Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	linux/mm/filemap.c
   4 *
   5 * Copyright (C) 1994-1999  Linus Torvalds
   6 */
   7
   8/*
   9 * This file handles the generic file mmap semantics used by
  10 * most "normal" filesystems (but you don't /have/ to use this:
  11 * the NFS filesystem used to do this differently, for example)
  12 */
  13#include <linux/export.h>
  14#include <linux/compiler.h>
  15#include <linux/dax.h>
  16#include <linux/fs.h>
  17#include <linux/sched/signal.h>
  18#include <linux/uaccess.h>
 
  19#include <linux/capability.h>
  20#include <linux/kernel_stat.h>
  21#include <linux/gfp.h>
  22#include <linux/mm.h>
  23#include <linux/swap.h>
  24#include <linux/swapops.h>
  25#include <linux/syscalls.h>
  26#include <linux/mman.h>
  27#include <linux/pagemap.h>
  28#include <linux/file.h>
  29#include <linux/uio.h>
  30#include <linux/error-injection.h>
  31#include <linux/hash.h>
  32#include <linux/writeback.h>
  33#include <linux/backing-dev.h>
  34#include <linux/pagevec.h>
 
  35#include <linux/security.h>
  36#include <linux/cpuset.h>
  37#include <linux/hugetlb.h>
  38#include <linux/memcontrol.h>
  39#include <linux/shmem_fs.h>
  40#include <linux/rmap.h>
  41#include <linux/delayacct.h>
  42#include <linux/psi.h>
  43#include <linux/ramfs.h>
  44#include <linux/page_idle.h>
  45#include <linux/migrate.h>
  46#include <linux/pipe_fs_i.h>
  47#include <linux/splice.h>
  48#include <linux/rcupdate_wait.h>
  49#include <asm/pgalloc.h>
  50#include <asm/tlbflush.h>
  51#include "internal.h"
  52
  53#define CREATE_TRACE_POINTS
  54#include <trace/events/filemap.h>
  55
  56/*
  57 * FIXME: remove all knowledge of the buffer layer from the core VM
  58 */
  59#include <linux/buffer_head.h> /* for try_to_free_buffers */
  60
  61#include <asm/mman.h>
  62
  63#include "swap.h"
  64
  65/*
  66 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  67 * though.
  68 *
  69 * Shared mappings now work. 15.8.1995  Bruno.
  70 *
  71 * finished 'unifying' the page and buffer cache and SMP-threaded the
  72 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  73 *
  74 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  75 */
  76
  77/*
  78 * Lock ordering:
  79 *
  80 *  ->i_mmap_rwsem		(truncate_pagecache)
  81 *    ->private_lock		(__free_pte->block_dirty_folio)
  82 *      ->swap_lock		(exclusive_swap_page, others)
  83 *        ->i_pages lock
  84 *
  85 *  ->i_rwsem
  86 *    ->invalidate_lock		(acquired by fs in truncate path)
  87 *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
  88 *
  89 *  ->mmap_lock
  90 *    ->i_mmap_rwsem
  91 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  92 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
  93 *
  94 *  ->mmap_lock
  95 *    ->invalidate_lock		(filemap_fault)
  96 *      ->lock_page		(filemap_fault, access_process_vm)
  97 *
  98 *  ->i_rwsem			(generic_perform_write)
  99 *    ->mmap_lock		(fault_in_readable->do_page_fault)
 100 *
 101 *  bdi->wb.list_lock
 102 *    sb_lock			(fs/fs-writeback.c)
 103 *    ->i_pages lock		(__sync_single_inode)
 104 *
 105 *  ->i_mmap_rwsem
 106 *    ->anon_vma.lock		(vma_merge)
 107 *
 108 *  ->anon_vma.lock
 109 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
 110 *
 111 *  ->page_table_lock or pte_lock
 112 *    ->swap_lock		(try_to_unmap_one)
 113 *    ->private_lock		(try_to_unmap_one)
 114 *    ->i_pages lock		(try_to_unmap_one)
 115 *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
 116 *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
 117 *    ->private_lock		(folio_remove_rmap_pte->set_page_dirty)
 118 *    ->i_pages lock		(folio_remove_rmap_pte->set_page_dirty)
 119 *    bdi.wb->list_lock		(folio_remove_rmap_pte->set_page_dirty)
 120 *    ->inode->i_lock		(folio_remove_rmap_pte->set_page_dirty)
 121 *    ->memcg->move_lock	(folio_remove_rmap_pte->folio_memcg_lock)
 122 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 123 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 124 *    ->private_lock		(zap_pte_range->block_dirty_folio)
 
 
 
 125 */
 126
 127static void page_cache_delete(struct address_space *mapping,
 128				   struct folio *folio, void *shadow)
 129{
 130	XA_STATE(xas, &mapping->i_pages, folio->index);
 131	long nr = 1;
 132
 133	mapping_set_update(&xas, mapping);
 134
 135	xas_set_order(&xas, folio->index, folio_order(folio));
 136	nr = folio_nr_pages(folio);
 137
 138	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 139
 140	xas_store(&xas, shadow);
 141	xas_init_marks(&xas);
 142
 143	folio->mapping = NULL;
 144	/* Leave page->index set: truncation lookup relies upon it */
 145	mapping->nrpages -= nr;
 146}
 147
 148static void filemap_unaccount_folio(struct address_space *mapping,
 149		struct folio *folio)
 150{
 151	long nr;
 152
 153	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
 154	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
 155		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 156			 current->comm, folio_pfn(folio));
 157		dump_page(&folio->page, "still mapped when deleted");
 158		dump_stack();
 159		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 160
 161		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
 162			int mapcount = page_mapcount(&folio->page);
 163
 164			if (folio_ref_count(folio) >= mapcount + 2) {
 165				/*
 166				 * All vmas have already been torn down, so it's
 167				 * a good bet that actually the page is unmapped
 168				 * and we'd rather not leak it: if we're wrong,
 169				 * another bad page check should catch it later.
 170				 */
 171				page_mapcount_reset(&folio->page);
 172				folio_ref_sub(folio, mapcount);
 173			}
 174		}
 175	}
 176
 177	/* hugetlb folios do not participate in page cache accounting. */
 178	if (folio_test_hugetlb(folio))
 179		return;
 180
 181	nr = folio_nr_pages(folio);
 182
 183	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
 184	if (folio_test_swapbacked(folio)) {
 185		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
 186		if (folio_test_pmd_mappable(folio))
 187			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
 188	} else if (folio_test_pmd_mappable(folio)) {
 189		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
 190		filemap_nr_thps_dec(mapping);
 191	}
 192
 193	/*
 194	 * At this point folio must be either written or cleaned by
 195	 * truncate.  Dirty folio here signals a bug and loss of
 196	 * unwritten data - on ordinary filesystems.
 197	 *
 198	 * But it's harmless on in-memory filesystems like tmpfs; and can
 199	 * occur when a driver which did get_user_pages() sets page dirty
 200	 * before putting it, while the inode is being finally evicted.
 201	 *
 202	 * Below fixes dirty accounting after removing the folio entirely
 203	 * but leaves the dirty flag set: it has no effect for truncated
 204	 * folio and anyway will be cleared before returning folio to
 205	 * buddy allocator.
 206	 */
 207	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
 208			 mapping_can_writeback(mapping)))
 209		folio_account_cleaned(folio, inode_to_wb(mapping->host));
 210}
 211
 212/*
 213 * Delete a page from the page cache and free it. Caller has to make
 214 * sure the page is locked and that nobody else uses it - or that usage
 215 * is safe.  The caller must hold the i_pages lock.
 216 */
 217void __filemap_remove_folio(struct folio *folio, void *shadow)
 218{
 219	struct address_space *mapping = folio->mapping;
 220
 221	trace_mm_filemap_delete_from_page_cache(folio);
 222	filemap_unaccount_folio(mapping, folio);
 223	page_cache_delete(mapping, folio, shadow);
 224}
 225
 226void filemap_free_folio(struct address_space *mapping, struct folio *folio)
 227{
 228	void (*free_folio)(struct folio *);
 229	int refs = 1;
 230
 231	free_folio = mapping->a_ops->free_folio;
 232	if (free_folio)
 233		free_folio(folio);
 
 
 
 
 
 234
 235	if (folio_test_large(folio))
 236		refs = folio_nr_pages(folio);
 237	folio_put_refs(folio, refs);
 
 
 
 
 
 
 
 
 238}
 239
 240/**
 241 * filemap_remove_folio - Remove folio from page cache.
 242 * @folio: The folio.
 243 *
 244 * This must be called only on folios that are locked and have been
 245 * verified to be in the page cache.  It will never put the folio into
 246 * the free list because the caller has a reference on the page.
 247 */
 248void filemap_remove_folio(struct folio *folio)
 249{
 250	struct address_space *mapping = folio->mapping;
 251
 252	BUG_ON(!folio_test_locked(folio));
 253	spin_lock(&mapping->host->i_lock);
 254	xa_lock_irq(&mapping->i_pages);
 255	__filemap_remove_folio(folio, NULL);
 256	xa_unlock_irq(&mapping->i_pages);
 257	if (mapping_shrinkable(mapping))
 258		inode_add_lru(mapping->host);
 259	spin_unlock(&mapping->host->i_lock);
 260
 261	filemap_free_folio(mapping, folio);
 262}
 263
 264/*
 265 * page_cache_delete_batch - delete several folios from page cache
 266 * @mapping: the mapping to which folios belong
 267 * @fbatch: batch of folios to delete
 268 *
 269 * The function walks over mapping->i_pages and removes folios passed in
 270 * @fbatch from the mapping. The function expects @fbatch to be sorted
 271 * by page index and is optimised for it to be dense.
 272 * It tolerates holes in @fbatch (mapping entries at those indices are not
 273 * modified).
 274 *
 275 * The function expects the i_pages lock to be held.
 276 */
 277static void page_cache_delete_batch(struct address_space *mapping,
 278			     struct folio_batch *fbatch)
 279{
 280	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
 281	long total_pages = 0;
 282	int i = 0;
 283	struct folio *folio;
 284
 285	mapping_set_update(&xas, mapping);
 286	xas_for_each(&xas, folio, ULONG_MAX) {
 287		if (i >= folio_batch_count(fbatch))
 288			break;
 289
 290		/* A swap/dax/shadow entry got inserted? Skip it. */
 291		if (xa_is_value(folio))
 292			continue;
 293		/*
 294		 * A page got inserted in our range? Skip it. We have our
 295		 * pages locked so they are protected from being removed.
 296		 * If we see a page whose index is higher than ours, it
 297		 * means our page has been removed, which shouldn't be
 298		 * possible because we're holding the PageLock.
 299		 */
 300		if (folio != fbatch->folios[i]) {
 301			VM_BUG_ON_FOLIO(folio->index >
 302					fbatch->folios[i]->index, folio);
 303			continue;
 304		}
 305
 306		WARN_ON_ONCE(!folio_test_locked(folio));
 307
 308		folio->mapping = NULL;
 309		/* Leave folio->index set: truncation lookup relies on it */
 310
 311		i++;
 312		xas_store(&xas, NULL);
 313		total_pages += folio_nr_pages(folio);
 314	}
 315	mapping->nrpages -= total_pages;
 316}
 317
 318void delete_from_page_cache_batch(struct address_space *mapping,
 319				  struct folio_batch *fbatch)
 320{
 321	int i;
 
 322
 323	if (!folio_batch_count(fbatch))
 324		return;
 325
 326	spin_lock(&mapping->host->i_lock);
 327	xa_lock_irq(&mapping->i_pages);
 328	for (i = 0; i < folio_batch_count(fbatch); i++) {
 329		struct folio *folio = fbatch->folios[i];
 330
 331		trace_mm_filemap_delete_from_page_cache(folio);
 332		filemap_unaccount_folio(mapping, folio);
 333	}
 334	page_cache_delete_batch(mapping, fbatch);
 335	xa_unlock_irq(&mapping->i_pages);
 336	if (mapping_shrinkable(mapping))
 337		inode_add_lru(mapping->host);
 338	spin_unlock(&mapping->host->i_lock);
 339
 340	for (i = 0; i < folio_batch_count(fbatch); i++)
 341		filemap_free_folio(mapping, fbatch->folios[i]);
 342}
 343
 344int filemap_check_errors(struct address_space *mapping)
 345{
 346	int ret = 0;
 347	/* Check for outstanding write errors */
 348	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 349	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 350		ret = -ENOSPC;
 351	if (test_bit(AS_EIO, &mapping->flags) &&
 352	    test_and_clear_bit(AS_EIO, &mapping->flags))
 353		ret = -EIO;
 354	return ret;
 355}
 356EXPORT_SYMBOL(filemap_check_errors);
 357
 358static int filemap_check_and_keep_errors(struct address_space *mapping)
 359{
 360	/* Check for outstanding write errors */
 361	if (test_bit(AS_EIO, &mapping->flags))
 362		return -EIO;
 363	if (test_bit(AS_ENOSPC, &mapping->flags))
 364		return -ENOSPC;
 365	return 0;
 366}
 367
 368/**
 369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
 370 * @mapping:	address space structure to write
 371 * @wbc:	the writeback_control controlling the writeout
 372 *
 373 * Call writepages on the mapping using the provided wbc to control the
 374 * writeout.
 375 *
 376 * Return: %0 on success, negative error code otherwise.
 377 */
 378int filemap_fdatawrite_wbc(struct address_space *mapping,
 379			   struct writeback_control *wbc)
 380{
 381	int ret;
 382
 383	if (!mapping_can_writeback(mapping) ||
 384	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
 385		return 0;
 386
 387	wbc_attach_fdatawrite_inode(wbc, mapping->host);
 388	ret = do_writepages(mapping, wbc);
 389	wbc_detach_inode(wbc);
 390	return ret;
 391}
 392EXPORT_SYMBOL(filemap_fdatawrite_wbc);
 393
 394/**
 395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 396 * @mapping:	address space structure to write
 397 * @start:	offset in bytes where the range starts
 398 * @end:	offset in bytes where the range ends (inclusive)
 399 * @sync_mode:	enable synchronous operation
 400 *
 401 * Start writeback against all of a mapping's dirty pages that lie
 402 * within the byte offsets <start, end> inclusive.
 403 *
 404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 405 * opposed to a regular memory cleansing writeback.  The difference between
 406 * these two operations is that if a dirty page/buffer is encountered, it must
 407 * be waited upon, and not just skipped over.
 408 *
 409 * Return: %0 on success, negative error code otherwise.
 410 */
 411int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 412				loff_t end, int sync_mode)
 413{
 
 414	struct writeback_control wbc = {
 415		.sync_mode = sync_mode,
 416		.nr_to_write = LONG_MAX,
 417		.range_start = start,
 418		.range_end = end,
 419	};
 420
 421	return filemap_fdatawrite_wbc(mapping, &wbc);
 
 
 
 
 422}
 423
 424static inline int __filemap_fdatawrite(struct address_space *mapping,
 425	int sync_mode)
 426{
 427	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 428}
 429
 430int filemap_fdatawrite(struct address_space *mapping)
 431{
 432	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 433}
 434EXPORT_SYMBOL(filemap_fdatawrite);
 435
 436int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 437				loff_t end)
 438{
 439	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 440}
 441EXPORT_SYMBOL(filemap_fdatawrite_range);
 442
 443/**
 444 * filemap_flush - mostly a non-blocking flush
 445 * @mapping:	target address_space
 446 *
 447 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 448 * purposes - I/O may not be started against all dirty pages.
 449 *
 450 * Return: %0 on success, negative error code otherwise.
 451 */
 452int filemap_flush(struct address_space *mapping)
 453{
 454	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 455}
 456EXPORT_SYMBOL(filemap_flush);
 457
 458/**
 459 * filemap_range_has_page - check if a page exists in range.
 460 * @mapping:           address space within which to check
 461 * @start_byte:        offset in bytes where the range starts
 462 * @end_byte:          offset in bytes where the range ends (inclusive)
 463 *
 464 * Find at least one page in the range supplied, usually used to check if
 465 * direct writing in this range will trigger a writeback.
 466 *
 467 * Return: %true if at least one page exists in the specified range,
 468 * %false otherwise.
 469 */
 470bool filemap_range_has_page(struct address_space *mapping,
 471			   loff_t start_byte, loff_t end_byte)
 472{
 473	struct folio *folio;
 474	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 475	pgoff_t max = end_byte >> PAGE_SHIFT;
 476
 477	if (end_byte < start_byte)
 478		return false;
 479
 480	rcu_read_lock();
 481	for (;;) {
 482		folio = xas_find(&xas, max);
 483		if (xas_retry(&xas, folio))
 484			continue;
 485		/* Shadow entries don't count */
 486		if (xa_is_value(folio))
 487			continue;
 488		/*
 489		 * We don't need to try to pin this page; we're about to
 490		 * release the RCU lock anyway.  It is enough to know that
 491		 * there was a page here recently.
 492		 */
 493		break;
 494	}
 495	rcu_read_unlock();
 496
 497	return folio != NULL;
 498}
 499EXPORT_SYMBOL(filemap_range_has_page);
 500
 501static void __filemap_fdatawait_range(struct address_space *mapping,
 502				     loff_t start_byte, loff_t end_byte)
 503{
 504	pgoff_t index = start_byte >> PAGE_SHIFT;
 505	pgoff_t end = end_byte >> PAGE_SHIFT;
 506	struct folio_batch fbatch;
 507	unsigned nr_folios;
 508
 509	folio_batch_init(&fbatch);
 510
 511	while (index <= end) {
 512		unsigned i;
 513
 514		nr_folios = filemap_get_folios_tag(mapping, &index, end,
 515				PAGECACHE_TAG_WRITEBACK, &fbatch);
 516
 517		if (!nr_folios)
 518			break;
 519
 520		for (i = 0; i < nr_folios; i++) {
 521			struct folio *folio = fbatch.folios[i];
 522
 523			folio_wait_writeback(folio);
 524			folio_clear_error(folio);
 525		}
 526		folio_batch_release(&fbatch);
 527		cond_resched();
 528	}
 529}
 530
 531/**
 532 * filemap_fdatawait_range - wait for writeback to complete
 533 * @mapping:		address space structure to wait for
 534 * @start_byte:		offset in bytes where the range starts
 535 * @end_byte:		offset in bytes where the range ends (inclusive)
 536 *
 537 * Walk the list of under-writeback pages of the given address space
 538 * in the given range and wait for all of them.  Check error status of
 539 * the address space and return it.
 540 *
 541 * Since the error status of the address space is cleared by this function,
 542 * callers are responsible for checking the return value and handling and/or
 543 * reporting the error.
 544 *
 545 * Return: error status of the address space.
 546 */
 547int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 548			    loff_t end_byte)
 549{
 550	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 551	return filemap_check_errors(mapping);
 552}
 553EXPORT_SYMBOL(filemap_fdatawait_range);
 
 554
 555/**
 556 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
 557 * @mapping:		address space structure to wait for
 558 * @start_byte:		offset in bytes where the range starts
 559 * @end_byte:		offset in bytes where the range ends (inclusive)
 560 *
 561 * Walk the list of under-writeback pages of the given address space in the
 562 * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
 563 * this function does not clear error status of the address space.
 564 *
 565 * Use this function if callers don't handle errors themselves.  Expected
 566 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 567 * fsfreeze(8)
 568 */
 569int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
 570		loff_t start_byte, loff_t end_byte)
 571{
 572	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 573	return filemap_check_and_keep_errors(mapping);
 574}
 575EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
 576
 577/**
 578 * file_fdatawait_range - wait for writeback to complete
 579 * @file:		file pointing to address space structure to wait for
 580 * @start_byte:		offset in bytes where the range starts
 581 * @end_byte:		offset in bytes where the range ends (inclusive)
 582 *
 583 * Walk the list of under-writeback pages of the address space that file
 584 * refers to, in the given range and wait for all of them.  Check error
 585 * status of the address space vs. the file->f_wb_err cursor and return it.
 586 *
 587 * Since the error status of the file is advanced by this function,
 588 * callers are responsible for checking the return value and handling and/or
 589 * reporting the error.
 590 *
 591 * Return: error status of the address space vs. the file->f_wb_err cursor.
 592 */
 593int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 594{
 595	struct address_space *mapping = file->f_mapping;
 
 
 596
 597	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 598	return file_check_and_advance_wb_err(file);
 
 
 
 
 
 599}
 600EXPORT_SYMBOL(file_fdatawait_range);
 601
 602/**
 603 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 604 * @mapping: address space structure to wait for
 605 *
 606 * Walk the list of under-writeback pages of the given address space
 607 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 608 * does not clear error status of the address space.
 609 *
 610 * Use this function if callers don't handle errors themselves.  Expected
 611 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 612 * fsfreeze(8)
 613 *
 614 * Return: error status of the address space.
 615 */
 616int filemap_fdatawait_keep_errors(struct address_space *mapping)
 617{
 618	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 619	return filemap_check_and_keep_errors(mapping);
 620}
 621EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 622
 623/* Returns true if writeback might be needed or already in progress. */
 624static bool mapping_needs_writeback(struct address_space *mapping)
 625{
 626	return mapping->nrpages;
 627}
 
 628
 629bool filemap_range_has_writeback(struct address_space *mapping,
 630				 loff_t start_byte, loff_t end_byte)
 631{
 632	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 633	pgoff_t max = end_byte >> PAGE_SHIFT;
 634	struct folio *folio;
 635
 636	if (end_byte < start_byte)
 637		return false;
 638
 639	rcu_read_lock();
 640	xas_for_each(&xas, folio, max) {
 641		if (xas_retry(&xas, folio))
 642			continue;
 643		if (xa_is_value(folio))
 644			continue;
 645		if (folio_test_dirty(folio) || folio_test_locked(folio) ||
 646				folio_test_writeback(folio))
 647			break;
 
 
 
 
 648	}
 649	rcu_read_unlock();
 650	return folio != NULL;
 651}
 652EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
 653
 654/**
 655 * filemap_write_and_wait_range - write out & wait on a file range
 656 * @mapping:	the address_space for the pages
 657 * @lstart:	offset in bytes where the range starts
 658 * @lend:	offset in bytes where the range ends (inclusive)
 659 *
 660 * Write out and wait upon file offsets lstart->lend, inclusive.
 661 *
 662 * Note that @lend is inclusive (describes the last byte to be written) so
 663 * that this function can be used to write to the very end-of-file (end = -1).
 664 *
 665 * Return: error status of the address space.
 666 */
 667int filemap_write_and_wait_range(struct address_space *mapping,
 668				 loff_t lstart, loff_t lend)
 669{
 670	int err = 0, err2;
 671
 672	if (lend < lstart)
 673		return 0;
 674
 675	if (mapping_needs_writeback(mapping)) {
 676		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 677						 WB_SYNC_ALL);
 678		/*
 679		 * Even if the above returned error, the pages may be
 680		 * written partially (e.g. -ENOSPC), so we wait for it.
 681		 * But the -EIO is special case, it may indicate the worst
 682		 * thing (e.g. bug) happened, so we avoid waiting for it.
 683		 */
 684		if (err != -EIO)
 685			__filemap_fdatawait_range(mapping, lstart, lend);
 686	}
 687	err2 = filemap_check_errors(mapping);
 688	if (!err)
 689		err = err2;
 690	return err;
 691}
 692EXPORT_SYMBOL(filemap_write_and_wait_range);
 693
 694void __filemap_set_wb_err(struct address_space *mapping, int err)
 695{
 696	errseq_t eseq = errseq_set(&mapping->wb_err, err);
 697
 698	trace_filemap_set_wb_err(mapping, eseq);
 699}
 700EXPORT_SYMBOL(__filemap_set_wb_err);
 701
 702/**
 703 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 704 * 				   and advance wb_err to current one
 705 * @file: struct file on which the error is being reported
 706 *
 707 * When userland calls fsync (or something like nfsd does the equivalent), we
 708 * want to report any writeback errors that occurred since the last fsync (or
 709 * since the file was opened if there haven't been any).
 710 *
 711 * Grab the wb_err from the mapping. If it matches what we have in the file,
 712 * then just quickly return 0. The file is all caught up.
 713 *
 714 * If it doesn't match, then take the mapping value, set the "seen" flag in
 715 * it and try to swap it into place. If it works, or another task beat us
 716 * to it with the new value, then update the f_wb_err and return the error
 717 * portion. The error at this point must be reported via proper channels
 718 * (a'la fsync, or NFS COMMIT operation, etc.).
 719 *
 720 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 721 * value is protected by the f_lock since we must ensure that it reflects
 722 * the latest value swapped in for this file descriptor.
 723 *
 724 * Return: %0 on success, negative error code otherwise.
 
