Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
Note: File does not exist in v6.8.
  1/*****************************************************************************
  2* Copyright 2004 - 2009 Broadcom Corporation.  All rights reserved.
  3*
  4* Unless you and Broadcom execute a separate written software license
  5* agreement governing use of this software, this software is licensed to you
  6* under the terms of the GNU General Public License version 2, available at
  7* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
  8*
  9* Notwithstanding the above, under no circumstances may you combine this
 10* software in any way with any other Broadcom software provided under a
 11* license other than the GPL, without Broadcom's express prior written
 12* consent.
 13*****************************************************************************/
 14
 15/* ---- Include Files ---------------------------------------------------- */
 16#include <linux/module.h>
 17#include <linux/types.h>
 18#include <linux/init.h>
 19#include <linux/kernel.h>
 20#include <linux/slab.h>
 21#include <linux/string.h>
 22#include <linux/ioport.h>
 23#include <linux/device.h>
 24#include <linux/delay.h>
 25#include <linux/err.h>
 26#include <linux/io.h>
 27#include <linux/platform_device.h>
 28#include <linux/mtd/mtd.h>
 29#include <linux/mtd/nand.h>
 30#include <linux/mtd/nand_ecc.h>
 31#include <linux/mtd/partitions.h>
 32
 33#include <asm/mach-types.h>
 34
 35#include <mach/reg_nand.h>
 36#include <mach/reg_umi.h>
 37
 38#include "nand_bcm_umi.h"
 39
 40#include <mach/memory_settings.h>
 41
 42#define USE_DMA 1
 43#include <mach/dma.h>
 44#include <linux/dma-mapping.h>
 45#include <linux/completion.h>
 46
 47/* ---- External Variable Declarations ----------------------------------- */
 48/* ---- External Function Prototypes ------------------------------------- */
 49/* ---- Public Variables ------------------------------------------------- */
 50/* ---- Private Constants and Types -------------------------------------- */
 51static const __devinitconst char gBanner[] = KERN_INFO \
 52	"BCM UMI MTD NAND Driver: 1.00\n";
 53
 54#if NAND_ECC_BCH
 55static uint8_t scan_ff_pattern[] = { 0xff };
 56
 57static struct nand_bbt_descr largepage_bbt = {
 58	.options = 0,
 59	.offs = 0,
 60	.len = 1,
 61	.pattern = scan_ff_pattern
 62};
 63#endif
 64
 65/*
 66** Preallocate a buffer to avoid having to do this every dma operation.
 67** This is the size of the preallocated coherent DMA buffer.
 68*/
 69#if USE_DMA
 70#define DMA_MIN_BUFLEN	512
 71#define DMA_MAX_BUFLEN	PAGE_SIZE
 72#define USE_DIRECT_IO(len)	(((len) < DMA_MIN_BUFLEN) || \
 73	((len) > DMA_MAX_BUFLEN))
 74
 75/*
 76 * The current NAND data space goes from 0x80001900 to 0x80001FFF,
 77 * which is only 0x700 = 1792 bytes long. This is too small for 2K, 4K page
 78 * size NAND flash. Need to break the DMA down to multiple 1Ks.
 79 *
 80 * Need to make sure REG_NAND_DATA_PADDR + DMA_MAX_LEN < 0x80002000
 81 */
 82#define DMA_MAX_LEN             1024
 83
 84#else /* !USE_DMA */
 85#define DMA_MIN_BUFLEN          0
 86#define DMA_MAX_BUFLEN          0
 87#define USE_DIRECT_IO(len)      1
 88#endif
 89/* ---- Private Function Prototypes -------------------------------------- */
 90static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len);
 91static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf,
 92				   int len);
 93
 94/* ---- Private Variables ------------------------------------------------ */
 95static struct mtd_info *board_mtd;
 96static void __iomem *bcm_umi_io_base;
