Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Performance event support - Freescale Embedded Performance Monitor
  4 *
  5 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
  6 * Copyright 2010 Freescale Semiconductor, Inc.
 
 
 
 
 
  7 */
  8#include <linux/kernel.h>
  9#include <linux/sched.h>
 10#include <linux/perf_event.h>
 11#include <linux/percpu.h>
 12#include <linux/hardirq.h>
 13#include <asm/reg_fsl_emb.h>
 14#include <asm/pmc.h>
 15#include <asm/machdep.h>
 16#include <asm/firmware.h>
 17#include <asm/ptrace.h>
 18
 19struct cpu_hw_events {
 20	int n_events;
 21	int disabled;
 22	u8  pmcs_enabled;
 23	struct perf_event *event[MAX_HWEVENTS];
 24};
 25static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
 26
 27static struct fsl_emb_pmu *ppmu;
 28
 29/* Number of perf_events counting hardware events */
 30static atomic_t num_events;
 31/* Used to avoid races in calling reserve/release_pmc_hardware */
 32static DEFINE_MUTEX(pmc_reserve_mutex);
 33
 
 
 
 
 
 
 
 
 
 
 
 
 
 34static void perf_event_interrupt(struct pt_regs *regs);
 35
 36/*
 37 * Read one performance monitor counter (PMC).
 38 */
 39static unsigned long read_pmc(int idx)
 40{
 41	unsigned long val;
 42
 43	switch (idx) {
 44	case 0:
 45		val = mfpmr(PMRN_PMC0);
 46		break;
 47	case 1:
 48		val = mfpmr(PMRN_PMC1);
 49		break;
 50	case 2:
 51		val = mfpmr(PMRN_PMC2);
 52		break;
 53	case 3:
 54		val = mfpmr(PMRN_PMC3);
 55		break;
 56	case 4:
 57		val = mfpmr(PMRN_PMC4);
 58		break;
 59	case 5:
 60		val = mfpmr(PMRN_PMC5);
 61		break;
 62	default:
 63		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
 64		val = 0;
 65	}
 66	return val;
 67}
 68
 69/*
 70 * Write one PMC.
 71 */
 72static void write_pmc(int idx, unsigned long val)
 73{
 74	switch (idx) {
 75	case 0:
 76		mtpmr(PMRN_PMC0, val);
 77		break;
 78	case 1:
 79		mtpmr(PMRN_PMC1, val);
 80		break;
 81	case 2:
 82		mtpmr(PMRN_PMC2, val);
 83		break;
 84	case 3:
 85		mtpmr(PMRN_PMC3, val);
 86		break;
 87	case 4:
 88		mtpmr(PMRN_PMC4, val);
 89		break;
 90	case 5:
 91		mtpmr(PMRN_PMC5, val);
 92		break;
 93	default:
 94		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
 95	}
 96
 97	isync();
 98}
 99
100/*
101 * Write one local control A register
102 */
103static void write_pmlca(int idx, unsigned long val)
104{
105	switch (idx) {
106	case 0:
107		mtpmr(PMRN_PMLCA0, val);
108		break;
109	case 1:
110		mtpmr(PMRN_PMLCA1, val);
111		break;
112	case 2:
113		mtpmr(PMRN_PMLCA2, val);
114		break;
115	case 3:
116		mtpmr(PMRN_PMLCA3, val);
117		break;
118	case 4:
119		mtpmr(PMRN_PMLCA4, val);
120		break;
121	case 5:
122		mtpmr(PMRN_PMLCA5, val);
123		break;
124	default:
125		printk(KERN_ERR "oops trying to write PMLCA%d\n", idx);
126	}
127
128	isync();
129}
130
131/*
132 * Write one local control B register
133 */
134static void write_pmlcb(int idx, unsigned long val)
135{
136	switch (idx) {
137	case 0:
138		mtpmr(PMRN_PMLCB0, val);
139		break;
140	case 1:
141		mtpmr(PMRN_PMLCB1, val);
142		break;
143	case 2:
144		mtpmr(PMRN_PMLCB2, val);
145		break;
146	case 3:
147		mtpmr(PMRN_PMLCB3, val);
148		break;
149	case 4:
150		mtpmr(PMRN_PMLCB4, val);
151		break;
152	case 5:
153		mtpmr(PMRN_PMLCB5, val);
154		break;
155	default:
156		printk(KERN_ERR "oops trying to write PMLCB%d\n", idx);
157	}
158
159	isync();
160}
161
162static void fsl_emb_pmu_read(struct perf_event *event)
163{
164	s64 val, delta, prev;
165
166	if (event->hw.state & PERF_HES_STOPPED)
167		return;
168
169	/*
170	 * Performance monitor interrupts come even when interrupts
171	 * are soft-disabled, as long as interrupts are hard-enabled.
172	 * Therefore we treat them like NMIs.
173	 */
174	do {
175		prev = local64_read(&event->hw.prev_count);
176		barrier();
177		val = read_pmc(event->hw.idx);
178	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
179
180	/* The counters are only 32 bits wide */
181	delta = (val - prev) & 0xfffffffful;
182	local64_add(delta, &event->count);
183	local64_sub(delta, &event->hw.period_left);
184}
185
186/*
187 * Disable all events to prevent PMU interrupts and to allow
188 * events to be added or removed.
189 */
190static void fsl_emb_pmu_disable(struct pmu *pmu)
191{
192	struct cpu_hw_events *cpuhw;
193	unsigned long flags;
194
195	local_irq_save(flags);
196	cpuhw = this_cpu_ptr(&cpu_hw_events);
197
198	if (!cpuhw->disabled) {
199		cpuhw->disabled = 1;
200
201		/*
202		 * Check if we ever enabled the PMU on this cpu.
203		 */
204		if (!cpuhw->pmcs_enabled) {
205			ppc_enable_pmcs();
206			cpuhw->pmcs_enabled = 1;
207		}
208
209		if (atomic_read(&num_events)) {
210			/*
211			 * Set the 'freeze all counters' bit, and disable
212			 * interrupts.  The barrier is to make sure the
213			 * mtpmr has been executed and the PMU has frozen
214			 * the events before we return.
215			 */
216
217			mtpmr(PMRN_PMGC0, PMGC0_FAC);
218			isync();
219		}
220	}
221	local_irq_restore(flags);
222}
223
224/*
225 * Re-enable all events if disable == 0.
226 * If we were previously disabled and events were added, then
227 * put the new config on the PMU.
228 */
229static void fsl_emb_pmu_enable(struct pmu *pmu)
230{
231	struct cpu_hw_events *cpuhw;
232	unsigned long flags;
233
234	local_irq_save(flags);
