Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2016, The Linux Foundation. All rights reserved.
   4 */
   5
   6#include <linux/clk.h>
   7#include <linux/clk-provider.h>
   8#include <linux/delay.h>
   9
  10#include "dsi_phy.h"
  11#include "dsi.xml.h"
  12#include "dsi_phy_14nm.xml.h"
  13
  14#define PHY_14NM_CKLN_IDX	4
  15
  16/*
  17 * DSI PLL 14nm - clock diagram (eg: DSI0):
  18 *
  19 *         dsi0n1_postdiv_clk
  20 *                         |
  21 *                         |
  22 *                 +----+  |  +----+
  23 *  dsi0vco_clk ---| n1 |--o--| /8 |-- dsi0pllbyte
  24 *                 +----+  |  +----+
  25 *                         |           dsi0n1_postdivby2_clk
  26 *                         |   +----+  |
  27 *                         o---| /2 |--o--|\
  28 *                         |   +----+     | \   +----+
  29 *                         |              |  |--| n2 |-- dsi0pll
  30 *                         o--------------| /   +----+
  31 *                                        |/
  32 */
  33
  34#define POLL_MAX_READS			15
  35#define POLL_TIMEOUT_US			1000
  36
  37#define VCO_REF_CLK_RATE		19200000
  38#define VCO_MIN_RATE			1300000000UL
  39#define VCO_MAX_RATE			2600000000UL
  40
  41struct dsi_pll_config {
  42	u64 vco_current_rate;
  43
  44	u32 ssc_en;	/* SSC enable/disable */
  45
  46	/* fixed params */
  47	u32 plllock_cnt;
  48	u32 ssc_center;
  49	u32 ssc_adj_period;
  50	u32 ssc_spread;
  51	u32 ssc_freq;
  52
  53	/* calculated */
  54	u32 dec_start;
  55	u32 div_frac_start;
  56	u32 ssc_period;
  57	u32 ssc_step_size;
  58	u32 plllock_cmp;
  59	u32 pll_vco_div_ref;
  60	u32 pll_vco_count;
  61	u32 pll_kvco_div_ref;
  62	u32 pll_kvco_count;
  63};
  64
  65struct pll_14nm_cached_state {
  66	unsigned long vco_rate;
  67	u8 n2postdiv;
  68	u8 n1postdiv;
  69};
  70
  71struct dsi_pll_14nm {
  72	struct clk_hw clk_hw;
  73
  74	struct msm_dsi_phy *phy;
  75
  76	/* protects REG_DSI_14nm_PHY_CMN_CLK_CFG0 register */
  77	spinlock_t postdiv_lock;
  78
  79	struct pll_14nm_cached_state cached_state;
  80
  81	struct dsi_pll_14nm *slave;
  82};
  83
  84#define to_pll_14nm(x)	container_of(x, struct dsi_pll_14nm, clk_hw)
  85
  86/*
  87 * Private struct for N1/N2 post-divider clocks. These clocks are similar to
  88 * the generic clk_divider class of clocks. The only difference is that it
  89 * also sets the slave DSI PLL's post-dividers if in bonded DSI mode
  90 */
  91struct dsi_pll_14nm_postdiv {
  92	struct clk_hw hw;
  93
  94	/* divider params */
  95	u8 shift;
  96	u8 width;
  97	u8 flags; /* same flags as used by clk_divider struct */
  98
  99	struct dsi_pll_14nm *pll;
 100};
 101
 102#define to_pll_14nm_postdiv(_hw) container_of(_hw, struct dsi_pll_14nm_postdiv, hw)
 103
 104/*
 105 * Global list of private DSI PLL struct pointers. We need this for bonded DSI
 106 * mode, where the master PLL's clk_ops needs access the slave's private data
 107 */
 108static struct dsi_pll_14nm *pll_14nm_list[DSI_MAX];
 109
 110static bool pll_14nm_poll_for_ready(struct dsi_pll_14nm *pll_14nm,
 111				    u32 nb_tries, u32 timeout_us)
 112{
 113	bool pll_locked = false, pll_ready = false;
 114	void __iomem *base = pll_14nm->phy->pll_base;
 115	u32 tries, val;
 116
 117	tries = nb_tries;
 118	while (tries--) {
 119		val = dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
 120		pll_locked = !!(val & BIT(5));
 121
 122		if (pll_locked)
 123			break;
 124
 125		udelay(timeout_us);
 126	}
 127
 128	if (!pll_locked)
 129		goto out;
 130
 131	tries = nb_tries;
 132	while (tries--) {
 133		val = dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
 134		pll_ready = !!(val & BIT(0));
 135
 136		if (pll_ready)
 137			break;
 138
 139		udelay(timeout_us);
 140	}
 141
 142out:
 143	DBG("DSI PLL is %slocked, %sready", pll_locked ? "" : "*not* ", pll_ready ? "" : "*not* ");
 144
 145	return pll_locked && pll_ready;
 146}
 147
 148static void dsi_pll_14nm_config_init(struct dsi_pll_config *pconf)
 149{
 150	/* fixed input */
 151	pconf->plllock_cnt = 1;
 152
 153	/*
 154	 * SSC is enabled by default. We might need DT props for configuring
 155	 * some SSC params like PPM and center/down spread etc.
