Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * Support for IDE interfaces on PowerMacs.
   3 *
   4 * These IDE interfaces are memory-mapped and have a DBDMA channel
   5 * for doing DMA.
   6 *
   7 *  Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
   8 *  Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz
   9 *
  10 *  This program is free software; you can redistribute it and/or
  11 *  modify it under the terms of the GNU General Public License
  12 *  as published by the Free Software Foundation; either version
  13 *  2 of the License, or (at your option) any later version.
  14 *
  15 * Some code taken from drivers/ide/ide-dma.c:
  16 *
  17 *  Copyright (c) 1995-1998  Mark Lord
  18 *
  19 * TODO: - Use pre-calculated (kauai) timing tables all the time and
  20 * get rid of the "rounded" tables used previously, so we have the
  21 * same table format for all controllers and can then just have one
  22 * big table
  23 * 
  24 */
  25#include <linux/types.h>
  26#include <linux/kernel.h>
  27#include <linux/init.h>
  28#include <linux/delay.h>
  29#include <linux/ide.h>
  30#include <linux/notifier.h>
  31#include <linux/module.h>
  32#include <linux/reboot.h>
  33#include <linux/pci.h>
  34#include <linux/adb.h>
  35#include <linux/pmu.h>
  36#include <linux/scatterlist.h>
  37#include <linux/slab.h>
  38
  39#include <asm/prom.h>
  40#include <asm/io.h>
  41#include <asm/dbdma.h>
  42#include <asm/ide.h>
  43#include <asm/pci-bridge.h>
  44#include <asm/machdep.h>
  45#include <asm/pmac_feature.h>
  46#include <asm/sections.h>
  47#include <asm/irq.h>
  48#include <asm/mediabay.h>
  49
  50#define DRV_NAME "ide-pmac"
  51
  52#undef IDE_PMAC_DEBUG
  53
  54#define DMA_WAIT_TIMEOUT	50
  55
  56typedef struct pmac_ide_hwif {
  57	unsigned long			regbase;
  58	int				irq;
  59	int				kind;
  60	int				aapl_bus_id;
  61	unsigned			broken_dma : 1;
  62	unsigned			broken_dma_warn : 1;
  63	struct device_node*		node;
  64	struct macio_dev		*mdev;
  65	u32				timings[4];
  66	volatile u32 __iomem *		*kauai_fcr;
  67	ide_hwif_t			*hwif;
  68
  69	/* Those fields are duplicating what is in hwif. We currently
  70	 * can't use the hwif ones because of some assumptions that are
  71	 * beeing done by the generic code about the kind of dma controller
  72	 * and format of the dma table. This will have to be fixed though.
  73	 */
  74	volatile struct dbdma_regs __iomem *	dma_regs;
  75	struct dbdma_cmd*		dma_table_cpu;
  76} pmac_ide_hwif_t;
  77
  78enum {
  79	controller_ohare,	/* OHare based */
  80	controller_heathrow,	/* Heathrow/Paddington */
  81	controller_kl_ata3,	/* KeyLargo ATA-3 */
  82	controller_kl_ata4,	/* KeyLargo ATA-4 */
  83	controller_un_ata6,	/* UniNorth2 ATA-6 */
  84	controller_k2_ata6,	/* K2 ATA-6 */
  85	controller_sh_ata6,	/* Shasta ATA-6 */
  86};
  87
  88static const char* model_name[] = {
  89	"OHare ATA",		/* OHare based */
  90	"Heathrow ATA",		/* Heathrow/Paddington */
  91	"KeyLargo ATA-3",	/* KeyLargo ATA-3 (MDMA only) */
  92	"KeyLargo ATA-4",	/* KeyLargo ATA-4 (UDMA/66) */
  93	"UniNorth ATA-6",	/* UniNorth2 ATA-6 (UDMA/100) */
  94	"K2 ATA-6",		/* K2 ATA-6 (UDMA/100) */
  95	"Shasta ATA-6",		/* Shasta ATA-6 (UDMA/133) */
  96};
  97
  98/*
  99 * Extra registers, both 32-bit little-endian
 100 */
 101#define IDE_TIMING_CONFIG	0x200
 102#define IDE_INTERRUPT		0x300
 103
 104/* Kauai (U2) ATA has different register setup */
 105#define IDE_KAUAI_PIO_CONFIG	0x200
 106#define IDE_KAUAI_ULTRA_CONFIG	0x210
 107#define IDE_KAUAI_POLL_CONFIG	0x220
 108
 109/*
 110 * Timing configuration register definitions
 111 */
 112
 113/* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
 114#define SYSCLK_TICKS(t)		(((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
 115#define SYSCLK_TICKS_66(t)	(((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
 116#define IDE_SYSCLK_NS		30	/* 33Mhz cell */
 117#define IDE_SYSCLK_66_NS	15	/* 66Mhz cell */
 118
 119/* 133Mhz cell, found in shasta.
 120 * See comments about 100 Mhz Uninorth 2...
 121 * Note that PIO_MASK and MDMA_MASK seem to overlap
 122 */
 123#define TR_133_PIOREG_PIO_MASK		0xff000fff
 124#define TR_133_PIOREG_MDMA_MASK		0x00fff800
 125#define TR_133_UDMAREG_UDMA_MASK	0x0003ffff
 126#define TR_133_UDMAREG_UDMA_EN		0x00000001
 127
 128/* 100Mhz cell, found in Uninorth 2. I don't have much infos about
 129 * this one yet, it appears as a pci device (106b/0033) on uninorth
 130 * internal PCI bus and it's clock is controlled like gem or fw. It
 131 * appears to be an evolution of keylargo ATA4 with a timing register
 132 * extended to 2 32bits registers and a similar DBDMA channel. Other
 133 * registers seem to exist but I can't tell much about them.
 134 * 
 135 * So far, I'm using pre-calculated tables for this extracted from
 136 * the values used by the MacOS X driver.
 137 * 
 138 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
 139 * register controls the UDMA timings. At least, it seems bit 0
 140 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
 141 * cycle time in units of 10ns. Bits 8..15 are used by I don't
 142 * know their meaning yet
 143 */
 144#define TR_100_PIOREG_PIO_MASK		0xff000fff
 145#define TR_100_PIOREG_MDMA_MASK		0x00fff000
 146#define TR_100_UDMAREG_UDMA_MASK	0x0000ffff
 147#define TR_100_UDMAREG_UDMA_EN		0x00000001
 148
 149
 150/* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
 151 * 40 connector cable and to 4 on 80 connector one.
 152 * Clock unit is 15ns (66Mhz)
 153 * 
 154 * 3 Values can be programmed:
 155 *  - Write data setup, which appears to match the cycle time. They
 156 *    also call it DIOW setup.
 157 *  - Ready to pause time (from spec)
 158 *  - Address setup. That one is weird. I don't see where exactly
 159 *    it fits in UDMA cycles, I got it's name from an obscure piece
 160 *    of commented out code in Darwin. They leave it to 0, we do as
 161 *    well, despite a comment that would lead to think it has a
 162 *    min value of 45ns.
 163 * Apple also add 60ns to the write data setup (or cycle time ?) on
 164 * reads.
