);
 81	}
 82
 83	chip->legacy.cmdfunc(chip, cmd, -1, -1);
 84
 85	return 0;
 86}
 87
 88static int hynix_nand_reg_write_op(struct nand_chip *chip, u8 addr, u8 val)
 89{
 90	u16 column = ((u16)addr << 8) | addr;
 91
 92	if (nand_has_exec_op(chip)) {
 93		struct nand_op_instr instrs[] = {
 94			NAND_OP_ADDR(1, &addr, 0),
 95			NAND_OP_8BIT_DATA_OUT(1, &val, 0),
 96		};
 97		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
 98
 99		return nand_exec_op(chip, &op);
100	}
101
102	chip->legacy.cmdfunc(chip, NAND_CMD_NONE, column, -1);
103	chip->legacy.write_byte(chip, val);
104
105	return 0;
106}
107
108static int hynix_nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
109{
110	struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
111	const u8 *values;
112	int i, ret;
113
114	values = hynix->read_retry->values +
115		 (retry_mode * hynix->read_retry->nregs);
116
117	/* Enter 'Set Hynix Parameters' mode */
118	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
119	if (ret)
120		return ret;
121
122	/*
123	 * Configure the NAND in the requested read-retry mode.
124	 * This is done by setting pre-defined values in internal NAND
125	 * registers.
126	 *
127	 * The set of registers is NAND specific, and the values are either
128	 * predefined or extracted from an OTP area on the NAND (values are
129	 * probably tweaked at production in this case).
130	 */
131	for (i = 0; i < hynix->read_retry->nregs; i++) {
132		ret = hynix_nand_reg_write_op(chip, hynix->read_retry->regs[i],
133					      values[i]);
134		if (ret)
135			return ret;
136	}
137
138	/* Apply the new settings. */
139	return hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
140}
141
142/**
143 * hynix_get_majority - get the value that is occurring the most in a given
144 *			set of values
145 * @in: the array of values to test
146 * @repeat: the size of the in array
147 * @out: pointer used to store the output value
148 *
149 * This function implements the 'majority check' logic that is supposed to
150 * overcome the unreliability of MLC NANDs when reading the OTP area storing
151 * the read-retry parameters.
152 *
153 * It's based on a pretty simple assumption: if we repeat the same value
154 * several times and then take the one that is occurring the most, we should
155 * find the correct value.
156 * Let's hope this dummy algorithm prevents us from losing the read-retry
157 * parameters.
158 */
159static int hynix_get_majority(const u8 *in, int repeat, u8 *out)
160{
161	int i, j, half = repeat / 2;
162
163	/*
164	 * We only test the first half of the in array because we must ensure
165	 * that the value is at least occurring repeat / 2 times.
166	 *
167	 * This loop is suboptimal since we may count the occurrences of the
168	 * same value several time, but we are doing that on small sets, which
169	 * makes it acceptable.
170	 */
171	for (i = 0; i < half; i++) {
172		int cnt = 0;
173		u8 val = in[i];
174
175		/* Count all values that are matching the one at index i. */
176		for (j = i + 1; j < repeat; j++) {
177			if (in[j] == val)
178				cnt++;
179		}
180
181		/* We found a value occurring more than repeat / 2. */
182		if (cnt > half) {
183			*out = val;
184			return 0;
185		}
186	}
187
188	return -EIO;
189}
190
191static int hynix_read_rr_otp(struct nand_chip *chip,
192			     const struct hynix_read_retry_otp *info,
193			     void *buf)
194{
195	int i, ret;
196
197	ret = nand_reset_op(chip);
198	if (ret)
199		return ret;
200
201	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
202	if (ret)
203		return ret;
204
205	for (i = 0; i < info->nregs; i++) {
206		ret = hynix_nand_reg_write_op(chip, info->regs[i],
207					      info->values[i]);
208		if (ret)
209			return ret;
210	}
211
212	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
213	if (ret)
214		return ret;
215
216	/* Sequence to enter OTP mode? */
217	ret = hynix_nand_cmd_op(chip, 0x17);
218	if (ret)
219		return ret;
220
221	ret = hynix_nand_cmd_op(chip, 0x4);
