Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
  1/*
  2 * General Purpose functions for the global management of the
  3 * Communication Processor Module.
  4 * Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
  5 *
  6 * In addition to the individual control of the communication
  7 * channels, there are a few functions that globally affect the
  8 * communication processor.
  9 *
 10 * Buffer descriptors must be allocated from the dual ported memory
 11 * space.  The allocator for that is here.  When the communication
 12 * process is reset, we reclaim the memory available.  There is
 13 * currently no deallocator for this memory.
 14 * The amount of space available is platform dependent.  On the
 15 * MBX, the EPPC software loads additional microcode into the
 16 * communication processor, and uses some of the DP ram for this
 17 * purpose.  Current, the first 512 bytes and the last 256 bytes of
 18 * memory are used.  Right now I am conservative and only use the
 19 * memory that can never be used for microcode.  If there are
 20 * applications that require more DP ram, we can expand the boundaries
 21 * but then we have to be careful of any downloaded microcode.
 22 */
 23#include <linux/errno.h>
 24#include <linux/sched.h>
 25#include <linux/kernel.h>
 26#include <linux/dma-mapping.h>
 27#include <linux/param.h>
 28#include <linux/string.h>
 29#include <linux/mm.h>
 30#include <linux/interrupt.h>
 31#include <linux/irq.h>
 32#include <linux/module.h>
 33#include <linux/spinlock.h>
 34#include <linux/slab.h>
 35#include <asm/page.h>
 36#include <asm/pgtable.h>
 37#include <asm/8xx_immap.h>
 38#include <asm/cpm1.h>
 39#include <asm/io.h>
 40#include <asm/tlbflush.h>
 41#include <asm/rheap.h>
 42#include <asm/prom.h>
 43#include <asm/cpm.h>
 44
 45#include <asm/fs_pd.h>
 46
 47#ifdef CONFIG_8xx_GPIO
 48#include <linux/of_gpio.h>
 49#endif
 50
 51#define CPM_MAP_SIZE    (0x4000)
 52
 53cpm8xx_t __iomem *cpmp;  /* Pointer to comm processor space */
 54immap_t __iomem *mpc8xx_immr;
 55static cpic8xx_t __iomem *cpic_reg;
 56
 57static struct irq_domain *cpm_pic_host;
 58
 59static void cpm_mask_irq(struct irq_data *d)
 60{
 61	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
 62
 63	clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
 64}
 65
 66static void cpm_unmask_irq(struct irq_data *d)
 67{
 68	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
 69
 70	setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
 71}
 72
 73static void cpm_end_irq(struct irq_data *d)
 74{
 75	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
 76
 77	out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
 78}
 79
 80static struct irq_chip cpm_pic = {
 81	.name = "CPM PIC",
 82	.irq_mask = cpm_mask_irq,
 83	.irq_unmask = cpm_unmask_irq,
 84	.irq_eoi = cpm_end_irq,
 85};
 86
 87int cpm_get_irq(void)
 88{
 89	int cpm_vec;
 90
 91	/* Get the vector by setting the ACK bit and then reading
 92	 * the register.
 93	 */
 94	out_be16(&cpic_reg->cpic_civr, 1);
 95	cpm_vec = in_be16(&cpic_reg->cpic_civr);
 96	cpm_vec >>= 11;
 97
 98	return irq_linear_revmap(cpm_pic_host, cpm_vec);
 99}
100
101static int cpm_pic_host_map(struct irq_domain *h, unsigned int virq,
102			  irq_hw_number_t hw)
103{
104	pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
105
106	irq_set_status_flags(virq, IRQ_LEVEL);
107	irq_set_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
108	return 0;
109}
110
111/* The CPM can generate the error interrupt when there is a race condition
112 * between generating and masking interrupts.  All we have to do is ACK it
113 * and return.  This is a no-op function so we don't need any special
114 * tests in the interrupt handler.