 725 */
 726int file_check_and_advance_wb_err(struct file *file)
 727{
 728	int err = 0;
 729	errseq_t old = READ_ONCE(file->f_wb_err);
 730	struct address_space *mapping = file->f_mapping;
 731
 732	/* Locklessly handle the common case where nothing has changed */
 733	if (errseq_check(&mapping->wb_err, old)) {
 734		/* Something changed, must use slow path */
 735		spin_lock(&file->f_lock);
 736		old = file->f_wb_err;
 737		err = errseq_check_and_advance(&mapping->wb_err,
 738						&file->f_wb_err);
 739		trace_file_check_and_advance_wb_err(file, old);
 740		spin_unlock(&file->f_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 741	}
 742
 743	/*
 744	 * We're mostly using this function as a drop in replacement for
 745	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 746	 * that the legacy code would have had on these flags.
 747	 */
 748	clear_bit(AS_EIO, &mapping->flags);
 749	clear_bit(AS_ENOSPC, &mapping->flags);
 750	return err;
 751}
 752EXPORT_SYMBOL(file_check_and_advance_wb_err);
 753
 754/**
 755 * file_write_and_wait_range - write out & wait on a file range
 756 * @file:	file pointing to address_space with pages
 757 * @lstart:	offset in bytes where the range starts
 758 * @lend:	offset in bytes where the range ends (inclusive)
 759 *
 760 * Write out and wait upon file offsets lstart->lend, inclusive.
 761 *
 762 * Note that @lend is inclusive (describes the last byte to be written) so
 763 * that this function can be used to write to the very end-of-file (end = -1).
 764 *
 765 * After writing out and waiting on the data, we check and advance the
 766 * f_wb_err cursor to the latest value, and return any errors detected there.
 767 *
 768 * Return: %0 on success, negative error code otherwise.
 769 */
 770int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 771{
 772	int err = 0, err2;
 773	struct address_space *mapping = file->f_mapping;
 774
 775	if (lend < lstart)
 776		return 0;
 777
 778	if (mapping_needs_writeback(mapping)) {
 779		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 780						 WB_SYNC_ALL);
 781		/* See comment of filemap_write_and_wait() */
 782		if (err != -EIO)
 783			__filemap_fdatawait_range(mapping, lstart, lend);
 784	}
 785	err2 = file_check_and_advance_wb_err(file);
 786	if (!err)
 787		err = err2;
 788	return err;
 789}
 790EXPORT_SYMBOL(file_write_and_wait_range);
 791
 792/**
 793 * replace_page_cache_folio - replace a pagecache folio with a new one
 794 * @old:	folio to be replaced
 795 * @new:	folio to replace with
 796 *
 797 * This function replaces a folio in the pagecache with a new one.  On
 798 * success it acquires the pagecache reference for the new folio and
 799 * drops it for the old folio.  Both the old and new folios must be
 800 * locked.  This function does not add the new folio to the LRU, the
 801 * caller must do that.
 802 *
 803 * The remove + add is atomic.  This function cannot fail.
 
 804 */
 805void replace_page_cache_folio(struct folio *old, struct folio *new)
 
 806{
 807	struct address_space *mapping = old->mapping;
 808	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
 809	pgoff_t offset = old->index;
 810	XA_STATE(xas, &mapping->i_pages, offset);
 811
 812	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
 813	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
 814	VM_BUG_ON_FOLIO(new->mapping, new);
 815
 816	folio_get(new);
 817	new->mapping = mapping;
 818	new->index = offset;
 819
 820	mem_cgroup_replace_folio(old, new);
 821
 822	xas_lock_irq(&xas);
 823	xas_store(&xas, new);
 824
 825	old->mapping = NULL;
 826	/* hugetlb pages do not participate in page cache accounting. */
 827	if (!folio_test_hugetlb(old))
 828		__lruvec_stat_sub_folio(old, NR_FILE_PAGES);
 829	if (!folio_test_hugetlb(new))
 830		__lruvec_stat_add_folio(new, NR_FILE_PAGES);
 831	if (folio_test_swapbacked(old))
 832		__lruvec_stat_sub_folio(old, NR_SHMEM);
 833	if (folio_test_swapbacked(new))
 834		__lruvec_stat_add_folio(new, NR_SHMEM);
 835	xas_unlock_irq(&xas);
 836	if (free_folio)
 837		free_folio(old);
 838	folio_put(old);
 839}
 840EXPORT_SYMBOL_GPL(replace_page_cache_folio);
 841
 842noinline int __filemap_add_folio(struct address_space *mapping,
 843		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
 844{
 845	XA_STATE(xas, &mapping->i_pages, index);
 846	int huge = folio_test_hugetlb(folio);
 847	bool charged = false;
 848	long nr = 1;
 849
 850	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 851	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
 852	mapping_set_update(&xas, mapping);
 853
 854	if (!huge) {
 855		int error = mem_cgroup_charge(folio, NULL, gfp);
 856		if (error)
 857			return error;
 858		charged = true;
 859	}
 860
 861	VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
 862	xas_set_order(&xas, index, folio_order(folio));
 863	nr = folio_nr_pages(folio);
 864
 865	gfp &= GFP_RECLAIM_MASK;
 866	folio_ref_add(folio, nr);
 867	folio->mapping = mapping;
 868	folio->index = xas.xa_index;
 869
 870	do {
 871		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
 872		void *entry, *old = NULL;
 873
 874		if (order > folio_order(folio))
 875			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
 876					order, gfp);
 877		xas_lock_irq(&xas);
 878		xas_for_each_conflict(&xas, entry) {
 879			old = entry;
 880			if (!xa_is_value(entry)) {
 881				xas_set_err(&xas, -EEXIST);
 882				goto unlock;
 883			}
 884		}
 885
 886		if (old) {
 887			if (shadowp)
 888				*shadowp = old;
 889			/* entry may have been split before we acquired lock */
 890			order = xa_get_order(xas.xa, xas.xa_index);
 891			if (order > folio_order(folio)) {
 892				/* How to handle large swap entries? */
 893				BUG_ON(shmem_mapping(mapping));
 894				xas_split(&xas, old, order);
 895				xas_reset(&xas);
 896			}
 
 
 
 
 
 
 
 897		}
 898
 899		xas_store(&xas, folio);
 900		if (xas_error(&xas))
 901			goto unlock;
 902
 903		mapping->nrpages += nr;
 904
 905		/* hugetlb pages do not participate in page cache accounting */
 906		if (!huge) {
 907			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
 908			if (folio_test_pmd_mappable(folio))
 909				__lruvec_stat_mod_folio(folio,
 910						NR_FILE_THPS, nr);
 911		}
 912unlock:
 913		xas_unlock_irq(&xas);
 914	} while (xas_nomem(&xas, gfp));
 915
 916	if (xas_error(&xas))
 917		goto error;
 918
 919	trace_mm_filemap_add_to_page_cache(folio);
 920	return 0;
 921error:
 922	if (charged)
 923		mem_cgroup_uncharge(folio);
 924	folio->mapping = NULL;
 925	/* Leave page->index set: truncation relies upon it */
 926	folio_put_refs(folio, nr);
 927	return xas_error(&xas);
 928}
 929ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
 930
 931int filemap_add_folio(struct address_space *mapping, struct folio *folio,
 932				pgoff_t index, gfp_t gfp)
 933{
 934	void *shadow = NULL;
 935	int ret;
 936
 937	__folio_set_locked(folio);
 938	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
 939	if (unlikely(ret))
 940		__folio_clear_locked(folio);
 941	else {
 942		/*
 943		 * The folio might have been evicted from cache only
 944		 * recently, in which case it should be activated like
 945		 * any other repeatedly accessed folio.
 946		 * The exception is folios getting rewritten; evicting other
 947		 * data from the working set, only to cache data that will
 948		 * get overwritten with something else, is a waste of memory.
 949		 */
 950		WARN_ON_ONCE(folio_test_active(folio));
 951		if (!(gfp & __GFP_WRITE) && shadow)
 952			workingset_refault(folio, shadow);
 953		folio_add_lru(folio);
 954	}
 955	return ret;
 956}
 957EXPORT_SYMBOL_GPL(filemap_add_folio);
 958
 959#ifdef CONFIG_NUMA
 960struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
 961{
 962	int n;
 963	struct folio *folio;
 964
 965	if (cpuset_do_page_mem_spread()) {
 966		unsigned int cpuset_mems_cookie;
 967		do {
 968			cpuset_mems_cookie = read_mems_allowed_begin();
 969			n = cpuset_mem_spread_node();
 970			folio = __folio_alloc_node(gfp, order, n);
 971		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
 972
 973		return folio;
 974	}
 975	return folio_alloc(gfp, order);
 976}
 977EXPORT_SYMBOL(filemap_alloc_folio);
 978#endif
 979
 980/*
 981 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
 982 *
 983 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
 984 *
 985 * @mapping1: the first mapping to lock
 986 * @mapping2: the second mapping to lock
 987 */
 988void filemap_invalidate_lock_two(struct address_space *mapping1,
 989				 struct address_space *mapping2)
 990{
 991	if (mapping1 > mapping2)
 992		swap(mapping1, mapping2);
 993	if (mapping1)
 994		down_write(&mapping1->invalidate_lock);
 995	if (mapping2 && mapping1 != mapping2)
 996		down_write_nested(&mapping2->invalidate_lock, 1);
 997}
 998EXPORT_SYMBOL(filemap_invalidate_lock_two);
 999
1000/*
1001 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1002 *
1003 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1004 *
1005 * @mapping1: the first mapping to unlock
1006 * @mapping2: the second mapping to unlock
1007 */
1008void filemap_invalidate_unlock_two(struct address_space *mapping1,
1009				   struct address_space *mapping2)
1010{
1011	if (mapping1)
1012		up_write(&mapping1->invalidate_lock);
1013	if (mapping2 && mapping1 != mapping2)
1014		up_write(&mapping2->invalidate_lock);
1015}
1016EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1017
1018/*
1019 * In order to wait for pages to become available there must be
1020 * waitqueues associated with pages. By using a hash table of
1021 * waitqueues where the bucket discipline is to maintain all
1022 * waiters on the same queue and wake all when any of the pages
1023 * become available, and for the woken contexts to check to be
1024 * sure the appropriate page became available, this saves space
1025 * at a cost of "thundering herd" phenomena during rare hash
1026 * collisions.
1027 */
1028#define PAGE_WAIT_TABLE_BITS 8
1029#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1030static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1031
1032static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1033{
1034	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1035}
1036
1037void __init pagecache_init(void)
1038{
1039	int i;
1040
1041	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1042		init_waitqueue_head(&folio_wait_table[i]);
1043
1044	page_writeback_init();
1045}
1046
1047/*
1048 * The page wait code treats the "wait->flags" somewhat unusually, because
1049 * we have multiple different kinds of waits, not just the usual "exclusive"
1050 * one.
1051 *
1052 * We have:
1053 *
1054 *  (a) no special bits set:
1055 *
1056 *	We're just waiting for the bit to be released, and when a waker
1057 *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1058 *	and remove it from the wait queue.
1059 *
1060 *	Simple and straightforward.
1061 *
1062 *  (b) WQ_FLAG_EXCLUSIVE:
1063 *
1064 *	The waiter is waiting to get the lock, and only one waiter should
1065 *	be woken up to avoid any thundering herd behavior. We'll set the
1066 *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1067 *
1068 *	This is the traditional exclusive wait.
1069 *
1070 *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1071 *
1072 *	The waiter is waiting to get the bit, and additionally wants the
1073 *	lock to be transferred to it for fair lock behavior. If the lock
1074 *	cannot be taken, we stop walking the wait queue without waking
1075 *	the waiter.
1076 *
1077 *	This is the "fair lock handoff" case, and in addition to setting
1078 *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1079 *	that it now has the lock.
1080 */
1081static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1082{
1083	unsigned int flags;
1084	struct wait_page_key *key = arg;
1085	struct wait_page_queue *wait_page
1086		= container_of(wait, struct wait_page_queue, wait);
1087
1088	if (!wake_page_match(wait_page, key))
1089		return 0;
1090
1091	/*
1092	 * If it's a lock handoff wait, we get the bit for it, and
1093	 * stop walking (and do not wake it up) if we can't.
1094	 */
1095	flags = wait->flags;
1096	if (flags & WQ_FLAG_EXCLUSIVE) {
1097		if (test_bit(key->bit_nr, &key->folio->flags))
1098			return -1;
1099		if (flags & WQ_FLAG_CUSTOM) {
1100			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1101				return -1;
1102			flags |= WQ_FLAG_DONE;
1103		}
1104	}
1105
1106	/*
1107	 * We are holding the wait-queue lock, but the waiter that
1108	 * is waiting for this will be checking the flags without
1109	 * any locking.
1110	 *
1111	 * So update the flags atomically, and wake up the waiter
1112	 * afterwards to avoid any races. This store-release pairs
1113	 * with the load-acquire in folio_wait_bit_common().
1114	 */
1115	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1116	wake_up_state(wait->private, mode);
1117
1118	/*
1119	 * Ok, we have successfully done what we're waiting for,
1120	 * and we can unconditionally remove the wait entry.
1121	 *
1122	 * Note that this pairs with the "finish_wait()" in the
1123	 * waiter, and has to be the absolute last thing we do.
1124	 * After this list_del_init(&wait->entry) the wait entry
1125	 * might be de-allocated and the process might even have
1126	 * exited.
1127	 */
1128	list_del_init_careful(&wait->entry);
1129	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1130}
1131
1132static void folio_wake_bit(struct folio *folio, int bit_nr)
1133{
1134	wait_queue_head_t *q = folio_waitqueue(folio);
1135	struct wait_page_key key;
1136	unsigned long flags;
1137
1138	key.folio = folio;
1139	key.bit_nr = bit_nr;
1140	key.page_match = 0;
1141
1142	spin_lock_irqsave(&q->lock, flags);
1143	__wake_up_locked_key(q, TASK_NORMAL, &key);
1144
1145	/*
1146	 * It's possible to miss clearing waiters here, when we woke our page
1147	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1148	 * That's okay, it's a rare case. The next waker will clear it.
1149	 *
1150	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1151	 * other), the flag may be cleared in the course of freeing the page;
1152	 * but that is not required for correctness.
1153	 */
1154	if (!waitqueue_active(q) || !key.page_match)
1155		folio_clear_waiters(folio);
1156
1157	spin_unlock_irqrestore(&q->lock, flags);
1158}
 
