Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * sparse memory mappings.
  4 */
  5#include <linux/mm.h>
  6#include <linux/slab.h>
  7#include <linux/mmzone.h>
  8#include <linux/memblock.h>
  9#include <linux/compiler.h>
 10#include <linux/highmem.h>
 11#include <linux/export.h>
 12#include <linux/spinlock.h>
 13#include <linux/vmalloc.h>
 14#include <linux/swap.h>
 15#include <linux/swapops.h>
 16#include <linux/bootmem_info.h>
 17
 18#include "internal.h"
 19#include <asm/dma.h>
 
 
 20
 21/*
 22 * Permanent SPARSEMEM data:
 23 *
 24 * 1) mem_section	- memory sections, mem_map's for valid memory
 25 */
 26#ifdef CONFIG_SPARSEMEM_EXTREME
 27struct mem_section **mem_section;
 
 28#else
 29struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 30	____cacheline_internodealigned_in_smp;
 31#endif
 32EXPORT_SYMBOL(mem_section);
 33
 34#ifdef NODE_NOT_IN_PAGE_FLAGS
 35/*
 36 * If we did not store the node number in the page then we have to
 37 * do a lookup in the section_to_node_table in order to find which
 38 * node the page belongs to.
 39 */
 40#if MAX_NUMNODES <= 256
 41static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 42#else
 43static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 44#endif
 45
 46int page_to_nid(const struct page *page)
 47{
 48	return section_to_node_table[page_to_section(page)];
 49}
 50EXPORT_SYMBOL(page_to_nid);
 51
 52static void set_section_nid(unsigned long section_nr, int nid)
 53{
 54	section_to_node_table[section_nr] = nid;
 55}
 56#else /* !NODE_NOT_IN_PAGE_FLAGS */
 57static inline void set_section_nid(unsigned long section_nr, int nid)
 58{
 59}
 60#endif
 61
 62#ifdef CONFIG_SPARSEMEM_EXTREME
 63static noinline struct mem_section __ref *sparse_index_alloc(int nid)
 64{
 65	struct mem_section *section = NULL;
 66	unsigned long array_size = SECTIONS_PER_ROOT *
 67				   sizeof(struct mem_section);
 68
 69	if (slab_is_available()) {
 70		section = kzalloc_node(array_size, GFP_KERNEL, nid);
 71	} else {
 72		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
 73					      nid);
 74		if (!section)
 75			panic("%s: Failed to allocate %lu bytes nid=%d\n",
 76			      __func__, array_size, nid);
 77	}
 
 78
 79	return section;
 80}
 81
 82static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 83{
 
 84	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 85	struct mem_section *section;
 
 86
 87	/*
 88	 * An existing section is possible in the sub-section hotplug
 89	 * case. First hot-add instantiates, follow-on hot-add reuses
 90	 * the existing section.
 91	 *
 92	 * The mem_hotplug_lock resolves the apparent race below.
 93	 */
 94	if (mem_section[root])
 95		return 0;
 96
 97	section = sparse_index_alloc(nid);
 98	if (!section)
 99		return -ENOMEM;
 
 
 
 
 
100
101	mem_section[root] = section;
 
 
 
102
103	return 0;
 
 
 
104}
105#else /* !SPARSEMEM_EXTREME */
106static inline int sparse_index_init(unsigned long section_nr, int nid)
107{
108	return 0;
109}
110#endif
111
112/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113 * During early boot, before section_mem_map is used for an actual
114 * mem_map, we use section_mem_map to store the section's NUMA
115 * node.  This keeps us from having to use another data structure.  The
116 * node information is cleared just before we store the real mem_map.
117 */
118static inline unsigned long sparse_encode_early_nid(int nid)
119{
120	return ((unsigned long)nid << SECTION_NID_SHIFT);
121}
122
123static inline int sparse_early_nid(struct mem_section *section)
124{
125	return (section->section_mem_map >> SECTION_NID_SHIFT);
126}
127
128/* Validate the physical addressing limitations of the model */
129static void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
130						unsigned long *end_pfn)
131{
132	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
133
134	/*
135	 * Sanity checks - do not allow an architecture to pass
136	 * in larger pfns than the maximum scope of sparsemem:
137	 */
138	if (*start_pfn > max_sparsemem_pfn) {
139		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
140			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
141			*start_pfn, *end_pfn, max_sparsemem_pfn);
142		WARN_ON_ONCE(1);
143		*start_pfn = max_sparsemem_pfn;
144		*end_pfn = max_sparsemem_pfn;
145	} else if (*end_pfn > max_sparsemem_pfn) {
146		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
147			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
148			*start_pfn, *end_pfn, max_sparsemem_pfn);
149		WARN_ON_ONCE(1);
150		*end_pfn = max_sparsemem_pfn;
151	}
152}
153
154/*
155 * There are a number of times that we loop over NR_MEM_SECTIONS,
156 * looking for section_present() on each.  But, when we have very
157 * large physical address spaces, NR_MEM_SECTIONS can also be
158 * very large which makes the loops quite long.
159 *
160 * Keeping track of this gives us an easy way to break out of
161 * those loops early.
162 */
163unsigned long __highest_present_section_nr;
164static void __section_mark_present(struct mem_section *ms,
165		unsigned long section_nr)
166{
167	if (section_nr > __highest_present_section_nr)
168		__highest_present_section_nr = section_nr;
169
170	ms->section_mem_map |= SECTION_MARKED_PRESENT;
171}
172
173#define for_each_present_section_nr(start, section_nr)		\
174	for (section_nr = next_present_section_nr(start-1);	\
175	     section_nr != -1;								\
176	     section_nr = next_present_section_nr(section_nr))
177
178static inline unsigned long first_present_section_nr(void)
179{
180	return next_present_section_nr(-1);
181}
182
183#ifdef CONFIG_SPARSEMEM_VMEMMAP
184static void subsection_mask_set(unsigned long *map, unsigned long pfn,
185		unsigned long nr_pages)
186{
187	int idx = subsection_map_index(pfn);
188	int end = subsection_map_index(pfn + nr_pages - 1);
189
190	bitmap_set(map, idx, end - idx + 1);
191}
192
193void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
194{
195	int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
196	unsigned long nr, start_sec = pfn_to_section_nr(pfn);
197
198	if (!nr_pages)
199		return;
200
201	for (nr = start_sec; nr <= end_sec; nr++) {
202		struct mem_section *ms;
203		unsigned long pfns;
204
205		pfns = min(nr_pages, PAGES_PER_SECTION
206				- (pfn & ~PAGE_SECTION_MASK));
207		ms = __nr_to_section(nr);
208		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
209
210		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
211				pfns, subsection_map_index(pfn),
212				subsection_map_index(pfn + pfns - 1));
213
214		pfn += pfns;
215		nr_pages -= pfns;
216	}
217}
218#else
219void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
220{
221}
222#endif
223
224/* Record a memory area against a node. */
225static void __init memory_present(int nid, unsigned long start, unsigned long end)
226{
227	unsigned long pfn;
228
229#ifdef CONFIG_SPARSEMEM_EXTREME
230	if (unlikely(!mem_section)) {
231		unsigned long size, align;
232
233		size = sizeof(struct mem_section *) * NR_SECTION_ROOTS;
234		align = 1 << (INTERNODE_CACHE_SHIFT);
235		mem_section = memblock_alloc(size, align);
236		if (!mem_section)
237			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
238			      __func__, size, align);
239	}
240#endif
241
242	start &= PAGE_SECTION_MASK;
243	mminit_validate_memmodel_limits(&start, &end);
244	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
245		unsigned long section = pfn_to_section_nr(pfn);
246		struct mem_section *ms;
247
248		sparse_index_init(section, nid);
249		set_section_nid(section, nid);
250
251		ms = __nr_to_section(section);
252		if (!ms->section_mem_map) {
253			ms->section_mem_map = sparse_encode_early_nid(nid) |
254							SECTION_IS_ONLINE;
255			__section_mark_present(ms, section);
256		}
257	}
258}
259
260/*
261 * Mark all memblocks as present using memory_present().
262 * This is a convenience function that is useful to mark all of the systems
263 * memory as present during initialization.
264 */
265static void __init memblocks_present(void)
 