 97static void *virtPtr;
 98static dma_addr_t physPtr;
 99static struct completion nand_comp;
100
101/* ---- Private Functions ------------------------------------------------ */
102#if NAND_ECC_BCH
103#include "bcm_umi_bch.c"
104#else
105#include "bcm_umi_hamming.c"
106#endif
107
108#if USE_DMA
109
110/* Handler called when the DMA finishes. */
111static void nand_dma_handler(DMA_Device_t dev, int reason, void *userData)
112{
113	complete(&nand_comp);
114}
115
116static int nand_dma_init(void)
117{
118	int rc;
119
120	rc = dma_set_device_handler(DMA_DEVICE_NAND_MEM_TO_MEM,
121		nand_dma_handler, NULL);
122	if (rc != 0) {
123		printk(KERN_ERR "dma_set_device_handler failed: %d\n", rc);
124		return rc;
125	}
126
127	virtPtr =
128	    dma_alloc_coherent(NULL, DMA_MAX_BUFLEN, &physPtr, GFP_KERNEL);
129	if (virtPtr == NULL) {
130		printk(KERN_ERR "NAND - Failed to allocate memory for DMA buffer\n");
131		return -ENOMEM;
132	}
133
134	return 0;
135}
136
137static void nand_dma_term(void)
138{
139	if (virtPtr != NULL)
140		dma_free_coherent(NULL, DMA_MAX_BUFLEN, virtPtr, physPtr);
141}
142
143static void nand_dma_read(void *buf, int len)
144{
145	int offset = 0;
146	int tmp_len = 0;
147	int len_left = len;
148	DMA_Handle_t hndl;
149
150	if (virtPtr == NULL)
151		panic("nand_dma_read: virtPtr == NULL\n");
152
153	if ((void *)physPtr == NULL)
154		panic("nand_dma_read: physPtr == NULL\n");
155
156	hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM);
157	if (hndl < 0) {
158		printk(KERN_ERR
159		       "nand_dma_read: unable to allocate dma channel: %d\n",
160		       (int)hndl);
161		panic("\n");
162	}
163
164	while (len_left > 0) {
165		if (len_left > DMA_MAX_LEN) {
166			tmp_len = DMA_MAX_LEN;
167			len_left -= DMA_MAX_LEN;
168		} else {
169			tmp_len = len_left;
170			len_left = 0;
171		}
172
173		init_completion(&nand_comp);
174		dma_transfer_mem_to_mem(hndl, REG_NAND_DATA_PADDR,
175					physPtr + offset, tmp_len);
176		wait_for_completion(&nand_comp);
177
178		offset += tmp_len;
179	}
180
181	dma_free_channel(hndl);
182
183	if (buf != NULL)
184		memcpy(buf, virtPtr, len);
185}
186
187static void nand_dma_write(const void *buf, int len)
188{
189	int offset = 0;
190	int tmp_len = 0;
191	int len_left = len;
192	DMA_Handle_t hndl;
193
194	if (buf == NULL)
195		panic("nand_dma_write: buf == NULL\n");
196
197	if (virtPtr == NULL)
198		panic("nand_dma_write: virtPtr == NULL\n");
199
200	if ((void *)physPtr == NULL)
201		panic("nand_dma_write: physPtr == NULL\n");
202
203	memcpy(virtPtr, buf, len);
204
205
206	hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM);
207	if (hndl < 0) {
208		printk(KERN_ERR
209		       "nand_dma_write: unable to allocate dma channel: %d\n",
210		       (int)hndl);
211		panic("\n");
212	}
213
214	while (len_left > 0) {
215		if (len_left > DMA_MAX_LEN) {
216			tmp_len = DMA_MAX_LEN;
217			len_left -= DMA_MAX_LEN;
218		} else {
219			tmp_len = len_left;
220			len_left = 0;
221		}
222
223		init_completion(&nand_comp);
224		dma_transfer_mem_to_mem(hndl, physPtr + offset,
225					REG_NAND_DATA_PADDR, tmp_len);
226		wait_for_completion(&nand_comp);
227
228		offset += tmp_len;
229	}
230
231	dma_free_channel(hndl);
232}
233
234#endif
235
236static int nand_dev_ready(struct mtd_info *mtd)
237{
238	return nand_bcm_umi_dev_ready();
239}
240
241/****************************************************************************
242*
243*  bcm_umi_nand_inithw
244*
245*   This routine does the necessary hardware (board-specific)
246*   initializations.  This includes setting up the timings, etc.
