Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
Note: File does not exist in v6.8.
  1/*
  2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
  3 *
  4 * Copyright © 2006 Texas Instruments.
  5 *
  6 * Port to 2.6.23 Copyright © 2008 by:
  7 *   Sander Huijsen <Shuijsen@optelecom-nkf.com>
  8 *   Troy Kisky <troy.kisky@boundarydevices.com>
  9 *   Dirk Behme <Dirk.Behme@gmail.com>
 10 *
 11 * This program is free software; you can redistribute it and/or modify
 12 * it under the terms of the GNU General Public License as published by
 13 * the Free Software Foundation; either version 2 of the License, or
 14 * (at your option) any later version.
 15 *
 16 * This program is distributed in the hope that it will be useful,
 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 19 * GNU General Public License for more details.
 20 *
 21 * You should have received a copy of the GNU General Public License
 22 * along with this program; if not, write to the Free Software
 23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 24 */
 25
 26#include <linux/kernel.h>
 27#include <linux/init.h>
 28#include <linux/module.h>
 29#include <linux/platform_device.h>
 30#include <linux/err.h>
 31#include <linux/clk.h>
 32#include <linux/io.h>
 33#include <linux/mtd/nand.h>
 34#include <linux/mtd/partitions.h>
 35#include <linux/slab.h>
 36
 37#include <mach/nand.h>
 38#include <mach/aemif.h>
 39
 40/*
 41 * This is a device driver for the NAND flash controller found on the
 42 * various DaVinci family chips.  It handles up to four SoC chipselects,
 43 * and some flavors of secondary chipselect (e.g. based on A12) as used
 44 * with multichip packages.
 45 *
 46 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
 47 * available on chips like the DM355 and OMAP-L137 and needed with the
 48 * more error-prone MLC NAND chips.
 49 *
 50 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
 51 * outputs in a "wire-AND" configuration, with no per-chip signals.
 52 */
 53struct davinci_nand_info {
 54	struct mtd_info		mtd;
 55	struct nand_chip	chip;
 56	struct nand_ecclayout	ecclayout;
 57
 58	struct device		*dev;
 59	struct clk		*clk;
 60
 61	bool			is_readmode;
 62
 63	void __iomem		*base;
 64	void __iomem		*vaddr;
 65
 66	uint32_t		ioaddr;
 67	uint32_t		current_cs;
 68
 69	uint32_t		mask_chipsel;
 70	uint32_t		mask_ale;
 71	uint32_t		mask_cle;
 72
 73	uint32_t		core_chipsel;
 74
 75	struct davinci_aemif_timing	*timing;
 76};
 77
 78static DEFINE_SPINLOCK(davinci_nand_lock);
 79static bool ecc4_busy;
 80
 81#define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
 82
 83
 84static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
 85		int offset)
 86{
 87	return __raw_readl(info->base + offset);
 88}
 89
 90static inline void davinci_nand_writel(struct davinci_nand_info *info,
 91		int offset, unsigned long value)
 92{
 93	__raw_writel(value, info->base + offset);
 94}
 95
 96/*----------------------------------------------------------------------*/
 97
 98/*
 99 * Access to hardware control lines:  ALE, CLE, secondary chipselect.