266{
267	unsigned long start, end;
268	int i, nid;
269
270	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
271		memory_present(nid, start, end);
 
 
 
 
 
 
 
 
272}
273
274/*
275 * Subtle, we encode the real pfn into the mem_map such that
276 * the identity pfn - section_mem_map will return the actual
277 * physical page frame number.
278 */
279static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
280{
281	unsigned long coded_mem_map =
282		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
283	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > PFN_SECTION_SHIFT);
284	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
285	return coded_mem_map;
286}
287
288#ifdef CONFIG_MEMORY_HOTPLUG
289/*
290 * Decode mem_map from the coded memmap
291 */
292struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
293{
294	/* mask off the extra low bits of information */
295	coded_mem_map &= SECTION_MAP_MASK;
296	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
297}
298#endif /* CONFIG_MEMORY_HOTPLUG */
299
300static void __meminit sparse_init_one_section(struct mem_section *ms,
301		unsigned long pnum, struct page *mem_map,
302		struct mem_section_usage *usage, unsigned long flags)
303{
 
 
 
304	ms->section_mem_map &= ~SECTION_MAP_MASK;
305	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
306		| SECTION_HAS_MEM_MAP | flags;
307	ms->usage = usage;
308}
309
310static unsigned long usemap_size(void)
311{
312	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
313}
314
315size_t mem_section_usage_size(void)
316{
317	return sizeof(struct mem_section_usage) + usemap_size();
 
 
 
318}
319
320#ifdef CONFIG_MEMORY_HOTREMOVE
321static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat)
322{
323#ifndef CONFIG_NUMA
324	VM_BUG_ON(pgdat != &contig_page_data);
325	return __pa_symbol(&contig_page_data);
326#else
327	return __pa(pgdat);
328#endif
329}
 
330
331static struct mem_section_usage * __init
 
332sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
333					 unsigned long size)
334{
335	struct mem_section_usage *usage;
336	unsigned long goal, limit;
 
337	int nid;
338	/*
339	 * A page may contain usemaps for other sections preventing the
340	 * page being freed and making a section unremovable while
341	 * other sections referencing the usemap remain active. Similarly,
342	 * a pgdat can prevent a section being removed. If section A
343	 * contains a pgdat and section B contains the usemap, both
344	 * sections become inter-dependent. This allocates usemaps
345	 * from the same section as the pgdat where possible to avoid
346	 * this problem.
347	 */
348	goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
349	limit = goal + (1UL << PA_SECTION_SHIFT);
350	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
351again:
352	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
353	if (!usage && limit) {
 
354		limit = 0;
355		goto again;
356	}
357	return usage;
358}
359
360static void __init check_usemap_section_nr(int nid,
361		struct mem_section_usage *usage)
362{
363	unsigned long usemap_snr, pgdat_snr;
364	static unsigned long old_usemap_snr;
365	static unsigned long old_pgdat_snr;
366	struct pglist_data *pgdat = NODE_DATA(nid);
367	int usemap_nid;
368
369	/* First call */
370	if (!old_usemap_snr) {
371		old_usemap_snr = NR_MEM_SECTIONS;
372		old_pgdat_snr = NR_MEM_SECTIONS;
373	}
374
375	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
376	pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT);
377	if (usemap_snr == pgdat_snr)
378		return;
379
380	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
381		/* skip redundant message */
382		return;
383
384	old_usemap_snr = usemap_snr;
385	old_pgdat_snr = pgdat_snr;
386
387	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
388	if (usemap_nid != nid) {
389		pr_info("node %d must be removed before remove section %ld\n",
390			nid, usemap_snr);
 
391		return;
392	}
393	/*
394	 * There is a circular dependency.
395	 * Some platforms allow un-removable section because they will just
396	 * gather other removable sections for dynamic partitioning.
397	 * Just notify un-removable section's number here.
398	 */
399	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
400		usemap_snr, pgdat_snr, nid);
 
 
401}
402#else
403static struct mem_section_usage * __init
404sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
405					 unsigned long size)
406{
407	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
408}
409
410static void __init check_usemap_section_nr(int nid,
411		struct mem_section_usage *usage)
412{
413}
414#endif /* CONFIG_MEMORY_HOTREMOVE */
415
416#ifdef CONFIG_SPARSEMEM_VMEMMAP
417static unsigned long __init section_map_size(void)
 