 165 */
 166#define TR_66_UDMA_MASK			0xfff00000
 167#define TR_66_UDMA_EN			0x00100000 /* Enable Ultra mode for DMA */
 168#define TR_66_UDMA_ADDRSETUP_MASK	0xe0000000 /* Address setup */
 169#define TR_66_UDMA_ADDRSETUP_SHIFT	29
 170#define TR_66_UDMA_RDY2PAUS_MASK	0x1e000000 /* Ready 2 pause time */
 171#define TR_66_UDMA_RDY2PAUS_SHIFT	25
 172#define TR_66_UDMA_WRDATASETUP_MASK	0x01e00000 /* Write data setup time */
 173#define TR_66_UDMA_WRDATASETUP_SHIFT	21
 174#define TR_66_MDMA_MASK			0x000ffc00
 175#define TR_66_MDMA_RECOVERY_MASK	0x000f8000
 176#define TR_66_MDMA_RECOVERY_SHIFT	15
 177#define TR_66_MDMA_ACCESS_MASK		0x00007c00
 178#define TR_66_MDMA_ACCESS_SHIFT		10
 179#define TR_66_PIO_MASK			0x000003ff
 180#define TR_66_PIO_RECOVERY_MASK		0x000003e0
 181#define TR_66_PIO_RECOVERY_SHIFT	5
 182#define TR_66_PIO_ACCESS_MASK		0x0000001f
 183#define TR_66_PIO_ACCESS_SHIFT		0
 184
 185/* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
 186 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
 187 * 
 188 * The access time and recovery time can be programmed. Some older
 189 * Darwin code base limit OHare to 150ns cycle time. I decided to do
 190 * the same here fore safety against broken old hardware ;)
 191 * The HalfTick bit, when set, adds half a clock (15ns) to the access
 192 * time and removes one from recovery. It's not supported on KeyLargo
 193 * implementation afaik. The E bit appears to be set for PIO mode 0 and
 194 * is used to reach long timings used in this mode.
 195 */
 196#define TR_33_MDMA_MASK			0x003ff800
 197#define TR_33_MDMA_RECOVERY_MASK	0x001f0000
 198#define TR_33_MDMA_RECOVERY_SHIFT	16
 199#define TR_33_MDMA_ACCESS_MASK		0x0000f800
 200#define TR_33_MDMA_ACCESS_SHIFT		11
 201#define TR_33_MDMA_HALFTICK		0x00200000
 202#define TR_33_PIO_MASK			0x000007ff
 203#define TR_33_PIO_E			0x00000400
 204#define TR_33_PIO_RECOVERY_MASK		0x000003e0
 205#define TR_33_PIO_RECOVERY_SHIFT	5
 206#define TR_33_PIO_ACCESS_MASK		0x0000001f
 207#define TR_33_PIO_ACCESS_SHIFT		0
 208
 209/*
 210 * Interrupt register definitions
 211 */
 212#define IDE_INTR_DMA			0x80000000
 213#define IDE_INTR_DEVICE			0x40000000
 214
 215/*
 216 * FCR Register on Kauai. Not sure what bit 0x4 is  ...
 217 */
 218#define KAUAI_FCR_UATA_MAGIC		0x00000004
 219#define KAUAI_FCR_UATA_RESET_N		0x00000002
 220#define KAUAI_FCR_UATA_ENABLE		0x00000001
 221
 222/* Rounded Multiword DMA timings
 223 * 
 224 * I gave up finding a generic formula for all controller
 225 * types and instead, built tables based on timing values
 226 * used by Apple in Darwin's implementation.
 227 */
 228struct mdma_timings_t {
 229	int	accessTime;
 230	int	recoveryTime;
 231	int	cycleTime;
 232};
 233
 234struct mdma_timings_t mdma_timings_33[] =
 235{
 236    { 240, 240, 480 },
 237    { 180, 180, 360 },
 238    { 135, 135, 270 },
 239    { 120, 120, 240 },
 240    { 105, 105, 210 },
 241    {  90,  90, 180 },
 242    {  75,  75, 150 },
 243    {  75,  45, 120 },
 244    {   0,   0,   0 }
 245};
 246
 247struct mdma_timings_t mdma_timings_33k[] =
 248{
 249    { 240, 240, 480 },
 250    { 180, 180, 360 },
 251    { 150, 150, 300 },
 252    { 120, 120, 240 },
 253    {  90, 120, 210 },
 254    {  90,  90, 180 },
 255    {  90,  60, 150 },
 256    {  90,  30, 120 },
 257    {   0,   0,   0 }
 258};
 259
 260struct mdma_timings_t mdma_timings_66[] =
 261{
 262    { 240, 240, 480 },
 263    { 180, 180, 360 },
 264    { 135, 135, 270 },
 265    { 120, 120, 240 },
 266    { 105, 105, 210 },
 267    {  90,  90, 180 },
 268    {  90,  75, 165 },
 269    {  75,  45, 120 },
 270    {   0,   0,   0 }
 271};
 272
 273/* KeyLargo ATA-4 Ultra DMA timings (rounded) */
 274struct {
 275	int	addrSetup; /* ??? */
 276	int	rdy2pause;
 277	int	wrDataSetup;
 278} kl66_udma_timings[] =
 279{
 280    {   0, 180,  120 },	/* Mode 0 */
 281    {   0, 150,  90 },	/*      1 */
 282    {   0, 120,  60 },	/*      2 */
 283    {   0, 90,   45 },	/*      3 */
 284    {   0, 90,   30 }	/*      4 */
 285};
 286
 287/* UniNorth 2 ATA/100 timings */
 288struct kauai_timing {
 289	int	cycle_time;
 290	u32	timing_reg;
 291};
 292
 293static struct kauai_timing	kauai_pio_timings[] =
 294{
 295	{ 930	, 0x08000fff },
 296	{ 600	, 0x08000a92 },
 297	{ 383	, 0x0800060f },
 298	{ 360	, 0x08000492 },
 299	{ 330	, 0x0800048f },
 300	{ 300	, 0x080003cf },
 301	{ 270	, 0x080003cc },
 302	{ 240	, 0x0800038b },
 303	{ 239	, 0x0800030c },
 304	{ 180	, 0x05000249 },
 305	{ 120	, 0x04000148 },
 306	{ 0	, 0 },
 307};
 308
 309static struct kauai_timing	kauai_mdma_timings[] =
 310{
 311	{ 1260	, 0x00fff000 },
 312	{ 480	, 0x00618000 },
 313	{ 360	, 0x00492000 },
 314	{ 270	, 0x0038e000 },
 315	{ 240	, 0x0030c000 },
 316	{ 210	, 0x002cb000 },
 317	{ 180	, 0x00249000 },
 318	{ 150	, 0x00209000 },
 319	{ 120	, 0x00148000 },
 320	{ 0	, 0 },
 321};
 322
 323static struct kauai_timing	kauai_udma_timings[] =
 324{
 325	{ 120	, 0x000070c0 },
 326	{ 90	, 0x00005d80 },
 327	{ 60	, 0x00004a60 },
 328	{ 45	, 0x00003a50 },
 329	{ 30	, 0x00002a30 },
 330	{ 20	, 0x00002921 },
 331	{ 0	, 0 },
 332};
 333
 334static struct kauai_timing	shasta_pio_timings[] =
 335{
 336	{ 930	, 0x08000fff },
 337	{ 600	, 0x0A000c97 },
 338	{ 383	, 0x07000712 },
 339	{ 360	, 0x040003cd },
 340	{ 330	, 0x040003cd },
 341	{ 300	, 0x040003cd },
 342	{ 270	, 0x040003cd },
 343	{ 240	, 0x040003cd },
 344	{ 239	, 0x040003cd },
 345	{ 180	, 0x0400028b },
 346	{ 120	, 0x0400010a },
 347	{ 0	, 0 },
 348};
 349
 350static struct kauai_timing	shasta_mdma_timings[] =
 351{
 352	{ 1260	, 0x00fff000 },
 353	{ 480	, 0x00820800 },
 354	{ 360	, 0x00820800 },
 355	{ 270	, 0x00820800 },
 356	{ 240	, 0x00820800 },
 357	{ 210	, 0x00820800 },
 358	{ 180	, 0x00820800 },
 359	{ 150	, 0x0028b000 },
 360	{ 120	, 0x001ca000 },
 361	{ 0	, 0 },
 362};
 363
 364static struct kauai_timing	shasta_udma133_timings[] =
 365{
 366	{ 120   , 0x00035901, },
 367	{ 90    , 0x000348b1, },
 368	{ 60    , 0x00033881, },
 369	{ 45    , 0x00033861, },
 370	{ 30    , 0x00033841, },
 371	{ 20    , 0x00033031, },
 372	{ 15    , 0x00033021, },
 373	{ 0	, 0 },
 374};
 375
 376
 377static inline u32
 378kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
 379{
 380	int i;
 381	
 382	for (i=0; table[i].cycle_time; i++)
 383		if (cycle_time > table[i+1].cycle_time)
 384			return table[i].timing_reg;
 385	BUG();
 386	return 0;
 387}
 388
 389/* allow up to 256 DBDMA commands per xfer */
 390#define MAX_DCMDS		256
 391
 392/* 
 393 * Wait 1s for disk to answer on IDE bus after a hard reset
 394 * of the device (via GPIO/FCR).