100 */
101
102static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
103				   unsigned int ctrl)
104{
105	struct davinci_nand_info	*info = to_davinci_nand(mtd);
106	uint32_t			addr = info->current_cs;
107	struct nand_chip		*nand = mtd->priv;
108
109	/* Did the control lines change? */
110	if (ctrl & NAND_CTRL_CHANGE) {
111		if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
112			addr |= info->mask_cle;
113		else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
114			addr |= info->mask_ale;
115
116		nand->IO_ADDR_W = (void __iomem __force *)addr;
117	}
118
119	if (cmd != NAND_CMD_NONE)
120		iowrite8(cmd, nand->IO_ADDR_W);
121}
122
123static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
124{
125	struct davinci_nand_info	*info = to_davinci_nand(mtd);
126	uint32_t			addr = info->ioaddr;
127
128	/* maybe kick in a second chipselect */
129	if (chip > 0)
130		addr |= info->mask_chipsel;
131	info->current_cs = addr;
132
133	info->chip.IO_ADDR_W = (void __iomem __force *)addr;
134	info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
135}
136
137/*----------------------------------------------------------------------*/
138
139/*
140 * 1-bit hardware ECC ... context maintained for each core chipselect
141 */
142
143static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
144{
145	struct davinci_nand_info *info = to_davinci_nand(mtd);
146
147	return davinci_nand_readl(info, NANDF1ECC_OFFSET
148			+ 4 * info->core_chipsel);
149}
150
151static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
152{
153	struct davinci_nand_info *info;
154	uint32_t nandcfr;
155	unsigned long flags;
156
157	info = to_davinci_nand(mtd);
158
159	/* Reset ECC hardware */
160	nand_davinci_readecc_1bit(mtd);
161
162	spin_lock_irqsave(&davinci_nand_lock, flags);
163
164	/* Restart ECC hardware */
165	nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
166	nandcfr |= BIT(8 + info->core_chipsel);
167	davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
168
169	spin_unlock_irqrestore(&davinci_nand_lock, flags);
170}
171
172/*
173 * Read hardware ECC value and pack into three bytes
174 */
175static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
176				      const u_char *dat, u_char *ecc_code)
177{
178	unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
179	unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
180
181	/* invert so that erased block ecc is correct */
182	ecc24 = ~ecc24;
183	ecc_code[0] = (u_char)(ecc24);
184	ecc_code[1] = (u_char)(ecc24 >> 8);
185	ecc_code[2] = (u_char)(ecc24 >> 16);
186
187	return 0;
188}
189
190static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
191				     u_char *read_ecc, u_char *calc_ecc)
192{
193	struct nand_chip *chip = mtd->priv;
194	uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
195					  (read_ecc[2] << 16);
196	uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
197					  (calc_ecc[2] << 16);
198	uint32_t diff = eccCalc ^ eccNand;
199
200	if (diff) {
201		if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
202			/* Correctable error */
203			if ((diff >> (12 + 3)) < chip->ecc.size) {
204				dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
205				return 1;
206			} else {
207				return -1;
208			}
209		} else if (!(diff & (diff - 1))) {
210			/* Single bit ECC error in the ECC itself,
211			 * nothing to fix */
212			return 1;
213		} else {
214			/* Uncorrectable error */
215			return -1;
216		}
217
218	}
219	return 0;
220}
221
222/*----------------------------------------------------------------------*/
223
224/*
225 * 4-bit hardware ECC ... context maintained over entire AEMIF
226 *
227 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
228 * since that forces use of a problematic "infix OOB" layout.
229 * Among other things, it trashes manufacturer bad block markers.
230 * Also, and specific to this hardware, it ECC-protects the "prepad"
231 * in the OOB ... while having ECC protection for parts of OOB would
232 * seem useful, the current MTD stack sometimes wants to update the
233 * OOB without recomputing ECC.
234 */
235
236static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
237{
238	struct davinci_nand_info *info = to_davinci_nand(mtd);
239	unsigned long flags;
240	u32 val;
241
242	spin_lock_irqsave(&davinci_nand_lock, flags);
243
244	/* Start 4-bit ECC calculation for read/write */
245	val = davinci_nand_readl(info, NANDFCR_OFFSET);
246	val &= ~(0x03 << 4);
247	val |= (info->core_chipsel << 4) | BIT(12);
248	davinci_nand_writel(info, NANDFCR_OFFSET, val);
249
250	info->is_readmode = (mode == NAND_ECC_READ);
251
252	spin_unlock_irqrestore(&davinci_nand_lock, flags);
253}
254
255/* Read raw ECC code after writing to NAND. */
256static void
257nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
258{
259	const u32 mask = 0x03ff03ff;
260
261	code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
262	code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
263	code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
264	code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
265}
266
267/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
268static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
269		const u_char *dat, u_char *ecc_code)
270{
271	struct davinci_nand_info *info = to_davinci_nand(mtd);
272	u32 raw_ecc[4], *p;
273	unsigned i;
274
275	/* After a read, terminate ECC calculation by a dummy read
276	 * of some 4-bit ECC register.  ECC covers everything that
277	 * was read; correct() just uses the hardware state, so
278	 * ecc_code is not needed.