 
418{
419	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
420}
 
421
422#else
423static unsigned long __init section_map_size(void)
424{
425	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
 
 
 
 
 
 
 
 
 
 
426}
427
428struct page __init *__populate_section_memmap(unsigned long pfn,
429		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
430		struct dev_pagemap *pgmap)
431{
432	unsigned long size = section_map_size();
433	struct page *map = sparse_buffer_alloc(size);
434	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
435
 
436	if (map)
437		return map;
438
439	map = memmap_alloc(size, size, addr, nid, false);
440	if (!map)
441		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
442		      __func__, size, PAGE_SIZE, nid, &addr);
443
444	return map;
445}
446#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
447
448static void *sparsemap_buf __meminitdata;
449static void *sparsemap_buf_end __meminitdata;
450
451static inline void __meminit sparse_buffer_free(unsigned long size)
452{
453	WARN_ON(!sparsemap_buf || size == 0);
454	memblock_free(sparsemap_buf, size);
455}
456
457static void __init sparse_buffer_init(unsigned long size, int nid)
458{
459	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
460	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
461	/*
462	 * Pre-allocated buffer is mainly used by __populate_section_memmap
463	 * and we want it to be properly aligned to the section size - this is
464	 * especially the case for VMEMMAP which maps memmap to PMDs
465	 */
466	sparsemap_buf = memmap_alloc(size, section_map_size(), addr, nid, true);
467	sparsemap_buf_end = sparsemap_buf + size;
468}
469
470static void __init sparse_buffer_fini(void)
471{
472	unsigned long size = sparsemap_buf_end - sparsemap_buf;
 
 
 
 
 
 
 
473
474	if (sparsemap_buf && size > 0)
475		sparse_buffer_free(size);
476	sparsemap_buf = NULL;
477}
 
 
 
 
 
 
 
 
478
479void * __meminit sparse_buffer_alloc(unsigned long size)
480{
481	void *ptr = NULL;
482
483	if (sparsemap_buf) {
484		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
485		if (ptr + size > sparsemap_buf_end)
486			ptr = NULL;
487		else {
488			/* Free redundant aligned space */
489			if ((unsigned long)(ptr - sparsemap_buf) > 0)
490				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
491			sparsemap_buf = ptr + size;
492		}
493	}
494	return ptr;
495}
 
496
497void __weak __meminit vmemmap_populate_print_last(void)
 
 
 
 
498{
 
 
499}
500
501/*
502 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
503 * And number of present sections in this node is map_count.
504 */
505static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
506				   unsigned long pnum_end,
507				   unsigned long map_count)
508{
509	struct mem_section_usage *usage;
510	unsigned long pnum;
511	struct page *map;
 
 
512
513	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
514			mem_section_usage_size() * map_count);
515	if (!usage) {
516		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
517		goto failed;
518	}
519	sparse_buffer_init(map_count * section_map_size(), nid);
520	for_each_present_section_nr(pnum_begin, pnum) {
521		unsigned long pfn = section_nr_to_pfn(pnum);
522
523		if (pnum >= pnum_end)
524			break;
525
526		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
527				nid, NULL, NULL);
528		if (!map) {
529			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
530			       __func__, nid);
531			pnum_begin = pnum;
532			sparse_buffer_fini();
533			goto failed;
534		}
535		check_usemap_section_nr(nid, usage);
536		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
537				SECTION_IS_EARLY);
538		usage = (void *) usage + mem_section_usage_size();
539	}
540	sparse_buffer_fini();
541	return;
542failed:
543	/* We failed to allocate, mark all the following pnums as not present */
544	for_each_present_section_nr(pnum_begin, pnum) {
545		struct mem_section *ms;
546
547		if (pnum >= pnum_end)
548			break;
549		ms = __nr_to_section(pnum);
550		ms->section_mem_map = 0;
551	}
 
 
 
 
552}
553
554/*
555 * Allocate the accumulated non-linear sections, allocate a mem_map
556 * for each and record the physical to section mapping.
557 */
558void __init sparse_init(void)
559{
560	unsigned long pnum_end, pnum_begin, map_count = 1;
561	int nid_begin;
562
563	memblocks_present();
564
565	pnum_begin = first_present_section_nr();
566	nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
 
 
 
 
 
 
567
568	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
569	set_pageblock_order();
570
571	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
572		int nid = sparse_early_nid(__nr_to_section(pnum_end));
 
 
 
 
 
 
 
 
 
 
 
 
 
573
574		if (nid == nid_begin) {
575			map_count++;
 
 
576			continue;
577		}
578		/* Init node with sections in range [pnum_begin, pnum_end) */
579		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
580		nid_begin = nid;
581		pnum_begin = pnum_end;
582		map_count = 1;
583	}
584	/* cover the last node */
585	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
586	vmemmap_populate_print_last();
587}
588
589#ifdef CONFIG_MEMORY_HOTPLUG
590
591/* Mark all memory sections within the pfn range as online */
592void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
593{
594	unsigned long pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595
596	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
597		unsigned long section_nr = pfn_to_section_nr(pfn);
598		struct mem_section *ms;
599
600		/* onlining code should never touch invalid ranges */
601		if (WARN_ON(!valid_section_nr(section_nr)))
602			continue;
 
 
 
 
 
 
 
 
 
603
604		ms = __nr_to_section(section_nr);
605		ms->section_mem_map |= SECTION_IS_ONLINE;
 
 
 
 
 
 
 
 
 
 
 
 
 
606	}
607}
 
 
 
608
609/* Mark all memory sections within the pfn range as offline */
610void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
611{
612	unsigned long pfn;
613
614	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
615		unsigned long section_nr = pfn_to_section_nr(pfn);
616		struct mem_section *ms;
617
618		/*
619		 * TODO this needs some double checking. Offlining code makes
620		 * sure to check pfn_valid but those checks might be just bogus
621		 */
622		if (WARN_ON(!valid_section_nr(section_nr)))
 
623			continue;
624
625		ms = __nr_to_section(section_nr);
626		ms->section_mem_map &= ~SECTION_IS_ONLINE;
627	}
 
 
 
 
 
 
 
628}
629
 
630#ifdef CONFIG_SPARSEMEM_VMEMMAP
631static struct page * __meminit populate_section_memmap(unsigned long pfn,
632		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
633		struct dev_pagemap *pgmap)
634{
635	return __populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
 