222	if (ret)
223		return ret;
224
225	ret = hynix_nand_cmd_op(chip, 0x19);
226	if (ret)
227		return ret;
228
229	/* Now read the page */
230	ret = nand_read_page_op(chip, info->page, 0, buf, info->size);
231	if (ret)
232		return ret;
233
234	/* Put everything back to normal */
235	ret = nand_reset_op(chip);
236	if (ret)
237		return ret;
238
239	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
240	if (ret)
241		return ret;
242
243	ret = hynix_nand_reg_write_op(chip, 0x38, 0);
244	if (ret)
245		return ret;
246
247	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
248	if (ret)
249		return ret;
250
251	return nand_read_page_op(chip, 0, 0, NULL, 0);
252}
253
254#define NAND_HYNIX_1XNM_RR_COUNT_OFFS				0
255#define NAND_HYNIX_1XNM_RR_REG_COUNT_OFFS			8
256#define NAND_HYNIX_1XNM_RR_SET_OFFS(x, setsize, inv)		\
257	(16 + ((((x) * 2) + ((inv) ? 1 : 0)) * (setsize)))
258
259static int hynix_mlc_1xnm_rr_value(const u8 *buf, int nmodes, int nregs,
260				   int mode, int reg, bool inv, u8 *val)
261{
262	u8 tmp[NAND_HYNIX_1XNM_RR_REPEAT];
263	int val_offs = (mode * nregs) + reg;
264	int set_size = nmodes * nregs;
265	int i, ret;
266
267	for (i = 0; i < NAND_HYNIX_1XNM_RR_REPEAT; i++) {
268		int set_offs = NAND_HYNIX_1XNM_RR_SET_OFFS(i, set_size, inv);
269
270		tmp[i] = buf[val_offs + set_offs];
271	}
272
273	ret = hynix_get_majority(tmp, NAND_HYNIX_1XNM_RR_REPEAT, val);
274	if (ret)
275		return ret;
276
277	if (inv)
278		*val = ~*val;
279
280	return 0;
281}
282
283static u8 hynix_1xnm_mlc_read_retry_regs[] = {
284	0xcc, 0xbf, 0xaa, 0xab, 0xcd, 0xad, 0xae, 0xaf
285};
286
287static int hynix_mlc_1xnm_rr_init(struct nand_chip *chip,
288				  const struct hynix_read_retry_otp *info)
289{
290	struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
291	struct hynix_read_retry *rr = NULL;
292	int ret, i, j;
293	u8 nregs, nmodes;
294	u8 *buf;
295
296	buf = kmalloc(info->size, GFP_KERNEL);
297	if (!buf)
298		return -ENOMEM;
299
300	ret = hynix_read_rr_otp(chip, info, buf);
301	if (ret)
302		goto out;
303
304	ret = hynix_get_majority(buf, NAND_HYNIX_1XNM_RR_REPEAT,
305				 &nmodes);
306	if (ret)
307		goto out;
308
309	ret = hynix_get_majority(buf + NAND_HYNIX_1XNM_RR_REPEAT,
310				 NAND_HYNIX_1XNM_RR_REPEAT,
311				 &nregs);
312	if (ret)
313		goto out;
314
315	rr = kzalloc(sizeof(*rr) + (nregs * nmodes), GFP_KERNEL);
316	if (!rr) {
317		ret = -ENOMEM;
318		goto out;
319	}
320
321	for (i = 0; i < nmodes; i++) {
322		for (j = 0; j < nregs; j++) {
323			u8 *val = rr->values + (i * nregs);
324
325			ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
326						      false, val);
327			if (!ret)
328				continue;
329
330			ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
331						      true, val);
332			if (ret)
333				goto out;
334		}
335	}
336
337	rr->nregs = nregs;
338	rr->regs = hynix_1xnm_mlc_read_retry_regs;
339	hynix->read_retry = rr;
340	chip->ops.setup_read_retry = hynix_nand_setup_read_retry;
341	chip->read_retries = nmodes;
342
343out:
344	kfree(buf);
345
346	if (ret)
347		kfree(rr);
348
349	return ret;
350}
351
352static const u8 hynix_mlc_1xnm_rr_otp_regs[] = { 0x38 };
353static const u8 hynix_mlc_1xnm_rr_otp_values[] = { 0x52 };
354
355static const struct hynix_read_retry_otp hynix_mlc_1xnm_rr_otps[] = {
356	{
357		.nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
358		.regs = hynix_mlc_1xnm_rr_otp_regs,
359		.values = hynix_mlc_1xnm_rr_otp_values,
360		.page = 0x21f,
361		.size = 784
362	},
363	{
364		.nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
365		.regs = hynix_mlc_1xnm_rr_otp_regs,
366		.values = hynix_mlc_1xnm_rr_otp_values,
367		.page = 0x200,
368		.size = 528,
369	},
370};
371
372static int hynix_nand_rr_init(struct nand_chip *chip)
373{
374	int i, ret = 0;
375	bool valid_jedecid;
376
377	valid_jedecid = hynix_nand_has_valid_jedecid(chip);
378
379	/*
380	 * We only support read-retry for 1xnm NANDs, and those NANDs all
381	 * expose a valid JEDEC ID.