279	 */
280	if (info->is_readmode) {
281		davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
282		return 0;
283	}
284
285	/* Pack eight raw 10-bit ecc values into ten bytes, making
286	 * two passes which each convert four values (in upper and
287	 * lower halves of two 32-bit words) into five bytes.  The
288	 * ROM boot loader uses this same packing scheme.
289	 */
290	nand_davinci_readecc_4bit(info, raw_ecc);
291	for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
292		*ecc_code++ =   p[0]        & 0xff;
293		*ecc_code++ = ((p[0] >>  8) & 0x03) | ((p[0] >> 14) & 0xfc);
294		*ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] <<  4) & 0xf0);
295		*ecc_code++ = ((p[1] >>  4) & 0x3f) | ((p[1] >> 10) & 0xc0);
296		*ecc_code++ =  (p[1] >> 18) & 0xff;
297	}
298
299	return 0;
300}
301
302/* Correct up to 4 bits in data we just read, using state left in the
303 * hardware plus the ecc_code computed when it was first written.
304 */
305static int nand_davinci_correct_4bit(struct mtd_info *mtd,
306		u_char *data, u_char *ecc_code, u_char *null)
307{
308	int i;
309	struct davinci_nand_info *info = to_davinci_nand(mtd);
310	unsigned short ecc10[8];
311	unsigned short *ecc16;
312	u32 syndrome[4];
313	u32 ecc_state;
314	unsigned num_errors, corrected;
315	unsigned long timeo;
316
317	/* All bytes 0xff?  It's an erased page; ignore its ECC. */
318	for (i = 0; i < 10; i++) {
319		if (ecc_code[i] != 0xff)
320			goto compare;
321	}
322	return 0;
323
324compare:
325	/* Unpack ten bytes into eight 10 bit values.  We know we're
326	 * little-endian, and use type punning for less shifting/masking.
327	 */
328	if (WARN_ON(0x01 & (unsigned) ecc_code))
329		return -EINVAL;
330	ecc16 = (unsigned short *)ecc_code;
331
332	ecc10[0] =  (ecc16[0] >>  0) & 0x3ff;
333	ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
334	ecc10[2] =  (ecc16[1] >>  4) & 0x3ff;
335	ecc10[3] = ((ecc16[1] >> 14) & 0x3)  | ((ecc16[2] << 2) & 0x3fc);
336	ecc10[4] =  (ecc16[2] >>  8)         | ((ecc16[3] << 8) & 0x300);
337	ecc10[5] =  (ecc16[3] >>  2) & 0x3ff;
338	ecc10[6] = ((ecc16[3] >> 12) & 0xf)  | ((ecc16[4] << 4) & 0x3f0);
339	ecc10[7] =  (ecc16[4] >>  6) & 0x3ff;
340
341	/* Tell ECC controller about the expected ECC codes. */
342	for (i = 7; i >= 0; i--)
343		davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
344
345	/* Allow time for syndrome calculation ... then read it.
346	 * A syndrome of all zeroes 0 means no detected errors.
347	 */
348	davinci_nand_readl(info, NANDFSR_OFFSET);
349	nand_davinci_readecc_4bit(info, syndrome);
350	if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
351		return 0;
352
353	/*
354	 * Clear any previous address calculation by doing a dummy read of an
355	 * error address register.
356	 */
357	davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
358
359	/* Start address calculation, and wait for it to complete.
360	 * We _could_ start reading more data while this is working,
361	 * to speed up the overall page read.