235	cpuhw = this_cpu_ptr(&cpu_hw_events);
236	if (!cpuhw->disabled)
237		goto out;
238
239	cpuhw->disabled = 0;
240	ppc_set_pmu_inuse(cpuhw->n_events != 0);
241
242	if (cpuhw->n_events > 0) {
243		mtpmr(PMRN_PMGC0, PMGC0_PMIE | PMGC0_FCECE);
244		isync();
245	}
246
247 out:
248	local_irq_restore(flags);
249}
250
251static int collect_events(struct perf_event *group, int max_count,
252			  struct perf_event *ctrs[])
253{
254	int n = 0;
255	struct perf_event *event;
256
257	if (!is_software_event(group)) {
258		if (n >= max_count)
259			return -1;
260		ctrs[n] = group;
261		n++;
262	}
263	for_each_sibling_event(event, group) {
264		if (!is_software_event(event) &&
265		    event->state != PERF_EVENT_STATE_OFF) {
266			if (n >= max_count)
267				return -1;
268			ctrs[n] = event;
269			n++;
270		}
271	}
272	return n;
273}
274
275/* context locked on entry */
276static int fsl_emb_pmu_add(struct perf_event *event, int flags)
277{
278	struct cpu_hw_events *cpuhw;
279	int ret = -EAGAIN;
280	int num_counters = ppmu->n_counter;
281	u64 val;
282	int i;
283
284	perf_pmu_disable(event->pmu);
285	cpuhw = &get_cpu_var(cpu_hw_events);
286
287	if (event->hw.config & FSL_EMB_EVENT_RESTRICTED)
288		num_counters = ppmu->n_restricted;
289
290	/*
291	 * Allocate counters from top-down, so that restricted-capable
292	 * counters are kept free as long as possible.
293	 */
294	for (i = num_counters - 1; i >= 0; i--) {
295		if (cpuhw->event[i])
296			continue;
297
298		break;
299	}
300
301	if (i < 0)
302		goto out;
303
304	event->hw.idx = i;
305	cpuhw->event[i] = event;
306	++cpuhw->n_events;
307
308	val = 0;
309	if (event->hw.sample_period) {
310		s64 left = local64_read(&event->hw.period_left);
311		if (left < 0x80000000L)
312			val = 0x80000000L - left;
313	}
314	local64_set(&event->hw.prev_count, val);
315
316	if (unlikely(!(flags & PERF_EF_START))) {
317		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
318		val = 0;
319	} else {
320		event->hw.state &= ~(PERF_HES_STOPPED | PERF_HES_UPTODATE);
321	}
322
323	write_pmc(i, val);
324	perf_event_update_userpage(event);
325
326	write_pmlcb(i, event->hw.config >> 32);
327	write_pmlca(i, event->hw.config_base);
328
329	ret = 0;
330 out:
331	put_cpu_var(cpu_hw_events);
332	perf_pmu_enable(event->pmu);
333	return ret;
334}
335
336/* context locked on entry */
337static void fsl_emb_pmu_del(struct perf_event *event, int flags)
338{
339	struct cpu_hw_events *cpuhw;
340	int i = event->hw.idx;
341
342	perf_pmu_disable(event->pmu);
343	if (i < 0)
344		goto out;
345
346	fsl_emb_pmu_read(event);
347
348	cpuhw = &get_cpu_var(cpu_hw_events);
349
350	WARN_ON(event != cpuhw->event[event->hw.idx]);
351
352	write_pmlca(i, 0);
353	write_pmlcb(i, 0);
354	write_pmc(i, 0);
355
356	cpuhw->event[i] = NULL;
357	event->hw.idx = -1;
358
359	/*
360	 * TODO: if at least one restricted event exists, and we
361	 * just freed up a non-restricted-capable counter, and
362	 * there is a restricted-capable counter occupied by
363	 * a non-restricted event, migrate that event to the
364	 * vacated counter.
365	 */
366
367	cpuhw->n_events--;
368
369 out:
370	perf_pmu_enable(event->pmu);
371	put_cpu_var(cpu_hw_events);
372}
373
374static void fsl_emb_pmu_start(struct perf_event *event, int ef_flags)
375{
376	unsigned long flags;
377	unsigned long val;
378	s64 left;
379
380	if (event->hw.idx < 0 || !event->hw.sample_period)
381		return;
382
383	if (!(event->hw.state & PERF_HES_STOPPED))
384		return;
385
386	if (ef_flags & PERF_EF_RELOAD)
387		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
388
389	local_irq_save(flags);
390	perf_pmu_disable(event->pmu);
391
392	event->hw.state = 0;
393	left = local64_read(&event->hw.period_left);
394	val = 0;
395	if (left < 0x80000000L)
396		val = 0x80000000L - left;
397	write_pmc(event->hw.idx, val);
398
399	perf_event_update_userpage(event);
400	perf_pmu_enable(event->pmu);
401	local_irq_restore(flags);
402}
403
404static void fsl_emb_pmu_stop(struct perf_event *event, int ef_flags)
405{
406	unsigned long flags;
407
408	if (event->hw.idx < 0 || !event->hw.sample_period)
409		return;
410
411	if (event->hw.state & PERF_HES_STOPPED)
412		return;
413
414	local_irq_save(flags);
415	perf_pmu_disable(event->pmu);
416
417	fsl_emb_pmu_read(event);
418	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
419	write_pmc(event->hw.idx, 0);
420
421	perf_event_update_userpage(event);
422	perf_pmu_enable(event->pmu);
423	local_irq_restore(flags);
424}
425
426/*
427 * Release the PMU if this is the last perf_event.
428 */
429static void hw_perf_event_destroy(struct perf_event *event)
430{
431	if (!atomic_add_unless(&num_events, -1, 1)) {
432		mutex_lock(&pmc_reserve_mutex);
433		if (atomic_dec_return(&num_events) == 0)
434			release_pmc_hardware();
435		mutex_unlock(&pmc_reserve_mutex);
436	}
437}
438
439/*
440 * Translate a generic cache event_id config to a raw event_id code.
441 */
442static int hw_perf_cache_event(u64 config, u64 *eventp)
443{
444	unsigned long type, op, result;
445	int ev;
446
447	if (!ppmu->cache_events)
448		return -EINVAL;
449
450	/* unpack config */
451	type = config & 0xff;
452	op = (config >> 8) & 0xff;
453	result = (config >> 16) & 0xff;
454
455	if (type >= PERF_COUNT_HW_CACHE_MAX ||