 395 * 
 396 * Some devices seem to "pollute" the bus even after dropping
 397 * the BSY bit (typically some combo drives slave on the UDMA
 398 * bus) after a hard reset. Since we hard reset all drives on
 399 * KeyLargo ATA66, we have to keep that delay around. I may end
 400 * up not hard resetting anymore on these and keep the delay only
 401 * for older interfaces instead (we have to reset when coming
 402 * from MacOS...) --BenH. 
 403 */
 404#define IDE_WAKEUP_DELAY	(1*HZ)
 405
 406static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *);
 407
 408#define PMAC_IDE_REG(x) \
 409	((void __iomem *)((drive)->hwif->io_ports.data_addr + (x)))
 410
 411/*
 412 * Apply the timings of the proper unit (master/slave) to the shared
 413 * timing register when selecting that unit. This version is for
 414 * ASICs with a single timing register
 415 */
 416static void pmac_ide_apply_timings(ide_drive_t *drive)
 417{
 418	ide_hwif_t *hwif = drive->hwif;
 419	pmac_ide_hwif_t *pmif =
 420		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
 421
 422	if (drive->dn & 1)
 423		writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
 424	else
 425		writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
 426	(void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
 427}
 428
 429/*
 430 * Apply the timings of the proper unit (master/slave) to the shared
 431 * timing register when selecting that unit. This version is for
 432 * ASICs with a dual timing register (Kauai)
 433 */
 434static void pmac_ide_kauai_apply_timings(ide_drive_t *drive)
 435{
 436	ide_hwif_t *hwif = drive->hwif;
 437	pmac_ide_hwif_t *pmif =
 438		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
 439
 440	if (drive->dn & 1) {
 441		writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
 442		writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
 443	} else {
 444		writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
 445		writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
 446	}
 447	(void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
 448}
 449
 450/*
 451 * Force an update of controller timing values for a given drive
 452 */
 453static void
 454pmac_ide_do_update_timings(ide_drive_t *drive)
 455{
 456	ide_hwif_t *hwif = drive->hwif;
 457	pmac_ide_hwif_t *pmif =
 458		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
 459
 460	if (pmif->kind == controller_sh_ata6 ||
 461	    pmif->kind == controller_un_ata6 ||
 462	    pmif->kind == controller_k2_ata6)
 463		pmac_ide_kauai_apply_timings(drive);
 464	else
 465		pmac_ide_apply_timings(drive);
 466}
 467
 468static void pmac_dev_select(ide_drive_t *drive)
 469{
 470	pmac_ide_apply_timings(drive);
 471
 472	writeb(drive->select | ATA_DEVICE_OBS,
 473	       (void __iomem *)drive->hwif->io_ports.device_addr);
 474}
 475
 476static void pmac_kauai_dev_select(ide_drive_t *drive)
 477{
 478	pmac_ide_kauai_apply_timings(drive);
 479
 480	writeb(drive->select | ATA_DEVICE_OBS,
 481	       (void __iomem *)drive->hwif->io_ports.device_addr);
 482}
 483
 484static void pmac_exec_command(ide_hwif_t *hwif, u8 cmd)
 485{
 486	writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
 487	(void)readl((void __iomem *)(hwif->io_ports.data_addr
 488				     + IDE_TIMING_CONFIG));
 489}
 490
 491static void pmac_write_devctl(ide_hwif_t *hwif, u8 ctl)
 492{
 493	writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
 494	(void)readl((void __iomem *)(hwif->io_ports.data_addr
 495				     + IDE_TIMING_CONFIG));
 496}
 497
 498/*
 499 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
 500 */
 501static void pmac_ide_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive)
 502{
 503	pmac_ide_hwif_t *pmif =
 504		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
 505	const u8 pio = drive->pio_mode - XFER_PIO_0;
 506	struct ide_timing *tim = ide_timing_find_mode(XFER_PIO_0 + pio);
 507	u32 *timings, t;
 508	unsigned accessTicks, recTicks;
 509	unsigned accessTime, recTime;
 510	unsigned int cycle_time;
 511
 512	/* which drive is it ? */
 513	timings = &pmif->timings[drive->dn & 1];
 514	t = *timings;
 515
 516	cycle_time = ide_pio_cycle_time(drive, pio);
 517
 518	switch (pmif->kind) {
 519	case controller_sh_ata6: {
 520		/* 133Mhz cell */
 521		u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
 522		t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
 523		break;
 524		}
 525	case controller_un_ata6:
 526	case controller_k2_ata6: {
 527		/* 100Mhz cell */
 528		u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
 529		t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
 530		break;
 531		}
 532	case controller_kl_ata4:
 533		/* 66Mhz cell */
 534		recTime = cycle_time - tim->active - tim->setup;
 535		recTime = max(recTime, 150U);
 536		accessTime = tim->active;
 537		accessTime = max(accessTime, 150U);
 538		accessTicks = SYSCLK_TICKS_66(accessTime);
 539		accessTicks = min(accessTicks, 0x1fU);
 540		recTicks = SYSCLK_TICKS_66(recTime);
 541		recTicks = min(recTicks, 0x1fU);
 542		t = (t & ~TR_66_PIO_MASK) |
 543			(accessTicks << TR_66_PIO_ACCESS_SHIFT) |
 544			(recTicks << TR_66_PIO_RECOVERY_SHIFT);
 545		break;
 546	default: {
 547		/* 33Mhz cell */
 548		int ebit = 0;
 549		recTime = cycle_time - tim->active - tim->setup;
 550		recTime = max(recTime, 150U);
 551		accessTime = tim->active;
 552		accessTime = max(accessTime, 150U);
 553		accessTicks = SYSCLK_TICKS(accessTime);
 554		accessTicks = min(accessTicks, 0x1fU);
 555		accessTicks = max(accessTicks, 4U);
 556		recTicks = SYSCLK_TICKS(recTime);
 557		recTicks = min(recTicks, 0x1fU);
 558		recTicks = max(recTicks, 5U) - 4;
 559		if (recTicks > 9) {
 560			recTicks--; /* guess, but it's only for PIO0, so... */
 561			ebit = 1;
 562		}
 563		t = (t & ~TR_33_PIO_MASK) |
 564				(accessTicks << TR_33_PIO_ACCESS_SHIFT) |
 565				(recTicks << TR_33_PIO_RECOVERY_SHIFT);
 566		if (ebit)
 567			t |= TR_33_PIO_E;
 568		break;
 569		}
 570	}
 571
 572#ifdef IDE_PMAC_DEBUG
 573	printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
 574		drive->name, pio,  *timings);
 575#endif	
 576
 577	*timings = t;
 578	pmac_ide_do_update_timings(drive);
 579}
 580
 581/*
 582 * Calculate KeyLargo ATA/66 UDMA timings
 583 */
 584static int
 585set_timings_udma_ata4(u32 *timings, u8 speed)
 586{
 587	unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
 588
 589	if (speed > XFER_UDMA_4)
 590		return 1;
 591
 592	rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
 593	wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
 594	addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
 595
 596	*timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