362	 */
363	davinci_nand_writel(info, NANDFCR_OFFSET,
364			davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
365
366	/*
367	 * ECC_STATE field reads 0x3 (Error correction complete) immediately
368	 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
369	 * begin trying to poll for the state, you may fall right out of your
370	 * loop without any of the correction calculations having taken place.
371	 * The recommendation from the hardware team is to initially delay as
372	 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
373	 * correction state.
374	 */
375	timeo = jiffies + usecs_to_jiffies(100);
376	do {
377		ecc_state = (davinci_nand_readl(info,
378				NANDFSR_OFFSET) >> 8) & 0x0f;
379		cpu_relax();
380	} while ((ecc_state < 4) && time_before(jiffies, timeo));
381
382	for (;;) {
383		u32	fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
384
385		switch ((fsr >> 8) & 0x0f) {
386		case 0:		/* no error, should not happen */
387			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
388			return 0;
389		case 1:		/* five or more errors detected */
390			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
391			return -EIO;
392		case 2:		/* error addresses computed */
393		case 3:
394			num_errors = 1 + ((fsr >> 16) & 0x03);
395			goto correct;
396		default:	/* still working on it */
397			cpu_relax();
398			continue;
399		}
400	}
401
402correct:
403	/* correct each error */
404	for (i = 0, corrected = 0; i < num_errors; i++) {
405		int error_address, error_value;
406
407		if (i > 1) {
408			error_address = davinci_nand_readl(info,
409						NAND_ERR_ADD2_OFFSET);
410			error_value = davinci_nand_readl(info,
411						NAND_ERR_ERRVAL2_OFFSET);
412		} else {
413			error_address = davinci_nand_readl(info,
414						NAND_ERR_ADD1_OFFSET);
415			error_value = davinci_nand_readl(info,
416						NAND_ERR_ERRVAL1_OFFSET);
417		}
418
419		if (i & 1) {
420			error_address >>= 16;
421			error_value >>= 16;
422		}
423		error_address &= 0x3ff;
424		error_address = (512 + 7) - error_address;
425
426		if (error_address < 512) {
427			data[error_address] ^= error_value;
428			corrected++;
429		}
430	}
431
432	return corrected;
433}
434
435/*----------------------------------------------------------------------*/
436
437/*
438 * NOTE:  NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
439 * how these chips are normally wired.  This translates to both 8 and 16
440 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
441 *
442 * For now we assume that configuration, or any other one which ignores
443 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
444 * and have that transparently morphed into multiple NAND operations.
445 */
446static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
447{
448	struct nand_chip *chip = mtd->priv;
449
450	if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
451		ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
452	else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
453		ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
454	else
455		ioread8_rep(chip->IO_ADDR_R, buf, len);
456}
457
458static void nand_davinci_write_buf(struct mtd_info *mtd,
459		const uint8_t *buf, int len)
460{
461	struct nand_chip *chip = mtd->priv;
462
463	if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
464		iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
465	else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
466		iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
467	else
468		iowrite8_rep(chip->IO_ADDR_R, buf, len);
469}
470
471/*
472 * Check hardware register for wait status. Returns 1 if device is ready,
473 * 0 if it is still busy.
474 */
475static int nand_davinci_dev_ready(struct mtd_info *mtd)
476{
477	struct davinci_nand_info *info = to_davinci_nand(mtd);
478
479	return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
480}
481
482/*----------------------------------------------------------------------*/
483
484/* An ECC layout for using 4-bit ECC with small-page flash, storing
485 * ten ECC bytes plus the manufacturer's bad block marker byte, and
486 * and not overlapping the default BBT markers.
487 */
488static struct nand_ecclayout hwecc4_small __initconst = {
489	.eccbytes = 10,
490	.eccpos = { 0, 1, 2, 3, 4,
491		/* offset 5 holds the badblock marker */
492		6, 7,
493		13, 14, 15, },
494	.oobfree = {
495		{.offset = 8, .length = 5, },
496		{.offset = 16, },
497	},
498};
499
500/* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
501 * storing ten ECC bytes plus the manufacturer's bad block marker byte,
502 * and not overlapping the default BBT markers.