456	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
457	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
458		return -EINVAL;
459
460	ev = (*ppmu->cache_events)[type][op][result];
461	if (ev == 0)
462		return -EOPNOTSUPP;
463	if (ev == -1)
464		return -EINVAL;
465	*eventp = ev;
466	return 0;
467}
468
469static int fsl_emb_pmu_event_init(struct perf_event *event)
470{
471	u64 ev;
472	struct perf_event *events[MAX_HWEVENTS];
473	int n;
474	int err;
475	int num_restricted;
476	int i;
477
478	if (ppmu->n_counter > MAX_HWEVENTS) {
479		WARN(1, "No. of perf counters (%d) is higher than max array size(%d)\n",
480			ppmu->n_counter, MAX_HWEVENTS);
481		ppmu->n_counter = MAX_HWEVENTS;
482	}
483
484	switch (event->attr.type) {
485	case PERF_TYPE_HARDWARE:
486		ev = event->attr.config;
487		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
488			return -EOPNOTSUPP;
489		ev = ppmu->generic_events[ev];
490		break;
491
492	case PERF_TYPE_HW_CACHE:
493		err = hw_perf_cache_event(event->attr.config, &ev);
494		if (err)
495			return err;
496		break;
497
498	case PERF_TYPE_RAW:
499		ev = event->attr.config;
500		break;
501
502	default:
503		return -ENOENT;
504	}
505
506	event->hw.config = ppmu->xlate_event(ev);
507	if (!(event->hw.config & FSL_EMB_EVENT_VALID))
508		return -EINVAL;
509
510	/*
511	 * If this is in a group, check if it can go on with all the
512	 * other hardware events in the group.  We assume the event
513	 * hasn't been linked into its leader's sibling list at this point.
514	 */
515	n = 0;
516	if (event->group_leader != event) {
517		n = collect_events(event->group_leader,
518		                   ppmu->n_counter - 1, events);
519		if (n < 0)
520			return -EINVAL;
521	}
522
523	if (event->hw.config & FSL_EMB_EVENT_RESTRICTED) {
524		num_restricted = 0;
525		for (i = 0; i < n; i++) {
526			if (events[i]->hw.config & FSL_EMB_EVENT_RESTRICTED)
527				num_restricted++;
528		}
529
530		if (num_restricted >= ppmu->n_restricted)
531			return -EINVAL;
532	}
533
534	event->hw.idx = -1;
535
536	event->hw.config_base = PMLCA_CE | PMLCA_FCM1 |
537	                        (u32)((ev << 16) & PMLCA_EVENT_MASK);
538
539	if (event->attr.exclude_user)
540		event->hw.config_base |= PMLCA_FCU;
541	if (event->attr.exclude_kernel)
542		event->hw.config_base |= PMLCA_FCS;
543	if (event->attr.exclude_idle)
544		return -ENOTSUPP;
545
546	event->hw.last_period = event->hw.sample_period;
547	local64_set(&event->hw.period_left, event->hw.last_period);
548
549	/*
550	 * See if we need to reserve the PMU.
551	 * If no events are currently in use, then we have to take a
552	 * mutex to ensure that we don't race with another task doing
553	 * reserve_pmc_hardware or release_pmc_hardware.
554	 */
555	err = 0;
556	if (!atomic_inc_not_zero(&num_events)) {
557		mutex_lock(&pmc_reserve_mutex);
558		if (atomic_read(&num_events) == 0 &&
559		    reserve_pmc_hardware(perf_event_interrupt))
560			err = -EBUSY;
561		else
562			atomic_inc(&num_events);
563		mutex_unlock(&pmc_reserve_mutex);
564
565		mtpmr(PMRN_PMGC0, PMGC0_FAC);
566		isync();
567	}
568	event->destroy = hw_perf_event_destroy;
569
570	return err;
571}
572
573static struct pmu fsl_emb_pmu = {
574	.pmu_enable	= fsl_emb_pmu_enable,
575	.pmu_disable	= fsl_emb_pmu_disable,
576	.event_init	= fsl_emb_pmu_event_init,
577	.add		= fsl_emb_pmu_add,
578	.del		= fsl_emb_pmu_del,
579	.start		= fsl_emb_pmu_start,
580	.stop		= fsl_emb_pmu_stop,
581	.read		= fsl_emb_pmu_read,
582};
583
584/*
585 * A counter has overflowed; update its count and record
586 * things if requested.  Note that interrupts are hard-disabled
587 * here so there is no possibility of being interrupted.
588 */
589static void record_and_restart(struct perf_event *event, unsigned long val,
590			       struct pt_regs *regs)
591{
592	u64 period = event->hw.sample_period;
593	s64 prev, delta, left;
594	int record = 0;
595
596	if (event->hw.state & PERF_HES_STOPPED) {
597		write_pmc(event->hw.idx, 0);
598		return;
599	}
600
601	/* we don't have to worry about interrupts here */
602	prev = local64_read(&event->hw.prev_count);
603	delta = (val - prev) & 0xfffffffful;
604	local64_add(delta, &event->count);
605
606	/*
607	 * See if the total period for this event has expired,
608	 * and update for the next period.
609	 */
610	val = 0;
611	left = local64_read(&event->hw.period_left) - delta;
612	if (period) {
613		if (left <= 0) {
614			left += period;
615			if (left <= 0)
616				left = period;
617			record = 1;
618			event->hw.last_period = event->hw.sample_period;
619		}
620		if (left < 0x80000000LL)
621			val = 0x80000000LL - left;
622	}
623
624	write_pmc(event->hw.idx, val);
625	local64_set(&event->hw.prev_count, val);
626	local64_set(&event->hw.period_left, left);
627	perf_event_update_userpage(event);
628
629	/*
630	 * Finally record data if requested.
631	 */
632	if (record) {
633		struct perf_sample_data data;
634
635		perf_sample_data_init(&data, 0, event->hw.last_period);
636
637		if (perf_event_overflow(event, &data, regs))
638			fsl_emb_pmu_stop(event, 0);
639	}
640}
641
642static void perf_event_interrupt(struct pt_regs *regs)
643{
644	int i;
645	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
646	struct perf_event *event;
647	unsigned long val;
 