382	 */
383	if (valid_jedecid) {
384		u8 nand_tech = chip->id.data[5] >> 4;
385
386		/* 1xnm technology */
387		if (nand_tech == 4) {
388			for (i = 0; i < ARRAY_SIZE(hynix_mlc_1xnm_rr_otps);
389			     i++) {
390				/*
391				 * FIXME: Hynix recommend to copy the
392				 * read-retry OTP area into a normal page.
393				 */
394				ret = hynix_mlc_1xnm_rr_init(chip,
395						hynix_mlc_1xnm_rr_otps);
396				if (!ret)
397					break;
398			}
399		}
400	}
401
402	if (ret)
403		pr_warn("failed to initialize read-retry infrastructure");
404
405	return 0;
406}
407
408static void hynix_nand_extract_oobsize(struct nand_chip *chip,
409				       bool valid_jedecid)
410{
411	struct mtd_info *mtd = nand_to_mtd(chip);
412	struct nand_memory_organization *memorg;
413	u8 oobsize;
414
415	memorg = nanddev_get_memorg(&chip->base);
416
417	oobsize = ((chip->id.data[3] >> 2) & 0x3) |
418		  ((chip->id.data[3] >> 4) & 0x4);
419
420	if (valid_jedecid) {
421		switch (oobsize) {
422		case 0:
423			memorg->oobsize = 2048;
424			break;
425		case 1:
426			memorg->oobsize = 1664;
427			break;
428		case 2:
429			memorg->oobsize = 1024;
430			break;
431		case 3:
432			memorg->oobsize = 640;
433			break;
434		default:
435			/*
436			 * We should never reach this case, but if that
437			 * happens, this probably means Hynix decided to use
438			 * a different extended ID format, and we should find
439			 * a way to support it.
440			 */
441			WARN(1, "Invalid OOB size");
442			break;
443		}
444	} else {
445		switch (oobsize) {
446		case 0:
447			memorg->oobsize = 128;
448			break;
449		case 1:
450			memorg->oobsize = 224;
451			break;
452		case 2:
453			memorg->oobsize = 448;
454			break;
455		case 3:
456			memorg->oobsize = 64;
457			break;
458		case 4:
459			memorg->oobsize = 32;
460			break;
461		case 5:
462			memorg->oobsize = 16;
463			break;
464		case 6:
465			memorg->oobsize = 640;
466			break;
467		default:
468			/*
469			 * We should never reach this case, but if that
470			 * happens, this probably means Hynix decided to use
471			 * a different extended ID format, and we should find
472			 * a way to support it.
473			 */
474			WARN(1, "Invalid OOB size");
475			break;
476		}
477
478		/*
479		 * The datasheet of H27UCG8T2BTR mentions that the "Redundant
480		 * Area Size" is encoded "per 8KB" (page size). This chip uses
481		 * a page size of 16KiB. The datasheet mentions an OOB size of
482		 * 1.280 bytes, but the OOB size encoded in the ID bytes (using
483		 * the existing logic above) is 640 bytes.
484		 * Update the OOB size for this chip by taking the value
485		 * determined above and scaling it to the actual page size (so
486		 * the actual OOB size for this chip is: 640 * 16k / 8k).