115 */
116static irqreturn_t cpm_error_interrupt(int irq, void *dev)
117{
118	return IRQ_HANDLED;
119}
120
121static struct irqaction cpm_error_irqaction = {
122	.handler = cpm_error_interrupt,
123	.name = "error",
124};
125
126static const struct irq_domain_ops cpm_pic_host_ops = {
127	.map = cpm_pic_host_map,
128};
129
130unsigned int cpm_pic_init(void)
131{
132	struct device_node *np = NULL;
133	struct resource res;
134	unsigned int sirq = NO_IRQ, hwirq, eirq;
135	int ret;
136
137	pr_debug("cpm_pic_init\n");
138
139	np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
140	if (np == NULL)
141		np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
142	if (np == NULL) {
143		printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
144		return sirq;
145	}
146
147	ret = of_address_to_resource(np, 0, &res);
148	if (ret)
149		goto end;
150
151	cpic_reg = ioremap(res.start, resource_size(&res));
152	if (cpic_reg == NULL)
153		goto end;
154
155	sirq = irq_of_parse_and_map(np, 0);
156	if (sirq == NO_IRQ)
157		goto end;
158
159	/* Initialize the CPM interrupt controller. */
160	hwirq = (unsigned int)virq_to_hw(sirq);
161	out_be32(&cpic_reg->cpic_cicr,
162	    (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
163		((hwirq/2) << 13) | CICR_HP_MASK);
164
165	out_be32(&cpic_reg->cpic_cimr, 0);
166
167	cpm_pic_host = irq_domain_add_linear(np, 64, &cpm_pic_host_ops, NULL);
168	if (cpm_pic_host == NULL) {
169		printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
170		sirq = NO_IRQ;
171		goto end;
172	}
173
174	/* Install our own error handler. */
175	np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
176	if (np == NULL)
177		np = of_find_node_by_type(NULL, "cpm");
178	if (np == NULL) {
179		printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
180		goto end;
181	}
182
183	eirq = irq_of_parse_and_map(np, 0);
184	if (eirq == NO_IRQ)
185		goto end;
186
187	if (setup_irq(eirq, &cpm_error_irqaction))
188		printk(KERN_ERR "Could not allocate CPM error IRQ!");
189
190	setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
191
192end:
193	of_node_put(np);
194	return sirq;
195}
196
197void __init cpm_reset(void)
198{
199	sysconf8xx_t __iomem *siu_conf;
200
201	mpc8xx_immr = ioremap(get_immrbase(), 0x4000);
202	if (!mpc8xx_immr) {
203		printk(KERN_CRIT "Could not map IMMR\n");
204		return;
205	}
206
207	cpmp = &mpc8xx_immr->im_cpm;
208
209#ifndef CONFIG_PPC_EARLY_DEBUG_CPM
210	/* Perform a reset.
211	*/
212	out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
213
214	/* Wait for it.
215	*/
216	while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
217#endif
218
219#ifdef CONFIG_UCODE_PATCH
220	cpm_load_patch(cpmp);
221#endif
222
223	/* Set SDMA Bus Request priority 5.
224	 * On 860T, this also enables FEC priority 6.  I am not sure
225	 * this is what we really want for some applications, but the
226	 * manual recommends it.
227	 * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
228	 */
229	siu_conf = immr_map(im_siu_conf);
230	out_be32(&siu_conf->sc_sdcr, 1);
231	immr_unmap(siu_conf);
232
233	cpm_muram_init();
234}
235
236static DEFINE_SPINLOCK(cmd_lock);
237
238#define MAX_CR_CMD_LOOPS        10000
239
240int cpm_command(u32 command, u8 opcode)
241{
242	int i, ret;
243	unsigned long flags;
244
245	if (command & 0xffffff0f)
246		return -EINVAL;
247
248	spin_lock_irqsave(&cmd_lock, flags);
249
250	ret = 0;
251	out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8));
252	for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
253		if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
254			goto out;
255
256	printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
257	ret = -EIO;
258out:
259	spin_unlock_irqrestore(&cmd_lock, flags);
260	return ret;
261}
262EXPORT_SYMBOL(cpm_command);
263
264/* Set a baud rate generator.  This needs lots of work.  There are
265 * four BRGs, any of which can be wired to any channel.
266 * The internal baud rate clock is the system clock divided by 16.
267 * This assumes the baudrate is 16x oversampled by the uart.
268 */
269#define BRG_INT_CLK		(get_brgfreq())
270#define BRG_UART_CLK		(BRG_INT_CLK/16)
271#define BRG_UART_CLK_DIV16	(BRG_UART_CLK/16)
272
273void
274cpm_setbrg(uint brg, uint rate)
275{
276	u32 __iomem *bp;
277
278	/* This is good enough to get SMCs running.....