 
 
 
 
 
 
 
648
649	for (i = 0; i < ppmu->n_counter; ++i) {
650		event = cpuhw->event[i];
651
652		val = read_pmc(i);
653		if ((int)val < 0) {
654			if (event) {
655				/* event has overflowed */
 
656				record_and_restart(event, val, regs);
657			} else {
658				/*
659				 * Disabled counter is negative,
660				 * reset it just in case.
661				 */
662				write_pmc(i, 0);
663			}
664		}
665	}
666
667	/* PMM will keep counters frozen until we return from the interrupt. */
668	mtmsr(mfmsr() | MSR_PMM);
669	mtpmr(PMRN_PMGC0, PMGC0_PMIE | PMGC0_FCECE);
670	isync();
 
 
 
 
 
671}
672
673static int fsl_emb_pmu_prepare_cpu(unsigned int cpu)
674{
675	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
676
677	memset(cpuhw, 0, sizeof(*cpuhw));
678
679	return 0;
680}
681
682int register_fsl_emb_pmu(struct fsl_emb_pmu *pmu)
683{
684	if (ppmu)
685		return -EBUSY;		/* something's already registered */
686
687	ppmu = pmu;
688	pr_info("%s performance monitor hardware support registered\n",
689		pmu->name);
690
691	perf_pmu_register(&fsl_emb_pmu, "cpu", PERF_TYPE_RAW);
692	cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
693			  fsl_emb_pmu_prepare_cpu, NULL);
694
695	return 0;
696}
v3.5.6
 