503 */
504static struct nand_ecclayout hwecc4_2048 __initconst = {
505	.eccbytes = 40,
506	.eccpos = {
507		/* at the end of spare sector */
508		24, 25, 26, 27, 28, 29,	30, 31, 32, 33,
509		34, 35, 36, 37, 38, 39,	40, 41, 42, 43,
510		44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
511		54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
512		},
513	.oobfree = {
514		/* 2 bytes at offset 0 hold manufacturer badblock markers */
515		{.offset = 2, .length = 22, },
516		/* 5 bytes at offset 8 hold BBT markers */
517		/* 8 bytes at offset 16 hold JFFS2 clean markers */
518	},
519};
520
521static int __init nand_davinci_probe(struct platform_device *pdev)
522{
523	struct davinci_nand_pdata	*pdata = pdev->dev.platform_data;
524	struct davinci_nand_info	*info;
525	struct resource			*res1;
526	struct resource			*res2;
527	void __iomem			*vaddr;
528	void __iomem			*base;
529	int				ret;
530	uint32_t			val;
531	nand_ecc_modes_t		ecc_mode;
532
533	/* insist on board-specific configuration */
534	if (!pdata)
535		return -ENODEV;
536
537	/* which external chipselect will we be managing? */
538	if (pdev->id < 0 || pdev->id > 3)
539		return -ENODEV;
540
541	info = kzalloc(sizeof(*info), GFP_KERNEL);
542	if (!info) {
543		dev_err(&pdev->dev, "unable to allocate memory\n");
544		ret = -ENOMEM;
545		goto err_nomem;
546	}
547
548	platform_set_drvdata(pdev, info);
549
550	res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
551	res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
552	if (!res1 || !res2) {
553		dev_err(&pdev->dev, "resource missing\n");
554		ret = -EINVAL;
555		goto err_nomem;
556	}
557
558	vaddr = ioremap(res1->start, resource_size(res1));
559	base = ioremap(res2->start, resource_size(res2));
560	if (!vaddr || !base) {
561		dev_err(&pdev->dev, "ioremap failed\n");
562		ret = -EINVAL;
563		goto err_ioremap;
564	}
565
566	info->dev		= &pdev->dev;
567	info->base		= base;
568	info->vaddr		= vaddr;
569
570	info->mtd.priv		= &info->chip;
571	info->mtd.name		= dev_name(&pdev->dev);
572	info->mtd.owner		= THIS_MODULE;
573
574	info->mtd.dev.parent	= &pdev->dev;
575
576	info->chip.IO_ADDR_R	= vaddr;
577	info->chip.IO_ADDR_W	= vaddr;
578	info->chip.chip_delay	= 0;
579	info->chip.select_chip	= nand_davinci_select_chip;
580
581	/* options such as NAND_BBT_USE_FLASH */
582	info->chip.bbt_options	= pdata->bbt_options;
583	/* options such as 16-bit widths */
584	info->chip.options	= pdata->options;
585	info->chip.bbt_td	= pdata->bbt_td;
586	info->chip.bbt_md	= pdata->bbt_md;
587	info->timing		= pdata->timing;
588
589	info->ioaddr		= (uint32_t __force) vaddr;
590
591	info->current_cs	= info->ioaddr;
592	info->core_chipsel	= pdev->id;
593	info->mask_chipsel	= pdata->mask_chipsel;
594
595	/* use nandboot-capable ALE/CLE masks by default */
596	info->mask_ale		= pdata->mask_ale ? : MASK_ALE;
597	info->mask_cle		= pdata->mask_cle ? : MASK_CLE;
598
599	/* Set address of hardware control function */
600	info->chip.cmd_ctrl	= nand_davinci_hwcontrol;
601	info->chip.dev_ready	= nand_davinci_dev_ready;
602
603	/* Speed up buffer I/O */
604	info->chip.read_buf     = nand_davinci_read_buf;
605	info->chip.write_buf    = nand_davinci_write_buf;
606
607	/* Use board-specific ECC config */
608	ecc_mode		= pdata->ecc_mode;
609
610	ret = -EINVAL;
611	switch (ecc_mode) {
612	case NAND_ECC_NONE:
613	case NAND_ECC_SOFT:
614		pdata->ecc_bits = 0;
615		break;
616	case NAND_ECC_HW:
617		if (pdata->ecc_bits == 4) {
618			/* No sanity checks:  CPUs must support this,
619			 * and the chips may not use NAND_BUSWIDTH_16.