279	*/
280	bp = &cpmp->cp_brgc1;
281	bp += brg;
282	/* The BRG has a 12-bit counter.  For really slow baud rates (or
283	 * really fast processors), we may have to further divide by 16.
284	 */
285	if (((BRG_UART_CLK / rate) - 1) < 4096)
286		out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
287	else
288		out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
289			      CPM_BRG_EN | CPM_BRG_DIV16);
290}
291
292struct cpm_ioport16 {
293	__be16 dir, par, odr_sor, dat, intr;
294	__be16 res[3];
295};
296
297struct cpm_ioport32b {
298	__be32 dir, par, odr, dat;
299};
300
301struct cpm_ioport32e {
302	__be32 dir, par, sor, odr, dat;
303};
304
305static void cpm1_set_pin32(int port, int pin, int flags)
306{
307	struct cpm_ioport32e __iomem *iop;
308	pin = 1 << (31 - pin);
309
310	if (port == CPM_PORTB)
311		iop = (struct cpm_ioport32e __iomem *)
312		      &mpc8xx_immr->im_cpm.cp_pbdir;
313	else
314		iop = (struct cpm_ioport32e __iomem *)
315		      &mpc8xx_immr->im_cpm.cp_pedir;
316
317	if (flags & CPM_PIN_OUTPUT)
318		setbits32(&iop->dir, pin);
319	else
320		clrbits32(&iop->dir, pin);
321
322	if (!(flags & CPM_PIN_GPIO))
323		setbits32(&iop->par, pin);
324	else
325		clrbits32(&iop->par, pin);
326
327	if (port == CPM_PORTB) {
328		if (flags & CPM_PIN_OPENDRAIN)
329			setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
330		else
331			clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
332	}
333
334	if (port == CPM_PORTE) {
335		if (flags & CPM_PIN_SECONDARY)
336			setbits32(&iop->sor, pin);
337		else
338			clrbits32(&iop->sor, pin);
339
340		if (flags & CPM_PIN_OPENDRAIN)
341			setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
342		else
343			clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
344	}
345}
346
347static void cpm1_set_pin16(int port, int pin, int flags)
348{
349	struct cpm_ioport16 __iomem *iop =
350		(struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;
351
352	pin = 1 << (15 - pin);
353
354	if (port != 0)
355		iop += port - 1;
356
357	if (flags & CPM_PIN_OUTPUT)
358		setbits16(&iop->dir, pin);
359	else
360		clrbits16(&iop->dir, pin);
361
362	if (!(flags & CPM_PIN_GPIO))
363		setbits16(&iop->par, pin);
364	else
365		clrbits16(&iop->par, pin);
366
367	if (port == CPM_PORTA) {
368		if (flags & CPM_PIN_OPENDRAIN)
369			setbits16(&iop->odr_sor, pin);
370		else
371			clrbits16(&iop->odr_sor, pin);
372	}
373	if (port == CPM_PORTC) {
374		if (flags & CPM_PIN_SECONDARY)
375			setbits16(&iop->odr_sor, pin);
376		else
377			clrbits16(&iop->odr_sor, pin);
378	}
379}
380
381void cpm1_set_pin(enum cpm_port port, int pin, int flags)
382{
383	if (port == CPM_PORTB || port == CPM_PORTE)
384		cpm1_set_pin32(port, pin, flags);
385	else
386		cpm1_set_pin16(port, pin, flags);
387}
388
389int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode)
390{
391	int shift;
392	int i, bits = 0;
393	u32 __iomem *reg;
394	u32 mask = 7;
395
396	u8 clk_map[][3] = {
397		{CPM_CLK_SCC1, CPM_BRG1, 0},
398		{CPM_CLK_SCC1, CPM_BRG2, 1},
399		{CPM_CLK_SCC1, CPM_BRG3, 2},
400		{CPM_CLK_SCC1, CPM_BRG4, 3},
401		{CPM_CLK_SCC1, CPM_CLK1, 4},
402		{CPM_CLK_SCC1, CPM_CLK2, 5},
403		{CPM_CLK_SCC1, CPM_CLK3, 6},
404		{CPM_CLK_SCC1, CPM_CLK4, 7},
405
406		{CPM_CLK_SCC2, CPM_BRG1, 0},
407		{CPM_CLK_SCC2, CPM_BRG2, 1},
408		{CPM_CLK_SCC2, CPM_BRG3, 2},
409		{CPM_CLK_SCC2, CPM_BRG4, 3},
410		{CPM_CLK_SCC2, CPM_CLK1, 4},