  1/*
  2 * Performance event support - Freescale Embedded Performance Monitor
  3 *
  4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
  5 * Copyright 2010 Freescale Semiconductor, Inc.
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License
  9 * as published by the Free Software Foundation; either version
 10 * 2 of the License, or (at your option) any later version.
 11 */
 12#include <linux/kernel.h>
 13#include <linux/sched.h>
 14#include <linux/perf_event.h>
 15#include <linux/percpu.h>
 16#include <linux/hardirq.h>
 17#include <asm/reg_fsl_emb.h>
 18#include <asm/pmc.h>
 19#include <asm/machdep.h>
 20#include <asm/firmware.h>
 21#include <asm/ptrace.h>
 22
 23struct cpu_hw_events {
 24	int n_events;
 25	int disabled;
 26	u8  pmcs_enabled;
 27	struct perf_event *event[MAX_HWEVENTS];
 28};
 29static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
 30
 31static struct fsl_emb_pmu *ppmu;
 32
 33/* Number of perf_events counting hardware events */
 34static atomic_t num_events;
 35/* Used to avoid races in calling reserve/release_pmc_hardware */
 36static DEFINE_MUTEX(pmc_reserve_mutex);
 37
 38/*
 39 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
 40 * it as an NMI.
 41 */
 42static inline int perf_intr_is_nmi(struct pt_regs *regs)
 43{
 44#ifdef __powerpc64__
 45	return !regs->softe;
 46#else
 47	return 0;
 48#endif
 49}
 50
 51static void perf_event_interrupt(struct pt_regs *regs);
 52
 53/*
 54 * Read one performance monitor counter (PMC).
 55 */
 56static unsigned long read_pmc(int idx)
 57{
 58	unsigned long val;
 59
 60	switch (idx) {
 61	case 0:
 62		val = mfpmr(PMRN_PMC0);
 63		break;
 64	case 1:
 65		val = mfpmr(PMRN_PMC1);
 66		break;
 67	case 2:
 68		val = mfpmr(PMRN_PMC2);
 69		break;
 70	case 3:
 71		val = mfpmr(PMRN_PMC3);
 72		break;
 
 
 
 
 
 
 73	default:
 74		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
 75		val = 0;
 76	}
 77	return val;
 78}
 79
 80/*
 81 * Write one PMC.
 82 */
 83static void write_pmc(int idx, unsigned long val)
 84{
 85	switch (idx) {
 86	case 0:
 87		mtpmr(PMRN_PMC0, val);
 88		break;
 89	case 1:
 90		mtpmr(PMRN_PMC1, val);
 91		break;
 92	case 2:
 93		mtpmr(PMRN_PMC2, val);
 94		break;
 95	case 3:
 96		mtpmr(PMRN_PMC3, val);
 97		break;
 
 
 
 
 
 
 98	default:
 99		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
100	}
101
102	isync();
103}
104
105/*
106 * Write one local control A register
107 */
108static void write_pmlca(int idx, unsigned long val)
109{
110	switch (idx) {
111	case 0:
112		mtpmr(PMRN_PMLCA0, val);
113		break;
114	case 1:
115		mtpmr(PMRN_PMLCA1, val);
116		break;
117	case 2:
118		mtpmr(PMRN_PMLCA2, val);
119		break;
120	case 3:
121		mtpmr(PMRN_PMLCA3, val);
122		break;
 
 
 
 
 
 
123	default:
124		printk(KERN_ERR "oops trying to write PMLCA%d\n", idx);
125	}
126
127	isync();
128}
129
130/*
131 * Write one local control B register
132 */
133static void write_pmlcb(int idx, unsigned long val)
134{
135	switch (idx) {
136	case 0:
137		mtpmr(PMRN_PMLCB0, val);
138		break;
139	case 1:
140		mtpmr(PMRN_PMLCB1, val);
141		break;
142	case 2:
143		mtpmr(PMRN_PMLCB2, val);
144		break;
145	case 3:
146		mtpmr(PMRN_PMLCB3, val);
147		break;
 
 
 
 
 