636}
637
638static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
639		struct vmem_altmap *altmap)
640{
641	unsigned long start = (unsigned long) pfn_to_page(pfn);
642	unsigned long end = start + nr_pages * sizeof(struct page);
643
644	vmemmap_free(start, end, altmap);
645}
646static void free_map_bootmem(struct page *memmap)
647{
648	unsigned long start = (unsigned long)memmap;
649	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
650
651	vmemmap_free(start, end, NULL);
652}
653
654static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
655{
656	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
657	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
658	struct mem_section *ms = __pfn_to_section(pfn);
659	unsigned long *subsection_map = ms->usage
660		? &ms->usage->subsection_map[0] : NULL;
661
662	subsection_mask_set(map, pfn, nr_pages);
663	if (subsection_map)
664		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
665
666	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
667				"section already deactivated (%#lx + %ld)\n",
668				pfn, nr_pages))
669		return -EINVAL;
670
671	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
672	return 0;
673}
 
 
674
675static bool is_subsection_map_empty(struct mem_section *ms)
676{
677	return bitmap_empty(&ms->usage->subsection_map[0],
678			    SUBSECTIONS_PER_SECTION);
679}
680
681static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
 
682{
683	struct mem_section *ms = __pfn_to_section(pfn);
684	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
685	unsigned long *subsection_map;
686	int rc = 0;
687
688	subsection_mask_set(map, pfn, nr_pages);
689
690	subsection_map = &ms->usage->subsection_map[0];
691
692	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
693		rc = -EINVAL;
694	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
695		rc = -EEXIST;
696	else
697		bitmap_or(subsection_map, map, subsection_map,
698				SUBSECTIONS_PER_SECTION);
699
700	return rc;
701}
702#else
703static struct page * __meminit populate_section_memmap(unsigned long pfn,
704		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
705		struct dev_pagemap *pgmap)
706{
707	return kvmalloc_node(array_size(sizeof(struct page),
708					PAGES_PER_SECTION), GFP_KERNEL, nid);
709}
710
711static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
712		struct vmem_altmap *altmap)
713{
714	kvfree(pfn_to_page(pfn));
 
 
 
 
715}
716
717static void free_map_bootmem(struct page *memmap)
718{
719	unsigned long maps_section_nr, removing_section_nr, i;
720	unsigned long magic, nr_pages;
721	struct page *page = virt_to_page(memmap);
722
723	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
724		>> PAGE_SHIFT;
725
726	for (i = 0; i < nr_pages; i++, page++) {
727		magic = page->index;
728
729		BUG_ON(magic == NODE_INFO);
730
731		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
732		removing_section_nr = page_private(page);
733
734		/*
735		 * When this function is called, the removing section is
736		 * logical offlined state. This means all pages are isolated
737		 * from page allocator. If removing section's memmap is placed
738		 * on the same section, it must not be freed.
739		 * If it is freed, page allocator may allocate it which will
740		 * be removed physically soon.
741		 */
742		if (maps_section_nr != removing_section_nr)
743			put_page_bootmem(page);
744	}
745}
746
747static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
748{
749	return 0;
750}
751
752static bool is_subsection_map_empty(struct mem_section *ms)
753{
754	return true;
755}
756
757static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
758{
759	return 0;
760}
761#endif /* CONFIG_SPARSEMEM_VMEMMAP */
762
763/*
764 * To deactivate a memory region, there are 3 cases to handle across
765 * two configurations (SPARSEMEM_VMEMMAP={y,n}):
766 *
767 * 1. deactivation of a partial hot-added section (only possible in
768 *    the SPARSEMEM_VMEMMAP=y case).
769 *      a) section was present at memory init.
770 *      b) section was hot-added post memory init.
771 * 2. deactivation of a complete hot-added section.
772 * 3. deactivation of a complete section from memory init.
773 *
774 * For 1, when subsection_map does not empty we will not be freeing the
775 * usage map, but still need to free the vmemmap range.
776 *
777 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
778 */
779static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
780		struct vmem_altmap *altmap)
781{
782	struct mem_section *ms = __pfn_to_section(pfn);
783	bool section_is_early = early_section(ms);
784	struct page *memmap = NULL;
785	bool empty;
786
787	if (clear_subsection_map(pfn, nr_pages))
788		return;
789
790	empty = is_subsection_map_empty(ms);
791	if (empty) {
792		unsigned long section_nr = pfn_to_section_nr(pfn);
793
794		/*
795		 * Mark the section invalid so that valid_section()
796		 * return false. This prevents code from dereferencing
797		 * ms->usage array.
798		 */
799		ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
800
801		/*
802		 * When removing an early section, the usage map is kept (as the
803		 * usage maps of other sections fall into the same page). It
804		 * will be re-used when re-adding the section - which is then no
805		 * longer an early section. If the usage map is PageReserved, it
806		 * was allocated during boot.
807		 */
808		if (!PageReserved(virt_to_page(ms->usage))) {
809			kfree_rcu(ms->usage, rcu);
810			WRITE_ONCE(ms->usage, NULL);
811		}
812		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
813	}
814
815	/*
816	 * The memmap of early sections is always fully populated. See
817	 * section_activate() and pfn_valid() .
818	 */
819	if (!section_is_early)
820		depopulate_section_memmap(pfn, nr_pages, altmap);
821	else if (memmap)
822		free_map_bootmem(memmap);
823
824	if (empty)
825		ms->section_mem_map = (unsigned long)NULL;
826}
827
828static struct page * __meminit section_activate(int nid, unsigned long pfn,
829		unsigned long nr_pages, struct vmem_altmap *altmap,
830		struct dev_pagemap *pgmap)
831{
832	struct mem_section *ms = __pfn_to_section(pfn);
833	struct mem_section_usage *usage = NULL;
834	struct page *memmap;
835	int rc;
836
837	if (!ms->usage) {
838		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
839		if (!usage)
840			return ERR_PTR(-ENOMEM);
841		ms->usage = usage;
842	}
843
844	rc = fill_subsection_map(pfn, nr_pages);
845	if (rc) {
846		if (usage)
847			ms->usage = NULL;
848		kfree(usage);
849		return ERR_PTR(rc);
850	}
851
852	/*
853	 * The early init code does not consider partially populated
854	 * initial sections, it simply assumes that memory will never be
855	 * referenced.  If we hot-add memory into such a section then we
856	 * do not need to populate the memmap and can simply reuse what
857	 * is already there.
858	 */
859	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
860		return pfn_to_page(pfn);
861
862	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
863	if (!memmap) {
864		section_deactivate(pfn, nr_pages, altmap);
865		return ERR_PTR(-ENOMEM);
866	}
 