 156	 */
 157	pconf->ssc_en = 1;
 158	pconf->ssc_center = 0;		/* down spread by default */
 159	pconf->ssc_spread = 5;		/* PPM / 1000 */
 160	pconf->ssc_freq = 31500;	/* default recommended */
 161	pconf->ssc_adj_period = 37;
 162}
 163
 164#define CEIL(x, y)		(((x) + ((y) - 1)) / (y))
 165
 166static void pll_14nm_ssc_calc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
 167{
 168	u32 period, ssc_period;
 169	u32 ref, rem;
 170	u64 step_size;
 171
 172	DBG("vco=%lld ref=%d", pconf->vco_current_rate, VCO_REF_CLK_RATE);
 173
 174	ssc_period = pconf->ssc_freq / 500;
 175	period = (u32)VCO_REF_CLK_RATE / 1000;
 176	ssc_period  = CEIL(period, ssc_period);
 177	ssc_period -= 1;
 178	pconf->ssc_period = ssc_period;
 179
 180	DBG("ssc freq=%d spread=%d period=%d", pconf->ssc_freq,
 181	    pconf->ssc_spread, pconf->ssc_period);
 182
 183	step_size = (u32)pconf->vco_current_rate;
 184	ref = VCO_REF_CLK_RATE;
 185	ref /= 1000;
 186	step_size = div_u64(step_size, ref);
 187	step_size <<= 20;
 188	step_size = div_u64(step_size, 1000);
 189	step_size *= pconf->ssc_spread;
 190	step_size = div_u64(step_size, 1000);
 191	step_size *= (pconf->ssc_adj_period + 1);
 192
 193	rem = 0;
 194	step_size = div_u64_rem(step_size, ssc_period + 1, &rem);
 195	if (rem)
 196		step_size++;
 197
 198	DBG("step_size=%lld", step_size);
 199
 200	step_size &= 0x0ffff;	/* take lower 16 bits */
 201
 202	pconf->ssc_step_size = step_size;
 203}
 204
 205static void pll_14nm_dec_frac_calc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
 206{
 207	u64 multiplier = BIT(20);
 208	u64 dec_start_multiple, dec_start, pll_comp_val;
 209	u32 duration, div_frac_start;
 210	u64 vco_clk_rate = pconf->vco_current_rate;
 211	u64 fref = VCO_REF_CLK_RATE;
 212
 213	DBG("vco_clk_rate=%lld ref_clk_rate=%lld", vco_clk_rate, fref);
 214
 215	dec_start_multiple = div_u64(vco_clk_rate * multiplier, fref);
 216	dec_start = div_u64_rem(dec_start_multiple, multiplier, &div_frac_start);
 217
 218	pconf->dec_start = (u32)dec_start;
 219	pconf->div_frac_start = div_frac_start;
 220
 221	if (pconf->plllock_cnt == 0)
 222		duration = 1024;
 223	else if (pconf->plllock_cnt == 1)
 224		duration = 256;
 225	else if (pconf->plllock_cnt == 2)
 226		duration = 128;
 227	else
 228		duration = 32;
 229
 230	pll_comp_val = duration * dec_start_multiple;
 231	pll_comp_val = div_u64(pll_comp_val, multiplier);
 232	do_div(pll_comp_val, 10);
 233
 234	pconf->plllock_cmp = (u32)pll_comp_val;
 235}
 236
 237static u32 pll_14nm_kvco_slop(u32 vrate)
 238{
 239	u32 slop = 0;
 240
 241	if (vrate > VCO_MIN_RATE && vrate <= 1800000000UL)
 242		slop =  600;
 243	else if (vrate > 1800000000UL && vrate < 2300000000UL)
 244		slop = 400;
 245	else if (vrate > 2300000000UL && vrate < VCO_MAX_RATE)
 246		slop = 280;
 247
 248	return slop;
 249}
 250
 251static void pll_14nm_calc_vco_count(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
 252{
 253	u64 vco_clk_rate = pconf->vco_current_rate;
 254	u64 fref = VCO_REF_CLK_RATE;
 255	u32 vco_measure_time = 5;
 256	u32 kvco_measure_time = 5;
 257	u64 data;
 258	u32 cnt;
 259
 260	data = fref * vco_measure_time;
 261	do_div(data, 1000000);
 262	data &= 0x03ff;	/* 10 bits */
 263	data -= 2;
 264	pconf->pll_vco_div_ref = data;
 265
 266	data = div_u64(vco_clk_rate, 1000000);	/* unit is Mhz */
 267	data *= vco_measure_time;
 268	do_div(data, 10);
 269	pconf->pll_vco_count = data;
 270
 271	data = fref * kvco_measure_time;
 272	do_div(data, 1000000);
 273	data &= 0x03ff;	/* 10 bits */
 274	data -= 1;
 275	pconf->pll_kvco_div_ref = data;
 276
 277	cnt = pll_14nm_kvco_slop(vco_clk_rate);
 278	cnt *= 2;
 279	cnt /= 100;
 280	cnt *= kvco_measure_time;
 281	pconf->pll_kvco_count = cnt;
 282}
 283
 284static void pll_db_commit_ssc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
 285{
 286	void __iomem *base = pll->phy->pll_base;
 287	u8 data;
 288
 289	data = pconf->ssc_adj_period;
 290	data &= 0x0ff;
 291	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER1, data);
 292	data = (pconf->ssc_adj_period >> 8);
 293	data &= 0x03;
 294	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER2, data);
 295
 296	data = pconf->ssc_period;
 297	data &= 0x0ff;
 298	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER1, data);
 299	data = (pconf->ssc_period >> 8);
 300	data &= 0x0ff;
 301	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER2, data);
 302
 303	data = pconf->ssc_step_size;
 304	data &= 0x0ff;
 305	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE1, data);
 306	data = (pconf->ssc_step_size >> 8);
 307	data &= 0x0ff;
 308	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE2, data);
 309
 310	data = (pconf->ssc_center & 0x01);
 311	data <<= 1;
 312	data |= 0x01; /* enable */
 313	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_EN_CENTER, data);
 314