 
148	default:
149		printk(KERN_ERR "oops trying to write PMLCB%d\n", idx);
150	}
151
152	isync();
153}
154
155static void fsl_emb_pmu_read(struct perf_event *event)
156{
157	s64 val, delta, prev;
158
159	if (event->hw.state & PERF_HES_STOPPED)
160		return;
161
162	/*
163	 * Performance monitor interrupts come even when interrupts
164	 * are soft-disabled, as long as interrupts are hard-enabled.
165	 * Therefore we treat them like NMIs.
166	 */
167	do {
168		prev = local64_read(&event->hw.prev_count);
169		barrier();
170		val = read_pmc(event->hw.idx);
171	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
172
173	/* The counters are only 32 bits wide */
174	delta = (val - prev) & 0xfffffffful;
175	local64_add(delta, &event->count);
176	local64_sub(delta, &event->hw.period_left);
177}
178
179/*
180 * Disable all events to prevent PMU interrupts and to allow
181 * events to be added or removed.
182 */
183static void fsl_emb_pmu_disable(struct pmu *pmu)
184{
185	struct cpu_hw_events *cpuhw;
186	unsigned long flags;
187
188	local_irq_save(flags);
189	cpuhw = &__get_cpu_var(cpu_hw_events);
190
191	if (!cpuhw->disabled) {
192		cpuhw->disabled = 1;
193
194		/*
195		 * Check if we ever enabled the PMU on this cpu.
196		 */
197		if (!cpuhw->pmcs_enabled) {
198			ppc_enable_pmcs();
199			cpuhw->pmcs_enabled = 1;
200		}
201
202		if (atomic_read(&num_events)) {
203			/*
204			 * Set the 'freeze all counters' bit, and disable
205			 * interrupts.  The barrier is to make sure the
206			 * mtpmr has been executed and the PMU has frozen
207			 * the events before we return.
208			 */
209
210			mtpmr(PMRN_PMGC0, PMGC0_FAC);
211			isync();
212		}
213	}
214	local_irq_restore(flags);
215}
216
217/*
218 * Re-enable all events if disable == 0.
219 * If we were previously disabled and events were added, then
220 * put the new config on the PMU.
221 */
222static void fsl_emb_pmu_enable(struct pmu *pmu)
223{
224	struct cpu_hw_events *cpuhw;
225	unsigned long flags;
226
227	local_irq_save(flags);
228	cpuhw = &__get_cpu_var(cpu_hw_events);
229	if (!cpuhw->disabled)
230		goto out;
231
232	cpuhw->disabled = 0;
233	ppc_set_pmu_inuse(cpuhw->n_events != 0);
234
235	if (cpuhw->n_events > 0) {
236		mtpmr(PMRN_PMGC0, PMGC0_PMIE | PMGC0_FCECE);
237		isync();
238	}
239
240 out:
241	local_irq_restore(flags);
242}
243
244static int collect_events(struct perf_event *group, int max_count,
245			  struct perf_event *ctrs[])
246{
247	int n = 0;
248	struct perf_event *event;
249
250	if (!is_software_event(group)) {
251		if (n >= max_count)
252			return -1;
253		ctrs[n] = group;
254		n++;
255	}
256	list_for_each_entry(event, &group->sibling_list, group_entry) {
257		if (!is_software_event(event) &&
258		    event->state != PERF_EVENT_STATE_OFF) {
259			if (n >= max_count)
260				return -1;
261			ctrs[n] = event;
262			n++;
263		}
264	}
265	return n;
266}
267
268/* context locked on entry */
269static int fsl_emb_pmu_add(struct perf_event *event, int flags)
270{
271	struct cpu_hw_events *cpuhw;
272	int ret = -EAGAIN;
273	int num_counters = ppmu->n_counter;
274	u64 val;
275	int i;
276
277	perf_pmu_disable(event->pmu);
278	cpuhw = &get_cpu_var(cpu_hw_events);
279
280	if (event->hw.config & FSL_EMB_EVENT_RESTRICTED)
281		num_counters = ppmu->n_restricted;
282
283	/*
284	 * Allocate counters from top-down, so that restricted-capable
285	 * counters are kept free as long as possible.
286	 */
287	for (i = num_counters - 1; i >= 0; i--) {
288		if (cpuhw->event[i])
289			continue;
290
291		break;
292	}
293
294	if (i < 0)
295		goto out;
296
297	event->hw.idx = i;
298	cpuhw->event[i] = event;
299	++cpuhw->n_events;
300
301	val = 0;
302	if (event->hw.sample_period) {
303		s64 left = local64_read(&event->hw.period_left);
304		if (left < 0x80000000L)
305			val = 0x80000000L - left;
306	}
307	local64_set(&event->hw.prev_count, val);
308
309	if (!(flags & PERF_EF_START)) {
310		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
311		val = 0;
 
 
312	}
313
314	write_pmc(i, val);
315	perf_event_update_userpage(event);
316
317	write_pmlcb(i, event->hw.config >> 32);
318	write_pmlca(i, event->hw.config_base);
319
320	ret = 0;
321 out:
322	put_cpu_var(cpu_hw_events);
323	perf_pmu_enable(event->pmu);
324	return ret;
325}
326
327/* context locked on entry */
328static void fsl_emb_pmu_del(struct perf_event *event, int flags)
329{
330	struct cpu_hw_events *cpuhw;
331	int i = event->hw.idx;
332
333	perf_pmu_disable(event->pmu);
334	if (i < 0)
335		goto out;
336
337	fsl_emb_pmu_read(event);
338
339	cpuhw = &get_cpu_var(cpu_hw_events);
340
341	WARN_ON(event != cpuhw->event[event->hw.idx]);
342
343	write_pmlca(i, 0);
344	write_pmlcb(i, 0);
345	write_pmc(i, 0);
346
347	cpuhw->event[i] = NULL;
348	event->hw.idx = -1;
349
350	/*
351	 * TODO: if at least one restricted event exists, and we
352	 * just freed up a non-restricted-capable counter, and
353	 * there is a restricted-capable counter occupied by
354	 * a non-restricted event, migrate that event to the
355	 * vacated counter.
356	 */
357
358	cpuhw->n_events--;
359
360 out:
361	perf_pmu_enable(event->pmu);
362	put_cpu_var(cpu_hw_events);
363}
364
365static void fsl_emb_pmu_start(struct perf_event *event, int ef_flags)
366{
367	unsigned long flags;
 