867
868	return memmap;
 
869}
870
871/**
872 * sparse_add_section - add a memory section, or populate an existing one
873 * @nid: The node to add section on
874 * @start_pfn: start pfn of the memory range
875 * @nr_pages: number of pfns to add in the section
876 * @altmap: alternate pfns to allocate the memmap backing store
877 * @pgmap: alternate compound page geometry for devmap mappings
878 *
879 * This is only intended for hotplug.
880 *
881 * Note that only VMEMMAP supports sub-section aligned hotplug,
882 * the proper alignment and size are gated by check_pfn_span().
883 *
884 *
885 * Return:
886 * * 0		- On success.
887 * * -EEXIST	- Section has been present.
888 * * -ENOMEM	- Out of memory.
889 */
890int __meminit sparse_add_section(int nid, unsigned long start_pfn,
891		unsigned long nr_pages, struct vmem_altmap *altmap,
892		struct dev_pagemap *pgmap)
893{
894	unsigned long section_nr = pfn_to_section_nr(start_pfn);
 
895	struct mem_section *ms;
896	struct page *memmap;
 
 
897	int ret;
898
899	ret = sparse_index_init(section_nr, nid);
900	if (ret < 0)
 
 
 
 
901		return ret;
 
 
 
 
 
 
 
 
902
903	memmap = section_activate(nid, start_pfn, nr_pages, altmap, pgmap);
904	if (IS_ERR(memmap))
905		return PTR_ERR(memmap);
906
907	/*
908	 * Poison uninitialized struct pages in order to catch invalid flags
909	 * combinations.
910	 */
911	page_init_poison(memmap, sizeof(struct page) * nr_pages);
912
913	ms = __nr_to_section(section_nr);
914	set_section_nid(section_nr, nid);
915	__section_mark_present(ms, section_nr);
916
917	/* Align memmap to section boundary in the subsection case */
918	if (section_nr_to_pfn(section_nr) != start_pfn)
919		memmap = pfn_to_page(section_nr_to_pfn(section_nr));
920	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
921
922	return 0;
 
 
 
 
 
 
 
 
923}
924
925void sparse_remove_section(unsigned long pfn, unsigned long nr_pages,
926			   struct vmem_altmap *altmap)
927{
928	struct mem_section *ms = __pfn_to_section(pfn);
 
929
930	if (WARN_ON_ONCE(!valid_section(ms)))
931		return;
 
 
 
 
 
932
933	section_deactivate(pfn, nr_pages, altmap);
934}
935#endif /* CONFIG_MEMORY_HOTPLUG */
v3.5.6
 
  1/*
  2 * sparse memory mappings.
  3 */
  4#include <linux/mm.h>
  5#include <linux/slab.h>
  6#include <linux/mmzone.h>
  7#include <linux/bootmem.h>
 
  8#include <linux/highmem.h>
  9#include <linux/export.h>
 10#include <linux/spinlock.h>
 11#include <linux/vmalloc.h>
 
 
 
 
 12#include "internal.h"
 13#include <asm/dma.h>
 14#include <asm/pgalloc.h>
 15#include <asm/pgtable.h>
 16
 17/*
 18 * Permanent SPARSEMEM data:
 19 *
 20 * 1) mem_section	- memory sections, mem_map's for valid memory
 21 */
 22#ifdef CONFIG_SPARSEMEM_EXTREME
 23struct mem_section *mem_section[NR_SECTION_ROOTS]
 24	____cacheline_internodealigned_in_smp;
 25#else
 26struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 27	____cacheline_internodealigned_in_smp;
 28#endif
 29EXPORT_SYMBOL(mem_section);
 30
 31#ifdef NODE_NOT_IN_PAGE_FLAGS
 32/*
 33 * If we did not store the node number in the page then we have to
 34 * do a lookup in the section_to_node_table in order to find which
 35 * node the page belongs to.
 36 */
 37#if MAX_NUMNODES <= 256
 38static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 39#else
 40static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 41#endif
 42
 43int page_to_nid(const struct page *page)
 44{
 45	return section_to_node_table[page_to_section(page)];
 46}
 47EXPORT_SYMBOL(page_to_nid);
 48
 49static void set_section_nid(unsigned long section_nr, int nid)
 50{
 51	section_to_node_table[section_nr] = nid;
 52}
 53#else /* !NODE_NOT_IN_PAGE_FLAGS */
 54static inline void set_section_nid(unsigned long section_nr, int nid)
 55{
 56}
 57#endif
 58
 59#ifdef CONFIG_SPARSEMEM_EXTREME
 60static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
 61{
 62	struct mem_section *section = NULL;
 63	unsigned long array_size = SECTIONS_PER_ROOT *
 64				   sizeof(struct mem_section);
 65
 66	if (slab_is_available()) {
 67		if (node_state(nid, N_HIGH_MEMORY))
 68			section = kmalloc_node(array_size, GFP_KERNEL, nid);
 69		else
 70			section = kmalloc(array_size, GFP_KERNEL);
 71	} else
 72		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
 73
 74	if (section)
 75		memset(section, 0, array_size);
 76
 77	return section;
 78}
 79
 80static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 81{
 82	static DEFINE_SPINLOCK(index_init_lock);
 83	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 84	struct mem_section *section;
 85	int ret = 0;
 86
 
 
 
 
 
 
 