 315	wmb();	/* make sure register committed */
 316}
 317
 318static void pll_db_commit_common(struct dsi_pll_14nm *pll,
 319				 struct dsi_pll_config *pconf)
 320{
 321	void __iomem *base = pll->phy->pll_base;
 322	u8 data;
 323
 324	/* confgiure the non frequency dependent pll registers */
 325	data = 0;
 326	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SYSCLK_EN_RESET, data);
 327
 328	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_TXCLK_EN, 1);
 329
 330	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL, 48);
 331	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL2, 4 << 3); /* bandgap_timer */
 332	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL5, 5); /* pll_wakeup_timer */
 333
 334	data = pconf->pll_vco_div_ref & 0xff;
 335	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF1, data);
 336	data = (pconf->pll_vco_div_ref >> 8) & 0x3;
 337	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF2, data);
 338
 339	data = pconf->pll_kvco_div_ref & 0xff;
 340	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF1, data);
 341	data = (pconf->pll_kvco_div_ref >> 8) & 0x3;
 342	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF2, data);
 343
 344	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_MISC1, 16);
 345
 346	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IE_TRIM, 4);
 347
 348	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IP_TRIM, 4);
 349
 350	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_CP_SET_CUR, 1 << 3 | 1);
 351
 352	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPCSET, 0 << 3 | 0);
 353
 354	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPMSET, 0 << 3 | 0);
 355
 356	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICP_SET, 4 << 3 | 4);
 357
 358	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF1, 1 << 4 | 11);
 359
 360	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IPTAT_TRIM, 7);
 361
 362	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_CRCTRL, 1 << 4 | 2);
 363}
 364
 365static void pll_14nm_software_reset(struct dsi_pll_14nm *pll_14nm)
 366{
 367	void __iomem *cmn_base = pll_14nm->phy->base;
 368
 369	/* de assert pll start and apply pll sw reset */
 370
 371	/* stop pll */
 372	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0);
 373
 374	/* pll sw reset */
 375	dsi_phy_write_udelay(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x20, 10);
 376	wmb();	/* make sure register committed */
 377
 378	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0);
 379	wmb();	/* make sure register committed */
 380}
 381
 382static void pll_db_commit_14nm(struct dsi_pll_14nm *pll,
 383			       struct dsi_pll_config *pconf)
 384{
 385	void __iomem *base = pll->phy->pll_base;
 386	void __iomem *cmn_base = pll->phy->base;
 387	u8 data;
 388
 389	DBG("DSI%d PLL", pll->phy->id);
 390
 391	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL, 0x3c);
 392
 393	pll_db_commit_common(pll, pconf);
 394
 395	pll_14nm_software_reset(pll);
 396
 397	/* Use the /2 path in Mux */
 398	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG1, 1);
 399
 400	data = 0xff; /* data, clk, pll normal operation */
 401	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_0, data);
 402
 403	/* configure the frequency dependent pll registers */
 404	data = pconf->dec_start;
 405	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DEC_START, data);
 406
 407	data = pconf->div_frac_start & 0xff;
 408	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1, data);
 409	data = (pconf->div_frac_start >> 8) & 0xff;
 410	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2, data);
 411	data = (pconf->div_frac_start >> 16) & 0xf;
 412	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3, data);
 413
 414	data = pconf->plllock_cmp & 0xff;
 415	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP1, data);
 416
 417	data = (pconf->plllock_cmp >> 8) & 0xff;
 418	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP2, data);
 419
 420	data = (pconf->plllock_cmp >> 16) & 0x3;
 421	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP3, data);
 422
 423	data = pconf->plllock_cnt << 1 | 0 << 3; /* plllock_rng */
 424	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP_EN, data);
 425
 426	data = pconf->pll_vco_count & 0xff;
 427	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT1, data);
 428	data = (pconf->pll_vco_count >> 8) & 0xff;
 429	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT2, data);
 430
 431	data = pconf->pll_kvco_count & 0xff;
 432	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT1, data);
 433	data = (pconf->pll_kvco_count >> 8) & 0x3;
 434	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT2, data);
 435
 436	/*
 437	 * High nibble configures the post divider internal to the VCO. It's
 438	 * fixed to divide by 1 for now.