 597			(wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) | 
 598			(rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
 599			(addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
 600			TR_66_UDMA_EN;
 601#ifdef IDE_PMAC_DEBUG
 602	printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
 603		speed & 0xf,  *timings);
 604#endif	
 605
 606	return 0;
 607}
 608
 609/*
 610 * Calculate Kauai ATA/100 UDMA timings
 611 */
 612static int
 613set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
 614{
 615	struct ide_timing *t = ide_timing_find_mode(speed);
 616	u32 tr;
 617
 618	if (speed > XFER_UDMA_5 || t == NULL)
 619		return 1;
 620	tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
 621	*ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
 622	*ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
 623
 624	return 0;
 625}
 626
 627/*
 628 * Calculate Shasta ATA/133 UDMA timings
 629 */
 630static int
 631set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
 632{
 633	struct ide_timing *t = ide_timing_find_mode(speed);
 634	u32 tr;
 635
 636	if (speed > XFER_UDMA_6 || t == NULL)
 637		return 1;
 638	tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
 639	*ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
 640	*ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
 641
 642	return 0;
 643}
 644
 645/*
 646 * Calculate MDMA timings for all cells
 647 */
 648static void
 649set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
 650		 	u8 speed)
 651{
 652	u16 *id = drive->id;
 653	int cycleTime, accessTime = 0, recTime = 0;
 654	unsigned accessTicks, recTicks;
 655	struct mdma_timings_t* tm = NULL;
 656	int i;
 657
 658	/* Get default cycle time for mode */
 659	switch(speed & 0xf) {
 660		case 0: cycleTime = 480; break;
 661		case 1: cycleTime = 150; break;
 662		case 2: cycleTime = 120; break;
 663		default:
 664			BUG();
 665			break;
 666	}
 667
 668	/* Check if drive provides explicit DMA cycle time */
 669	if ((id[ATA_ID_FIELD_VALID] & 2) && id[ATA_ID_EIDE_DMA_TIME])
 670		cycleTime = max_t(int, id[ATA_ID_EIDE_DMA_TIME], cycleTime);
 671
 672	/* OHare limits according to some old Apple sources */	
 673	if ((intf_type == controller_ohare) && (cycleTime < 150))
 674		cycleTime = 150;
 675	/* Get the proper timing array for this controller */
 676	switch(intf_type) {
 677	        case controller_sh_ata6:
 678		case controller_un_ata6:
 679		case controller_k2_ata6:
 680			break;
 681		case controller_kl_ata4:
 682			tm = mdma_timings_66;
 683			break;
 684		case controller_kl_ata3:
 685			tm = mdma_timings_33k;
 686			break;
 687		default:
 688			tm = mdma_timings_33;
 689			break;
 690	}
 691	if (tm != NULL) {
 692		/* Lookup matching access & recovery times */
 693		i = -1;
 694		for (;;) {
 695			if (tm[i+1].cycleTime < cycleTime)
 696				break;
 697			i++;
 698		}
 699		cycleTime = tm[i].cycleTime;
 700		accessTime = tm[i].accessTime;
 701		recTime = tm[i].recoveryTime;
 702
 703#ifdef IDE_PMAC_DEBUG
 704		printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
 705			drive->name, cycleTime, accessTime, recTime);
 706#endif
 707	}
 708	switch(intf_type) {
 709	case controller_sh_ata6: {
 710		/* 133Mhz cell */
 711		u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
 712		*timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
 713		*timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
 714		}
 715	case controller_un_ata6:
 716	case controller_k2_ata6: {
 717		/* 100Mhz cell */
 718		u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
 719		*timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
 720		*timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
 721		}
 722		break;
 723	case controller_kl_ata4:
 724		/* 66Mhz cell */
 725		accessTicks = SYSCLK_TICKS_66(accessTime);
 726		accessTicks = min(accessTicks, 0x1fU);
 727		accessTicks = max(accessTicks, 0x1U);
 728		recTicks = SYSCLK_TICKS_66(recTime);
 729		recTicks = min(recTicks, 0x1fU);
 730		recTicks = max(recTicks, 0x3U);
 731		/* Clear out mdma bits and disable udma */
 732		*timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
 733			(accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
 734			(recTicks << TR_66_MDMA_RECOVERY_SHIFT);
 735		break;
 736	case controller_kl_ata3:
 737		/* 33Mhz cell on KeyLargo */
 738		accessTicks = SYSCLK_TICKS(accessTime);
 739		accessTicks = max(accessTicks, 1U);
 740		accessTicks = min(accessTicks, 0x1fU);
 741		accessTime = accessTicks * IDE_SYSCLK_NS;
 742		recTicks = SYSCLK_TICKS(recTime);
 743		recTicks = max(recTicks, 1U);
 744		recTicks = min(recTicks, 0x1fU);
 745		*timings = ((*timings) & ~TR_33_MDMA_MASK) |
 746				(accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
 747				(recTicks << TR_33_MDMA_RECOVERY_SHIFT);
 748		break;
 749	default: {
 750		/* 33Mhz cell on others */
 751		int halfTick = 0;
 752		int origAccessTime = accessTime;
 753		int origRecTime = recTime;
 754		
 755		accessTicks = SYSCLK_TICKS(accessTime);
 756		accessTicks = max(accessTicks, 1U);
 757		accessTicks = min(accessTicks, 0x1fU);
 758		accessTime = accessTicks * IDE_SYSCLK_NS;
 759		recTicks = SYSCLK_TICKS(recTime);
 760		recTicks = max(recTicks, 2U) - 1;
 761		recTicks = min(recTicks, 0x1fU);
 762		recTime = (recTicks + 1) * IDE_SYSCLK_NS;
 763		if ((accessTicks > 1) &&
 764		    ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
 765		    ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
 766            		halfTick = 1;
 767			accessTicks--;
 768		}
 769		*timings = ((*timings) & ~TR_33_MDMA_MASK) |
 770				(accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
 771				(recTicks << TR_33_MDMA_RECOVERY_SHIFT);
 772		if (halfTick)
 773			*timings |= TR_33_MDMA_HALFTICK;
 774		}
 775	}
 776#ifdef IDE_PMAC_DEBUG
 777	printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
 778		drive->name, speed & 0xf,  *timings);
 779#endif	
 780}
 781
 782static void pmac_ide_set_dma_mode(ide_hwif_t *hwif, ide_drive_t *drive)
 783{
 784	pmac_ide_hwif_t *pmif =
 785		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
 786	int ret = 0;
 787	u32 *timings, *timings2, tl[2];
 788	u8 unit = drive->dn & 1;
 789	const u8 speed = drive->dma_mode;
 790
 791	timings = &pmif->timings[unit];
 792	timings2 = &pmif->timings[unit+2];
 793
 794	/* Copy timings to local image */
 795	tl[0] = *timings;
 796	tl[1] = *timings2;
 797
 798	if (speed >= XFER_UDMA_0) {
 799		if (pmif->kind == controller_kl_ata4)
 800			ret = set_timings_udma_ata4(&tl[0], speed);
 801		else if (pmif->kind == controller_un_ata6
 802			 || pmif->kind == controller_k2_ata6)