 87	if (mem_section[root])
 88		return -EEXIST;
 89
 90	section = sparse_index_alloc(nid);
 91	if (!section)
 92		return -ENOMEM;
 93	/*
 94	 * This lock keeps two different sections from
 95	 * reallocating for the same index
 96	 */
 97	spin_lock(&index_init_lock);
 98
 99	if (mem_section[root]) {
100		ret = -EEXIST;
101		goto out;
102	}
103
104	mem_section[root] = section;
105out:
106	spin_unlock(&index_init_lock);
107	return ret;
108}
109#else /* !SPARSEMEM_EXTREME */
110static inline int sparse_index_init(unsigned long section_nr, int nid)
111{
112	return 0;
113}
114#endif
115
116/*
117 * Although written for the SPARSEMEM_EXTREME case, this happens
118 * to also work for the flat array case because
119 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
120 */
121int __section_nr(struct mem_section* ms)
122{
123	unsigned long root_nr;
124	struct mem_section* root;
125
126	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
127		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
128		if (!root)
129			continue;
130
131		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
132		     break;
133	}
134
135	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
136}
137
138/*
139 * During early boot, before section_mem_map is used for an actual
140 * mem_map, we use section_mem_map to store the section's NUMA
141 * node.  This keeps us from having to use another data structure.  The
142 * node information is cleared just before we store the real mem_map.
143 */
144static inline unsigned long sparse_encode_early_nid(int nid)
145{
146	return (nid << SECTION_NID_SHIFT);
147}
148
149static inline int sparse_early_nid(struct mem_section *section)
150{
151	return (section->section_mem_map >> SECTION_NID_SHIFT);
152}
153
154/* Validate the physical addressing limitations of the model */
155void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
156						unsigned long *end_pfn)
157{
158	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
159
160	/*
161	 * Sanity checks - do not allow an architecture to pass
162	 * in larger pfns than the maximum scope of sparsemem:
163	 */
164	if (*start_pfn > max_sparsemem_pfn) {
165		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
166			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
167			*start_pfn, *end_pfn, max_sparsemem_pfn);
168		WARN_ON_ONCE(1);
169		*start_pfn = max_sparsemem_pfn;
170		*end_pfn = max_sparsemem_pfn;
171	} else if (*end_pfn > max_sparsemem_pfn) {
172		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
173			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
174			*start_pfn, *end_pfn, max_sparsemem_pfn);
175		WARN_ON_ONCE(1);
176		*end_pfn = max_sparsemem_pfn;
177	}
178}
179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
180/* Record a memory area against a node. */
181void __init memory_present(int nid, unsigned long start, unsigned long end)
182{
183	unsigned long pfn;
184
 
 
 
 
 
 
 
 
 
 
 
 
 
185	start &= PAGE_SECTION_MASK;
186	mminit_validate_memmodel_limits(&start, &end);
187	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
188		unsigned long section = pfn_to_section_nr(pfn);
189		struct mem_section *ms;
190
191		sparse_index_init(section, nid);
192		set_section_nid(section, nid);
193
194		ms = __nr_to_section(section);
195		if (!ms->section_mem_map)
196			ms->section_mem_map = sparse_encode_early_nid(nid) |
197							SECTION_MARKED_PRESENT;
 
 
198	}
199}
200
201/*
202 * Only used by the i386 NUMA architecures, but relatively
203 * generic code.
 
204 */
205unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
206						     unsigned long end_pfn)
207{
208	unsigned long pfn;
209	unsigned long nr_pages = 0;
210
211	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
212	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
213		if (nid != early_pfn_to_nid(pfn))
214			continue;
215
216		if (pfn_present(pfn))
217			nr_pages += PAGES_PER_SECTION;
218	}
219
220	return nr_pages * sizeof(struct page);
221}
222
223/*
224 * Subtle, we encode the real pfn into the mem_map such that
225 * the identity pfn - section_mem_map will return the actual
226 * physical page frame number.
227 */
228static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
229{
230	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
 
 
 
 
231}
232
 
233/*
234 * Decode mem_map from the coded memmap
235 */
236struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
237{
238	/* mask off the extra low bits of information */
239	coded_mem_map &= SECTION_MAP_MASK;
240	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
241}
 
242
243static int __meminit sparse_init_one_section(struct mem_section *ms,
244		unsigned long pnum, struct page *mem_map,
245		unsigned long *pageblock_bitmap)
246{
247	if (!present_section(ms))
248		return -EINVAL;
249
250	ms->section_mem_map &= ~SECTION_MAP_MASK;
251	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
252							SECTION_HAS_MEM_MAP;
253 	ms->pageblock_flags = pageblock_bitmap;
 
254
255	return 1;
 
 
256}
257
258unsigned long usemap_size(void)
259{
260	unsigned long size_bytes;
261	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
262	size_bytes = roundup(size_bytes, sizeof(unsigned long));
263	return size_bytes;
264}
265
266#ifdef CONFIG_MEMORY_HOTPLUG
267static unsigned long *__kmalloc_section_usemap(void)
268{
269	return kmalloc(usemap_size(), GFP_KERNEL);
 
 
 
 
 
270}
271#endif /* CONFIG_MEMORY_HOTPLUG */
272
273#ifdef CONFIG_MEMORY_HOTREMOVE
274static unsigned long * __init
275sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
276					 unsigned long size)
277{
 
278	unsigned long goal, limit;
279	unsigned long *p;
280	int nid;
281	/*
282	 * A page may contain usemaps for other sections preventing the
283	 * page being freed and making a section unremovable while
284	 * other sections referencing the usemap retmain active. Similarly,
285	 * a pgdat can prevent a section being removed. If section A
286	 * contains a pgdat and section B contains the usemap, both
287	 * sections become inter-dependent. This allocates usemaps
288	 * from the same section as the pgdat where possible to avoid
289	 * this problem.
290	 */
291	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
292	limit = goal + (1UL << PA_SECTION_SHIFT);
293	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
294again:
295	p = ___alloc_bootmem_node_nopanic(NODE_DATA(nid), size,
296					  SMP_CACHE_BYTES, goal, limit);
297	if (!p && limit) {
298		limit = 0;
299		goto again;
300	}
301	return p;
302}
303
304static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
 
305{
306	unsigned long usemap_snr, pgdat_snr;
307	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
308	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
309	struct pglist_data *pgdat = NODE_DATA(nid);
310	int usemap_nid;
311
312	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
313	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
 
 
 
 
 
 
314	if (usemap_snr == pgdat_snr)
315		return;
316
317	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
318		/* skip redundant message */
319		return;
320
321	old_usemap_snr = usemap_snr;
322	old_pgdat_snr = pgdat_snr;
323
324	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
325	if (usemap_nid != nid) {
326		printk(KERN_INFO
327		       "node %d must be removed before remove section %ld\n",
328		       nid, usemap_snr);
329		return;
330	}
331	/*
332	 * There is a circular dependency.
333	 * Some platforms allow un-removable section because they will just
334	 * gather other removable sections for dynamic partitioning.
335	 * Just notify un-removable section's number here.
336	 */
337	printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
338	       pgdat_snr, nid);
339	printk(KERN_CONT
340	       " have a circular dependency on usemap and pgdat allocations\n");
341}
342#else
343static unsigned long * __init
344sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
345					 unsigned long size)
346{
347	return alloc_bootmem_node_nopanic(pgdat, size);
348}
349
350static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
 