1159
1160/*
1161 * A choice of three behaviors for folio_wait_bit_common():
1162 */
1163enum behavior {
1164	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1165			 * __folio_lock() waiting on then setting PG_locked.
1166			 */
1167	SHARED,		/* Hold ref to page and check the bit when woken, like
1168			 * folio_wait_writeback() waiting on PG_writeback.
1169			 */
1170	DROP,		/* Drop ref to page before wait, no check when woken,
1171			 * like folio_put_wait_locked() on PG_locked.
1172			 */
1173};
1174
1175/*
1176 * Attempt to check (or get) the folio flag, and mark us done
1177 * if successful.
1178 */
1179static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1180					struct wait_queue_entry *wait)
1181{
1182	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1183		if (test_and_set_bit(bit_nr, &folio->flags))
1184			return false;
1185	} else if (test_bit(bit_nr, &folio->flags))
1186		return false;
1187
1188	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1189	return true;
1190}
1191
1192/* How many times do we accept lock stealing from under a waiter? */
1193int sysctl_page_lock_unfairness = 5;
1194
1195static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1196		int state, enum behavior behavior)
1197{
1198	wait_queue_head_t *q = folio_waitqueue(folio);
1199	int unfairness = sysctl_page_lock_unfairness;
1200	struct wait_page_queue wait_page;
1201	wait_queue_entry_t *wait = &wait_page.wait;
1202	bool thrashing = false;
1203	unsigned long pflags;
1204	bool in_thrashing;
1205
1206	if (bit_nr == PG_locked &&
1207	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1208		delayacct_thrashing_start(&in_thrashing);
1209		psi_memstall_enter(&pflags);
1210		thrashing = true;
1211	}
1212
1213	init_wait(wait);
1214	wait->func = wake_page_function;
1215	wait_page.folio = folio;
1216	wait_page.bit_nr = bit_nr;
1217
1218repeat:
1219	wait->flags = 0;
1220	if (behavior == EXCLUSIVE) {
1221		wait->flags = WQ_FLAG_EXCLUSIVE;
1222		if (--unfairness < 0)
1223			wait->flags |= WQ_FLAG_CUSTOM;
1224	}
1225
1226	/*
1227	 * Do one last check whether we can get the
1228	 * page bit synchronously.
1229	 *
1230	 * Do the folio_set_waiters() marking before that
1231	 * to let any waker we _just_ missed know they
1232	 * need to wake us up (otherwise they'll never
1233	 * even go to the slow case that looks at the
1234	 * page queue), and add ourselves to the wait
1235	 * queue if we need to sleep.
1236	 *
1237	 * This part needs to be done under the queue
1238	 * lock to avoid races.
1239	 */
1240	spin_lock_irq(&q->lock);
1241	folio_set_waiters(folio);
1242	if (!folio_trylock_flag(folio, bit_nr, wait))
1243		__add_wait_queue_entry_tail(q, wait);
1244	spin_unlock_irq(&q->lock);
1245
1246	/*
1247	 * From now on, all the logic will be based on
1248	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1249	 * see whether the page bit testing has already
1250	 * been done by the wake function.
1251	 *
1252	 * We can drop our reference to the folio.
1253	 */
1254	if (behavior == DROP)
1255		folio_put(folio);
1256
1257	/*
1258	 * Note that until the "finish_wait()", or until
1259	 * we see the WQ_FLAG_WOKEN flag, we need to
1260	 * be very careful with the 'wait->flags', because
1261	 * we may race with a waker that sets them.
1262	 */
1263	for (;;) {
1264		unsigned int flags;
1265
1266		set_current_state(state);
1267
1268		/* Loop until we've been woken or interrupted */
1269		flags = smp_load_acquire(&wait->flags);
1270		if (!(flags & WQ_FLAG_WOKEN)) {
1271			if (signal_pending_state(state, current))
1272				break;
1273
1274			io_schedule();
1275			continue;
1276		}
1277
1278		/* If we were non-exclusive, we're done */
1279		if (behavior != EXCLUSIVE)
1280			break;
1281
1282		/* If the waker got the lock for us, we're done */
1283		if (flags & WQ_FLAG_DONE)
1284			break;
1285
1286		/*
1287		 * Otherwise, if we're getting the lock, we need to
1288		 * try to get it ourselves.
1289		 *
1290		 * And if that fails, we'll have to retry this all.
1291		 */
1292		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1293			goto repeat;
1294
1295		wait->flags |= WQ_FLAG_DONE;
1296		break;
1297	}
1298
1299	/*
1300	 * If a signal happened, this 'finish_wait()' may remove the last
1301	 * waiter from the wait-queues, but the folio waiters bit will remain
1302	 * set. That's ok. The next wakeup will take care of it, and trying
1303	 * to do it here would be difficult and prone to races.
1304	 */
1305	finish_wait(q, wait);
1306
1307	if (thrashing) {
1308		delayacct_thrashing_end(&in_thrashing);
1309		psi_memstall_leave(&pflags);
1310	}
1311
1312	/*
1313	 * NOTE! The wait->flags weren't stable until we've done the
1314	 * 'finish_wait()', and we could have exited the loop above due
1315	 * to a signal, and had a wakeup event happen after the signal
1316	 * test but before the 'finish_wait()'.
1317	 *
1318	 * So only after the finish_wait() can we reliably determine
1319	 * if we got woken up or not, so we can now figure out the final
1320	 * return value based on that state without races.
1321	 *
1322	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1323	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1324	 */
1325	if (behavior == EXCLUSIVE)
1326		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1327
1328	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1329}
1330
1331#ifdef CONFIG_MIGRATION
1332/**
1333 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1334 * @entry: migration swap entry.
1335 * @ptl: already locked ptl. This function will drop the lock.
1336 *
1337 * Wait for a migration entry referencing the given page to be removed. This is
1338 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1339 * this can be called without taking a reference on the page. Instead this
1340 * should be called while holding the ptl for the migration entry referencing
1341 * the page.
1342 *
1343 * Returns after unlocking the ptl.
1344 *
1345 * This follows the same logic as folio_wait_bit_common() so see the comments
1346 * there.
1347 */
1348void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1349	__releases(ptl)
1350{
1351	struct wait_page_queue wait_page;
1352	wait_queue_entry_t *wait = &wait_page.wait;
1353	bool thrashing = false;
1354	unsigned long pflags;
1355	bool in_thrashing;
1356	wait_queue_head_t *q;
1357	struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1358
1359	q = folio_waitqueue(folio);
1360	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1361		delayacct_thrashing_start(&in_thrashing);
1362		psi_memstall_enter(&pflags);
1363		thrashing = true;
1364	}
1365
1366	init_wait(wait);
1367	wait->func = wake_page_function;
1368	wait_page.folio = folio;
1369	wait_page.bit_nr = PG_locked;
1370	wait->flags = 0;
1371
1372	spin_lock_irq(&q->lock);
1373	folio_set_waiters(folio);
1374	if (!folio_trylock_flag(folio, PG_locked, wait))
1375		__add_wait_queue_entry_tail(q, wait);
1376	spin_unlock_irq(&q->lock);
1377
1378	/*
1379	 * If a migration entry exists for the page the migration path must hold
1380	 * a valid reference to the page, and it must take the ptl to remove the
1381	 * migration entry. So the page is valid until the ptl is dropped.
1382	 */
1383	spin_unlock(ptl);
1384
1385	for (;;) {
1386		unsigned int flags;
1387
1388		set_current_state(TASK_UNINTERRUPTIBLE);
1389
1390		/* Loop until we've been woken or interrupted */
1391		flags = smp_load_acquire(&wait->flags);
1392		if (!(flags & WQ_FLAG_WOKEN)) {
1393			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1394				break;
1395
1396			io_schedule();
1397			continue;
1398		}
1399		break;
1400	}
1401
1402	finish_wait(q, wait);
1403
1404	if (thrashing) {
1405		delayacct_thrashing_end(&in_thrashing);
1406		psi_memstall_leave(&pflags);
1407	}
1408}
1409#endif
1410
1411void folio_wait_bit(struct folio *folio, int bit_nr)
1412{
1413	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1414}
1415EXPORT_SYMBOL(folio_wait_bit);
1416
1417int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1418{
1419	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1420}
1421EXPORT_SYMBOL(folio_wait_bit_killable);
1422
1423/**
1424 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1425 * @folio: The folio to wait for.
1426 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1427 *
1428 * The caller should hold a reference on @folio.  They expect the page to
1429 * become unlocked relatively soon, but do not wish to hold up migration
1430 * (for example) by holding the reference while waiting for the folio to
1431 * come unlocked.  After this function returns, the caller should not
1432 * dereference @folio.
1433 *
1434 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1435 */
1436static int folio_put_wait_locked(struct folio *folio, int state)
1437{
1438	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1439}
1440
1441/**
1442 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1443 * @folio: Folio defining the wait queue of interest
1444 * @waiter: Waiter to add to the queue
1445 *
1446 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1447 */
1448void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1449{
1450	wait_queue_head_t *q = folio_waitqueue(folio);
1451	unsigned long flags;
1452
1453	spin_lock_irqsave(&q->lock, flags);
1454	__add_wait_queue_entry_tail(q, waiter);
1455	folio_set_waiters(folio);
1456	spin_unlock_irqrestore(&q->lock, flags);
1457}
1458EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1459
1460/**
1461 * folio_unlock - Unlock a locked folio.
1462 * @folio: The folio.
1463 *
1464 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1465 *
1466 * Context: May be called from interrupt or process context.  May not be
1467 * called from NMI context.
1468 */
1469void folio_unlock(struct folio *folio)
1470{
1471	/* Bit 7 allows x86 to check the byte's sign bit */
1472	BUILD_BUG_ON(PG_waiters != 7);
1473	BUILD_BUG_ON(PG_locked > 7);
1474	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1475	if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1476		folio_wake_bit(folio, PG_locked);
1477}
1478EXPORT_SYMBOL(folio_unlock);
1479
1480/**
1481 * folio_end_read - End read on a folio.
1482 * @folio: The folio.
1483 * @success: True if all reads completed successfully.
1484 *
1485 * When all reads against a folio have completed, filesystems should
1486 * call this function to let the pagecache know that no more reads
1487 * are outstanding.  This will unlock the folio and wake up any thread
1488 * sleeping on the lock.  The folio will also be marked uptodate if all
1489 * reads succeeded.
1490 *
1491 * Context: May be called from interrupt or process context.  May not be
1492 * called from NMI context.
1493 */
1494void folio_end_read(struct folio *folio, bool success)
1495{
1496	unsigned long mask = 1 << PG_locked;
1497
1498	/* Must be in bottom byte for x86 to work */
1499	BUILD_BUG_ON(PG_uptodate > 7);
1500	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1501	VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
1502
1503	if (likely(success))
1504		mask |= 1 << PG_uptodate;
1505	if (folio_xor_flags_has_waiters(folio, mask))
1506		folio_wake_bit(folio, PG_locked);
1507}
1508EXPORT_SYMBOL(folio_end_read);
1509
1510/**
1511 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1512 * @folio: The folio.
1513 *
1514 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1515 * it.  The folio reference held for PG_private_2 being set is released.
1516 *
1517 * This is, for example, used when a netfs folio is being written to a local
1518 * disk cache, thereby allowing writes to the cache for the same folio to be
1519 * serialised.
1520 */
1521void folio_end_private_2(struct folio *folio)
1522{
1523	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1524	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1525	folio_wake_bit(folio, PG_private_2);
1526	folio_put(folio);
1527}
1528EXPORT_SYMBOL(folio_end_private_2);
1529
1530/**
1531 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1532 * @folio: The folio to wait on.
1533 *
1534 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1535 */
1536void folio_wait_private_2(struct folio *folio)
1537{
1538	while (folio_test_private_2(folio))
1539		folio_wait_bit(folio, PG_private_2);
1540}
1541EXPORT_SYMBOL(folio_wait_private_2);
1542
1543/**
1544 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1545 * @folio: The folio to wait on.
1546 *
1547 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1548 * fatal signal is received by the calling task.
1549 *
1550 * Return:
1551 * - 0 if successful.
1552 * - -EINTR if a fatal signal was encountered.
1553 */
1554int folio_wait_private_2_killable(struct folio *folio)
1555{
1556	int ret = 0;
1557
1558	while (folio_test_private_2(folio)) {
1559		ret = folio_wait_bit_killable(folio, PG_private_2);
1560		if (ret < 0)
1561			break;
1562	}
1563
1564	return ret;
1565}
1566EXPORT_SYMBOL(folio_wait_private_2_killable);
1567
1568/**
1569 * folio_end_writeback - End writeback against a folio.
1570 * @folio: The folio.
1571 *
1572 * The folio must actually be under writeback.
1573 *
1574 * Context: May be called from process or interrupt context.
1575 */
1576void folio_end_writeback(struct folio *folio)
1577{
1578	VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
 
1579
1580	/*
1581	 * folio_test_clear_reclaim() could be used here but it is an
1582	 * atomic operation and overkill in this particular case. Failing
1583	 * to shuffle a folio marked for immediate reclaim is too mild
1584	 * a gain to justify taking an atomic operation penalty at the
1585	 * end of every folio writeback.
1586	 */
1587	if (folio_test_reclaim(folio)) {
1588		folio_clear_reclaim(folio);
1589		folio_rotate_reclaimable(folio);
1590	}
1591
1592	/*
1593	 * Writeback does not hold a folio reference of its own, relying
1594	 * on truncation to wait for the clearing of PG_writeback.
1595	 * But here we must make sure that the folio is not freed and
1596	 * reused before the folio_wake_bit().
1597	 */
1598	folio_get(folio);
1599	if (__folio_end_writeback(folio))
1600		folio_wake_bit(folio, PG_writeback);
1601	acct_reclaim_writeback(folio);
1602	folio_put(folio);
1603}
1604EXPORT_SYMBOL(folio_end_writeback);
1605
1606/**
1607 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1608 * @folio: The folio to lock
1609 */
1610void __folio_lock(struct folio *folio)
1611{
1612	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1613				EXCLUSIVE);
1614}
1615EXPORT_SYMBOL(__folio_lock);
1616
1617int __folio_lock_killable(struct folio *folio)
1618{
1619	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1620					EXCLUSIVE);
1621}
1622EXPORT_SYMBOL_GPL(__folio_lock_killable);
1623
1624static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1625{
1626	struct wait_queue_head *q = folio_waitqueue(folio);
1627	int ret;
1628
1629	wait->folio = folio;
1630	wait->bit_nr = PG_locked;
1631
1632	spin_lock_irq(&q->lock);
1633	__add_wait_queue_entry_tail(q, &wait->wait);
1634	folio_set_waiters(folio);
1635	ret = !folio_trylock(folio);
1636	/*
1637	 * If we were successful now, we know we're still on the
1638	 * waitqueue as we're still under the lock. This means it's
1639	 * safe to remove and return success, we know the callback
1640	 * isn't going to trigger.
1641	 */
1642	if (!ret)
1643		__remove_wait_queue(q, &wait->wait);
1644	else
1645		ret = -EIOCBQUEUED;
1646	spin_unlock_irq(&q->lock);
1647	return ret;
1648}
 
1649
1650/*
1651 * Return values:
1652 * 0 - folio is locked.
1653 * non-zero - folio is not locked.
1654 *     mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1655 *     vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1656 *     FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1657 *
1658 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1659 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1660 */
1661vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1662{
1663	unsigned int flags = vmf->flags;
1664
1665	if (fault_flag_allow_retry_first(flags)) {
1666		/*
1667		 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1668		 * released even though returning VM_FAULT_RETRY.
1669		 */
1670		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1671			return VM_FAULT_RETRY;
1672
1673		release_fault_lock(vmf);
1674		if (flags & FAULT_FLAG_KILLABLE)
1675			folio_wait_locked_killable(folio);
1676		else
1677			folio_wait_locked(folio);
1678		return VM_FAULT_RETRY;
1679	}
1680	if (flags & FAULT_FLAG_KILLABLE) {
1681		bool ret;
1682
1683		ret = __folio_lock_killable(folio);
1684		if (ret) {
1685			release_fault_lock(vmf);
1686			return VM_FAULT_RETRY;
1687		}
1688	} else {
1689		__folio_lock(folio);
1690	}
1691
1692	return 0;
1693}
1694
1695/**
1696 * page_cache_next_miss() - Find the next gap in the page cache.
1697 * @mapping: Mapping.
1698 * @index: Index.
1699 * @max_scan: Maximum range to search.
1700 *
1701 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1702 * gap with the lowest index.
1703 *
1704 * This function may be called under the rcu_read_lock.  However, this will
1705 * not atomically search a snapshot of the cache at a single point in time.
1706 * For example, if a gap is created at index 5, then subsequently a gap is
1707 * created at index 10, page_cache_next_miss covering both indices may
1708 * return 10 if called under the rcu_read_lock.
1709 *
1710 * Return: The index of the gap if found, otherwise an index outside the
1711 * range specified (in which case 'return - index >= max_scan' will be true).
1712 * In the rare case of index wrap-around, 0 will be returned.
1713 */
1714pgoff_t page_cache_next_miss(struct address_space *mapping,
1715			     pgoff_t index, unsigned long max_scan)
1716{
1717	XA_STATE(xas, &mapping->i_pages, index);
1718
1719	while (max_scan--) {
1720		void *entry = xas_next(&xas);
1721		if (!entry || xa_is_value(entry))
1722			break;
1723		if (xas.xa_index == 0)
1724			break;
1725	}
1726
1727	return xas.xa_index;
1728}
1729EXPORT_SYMBOL(page_cache_next_miss);
1730
1731/**
1732 * page_cache_prev_miss() - Find the previous gap in the page cache.
1733 * @mapping: Mapping.
1734 * @index: Index.
1735 * @max_scan: Maximum range to search.
1736 *
1737 * Search the range [max(index - max_scan + 1, 0), index] for the
1738 * gap with the highest index.
1739 *
1740 * This function may be called under the rcu_read_lock.  However, this will
1741 * not atomically search a snapshot of the cache at a single point in time.
1742 * For example, if a gap is created at index 10, then subsequently a gap is
1743 * created at index 5, page_cache_prev_miss() covering both indices may
1744 * return 5 if called under the rcu_read_lock.
1745 *
1746 * Return: The index of the gap if found, otherwise an index outside the
1747 * range specified (in which case 'index - return >= max_scan' will be true).
1748 * In the rare case of wrap-around, ULONG_MAX will be returned.
1749 */
1750pgoff_t page_cache_prev_miss(struct address_space *mapping,
1751			     pgoff_t index, unsigned long max_scan)
1752{
1753	XA_STATE(xas, &mapping->i_pages, index);
1754
1755	while (max_scan--) {
1756		void *entry = xas_prev(&xas);
1757		if (!entry || xa_is_value(entry))
1758			break;
1759		if (xas.xa_index == ULONG_MAX)
1760			break;
1761	}
1762
1763	return xas.xa_index;
1764}
1765EXPORT_SYMBOL(page_cache_prev_miss);
1766
1767/*
1768 * Lockless page cache protocol:
1769 * On the lookup side:
1770 * 1. Load the folio from i_pages
1771 * 2. Increment the refcount if it's not zero
1772 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1773 *
1774 * On the removal side:
1775 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1776 * B. Remove the page from i_pages
1777 * C. Return the page to the page allocator
1778 *
1779 * This means that any page may have its reference count temporarily
1780 * increased by a speculative page cache (or fast GUP) lookup as it can
1781 * be allocated by another user before the RCU grace period expires.
1782 * Because the refcount temporarily acquired here may end up being the
1783 * last refcount on the page, any page allocation must be freeable by
1784 * folio_put().
1785 */
1786
1787/*
1788 * filemap_get_entry - Get a page cache entry.
1789 * @mapping: the address_space to search
1790 * @index: The page cache index.
1791 *
1792 * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1793 * it is returned with an increased refcount.  If it is a shadow entry
1794 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1795 * it is returned without further action.
1796 *
1797 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1798 */
1799void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1800{
1801	XA_STATE(xas, &mapping->i_pages, index);
1802	struct folio *folio;
1803
1804	rcu_read_lock();
1805repeat:
1806	xas_reset(&xas);
1807	folio = xas_load(&xas);
1808	if (xas_retry(&xas, folio))
1809		goto repeat;
1810	/*
1811	 * A shadow entry of a recently evicted page, or a swap entry from
1812	 * shmem/tmpfs.  Return it without attempting to raise page count.
1813	 */
1814	if (!folio || xa_is_value(folio))
1815		goto out;
1816
1817	if (!folio_try_get_rcu(folio))
1818		goto repeat;
 
 
 
 
 
1819
1820	if (unlikely(folio != xas_reload(&xas))) {
1821		folio_put(folio);
1822		goto repeat;
 
 
 
 
 
 
1823	}
1824out:
1825	rcu_read_unlock();
1826
1827	return folio;
1828}
 
1829
1830/**
1831 * __filemap_get_folio - Find and get a reference to a folio.
1832 * @mapping: The address_space to search.
1833 * @index: The page index.
1834 * @fgp_flags: %FGP flags modify how the folio is returned.
1835 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1836 *
1837 * Looks up the page cache entry at @mapping & @index.
1838 *
1839 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1840 * if the %GFP flags specified for %FGP_CREAT are atomic.
1841 *
1842 * If this function returns a folio, it is returned with an increased refcount.
 
1843 *
1844 * Return: The found folio or an ERR_PTR() otherwise.
1845 */
1846struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1847		fgf_t fgp_flags, gfp_t gfp)
1848{
1849	struct folio *folio;
1850
1851repeat:
1852	folio = filemap_get_entry(mapping, index);
1853	if (xa_is_value(folio))
1854		folio = NULL;
1855	if (!folio)
1856		goto no_page;
1857
1858	if (fgp_flags & FGP_LOCK) {
1859		if (fgp_flags & FGP_NOWAIT) {
1860			if (!folio_trylock(folio)) {
1861				folio_put(folio);
1862				return ERR_PTR(-EAGAIN);
1863			}
1864		} else {
1865			folio_lock(folio);
1866		}
1867
1868		/* Has the page been truncated? */
1869		if (unlikely(folio->mapping != mapping)) {
1870			folio_unlock(folio);
1871			folio_put(folio);
1872			goto repeat;
1873		}
1874		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1875	}
 
 
 
1876
1877	if (fgp_flags & FGP_ACCESSED)
1878		folio_mark_accessed(folio);
1879	else if (fgp_flags & FGP_WRITE) {
1880		/* Clear idle flag for buffer write */
1881		if (folio_test_idle(folio))
1882			folio_clear_idle(folio);
1883	}
1884
1885	if (fgp_flags & FGP_STABLE)
1886		folio_wait_stable(folio);
1887no_page:
1888	if (!folio && (fgp_flags & FGP_CREAT)) {
1889		unsigned order = FGF_GET_ORDER(fgp_flags);
1890		int err;
1891
1892		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1893			gfp |= __GFP_WRITE;
1894		if (fgp_flags & FGP_NOFS)
1895			gfp &= ~__GFP_FS;
1896		if (fgp_flags & FGP_NOWAIT) {
1897			gfp &= ~GFP_KERNEL;
1898			gfp |= GFP_NOWAIT | __GFP_NOWARN;
1899		}
1900		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1901			fgp_flags |= FGP_LOCK;
1902
1903		if (!mapping_large_folio_support(mapping))
1904			order = 0;
1905		if (order > MAX_PAGECACHE_ORDER)
1906			order = MAX_PAGECACHE_ORDER;
1907		/* If we're not aligned, allocate a smaller folio */
1908		if (index & ((1UL << order) - 1))
1909			order = __ffs(index);
1910
1911		do {
1912			gfp_t alloc_gfp = gfp;
1913
1914			err = -ENOMEM;
1915			if (order == 1)
1916				order = 0;
1917			if (order > 0)
1918				alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1919			folio = filemap_alloc_folio(alloc_gfp, order);
1920			if (!folio)
1921				continue;
1922
1923			/* Init accessed so avoid atomic mark_page_accessed later */
1924			if (fgp_flags & FGP_ACCESSED)
1925				__folio_set_referenced(folio);
1926
1927			err = filemap_add_folio(mapping, folio, index, gfp);
1928			if (!err)
1929				break;
1930			folio_put(folio);
1931			folio = NULL;
1932		} while (order-- > 0);
1933
1934		if (err == -EEXIST)
1935			goto repeat;
1936		if (err)
1937			return ERR_PTR(err);
1938		/*
1939		 * filemap_add_folio locks the page, and for mmap
1940		 * we expect an unlocked page.
 
 
1941		 */
1942		if (folio && (fgp_flags & FGP_FOR_MMAP))
1943			folio_unlock(folio);
 
 
 
 
 
 
1944	}
1945
1946	if (!folio)
1947		return ERR_PTR(-ENOENT);
1948	return folio;
1949}
1950EXPORT_SYMBOL(__filemap_get_folio);
1951
1952static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1953		xa_mark_t mark)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1954{
1955	struct folio *folio;
 
 
1956
1957retry:
1958	if (mark == XA_PRESENT)
1959		folio = xas_find(xas, max);
1960	else
1961		folio = xas_find_marked(xas, max, mark);
1962
1963	if (xas_retry(xas, folio))
1964		goto retry;
1965	/*
1966	 * A shadow entry of a recently evicted page, a swap
1967	 * entry from shmem/tmpfs or a DAX entry.  Return it
1968	 * without attempting to raise page count.
1969	 */
1970	if (!folio || xa_is_value(folio))
1971		return folio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1972
1973	if (!folio_try_get_rcu(folio))
1974		goto reset;
1975
1976	if (unlikely(folio != xas_reload(xas))) {
1977		folio_put(folio);
1978		goto reset;
 
 
 
 
 
 
1979	}
1980
1981	return folio;
1982reset:
1983	xas_reset(xas);
1984	goto retry;
1985}
1986
1987/**
1988 * find_get_entries - gang pagecache lookup
1989 * @mapping:	The address_space to search
1990 * @start:	The starting page cache index
1991 * @end:	The final page index (inclusive).
1992 * @fbatch:	Where the resulting entries are placed.
1993 * @indices:	The cache indices corresponding to the entries in @entries
1994 *
1995 * find_get_entries() will search for and return a batch of entries in
1996 * the mapping.  The entries are placed in @fbatch.  find_get_entries()
1997 * takes a reference on any actual folios it returns.
1998 *
1999 * The entries have ascending indexes.  The indices may not be consecutive
2000 * due to not-present entries or large folios.
2001 *
2002 * Any shadow entries of evicted folios, or swap entries from
2003 * shmem/tmpfs, are included in the returned array.
2004 *
2005 * Return: The number of entries which were found.
2006 */
2007unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2008		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2009{
2010	XA_STATE(xas, &mapping->i_pages, *start);
2011	struct folio *folio;
 
 
 
 
2012
2013	rcu_read_lock();
2014	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2015		indices[fbatch->nr] = xas.xa_index;
2016		if (!folio_batch_add(fbatch, folio))
 
 
 
 
2017			break;
2018	}
2019	rcu_read_unlock();
2020
2021	if (folio_batch_count(fbatch)) {
2022		unsigned long nr = 1;
2023		int idx = folio_batch_count(fbatch) - 1;
2024
2025		folio = fbatch->folios[idx];
2026		if (!xa_is_value(folio))
2027			nr = folio_nr_pages(folio);
2028		*start = indices[idx] + nr;
2029	}
2030	return folio_batch_count(fbatch);
2031}
 
 
 
 
 
2032
2033/**
2034 * find_lock_entries - Find a batch of pagecache entries.
2035 * @mapping:	The address_space to search.
2036 * @start:	The starting page cache index.
2037 * @end:	The final page index (inclusive).
2038 * @fbatch:	Where the resulting entries are placed.
2039 * @indices:	The cache indices of the entries in @fbatch.
2040 *
2041 * find_lock_entries() will return a batch of entries from @mapping.
2042 * Swap, shadow and DAX entries are included.  Folios are returned
2043 * locked and with an incremented refcount.  Folios which are locked
2044 * by somebody else or under writeback are skipped.  Folios which are
2045 * partially outside the range are not returned.
2046 *
2047 * The entries have ascending indexes.  The indices may not be consecutive
2048 * due to not-present entries, large folios, folios which could not be
2049 * locked or folios under writeback.
2050 *
2051 * Return: The number of entries which were found.
2052 */
2053unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2054		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2055{
2056	XA_STATE(xas, &mapping->i_pages, *start);
2057	struct folio *folio;
2058
2059	rcu_read_lock();
2060	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2061		if (!xa_is_value(folio)) {
2062			if (folio->index < *start)
2063				goto put;
2064			if (folio_next_index(folio) - 1 > end)
2065				goto put;
2066			if (!folio_trylock(folio))
2067				goto put;
2068			if (folio->mapping != mapping ||
2069			    folio_test_writeback(folio))
2070				goto unlock;
2071			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2072					folio);
2073		}
2074		indices[fbatch->nr] = xas.xa_index;
2075		if (!folio_batch_add(fbatch, folio))
 