247*
248***************************************************************************/
249int bcm_umi_nand_inithw(void)
250{
251	/* Configure nand timing parameters */
252	REG_UMI_NAND_TCR &= ~0x7ffff;
253	REG_UMI_NAND_TCR |= HW_CFG_NAND_TCR;
254
255#if !defined(CONFIG_MTD_NAND_BCM_UMI_HWCS)
256	/* enable software control of CS */
257	REG_UMI_NAND_TCR |= REG_UMI_NAND_TCR_CS_SWCTRL;
258#endif
259
260	/* keep NAND chip select asserted */
261	REG_UMI_NAND_RCSR |= REG_UMI_NAND_RCSR_CS_ASSERTED;
262
263	REG_UMI_NAND_TCR &= ~REG_UMI_NAND_TCR_WORD16;
264	/* enable writes to flash */
265	REG_UMI_MMD_ICR |= REG_UMI_MMD_ICR_FLASH_WP;
266
267	writel(NAND_CMD_RESET, bcm_umi_io_base + REG_NAND_CMD_OFFSET);
268	nand_bcm_umi_wait_till_ready();
269
270#if NAND_ECC_BCH
271	nand_bcm_umi_bch_config_ecc(NAND_ECC_NUM_BYTES);
272#endif
273
274	return 0;
275}
276
277/* Used to turn latch the proper register for access. */
278static void bcm_umi_nand_hwcontrol(struct mtd_info *mtd, int cmd,
279				   unsigned int ctrl)
280{
281	/* send command to hardware */
282	struct nand_chip *chip = mtd->priv;
283	if (ctrl & NAND_CTRL_CHANGE) {
284		if (ctrl & NAND_CLE) {
285			chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_CMD_OFFSET;
286			goto CMD;
287		}
288		if (ctrl & NAND_ALE) {
289			chip->IO_ADDR_W =
290			    bcm_umi_io_base + REG_NAND_ADDR_OFFSET;
291			goto CMD;
292		}
293		chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
294	}
295
296CMD:
297	/* Send command to chip directly */
298	if (cmd != NAND_CMD_NONE)
299		writeb(cmd, chip->IO_ADDR_W);
300}
301
302static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf,
303				   int len)
304{
305	if (USE_DIRECT_IO(len)) {
306		/* Do it the old way if the buffer is small or too large.
307		 * Probably quicker than starting and checking dma. */
308		int i;
309		struct nand_chip *this = mtd->priv;
310
311		for (i = 0; i < len; i++)
312			writeb(buf[i], this->IO_ADDR_W);
313	}
314#if USE_DMA
315	else
316		nand_dma_write(buf, len);
317#endif
318}
319
320static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len)
321{
322	if (USE_DIRECT_IO(len)) {
323		int i;
324		struct nand_chip *this = mtd->priv;
325
326		for (i = 0; i < len; i++)
327			buf[i] = readb(this->IO_ADDR_R);
328	}
329#if USE_DMA
330	else
331		nand_dma_read(buf, len);
332#endif
333}
334
335static uint8_t readbackbuf[NAND_MAX_PAGESIZE];
336static int bcm_umi_nand_verify_buf(struct mtd_info *mtd, const u_char * buf,
337				   int len)
338{
339	/*
340	 * Try to readback page with ECC correction. This is necessary
341	 * for MLC parts which may have permanently stuck bits.
342	 */
343	struct nand_chip *chip = mtd->priv;
344	int ret = chip->ecc.read_page(mtd, chip, readbackbuf, 0, 0);
345	if (ret < 0)
346		return -EFAULT;
347	else {
348		if (memcmp(readbackbuf, buf, len) == 0)
349			return 0;
350
351		return -EFAULT;
352	}
353	return 0;
354}
355
356static int __devinit bcm_umi_nand_probe(struct platform_device *pdev)
357{
358	struct nand_chip *this;
359	struct resource *r;
360	int err = 0;
361
362	printk(gBanner);
363
364	/* Allocate memory for MTD device structure and private data */
365	board_mtd =
366	    kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip),
367		    GFP_KERNEL);
368	if (!board_mtd) {
369		printk(KERN_WARNING
370		       "Unable to allocate NAND MTD device structure.\n");
371		return -ENOMEM;
372	}
373
374	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
375
376	if (!r) {
377		err = -ENXIO;
378		goto out_free;
379	}
380
381	/* map physical address */
382	bcm_umi_io_base = ioremap(r->start, resource_size(r));
383
384	if (!bcm_umi_io_base) {
385		printk(KERN_ERR "ioremap to access BCM UMI NAND chip failed\n");
386		err = -EIO;
387		goto out_free;
388	}
389
390	/* Get pointer to private data */
391	this = (struct nand_chip *)(&board_mtd[1]);
392
393	/* Initialize structures */
394	memset((char *)board_mtd, 0, sizeof(struct mtd_info));
395	memset((char *)this, 0, sizeof(struct nand_chip));
396
397	/* Link the private data with the MTD structure */
398	board_mtd->priv = this;
399
400	/* Initialize the NAND hardware.  */
401	if (bcm_umi_nand_inithw() < 0) {
402		printk(KERN_ERR "BCM UMI NAND chip could not be initialized\n");
403		err = -EIO;
404		goto out_unmap;
405	}
406
407	/* Set address of NAND IO lines */
408	this->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
409	this->IO_ADDR_R = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
410
411	/* Set command delay time, see datasheet for correct value */
412	this->chip_delay = 0;
413	/* Assign the device ready function, if available */
414	this->dev_ready = nand_dev_ready;
415	this->options = 0;
416
417	this->write_buf = bcm_umi_nand_write_buf;
418	this->read_buf = bcm_umi_nand_read_buf;
419	this->verify_buf = bcm_umi_nand_verify_buf;
420
421	this->cmd_ctrl = bcm_umi_nand_hwcontrol;
422	this->ecc.mode = NAND_ECC_HW;
423	this->ecc.size = 512;
424	this->ecc.bytes = NAND_ECC_NUM_BYTES;
425#if NAND_ECC_BCH
426	this->ecc.read_page = bcm_umi_bch_read_page_hwecc;
427	this->ecc.write_page = bcm_umi_bch_write_page_hwecc;
428#else
429	this->ecc.correct = nand_correct_data512;
430	this->ecc.calculate = bcm_umi_hamming_get_hw_ecc;
431	this->ecc.hwctl = bcm_umi_hamming_enable_hwecc;
432#endif
433
434#if USE_DMA
435	err = nand_dma_init();
436	if (err != 0)
437		goto out_unmap;
438#endif
439
440	/* Figure out the size of the device that we have.