620			 */
621
622			/* No sharing 4-bit hardware between chipselects yet */
623			spin_lock_irq(&davinci_nand_lock);
624			if (ecc4_busy)
625				ret = -EBUSY;
626			else
627				ecc4_busy = true;
628			spin_unlock_irq(&davinci_nand_lock);
629
630			if (ret == -EBUSY)
631				goto err_ecc;
632
633			info->chip.ecc.calculate = nand_davinci_calculate_4bit;
634			info->chip.ecc.correct = nand_davinci_correct_4bit;
635			info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
636			info->chip.ecc.bytes = 10;
637		} else {
638			info->chip.ecc.calculate = nand_davinci_calculate_1bit;
639			info->chip.ecc.correct = nand_davinci_correct_1bit;
640			info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
641			info->chip.ecc.bytes = 3;
642		}
643		info->chip.ecc.size = 512;
644		info->chip.ecc.strength = pdata->ecc_bits;
645		break;
646	default:
647		ret = -EINVAL;
648		goto err_ecc;
649	}
650	info->chip.ecc.mode = ecc_mode;
651
652	info->clk = clk_get(&pdev->dev, "aemif");
653	if (IS_ERR(info->clk)) {
654		ret = PTR_ERR(info->clk);
655		dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
656		goto err_clk;
657	}
658
659	ret = clk_enable(info->clk);
660	if (ret < 0) {
661		dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
662			ret);
663		goto err_clk_enable;
664	}
665
666	/*
667	 * Setup Async configuration register in case we did not boot from
668	 * NAND and so bootloader did not bother to set it up.
669	 */
670	val = davinci_nand_readl(info, A1CR_OFFSET + info->core_chipsel * 4);
671
672	/* Extended Wait is not valid and Select Strobe mode is not used */
673	val &= ~(ACR_ASIZE_MASK | ACR_EW_MASK | ACR_SS_MASK);
674	if (info->chip.options & NAND_BUSWIDTH_16)
675		val |= 0x1;
676
677	davinci_nand_writel(info, A1CR_OFFSET + info->core_chipsel * 4, val);
678
679	ret = 0;
680	if (info->timing)
681		ret = davinci_aemif_setup_timing(info->timing, info->base,
682							info->core_chipsel);
683	if (ret < 0) {
684		dev_dbg(&pdev->dev, "NAND timing values setup fail\n");
685		goto err_timing;
686	}
687
688	spin_lock_irq(&davinci_nand_lock);
689
690	/* put CSxNAND into NAND mode */
691	val = davinci_nand_readl(info, NANDFCR_OFFSET);
692	val |= BIT(info->core_chipsel);
693	davinci_nand_writel(info, NANDFCR_OFFSET, val);
694
695	spin_unlock_irq(&davinci_nand_lock);
696
697	/* Scan to find existence of the device(s) */
698	ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL);
699	if (ret < 0) {
700		dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
701		goto err_scan;
702	}
703
704	/* Update ECC layout if needed ... for 1-bit HW ECC, the default
705	 * is OK, but it allocates 6 bytes when only 3 are needed (for
706	 * each 512 bytes).  For the 4-bit HW ECC, that default is not
707	 * usable:  10 bytes are needed, not 6.