 
 
 
 
 
2076			break;
2077		continue;
2078unlock:
2079		folio_unlock(folio);
2080put:
2081		folio_put(folio);
2082	}
2083	rcu_read_unlock();
2084
2085	if (folio_batch_count(fbatch)) {
2086		unsigned long nr = 1;
2087		int idx = folio_batch_count(fbatch) - 1;
2088
2089		folio = fbatch->folios[idx];
2090		if (!xa_is_value(folio))
2091			nr = folio_nr_pages(folio);
2092		*start = indices[idx] + nr;
2093	}
2094	return folio_batch_count(fbatch);
 
2095}
 
2096
2097/**
2098 * filemap_get_folios - Get a batch of folios
2099 * @mapping:	The address_space to search
2100 * @start:	The starting page index
2101 * @end:	The final page index (inclusive)
2102 * @fbatch:	The batch to fill.
2103 *
2104 * Search for and return a batch of folios in the mapping starting at
2105 * index @start and up to index @end (inclusive).  The folios are returned
2106 * in @fbatch with an elevated reference count.
2107 *
2108 * Return: The number of folios which were found.
2109 * We also update @start to index the next folio for the traversal.
2110 */
2111unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2112		pgoff_t end, struct folio_batch *fbatch)
2113{
2114	return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2115}
2116EXPORT_SYMBOL(filemap_get_folios);
2117
2118/**
2119 * filemap_get_folios_contig - Get a batch of contiguous folios
2120 * @mapping:	The address_space to search
2121 * @start:	The starting page index
2122 * @end:	The final page index (inclusive)
2123 * @fbatch:	The batch to fill
2124 *
2125 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2126 * except the returned folios are guaranteed to be contiguous. This may
2127 * not return all contiguous folios if the batch gets filled up.
2128 *
2129 * Return: The number of folios found.
2130 * Also update @start to be positioned for traversal of the next folio.
2131 */
2132
2133unsigned filemap_get_folios_contig(struct address_space *mapping,
2134		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2135{
2136	XA_STATE(xas, &mapping->i_pages, *start);
2137	unsigned long nr;
2138	struct folio *folio;
2139
2140	rcu_read_lock();
2141
2142	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2143			folio = xas_next(&xas)) {
2144		if (xas_retry(&xas, folio))
 
 
 
2145			continue;
2146		/*
2147		 * If the entry has been swapped out, we can stop looking.
2148		 * No current caller is looking for DAX entries.
2149		 */
2150		if (xa_is_value(folio))
2151			goto update_start;
2152
2153		if (!folio_try_get_rcu(folio))
2154			goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
2155
2156		if (unlikely(folio != xas_reload(&xas)))
2157			goto put_folio;
2158
2159		if (!folio_batch_add(fbatch, folio)) {
2160			nr = folio_nr_pages(folio);
2161			*start = folio->index + nr;
2162			goto out;
2163		}
2164		continue;
2165put_folio:
2166		folio_put(folio);
2167
2168retry:
2169		xas_reset(&xas);
 
2170	}
2171
2172update_start:
2173	nr = folio_batch_count(fbatch);
2174
2175	if (nr) {
2176		folio = fbatch->folios[nr - 1];
2177		*start = folio_next_index(folio);
2178	}
2179out:
2180	rcu_read_unlock();
2181	return folio_batch_count(fbatch);
 
 
 
 
2182}
2183EXPORT_SYMBOL(filemap_get_folios_contig);
2184
2185/**
2186 * filemap_get_folios_tag - Get a batch of folios matching @tag
2187 * @mapping:    The address_space to search
2188 * @start:      The starting page index
2189 * @end:        The final page index (inclusive)
2190 * @tag:        The tag index
2191 * @fbatch:     The batch to fill
2192 *
2193 * The first folio may start before @start; if it does, it will contain
2194 * @start.  The final folio may extend beyond @end; if it does, it will
2195 * contain @end.  The folios have ascending indices.  There may be gaps
2196 * between the folios if there are indices which have no folio in the
2197 * page cache.  If folios are added to or removed from the page cache
2198 * while this is running, they may or may not be found by this call.
2199 * Only returns folios that are tagged with @tag.
2200 *
2201 * Return: The number of folios found.
2202 * Also update @start to index the next folio for traversal.
 
 
 
 
 
2203 */
2204unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2205			pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2206{
2207	XA_STATE(xas, &mapping->i_pages, *start);
2208	struct folio *folio;
2209
2210	rcu_read_lock();
2211	while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2212		/*
2213		 * Shadow entries should never be tagged, but this iteration
2214		 * is lockless so there is a window for page reclaim to evict
2215		 * a page we saw tagged. Skip over it.
2216		 */
2217		if (xa_is_value(folio))
2218			continue;
2219		if (!folio_batch_add(fbatch, folio)) {
2220			unsigned long nr = folio_nr_pages(folio);
2221			*start = folio->index + nr;
2222			goto out;
2223		}
2224	}
2225	/*
2226	 * We come here when there is no page beyond @end. We take care to not
2227	 * overflow the index @start as it confuses some of the callers. This
2228	 * breaks the iteration when there is a page at index -1 but that is
2229	 * already broke anyway.
2230	 */
2231	if (end == (pgoff_t)-1)
2232		*start = (pgoff_t)-1;
2233	else
2234		*start = end + 1;
2235out:
2236	rcu_read_unlock();
2237
2238	return folio_batch_count(fbatch);
2239}
2240EXPORT_SYMBOL(filemap_get_folios_tag);
2241
2242/*
2243 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2244 * a _large_ part of the i/o request. Imagine the worst scenario:
2245 *
2246 *      ---R__________________________________________B__________
2247 *         ^ reading here                             ^ bad block(assume 4k)
2248 *
2249 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2250 * => failing the whole request => read(R) => read(R+1) =>
2251 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2252 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2253 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2254 *
2255 * It is going insane. Fix it by quickly scaling down the readahead size.
2256 */
2257static void shrink_readahead_size_eio(struct file_ra_state *ra)
 
2258{
2259	ra->ra_pages /= 4;
2260}
2261
2262/*
2263 * filemap_get_read_batch - Get a batch of folios for read
 
 
 
 
 
 
 
2264 *
2265 * Get a batch of folios which represent a contiguous range of bytes in
2266 * the file.  No exceptional entries will be returned.  If @index is in
2267 * the middle of a folio, the entire folio will be returned.  The last
2268 * folio in the batch may have the readahead flag set or the uptodate flag
2269 * clear so that the caller can take the appropriate action.
2270 */
2271static void filemap_get_read_batch(struct address_space *mapping,
2272		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2273{
2274	XA_STATE(xas, &mapping->i_pages, index);
2275	struct folio *folio;
2276
2277	rcu_read_lock();
2278	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2279		if (xas_retry(&xas, folio))
2280			continue;
2281		if (xas.xa_index > max || xa_is_value(folio))
2282			break;
2283		if (xa_is_sibling(folio))
2284			break;
2285		if (!folio_try_get_rcu(folio))
2286			goto retry;
2287
2288		if (unlikely(folio != xas_reload(&xas)))
2289			goto put_folio;
2290
2291		if (!folio_batch_add(fbatch, folio))
2292			break;
2293		if (!folio_test_uptodate(folio))
2294			break;
2295		if (folio_test_readahead(folio))
2296			break;
2297		xas_advance(&xas, folio_next_index(folio) - 1);
2298		continue;
2299put_folio:
2300		folio_put(folio);
2301retry:
2302		xas_reset(&xas);
2303	}
2304	rcu_read_unlock();
2305}
2306
2307static int filemap_read_folio(struct file *file, filler_t filler,
2308		struct folio *folio)
2309{
2310	bool workingset = folio_test_workingset(folio);
2311	unsigned long pflags;
2312	int error;
2313
2314	/*
2315	 * A previous I/O error may have been due to temporary failures,
2316	 * eg. multipath errors.  PG_error will be set again if read_folio
2317	 * fails.
2318	 */
2319	folio_clear_error(folio);
2320
2321	/* Start the actual read. The read will unlock the page. */
2322	if (unlikely(workingset))
2323		psi_memstall_enter(&pflags);
2324	error = filler(file, folio);
2325	if (unlikely(workingset))
2326		psi_memstall_leave(&pflags);
2327	if (error)
2328		return error;
2329
2330	error = folio_wait_locked_killable(folio);
2331	if (error)
2332		return error;
2333	if (folio_test_uptodate(folio))
2334		return 0;
2335	if (file)
2336		shrink_readahead_size_eio(&file->f_ra);
2337	return -EIO;
2338}
2339
2340static bool filemap_range_uptodate(struct address_space *mapping,
2341		loff_t pos, size_t count, struct folio *folio,
2342		bool need_uptodate)
2343{
2344	if (folio_test_uptodate(folio))
2345		return true;
2346	/* pipes can't handle partially uptodate pages */
2347	if (need_uptodate)
2348		return false;
2349	if (!mapping->a_ops->is_partially_uptodate)
2350		return false;
2351	if (mapping->host->i_blkbits >= folio_shift(folio))
2352		return false;
2353
2354	if (folio_pos(folio) > pos) {
2355		count -= folio_pos(folio) - pos;
2356		pos = 0;
2357	} else {
2358		pos -= folio_pos(folio);
2359	}
2360
2361	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2362}
2363
2364static int filemap_update_page(struct kiocb *iocb,
2365		struct address_space *mapping, size_t count,
2366		struct folio *folio, bool need_uptodate)
2367{
2368	int error;
2369
2370	if (iocb->ki_flags & IOCB_NOWAIT) {
2371		if (!filemap_invalidate_trylock_shared(mapping))
2372			return -EAGAIN;
2373	} else {
2374		filemap_invalidate_lock_shared(mapping);
2375	}
2376
2377	if (!folio_trylock(folio)) {
2378		error = -EAGAIN;
2379		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2380			goto unlock_mapping;
2381		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2382			filemap_invalidate_unlock_shared(mapping);
2383			/*
2384			 * This is where we usually end up waiting for a
2385			 * previously submitted readahead to finish.
2386			 */
2387			folio_put_wait_locked(folio, TASK_KILLABLE);
2388			return AOP_TRUNCATED_PAGE;
2389		}
2390		error = __folio_lock_async(folio, iocb->ki_waitq);
2391		if (error)
2392			goto unlock_mapping;
2393	}
2394
2395	error = AOP_TRUNCATED_PAGE;
2396	if (!folio->mapping)
2397		goto unlock;
2398
2399	error = 0;
2400	if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2401				   need_uptodate))
2402		goto unlock;
2403
2404	error = -EAGAIN;
2405	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2406		goto unlock;
2407
2408	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2409			folio);
2410	goto unlock_mapping;
2411unlock:
2412	folio_unlock(folio);
2413unlock_mapping:
2414	filemap_invalidate_unlock_shared(mapping);
2415	if (error == AOP_TRUNCATED_PAGE)
2416		folio_put(folio);
2417	return error;
2418}
2419
2420static int filemap_create_folio(struct file *file,
2421		struct address_space *mapping, pgoff_t index,
2422		struct folio_batch *fbatch)
2423{
2424	struct folio *folio;
2425	int error;
2426
2427	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2428	if (!folio)
2429		return -ENOMEM;
2430
2431	/*
2432	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2433	 * here assures we cannot instantiate and bring uptodate new
2434	 * pagecache folios after evicting page cache during truncate
2435	 * and before actually freeing blocks.	Note that we could
2436	 * release invalidate_lock after inserting the folio into
2437	 * the page cache as the locked folio would then be enough to
2438	 * synchronize with hole punching. But there are code paths
2439	 * such as filemap_update_page() filling in partially uptodate
2440	 * pages or ->readahead() that need to hold invalidate_lock
2441	 * while mapping blocks for IO so let's hold the lock here as
2442	 * well to keep locking rules simple.
2443	 */
2444	filemap_invalidate_lock_shared(mapping);
2445	error = filemap_add_folio(mapping, folio, index,
2446			mapping_gfp_constraint(mapping, GFP_KERNEL));
2447	if (error == -EEXIST)
2448		error = AOP_TRUNCATED_PAGE;
2449	if (error)
2450		goto error;
2451
2452	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2453	if (error)
2454		goto error;
2455
2456	filemap_invalidate_unlock_shared(mapping);
2457	folio_batch_add(fbatch, folio);
2458	return 0;
2459error:
2460	filemap_invalidate_unlock_shared(mapping);
2461	folio_put(folio);
2462	return error;
2463}
2464
2465static int filemap_readahead(struct kiocb *iocb, struct file *file,
2466		struct address_space *mapping, struct folio *folio,
2467		pgoff_t last_index)
2468{
2469	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2470
2471	if (iocb->ki_flags & IOCB_NOIO)
2472		return -EAGAIN;
2473	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2474	return 0;
2475}
2476
2477static int filemap_get_pages(struct kiocb *iocb, size_t count,
2478		struct folio_batch *fbatch, bool need_uptodate)
2479{
2480	struct file *filp = iocb->ki_filp;
2481	struct address_space *mapping = filp->f_mapping;
 
2482	struct file_ra_state *ra = &filp->f_ra;
2483	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2484	pgoff_t last_index;
2485	struct folio *folio;
2486	int err = 0;
2487
2488	/* "last_index" is the index of the page beyond the end of the read */
2489	last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2490retry:
2491	if (fatal_signal_pending(current))
2492		return -EINTR;
2493
2494	filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2495	if (!folio_batch_count(fbatch)) {
2496		if (iocb->ki_flags & IOCB_NOIO)
2497			return -EAGAIN;
2498		page_cache_sync_readahead(mapping, ra, filp, index,
2499				last_index - index);
2500		filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2501	}
2502	if (!folio_batch_count(fbatch)) {
2503		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2504			return -EAGAIN;
2505		err = filemap_create_folio(filp, mapping,
2506				iocb->ki_pos >> PAGE_SHIFT, fbatch);
2507		if (err == AOP_TRUNCATED_PAGE)
2508			goto retry;
2509		return err;
2510	}
2511
2512	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2513	if (folio_test_readahead(folio)) {
2514		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2515		if (err)
2516			goto err;
2517	}
2518	if (!folio_test_uptodate(folio)) {
2519		if ((iocb->ki_flags & IOCB_WAITQ) &&
2520		    folio_batch_count(fbatch) > 1)
2521			iocb->ki_flags |= IOCB_NOWAIT;
2522		err = filemap_update_page(iocb, mapping, count, folio,
2523					  need_uptodate);
2524		if (err)
2525			goto err;
2526	}
2527
2528	return 0;
2529err:
2530	if (err < 0)
2531		folio_put(folio);
2532	if (likely(--fbatch->nr))
2533		return 0;
2534	if (err == AOP_TRUNCATED_PAGE)
2535		goto retry;
2536	return err;
2537}
2538
2539static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2540{
2541	unsigned int shift = folio_shift(folio);
2542
2543	return (pos1 >> shift == pos2 >> shift);
2544}
2545
2546/**
2547 * filemap_read - Read data from the page cache.
2548 * @iocb: The iocb to read.
2549 * @iter: Destination for the data.
2550 * @already_read: Number of bytes already read by the caller.
2551 *
2552 * Copies data from the page cache.  If the data is not currently present,
2553 * uses the readahead and read_folio address_space operations to fetch it.
2554 *
2555 * Return: Total number of bytes copied, including those already read by
2556 * the caller.  If an error happens before any bytes are copied, returns
2557 * a negative error number.
2558 */
2559ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2560		ssize_t already_read)
2561{
2562	struct file *filp = iocb->ki_filp;
2563	struct file_ra_state *ra = &filp->f_ra;
2564	struct address_space *mapping = filp->f_mapping;
2565	struct inode *inode = mapping->host;
2566	struct folio_batch fbatch;
2567	int i, error = 0;
2568	bool writably_mapped;
2569	loff_t isize, end_offset;
2570	loff_t last_pos = ra->prev_pos;
2571
2572	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2573		return 0;
2574	if (unlikely(!iov_iter_count(iter)))
2575		return 0;
 
2576
2577	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2578	folio_batch_init(&fbatch);
 
 
 
2579
2580	do {
2581		cond_resched();
2582
2583		/*
2584		 * If we've already successfully copied some data, then we
2585		 * can no longer safely return -EIOCBQUEUED. Hence mark
2586		 * an async read NOWAIT at that point.
2587		 */
2588		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2589			iocb->ki_flags |= IOCB_NOWAIT;
2590
2591		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2592			break;
2593
2594		error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2595		if (error < 0)
2596			break;
2597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2598		/*
2599		 * i_size must be checked after we know the pages are Uptodate.
2600		 *
2601		 * Checking i_size after the check allows us to calculate
2602		 * the correct value for "nr", which means the zero-filled
2603		 * part of the page is not copied back to userspace (unless
2604		 * another truncate extends the file - this is desired though).
2605		 */
 
2606		isize = i_size_read(inode);
2607		if (unlikely(iocb->ki_pos >= isize))
2608			goto put_folios;
2609		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
 
 
2610
2611		/*
2612		 * Pairs with a barrier in
2613		 * block_write_end()->mark_buffer_dirty() or other page
2614		 * dirtying routines like iomap_write_end() to ensure
2615		 * changes to page contents are visible before we see
2616		 * increased inode size.
 
 
 
 
 
 
 
 
2617		 */
2618		smp_rmb();
 
2619
2620		/*
2621		 * Once we start copying data, we don't want to be touching any
2622		 * cachelines that might be contended:
2623		 */
2624		writably_mapped = mapping_writably_mapped(mapping);
 
 
2625
2626		/*
2627		 * When a read accesses the same folio several times, only
2628		 * mark it as accessed the first time.
2629		 */
2630		if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2631				    fbatch.folios[0]))
2632			folio_mark_accessed(fbatch.folios[0]);
2633
2634		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2635			struct folio *folio = fbatch.folios[i];
2636			size_t fsize = folio_size(folio);
2637			size_t offset = iocb->ki_pos & (fsize - 1);
2638			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2639					     fsize - offset);
2640			size_t copied;
2641
2642			if (end_offset < folio_pos(folio))
2643				break;
2644			if (i > 0)
2645				folio_mark_accessed(folio);
2646			/*
2647			 * If users can be writing to this folio using arbitrary
2648			 * virtual addresses, take care of potential aliasing
2649			 * before reading the folio on the kernel side.
2650			 */
2651			if (writably_mapped)
2652				flush_dcache_folio(folio);
2653
2654			copied = copy_folio_to_iter(folio, offset, bytes, iter);
 
 
 
2655
2656			already_read += copied;
2657			iocb->ki_pos += copied;
2658			last_pos = iocb->ki_pos;
2659
2660			if (copied < bytes) {
2661				error = -EFAULT;
2662				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2663			}
 
2664		}
2665put_folios:
2666		for (i = 0; i < folio_batch_count(&fbatch); i++)
2667			folio_put(fbatch.folios[i]);
2668		folio_batch_init(&fbatch);
2669	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2670
2671	file_accessed(filp);
2672	ra->prev_pos = last_pos;
2673	return already_read ? already_read : error;
2674}
2675EXPORT_SYMBOL_GPL(filemap_read);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2676
2677int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2678{
2679	struct address_space *mapping = iocb->ki_filp->f_mapping;
2680	loff_t pos = iocb->ki_pos;
2681	loff_t end = pos + count - 1;
2682
2683	if (iocb->ki_flags & IOCB_NOWAIT) {
2684		if (filemap_range_needs_writeback(mapping, pos, end))
2685			return -EAGAIN;
2686		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2687	}
2688
2689	return filemap_write_and_wait_range(mapping, pos, end);
 
 
 
 
 
 
2690}
2691EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2692
2693int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
 
2694{
2695	struct address_space *mapping = iocb->ki_filp->f_mapping;
2696	loff_t pos = iocb->ki_pos;
2697	loff_t end = pos + count - 1;
2698	int ret;
2699
2700	if (iocb->ki_flags & IOCB_NOWAIT) {
2701		/* we could block if there are any pages in the range */
2702		if (filemap_range_has_page(mapping, pos, end))
2703			return -EAGAIN;
2704	} else {
2705		ret = filemap_write_and_wait_range(mapping, pos, end);
2706		if (ret)
2707			return ret;
2708	}
2709
2710	/*
2711	 * After a write we want buffered reads to be sure to go to disk to get
2712	 * the new data.  We invalidate clean cached page from the region we're
2713	 * about to write.  We do this *before* the write so that we can return
2714	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2715	 */
2716	return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2717					     end >> PAGE_SHIFT);
2718}
2719EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2720
2721/**
2722 * generic_file_read_iter - generic filesystem read routine
2723 * @iocb:	kernel I/O control block
2724 * @iter:	destination for the data read
2725 *
2726 * This is the "read_iter()" routine for all filesystems
2727 * that can use the page cache directly.
2728 *
2729 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2730 * be returned when no data can be read without waiting for I/O requests
2731 * to complete; it doesn't prevent readahead.
2732 *
2733 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2734 * requests shall be made for the read or for readahead.  When no data
2735 * can be read, -EAGAIN shall be returned.  When readahead would be
2736 * triggered, a partial, possibly empty read shall be returned.
2737 *
2738 * Return:
2739 * * number of bytes copied, even for partial reads
2740 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2741 */
2742ssize_t
2743generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2744{
2745	size_t count = iov_iter_count(iter);
2746	ssize_t retval = 0;
2747
2748	if (!count)
2749		return 0; /* skip atime */
2750
2751	if (iocb->ki_flags & IOCB_DIRECT) {
2752		struct file *file = iocb->ki_filp;
2753		struct address_space *mapping = file->f_mapping;
2754		struct inode *inode = mapping->host;
2755
2756		retval = kiocb_write_and_wait(iocb, count);
2757		if (retval < 0)
2758			return retval;
2759		file_accessed(file);
2760
2761		retval = mapping->a_ops->direct_IO(iocb, iter);
2762		if (retval >= 0) {
2763			iocb->ki_pos += retval;
2764			count -= retval;
2765		}
2766		if (retval != -EIOCBQUEUED)
2767			iov_iter_revert(iter, count - iov_iter_count(iter));
2768
2769		/*
2770		 * Btrfs can have a short DIO read if we encounter
2771		 * compressed extents, so if there was an error, or if
2772		 * we've already read everything we wanted to, or if
2773		 * there was a short read because we hit EOF, go ahead
2774		 * and return.  Otherwise fallthrough to buffered io for
2775		 * the rest of the read.  Buffered reads will not work for
2776		 * DAX files, so don't bother trying.
2777		 */
2778		if (retval < 0 || !count || IS_DAX(inode))
2779			return retval;
2780		if (iocb->ki_pos >= i_size_read(inode))
2781			return retval;
2782	}
2783
2784	return filemap_read(iocb, iter, retval);
 
 
 
2785}
2786EXPORT_SYMBOL(generic_file_read_iter);
2787
2788/*
2789 * Splice subpages from a folio into a pipe.
 