368	s64 left;
369
370	if (event->hw.idx < 0 || !event->hw.sample_period)
371		return;
372
373	if (!(event->hw.state & PERF_HES_STOPPED))
374		return;
375
376	if (ef_flags & PERF_EF_RELOAD)
377		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
378
379	local_irq_save(flags);
380	perf_pmu_disable(event->pmu);
381
382	event->hw.state = 0;
383	left = local64_read(&event->hw.period_left);
384	write_pmc(event->hw.idx, left);
 
 
 
385
386	perf_event_update_userpage(event);
387	perf_pmu_enable(event->pmu);
388	local_irq_restore(flags);
389}
390
391static void fsl_emb_pmu_stop(struct perf_event *event, int ef_flags)
392{
393	unsigned long flags;
394
395	if (event->hw.idx < 0 || !event->hw.sample_period)
396		return;
397
398	if (event->hw.state & PERF_HES_STOPPED)
399		return;
400
401	local_irq_save(flags);
402	perf_pmu_disable(event->pmu);
403
404	fsl_emb_pmu_read(event);
405	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
406	write_pmc(event->hw.idx, 0);
407
408	perf_event_update_userpage(event);
409	perf_pmu_enable(event->pmu);
410	local_irq_restore(flags);
411}
412
413/*
414 * Release the PMU if this is the last perf_event.
415 */
416static void hw_perf_event_destroy(struct perf_event *event)
417{
418	if (!atomic_add_unless(&num_events, -1, 1)) {
419		mutex_lock(&pmc_reserve_mutex);
420		if (atomic_dec_return(&num_events) == 0)
421			release_pmc_hardware();
422		mutex_unlock(&pmc_reserve_mutex);
423	}
424}
425
426/*
427 * Translate a generic cache event_id config to a raw event_id code.
428 */
429static int hw_perf_cache_event(u64 config, u64 *eventp)
430{
431	unsigned long type, op, result;
432	int ev;
433
434	if (!ppmu->cache_events)
435		return -EINVAL;
436
437	/* unpack config */
438	type = config & 0xff;
439	op = (config >> 8) & 0xff;
440	result = (config >> 16) & 0xff;
441
442	if (type >= PERF_COUNT_HW_CACHE_MAX ||
443	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
444	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
445		return -EINVAL;
446
447	ev = (*ppmu->cache_events)[type][op][result];
448	if (ev == 0)
449		return -EOPNOTSUPP;
450	if (ev == -1)
451		return -EINVAL;
452	*eventp = ev;
453	return 0;
454}
455
456static int fsl_emb_pmu_event_init(struct perf_event *event)
457{
458	u64 ev;
459	struct perf_event *events[MAX_HWEVENTS];
460	int n;
461	int err;
462	int num_restricted;
463	int i;
464
 
 
 
 
 