 803			ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
 804		else if (pmif->kind == controller_sh_ata6)
 805			ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
 806		else
 807			ret = -1;
 808	} else
 809		set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
 810
 811	if (ret)
 812		return;
 813
 814	/* Apply timings to controller */
 815	*timings = tl[0];
 816	*timings2 = tl[1];
 817
 818	pmac_ide_do_update_timings(drive);	
 819}
 820
 821/*
 822 * Blast some well known "safe" values to the timing registers at init or
 823 * wakeup from sleep time, before we do real calculation
 824 */
 825static void
 826sanitize_timings(pmac_ide_hwif_t *pmif)
 827{
 828	unsigned int value, value2 = 0;
 829	
 830	switch(pmif->kind) {
 831		case controller_sh_ata6:
 832			value = 0x0a820c97;
 833			value2 = 0x00033031;
 834			break;
 835		case controller_un_ata6:
 836		case controller_k2_ata6:
 837			value = 0x08618a92;
 838			value2 = 0x00002921;
 839			break;
 840		case controller_kl_ata4:
 841			value = 0x0008438c;
 842			break;
 843		case controller_kl_ata3:
 844			value = 0x00084526;
 845			break;
 846		case controller_heathrow:
 847		case controller_ohare:
 848		default:
 849			value = 0x00074526;
 850			break;
 851	}
 852	pmif->timings[0] = pmif->timings[1] = value;
 853	pmif->timings[2] = pmif->timings[3] = value2;
 854}
 855
 856static int on_media_bay(pmac_ide_hwif_t *pmif)
 857{
 858	return pmif->mdev && pmif->mdev->media_bay != NULL;
 859}
 860
 861/* Suspend call back, should be called after the child devices
 862 * have actually been suspended
 863 */
 864static int pmac_ide_do_suspend(pmac_ide_hwif_t *pmif)
 865{
 866	/* We clear the timings */
 867	pmif->timings[0] = 0;
 868	pmif->timings[1] = 0;
 869	
 870	disable_irq(pmif->irq);
 871
 872	/* The media bay will handle itself just fine */
 873	if (on_media_bay(pmif))
 874		return 0;
 875	
 876	/* Kauai has bus control FCRs directly here */
 877	if (pmif->kauai_fcr) {
 878		u32 fcr = readl(pmif->kauai_fcr);
 879		fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
 880		writel(fcr, pmif->kauai_fcr);
 881	}
 882
 883	/* Disable the bus on older machines and the cell on kauai */
 884	ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
 885			    0);
 886
 887	return 0;
 888}
 889
 890/* Resume call back, should be called before the child devices
 891 * are resumed
 892 */
 893static int pmac_ide_do_resume(pmac_ide_hwif_t *pmif)
 894{
 895	/* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
 896	if (!on_media_bay(pmif)) {
 897		ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
 898		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
 899		msleep(10);
 900		ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
 901
 902		/* Kauai has it different */
 903		if (pmif->kauai_fcr) {
 904			u32 fcr = readl(pmif->kauai_fcr);
 905			fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
 906			writel(fcr, pmif->kauai_fcr);
 907		}
 908
 909		msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
 910	}
 911
 912	/* Sanitize drive timings */
 913	sanitize_timings(pmif);
 914
 915	enable_irq(pmif->irq);
 916
 917	return 0;
 918}
 919
 920static u8 pmac_ide_cable_detect(ide_hwif_t *hwif)
 921{
 922	pmac_ide_hwif_t *pmif =
 923		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
 924	struct device_node *np = pmif->node;
 925	const char *cable = of_get_property(np, "cable-type", NULL);
 926	struct device_node *root = of_find_node_by_path("/");
 927	const char *model = of_get_property(root, "model", NULL);
 928
 929	/* Get cable type from device-tree. */
 930	if (cable && !strncmp(cable, "80-", 3)) {
 931		/* Some drives fail to detect 80c cable in PowerBook */
 932		/* These machine use proprietary short IDE cable anyway */
 933		if (!strncmp(model, "PowerBook", 9))
 934			return ATA_CBL_PATA40_SHORT;
 935		else
 936			return ATA_CBL_PATA80;
 937	}
 938
 939	/*
 940	 * G5's seem to have incorrect cable type in device-tree.
 941	 * Let's assume they have a 80 conductor cable, this seem
 942	 * to be always the case unless the user mucked around.
 943	 */
 944	if (of_device_is_compatible(np, "K2-UATA") ||
 945	    of_device_is_compatible(np, "shasta-ata"))
 946		return ATA_CBL_PATA80;
 947
 948	return ATA_CBL_PATA40;
 949}
 950
 951static void pmac_ide_init_dev(ide_drive_t *drive)
 952{
 953	ide_hwif_t *hwif = drive->hwif;
 954	pmac_ide_hwif_t *pmif =
 955		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
 956
 957	if (on_media_bay(pmif)) {
 958		if (check_media_bay(pmif->mdev->media_bay) == MB_CD) {
 959			drive->dev_flags &= ~IDE_DFLAG_NOPROBE;
 960			return;
 961		}
 962		drive->dev_flags |= IDE_DFLAG_NOPROBE;
 963	}
 964}
 965
 966static const struct ide_tp_ops pmac_tp_ops = {
 967	.exec_command		= pmac_exec_command,
 968	.read_status		= ide_read_status,
 969	.read_altstatus		= ide_read_altstatus,
 970	.write_devctl		= pmac_write_devctl,
 971
 972	.dev_select		= pmac_dev_select,
 973	.tf_load		= ide_tf_load,
 974	.tf_read		= ide_tf_read,
 975
 976	.input_data		= ide_input_data,
 977	.output_data		= ide_output_data,
 978};
 979
 980static const struct ide_tp_ops pmac_ata6_tp_ops = {
 981	.exec_command		= pmac_exec_command,
 982	.read_status		= ide_read_status,
 983	.read_altstatus		= ide_read_altstatus,
 984	.write_devctl		= pmac_write_devctl,
 985
 986	.dev_select		= pmac_kauai_dev_select,
 987	.tf_load		= ide_tf_load,
 988	.tf_read		= ide_tf_read,
 989
 990	.input_data		= ide_input_data,
 991	.output_data		= ide_output_data,
 992};
 993
 994static const struct ide_port_ops pmac_ide_ata4_port_ops = {
 995	.init_dev		= pmac_ide_init_dev,
 996	.set_pio_mode		= pmac_ide_set_pio_mode,
 997	.set_dma_mode		= pmac_ide_set_dma_mode,
 998	.cable_detect		= pmac_ide_cable_detect,
 999};
1000
1001static const struct ide_port_ops pmac_ide_port_ops = {
1002	.init_dev		= pmac_ide_init_dev,
1003	.set_pio_mode		= pmac_ide_set_pio_mode,
1004	.set_dma_mode		= pmac_ide_set_dma_mode,
1005};
1006
1007static const struct ide_dma_ops pmac_dma_ops;
1008
1009static const struct ide_port_info pmac_port_info = {
1010	.name			= DRV_NAME,
1011	.init_dma		= pmac_ide_init_dma,
1012	.chipset		= ide_pmac,
1013	.tp_ops			= &pmac_tp_ops,
1014	.port_ops		= &pmac_ide_port_ops,
1015	.dma_ops		= &pmac_dma_ops,
1016	.host_flags		= IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
1017				  IDE_HFLAG_POST_SET_MODE |
1018				  IDE_HFLAG_MMIO |
1019				  IDE_HFLAG_UNMASK_IRQS,
1020	.pio_mask		= ATA_PIO4,
1021	.mwdma_mask		= ATA_MWDMA2,
1022};
1023
1024/*
1025 * Setup, register & probe an IDE channel driven by this driver, this is
1026 * called by one of the 2 probe functions (macio or PCI).