 
 
 
 
 
 
 
2790 */
2791size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2792			      struct folio *folio, loff_t fpos, size_t size)
2793{
2794	struct page *page;
2795	size_t spliced = 0, offset = offset_in_folio(folio, fpos);
 
 
2796
2797	page = folio_page(folio, offset / PAGE_SIZE);
2798	size = min(size, folio_size(folio) - offset);
2799	offset %= PAGE_SIZE;
2800
2801	while (spliced < size &&
2802	       !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2803		struct pipe_buffer *buf = pipe_head_buf(pipe);
2804		size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2805
2806		*buf = (struct pipe_buffer) {
2807			.ops	= &page_cache_pipe_buf_ops,
2808			.page	= page,
2809			.offset	= offset,
2810			.len	= part,
2811		};
2812		folio_get(folio);
2813		pipe->head++;
2814		page++;
2815		spliced += part;
2816		offset = 0;
2817	}
2818
2819	return spliced;
2820}
 
2821
2822/**
2823 * filemap_splice_read -  Splice data from a file's pagecache into a pipe
2824 * @in: The file to read from
2825 * @ppos: Pointer to the file position to read from
2826 * @pipe: The pipe to splice into
2827 * @len: The amount to splice
2828 * @flags: The SPLICE_F_* flags
2829 *
2830 * This function gets folios from a file's pagecache and splices them into the
2831 * pipe.  Readahead will be called as necessary to fill more folios.  This may
2832 * be used for blockdevs also.
2833 *
2834 * Return: On success, the number of bytes read will be returned and *@ppos
2835 * will be updated if appropriate; 0 will be returned if there is no more data
2836 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2837 * other negative error code will be returned on error.  A short read may occur
2838 * if the pipe has insufficient space, we reach the end of the data or we hit a
2839 * hole.
2840 */
2841ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2842			    struct pipe_inode_info *pipe,
2843			    size_t len, unsigned int flags)
2844{
2845	struct folio_batch fbatch;
2846	struct kiocb iocb;
2847	size_t total_spliced = 0, used, npages;
2848	loff_t isize, end_offset;
2849	bool writably_mapped;
2850	int i, error = 0;
2851
2852	if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2853		return 0;
2854
2855	init_sync_kiocb(&iocb, in);
2856	iocb.ki_pos = *ppos;
2857
2858	/* Work out how much data we can actually add into the pipe */
2859	used = pipe_occupancy(pipe->head, pipe->tail);
2860	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2861	len = min_t(size_t, len, npages * PAGE_SIZE);
2862
2863	folio_batch_init(&fbatch);
2864
2865	do {
2866		cond_resched();
2867
2868		if (*ppos >= i_size_read(in->f_mapping->host))
2869			break;
2870
2871		iocb.ki_pos = *ppos;
2872		error = filemap_get_pages(&iocb, len, &fbatch, true);
2873		if (error < 0)
2874			break;
2875
2876		/*
2877		 * i_size must be checked after we know the pages are Uptodate.
2878		 *
2879		 * Checking i_size after the check allows us to calculate
2880		 * the correct value for "nr", which means the zero-filled
2881		 * part of the page is not copied back to userspace (unless
2882		 * another truncate extends the file - this is desired though).
2883		 */
2884		isize = i_size_read(in->f_mapping->host);
2885		if (unlikely(*ppos >= isize))
2886			break;
2887		end_offset = min_t(loff_t, isize, *ppos + len);
2888
2889		/*
2890		 * Once we start copying data, we don't want to be touching any
2891		 * cachelines that might be contended:
2892		 */
2893		writably_mapped = mapping_writably_mapped(in->f_mapping);
2894
2895		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2896			struct folio *folio = fbatch.folios[i];
2897			size_t n;
2898
2899			if (folio_pos(folio) >= end_offset)
2900				goto out;
2901			folio_mark_accessed(folio);
2902
2903			/*
2904			 * If users can be writing to this folio using arbitrary
2905			 * virtual addresses, take care of potential aliasing
2906			 * before reading the folio on the kernel side.
 
 
 
2907			 */
2908			if (writably_mapped)
2909				flush_dcache_folio(folio);
2910
2911			n = min_t(loff_t, len, isize - *ppos);
2912			n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2913			if (!n)
2914				goto out;
2915			len -= n;
2916			total_spliced += n;
2917			*ppos += n;
2918			in->f_ra.prev_pos = *ppos;
2919			if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2920				goto out;
 
2921		}
 
2922
2923		folio_batch_release(&fbatch);
2924	} while (len);
2925
2926out:
2927	folio_batch_release(&fbatch);
2928	file_accessed(in);
2929
2930	return total_spliced ? total_spliced : error;
2931}
2932EXPORT_SYMBOL(filemap_splice_read);
2933
2934static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2935		struct address_space *mapping, struct folio *folio,
2936		loff_t start, loff_t end, bool seek_data)
2937{
2938	const struct address_space_operations *ops = mapping->a_ops;
2939	size_t offset, bsz = i_blocksize(mapping->host);
2940
2941	if (xa_is_value(folio) || folio_test_uptodate(folio))
2942		return seek_data ? start : end;
2943	if (!ops->is_partially_uptodate)
2944		return seek_data ? end : start;
2945
2946	xas_pause(xas);
2947	rcu_read_unlock();
2948	folio_lock(folio);
2949	if (unlikely(folio->mapping != mapping))
2950		goto unlock;
2951
2952	offset = offset_in_folio(folio, start) & ~(bsz - 1);
 
 
 
 
 
 
 
 
 
 
 
2953
2954	do {
2955		if (ops->is_partially_uptodate(folio, offset, bsz) ==
2956							seek_data)
 
 
 
 
 
 
 
2957			break;
2958		start = (start + bsz) & ~(bsz - 1);
2959		offset += bsz;
2960	} while (offset < folio_size(folio));
2961unlock:
2962	folio_unlock(folio);
2963	rcu_read_lock();
2964	return start;
2965}
2966
2967static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2968{
2969	if (xa_is_value(folio))
2970		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2971	return folio_size(folio);
2972}
2973
2974/**
2975 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2976 * @mapping: Address space to search.
2977 * @start: First byte to consider.
2978 * @end: Limit of search (exclusive).
2979 * @whence: Either SEEK_HOLE or SEEK_DATA.
2980 *
2981 * If the page cache knows which blocks contain holes and which blocks
2982 * contain data, your filesystem can use this function to implement
2983 * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2984 * entirely memory-based such as tmpfs, and filesystems which support
2985 * unwritten extents.
2986 *
2987 * Return: The requested offset on success, or -ENXIO if @whence specifies
2988 * SEEK_DATA and there is no data after @start.  There is an implicit hole
2989 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2990 * and @end contain data.
2991 */
2992loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2993		loff_t end, int whence)
2994{
2995	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2996	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2997	bool seek_data = (whence == SEEK_DATA);
2998	struct folio *folio;
2999
3000	if (end <= start)
3001		return -ENXIO;
3002
3003	rcu_read_lock();
3004	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3005		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3006		size_t seek_size;
3007
3008		if (start < pos) {
3009			if (!seek_data)
3010				goto unlock;
3011			start = pos;
3012		}
3013
3014		seek_size = seek_folio_size(&xas, folio);
3015		pos = round_up((u64)pos + 1, seek_size);
3016		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3017				seek_data);
3018		if (start < pos)
3019			goto unlock;
3020		if (start >= end)
3021			break;
3022		if (seek_size > PAGE_SIZE)
3023			xas_set(&xas, pos >> PAGE_SHIFT);
3024		if (!xa_is_value(folio))
3025			folio_put(folio);
3026	}
3027	if (seek_data)
3028		start = -ENXIO;
3029unlock:
3030	rcu_read_unlock();
3031	if (folio && !xa_is_value(folio))
3032		folio_put(folio);
3033	if (start > end)
3034		return end;
3035	return start;
3036}
 
3037
3038#ifdef CONFIG_MMU
3039#define MMAP_LOTSAMISS  (100)
3040/*
3041 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3042 * @vmf - the vm_fault for this fault.
3043 * @folio - the folio to lock.
3044 * @fpin - the pointer to the file we may pin (or is already pinned).
3045 *
3046 * This works similar to lock_folio_or_retry in that it can drop the
3047 * mmap_lock.  It differs in that it actually returns the folio locked
3048 * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
3049 * to drop the mmap_lock then fpin will point to the pinned file and
3050 * needs to be fput()'ed at a later point.
3051 */
3052static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3053				     struct file **fpin)
3054{
3055	if (folio_trylock(folio))
3056		return 1;
 
3057
3058	/*
3059	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3060	 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3061	 * is supposed to work. We have way too many special cases..
3062	 */
3063	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3064		return 0;
 
 
 
3065
3066	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3067	if (vmf->flags & FAULT_FLAG_KILLABLE) {
3068		if (__folio_lock_killable(folio)) {
3069			/*
3070			 * We didn't have the right flags to drop the
3071			 * fault lock, but all fault_handlers only check
3072			 * for fatal signals if we return VM_FAULT_RETRY,
3073			 * so we need to drop the fault lock here and
3074			 * return 0 if we don't have a fpin.
3075			 */
3076			if (*fpin == NULL)
3077				release_fault_lock(vmf);
3078			return 0;
3079		}
3080	} else
3081		__folio_lock(folio);
3082
3083	return 1;
 
 
3084}
3085
 
 
3086/*
3087 * Synchronous readahead happens when we don't even find a page in the page
3088 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
3089 * to drop the mmap sem we return the file that was pinned in order for us to do
3090 * that.  If we didn't pin a file then we return NULL.  The file that is
3091 * returned needs to be fput()'ed when we're done with it.
3092 */
3093static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
 
 
 
3094{
3095	struct file *file = vmf->vma->vm_file;
3096	struct file_ra_state *ra = &file->f_ra;
3097	struct address_space *mapping = file->f_mapping;
3098	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3099	struct file *fpin = NULL;
3100	unsigned long vm_flags = vmf->vma->vm_flags;
3101	unsigned int mmap_miss;
3102
3103#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3104	/* Use the readahead code, even if readahead is disabled */
3105	if (vm_flags & VM_HUGEPAGE) {
3106		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3107		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3108		ra->size = HPAGE_PMD_NR;
3109		/*
3110		 * Fetch two PMD folios, so we get the chance to actually
3111		 * readahead, unless we've been told not to.
3112		 */
3113		if (!(vm_flags & VM_RAND_READ))
3114			ra->size *= 2;
3115		ra->async_size = HPAGE_PMD_NR;
3116		page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3117		return fpin;
3118	}
3119#endif
3120
3121	/* If we don't want any read-ahead, don't bother */
3122	if (vm_flags & VM_RAND_READ)
3123		return fpin;
3124	if (!ra->ra_pages)
3125		return fpin;
3126
3127	if (vm_flags & VM_SEQ_READ) {
3128		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3129		page_cache_sync_ra(&ractl, ra->ra_pages);
3130		return fpin;
3131	}
3132
3133	/* Avoid banging the cache line if not needed */
3134	mmap_miss = READ_ONCE(ra->mmap_miss);
3135	if (mmap_miss < MMAP_LOTSAMISS * 10)
3136		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3137
3138	/*
3139	 * Do we miss much more than hit in this file? If so,
3140	 * stop bothering with read-ahead. It will only hurt.
3141	 */
3142	if (mmap_miss > MMAP_LOTSAMISS)
3143		return fpin;
3144
3145	/*
3146	 * mmap read-around
3147	 */
3148	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3149	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3150	ra->size = ra->ra_pages;
3151	ra->async_size = ra->ra_pages / 4;
3152	ractl._index = ra->start;
3153	page_cache_ra_order(&ractl, ra, 0);
3154	return fpin;
3155}
3156
3157/*
3158 * Asynchronous readahead happens when we find the page and PG_readahead,
3159 * so we want to possibly extend the readahead further.  We return the file that
3160 * was pinned if we have to drop the mmap_lock in order to do IO.
3161 */
3162static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3163					    struct folio *folio)
 
 
 
3164{
3165	struct file *file = vmf->vma->vm_file;
3166	struct file_ra_state *ra = &file->f_ra;
3167	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3168	struct file *fpin = NULL;
3169	unsigned int mmap_miss;
3170
3171	/* If we don't want any read-ahead, don't bother */
3172	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3173		return fpin;
3174
3175	mmap_miss = READ_ONCE(ra->mmap_miss);
3176	if (mmap_miss)
3177		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3178
3179	if (folio_test_readahead(folio)) {
3180		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3181		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3182	}
3183	return fpin;
3184}
3185
3186/**
3187 * filemap_fault - read in file data for page fault handling
 
3188 * @vmf:	struct vm_fault containing details of the fault
3189 *
3190 * filemap_fault() is invoked via the vma operations vector for a
3191 * mapped memory region to read in file data during a page fault.
3192 *
3193 * The goto's are kind of ugly, but this streamlines the normal case of having
3194 * it in the page cache, and handles the special cases reasonably without
3195 * having a lot of duplicated code.
3196 *
3197 * vma->vm_mm->mmap_lock must be held on entry.
3198 *
3199 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3200 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3201 *
3202 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3203 * has not been released.
3204 *
3205 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3206 *
3207 * Return: bitwise-OR of %VM_FAULT_ codes.
3208 */
3209vm_fault_t filemap_fault(struct vm_fault *vmf)
3210{
3211	int error;
3212	struct file *file = vmf->vma->vm_file;
3213	struct file *fpin = NULL;
3214	struct address_space *mapping = file->f_mapping;
 
3215	struct inode *inode = mapping->host;
3216	pgoff_t max_idx, index = vmf->pgoff;
3217	struct folio *folio;
3218	vm_fault_t ret = 0;
3219	bool mapping_locked = false;
3220
3221	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3222	if (unlikely(index >= max_idx))
3223		return VM_FAULT_SIGBUS;
3224
3225	/*
3226	 * Do we have something in the page cache already?
3227	 */
3228	folio = filemap_get_folio(mapping, index);
3229	if (likely(!IS_ERR(folio))) {
3230		/*
3231		 * We found the page, so try async readahead before waiting for
3232		 * the lock.
3233		 */
3234		if (!(vmf->flags & FAULT_FLAG_TRIED))
3235			fpin = do_async_mmap_readahead(vmf, folio);
3236		if (unlikely(!folio_test_uptodate(folio))) {
3237			filemap_invalidate_lock_shared(mapping);
3238			mapping_locked = true;
3239		}
3240	} else {
3241		/* No page in the page cache at all */
 
3242		count_vm_event(PGMAJFAULT);
3243		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3244		ret = VM_FAULT_MAJOR;
3245		fpin = do_sync_mmap_readahead(vmf);
3246retry_find:
3247		/*
3248		 * See comment in filemap_create_folio() why we need
3249		 * invalidate_lock
3250		 */
3251		if (!mapping_locked) {
3252			filemap_invalidate_lock_shared(mapping);
3253			mapping_locked = true;
3254		}
3255		folio = __filemap_get_folio(mapping, index,
3256					  FGP_CREAT|FGP_FOR_MMAP,
3257					  vmf->gfp_mask);
3258		if (IS_ERR(folio)) {
3259			if (fpin)
3260				goto out_retry;
3261			filemap_invalidate_unlock_shared(mapping);
3262			return VM_FAULT_OOM;
3263		}
3264	}
3265
3266	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3267		goto out_retry;
 
 
3268
3269	/* Did it get truncated? */
3270	if (unlikely(folio->mapping != mapping)) {
3271		folio_unlock(folio);
3272		folio_put(folio);
3273		goto retry_find;
3274	}
3275	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3276
3277	/*
3278	 * We have a locked folio in the page cache, now we need to check
3279	 * that it's up-to-date. If not, it is going to be due to an error,
3280	 * or because readahead was otherwise unable to retrieve it.
3281	 */
3282	if (unlikely(!folio_test_uptodate(folio))) {
3283		/*
3284		 * If the invalidate lock is not held, the folio was in cache
3285		 * and uptodate and now it is not. Strange but possible since we
3286		 * didn't hold the page lock all the time. Let's drop
3287		 * everything, get the invalidate lock and try again.
3288		 */
3289		if (!mapping_locked) {
3290			folio_unlock(folio);
3291			folio_put(folio);
3292			goto retry_find;
3293		}
3294
3295		/*
3296		 * OK, the folio is really not uptodate. This can be because the
3297		 * VMA has the VM_RAND_READ flag set, or because an error
3298		 * arose. Let's read it in directly.
3299		 */
3300		goto page_not_uptodate;
3301	}
3302
3303	/*
3304	 * We've made it this far and we had to drop our mmap_lock, now is the
3305	 * time to return to the upper layer and have it re-find the vma and
3306	 * redo the fault.
3307	 */
3308	if (fpin) {
3309		folio_unlock(folio);
3310		goto out_retry;
3311	}
3312	if (mapping_locked)
3313		filemap_invalidate_unlock_shared(mapping);
3314
3315	/*
3316	 * Found the page and have a reference on it.
3317	 * We must recheck i_size under page lock.
3318	 */
3319	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3320	if (unlikely(index >= max_idx)) {
3321		folio_unlock(folio);
3322		folio_put(folio);
3323		return VM_FAULT_SIGBUS;
3324	}
3325
3326	vmf->page = folio_file_page(folio, index);
3327	return ret | VM_FAULT_LOCKED;
3328
3329page_not_uptodate:
3330	/*
3331	 * Umm, take care of errors if the page isn't up-to-date.
3332	 * Try to re-read it _once_. We do this synchronously,
3333	 * because there really aren't any performance issues here
3334	 * and we need to check for errors.
3335	 */
3336	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3337	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3338	if (fpin)
3339		goto out_retry;
3340	folio_put(folio);
3341
3342	if (!error || error == AOP_TRUNCATED_PAGE)
 
 
 
 
 
3343		goto retry_find;
3344	filemap_invalidate_unlock_shared(mapping);
3345
3346	return VM_FAULT_SIGBUS;
3347
3348out_retry:
3349	/*
3350	 * We dropped the mmap_lock, we need to return to the fault handler to
3351	 * re-find the vma and come back and find our hopefully still populated
3352	 * page.
3353	 */
3354	if (!IS_ERR(folio))
3355		folio_put(folio);
3356	if (mapping_locked)
3357		filemap_invalidate_unlock_shared(mapping);
3358	if (fpin)
3359		fput(fpin);
3360	return ret | VM_FAULT_RETRY;
3361}
3362EXPORT_SYMBOL(filemap_fault);
3363
3364static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3365		pgoff_t start)
3366{
3367	struct mm_struct *mm = vmf->vma->vm_mm;
3368
3369	/* Huge page is mapped? No need to proceed. */
3370	if (pmd_trans_huge(*vmf->pmd)) {
3371		folio_unlock(folio);
3372		folio_put(folio);
3373		return true;
3374	}
3375
3376	if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3377		struct page *page = folio_file_page(folio, start);
3378		vm_fault_t ret = do_set_pmd(vmf, page);
3379		if (!ret) {
3380			/* The page is mapped successfully, reference consumed. */
3381			folio_unlock(folio);
3382			return true;
3383		}
3384	}
3385
3386	if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3387		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3388
3389	return false;
3390}
3391
3392static struct folio *next_uptodate_folio(struct xa_state *xas,
3393		struct address_space *mapping, pgoff_t end_pgoff)
3394{
3395	struct folio *folio = xas_next_entry(xas, end_pgoff);
3396	unsigned long max_idx;
3397
3398	do {
3399		if (!folio)
3400			return NULL;
3401		if (xas_retry(xas, folio))
3402			continue;
3403		if (xa_is_value(folio))
3404			continue;
3405		if (folio_test_locked(folio))
3406			continue;
3407		if (!folio_try_get_rcu(folio))
3408			continue;
3409		/* Has the page moved or been split? */
3410		if (unlikely(folio != xas_reload(xas)))
3411			goto skip;
3412		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3413			goto skip;
3414		if (!folio_trylock(folio))
3415			goto skip;
3416		if (folio->mapping != mapping)
3417			goto unlock;
3418		if (!folio_test_uptodate(folio))
3419			goto unlock;
3420		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3421		if (xas->xa_index >= max_idx)
3422			goto unlock;
3423		return folio;
3424unlock:
3425		folio_unlock(folio);
3426skip:
3427		folio_put(folio);
3428	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3429
3430	return NULL;
3431}
3432
3433/*
3434 * Map page range [start_page, start_page + nr_pages) of folio.
3435 * start_page is gotten from start by folio_page(folio, start)
3436 */
3437static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3438			struct folio *folio, unsigned long start,
3439			unsigned long addr, unsigned int nr_pages,
3440			unsigned int *mmap_miss)
3441{
3442	vm_fault_t ret = 0;
3443	struct page *page = folio_page(folio, start);
3444	unsigned int count = 0;
3445	pte_t *old_ptep = vmf->pte;
3446
3447	do {
3448		if (PageHWPoison(page + count))
3449			goto skip;
3450
3451		(*mmap_miss)++;
3452
3453		/*
3454		 * NOTE: If there're PTE markers, we'll leave them to be
3455		 * handled in the specific fault path, and it'll prohibit the
3456		 * fault-around logic.
3457		 */
3458		if (!pte_none(ptep_get(&vmf->pte[count])))
3459			goto skip;
3460
3461		count++;
3462		continue;
3463skip:
3464		if (count) {
3465			set_pte_range(vmf, folio, page, count, addr);
3466			folio_ref_add(folio, count);
3467			if (in_range(vmf->address, addr, count * PAGE_SIZE))
3468				ret = VM_FAULT_NOPAGE;
3469		}
3470
3471		count++;
3472		page += count;
3473		vmf->pte += count;
3474		addr += count * PAGE_SIZE;
3475		count = 0;
3476	} while (--nr_pages > 0);
3477
3478	if (count) {
3479		set_pte_range(vmf, folio, page, count, addr);
3480		folio_ref_add(folio, count);
3481		if (in_range(vmf->address, addr, count * PAGE_SIZE))
3482			ret = VM_FAULT_NOPAGE;
3483	}
3484
3485	vmf->pte = old_ptep;
3486
3487	return ret;
3488}
3489
3490static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3491		struct folio *folio, unsigned long addr,
3492		unsigned int *mmap_miss)
3493{
3494	vm_fault_t ret = 0;
3495	struct page *page = &folio->page;
3496
3497	if (PageHWPoison(page))
3498		return ret;
3499
3500	(*mmap_miss)++;
3501
 
3502	/*
3503	 * NOTE: If there're PTE markers, we'll leave them to be
3504	 * handled in the specific fault path, and it'll prohibit
3505	 * the fault-around logic.
 