411		{CPM_CLK_SCC2, CPM_CLK2, 5},
412		{CPM_CLK_SCC2, CPM_CLK3, 6},
413		{CPM_CLK_SCC2, CPM_CLK4, 7},
414
415		{CPM_CLK_SCC3, CPM_BRG1, 0},
416		{CPM_CLK_SCC3, CPM_BRG2, 1},
417		{CPM_CLK_SCC3, CPM_BRG3, 2},
418		{CPM_CLK_SCC3, CPM_BRG4, 3},
419		{CPM_CLK_SCC3, CPM_CLK5, 4},
420		{CPM_CLK_SCC3, CPM_CLK6, 5},
421		{CPM_CLK_SCC3, CPM_CLK7, 6},
422		{CPM_CLK_SCC3, CPM_CLK8, 7},
423
424		{CPM_CLK_SCC4, CPM_BRG1, 0},
425		{CPM_CLK_SCC4, CPM_BRG2, 1},
426		{CPM_CLK_SCC4, CPM_BRG3, 2},
427		{CPM_CLK_SCC4, CPM_BRG4, 3},
428		{CPM_CLK_SCC4, CPM_CLK5, 4},
429		{CPM_CLK_SCC4, CPM_CLK6, 5},
430		{CPM_CLK_SCC4, CPM_CLK7, 6},
431		{CPM_CLK_SCC4, CPM_CLK8, 7},
432
433		{CPM_CLK_SMC1, CPM_BRG1, 0},
434		{CPM_CLK_SMC1, CPM_BRG2, 1},
435		{CPM_CLK_SMC1, CPM_BRG3, 2},
436		{CPM_CLK_SMC1, CPM_BRG4, 3},
437		{CPM_CLK_SMC1, CPM_CLK1, 4},
438		{CPM_CLK_SMC1, CPM_CLK2, 5},
439		{CPM_CLK_SMC1, CPM_CLK3, 6},
440		{CPM_CLK_SMC1, CPM_CLK4, 7},
441
442		{CPM_CLK_SMC2, CPM_BRG1, 0},
443		{CPM_CLK_SMC2, CPM_BRG2, 1},
444		{CPM_CLK_SMC2, CPM_BRG3, 2},
445		{CPM_CLK_SMC2, CPM_BRG4, 3},
446		{CPM_CLK_SMC2, CPM_CLK5, 4},
447		{CPM_CLK_SMC2, CPM_CLK6, 5},
448		{CPM_CLK_SMC2, CPM_CLK7, 6},
449		{CPM_CLK_SMC2, CPM_CLK8, 7},
450	};
451
452	switch (target) {
453	case CPM_CLK_SCC1:
454		reg = &mpc8xx_immr->im_cpm.cp_sicr;
455		shift = 0;
456		break;
457
458	case CPM_CLK_SCC2:
459		reg = &mpc8xx_immr->im_cpm.cp_sicr;
460		shift = 8;
461		break;
462
463	case CPM_CLK_SCC3:
464		reg = &mpc8xx_immr->im_cpm.cp_sicr;
465		shift = 16;
466		break;
467
468	case CPM_CLK_SCC4:
469		reg = &mpc8xx_immr->im_cpm.cp_sicr;
470		shift = 24;
471		break;
472
473	case CPM_CLK_SMC1:
474		reg = &mpc8xx_immr->im_cpm.cp_simode;
475		shift = 12;
476		break;
477
478	case CPM_CLK_SMC2:
479		reg = &mpc8xx_immr->im_cpm.cp_simode;
480		shift = 28;
481		break;
482
483	default:
484		printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
485		return -EINVAL;
486	}
487
488	for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
489		if (clk_map[i][0] == target && clk_map[i][1] == clock) {
490			bits = clk_map[i][2];
491			break;
492		}
493	}
494
495	if (i == ARRAY_SIZE(clk_map)) {
496		printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
497		return -EINVAL;
498	}
499
500	bits <<= shift;
501	mask <<= shift;
502
503	if (reg == &mpc8xx_immr->im_cpm.cp_sicr) {
504		if (mode == CPM_CLK_RTX) {
505			bits |= bits << 3;
506			mask |= mask << 3;
507		} else if (mode == CPM_CLK_RX) {
508			bits <<= 3;
509			mask <<= 3;
510		}
511	}
512
513	out_be32(reg, (in_be32(reg) & ~mask) | bits);
514
515	return 0;
516}
517
518/*
519 * GPIO LIB API implementation
520 */
521#ifdef CONFIG_8xx_GPIO
522
523struct cpm1_gpio16_chip {
524	struct of_mm_gpio_chip mm_gc;
525	spinlock_t lock;
526
527	/* shadowed data register to clear/set bits safely */
528	u16 cpdata;
529};
530
531static inline struct cpm1_gpio16_chip *
532to_cpm1_gpio16_chip(struct of_mm_gpio_chip *mm_gc)
533{
534	return container_of(mm_gc, struct cpm1_gpio16_chip, mm_gc);
535}
536
537static void cpm1_gpio16_save_regs(struct of_mm_gpio_chip *mm_gc)
538{
539	struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
540	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
541
542	cpm1_gc->cpdata = in_be16(&iop->dat);
543}
544
545static int cpm1_gpio16_get(struct gpio_chip *gc, unsigned int gpio)
546{
547	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