1027 */
1028static int __devinit pmac_ide_setup_device(pmac_ide_hwif_t *pmif,
1029					   struct ide_hw *hw)
1030{
1031	struct device_node *np = pmif->node;
1032	const int *bidp;
1033	struct ide_host *host;
1034	ide_hwif_t *hwif;
1035	struct ide_hw *hws[] = { hw };
1036	struct ide_port_info d = pmac_port_info;
1037	int rc;
1038
1039	pmif->broken_dma = pmif->broken_dma_warn = 0;
1040	if (of_device_is_compatible(np, "shasta-ata")) {
1041		pmif->kind = controller_sh_ata6;
1042		d.tp_ops = &pmac_ata6_tp_ops;
1043		d.port_ops = &pmac_ide_ata4_port_ops;
1044		d.udma_mask = ATA_UDMA6;
1045	} else if (of_device_is_compatible(np, "kauai-ata")) {
1046		pmif->kind = controller_un_ata6;
1047		d.tp_ops = &pmac_ata6_tp_ops;
1048		d.port_ops = &pmac_ide_ata4_port_ops;
1049		d.udma_mask = ATA_UDMA5;
1050	} else if (of_device_is_compatible(np, "K2-UATA")) {
1051		pmif->kind = controller_k2_ata6;
1052		d.tp_ops = &pmac_ata6_tp_ops;
1053		d.port_ops = &pmac_ide_ata4_port_ops;
1054		d.udma_mask = ATA_UDMA5;
1055	} else if (of_device_is_compatible(np, "keylargo-ata")) {
1056		if (strcmp(np->name, "ata-4") == 0) {
1057			pmif->kind = controller_kl_ata4;
1058			d.port_ops = &pmac_ide_ata4_port_ops;
1059			d.udma_mask = ATA_UDMA4;
1060		} else
1061			pmif->kind = controller_kl_ata3;
1062	} else if (of_device_is_compatible(np, "heathrow-ata")) {
1063		pmif->kind = controller_heathrow;
1064	} else {
1065		pmif->kind = controller_ohare;
1066		pmif->broken_dma = 1;
1067	}
1068
1069	bidp = of_get_property(np, "AAPL,bus-id", NULL);
1070	pmif->aapl_bus_id =  bidp ? *bidp : 0;
1071
1072	/* On Kauai-type controllers, we make sure the FCR is correct */
1073	if (pmif->kauai_fcr)
1074		writel(KAUAI_FCR_UATA_MAGIC |
1075		       KAUAI_FCR_UATA_RESET_N |
1076		       KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
1077	
1078	/* Make sure we have sane timings */
1079	sanitize_timings(pmif);
1080
1081	/* If we are on a media bay, wait for it to settle and lock it */
1082	if (pmif->mdev)
1083		lock_media_bay(pmif->mdev->media_bay);
1084
1085	host = ide_host_alloc(&d, hws, 1);
1086	if (host == NULL) {
1087		rc = -ENOMEM;
1088		goto bail;
1089	}
1090	hwif = pmif->hwif = host->ports[0];
1091
1092	if (on_media_bay(pmif)) {
1093		/* Fixup bus ID for media bay */
1094		if (!bidp)
1095			pmif->aapl_bus_id = 1;
1096	} else if (pmif->kind == controller_ohare) {
1097		/* The code below is having trouble on some ohare machines
1098		 * (timing related ?). Until I can put my hand on one of these
1099		 * units, I keep the old way
1100		 */
1101		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1102	} else {
1103 		/* This is necessary to enable IDE when net-booting */
1104		ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1105		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1106		msleep(10);
1107		ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1108		msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1109	}
1110
1111	printk(KERN_INFO DRV_NAME ": Found Apple %s controller (%s), "
1112	       "bus ID %d%s, irq %d\n", model_name[pmif->kind],
1113	       pmif->mdev ? "macio" : "PCI", pmif->aapl_bus_id,
1114	       on_media_bay(pmif) ? " (mediabay)" : "", hw->irq);
1115
1116	rc = ide_host_register(host, &d, hws);
1117	if (rc)
1118		pmif->hwif = NULL;
1119
1120	if (pmif->mdev)
1121		unlock_media_bay(pmif->mdev->media_bay);
1122
1123 bail:
1124	if (rc && host)
1125		ide_host_free(host);
1126	return rc;
1127}
1128
1129static void __devinit pmac_ide_init_ports(struct ide_hw *hw, unsigned long base)
1130{
1131	int i;
1132
1133	for (i = 0; i < 8; ++i)
1134		hw->io_ports_array[i] = base + i * 0x10;
1135
1136	hw->io_ports.ctl_addr = base + 0x160;
1137}
1138
1139/*
1140 * Attach to a macio probed interface
1141 */
1142static int __devinit
1143pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
1144{
1145	void __iomem *base;
1146	unsigned long regbase;
1147	pmac_ide_hwif_t *pmif;
1148	int irq, rc;
1149	struct ide_hw hw;
1150
1151	pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1152	if (pmif == NULL)
1153		return -ENOMEM;
1154
1155	if (macio_resource_count(mdev) == 0) {
1156		printk(KERN_WARNING "ide-pmac: no address for %s\n",
1157				    mdev->ofdev.dev.of_node->full_name);
1158		rc = -ENXIO;
1159		goto out_free_pmif;
1160	}
1161
1162	/* Request memory resource for IO ports */
1163	if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1164		printk(KERN_ERR "ide-pmac: can't request MMIO resource for "
1165				"%s!\n", mdev->ofdev.dev.of_node->full_name);
1166		rc = -EBUSY;
1167		goto out_free_pmif;
1168	}
1169			
1170	/* XXX This is bogus. Should be fixed in the registry by checking
1171	 * the kind of host interrupt controller, a bit like gatwick
1172	 * fixes in irq.c. That works well enough for the single case
1173	 * where that happens though...