487		 */
488		if (chip->id.data[1] == 0xde)
489			memorg->oobsize *= memorg->pagesize / SZ_8K;
490	}
491
492	mtd->oobsize = memorg->oobsize;
493}
494
495static void hynix_nand_extract_ecc_requirements(struct nand_chip *chip,
496						bool valid_jedecid)
497{
498	struct nand_device *base = &chip->base;
499	struct nand_ecc_props requirements = {};
500	u8 ecc_level = (chip->id.data[4] >> 4) & 0x7;
501
502	if (valid_jedecid) {
503		/* Reference: H27UCG8T2E datasheet */
504		requirements.step_size = 1024;
505
506		switch (ecc_level) {
507		case 0:
508			requirements.step_size = 0;
509			requirements.strength = 0;
510			break;
511		case 1:
512			requirements.strength = 4;
513			break;
514		case 2:
515			requirements.strength = 24;
516			break;
517		case 3:
518			requirements.strength = 32;
519			break;
520		case 4:
521			requirements.strength = 40;
522			break;
523		case 5:
524			requirements.strength = 50;
525			break;
526		case 6:
527			requirements.strength = 60;
528			break;
529		default:
530			/*
531			 * We should never reach this case, but if that
532			 * happens, this probably means Hynix decided to use
533			 * a different extended ID format, and we should find
534			 * a way to support it.
535			 */
536			WARN(1, "Invalid ECC requirements");
537		}
538	} else {
539		/*
540		 * The ECC requirements field meaning depends on the
541		 * NAND technology.
542		 */
543		u8 nand_tech = chip->id.data[5] & 0x7;
544
545		if (nand_tech < 3) {
546			/* > 26nm, reference: H27UBG8T2A datasheet */
547			if (ecc_level < 5) {
548				requirements.step_size = 512;
549				requirements.strength = 1 << ecc_level;
550			} else if (ecc_level < 7) {
551				if (ecc_level == 5)
552					requirements.step_size = 2048;
553				else
554					requirements.step_size = 1024;
555				requirements.strength = 24;
556			} else {
557				/*
558				 * We should never reach this case, but if that
559				 * happens, this probably means Hynix decided
560				 * to use a different extended ID format, and
561				 * we should find a way to support it.
562				 */
563				WARN(1, "Invalid ECC requirements");
564			}
565		} else {
566			/* <= 26nm, reference: H27UBG8T2B datasheet */
567			if (!ecc_level) {
568				requirements.step_size = 0;
569				requirements.strength = 0;
570			} else if (ecc_level < 5) {
571				requirements.step_size = 512;
572				requirements.strength = 1 << (ecc_level - 1);
573			} else {
574				requirements.step_size = 1024;
575				requirements.strength = 24 +
576							(8 * (ecc_level - 5));
577			}
578		}
579	}
580
581	nanddev_set_ecc_requirements(base, &requirements);
582}
583
584static void hynix_nand_extract_scrambling_requirements(struct nand_chip *chip,
585						       bool valid_jedecid)
586{
587	u8 nand_tech;
588
589	/* We need scrambling on all TLC NANDs*/
590	if (nanddev_bits_per_cell(&chip->base) > 2)
591		chip->options |= NAND_NEED_SCRAMBLING;
592
593	/* And on MLC NANDs with sub-3xnm process */
594	if (valid_jedecid) {
595		nand_tech = chip->id.data[5] >> 4;
596
597		/* < 3xnm */
598		if (nand_tech > 0)
599			chip->options |= NAND_NEED_SCRAMBLING;
600	} else {
601		nand_tech = chip->id.data[5] & 0x7;
602
603		/* < 32nm */
604		if (nand_tech > 2)
605			chip->options |= NAND_NEED_SCRAMBLING;
606	}
607}
608
609static void hynix_nand_decode_id(struct nand_chip *chip)
610{
611	struct mtd_info *mtd = nand_to_mtd(chip);
612	struct nand_memory_organization *memorg;
613	bool valid_jedecid;
614	u8 tmp;
615
616	memorg = nanddev_get_memorg(&chip->base);
617
618	/*
619	 * Exclude all SLC NANDs from this advanced detection scheme.
620	 * According to the ranges defined in several datasheets, it might
621	 * appear that even SLC NANDs could fall in this extended ID scheme.
622	 * If that the case rework the test to let SLC NANDs go through the
623	 * detection process.
624	 */
625	if (chip->id.len < 6 || nand_is_slc(chip)) {
626		nand_decode_ext_id(chip);
627		return;
628	}
629
630	/* Extract pagesize */
631	memorg->pagesize = 2048 << (chip->id.data[3] & 0x03);
632	mtd->writesize = memorg->pagesize;
633
634	tmp = (chip->id.data[3] >> 4) & 0x3;
635	/*
636	 * When bit7 is set that means we start counting at 1MiB, otherwise
637	 * we start counting at 128KiB and shift this value the content of
638	 * ID[3][4:5].