3506	 */
3507	if (!pte_none(ptep_get(vmf->pte)))
3508		return ret;
3509
3510	if (vmf->address == addr)
3511		ret = VM_FAULT_NOPAGE;
3512
3513	set_pte_range(vmf, folio, page, 1, addr);
3514	folio_ref_inc(folio);
3515
3516	return ret;
3517}
3518
3519vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3520			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3521{
3522	struct vm_area_struct *vma = vmf->vma;
3523	struct file *file = vma->vm_file;
3524	struct address_space *mapping = file->f_mapping;
3525	pgoff_t last_pgoff = start_pgoff;
3526	unsigned long addr;
3527	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3528	struct folio *folio;
3529	vm_fault_t ret = 0;
3530	unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved;
3531
3532	rcu_read_lock();
3533	folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3534	if (!folio)
3535		goto out;
3536
3537	if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3538		ret = VM_FAULT_NOPAGE;
3539		goto out;
3540	}
3541
3542	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3543	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3544	if (!vmf->pte) {
3545		folio_unlock(folio);
3546		folio_put(folio);
3547		goto out;
3548	}
3549	do {
3550		unsigned long end;
3551
3552		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3553		vmf->pte += xas.xa_index - last_pgoff;
3554		last_pgoff = xas.xa_index;
3555		end = folio_next_index(folio) - 1;
3556		nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3557
3558		if (!folio_test_large(folio))
3559			ret |= filemap_map_order0_folio(vmf,
3560					folio, addr, &mmap_miss);
3561		else
3562			ret |= filemap_map_folio_range(vmf, folio,
3563					xas.xa_index - folio->index, addr,
3564					nr_pages, &mmap_miss);
3565
3566		folio_unlock(folio);
3567		folio_put(folio);
3568	} while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3569	pte_unmap_unlock(vmf->pte, vmf->ptl);
3570out:
3571	rcu_read_unlock();
3572
3573	mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3574	if (mmap_miss >= mmap_miss_saved)
3575		WRITE_ONCE(file->f_ra.mmap_miss, 0);
3576	else
3577		WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3578
3579	return ret;
3580}
3581EXPORT_SYMBOL(filemap_map_pages);
3582
3583vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3584{
3585	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3586	struct folio *folio = page_folio(vmf->page);
3587	vm_fault_t ret = VM_FAULT_LOCKED;
3588
3589	sb_start_pagefault(mapping->host->i_sb);
3590	file_update_time(vmf->vma->vm_file);
3591	folio_lock(folio);
3592	if (folio->mapping != mapping) {
3593		folio_unlock(folio);
3594		ret = VM_FAULT_NOPAGE;
3595		goto out;
3596	}
3597	/*
3598	 * We mark the folio dirty already here so that when freeze is in
3599	 * progress, we are guaranteed that writeback during freezing will
3600	 * see the dirty folio and writeprotect it again.
3601	 */
3602	folio_mark_dirty(folio);
3603	folio_wait_stable(folio);
3604out:
3605	sb_end_pagefault(mapping->host->i_sb);
3606	return ret;
3607}
 
3608
3609const struct vm_operations_struct generic_file_vm_ops = {
3610	.fault		= filemap_fault,
3611	.map_pages	= filemap_map_pages,
3612	.page_mkwrite	= filemap_page_mkwrite,
3613};
3614
3615/* This is used for a general mmap of a disk file */
3616
3617int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3618{
3619	struct address_space *mapping = file->f_mapping;
3620
3621	if (!mapping->a_ops->read_folio)
3622		return -ENOEXEC;
3623	file_accessed(file);
3624	vma->vm_ops = &generic_file_vm_ops;
 
3625	return 0;
3626}
3627
3628/*
3629 * This is for filesystems which do not implement ->writepage.
3630 */
3631int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3632{
3633	if (vma_is_shared_maywrite(vma))
3634		return -EINVAL;
3635	return generic_file_mmap(file, vma);
3636}
3637#else
3638vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3639{
3640	return VM_FAULT_SIGBUS;
3641}
3642int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3643{
3644	return -ENOSYS;
3645}
3646int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3647{
3648	return -ENOSYS;
3649}
3650#endif /* CONFIG_MMU */
3651
3652EXPORT_SYMBOL(filemap_page_mkwrite);
3653EXPORT_SYMBOL(generic_file_mmap);
3654EXPORT_SYMBOL(generic_file_readonly_mmap);
3655
3656static struct folio *do_read_cache_folio(struct address_space *mapping,
3657		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
 
 
 
3658{
3659	struct folio *folio;
3660	int err;
3661
3662	if (!filler)
3663		filler = mapping->a_ops->read_folio;
3664repeat:
3665	folio = filemap_get_folio(mapping, index);
3666	if (IS_ERR(folio)) {
3667		folio = filemap_alloc_folio(gfp, 0);
3668		if (!folio)
3669			return ERR_PTR(-ENOMEM);
3670		err = filemap_add_folio(mapping, folio, index, gfp);
3671		if (unlikely(err)) {
3672			folio_put(folio);
3673			if (err == -EEXIST)
3674				goto repeat;
3675			/* Presumably ENOMEM for xarray node */
3676			return ERR_PTR(err);
3677		}
3678
3679		goto filler;
 
 
 
3680	}
3681	if (folio_test_uptodate(folio))
3682		goto out;
3683
3684	if (!folio_trylock(folio)) {
3685		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3686		goto repeat;
3687	}
 
3688
3689	/* Folio was truncated from mapping */
3690	if (!folio->mapping) {
3691		folio_unlock(folio);
3692		folio_put(folio);
3693		goto repeat;
3694	}
3695
3696	/* Someone else locked and filled the page in a very small window */
3697	if (folio_test_uptodate(folio)) {
3698		folio_unlock(folio);
 
 
3699		goto out;
3700	}
3701
3702filler:
3703	err = filemap_read_folio(file, filler, folio);
3704	if (err) {
3705		folio_put(folio);
3706		if (err == AOP_TRUNCATED_PAGE)
3707			goto repeat;
 
 
 
 
 
 
 
3708		return ERR_PTR(err);
3709	}
3710
3711out:
3712	folio_mark_accessed(folio);
3713	return folio;
3714}
3715
3716/**
3717 * read_cache_folio - Read into page cache, fill it if needed.
3718 * @mapping: The address_space to read from.
3719 * @index: The index to read.
3720 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3721 * @file: Passed to filler function, may be NULL if not required.
3722 *
3723 * Read one page into the page cache.  If it succeeds, the folio returned
3724 * will contain @index, but it may not be the first page of the folio.
3725 *
3726 * If the filler function returns an error, it will be returned to the
3727 * caller.
3728 *
3729 * Context: May sleep.  Expects mapping->invalidate_lock to be held.
3730 * Return: An uptodate folio on success, ERR_PTR() on failure.
3731 */
3732struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3733		filler_t filler, struct file *file)
3734{
3735	return do_read_cache_folio(mapping, index, filler, file,
3736			mapping_gfp_mask(mapping));
3737}
3738EXPORT_SYMBOL(read_cache_folio);
3739
3740/**
3741 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3742 * @mapping:	The address_space for the folio.
3743 * @index:	The index that the allocated folio will contain.
3744 * @gfp:	The page allocator flags to use if allocating.
3745 *
3746 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3747 * any new memory allocations done using the specified allocation flags.
3748 *
3749 * The most likely error from this function is EIO, but ENOMEM is
3750 * possible and so is EINTR.  If ->read_folio returns another error,
3751 * that will be returned to the caller.
3752 *
3753 * The function expects mapping->invalidate_lock to be already held.
 
3754 *
3755 * Return: Uptodate folio on success, ERR_PTR() on failure.
3756 */
3757struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3758		pgoff_t index, gfp_t gfp)
3759{
3760	return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3761}
3762EXPORT_SYMBOL(mapping_read_folio_gfp);
3763
3764static struct page *do_read_cache_page(struct address_space *mapping,
3765		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3766{
3767	struct folio *folio;
3768
3769	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3770	if (IS_ERR(folio))
3771		return &folio->page;
3772	return folio_file_page(folio, index);
3773}
 
3774
3775struct page *read_cache_page(struct address_space *mapping,
3776			pgoff_t index, filler_t *filler, struct file *file)
3777{
3778	return do_read_cache_page(mapping, index, filler, file,
3779			mapping_gfp_mask(mapping));
 
 
 
 
 
 
3780}
3781EXPORT_SYMBOL(read_cache_page);
3782
3783/**
3784 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3785 * @mapping:	the page's address_space
3786 * @index:	the page index
3787 * @gfp:	the page allocator flags to use if allocating
3788 *
3789 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3790 * any new page allocations done using the specified allocation flags.
3791 *
3792 * If the page does not get brought uptodate, return -EIO.
3793 *
3794 * The function expects mapping->invalidate_lock to be already held.
3795 *
3796 * Return: up to date page on success, ERR_PTR() on failure.
3797 */
3798struct page *read_cache_page_gfp(struct address_space *mapping,
3799				pgoff_t index,
3800				gfp_t gfp)
3801{
3802	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
 
 
3803}
3804EXPORT_SYMBOL(read_cache_page_gfp);
3805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3806/*
3807 * Warn about a page cache invalidation failure during a direct I/O write.
 
 
 
 
3808 */
3809static void dio_warn_stale_pagecache(struct file *filp)
3810{
3811	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3812	char pathname[128];
3813	char *path;
3814
3815	errseq_set(&filp->f_mapping->wb_err, -EIO);
3816	if (__ratelimit(&_rs)) {
3817		path = file_path(filp, pathname, sizeof(pathname));
3818		if (IS_ERR(path))
3819			path = "(unknown)";
3820		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3821		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3822			current->comm);
 
 
 
 
 
 
 
 
 
3823	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3824}
 
3825
3826void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
 
 
3827{
3828	struct address_space *mapping = iocb->ki_filp->f_mapping;
3829
3830	if (mapping->nrpages &&
3831	    invalidate_inode_pages2_range(mapping,
3832			iocb->ki_pos >> PAGE_SHIFT,
3833			(iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3834		dio_warn_stale_pagecache(iocb->ki_filp);
3835}
 
3836
3837ssize_t
3838generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
 
 
3839{
3840	struct address_space *mapping = iocb->ki_filp->f_mapping;
3841	size_t write_len = iov_iter_count(from);
3842	ssize_t written;
 
 
 
 
 
 
 
 
 
 
 
 
 
3843
3844	/*
3845	 * If a page can not be invalidated, return 0 to fall back
3846	 * to buffered write.
 
 
3847	 */
3848	written = kiocb_invalidate_pages(iocb, write_len);
3849	if (written) {
3850		if (written == -EBUSY)
3851			return 0;
3852		return written;
 
 
 
 
 
 
 
3853	}
3854
3855	written = mapping->a_ops->direct_IO(iocb, from);
3856
3857	/*
3858	 * Finally, try again to invalidate clean pages which might have been
3859	 * cached by non-direct readahead, or faulted in by get_user_pages()
3860	 * if the source of the write was an mmap'ed region of the file
3861	 * we're writing.  Either one is a pretty crazy thing to do,
3862	 * so we don't support it 100%.  If this invalidation
3863	 * fails, tough, the write still worked...
3864	 *
3865	 * Most of the time we do not need this since dio_complete() will do
3866	 * the invalidation for us. However there are some file systems that
3867	 * do not end up with dio_complete() being called, so let's not break
3868	 * them by removing it completely.
3869	 *
3870	 * Noticeable example is a blkdev_direct_IO().
3871	 *
3872	 * Skip invalidation for async writes or if mapping has no pages.
3873	 */
3874	if (written > 0) {
3875		struct inode *inode = mapping->host;
3876		loff_t pos = iocb->ki_pos;
 
3877
3878		kiocb_invalidate_post_direct_write(iocb, written);
3879		pos += written;
3880		write_len -= written;
3881		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3882			i_size_write(inode, pos);
3883			mark_inode_dirty(inode);
3884		}
3885		iocb->ki_pos = pos;
3886	}
3887	if (written != -EIOCBQUEUED)
3888		iov_iter_revert(from, write_len - iov_iter_count(from));
3889	return written;
3890}
3891EXPORT_SYMBOL(generic_file_direct_write);
3892
3893ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3894{
3895	struct file *file = iocb->ki_filp;
3896	loff_t pos = iocb->ki_pos;
3897	struct address_space *mapping = file->f_mapping;
3898	const struct address_space_operations *a_ops = mapping->a_ops;
3899	long status = 0;
3900	ssize_t written = 0;
 
 
 
 
 
 
 
3901
3902	do {
3903		struct page *page;
3904		unsigned long offset;	/* Offset into pagecache page */
3905		unsigned long bytes;	/* Bytes to write to page */
3906		size_t copied;		/* Bytes copied from user */
3907		void *fsdata = NULL;
3908
3909		offset = (pos & (PAGE_SIZE - 1));
3910		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3911						iov_iter_count(i));
3912
3913again:
3914		/*
3915		 * Bring in the user page that we will copy from _first_.
3916		 * Otherwise there's a nasty deadlock on copying from the
3917		 * same page as we're writing to, without it being marked
3918		 * up-to-date.
 
 
 
 
3919		 */
3920		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3921			status = -EFAULT;
3922			break;
3923		}
3924
3925		if (fatal_signal_pending(current)) {
3926			status = -EINTR;
3927			break;
3928		}
3929
3930		status = a_ops->write_begin(file, mapping, pos, bytes,
3931						&page, &fsdata);
3932		if (unlikely(status < 0))
3933			break;
3934
3935		if (mapping_writably_mapped(mapping))
3936			flush_dcache_page(page);
3937
3938		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
 
 
3939		flush_dcache_page(page);
3940
 
3941		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3942						page, fsdata);
3943		if (unlikely(status != copied)) {
3944			iov_iter_revert(i, copied - max(status, 0L));
3945			if (unlikely(status < 0))
3946				break;
3947		}
3948		cond_resched();
3949
3950		if (unlikely(status == 0)) {
 
3951			/*
3952			 * A short copy made ->write_end() reject the
3953			 * thing entirely.  Might be memory poisoning
3954			 * halfway through, might be a race with munmap,
3955			 * might be severe memory pressure.
 
 
3956			 */
3957			if (copied)
3958				bytes = copied;
3959			goto again;
3960		}
3961		pos += status;
3962		written += status;
3963
3964		balance_dirty_pages_ratelimited(mapping);
 
 
 
 
3965	} while (iov_iter_count(i));
3966
3967	if (!written)
3968		return status;
3969	iocb->ki_pos += written;
3970	return written;
3971}
3972EXPORT_SYMBOL(generic_perform_write);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3973
3974/**
3975 * __generic_file_write_iter - write data to a file
3976 * @iocb:	IO state structure (file, offset, etc.)
3977 * @from:	iov_iter with data to write
 
 
3978 *
3979 * This function does all the work needed for actually writing data to a
3980 * file. It does all basic checks, removes SUID from the file, updates
3981 * modification times and calls proper subroutines depending on whether we
3982 * do direct IO or a standard buffered write.
3983 *
3984 * It expects i_rwsem to be grabbed unless we work on a block device or similar
3985 * object which does not need locking at all.
3986 *
3987 * This function does *not* take care of syncing data in case of O_SYNC write.
3988 * A caller has to handle it. This is mainly due to the fact that we want to
3989 * avoid syncing under i_rwsem.
3990 *
3991 * Return:
3992 * * number of bytes written, even for truncated writes
3993 * * negative error code if no data has been written at all
3994 */
3995ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 
3996{
3997	struct file *file = iocb->ki_filp;
3998	struct address_space *mapping = file->f_mapping;
3999	struct inode *inode = mapping->host;
4000	ssize_t ret;
 
 
 
 
 
 
 
 
 
4001
4002	ret = file_remove_privs(file);
4003	if (ret)
4004		return ret;
4005
4006	ret = file_update_time(file);
4007	if (ret)
4008		return ret;
 
 
4009
4010	if (iocb->ki_flags & IOCB_DIRECT) {
4011		ret = generic_file_direct_write(iocb, from);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4012		/*
4013		 * If the write stopped short of completing, fall back to
4014		 * buffered writes.  Some filesystems do this for writes to
4015		 * holes, for example.  For DAX files, a buffered write will
4016		 * not succeed (even if it did, DAX does not handle dirty
4017		 * page-cache pages correctly).
4018		 */
4019		if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4020			return ret;
4021		return direct_write_fallback(iocb, from, ret,
4022				generic_perform_write(iocb, from));
4023	}
 
 
 
 
 
 
 
 
 
 
 
4024
4025	return generic_perform_write(iocb, from);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4026}
4027EXPORT_SYMBOL(__generic_file_write_iter);
4028
4029/**
4030 * generic_file_write_iter - write data to a file
4031 * @iocb:	IO state structure
4032 * @from:	iov_iter with data to write
 
 
4033 *
4034 * This is a wrapper around __generic_file_write_iter() to be used by most
4035 * filesystems. It takes care of syncing the file in case of O_SYNC file
4036 * and acquires i_rwsem as needed.
4037 * Return:
4038 * * negative error code if no data has been written at all of
4039 *   vfs_fsync_range() failed for a synchronous write
4040 * * number of bytes written, even for truncated writes
4041 */
4042ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 
4043{
4044	struct file *file = iocb->ki_filp;
4045	struct inode *inode = file->f_mapping->host;
 
4046	ssize_t ret;
4047
4048	inode_lock(inode);
4049	ret = generic_write_checks(iocb, from);
4050	if (ret > 0)
4051		ret = __generic_file_write_iter(iocb, from);
4052	inode_unlock(inode);
 
4053
4054	if (ret > 0)
4055		ret = generic_write_sync(iocb, ret);
 
 
 
 
 
 
4056	return ret;
4057}
4058EXPORT_SYMBOL(generic_file_write_iter);
4059
4060/**
4061 * filemap_release_folio() - Release fs-specific metadata on a folio.
4062 * @folio: The folio which the kernel is trying to free.
4063 * @gfp: Memory allocation flags (and I/O mode).
4064 *
4065 * The address_space is trying to release any data attached to a folio
4066 * (presumably at folio->private).
4067 *
4068 * This will also be called if the private_2 flag is set on a page,
4069 * indicating that the folio has other metadata associated with it.
 
4070 *
4071 * The @gfp argument specifies whether I/O may be performed to release
4072 * this page (__GFP_IO), and whether the call may block
4073 * (__GFP_RECLAIM & __GFP_FS).
 
 
4074 *
4075 * Return: %true if the release was successful, otherwise %false.
4076 */
4077bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4078{
4079	struct address_space * const mapping = folio->mapping;
4080
4081	BUG_ON(!folio_test_locked(folio));
4082	if (!folio_needs_release(folio))
4083		return true;
4084	if (folio_test_writeback(folio))
4085		return false;
4086
4087	if (mapping && mapping->a_ops->release_folio)
4088		return mapping->a_ops->release_folio(folio, gfp);
4089	return try_to_free_buffers(folio);
4090}
4091EXPORT_SYMBOL(filemap_release_folio);
4092
4093#ifdef CONFIG_CACHESTAT_SYSCALL
4094/**
4095 * filemap_cachestat() - compute the page cache statistics of a mapping
4096 * @mapping:	The mapping to compute the statistics for.
4097 * @first_index:	The starting page cache index.
4098 * @last_index:	The final page index (inclusive).
4099 * @cs:	the cachestat struct to write the result to.
4100 *
4101 * This will query the page cache statistics of a mapping in the
4102 * page range of [first_index, last_index] (inclusive). The statistics
4103 * queried include: number of dirty pages, number of pages marked for
4104 * writeback, and the number of (recently) evicted pages.
4105 */
4106static void filemap_cachestat(struct address_space *mapping,
4107		pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4108{
4109	XA_STATE(xas, &mapping->i_pages, first_index);
4110	struct folio *folio;
4111
4112	rcu_read_lock();
4113	xas_for_each(&xas, folio, last_index) {
4114		int order;
4115		unsigned long nr_pages;
4116		pgoff_t folio_first_index, folio_last_index;
4117
4118		/*
4119		 * Don't deref the folio. It is not pinned, and might
4120		 * get freed (and reused) underneath us.
4121		 *
4122		 * We *could* pin it, but that would be expensive for
4123		 * what should be a fast and lightweight syscall.
4124		 *
4125		 * Instead, derive all information of interest from
4126		 * the rcu-protected xarray.
4127		 */
4128
4129		if (xas_retry(&xas, folio))
4130			continue;
4131
4132		order = xa_get_order(xas.xa, xas.xa_index);
4133		nr_pages = 1 << order;
4134		folio_first_index = round_down(xas.xa_index, 1 << order);
4135		folio_last_index = folio_first_index + nr_pages - 1;
4136
4137		/* Folios might straddle the range boundaries, only count covered pages */
4138		if (folio_first_index < first_index)
4139			nr_pages -= first_index - folio_first_index;
4140
4141		if (folio_last_index > last_index)
4142			nr_pages -= folio_last_index - last_index;
4143
4144		if (xa_is_value(folio)) {
4145			/* page is evicted */
4146			void *shadow = (void *)folio;
4147			bool workingset; /* not used */
4148
4149			cs->nr_evicted += nr_pages;
4150
4151#ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4152			if (shmem_mapping(mapping)) {
4153				/* shmem file - in swap cache */
4154				swp_entry_t swp = radix_to_swp_entry(folio);
4155
4156				shadow = get_shadow_from_swap_cache(swp);
4157			}
4158#endif
4159			if (workingset_test_recent(shadow, true, &workingset))
4160				cs->nr_recently_evicted += nr_pages;
4161
4162			goto resched;
4163		}
4164
4165		/* page is in cache */
4166		cs->nr_cache += nr_pages;
4167
4168		if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4169			cs->nr_dirty += nr_pages;
4170
4171		if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4172			cs->nr_writeback += nr_pages;
 