548	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
549	u16 pin_mask;
550
551	pin_mask = 1 << (15 - gpio);
552
553	return !!(in_be16(&iop->dat) & pin_mask);
554}
555
556static void __cpm1_gpio16_set(struct of_mm_gpio_chip *mm_gc, u16 pin_mask,
557	int value)
558{
559	struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
560	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
561
562	if (value)
563		cpm1_gc->cpdata |= pin_mask;
564	else
565		cpm1_gc->cpdata &= ~pin_mask;
566
567	out_be16(&iop->dat, cpm1_gc->cpdata);
568}
569
570static void cpm1_gpio16_set(struct gpio_chip *gc, unsigned int gpio, int value)
571{
572	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
573	struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
574	unsigned long flags;
575	u16 pin_mask = 1 << (15 - gpio);
576
577	spin_lock_irqsave(&cpm1_gc->lock, flags);
578
579	__cpm1_gpio16_set(mm_gc, pin_mask, value);
580
581	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
582}
583
584static int cpm1_gpio16_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
585{
586	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
587	struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
588	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
589	unsigned long flags;
590	u16 pin_mask = 1 << (15 - gpio);
591
592	spin_lock_irqsave(&cpm1_gc->lock, flags);
593
594	setbits16(&iop->dir, pin_mask);
595	__cpm1_gpio16_set(mm_gc, pin_mask, val);
596
597	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
598
599	return 0;
600}
601
602static int cpm1_gpio16_dir_in(struct gpio_chip *gc, unsigned int gpio)
603{
604	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
605	struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
606	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
607	unsigned long flags;
608	u16 pin_mask = 1 << (15 - gpio);
609
610	spin_lock_irqsave(&cpm1_gc->lock, flags);
611
612	clrbits16(&iop->dir, pin_mask);
613
614	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
615
616	return 0;
617}
618
619int cpm1_gpiochip_add16(struct device_node *np)
620{
621	struct cpm1_gpio16_chip *cpm1_gc;
622	struct of_mm_gpio_chip *mm_gc;
623	struct gpio_chip *gc;
624
625	cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
626	if (!cpm1_gc)
627		return -ENOMEM;
628
629	spin_lock_init(&cpm1_gc->lock);
630
631	mm_gc = &cpm1_gc->mm_gc;
632	gc = &mm_gc->gc;
633
634	mm_gc->save_regs = cpm1_gpio16_save_regs;
635	gc->ngpio = 16;
636	gc->direction_input = cpm1_gpio16_dir_in;
637	gc->direction_output = cpm1_gpio16_dir_out;
638	gc->get = cpm1_gpio16_get;
639	gc->set = cpm1_gpio16_set;
640
641	return of_mm_gpiochip_add(np, mm_gc);
642}
643
644struct cpm1_gpio32_chip {
645	struct of_mm_gpio_chip mm_gc;
646	spinlock_t lock;
647
648	/* shadowed data register to clear/set bits safely */
649	u32 cpdata;
650};
651
652static inline struct cpm1_gpio32_chip *
653to_cpm1_gpio32_chip(struct of_mm_gpio_chip *mm_gc)
654{
655	return container_of(mm_gc, struct cpm1_gpio32_chip, mm_gc);
656}
657
658static void cpm1_gpio32_save_regs(struct of_mm_gpio_chip *mm_gc)
659{
660	struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
661	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
662
663	cpm1_gc->cpdata = in_be32(&iop->dat);
664}
665
666static int cpm1_gpio32_get(struct gpio_chip *gc, unsigned int gpio)
667{