639	 * The only exception is when ID[3][4:5] == 3 and ID[3][7] == 0, in
640	 * this case the erasesize is set to 768KiB.
641	 */
642	if (chip->id.data[3] & 0x80) {
643		memorg->pages_per_eraseblock = (SZ_1M << tmp) /
644					       memorg->pagesize;
645		mtd->erasesize = SZ_1M << tmp;
646	} else if (tmp == 3) {
647		memorg->pages_per_eraseblock = (SZ_512K + SZ_256K) /
648					       memorg->pagesize;
649		mtd->erasesize = SZ_512K + SZ_256K;
650	} else {
651		memorg->pages_per_eraseblock = (SZ_128K << tmp) /
652					       memorg->pagesize;
653		mtd->erasesize = SZ_128K << tmp;
654	}
655
656	/*
657	 * Modern Toggle DDR NANDs have a valid JEDECID even though they are
658	 * not exposing a valid JEDEC parameter table.
659	 * These NANDs use a different NAND ID scheme.
660	 */
661	valid_jedecid = hynix_nand_has_valid_jedecid(chip);
662
663	hynix_nand_extract_oobsize(chip, valid_jedecid);
664	hynix_nand_extract_ecc_requirements(chip, valid_jedecid);
665	hynix_nand_extract_scrambling_requirements(chip, valid_jedecid);
666}
667
668static void hynix_nand_cleanup(struct nand_chip *chip)
669{
670	struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
671
672	if (!hynix)
673		return;
674
675	kfree(hynix->read_retry);
676	kfree(hynix);
677	nand_set_manufacturer_data(chip, NULL);
678}
679
680static int
681h27ucg8t2atrbc_choose_interface_config(struct nand_chip *chip,
682				       struct nand_interface_config *iface)
683{
684	onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, 4);
685
686	return nand_choose_best_sdr_timings(chip, iface, NULL);
687}
688
689static int h27ucg8t2etrbc_init(struct nand_chip *chip)
690{
691	struct mtd_info *mtd = nand_to_mtd(chip);
692
693	chip->options |= NAND_NEED_SCRAMBLING;
694	mtd_set_pairing_scheme(mtd, &dist3_pairing_scheme);
695
696	return 0;
697}
698
699static int hynix_nand_init(struct nand_chip *chip)
700{
701	struct hynix_nand *hynix;
702	int ret;
703
704	if (!nand_is_slc(chip))
705		chip->options |= NAND_BBM_LASTPAGE;
706	else
707		chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
708
709	hynix = kzalloc(sizeof(*hynix), GFP_KERNEL);
710	if (!hynix)
711		return -ENOMEM;
712
713	nand_set_manufacturer_data(chip, hynix);
714
715	if (!strncmp("H27UCG8T2ATR-BC", chip->parameters.model,
716		     sizeof("H27UCG8T2ATR-BC") - 1))
717		chip->ops.choose_interface_config =
718			h27ucg8t2atrbc_choose_interface_config;
719
720	if (!strncmp("H27UCG8T2ETR-BC", chip->parameters.model,
721		     sizeof("H27UCG8T2ETR-BC") - 1))
722		h27ucg8t2etrbc_init(chip);
723
724	ret = hynix_nand_rr_init(chip);
725	if (ret)
726		hynix_nand_cleanup(chip);
727
728	return ret;
729}
730
731static void hynix_fixup_onfi_param_page(struct nand_chip *chip,
732					struct nand_onfi_params *p)
733{
734	/*
735	 * Certain chips might report a 0 on sdr_timing_mode field
736	 * (bytes 129-130). This has been seen on H27U4G8F2GDA-BI.
737	 * According to ONFI specification, bit 0 of this field "shall be 1".
738	 * Forcibly set this bit.
739	 */
740	p->sdr_timing_modes |= cpu_to_le16(BIT(0));
741}
742
743const struct nand_manufacturer_ops hynix_nand_manuf_ops = {
744	.detect = hynix_nand_decode_id,
745	.init = hynix_nand_init,
746	.cleanup = hynix_nand_cleanup,
747	.fixup_onfi_param_page = hynix_fixup_onfi_param_page,
748};