4173
4174resched:
4175		if (need_resched()) {
4176			xas_pause(&xas);
4177			cond_resched_rcu();
4178		}
4179	}
4180	rcu_read_unlock();
4181}
4182
4183/*
4184 * The cachestat(2) system call.
4185 *
4186 * cachestat() returns the page cache statistics of a file in the
4187 * bytes range specified by `off` and `len`: number of cached pages,
4188 * number of dirty pages, number of pages marked for writeback,
4189 * number of evicted pages, and number of recently evicted pages.
4190 *
4191 * An evicted page is a page that is previously in the page cache
4192 * but has been evicted since. A page is recently evicted if its last
4193 * eviction was recent enough that its reentry to the cache would
4194 * indicate that it is actively being used by the system, and that
4195 * there is memory pressure on the system.
4196 *
4197 * `off` and `len` must be non-negative integers. If `len` > 0,
4198 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4199 * we will query in the range from `off` to the end of the file.
4200 *
4201 * The `flags` argument is unused for now, but is included for future
4202 * extensibility. User should pass 0 (i.e no flag specified).
4203 *
4204 * Currently, hugetlbfs is not supported.
4205 *
4206 * Because the status of a page can change after cachestat() checks it
4207 * but before it returns to the application, the returned values may
4208 * contain stale information.
4209 *
4210 * return values:
4211 *  zero        - success
4212 *  -EFAULT     - cstat or cstat_range points to an illegal address
4213 *  -EINVAL     - invalid flags
4214 *  -EBADF      - invalid file descriptor
4215 *  -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4216 */
4217SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4218		struct cachestat_range __user *, cstat_range,
4219		struct cachestat __user *, cstat, unsigned int, flags)
4220{
4221	struct fd f = fdget(fd);
4222	struct address_space *mapping;
4223	struct cachestat_range csr;
4224	struct cachestat cs;
4225	pgoff_t first_index, last_index;
4226
4227	if (!f.file)
4228		return -EBADF;
4229
4230	if (copy_from_user(&csr, cstat_range,
4231			sizeof(struct cachestat_range))) {
4232		fdput(f);
4233		return -EFAULT;
4234	}
4235
4236	/* hugetlbfs is not supported */
4237	if (is_file_hugepages(f.file)) {
4238		fdput(f);
4239		return -EOPNOTSUPP;
4240	}
4241
4242	if (flags != 0) {
4243		fdput(f);
4244		return -EINVAL;
4245	}
4246
4247	first_index = csr.off >> PAGE_SHIFT;
4248	last_index =
4249		csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4250	memset(&cs, 0, sizeof(struct cachestat));
4251	mapping = f.file->f_mapping;
4252	filemap_cachestat(mapping, first_index, last_index, &cs);
4253	fdput(f);
4254
4255	if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4256		return -EFAULT;
4257
4258	return 0;
4259}
4260#endif /* CONFIG_CACHESTAT_SYSCALL */
v3.5.6
 
   1/*
   2 *	linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/export.h>
  13#include <linux/compiler.h>
 
  14#include <linux/fs.h>
 
  15#include <linux/uaccess.h>
  16#include <linux/aio.h>
  17#include <linux/capability.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/gfp.h>
  20#include <linux/mm.h>
  21#include <linux/swap.h>
 
 
  22#include <linux/mman.h>
  23#include <linux/pagemap.h>
  24#include <linux/file.h>
  25#include <linux/uio.h>
 
  26#include <linux/hash.h>
  27#include <linux/writeback.h>
  28#include <linux/backing-dev.h>
  29#include <linux/pagevec.h>
  30#include <linux/blkdev.h>
  31#include <linux/security.h>
  32#include <linux/cpuset.h>
  33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
  34#include <linux/memcontrol.h>
  35#include <linux/cleancache.h>
 
 
 
 
 
 
 
 
 
 
 
  36#include "internal.h"
  37
 
 
 
  38/*
  39 * FIXME: remove all knowledge of the buffer layer from the core VM
  40 */
  41#include <linux/buffer_head.h> /* for try_to_free_buffers */
  42
  43#include <asm/mman.h>
  44
 
 
  45/*
  46 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  47 * though.
  48 *
  49 * Shared mappings now work. 15.8.1995  Bruno.
  50 *
  51 * finished 'unifying' the page and buffer cache and SMP-threaded the
  52 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  53 *
  54 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  55 */
  56
  57/*
  58 * Lock ordering:
  59 *
  60 *  ->i_mmap_mutex		(truncate_pagecache)
  61 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  62 *      ->swap_lock		(exclusive_swap_page, others)
  63 *        ->mapping->tree_lock
  64 *
  65 *  ->i_mutex
  66 *    ->i_mmap_mutex		(truncate->unmap_mapping_range)
 
  67 *
  68 *  ->mmap_sem
  69 *    ->i_mmap_mutex
  70 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  71 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
  72 *
  73 *  ->mmap_sem
  74 *    ->lock_page		(access_process_vm)
 
  75 *
  76 *  ->i_mutex			(generic_file_buffered_write)
  77 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
  78 *
  79 *  bdi->wb.list_lock
  80 *    sb_lock			(fs/fs-writeback.c)
  81 *    ->mapping->tree_lock	(__sync_single_inode)
  82 *
  83 *  ->i_mmap_mutex
  84 *    ->anon_vma.lock		(vma_adjust)
  85 *
  86 *  ->anon_vma.lock
  87 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
  88 *
  89 *  ->page_table_lock or pte_lock
  90 *    ->swap_lock		(try_to_unmap_one)
  91 *    ->private_lock		(try_to_unmap_one)
  92 *    ->tree_lock		(try_to_unmap_one)
  93 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
  94 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
  95 *    ->private_lock		(page_remove_rmap->set_page_dirty)
  96 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
  97 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
  98 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 
  99 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 100 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 101 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 102 *
 103 * ->i_mmap_mutex
 104 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 105 */
 106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 107/*
 108 * Delete a page from the page cache and free it. Caller has to make
 109 * sure the page is locked and that nobody else uses it - or that usage
 110 * is safe.  The caller must hold the mapping's tree_lock.
 111 */
 112void __delete_from_page_cache(struct page *page)
 113{
 114	struct address_space *mapping = page->mapping;
 115
 116	/*
 117	 * if we're uptodate, flush out into the cleancache, otherwise
 118	 * invalidate any existing cleancache entries.  We can't leave
 119	 * stale data around in the cleancache once our page is gone
 120	 */
 121	if (PageUptodate(page) && PageMappedToDisk(page))
 122		cleancache_put_page(page);
 123	else
 124		cleancache_invalidate_page(mapping, page);
 125
 126	radix_tree_delete(&mapping->page_tree, page->index);
 127	page->mapping = NULL;
 128	/* Leave page->index set: truncation lookup relies upon it */
 129	mapping->nrpages--;
 130	__dec_zone_page_state(page, NR_FILE_PAGES);
 131	if (PageSwapBacked(page))
 132		__dec_zone_page_state(page, NR_SHMEM);
 133	BUG_ON(page_mapped(page));
 134
 135	/*
 136	 * Some filesystems seem to re-dirty the page even after
 137	 * the VM has canceled the dirty bit (eg ext3 journaling).
 138	 *
 139	 * Fix it up by doing a final dirty accounting check after
 140	 * having removed the page entirely.
 141	 */
 142	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
 143		dec_zone_page_state(page, NR_FILE_DIRTY);
 144		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
 145	}
 146}
 147
 148/**
 149 * delete_from_page_cache - delete page from page cache
 150 * @page: the page which the kernel is trying to remove from page cache
 151 *
 152 * This must be called only on pages that have been verified to be in the page
 153 * cache and locked.  It will never put the page into the free list, the caller
 154 * has a reference on the page.
 155 */
 156void delete_from_page_cache(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 157{
 158	struct address_space *mapping = page->mapping;
 159	void (*freepage)(struct page *);
 160
 161	BUG_ON(!PageLocked(page));
 
 
 
 
 
 
 162
 163	freepage = mapping->a_ops->freepage;
 164	spin_lock_irq(&mapping->tree_lock);
 165	__delete_from_page_cache(page);
 166	spin_unlock_irq(&mapping->tree_lock);
 167	mem_cgroup_uncharge_cache_page(page);
 
 
 
 
 
 
 
 168
 169	if (freepage)
 170		freepage(page);
 171	page_cache_release(page);
 
 
 
 
 
 
 
 
 172}
 173EXPORT_SYMBOL(delete_from_page_cache);
 174
 175static int sleep_on_page(void *word)
 176{
 177	io_schedule();
 
 
 
 
 178	return 0;
 179}
 180
 181static int sleep_on_page_killable(void *word)
 
 
 
 
 
 
 
 
 
 
 
 182{
 183	sleep_on_page(word);
 184	return fatal_signal_pending(current) ? -EINTR : 0;
 
 
 
 
 
 
 
 
 185}
 
 186
 187/**
 188 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 189 * @mapping:	address space structure to write
 190 * @start:	offset in bytes where the range starts
 191 * @end:	offset in bytes where the range ends (inclusive)
 192 * @sync_mode:	enable synchronous operation
 193 *
 194 * Start writeback against all of a mapping's dirty pages that lie
 195 * within the byte offsets <start, end> inclusive.
 196 *
 197 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 198 * opposed to a regular memory cleansing writeback.  The difference between
 199 * these two operations is that if a dirty page/buffer is encountered, it must
 200 * be waited upon, and not just skipped over.
 
 
 201 */
 202int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 203				loff_t end, int sync_mode)
 204{
 205	int ret;
 206	struct writeback_control wbc = {
 207		.sync_mode = sync_mode,
 208		.nr_to_write = LONG_MAX,
 209		.range_start = start,
 210		.range_end = end,
 211	};
 212
 213	if (!mapping_cap_writeback_dirty(mapping))
 214		return 0;
 215
 216	ret = do_writepages(mapping, &wbc);
 217	return ret;
 218}
 219
 220static inline int __filemap_fdatawrite(struct address_space *mapping,
 221	int sync_mode)
 222{
 223	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 224}
 225
 226int filemap_fdatawrite(struct address_space *mapping)
 227{
 228	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 229}
 230EXPORT_SYMBOL(filemap_fdatawrite);
 231
 232int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 233				loff_t end)
 234{
 235	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 236}
 237EXPORT_SYMBOL(filemap_fdatawrite_range);
 238
 239/**
 240 * filemap_flush - mostly a non-blocking flush
 241 * @mapping:	target address_space
 242 *
 243 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 244 * purposes - I/O may not be started against all dirty pages.
 
 
 245 */
 246int filemap_flush(struct address_space *mapping)
 247{
 248	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 249}
 250EXPORT_SYMBOL(filemap_flush);
 251
 252/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 253 * filemap_fdatawait_range - wait for writeback to complete
 254 * @mapping:		address space structure to wait for
 255 * @start_byte:		offset in bytes where the range starts
 256 * @end_byte:		offset in bytes where the range ends (inclusive)
 257 *
 258 * Walk the list of under-writeback pages of the given address space
 259 * in the given range and wait for all of them.
 
 
 
 
 
 
 
 260 */
 261int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 262			    loff_t end_byte)
 263{
 264	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
 265	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
 266	struct pagevec pvec;
 267	int nr_pages;
 268	int ret = 0;
 269
 270	if (end_byte < start_byte)
 271		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 272
 273	pagevec_init(&pvec, 0);
 274	while ((index <= end) &&
 275			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 276			PAGECACHE_TAG_WRITEBACK,
 277			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
 278		unsigned i;
 279
 280		for (i = 0; i < nr_pages; i++) {
 281			struct page *page = pvec.pages[i];
 282
 283			/* until radix tree lookup accepts end_index */
 284			if (page->index > end)
 285				continue;
 286
 287			wait_on_page_writeback(page);
 288			if (TestClearPageError(page))
 289				ret = -EIO;
 290		}
 291		pagevec_release(&pvec);
 292		cond_resched();
 293	}
 294
 295	/* Check for outstanding write errors */
 296	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 297		ret = -ENOSPC;
 298	if (test_and_clear_bit(AS_EIO, &mapping->flags))
 299		ret = -EIO;
 300
 301	return ret;
 302}
 303EXPORT_SYMBOL(filemap_fdatawait_range);
 304
 305/**
 306 * filemap_fdatawait - wait for all under-writeback pages to complete
 307 * @mapping: address space structure to wait for
 308 *
 309 * Walk the list of under-writeback pages of the given address space
 310 * and wait for all of them.
 
 
 
 
 
 
 
 311 */
 312int filemap_fdatawait(struct address_space *mapping)
 313{
 314	loff_t i_size = i_size_read(mapping->host);
 
 
 
 315
 316	if (i_size == 0)
 317		return 0;
 318
 319	return filemap_fdatawait_range(mapping, 0, i_size - 1);
 320}
 321EXPORT_SYMBOL(filemap_fdatawait);
 322
 323int filemap_write_and_wait(struct address_space *mapping)
 
 324{
 325	int err = 0;
 
 
 
 
 
 326
 327	if (mapping->nrpages) {
 328		err = filemap_fdatawrite(mapping);
 329		/*
 330		 * Even if the above returned error, the pages may be
 331		 * written partially (e.g. -ENOSPC), so we wait for it.
 332		 * But the -EIO is special case, it may indicate the worst
 333		 * thing (e.g. bug) happened, so we avoid waiting for it.
 334		 */
 335		if (err != -EIO) {
 336			int err2 = filemap_fdatawait(mapping);
 337			if (!err)
 338				err = err2;
 339		}
 340	}
 341	return err;
 
 342}
 343EXPORT_SYMBOL(filemap_write_and_wait);
 344
 345/**
 346 * filemap_write_and_wait_range - write out & wait on a file range
 347 * @mapping:	the address_space for the pages
 348 * @lstart:	offset in bytes where the range starts
 349 * @lend:	offset in bytes where the range ends (inclusive)
 350 *
 351 * Write out and wait upon file offsets lstart->lend, inclusive.
 352 *
 353 * Note that `lend' is inclusive (describes the last byte to be written) so
 354 * that this function can be used to write to the very end-of-file (end = -1).
 
 
 355 */
 356int filemap_write_and_wait_range(struct address_space *mapping,
 357				 loff_t lstart, loff_t lend)
 358{
 359	int err = 0;
 
 
 
 360
 361	if (mapping->nrpages) {
 362		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 363						 WB_SYNC_ALL);
 364		/* See comment of filemap_write_and_wait() */
 365		if (err != -EIO) {
 366			int err2 = filemap_fdatawait_range(mapping,
 367						lstart, lend);
 368			if (!err)
 369				err = err2;
 370		}
 
 371	}
 
 
 
 372	return err;
 373}
 374EXPORT_SYMBOL(filemap_write_and_wait_range);
 375
 
 
 
 
 
 
 
 
 376/**
 377 * replace_page_cache_page - replace a pagecache page with a new one
 378 * @old:	page to be replaced
 379 * @new:	page to replace with
 380 * @gfp_mask:	allocation mode
 381 *
 382 * This function replaces a page in the pagecache with a new one.  On
 383 * success it acquires the pagecache reference for the new page and
 384 * drops it for the old page.  Both the old and new pages must be
 385 * locked.  This function does not add the new page to the LRU, the
 386 * caller must do that.
 
 
 
 
 
 
 
 
 
 
 387 *
 388 * The remove + add is atomic.  The only way this function can fail is
 389 * memory allocation failure.
 390 */
 391int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 392{
 393	int error;
 
 
 394
 395	VM_BUG_ON(!PageLocked(old));
 396	VM_BUG_ON(!PageLocked(new));
 397	VM_BUG_ON(new->mapping);
 398
 399	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 400	if (!error) {
 401		struct address_space *mapping = old->mapping;
 402		void (*freepage)(struct page *);
 403
 404		pgoff_t offset = old->index;
 405		freepage = mapping->a_ops->freepage;
 406
 407		page_cache_get(new);
 408		new->mapping = mapping;
 409		new->index = offset;
 410
 411		spin_lock_irq(&mapping->tree_lock);
 412		__delete_from_page_cache(old);
 413		error = radix_tree_insert(&mapping->page_tree, offset, new);
 414		BUG_ON(error);
 415		mapping->nrpages++;
 416		__inc_zone_page_state(new, NR_FILE_PAGES);
 417		if (PageSwapBacked(new))
 418			__inc_zone_page_state(new, NR_SHMEM);
 419		spin_unlock_irq(&mapping->tree_lock);
 420		/* mem_cgroup codes must not be called under tree_lock */
 421		mem_cgroup_replace_page_cache(old, new);
 422		radix_tree_preload_end();
 423		if (freepage)
 424			freepage(old);
 425		page_cache_release(old);
 426	}
 427
 428	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 429}
 430EXPORT_SYMBOL_GPL(replace_page_cache_page);
 431
 432/**
 433 * add_to_page_cache_locked - add a locked page to the pagecache
 434 * @page:	page to add
 435 * @mapping:	the page's address_space
 436 * @offset:	page index
 437 * @gfp_mask:	page allocation mode
 
 
 
 
 438 *
 439 * This function is used to add a page to the pagecache. It must be locked.
 440 * This function does not add the page to the LRU.  The caller must do that.
 441 */
 442int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 443		pgoff_t offset, gfp_t gfp_mask)
 444{
 445	int error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 446
 447	VM_BUG_ON(!PageLocked(page));
 448	VM_BUG_ON(PageSwapBacked(page));
 
 449
 450	error = mem_cgroup_cache_charge(page, current->mm,
 451					gfp_mask & GFP_RECLAIM_MASK);
 452	if (error)
 453		goto out;
 
 
 
 
 
 
 
 454
 455	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 456	if (error == 0) {
 457		page_cache_get(page);
 458		page->mapping = mapping;
 459		page->index = offset;
 460
 461		spin_lock_irq(&mapping->tree_lock);
 462		error = radix_tree_insert(&mapping->page_tree, offset, page);
 463		if (likely(!error)) {
 464			mapping->nrpages++;
 465			__inc_zone_page_state(page, NR_FILE_PAGES);
 466			spin_unlock_irq(&mapping->tree_lock);
 467		} else {
 468			page->mapping = NULL;
 469			/* Leave page->index set: truncation relies upon it */
 470			spin_unlock_irq(&mapping->tree_lock);
 471			mem_cgroup_uncharge_cache_page(page);
 472			page_cache_release(page);
 473		}
 474		radix_tree_preload_end();
 475	} else
 476		mem_cgroup_uncharge_cache_page(page);
 477out:
 478	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 479}
 480EXPORT_SYMBOL(add_to_page_cache_locked);
 481
 482int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 483				pgoff_t offset, gfp_t gfp_mask)
 484{
 
 485	int ret;
 486
 487	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
 488	if (ret == 0)
 489		lru_cache_add_file(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 490	return ret;
 491}
 492EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 493
 494#ifdef CONFIG_NUMA
 495struct page *__page_cache_alloc(gfp_t gfp)
 496{
 497	int n;
 498	struct page *page;
 499
 500	if (cpuset_do_page_mem_spread()) {
 501		unsigned int cpuset_mems_cookie;
 502		do {
 503			cpuset_mems_cookie = get_mems_allowed();
 504			n = cpuset_mem_spread_node();
 505			page = alloc_pages_exact_node(n, gfp, 0);
 506		} while (!put_mems_allowed(cpuset_mems_cookie) && !page);
 507
 508		return page;
 509	}
 510	return alloc_pages(gfp, 0);
 511}
 512EXPORT_SYMBOL(__page_cache_alloc);
 513#endif
 514
 515/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 516 * In order to wait for pages to become available there must be
 517 * waitqueues associated with pages. By using a hash table of
 518 * waitqueues where the bucket discipline is to maintain all
 519 * waiters on the same queue and wake all when any of the pages
 520 * become available, and for the woken contexts to check to be
 521 * sure the appropriate page became available, this saves space
 522 * at a cost of "thundering herd" phenomena during rare hash
 523 * collisions.
 524 */
 525static wait_queue_head_t *page_waitqueue(struct page *page)
 
 
 
 
 526{
 527	const struct zone *zone = page_zone(page);
 
 
 
 
 
 528
 529	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
 
 
 
 530}
 531
 532static inline void wake_up_page(struct page *page, int bit)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 533{
 534	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 535}
 536
 537void wait_on_page_bit(struct page *page, int bit_nr)
 538{
 539	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 
 
 
 
 
 
 
 
 
 540
 541	if (test_bit(bit_nr, &page->flags))
 542		__wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
 543							TASK_UNINTERRUPTIBLE);
 
 
 
 
 
 
 
 
 
 
 544}
 545EXPORT_SYMBOL(wait_on_page_bit);
 546
 547int wait_on_page_bit_killable(struct page *page, int bit_nr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548{
 549	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 550
 551	if (!test_bit(bit_nr, &page->flags))
 552		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 553
 554	return __wait_on_bit(page_waitqueue(page), &wait,
 555			     sleep_on_page_killable, TASK_KILLABLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 556}
 557
 558/**
 559 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
 560 * @page: Page defining the wait queue of interest
 561 * @waiter: Waiter to add to the queue
 562 *
 563 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 564 */
 565void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
 566{
 567	wait_queue_head_t *q = page_waitqueue(page);
 568	unsigned long flags;
 569
 570	spin_lock_irqsave(&q->lock, flags);
 571	__add_wait_queue(q, waiter);
 
 572	spin_unlock_irqrestore(&q->lock, flags);
 573}
 574EXPORT_SYMBOL_GPL(add_page_wait_queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 575
 576/**
 577 * unlock_page - unlock a locked page
 578 * @page: the page
 579 *
 580 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 581 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 582 * mechananism between PageLocked pages and PageWriteback pages is shared.
 583 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 
 
 
 
 
 
 
 
 
 
 
 584 *
 585 * The mb is necessary to enforce ordering between the clear_bit and the read
 586 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
 
 587 */
 588void unlock_page(struct page *page)
 589{
 590	VM_BUG_ON(!PageLocked(page));
 591	clear_bit_unlock(PG_locked, &page->flags);
 592	smp_mb__after_clear_bit();
 593	wake_up_page(page, PG_locked);
 
 
 
 
 
 594}
 595EXPORT_SYMBOL(unlock_page);
 596
 597/**
 598 * end_page_writeback - end writeback against a page
 599 * @page: the page
 
 
 
 
 600 */
 601void end_page_writeback(struct page *page)
 602{
 603	if (TestClearPageReclaim(page))
 604		rotate_reclaimable_page(page);
 605
 606	if (!test_clear_page_writeback(page))
 607		BUG();
 
 
 
 
 
 
 
 
 
 608
 609	smp_mb__after_clear_bit();
 610	wake_up_page(page, PG_writeback);
 
 
 
 
 
 
 
 
 
 611}
 612EXPORT_SYMBOL(end_page_writeback);
 613
 614/**
 615 * __lock_page - get a lock on the page, assuming we need to sleep to get it
 616 * @page: the page to lock
 617 */
 618void __lock_page(struct page *page)
 619{
 620	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 
 
 
 621
 622	__wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
 623							TASK_UNINTERRUPTIBLE);
 
 
 624}
 625EXPORT_SYMBOL(__lock_page);
 626
 627int __lock_page_killable(struct page *page)
 628{
 629	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 
 
 
 
 630
 631	return __wait_on_bit_lock(page_waitqueue(page), &wait,
 632					sleep_on_page_killable, TASK_KILLABLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 633}
 634EXPORT_SYMBOL_GPL(__lock_page_killable);
 635
 636int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
 637			 unsigned int flags)
 
 
 
 
 
 
 
 
 
 
 638{
 639	if (flags & FAULT_FLAG_ALLOW_RETRY) {
 
 
 640		/*
 641		 * CAUTION! In this case, mmap_sem is not released
 642		 * even though return 0.
 643		 */
 644		if (flags & FAULT_FLAG_RETRY_NOWAIT)
 645			return 0;
 646
 647		up_read(&mm->mmap_sem);
 648		if (flags & FAULT_FLAG_KILLABLE)
 649			wait_on_page_locked_killable(page);
 650		else
 651			wait_on_page_locked(page);
 652		return 0;
 
 
 
 
 
 
 
 
 
 653	} else {
 654		if (flags & FAULT_FLAG_KILLABLE) {
 655			int ret;
 656
 657			ret = __lock_page_killable(page);
 658			if (ret) {
 659				up_read(&mm->mmap_sem);
 660				return 0;
 661			}
 662		} else
 663			__lock_page(page);
 664		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 665	}
 
 
 666}
 
 667
 668/**
 669 * find_get_page - find and get a page reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 670 * @mapping: the address_space to search
 671 * @offset: the page index
 672 *
 673 * Is there a pagecache struct page at the given (mapping, offset) tuple?
 674 * If yes, increment its refcount and return it; if no, return NULL.
 