 439	 *
 440	 * 0: divided by 1
 441	 * 1: divided by 2
 442	 * 2: divided by 4
 443	 * 3: divided by 8
 444	 */
 445	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF2_POSTDIV, 0 << 4 | 3);
 446
 447	if (pconf->ssc_en)
 448		pll_db_commit_ssc(pll, pconf);
 449
 450	wmb();	/* make sure register committed */
 451}
 452
 453/*
 454 * VCO clock Callbacks
 455 */
 456static int dsi_pll_14nm_vco_set_rate(struct clk_hw *hw, unsigned long rate,
 457				     unsigned long parent_rate)
 458{
 459	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
 460	struct dsi_pll_config conf;
 461
 462	DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_14nm->phy->id, rate,
 463	    parent_rate);
 464
 465	dsi_pll_14nm_config_init(&conf);
 466	conf.vco_current_rate = rate;
 467
 468	pll_14nm_dec_frac_calc(pll_14nm, &conf);
 469
 470	if (conf.ssc_en)
 471		pll_14nm_ssc_calc(pll_14nm, &conf);
 472
 473	pll_14nm_calc_vco_count(pll_14nm, &conf);
 474
 475	/* commit the slave DSI PLL registers if we're master. Note that we
 476	 * don't lock the slave PLL. We just ensure that the PLL/PHY registers
 477	 * of the master and slave are identical
 478	 */
 479	if (pll_14nm->phy->usecase == MSM_DSI_PHY_MASTER) {
 480		struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
 481
 482		pll_db_commit_14nm(pll_14nm_slave, &conf);
 483	}
 484
 485	pll_db_commit_14nm(pll_14nm, &conf);
 486
 487	return 0;
 488}
 489
 490static unsigned long dsi_pll_14nm_vco_recalc_rate(struct clk_hw *hw,
 491						  unsigned long parent_rate)
 492{
 493	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
 494	void __iomem *base = pll_14nm->phy->pll_base;
 495	u64 vco_rate, multiplier = BIT(20);
 496	u32 div_frac_start;
 497	u32 dec_start;
 498	u64 ref_clk = parent_rate;
 499
 500	dec_start = dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DEC_START);
 501	dec_start &= 0x0ff;
 502
 503	DBG("dec_start = %x", dec_start);
 504
 505	div_frac_start = (dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3)
 506				& 0xf) << 16;
 507	div_frac_start |= (dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2)
 508				& 0xff) << 8;
 509	div_frac_start |= dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1)
 510				& 0xff;
 511
 512	DBG("div_frac_start = %x", div_frac_start);
 513
 514	vco_rate = ref_clk * dec_start;
 515
 516	vco_rate += ((ref_clk * div_frac_start) / multiplier);
 517
 518	/*
 519	 * Recalculating the rate from dec_start and frac_start doesn't end up
 520	 * the rate we originally set. Convert the freq to KHz, round it up and
 521	 * convert it back to MHz.
 522	 */
 523	vco_rate = DIV_ROUND_UP_ULL(vco_rate, 1000) * 1000;
 524
 525	DBG("returning vco rate = %lu", (unsigned long)vco_rate);
 526
 527	return (unsigned long)vco_rate;
 528}
 529
 530static int dsi_pll_14nm_vco_prepare(struct clk_hw *hw)
 531{
 532	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
 533	void __iomem *base = pll_14nm->phy->pll_base;
 534	void __iomem *cmn_base = pll_14nm->phy->base;
 535	bool locked;
 536
 537	DBG("");
 538
 539	if (unlikely(pll_14nm->phy->pll_on))
 540		return 0;
 541
 542	if (dsi_pll_14nm_vco_recalc_rate(hw, VCO_REF_CLK_RATE) == 0)
 543		dsi_pll_14nm_vco_set_rate(hw, pll_14nm->phy->cfg->min_pll_rate, VCO_REF_CLK_RATE);
 544
 545	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VREF_CFG1, 0x10);
 546	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 1);
 547
 548	locked = pll_14nm_poll_for_ready(pll_14nm, POLL_MAX_READS,
 549					 POLL_TIMEOUT_US);
 550
 551	if (unlikely(!locked)) {
 552		DRM_DEV_ERROR(&pll_14nm->phy->pdev->dev, "DSI PLL lock failed\n");
 553		return -EINVAL;
 554	}
 555
 556	DBG("DSI PLL lock success");
 557	pll_14nm->phy->pll_on = true;
 558
 559	return 0;
 560}
 561
 562static void dsi_pll_14nm_vco_unprepare(struct clk_hw *hw)
 563{
 564	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
 565	void __iomem *cmn_base = pll_14nm->phy->base;
 566
 567	DBG("");
 568
 569	if (unlikely(!pll_14nm->phy->pll_on))
 570		return;
 571
 572	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0);
 573
 574	pll_14nm->phy->pll_on = false;
 575}
 576
 577static long dsi_pll_14nm_clk_round_rate(struct clk_hw *hw,
 578		unsigned long rate, unsigned long *parent_rate)
 579{
 580	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
 581
 582	if      (rate < pll_14nm->phy->cfg->min_pll_rate)
 583		return  pll_14nm->phy->cfg->min_pll_rate;
 584	else if (rate > pll_14nm->phy->cfg->max_pll_rate)
 585		return  pll_14nm->phy->cfg->max_pll_rate;
 586	else