351{
352}
353#endif /* CONFIG_MEMORY_HOTREMOVE */
354
355static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map,
356				 unsigned long pnum_begin,
357				 unsigned long pnum_end,
358				 unsigned long usemap_count, int nodeid)
359{
360	void *usemap;
361	unsigned long pnum;
362	int size = usemap_size();
363
364	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
365							  size * usemap_count);
366	if (!usemap) {
367		printk(KERN_WARNING "%s: allocation failed\n", __func__);
368		return;
369	}
370
371	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
372		if (!present_section_nr(pnum))
373			continue;
374		usemap_map[pnum] = usemap;
375		usemap += size;
376		check_usemap_section_nr(nodeid, usemap_map[pnum]);
377	}
378}
379
380#ifndef CONFIG_SPARSEMEM_VMEMMAP
381struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
 
382{
383	struct page *map;
384	unsigned long size;
 
385
386	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
387	if (map)
388		return map;
389
390	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
391	map = __alloc_bootmem_node_high(NODE_DATA(nid), size,
392					 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
 
 
393	return map;
394}
395void __init sparse_mem_maps_populate_node(struct page **map_map,
396					  unsigned long pnum_begin,
397					  unsigned long pnum_end,
398					  unsigned long map_count, int nodeid)
 
 
 
 
 
 
 
 
399{
400	void *map;
401	unsigned long pnum;
402	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
 
 
 
 
 
 
 
403
404	map = alloc_remap(nodeid, size * map_count);
405	if (map) {
406		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
407			if (!present_section_nr(pnum))
408				continue;
409			map_map[pnum] = map;
410			map += size;
411		}
412		return;
413	}
414
415	size = PAGE_ALIGN(size);
416	map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count,
417					 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
418	if (map) {
419		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
420			if (!present_section_nr(pnum))
421				continue;
422			map_map[pnum] = map;
423			map += size;
424		}
425		return;
426	}
427
428	/* fallback */
429	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
430		struct mem_section *ms;
431
432		if (!present_section_nr(pnum))
433			continue;
434		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
435		if (map_map[pnum])
436			continue;
437		ms = __nr_to_section(pnum);
438		printk(KERN_ERR "%s: sparsemem memory map backing failed "
439			"some memory will not be available.\n", __func__);
440		ms->section_mem_map = 0;
 
441	}
 
442}
443#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
444
445#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
446static void __init sparse_early_mem_maps_alloc_node(struct page **map_map,
447				 unsigned long pnum_begin,
448				 unsigned long pnum_end,
449				 unsigned long map_count, int nodeid)
450{
451	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
452					 map_count, nodeid);
453}
454#else
455static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
 
 
 
 
 
 
456{
 
 
457	struct page *map;
458	struct mem_section *ms = __nr_to_section(pnum);
459	int nid = sparse_early_nid(ms);
460
461	map = sparse_mem_map_populate(pnum, nid);
462	if (map)
463		return map;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
464
465	printk(KERN_ERR "%s: sparsemem memory map backing failed "
466			"some memory will not be available.\n", __func__);
467	ms->section_mem_map = 0;
468	return NULL;
469}
470#endif
471
472void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
473{
474}
475
476/*
477 * Allocate the accumulated non-linear sections, allocate a mem_map
478 * for each and record the physical to section mapping.
479 */
480void __init sparse_init(void)
481{
482	unsigned long pnum;
483	struct page *map;
484	unsigned long *usemap;
485	unsigned long **usemap_map;
486	int size;
487	int nodeid_begin = 0;
488	unsigned long pnum_begin = 0;
489	unsigned long usemap_count;
490#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
491	unsigned long map_count;
492	int size2;
493	struct page **map_map;
494#endif
495
496	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
497	set_pageblock_order();
498
499	/*
500	 * map is using big page (aka 2M in x86 64 bit)
501	 * usemap is less one page (aka 24 bytes)
502	 * so alloc 2M (with 2M align) and 24 bytes in turn will
503	 * make next 2M slip to one more 2M later.
504	 * then in big system, the memory will have a lot of holes...
505	 * here try to allocate 2M pages continuously.
506	 *
507	 * powerpc need to call sparse_init_one_section right after each
508	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
509	 */
510	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
511	usemap_map = alloc_bootmem(size);
512	if (!usemap_map)
513		panic("can not allocate usemap_map\n");
514
515	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
516		struct mem_section *ms;
517
518		if (!present_section_nr(pnum))
519			continue;
520		ms = __nr_to_section(pnum);
521		nodeid_begin = sparse_early_nid(ms);
522		pnum_begin = pnum;
523		break;
 
 
524	}
525	usemap_count = 1;
526	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
527		struct mem_section *ms;
528		int nodeid;
 
 
529
530		if (!present_section_nr(pnum))
531			continue;
532		ms = __nr_to_section(pnum);
533		nodeid = sparse_early_nid(ms);
534		if (nodeid == nodeid_begin) {
535			usemap_count++;
536			continue;
537		}
538		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
539		sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum,
540						 usemap_count, nodeid_begin);
541		/* new start, update count etc*/
542		nodeid_begin = nodeid;
543		pnum_begin = pnum;
544		usemap_count = 1;
545	}
546	/* ok, last chunk */
547	sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS,
548					 usemap_count, nodeid_begin);
549
550#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
551	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
552	map_map = alloc_bootmem(size2);
553	if (!map_map)
554		panic("can not allocate map_map\n");
555
556	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
 
557		struct mem_section *ms;
558
559		if (!present_section_nr(pnum))
 