 
465	switch (event->attr.type) {
466	case PERF_TYPE_HARDWARE:
467		ev = event->attr.config;
468		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
469			return -EOPNOTSUPP;
470		ev = ppmu->generic_events[ev];
471		break;
472
473	case PERF_TYPE_HW_CACHE:
474		err = hw_perf_cache_event(event->attr.config, &ev);
475		if (err)
476			return err;
477		break;
478
479	case PERF_TYPE_RAW:
480		ev = event->attr.config;
481		break;
482
483	default:
484		return -ENOENT;
485	}
486
487	event->hw.config = ppmu->xlate_event(ev);
488	if (!(event->hw.config & FSL_EMB_EVENT_VALID))
489		return -EINVAL;
490
491	/*
492	 * If this is in a group, check if it can go on with all the
493	 * other hardware events in the group.  We assume the event
494	 * hasn't been linked into its leader's sibling list at this point.
495	 */
496	n = 0;
497	if (event->group_leader != event) {
498		n = collect_events(event->group_leader,
499		                   ppmu->n_counter - 1, events);
500		if (n < 0)
501			return -EINVAL;
502	}
503
504	if (event->hw.config & FSL_EMB_EVENT_RESTRICTED) {
505		num_restricted = 0;
506		for (i = 0; i < n; i++) {
507			if (events[i]->hw.config & FSL_EMB_EVENT_RESTRICTED)
508				num_restricted++;
509		}
510
511		if (num_restricted >= ppmu->n_restricted)
512			return -EINVAL;
513	}
514
515	event->hw.idx = -1;
516
517	event->hw.config_base = PMLCA_CE | PMLCA_FCM1 |
518	                        (u32)((ev << 16) & PMLCA_EVENT_MASK);
519
520	if (event->attr.exclude_user)
521		event->hw.config_base |= PMLCA_FCU;
522	if (event->attr.exclude_kernel)
523		event->hw.config_base |= PMLCA_FCS;
524	if (event->attr.exclude_idle)
525		return -ENOTSUPP;
526
527	event->hw.last_period = event->hw.sample_period;
528	local64_set(&event->hw.period_left, event->hw.last_period);
529
530	/*
531	 * See if we need to reserve the PMU.
532	 * If no events are currently in use, then we have to take a
533	 * mutex to ensure that we don't race with another task doing
534	 * reserve_pmc_hardware or release_pmc_hardware.
535	 */
536	err = 0;
537	if (!atomic_inc_not_zero(&num_events)) {
538		mutex_lock(&pmc_reserve_mutex);
539		if (atomic_read(&num_events) == 0 &&
540		    reserve_pmc_hardware(perf_event_interrupt))
541			err = -EBUSY;
542		else
543			atomic_inc(&num_events);
544		mutex_unlock(&pmc_reserve_mutex);
545
546		mtpmr(PMRN_PMGC0, PMGC0_FAC);
547		isync();
548	}
549	event->destroy = hw_perf_event_destroy;
550
551	return err;
552}
553
554static struct pmu fsl_emb_pmu = {
555	.pmu_enable	= fsl_emb_pmu_enable,
556	.pmu_disable	= fsl_emb_pmu_disable,
557	.event_init	= fsl_emb_pmu_event_init,
558	.add		= fsl_emb_pmu_add,
559	.del		= fsl_emb_pmu_del,
560	.start		= fsl_emb_pmu_start,
561	.stop		= fsl_emb_pmu_stop,
562	.read		= fsl_emb_pmu_read,
563};
564
565/*
566 * A counter has overflowed; update its count and record
567 * things if requested.  Note that interrupts are hard-disabled
568 * here so there is no possibility of being interrupted.
569 */
570static void record_and_restart(struct perf_event *event, unsigned long val,
571			       struct pt_regs *regs)
572{
573	u64 period = event->hw.sample_period;
574	s64 prev, delta, left;
575	int record = 0;
576
577	if (event->hw.state & PERF_HES_STOPPED) {
578		write_pmc(event->hw.idx, 0);
579		return;
580	}
581
582	/* we don't have to worry about interrupts here */
583	prev = local64_read(&event->hw.prev_count);
584	delta = (val - prev) & 0xfffffffful;
585	local64_add(delta, &event->count);
586
587	/*
588	 * See if the total period for this event has expired,
589	 * and update for the next period.
590	 */
591	val = 0;
592	left = local64_read(&event->hw.period_left) - delta;
593	if (period) {
594		if (left <= 0) {
595			left += period;
596			if (left <= 0)
597				left = period;
598			record = 1;
599			event->hw.last_period = event->hw.sample_period;
600		}
601		if (left < 0x80000000LL)
602			val = 0x80000000LL - left;
603	}
604
605	write_pmc(event->hw.idx, val);
606	local64_set(&event->hw.prev_count, val);
607	local64_set(&event->hw.period_left, left);
608	perf_event_update_userpage(event);
609
610	/*
611	 * Finally record data if requested.
612	 */
613	if (record) {
614		struct perf_sample_data data;
615
616		perf_sample_data_init(&data, 0, event->hw.last_period);
617
618		if (perf_event_overflow(event, &data, regs))
619			fsl_emb_pmu_stop(event, 0);
620	}
621}
622
623static void perf_event_interrupt(struct pt_regs *regs)
624{
625	int i;
626	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
627	struct perf_event *event;
628	unsigned long val;
629	int found = 0;
630	int nmi;
631
632	nmi = perf_intr_is_nmi(regs);
633	if (nmi)
634		nmi_enter();
635	else
636		irq_enter();
637
638	for (i = 0; i < ppmu->n_counter; ++i) {
639		event = cpuhw->event[i];
640
641		val = read_pmc(i);
642		if ((int)val < 0) {
643			if (event) {
644				/* event has overflowed */
645				found = 1;
646				record_and_restart(event, val, regs);
647			} else {
648				/*
649				 * Disabled counter is negative,
650				 * reset it just in case.
651				 */
652				write_pmc(i, 0);
653			}
654		}
655	}
656
657	/* PMM will keep counters frozen until we return from the interrupt. */
658	mtmsr(mfmsr() | MSR_PMM);
659	mtpmr(PMRN_PMGC0, PMGC0_PMIE | PMGC0_FCECE);
660	isync();
661
662	if (nmi)
663		nmi_exit();
664	else
665		irq_exit();
666}
667
668void hw_perf_event_setup(int cpu)
669{
670	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
671
672	memset(cpuhw, 0, sizeof(*cpuhw));
 
 
673}
674
675int register_fsl_emb_pmu(struct fsl_emb_pmu *pmu)
676{
677	if (ppmu)
678		return -EBUSY;		/* something's already registered */
679
680	ppmu = pmu;
681	pr_info("%s performance monitor hardware support registered\n",
682		pmu->name);
683
684	perf_pmu_register(&fsl_emb_pmu, "cpu", PERF_TYPE_RAW);
 
 
685
686	return 0;
687}