 587		return rate;
 588}
 589
 590static const struct clk_ops clk_ops_dsi_pll_14nm_vco = {
 591	.round_rate = dsi_pll_14nm_clk_round_rate,
 592	.set_rate = dsi_pll_14nm_vco_set_rate,
 593	.recalc_rate = dsi_pll_14nm_vco_recalc_rate,
 594	.prepare = dsi_pll_14nm_vco_prepare,
 595	.unprepare = dsi_pll_14nm_vco_unprepare,
 596};
 597
 598/*
 599 * N1 and N2 post-divider clock callbacks
 600 */
 601#define div_mask(width)	((1 << (width)) - 1)
 602static unsigned long dsi_pll_14nm_postdiv_recalc_rate(struct clk_hw *hw,
 603						      unsigned long parent_rate)
 604{
 605	struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
 606	struct dsi_pll_14nm *pll_14nm = postdiv->pll;
 607	void __iomem *base = pll_14nm->phy->base;
 608	u8 shift = postdiv->shift;
 609	u8 width = postdiv->width;
 610	u32 val;
 611
 612	DBG("DSI%d PLL parent rate=%lu", pll_14nm->phy->id, parent_rate);
 613
 614	val = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0) >> shift;
 615	val &= div_mask(width);
 616
 617	return divider_recalc_rate(hw, parent_rate, val, NULL,
 618				   postdiv->flags, width);
 619}
 620
 621static long dsi_pll_14nm_postdiv_round_rate(struct clk_hw *hw,
 622					    unsigned long rate,
 623					    unsigned long *prate)
 624{
 625	struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
 626	struct dsi_pll_14nm *pll_14nm = postdiv->pll;
 627
 628	DBG("DSI%d PLL parent rate=%lu", pll_14nm->phy->id, rate);
 629
 630	return divider_round_rate(hw, rate, prate, NULL,
 631				  postdiv->width,
 632				  postdiv->flags);
 633}
 634
 635static int dsi_pll_14nm_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
 636					 unsigned long parent_rate)
 637{
 638	struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
 639	struct dsi_pll_14nm *pll_14nm = postdiv->pll;
 640	void __iomem *base = pll_14nm->phy->base;
 641	spinlock_t *lock = &pll_14nm->postdiv_lock;
 642	u8 shift = postdiv->shift;
 643	u8 width = postdiv->width;
 644	unsigned int value;
 645	unsigned long flags = 0;
 646	u32 val;
 647
 648	DBG("DSI%d PLL parent rate=%lu parent rate %lu", pll_14nm->phy->id, rate,
 649	    parent_rate);
 650
 651	value = divider_get_val(rate, parent_rate, NULL, postdiv->width,
 652				postdiv->flags);
 653
 654	spin_lock_irqsave(lock, flags);
 655
 656	val = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
 657	val &= ~(div_mask(width) << shift);
 658
 659	val |= value << shift;
 660	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val);
 661
 662	/* If we're master in bonded DSI mode, then the slave PLL's post-dividers
 663	 * follow the master's post dividers
 664	 */
 665	if (pll_14nm->phy->usecase == MSM_DSI_PHY_MASTER) {
 666		struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
 667		void __iomem *slave_base = pll_14nm_slave->phy->base;
 668
 669		dsi_phy_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val);
 670	}
 671
 672	spin_unlock_irqrestore(lock, flags);
 673
 674	return 0;
 675}
 676
 677static const struct clk_ops clk_ops_dsi_pll_14nm_postdiv = {
 678	.recalc_rate = dsi_pll_14nm_postdiv_recalc_rate,
 679	.round_rate = dsi_pll_14nm_postdiv_round_rate,
 680	.set_rate = dsi_pll_14nm_postdiv_set_rate,
 681};
 682
 683/*
 684 * PLL Callbacks
 685 */
 686
 687static void dsi_14nm_pll_save_state(struct msm_dsi_phy *phy)
 688{
 689	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
 690	struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
 691	void __iomem *cmn_base = pll_14nm->phy->base;
 692	u32 data;
 693
 694	data = dsi_phy_read(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
 695
 696	cached_state->n1postdiv = data & 0xf;
 697	cached_state->n2postdiv = (data >> 4) & 0xf;
 698
 699	DBG("DSI%d PLL save state %x %x", pll_14nm->phy->id,
 700	    cached_state->n1postdiv, cached_state->n2postdiv);
 701
 702	cached_state->vco_rate = clk_hw_get_rate(phy->vco_hw);
 703}
 704
 705static int dsi_14nm_pll_restore_state(struct msm_dsi_phy *phy)
 706{
 707	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
 708	struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
 709	void __iomem *cmn_base = pll_14nm->phy->base;
 710	u32 data;
 711	int ret;
 712
 713	ret = dsi_pll_14nm_vco_set_rate(phy->vco_hw,
 714					cached_state->vco_rate, 0);
 715	if (ret) {
 716		DRM_DEV_ERROR(&pll_14nm->phy->pdev->dev,
 717			      "restore vco rate failed. ret=%d\n", ret);
 718		return ret;
 719	}
 720
 721	data = cached_state->n1postdiv | (cached_state->n2postdiv << 4);
 722
 723	DBG("DSI%d PLL restore state %x %x", pll_14nm->phy->id,