668	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
669	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
670	u32 pin_mask;
671
672	pin_mask = 1 << (31 - gpio);
673
674	return !!(in_be32(&iop->dat) & pin_mask);
675}
676
677static void __cpm1_gpio32_set(struct of_mm_gpio_chip *mm_gc, u32 pin_mask,
678	int value)
679{
680	struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
681	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
682
683	if (value)
684		cpm1_gc->cpdata |= pin_mask;
685	else
686		cpm1_gc->cpdata &= ~pin_mask;
687
688	out_be32(&iop->dat, cpm1_gc->cpdata);
689}
690
691static void cpm1_gpio32_set(struct gpio_chip *gc, unsigned int gpio, int value)
692{
693	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
694	struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
695	unsigned long flags;
696	u32 pin_mask = 1 << (31 - gpio);
697
698	spin_lock_irqsave(&cpm1_gc->lock, flags);
699
700	__cpm1_gpio32_set(mm_gc, pin_mask, value);
701
702	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
703}
704
705static int cpm1_gpio32_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
706{
707	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
708	struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
709	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
710	unsigned long flags;
711	u32 pin_mask = 1 << (31 - gpio);
712
713	spin_lock_irqsave(&cpm1_gc->lock, flags);
714
715	setbits32(&iop->dir, pin_mask);
716	__cpm1_gpio32_set(mm_gc, pin_mask, val);
717
718	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
719
720	return 0;
721}
722
723static int cpm1_gpio32_dir_in(struct gpio_chip *gc, unsigned int gpio)
724{
725	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
726	struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
727	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
728	unsigned long flags;
729	u32 pin_mask = 1 << (31 - gpio);
730
731	spin_lock_irqsave(&cpm1_gc->lock, flags);
732
733	clrbits32(&iop->dir, pin_mask);
734
735	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
736
737	return 0;
738}
739
740int cpm1_gpiochip_add32(struct device_node *np)
741{
742	struct cpm1_gpio32_chip *cpm1_gc;
743	struct of_mm_gpio_chip *mm_gc;
744	struct gpio_chip *gc;
745
746	cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
747	if (!cpm1_gc)
748		return -ENOMEM;
749
750	spin_lock_init(&cpm1_gc->lock);
751
752	mm_gc = &cpm1_gc->mm_gc;
753	gc = &mm_gc->gc;
754
755	mm_gc->save_regs = cpm1_gpio32_save_regs;
756	gc->ngpio = 32;
757	gc->direction_input = cpm1_gpio32_dir_in;
758	gc->direction_output = cpm1_gpio32_dir_out;
759	gc->get = cpm1_gpio32_get;
760	gc->set = cpm1_gpio32_set;
761
762	return of_mm_gpiochip_add(np, mm_gc);
763}
764
765static int cpm_init_par_io(void)
766{
767	struct device_node *np;
768
769	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-a")
770		cpm1_gpiochip_add16(np);
771
772	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-b")
773		cpm1_gpiochip_add32(np);
774
775	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-c")
776		cpm1_gpiochip_add16(np);
777
778	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-d")
779		cpm1_gpiochip_add16(np);
780
781	/* Port E uses CPM2 layout */
782	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-e")
783		cpm2_gpiochip_add32(np);
784	return 0;
785}
786arch_initcall(cpm_init_par_io);
787
788#endif /* CONFIG_8xx_GPIO */