708	 */
709	if (pdata->ecc_bits == 4) {
710		int	chunks = info->mtd.writesize / 512;
711
712		if (!chunks || info->mtd.oobsize < 16) {
713			dev_dbg(&pdev->dev, "too small\n");
714			ret = -EINVAL;
715			goto err_scan;
716		}
717
718		/* For small page chips, preserve the manufacturer's
719		 * badblock marking data ... and make sure a flash BBT
720		 * table marker fits in the free bytes.
721		 */
722		if (chunks == 1) {
723			info->ecclayout = hwecc4_small;
724			info->ecclayout.oobfree[1].length =
725				info->mtd.oobsize - 16;
726			goto syndrome_done;
727		}
728		if (chunks == 4) {
729			info->ecclayout = hwecc4_2048;
730			info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
731			goto syndrome_done;
732		}
733
734		/* 4KiB page chips are not yet supported. The eccpos from
735		 * nand_ecclayout cannot hold 80 bytes and change to eccpos[]
736		 * breaks userspace ioctl interface with mtd-utils. Once we
737		 * resolve this issue, NAND_ECC_HW_OOB_FIRST mode can be used
738		 * for the 4KiB page chips.
739		 *
740		 * TODO: Note that nand_ecclayout has now been expanded and can
741		 *  hold plenty of OOB entries.
742		 */
743		dev_warn(&pdev->dev, "no 4-bit ECC support yet "
744				"for 4KiB-page NAND\n");
745		ret = -EIO;
746		goto err_scan;
747
748syndrome_done:
749		info->chip.ecc.layout = &info->ecclayout;
750	}
751
752	ret = nand_scan_tail(&info->mtd);
753	if (ret < 0)
754		goto err_scan;
755
756	ret = mtd_device_parse_register(&info->mtd, NULL, NULL, pdata->parts,
757					pdata->nr_parts);
758
759	if (ret < 0)
760		goto err_scan;
761
762	val = davinci_nand_readl(info, NRCSR_OFFSET);
763	dev_info(&pdev->dev, "controller rev. %d.%d\n",
764	       (val >> 8) & 0xff, val & 0xff);
765
766	return 0;
767
768err_scan:
769err_timing:
770	clk_disable(info->clk);
771
772err_clk_enable:
773	clk_put(info->clk);
774
775	spin_lock_irq(&davinci_nand_lock);
776	if (ecc_mode == NAND_ECC_HW_SYNDROME)
777		ecc4_busy = false;
778	spin_unlock_irq(&davinci_nand_lock);
779
780err_ecc:
781err_clk:
782err_ioremap:
783	if (base)
784		iounmap(base);
785	if (vaddr)
786		iounmap(vaddr);
787
788err_nomem:
789	kfree(info);
790	return ret;
791}
792
793static int __exit nand_davinci_remove(struct platform_device *pdev)
794{
795	struct davinci_nand_info *info = platform_get_drvdata(pdev);
796
797	spin_lock_irq(&davinci_nand_lock);
798	if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
799		ecc4_busy = false;
800	spin_unlock_irq(&davinci_nand_lock);
801
802	iounmap(info->base);
803	iounmap(info->vaddr);
804
805	nand_release(&info->mtd);
806
807	clk_disable(info->clk);
808	clk_put(info->clk);
809
810	kfree(info);
811
812	return 0;
813}
814
815static struct platform_driver nand_davinci_driver = {
816	.remove		= __exit_p(nand_davinci_remove),
817	.driver		= {
818		.name	= "davinci_nand",
819	},
820};
821MODULE_ALIAS("platform:davinci_nand");
822
823static int __init nand_davinci_init(void)
824{
825	return platform_driver_probe(&nand_davinci_driver, nand_davinci_probe);
826}
827module_init(nand_davinci_init);
828
829static void __exit nand_davinci_exit(void)
830{
831	platform_driver_unregister(&nand_davinci_driver);
832}
833module_exit(nand_davinci_exit);
834
835MODULE_LICENSE("GPL");
836MODULE_AUTHOR("Texas Instruments");
837MODULE_DESCRIPTION("Davinci NAND flash driver");
838