 724	    cached_state->n1postdiv, cached_state->n2postdiv);
 725
 726	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data);
 727
 728	/* also restore post-dividers for slave DSI PLL */
 729	if (phy->usecase == MSM_DSI_PHY_MASTER) {
 730		struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
 731		void __iomem *slave_base = pll_14nm_slave->phy->base;
 732
 733		dsi_phy_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data);
 734	}
 735
 736	return 0;
 737}
 738
 739static int dsi_14nm_set_usecase(struct msm_dsi_phy *phy)
 740{
 741	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
 742	void __iomem *base = phy->pll_base;
 743	u32 clkbuflr_en, bandgap = 0;
 744
 745	switch (phy->usecase) {
 746	case MSM_DSI_PHY_STANDALONE:
 747		clkbuflr_en = 0x1;
 748		break;
 749	case MSM_DSI_PHY_MASTER:
 750		clkbuflr_en = 0x3;
 751		pll_14nm->slave = pll_14nm_list[(pll_14nm->phy->id + 1) % DSI_MAX];
 752		break;
 753	case MSM_DSI_PHY_SLAVE:
 754		clkbuflr_en = 0x0;
 755		bandgap = 0x3;
 756		break;
 757	default:
 758		return -EINVAL;
 759	}
 760
 761	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_CLKBUFLR_EN, clkbuflr_en);
 762	if (bandgap)
 763		dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_BANDGAP, bandgap);
 764
 765	return 0;
 766}
 767
 768static struct clk_hw *pll_14nm_postdiv_register(struct dsi_pll_14nm *pll_14nm,
 769						const char *name,
 770						const struct clk_hw *parent_hw,
 771						unsigned long flags,
 772						u8 shift)
 773{
 774	struct dsi_pll_14nm_postdiv *pll_postdiv;
 775	struct device *dev = &pll_14nm->phy->pdev->dev;
 776	struct clk_init_data postdiv_init = {
 777		.parent_hws = (const struct clk_hw *[]) { parent_hw },
 778		.num_parents = 1,
 779		.name = name,
 780		.flags = flags,
 781		.ops = &clk_ops_dsi_pll_14nm_postdiv,
 782	};
 783	int ret;
 784
 785	pll_postdiv = devm_kzalloc(dev, sizeof(*pll_postdiv), GFP_KERNEL);
 786	if (!pll_postdiv)
 787		return ERR_PTR(-ENOMEM);
 788
 789	pll_postdiv->pll = pll_14nm;
 790	pll_postdiv->shift = shift;
 791	/* both N1 and N2 postdividers are 4 bits wide */
 792	pll_postdiv->width = 4;
 793	/* range of each divider is from 1 to 15 */
 794	pll_postdiv->flags = CLK_DIVIDER_ONE_BASED;
 795	pll_postdiv->hw.init = &postdiv_init;
 796
 797	ret = devm_clk_hw_register(dev, &pll_postdiv->hw);
 798	if (ret)
 799		return ERR_PTR(ret);
 800
 801	return &pll_postdiv->hw;
 802}
 803
 804static int pll_14nm_register(struct dsi_pll_14nm *pll_14nm, struct clk_hw **provided_clocks)
 805{
 806	char clk_name[32];
 807	struct clk_init_data vco_init = {
 808		.parent_data = &(const struct clk_parent_data) {
 809			.fw_name = "ref",
 810		},
 811		.num_parents = 1,
 812		.name = clk_name,
 813		.flags = CLK_IGNORE_UNUSED,
 814		.ops = &clk_ops_dsi_pll_14nm_vco,
 815	};
 816	struct device *dev = &pll_14nm->phy->pdev->dev;
 817	struct clk_hw *hw, *n1_postdiv, *n1_postdivby2;
 818	int ret;
 819
 820	DBG("DSI%d", pll_14nm->phy->id);
 821
 822	snprintf(clk_name, sizeof(clk_name), "dsi%dvco_clk", pll_14nm->phy->id);
 823	pll_14nm->clk_hw.init = &vco_init;
 824
 825	ret = devm_clk_hw_register(dev, &pll_14nm->clk_hw);
 826	if (ret)
 827		return ret;
 828
 829	snprintf(clk_name, sizeof(clk_name), "dsi%dn1_postdiv_clk", pll_14nm->phy->id);
 830
 831	/* N1 postdiv, bits 0-3 in REG_DSI_14nm_PHY_CMN_CLK_CFG0 */
 832	n1_postdiv = pll_14nm_postdiv_register(pll_14nm, clk_name,
 833			&pll_14nm->clk_hw, CLK_SET_RATE_PARENT, 0);
 834	if (IS_ERR(n1_postdiv))
 835		return PTR_ERR(n1_postdiv);
 836
 837	snprintf(clk_name, sizeof(clk_name), "dsi%dpllbyte", pll_14nm->phy->id);
 838
 839	/* DSI Byte clock = VCO_CLK / N1 / 8 */
 840	hw = devm_clk_hw_register_fixed_factor_parent_hw(dev, clk_name,
 841			n1_postdiv, CLK_SET_RATE_PARENT, 1, 8);
 842	if (IS_ERR(hw))
 843		return PTR_ERR(hw);
 844
 845	provided_clocks[DSI_BYTE_PLL_CLK] = hw;
 846
 847	snprintf(clk_name, sizeof(clk_name), "dsi%dn1_postdivby2_clk", pll_14nm->phy->id);
 848
 849	/*
 850	 * Skip the mux for now, force DSICLK_SEL to 1, Add a /2 divider
 851	 * on the way. Don't let it set parent.
 852	 */
 853	n1_postdivby2 = devm_clk_hw_register_fixed_factor_parent_hw(dev,
 854			clk_name, n1_postdiv, 0, 1, 2);
 855	if (IS_ERR(n1_postdivby2))
 856		return PTR_ERR(n1_postdivby2);
 857
 858	snprintf(clk_name, sizeof(clk_name), "dsi%dpll", pll_14nm->phy->id);
 859
 860	/* DSI pixel clock = VCO_CLK / N1 / 2 / N2
 861	 * This is the output of N2 post-divider, bits 4-7 in
 862	 * REG_DSI_14nm_PHY_CMN_CLK_CFG0. Don't let it set parent.