560			continue;
561		ms = __nr_to_section(pnum);
562		nodeid_begin = sparse_early_nid(ms);
563		pnum_begin = pnum;
564		break;
565	}
566	map_count = 1;
567	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
568		struct mem_section *ms;
569		int nodeid;
570
571		if (!present_section_nr(pnum))
572			continue;
573		ms = __nr_to_section(pnum);
574		nodeid = sparse_early_nid(ms);
575		if (nodeid == nodeid_begin) {
576			map_count++;
577			continue;
578		}
579		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
580		sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum,
581						 map_count, nodeid_begin);
582		/* new start, update count etc*/
583		nodeid_begin = nodeid;
584		pnum_begin = pnum;
585		map_count = 1;
586	}
587	/* ok, last chunk */
588	sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS,
589					 map_count, nodeid_begin);
590#endif
591
592	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
593		if (!present_section_nr(pnum))
594			continue;
 
595
596		usemap = usemap_map[pnum];
597		if (!usemap)
598			continue;
599
600#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
601		map = map_map[pnum];
602#else
603		map = sparse_early_mem_map_alloc(pnum);
604#endif
605		if (!map)
606			continue;
607
608		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
609								usemap);
610	}
611
612	vmemmap_populate_print_last();
613
614#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
615	free_bootmem(__pa(map_map), size2);
616#endif
617	free_bootmem(__pa(usemap_map), size);
618}
619
620#ifdef CONFIG_MEMORY_HOTPLUG
621#ifdef CONFIG_SPARSEMEM_VMEMMAP
622static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
623						 unsigned long nr_pages)
 
624{
625	/* This will make the necessary allocations eventually. */
626	return sparse_mem_map_populate(pnum, nid);
627}
628static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
 
 
629{
630	return; /* XXX: Not implemented yet */
 
 
 
631}
632static void free_map_bootmem(struct page *page, unsigned long nr_pages)
633{
 
 
 
 
634}
635#else
636static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
637{
638	struct page *page, *ret;
639	unsigned long memmap_size = sizeof(struct page) * nr_pages;
 
 
 
640
641	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
642	if (page)
643		goto got_map_page;
644
645	ret = vmalloc(memmap_size);
646	if (ret)
647		goto got_map_ptr;
 
648
649	return NULL;
650got_map_page:
651	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
652got_map_ptr:
653	memset(ret, 0, memmap_size);
654
655	return ret;
 
 
 
656}
657
658static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
659						  unsigned long nr_pages)
660{
661	return __kmalloc_section_memmap(nr_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
662}
663
664static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
 
665{
666	if (is_vmalloc_addr(memmap))
667		vfree(memmap);
668	else
669		free_pages((unsigned long)memmap,
670			   get_order(sizeof(struct page) * nr_pages));
671}
672
673static void free_map_bootmem(struct page *page, unsigned long nr_pages)
674{
675	unsigned long maps_section_nr, removing_section_nr, i;
676	unsigned long magic;
 
 
 
 
677
678	for (i = 0; i < nr_pages; i++, page++) {
679		magic = (unsigned long) page->lru.next;
680
681		BUG_ON(magic == NODE_INFO);
682
683		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
684		removing_section_nr = page->private;
685
686		/*
687		 * When this function is called, the removing section is
688		 * logical offlined state. This means all pages are isolated
689		 * from page allocator. If removing section's memmap is placed
690		 * on the same section, it must not be freed.
691		 * If it is freed, page allocator may allocate it which will
692		 * be removed physically soon.
693		 */
694		if (maps_section_nr != removing_section_nr)
695			put_page_bootmem(page);
696	}
697}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
698#endif /* CONFIG_SPARSEMEM_VMEMMAP */
699
700static void free_section_usemap(struct page *memmap, unsigned long *usemap)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
701{
702	struct page *usemap_page;
703	unsigned long nr_pages;
 
 
704
705	if (!usemap)
706		return;
707
708	usemap_page = virt_to_page(usemap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
709	/*
710	 * Check to see if allocation came from hot-plug-add
 
711	 */
712	if (PageSlab(usemap_page)) {
713		kfree(usemap);
714		if (memmap)
715			__kfree_section_memmap(memmap, PAGES_PER_SECTION);
716		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
717	}
718
719	/*
720	 * The usemap came from bootmem. This is packed with other usemaps
721	 * on the section which has pgdat at boot time. Just keep it as is now.
 
 
 
722	 */
 
 
723
724	if (memmap) {
725		struct page *memmap_page;
726		memmap_page = virt_to_page(memmap);
727
728		nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
729			>> PAGE_SHIFT;
730
731		free_map_bootmem(memmap_page, nr_pages);
732	}
733}
734
735/*
736 * returns the number of sections whose mem_maps were properly
737 * set.  If this is <=0, then that means that the passed-in
738 * map was not consumed and must be freed.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
739 */
740int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
741			   int nr_pages)
 
742{
743	unsigned long section_nr = pfn_to_section_nr(start_pfn);
744	struct pglist_data *pgdat = zone->zone_pgdat;
745	struct mem_section *ms;
746	struct page *memmap;
747	unsigned long *usemap;
748	unsigned long flags;
749	int ret;
750
751	/*
752	 * no locking for this, because it does its own
753	 * plus, it does a kmalloc
754	 */
755	ret = sparse_index_init(section_nr, pgdat->node_id);
756	if (ret < 0 && ret != -EEXIST)
757		return ret;
758	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
759	if (!memmap)
760		return -ENOMEM;
761	usemap = __kmalloc_section_usemap();
762	if (!usemap) {
763		__kfree_section_memmap(memmap, nr_pages);
764		return -ENOMEM;
765	}
766
767	pgdat_resize_lock(pgdat, &flags);
 
 
768
769	ms = __pfn_to_section(start_pfn);
770	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
771		ret = -EEXIST;
772		goto out;
773	}
774
775	ms->section_mem_map |= SECTION_MARKED_PRESENT;
 
 
 
 
 
 
 
776
777	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
778
779out:
780	pgdat_resize_unlock(pgdat, &flags);
781	if (ret <= 0) {
782		kfree(usemap);
783		__kfree_section_memmap(memmap, nr_pages);
784	}
785	return ret;
786}
787
788void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
 
789{
790	struct page *memmap = NULL;
791	unsigned long *usemap = NULL;
792
793	if (ms->section_mem_map) {
794		usemap = ms->pageblock_flags;
795		memmap = sparse_decode_mem_map(ms->section_mem_map,
796						__section_nr(ms));
797		ms->section_mem_map = 0;
798		ms->pageblock_flags = NULL;
799	}
800
801	free_section_usemap(memmap, usemap);
802}
803#endif