441	 * We need to do this to figure out which ECC
442	 * layout we'll be using.
443	 */
444
445	err = nand_scan_ident(board_mtd, 1, NULL);
446	if (err) {
447		printk(KERN_ERR "nand_scan failed: %d\n", err);
448		goto out_unmap;
449	}
450
451	/* Now that we know the nand size, we can setup the ECC layout */
452
453	switch (board_mtd->writesize) {	/* writesize is the pagesize */
454	case 4096:
455		this->ecc.layout = &nand_hw_eccoob_4096;
456		break;
457	case 2048:
458		this->ecc.layout = &nand_hw_eccoob_2048;
459		break;
460	case 512:
461		this->ecc.layout = &nand_hw_eccoob_512;
462		break;
463	default:
464		{
465			printk(KERN_ERR "NAND - Unrecognized pagesize: %d\n",
466					 board_mtd->writesize);
467			err = -EINVAL;
468			goto out_unmap;
469		}
470	}
471
472#if NAND_ECC_BCH
473	if (board_mtd->writesize > 512) {
474		if (this->bbt_options & NAND_BBT_USE_FLASH)
475			largepage_bbt.options = NAND_BBT_SCAN2NDPAGE;
476		this->badblock_pattern = &largepage_bbt;
477	}
478
479	this->ecc.strength = 8;
480
481#endif
482
483	/* Now finish off the scan, now that ecc.layout has been initialized. */
484
485	err = nand_scan_tail(board_mtd);
486	if (err) {
487		printk(KERN_ERR "nand_scan failed: %d\n", err);
488		goto out_unmap;
489	}
490
491	/* Register the partitions */
492	board_mtd->name = "bcm_umi-nand";
493	mtd_device_parse_register(board_mtd, NULL, NULL, NULL, 0);
494
495	/* Return happy */
496	return 0;
497out_unmap:
498	iounmap(bcm_umi_io_base);
499out_free:
500	kfree(board_mtd);
501	return err;
502}
503
504static int bcm_umi_nand_remove(struct platform_device *pdev)
505{
506#if USE_DMA
507	nand_dma_term();
508#endif
509
510	/* Release resources, unregister device */
511	nand_release(board_mtd);
512
513	/* unmap physical address */
514	iounmap(bcm_umi_io_base);
515
516	/* Free the MTD device structure */
517	kfree(board_mtd);
518
519	return 0;
520}
521
522#ifdef CONFIG_PM
523static int bcm_umi_nand_suspend(struct platform_device *pdev,
524				pm_message_t state)
525{
526	printk(KERN_ERR "MTD NAND suspend is being called\n");
527	return 0;
528}
529
530static int bcm_umi_nand_resume(struct platform_device *pdev)
531{
532	printk(KERN_ERR "MTD NAND resume is being called\n");
533	return 0;
534}
535#else
536#define bcm_umi_nand_suspend   NULL
537#define bcm_umi_nand_resume    NULL
538#endif
539
540static struct platform_driver nand_driver = {
541	.driver = {
542		   .name = "bcm-nand",
543		   .owner = THIS_MODULE,
544		   },
545	.probe = bcm_umi_nand_probe,
546	.remove = bcm_umi_nand_remove,
547	.suspend = bcm_umi_nand_suspend,
548	.resume = bcm_umi_nand_resume,
549};
550
551module_platform_driver(nand_driver);
552
553MODULE_LICENSE("GPL");
554MODULE_AUTHOR("Broadcom");
555MODULE_DESCRIPTION("BCM UMI MTD NAND driver");