 863	 */
 864	hw = pll_14nm_postdiv_register(pll_14nm, clk_name, n1_postdivby2,
 865			0, 4);
 866	if (IS_ERR(hw))
 867		return PTR_ERR(hw);
 868
 869	provided_clocks[DSI_PIXEL_PLL_CLK] = hw;
 870
 871	return 0;
 872}
 873
 874static int dsi_pll_14nm_init(struct msm_dsi_phy *phy)
 875{
 876	struct platform_device *pdev = phy->pdev;
 877	struct dsi_pll_14nm *pll_14nm;
 878	int ret;
 879
 880	if (!pdev)
 881		return -ENODEV;
 882
 883	pll_14nm = devm_kzalloc(&pdev->dev, sizeof(*pll_14nm), GFP_KERNEL);
 884	if (!pll_14nm)
 885		return -ENOMEM;
 886
 887	DBG("PLL%d", phy->id);
 888
 889	pll_14nm_list[phy->id] = pll_14nm;
 890
 891	spin_lock_init(&pll_14nm->postdiv_lock);
 892
 893	pll_14nm->phy = phy;
 894
 895	ret = pll_14nm_register(pll_14nm, phy->provided_clocks->hws);
 896	if (ret) {
 897		DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
 898		return ret;
 899	}
 900
 901	phy->vco_hw = &pll_14nm->clk_hw;
 902
 903	return 0;
 904}
 905
 906static void dsi_14nm_dphy_set_timing(struct msm_dsi_phy *phy,
 907				     struct msm_dsi_dphy_timing *timing,
 908				     int lane_idx)
 909{
 910	void __iomem *base = phy->lane_base;
 911	bool clk_ln = (lane_idx == PHY_14NM_CKLN_IDX);
 912	u32 zero = clk_ln ? timing->clk_zero : timing->hs_zero;
 913	u32 prepare = clk_ln ? timing->clk_prepare : timing->hs_prepare;
 914	u32 trail = clk_ln ? timing->clk_trail : timing->hs_trail;
 915	u32 rqst = clk_ln ? timing->hs_rqst_ckln : timing->hs_rqst;
 916	u32 prep_dly = clk_ln ? timing->hs_prep_dly_ckln : timing->hs_prep_dly;
 917	u32 halfbyte_en = clk_ln ? timing->hs_halfbyte_en_ckln :
 918				   timing->hs_halfbyte_en;
 919
 920	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_4(lane_idx),
 921		      DSI_14nm_PHY_LN_TIMING_CTRL_4_HS_EXIT(timing->hs_exit));
 922	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_5(lane_idx),
 923		      DSI_14nm_PHY_LN_TIMING_CTRL_5_HS_ZERO(zero));
 924	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_6(lane_idx),
 925		      DSI_14nm_PHY_LN_TIMING_CTRL_6_HS_PREPARE(prepare));
 926	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_7(lane_idx),
 927		      DSI_14nm_PHY_LN_TIMING_CTRL_7_HS_TRAIL(trail));
 928	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_8(lane_idx),
 929		      DSI_14nm_PHY_LN_TIMING_CTRL_8_HS_RQST(rqst));
 930	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_CFG0(lane_idx),
 931		      DSI_14nm_PHY_LN_CFG0_PREPARE_DLY(prep_dly));
 932	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_CFG1(lane_idx),
 933		      halfbyte_en ? DSI_14nm_PHY_LN_CFG1_HALFBYTECLK_EN : 0);
 934	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_9(lane_idx),
 935		      DSI_14nm_PHY_LN_TIMING_CTRL_9_TA_GO(timing->ta_go) |
 936		      DSI_14nm_PHY_LN_TIMING_CTRL_9_TA_SURE(timing->ta_sure));
 937	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_10(lane_idx),
 938		      DSI_14nm_PHY_LN_TIMING_CTRL_10_TA_GET(timing->ta_get));
 939	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_11(lane_idx),
 940		      DSI_14nm_PHY_LN_TIMING_CTRL_11_TRIG3_CMD(0xa0));
 941}
 942
 943static int dsi_14nm_phy_enable(struct msm_dsi_phy *phy,
 944			       struct msm_dsi_phy_clk_request *clk_req)
 945{
 946	struct msm_dsi_dphy_timing *timing = &phy->timing;
 947	u32 data;
 948	int i;
 949	int ret;
 950	void __iomem *base = phy->base;
 951	void __iomem *lane_base = phy->lane_base;
 952	u32 glbl_test_ctrl;
 953
 954	if (msm_dsi_dphy_timing_calc_v2(timing, clk_req)) {
 955		DRM_DEV_ERROR(&phy->pdev->dev,
 956			      "%s: D-PHY timing calculation failed\n",
 957			      __func__);
 958		return -EINVAL;
 959	}
 960
 961	data = 0x1c;
 962	if (phy->usecase != MSM_DSI_PHY_STANDALONE)
 963		data |= DSI_14nm_PHY_CMN_LDO_CNTRL_VREG_CTRL(32);
 964	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL, data);
 965
 966	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, 0x1);
 967
 968	/* 4 data lanes + 1 clk lane configuration */
 969	for (i = 0; i < 5; i++) {
 970		dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_VREG_CNTRL(i),
 971			      0x1d);
 972
 973		dsi_phy_write(lane_base +
 974			      REG_DSI_14nm_PHY_LN_STRENGTH_CTRL_0(i), 0xff);
 975		dsi_phy_write(lane_base +
 976			      REG_DSI_14nm_PHY_LN_STRENGTH_CTRL_1(i),
 977			      (i == PHY_14NM_CKLN_IDX) ? 0x00 : 0x06);
 978
 979		dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_CFG3(i),