1174	 */
1175	if (macio_irq_count(mdev) == 0) {
1176		printk(KERN_WARNING "ide-pmac: no intrs for device %s, using "
1177				    "13\n", mdev->ofdev.dev.of_node->full_name);
1178		irq = irq_create_mapping(NULL, 13);
1179	} else
1180		irq = macio_irq(mdev, 0);
1181
1182	base = ioremap(macio_resource_start(mdev, 0), 0x400);
1183	regbase = (unsigned long) base;
1184
1185	pmif->mdev = mdev;
1186	pmif->node = mdev->ofdev.dev.of_node;
1187	pmif->regbase = regbase;
1188	pmif->irq = irq;
1189	pmif->kauai_fcr = NULL;
1190
1191	if (macio_resource_count(mdev) >= 2) {
1192		if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1193			printk(KERN_WARNING "ide-pmac: can't request DMA "
1194					    "resource for %s!\n",
1195					    mdev->ofdev.dev.of_node->full_name);
1196		else
1197			pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1198	} else
1199		pmif->dma_regs = NULL;
1200
1201	dev_set_drvdata(&mdev->ofdev.dev, pmif);
1202
1203	memset(&hw, 0, sizeof(hw));
1204	pmac_ide_init_ports(&hw, pmif->regbase);
1205	hw.irq = irq;
1206	hw.dev = &mdev->bus->pdev->dev;
1207	hw.parent = &mdev->ofdev.dev;
1208
1209	rc = pmac_ide_setup_device(pmif, &hw);
1210	if (rc != 0) {
1211		/* The inteface is released to the common IDE layer */
1212		dev_set_drvdata(&mdev->ofdev.dev, NULL);
1213		iounmap(base);
1214		if (pmif->dma_regs) {
1215			iounmap(pmif->dma_regs);
1216			macio_release_resource(mdev, 1);
1217		}
1218		macio_release_resource(mdev, 0);
1219		kfree(pmif);
1220	}
1221
1222	return rc;
1223
1224out_free_pmif:
1225	kfree(pmif);
1226	return rc;
1227}
1228
1229static int
1230pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1231{
1232	pmac_ide_hwif_t *pmif =
1233		(pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1234	int rc = 0;
1235
1236	if (mesg.event != mdev->ofdev.dev.power.power_state.event
1237			&& (mesg.event & PM_EVENT_SLEEP)) {
1238		rc = pmac_ide_do_suspend(pmif);
1239		if (rc == 0)
1240			mdev->ofdev.dev.power.power_state = mesg;
1241	}
1242
1243	return rc;
1244}
1245
1246static int
1247pmac_ide_macio_resume(struct macio_dev *mdev)
1248{
1249	pmac_ide_hwif_t *pmif =
1250		(pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1251	int rc = 0;
1252
1253	if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1254		rc = pmac_ide_do_resume(pmif);
1255		if (rc == 0)
1256			mdev->ofdev.dev.power.power_state = PMSG_ON;
1257	}
1258
1259	return rc;
1260}
1261
1262/*
1263 * Attach to a PCI probed interface
1264 */
1265static int __devinit
1266pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
1267{
1268	struct device_node *np;
1269	pmac_ide_hwif_t *pmif;
1270	void __iomem *base;
1271	unsigned long rbase, rlen;
1272	int rc;
1273	struct ide_hw hw;
1274
1275	np = pci_device_to_OF_node(pdev);
1276	if (np == NULL) {
1277		printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1278		return -ENODEV;
1279	}
1280
1281	pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1282	if (pmif == NULL)
1283		return -ENOMEM;
1284
1285	if (pci_enable_device(pdev)) {
1286		printk(KERN_WARNING "ide-pmac: Can't enable PCI device for "
1287				    "%s\n", np->full_name);
1288		rc = -ENXIO;
1289		goto out_free_pmif;
1290	}
1291	pci_set_master(pdev);
1292			
1293	if (pci_request_regions(pdev, "Kauai ATA")) {
1294		printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for "
1295				"%s\n", np->full_name);
1296		rc = -ENXIO;
1297		goto out_free_pmif;
1298	}
1299
1300	pmif->mdev = NULL;
1301	pmif->node = np;
1302
1303	rbase = pci_resource_start(pdev, 0);
1304	rlen = pci_resource_len(pdev, 0);
1305
1306	base = ioremap(rbase, rlen);
1307	pmif->regbase = (unsigned long) base + 0x2000;
1308	pmif->dma_regs = base + 0x1000;
1309	pmif->kauai_fcr = base;
1310	pmif->irq = pdev->irq;
1311
1312	pci_set_drvdata(pdev, pmif);
1313
1314	memset(&hw, 0, sizeof(hw));
1315	pmac_ide_init_ports(&hw, pmif->regbase);
1316	hw.irq = pdev->irq;
1317	hw.dev = &pdev->dev;
1318
1319	rc = pmac_ide_setup_device(pmif, &hw);
1320	if (rc != 0) {
1321		/* The inteface is released to the common IDE layer */
1322		pci_set_drvdata(pdev, NULL);
1323		iounmap(base);
1324		pci_release_regions(pdev);
1325		kfree(pmif);
1326	}
1327
1328	return rc;
1329
1330out_free_pmif:
1331	kfree(pmif);
1332	return rc;
1333}
1334
1335static int
1336pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1337{
1338	pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev);
1339	int rc = 0;
1340
1341	if (mesg.event != pdev->dev.power.power_state.event
1342			&& (mesg.event & PM_EVENT_SLEEP)) {
1343		rc = pmac_ide_do_suspend(pmif);
1344		if (rc == 0)
1345			pdev->dev.power.power_state = mesg;
1346	}
1347
1348	return rc;
1349}
1350
1351static int
1352pmac_ide_pci_resume(struct pci_dev *pdev)
1353{
1354	pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev);
1355	int rc = 0;
1356
1357	if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1358		rc = pmac_ide_do_resume(pmif);
1359		if (rc == 0)
1360			pdev->dev.power.power_state = PMSG_ON;
1361	}
1362
1363	return rc;
1364}
1365
1366#ifdef CONFIG_PMAC_MEDIABAY
1367static void pmac_ide_macio_mb_event(struct macio_dev* mdev, int mb_state)
1368{
1369	pmac_ide_hwif_t *pmif =
1370		(pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1371
1372	switch(mb_state) {
1373	case MB_CD:
1374		if (!pmif->hwif->present)
1375			ide_port_scan(pmif->hwif);
1376		break;
1377	default:
1378		if (pmif->hwif->present)
1379			ide_port_unregister_devices(pmif->hwif);
1380	}
1381}
1382#endif /* CONFIG_PMAC_MEDIABAY */
1383
1384
1385static struct of_device_id pmac_ide_macio_match[] = 
1386{
1387	{
1388	.name 		= "IDE",
1389	},
1390	{
1391	.name 		= "ATA",
1392	},
1393	{
1394	.type		= "ide",
1395	},
1396	{
1397	.type		= "ata",
1398	},
1399	{},
1400};
1401
1402static struct macio_driver pmac_ide_macio_driver = 
1403{
1404	.driver = {
1405		.name 		= "ide-pmac",
1406		.owner		= THIS_MODULE,
1407		.of_match_table	= pmac_ide_macio_match,
1408	},
1409	.probe		= pmac_ide_macio_attach,
1410	.suspend	= pmac_ide_macio_suspend,
1411	.resume		= pmac_ide_macio_resume,
1412#ifdef CONFIG_PMAC_MEDIABAY
1413	.mediabay_event	= pmac_ide_macio_mb_event,
1414#endif
1415};
1416
1417static const struct pci_device_id pmac_ide_pci_match[] = {
1418	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA),	0 },
1419	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100),	0 },
1420	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100),	0 },
1421	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA),	0 },
1422	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA),	0 },
1423	{},
1424};
1425
1426static struct pci_driver pmac_ide_pci_driver = {
1427	.name		= "ide-pmac",
1428	.id_table	= pmac_ide_pci_match,
1429	.probe		= pmac_ide_pci_attach,
1430	.suspend	= pmac_ide_pci_suspend,
1431	.resume		= pmac_ide_pci_resume,
1432};
1433MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1434
1435int __init pmac_ide_probe(void)
1436{
1437	int error;
1438
1439	if (!machine_is(powermac))
1440		return -ENODEV;
1441
1442#ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1443	error = pci_register_driver(&pmac_ide_pci_driver);
1444	if (error)
1445		goto out;
1446	error = macio_register_driver(&pmac_ide_macio_driver);
1447	if (error) {
1448		pci_unregister_driver(&pmac_ide_pci_driver);
1449		goto out;
1450	}
1451#else
1452	error = macio_register_driver(&pmac_ide_macio_driver);
1453	if (error)
1454		goto out;
1455	error = pci_register_driver(&pmac_ide_pci_driver);
1456	if (error) {
1457		macio_unregister_driver(&pmac_ide_macio_driver);
1458		goto out;
1459	}
1460#endif
1461out:
1462	return error;
1463}
1464
1465/*
1466 * pmac_ide_build_dmatable builds the DBDMA command list
1467 * for a transfer and sets the DBDMA channel to point to it.