 980			      (i == PHY_14NM_CKLN_IDX) ? 0x8f : 0x0f);
 981		dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_CFG2(i), 0x10);
 982		dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_TEST_DATAPATH(i),
 983			      0);
 984		dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_TEST_STR(i),
 985			      0x88);
 986
 987		dsi_14nm_dphy_set_timing(phy, timing, i);
 988	}
 989
 990	/* Make sure PLL is not start */
 991	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0x00);
 992
 993	wmb(); /* make sure everything is written before reset and enable */
 994
 995	/* reset digital block */
 996	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x80);
 997	wmb(); /* ensure reset is asserted */
 998	udelay(100);
 999	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x00);
1000
1001	glbl_test_ctrl = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL);
1002	if (phy->id == DSI_1 && phy->usecase == MSM_DSI_PHY_SLAVE)
1003		glbl_test_ctrl |= DSI_14nm_PHY_CMN_GLBL_TEST_CTRL_BITCLK_HS_SEL;
1004	else
1005		glbl_test_ctrl &= ~DSI_14nm_PHY_CMN_GLBL_TEST_CTRL_BITCLK_HS_SEL;
1006	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, glbl_test_ctrl);
1007	ret = dsi_14nm_set_usecase(phy);
1008	if (ret) {
1009		DRM_DEV_ERROR(&phy->pdev->dev, "%s: set pll usecase failed, %d\n",
1010			      __func__, ret);
1011		return ret;
1012	}
1013
1014	/* Remove power down from PLL and all lanes */
1015	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_0, 0xff);
1016
1017	return 0;
1018}
1019
1020static void dsi_14nm_phy_disable(struct msm_dsi_phy *phy)
1021{
1022	dsi_phy_write(phy->base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, 0);
1023	dsi_phy_write(phy->base + REG_DSI_14nm_PHY_CMN_CTRL_0, 0);
1024
1025	/* ensure that the phy is completely disabled */
1026	wmb();
1027}
1028
1029static const struct regulator_bulk_data dsi_phy_14nm_17mA_regulators[] = {
1030	{ .supply = "vcca", .init_load_uA = 17000 },
1031};
1032
1033static const struct regulator_bulk_data dsi_phy_14nm_73p4mA_regulators[] = {
1034	{ .supply = "vcca", .init_load_uA = 73400 },
1035};
1036
1037const struct msm_dsi_phy_cfg dsi_phy_14nm_cfgs = {
1038	.has_phy_lane = true,
1039	.regulator_data = dsi_phy_14nm_17mA_regulators,
1040	.num_regulators = ARRAY_SIZE(dsi_phy_14nm_17mA_regulators),
1041	.ops = {
1042		.enable = dsi_14nm_phy_enable,
1043		.disable = dsi_14nm_phy_disable,
1044		.pll_init = dsi_pll_14nm_init,
1045		.save_pll_state = dsi_14nm_pll_save_state,
1046		.restore_pll_state = dsi_14nm_pll_restore_state,
1047	},
1048	.min_pll_rate = VCO_MIN_RATE,
1049	.max_pll_rate = VCO_MAX_RATE,
1050	.io_start = { 0x994400, 0x996400 },
1051	.num_dsi_phy = 2,
1052};
1053
1054const struct msm_dsi_phy_cfg dsi_phy_14nm_660_cfgs = {
1055	.has_phy_lane = true,
1056	.regulator_data = dsi_phy_14nm_73p4mA_regulators,
1057	.num_regulators = ARRAY_SIZE(dsi_phy_14nm_73p4mA_regulators),
1058	.ops = {
1059		.enable = dsi_14nm_phy_enable,
1060		.disable = dsi_14nm_phy_disable,
1061		.pll_init = dsi_pll_14nm_init,
1062		.save_pll_state = dsi_14nm_pll_save_state,
1063		.restore_pll_state = dsi_14nm_pll_restore_state,
1064	},
1065	.min_pll_rate = VCO_MIN_RATE,
1066	.max_pll_rate = VCO_MAX_RATE,
1067	.io_start = { 0xc994400, 0xc996400 },
1068	.num_dsi_phy = 2,
1069};
1070
1071const struct msm_dsi_phy_cfg dsi_phy_14nm_8953_cfgs = {
1072	.has_phy_lane = true,
1073	.regulator_data = dsi_phy_14nm_17mA_regulators,
1074	.num_regulators = ARRAY_SIZE(dsi_phy_14nm_17mA_regulators),
1075	.ops = {
1076		.enable = dsi_14nm_phy_enable,
1077		.disable = dsi_14nm_phy_disable,
1078		.pll_init = dsi_pll_14nm_init,
1079		.save_pll_state = dsi_14nm_pll_save_state,
1080		.restore_pll_state = dsi_14nm_pll_restore_state,
1081	},
1082	.min_pll_rate = VCO_MIN_RATE,
1083	.max_pll_rate = VCO_MAX_RATE,
1084	.io_start = { 0x1a94400, 0x1a96400 },
1085	.num_dsi_phy = 2,
1086};
1087
1088const struct msm_dsi_phy_cfg dsi_phy_14nm_2290_cfgs = {
1089	.has_phy_lane = true,
1090	.ops = {
1091		.enable = dsi_14nm_phy_enable,
1092		.disable = dsi_14nm_phy_disable,
1093		.pll_init = dsi_pll_14nm_init,
1094		.save_pll_state = dsi_14nm_pll_save_state,
1095		.restore_pll_state = dsi_14nm_pll_restore_state,
1096	},
1097	.min_pll_rate = VCO_MIN_RATE,
1098	.max_pll_rate = VCO_MAX_RATE,
1099	.io_start = { 0x5e94400 },
1100	.num_dsi_phy = 1,
1101};