1468 */
1469static int pmac_ide_build_dmatable(ide_drive_t *drive, struct ide_cmd *cmd)
1470{
1471	ide_hwif_t *hwif = drive->hwif;
1472	pmac_ide_hwif_t *pmif =
1473		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1474	struct dbdma_cmd *table;
1475	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1476	struct scatterlist *sg;
1477	int wr = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1478	int i = cmd->sg_nents, count = 0;
1479
1480	/* DMA table is already aligned */
1481	table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1482
1483	/* Make sure DMA controller is stopped (necessary ?) */
1484	writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1485	while (readl(&dma->status) & RUN)
1486		udelay(1);
1487
1488	/* Build DBDMA commands list */
1489	sg = hwif->sg_table;
1490	while (i && sg_dma_len(sg)) {
1491		u32 cur_addr;
1492		u32 cur_len;
1493
1494		cur_addr = sg_dma_address(sg);
1495		cur_len = sg_dma_len(sg);
1496
1497		if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1498			if (pmif->broken_dma_warn == 0) {
1499				printk(KERN_WARNING "%s: DMA on non aligned address, "
1500				       "switching to PIO on Ohare chipset\n", drive->name);
1501				pmif->broken_dma_warn = 1;
1502			}
1503			return 0;
1504		}
1505		while (cur_len) {
1506			unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1507
1508			if (count++ >= MAX_DCMDS) {
1509				printk(KERN_WARNING "%s: DMA table too small\n",
1510				       drive->name);
1511				return 0;
1512			}
1513			st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
1514			st_le16(&table->req_count, tc);
1515			st_le32(&table->phy_addr, cur_addr);
1516			table->cmd_dep = 0;
1517			table->xfer_status = 0;
1518			table->res_count = 0;
1519			cur_addr += tc;
1520			cur_len -= tc;
1521			++table;
1522		}
1523		sg = sg_next(sg);
1524		i--;
1525	}
1526
1527	/* convert the last command to an input/output last command */
1528	if (count) {
1529		st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
1530		/* add the stop command to the end of the list */
1531		memset(table, 0, sizeof(struct dbdma_cmd));
1532		st_le16(&table->command, DBDMA_STOP);
1533		mb();
1534		writel(hwif->dmatable_dma, &dma->cmdptr);
1535		return 1;
1536	}
1537
1538	printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1539
1540	return 0; /* revert to PIO for this request */
1541}
1542
1543/*
1544 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1545 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1546 */
1547static int pmac_ide_dma_setup(ide_drive_t *drive, struct ide_cmd *cmd)
1548{
1549	ide_hwif_t *hwif = drive->hwif;
1550	pmac_ide_hwif_t *pmif =
1551		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1552	u8 unit = drive->dn & 1, ata4 = (pmif->kind == controller_kl_ata4);
1553	u8 write = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1554
1555	if (pmac_ide_build_dmatable(drive, cmd) == 0)
1556		return 1;
1557
1558	/* Apple adds 60ns to wrDataSetup on reads */
1559	if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1560		writel(pmif->timings[unit] + (write ? 0 : 0x00800000UL),
1561			PMAC_IDE_REG(IDE_TIMING_CONFIG));
1562		(void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1563	}
1564
1565	return 0;
1566}
1567
1568/*
1569 * Kick the DMA controller into life after the DMA command has been issued
1570 * to the drive.
1571 */
1572static void
1573pmac_ide_dma_start(ide_drive_t *drive)
1574{
1575	ide_hwif_t *hwif = drive->hwif;
1576	pmac_ide_hwif_t *pmif =
1577		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1578	volatile struct dbdma_regs __iomem *dma;
1579
1580	dma = pmif->dma_regs;
1581
1582	writel((RUN << 16) | RUN, &dma->control);
1583	/* Make sure it gets to the controller right now */
1584	(void)readl(&dma->control);
1585}
1586
1587/*
1588 * After a DMA transfer, make sure the controller is stopped
1589 */
1590static int
1591pmac_ide_dma_end (ide_drive_t *drive)
1592{
1593	ide_hwif_t *hwif = drive->hwif;
1594	pmac_ide_hwif_t *pmif =
1595		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1596	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1597	u32 dstat;
1598
1599	dstat = readl(&dma->status);
1600	writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1601
1602	/* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1603	 * in theory, but with ATAPI decices doing buffer underruns, that would
1604	 * cause us to disable DMA, which isn't what we want
1605	 */
1606	return (dstat & (RUN|DEAD)) != RUN;
1607}
1608
1609/*
1610 * Check out that the interrupt we got was for us. We can't always know this
1611 * for sure with those Apple interfaces (well, we could on the recent ones but
1612 * that's not implemented yet), on the other hand, we don't have shared interrupts
1613 * so it's not really a problem
1614 */
1615static int
1616pmac_ide_dma_test_irq (ide_drive_t *drive)
1617{
1618	ide_hwif_t *hwif = drive->hwif;
1619	pmac_ide_hwif_t *pmif =
1620		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1621	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1622	unsigned long status, timeout;
1623
1624	/* We have to things to deal with here:
1625	 * 
1626	 * - The dbdma won't stop if the command was started
1627	 * but completed with an error without transferring all
1628	 * datas. This happens when bad blocks are met during
1629	 * a multi-block transfer.
1630	 * 
1631	 * - The dbdma fifo hasn't yet finished flushing to
1632	 * to system memory when the disk interrupt occurs.
1633	 * 
1634	 */
1635
1636	/* If ACTIVE is cleared, the STOP command have passed and
1637	 * transfer is complete.
1638	 */
1639	status = readl(&dma->status);
1640	if (!(status & ACTIVE))
1641		return 1;
1642
1643	/* If dbdma didn't execute the STOP command yet, the
1644	 * active bit is still set. We consider that we aren't
1645	 * sharing interrupts (which is hopefully the case with
1646	 * those controllers) and so we just try to flush the
1647	 * channel for pending data in the fifo
1648	 */
1649	udelay(1);
1650	writel((FLUSH << 16) | FLUSH, &dma->control);
1651	timeout = 0;
1652	for (;;) {
1653		udelay(1);
1654		status = readl(&dma->status);
1655		if ((status & FLUSH) == 0)
1656			break;
1657		if (++timeout > 100) {
1658			printk(KERN_WARNING "ide%d, ide_dma_test_irq timeout flushing channel\n",
1659			       hwif->index);
1660			break;
1661		}
1662	}	
1663	return 1;
1664}
1665
1666static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
1667{
1668}
1669
1670static void
1671pmac_ide_dma_lost_irq (ide_drive_t *drive)
1672{
1673	ide_hwif_t *hwif = drive->hwif;
1674	pmac_ide_hwif_t *pmif =
1675		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1676	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1677	unsigned long status = readl(&dma->status);
1678
1679	printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1680}
1681
1682static const struct ide_dma_ops pmac_dma_ops = {
1683	.dma_host_set		= pmac_ide_dma_host_set,
1684	.dma_setup		= pmac_ide_dma_setup,
1685	.dma_start		= pmac_ide_dma_start,
1686	.dma_end		= pmac_ide_dma_end,
1687	.dma_test_irq		= pmac_ide_dma_test_irq,
1688	.dma_lost_irq		= pmac_ide_dma_lost_irq,
1689};
1690
1691/*
1692 * Allocate the data structures needed for using DMA with an interface
1693 * and fill the proper list of functions pointers
1694 */
1695static int __devinit pmac_ide_init_dma(ide_hwif_t *hwif,
1696				       const struct ide_port_info *d)
1697{
1698	pmac_ide_hwif_t *pmif =
1699		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1700	struct pci_dev *dev = to_pci_dev(hwif->dev);
1701
1702	/* We won't need pci_dev if we switch to generic consistent
1703	 * DMA routines ...
1704	 */
1705	if (dev == NULL || pmif->dma_regs == 0)
1706		return -ENODEV;
1707	/*
1708	 * Allocate space for the DBDMA commands.
1709	 * The +2 is +1 for the stop command and +1 to allow for
1710	 * aligning the start address to a multiple of 16 bytes.
1711	 */
1712	pmif->dma_table_cpu = pci_alloc_consistent(
1713		dev,
1714		(MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
1715		&hwif->dmatable_dma);
1716	if (pmif->dma_table_cpu == NULL) {
1717		printk(KERN_ERR "%s: unable to allocate DMA command list\n",
1718		       hwif->name);
1719		return -ENOMEM;
1720	}
1721
1722	hwif->sg_max_nents = MAX_DCMDS;
1723
1724	return 0;
1725}
1726
1727module_init(pmac_ide_probe);
1728
1729MODULE_LICENSE("GPL");