 
 
 
 675 */
 676struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
 677{
 678	void **pagep;
 679	struct page *page;
 680
 681	rcu_read_lock();
 682repeat:
 683	page = NULL;
 684	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
 685	if (pagep) {
 686		page = radix_tree_deref_slot(pagep);
 687		if (unlikely(!page))
 688			goto out;
 689		if (radix_tree_exception(page)) {
 690			if (radix_tree_deref_retry(page))
 691				goto repeat;
 692			/*
 693			 * Otherwise, shmem/tmpfs must be storing a swap entry
 694			 * here as an exceptional entry: so return it without
 695			 * attempting to raise page count.
 696			 */
 697			goto out;
 698		}
 699		if (!page_cache_get_speculative(page))
 700			goto repeat;
 701
 702		/*
 703		 * Has the page moved?
 704		 * This is part of the lockless pagecache protocol. See
 705		 * include/linux/pagemap.h for details.
 706		 */
 707		if (unlikely(page != *pagep)) {
 708			page_cache_release(page);
 709			goto repeat;
 710		}
 711	}
 712out:
 713	rcu_read_unlock();
 714
 715	return page;
 716}
 717EXPORT_SYMBOL(find_get_page);
 718
 719/**
 720 * find_lock_page - locate, pin and lock a pagecache page
 721 * @mapping: the address_space to search
 722 * @offset: the page index
 
 
 
 
 
 
 
 723 *
 724 * Locates the desired pagecache page, locks it, increments its reference
 725 * count and returns its address.
 726 *
 727 * Returns zero if the page was not present. find_lock_page() may sleep.
 728 */
 729struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
 
 730{
 731	struct page *page;
 732
 733repeat:
 734	page = find_get_page(mapping, offset);
 735	if (page && !radix_tree_exception(page)) {
 736		lock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 737		/* Has the page been truncated? */
 738		if (unlikely(page->mapping != mapping)) {
 739			unlock_page(page);
 740			page_cache_release(page);
 741			goto repeat;
 742		}
 743		VM_BUG_ON(page->index != offset);
 744	}
 745	return page;
 746}
 747EXPORT_SYMBOL(find_lock_page);
 748
 749/**
 750 * find_or_create_page - locate or add a pagecache page
 751 * @mapping: the page's address_space
 752 * @index: the page's index into the mapping
 753 * @gfp_mask: page allocation mode
 754 *
 755 * Locates a page in the pagecache.  If the page is not present, a new page
 756 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
 757 * LRU list.  The returned page is locked and has its reference count
 758 * incremented.
 759 *
 760 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
 761 * allocation!
 762 *
 763 * find_or_create_page() returns the desired page's address, or zero on
 764 * memory exhaustion.
 765 */
 766struct page *find_or_create_page(struct address_space *mapping,
 767		pgoff_t index, gfp_t gfp_mask)
 768{
 769	struct page *page;
 770	int err;
 771repeat:
 772	page = find_lock_page(mapping, index);
 773	if (!page) {
 774		page = __page_cache_alloc(gfp_mask);
 775		if (!page)
 776			return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 777		/*
 778		 * We want a regular kernel memory (not highmem or DMA etc)
 779		 * allocation for the radix tree nodes, but we need to honour
 780		 * the context-specific requirements the caller has asked for.
 781		 * GFP_RECLAIM_MASK collects those requirements.
 782		 */
 783		err = add_to_page_cache_lru(page, mapping, index,
 784			(gfp_mask & GFP_RECLAIM_MASK));
 785		if (unlikely(err)) {
 786			page_cache_release(page);
 787			page = NULL;
 788			if (err == -EEXIST)
 789				goto repeat;
 790		}
 791	}
 792	return page;
 
 
 
 793}
 794EXPORT_SYMBOL(find_or_create_page);
 795
 796/**
 797 * find_get_pages - gang pagecache lookup
 798 * @mapping:	The address_space to search
 799 * @start:	The starting page index
 800 * @nr_pages:	The maximum number of pages
 801 * @pages:	Where the resulting pages are placed
 802 *
 803 * find_get_pages() will search for and return a group of up to
 804 * @nr_pages pages in the mapping.  The pages are placed at @pages.
 805 * find_get_pages() takes a reference against the returned pages.
 806 *
 807 * The search returns a group of mapping-contiguous pages with ascending
 808 * indexes.  There may be holes in the indices due to not-present pages.
 809 *
 810 * find_get_pages() returns the number of pages which were found.
 811 */
 812unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
 813			    unsigned int nr_pages, struct page **pages)
 814{
 815	struct radix_tree_iter iter;
 816	void **slot;
 817	unsigned ret = 0;
 818
 819	if (unlikely(!nr_pages))
 820		return 0;
 
 
 
 821
 822	rcu_read_lock();
 823restart:
 824	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
 825		struct page *page;
 826repeat:
 827		page = radix_tree_deref_slot(slot);
 828		if (unlikely(!page))
 829			continue;
 830
 831		if (radix_tree_exception(page)) {
 832			if (radix_tree_deref_retry(page)) {
 833				/*
 834				 * Transient condition which can only trigger
 835				 * when entry at index 0 moves out of or back
 836				 * to root: none yet gotten, safe to restart.
 837				 */
 838				WARN_ON(iter.index);
 839				goto restart;
 840			}
 841			/*
 842			 * Otherwise, shmem/tmpfs must be storing a swap entry
 843			 * here as an exceptional entry: so skip over it -
 844			 * we only reach this from invalidate_mapping_pages().
 845			 */
 846			continue;
 847		}
 848
 849		if (!page_cache_get_speculative(page))
 850			goto repeat;
 851
 852		/* Has the page moved? */
 853		if (unlikely(page != *slot)) {
 854			page_cache_release(page);
 855			goto repeat;
 856		}
 857
 858		pages[ret] = page;
 859		if (++ret == nr_pages)
 860			break;
 861	}
 862
 863	rcu_read_unlock();
 864	return ret;
 
 
 865}
 866
 867/**
 868 * find_get_pages_contig - gang contiguous pagecache lookup
 869 * @mapping:	The address_space to search
 870 * @index:	The starting page index
 871 * @nr_pages:	The maximum number of pages
 872 * @pages:	Where the resulting pages are placed
 
 
 
 
 
 873 *
 874 * find_get_pages_contig() works exactly like find_get_pages(), except
 875 * that the returned number of pages are guaranteed to be contiguous.
 876 *
 877 * find_get_pages_contig() returns the number of pages which were found.
 
 
 
 878 */
 879unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
 880			       unsigned int nr_pages, struct page **pages)
 881{
 882	struct radix_tree_iter iter;
 883	void **slot;
 884	unsigned int ret = 0;
 885
 886	if (unlikely(!nr_pages))
 887		return 0;
 888
 889	rcu_read_lock();
 890restart:
 891	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
 892		struct page *page;
 893repeat:
 894		page = radix_tree_deref_slot(slot);
 895		/* The hole, there no reason to continue */
 896		if (unlikely(!page))
 897			break;
 
 
 898
 899		if (radix_tree_exception(page)) {
 900			if (radix_tree_deref_retry(page)) {
 901				/*
 902				 * Transient condition which can only trigger
 903				 * when entry at index 0 moves out of or back
 904				 * to root: none yet gotten, safe to restart.
 905				 */
 906				goto restart;
 907			}
 908			/*
 909			 * Otherwise, shmem/tmpfs must be storing a swap entry
 910			 * here as an exceptional entry: so stop looking for
 911			 * contiguous pages.
 912			 */
 913			break;
 914		}
 915
 916		if (!page_cache_get_speculative(page))
 917			goto repeat;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918
 919		/* Has the page moved? */
 920		if (unlikely(page != *slot)) {
 921			page_cache_release(page);
 922			goto repeat;
 
 
 
 
 
 
 
 
 
 
 923		}
 924
 925		/*
 926		 * must check mapping and index after taking the ref.
 927		 * otherwise we can get both false positives and false
 928		 * negatives, which is just confusing to the caller.
 929		 */
 930		if (page->mapping == NULL || page->index != iter.index) {
 931			page_cache_release(page);
 932			break;
 933		}
 
 
 
 
 
 
 934
 935		pages[ret] = page;
 936		if (++ret == nr_pages)
 937			break;
 
 
 
 
 
 938	}
 939	rcu_read_unlock();
 940	return ret;
 941}
 942EXPORT_SYMBOL(find_get_pages_contig);
 943
 944/**
 945 * find_get_pages_tag - find and return pages that match @tag
 946 * @mapping:	the address_space to search
 947 * @index:	the starting page index
 948 * @tag:	the tag index
 949 * @nr_pages:	the maximum number of pages
 950 * @pages:	where the resulting pages are placed
 
 
 
 951 *
 952 * Like find_get_pages, except we only return pages which are tagged with
 953 * @tag.   We update @index to index the next page for the traversal.
 954 */
 955unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
 956			int tag, unsigned int nr_pages, struct page **pages)
 957{
 958	struct radix_tree_iter iter;
 959	void **slot;
 960	unsigned ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 961
 962	if (unlikely(!nr_pages))
 963		return 0;
 
 
 
 
 964
 965	rcu_read_lock();
 966restart:
 967	radix_tree_for_each_tagged(slot, &mapping->page_tree,
 968				   &iter, *index, tag) {
 969		struct page *page;
 970repeat:
 971		page = radix_tree_deref_slot(slot);
 972		if (unlikely(!page))
 973			continue;
 
 
 
 
 
 
 974
 975		if (radix_tree_exception(page)) {
 976			if (radix_tree_deref_retry(page)) {
 977				/*
 978				 * Transient condition which can only trigger
 979				 * when entry at index 0 moves out of or back
 980				 * to root: none yet gotten, safe to restart.
 981				 */
 982				goto restart;
 983			}
 984			/*
 985			 * This function is never used on a shmem/tmpfs
 986			 * mapping, so a swap entry won't be found here.
 987			 */
 988			BUG();
 989		}
 990
 991		if (!page_cache_get_speculative(page))
 992			goto repeat;
 993
 994		/* Has the page moved? */
 995		if (unlikely(page != *slot)) {
 996			page_cache_release(page);
 997			goto repeat;
 998		}
 
 
 
 999
1000		pages[ret] = page;
1001		if (++ret == nr_pages)
1002			break;
1003	}
1004
 
 
 
 
 
 
 
 
1005	rcu_read_unlock();
1006
1007	if (ret)
1008		*index = pages[ret - 1]->index + 1;
1009
1010	return ret;
1011}
1012EXPORT_SYMBOL(find_get_pages_tag);
1013
1014/**
1015 * grab_cache_page_nowait - returns locked page at given index in given cache
1016 * @mapping: target address_space
1017 * @index: the page index
 
 
 
 
 
 
 
 
 
 
 
1018 *
1019 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1020 * This is intended for speculative data generators, where the data can
1021 * be regenerated if the page couldn't be grabbed.  This routine should
1022 * be safe to call while holding the lock for another page.
1023 *
1024 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1025 * and deadlock against the caller's locked page.
1026 */
1027struct page *
1028grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1029{
1030	struct page *page = find_get_page(mapping, index);
 
1031
1032	if (page) {
1033		if (trylock_page(page))
1034			return page;
1035		page_cache_release(page);
1036		return NULL;
 
 
 
 
 
 
 
 
 
1037	}
1038	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1039	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1040		page_cache_release(page);
1041		page = NULL;
1042	}
1043	return page;
 
 
 
 
 
 
 
 
1044}
1045EXPORT_SYMBOL(grab_cache_page_nowait);
1046
1047/*
1048 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1049 * a _large_ part of the i/o request. Imagine the worst scenario:
1050 *
1051 *      ---R__________________________________________B__________
1052 *         ^ reading here                             ^ bad block(assume 4k)
1053 *
1054 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1055 * => failing the whole request => read(R) => read(R+1) =>
1056 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1057 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1058 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1059 *
1060 * It is going insane. Fix it by quickly scaling down the readahead size.
1061 */
1062static void shrink_readahead_size_eio(struct file *filp,
1063					struct file_ra_state *ra)
1064{
1065	ra->ra_pages /= 4;
1066}
1067
1068/**
1069 * do_generic_file_read - generic file read routine
1070 * @filp:	the file to read
1071 * @ppos:	current file position
1072 * @desc:	read_descriptor
1073 * @actor:	read method
1074 *
1075 * This is a generic file read routine, and uses the
1076 * mapping->a_ops->readpage() function for the actual low-level stuff.
1077 *
1078 * This is really ugly. But the goto's actually try to clarify some
1079 * of the logic when it comes to error handling etc.
 
 
 
1080 */
1081static void do_generic_file_read(struct file *filp, loff_t *ppos,
1082		read_descriptor_t *desc, read_actor_t actor)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1083{
 
1084	struct address_space *mapping = filp->f_mapping;
1085	struct inode *inode = mapping->host;
1086	struct file_ra_state *ra = &filp->f_ra;
1087	pgoff_t index;
1088	pgoff_t last_index;
1089	pgoff_t prev_index;
1090	unsigned long offset;      /* offset into pagecache page */
1091	unsigned int prev_offset;
1092	int error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1093
1094	index = *ppos >> PAGE_CACHE_SHIFT;
1095	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1096	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1097	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1098	offset = *ppos & ~PAGE_CACHE_MASK;
1099
1100	for (;;) {
1101		struct page *page;
1102		pgoff_t end_index;
1103		loff_t isize;
1104		unsigned long nr, ret;
1105
 
1106		cond_resched();
1107find_page:
1108		page = find_get_page(mapping, index);
1109		if (!page) {
1110			page_cache_sync_readahead(mapping,
1111					ra, filp,
1112					index, last_index - index);
1113			page = find_get_page(mapping, index);
1114			if (unlikely(page == NULL))
1115				goto no_cached_page;
1116		}
1117		if (PageReadahead(page)) {
1118			page_cache_async_readahead(mapping,
1119					ra, filp, page,
1120					index, last_index - index);
1121		}
1122		if (!PageUptodate(page)) {
1123			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1124					!mapping->a_ops->is_partially_uptodate)
1125				goto page_not_up_to_date;
1126			if (!trylock_page(page))
1127				goto page_not_up_to_date;
1128			/* Did it get truncated before we got the lock? */
1129			if (!page->mapping)
1130				goto page_not_up_to_date_locked;
1131			if (!mapping->a_ops->is_partially_uptodate(page,
1132								desc, offset))
1133				goto page_not_up_to_date_locked;
1134			unlock_page(page);
1135		}
1136page_ok:
1137		/*
1138		 * i_size must be checked after we know the page is Uptodate.
1139		 *
1140		 * Checking i_size after the check allows us to calculate
1141		 * the correct value for "nr", which means the zero-filled
1142		 * part of the page is not copied back to userspace (unless
1143		 * another truncate extends the file - this is desired though).
1144		 */
1145
1146		isize = i_size_read(inode);
1147		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1148		if (unlikely(!isize || index > end_index)) {
1149			page_cache_release(page);
1150			goto out;
1151		}
1152
1153		/* nr is the maximum number of bytes to copy from this page */
1154		nr = PAGE_CACHE_SIZE;
1155		if (index == end_index) {
1156			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1157			if (nr <= offset) {
1158				page_cache_release(page);
1159				goto out;
1160			}
1161		}
1162		nr = nr - offset;
1163
1164		/* If users can be writing to this page using arbitrary
1165		 * virtual addresses, take care about potential aliasing
1166		 * before reading the page on the kernel side.
1167		 */
1168		if (mapping_writably_mapped(mapping))
1169			flush_dcache_page(page);
1170
1171		/*
1172		 * When a sequential read accesses a page several times,
1173		 * only mark it as accessed the first time.
1174		 */
1175		if (prev_index != index || offset != prev_offset)
1176			mark_page_accessed(page);
1177		prev_index = index;
1178
1179		/*
1180		 * Ok, we have the page, and it's up-to-date, so
1181		 * now we can copy it to user space...
1182		 *
1183		 * The actor routine returns how many bytes were actually used..
1184		 * NOTE! This may not be the same as how much of a user buffer
1185		 * we filled up (we may be padding etc), so we can only update
1186		 * "pos" here (the actor routine has to update the user buffer
1187		 * pointers and the remaining count).
1188		 */
1189		ret = actor(desc, page, offset, nr);
1190		offset += ret;
1191		index += offset >> PAGE_CACHE_SHIFT;
1192		offset &= ~PAGE_CACHE_MASK;
1193		prev_offset = offset;
 
 
 
 
 
 
 
 
 
 
 
 
1194
1195		page_cache_release(page);
1196		if (ret == nr && desc->count)
1197			continue;
1198		goto out;
1199
1200page_not_up_to_date:
1201		/* Get exclusive access to the page ... */
1202		error = lock_page_killable(page);
1203		if (unlikely(error))
1204			goto readpage_error;
1205
1206page_not_up_to_date_locked:
1207		/* Did it get truncated before we got the lock? */
1208		if (!page->mapping) {
1209			unlock_page(page);
1210			page_cache_release(page);
1211			continue;
1212		}
1213
1214		/* Did somebody else fill it already? */
1215		if (PageUptodate(page)) {
1216			unlock_page(page);
1217			goto page_ok;
1218		}
1219
1220readpage:
1221		/*
1222		 * A previous I/O error may have been due to temporary
1223		 * failures, eg. multipath errors.
1224		 * PG_error will be set again if readpage fails.
1225		 */
1226		ClearPageError(page);
1227		/* Start the actual read. The read will unlock the page. */
1228		error = mapping->a_ops->readpage(filp, page);
1229
1230		if (unlikely(error)) {
1231			if (error == AOP_TRUNCATED_PAGE) {
1232				page_cache_release(page);
1233				goto find_page;
1234			}
1235			goto readpage_error;
1236		}
 
 
 
 
 
1237
1238		if (!PageUptodate(page)) {
1239			error = lock_page_killable(page);
1240			if (unlikely(error))
1241				goto readpage_error;
1242			if (!PageUptodate(page)) {
1243				if (page->mapping == NULL) {
1244					/*
1245					 * invalidate_mapping_pages got it
1246					 */
1247					unlock_page(page);
1248					page_cache_release(page);
1249					goto find_page;
1250				}
1251				unlock_page(page);
1252				shrink_readahead_size_eio(filp, ra);
1253				error = -EIO;
1254				goto readpage_error;
1255			}
1256			unlock_page(page);
1257		}
1258
1259		goto page_ok;
 
 
 
 
1260
1261readpage_error:
1262		/* UHHUH! A synchronous read error occurred. Report it */
1263		desc->error = error;
1264		page_cache_release(page);
1265		goto out;
1266
1267no_cached_page:
1268		/*
1269		 * Ok, it wasn't cached, so we need to create a new
1270		 * page..
1271		 */
1272		page = page_cache_alloc_cold(mapping);
1273		if (!page) {
1274			desc->error = -ENOMEM;
1275			goto out;
1276		}
1277		error = add_to_page_cache_lru(page, mapping,
1278						index, GFP_KERNEL);
1279		if (error) {
1280			page_cache_release(page);
1281			if (error == -EEXIST)
1282				goto find_page;
1283			desc->error = error;
1284			goto out;
1285		}
1286		goto readpage;
1287	}
1288
1289out:
1290	ra->prev_pos = prev_index;
1291	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1292	ra->prev_pos |= prev_offset;
1293
1294	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1295	file_accessed(filp);
1296}
 
1297
1298int file_read_actor(read_descriptor_t *desc, struct page *page,
1299			unsigned long offset, unsigned long size)
1300{
1301	char *kaddr;
1302	unsigned long left, count = desc->count;
 
 
1303
1304	if (size > count)
1305		size = count;
 
 
 
 
 
 
 
1306
1307	/*
1308	 * Faults on the destination of a read are common, so do it before
1309	 * taking the kmap.
 
 
1310	 */
1311	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1312		kaddr = kmap_atomic(page);
1313		left = __copy_to_user_inatomic(desc->arg.buf,
1314						kaddr + offset, size);
1315		kunmap_atomic(kaddr);
1316		if (left == 0)
1317			goto success;
1318	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1319
1320	/* Do it the slow way */
1321	kaddr = kmap(page);
1322	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1323	kunmap(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
1324
1325	if (left) {
1326		size -= left;
1327		desc->error = -EFAULT;
 
 
 
 
 
 
 
 
 
 
1328	}
1329success:
1330	desc->count = count - size;
1331	desc->written += size;
1332	desc->arg.buf += size;
1333	return size;
1334}
 
1335
1336/*
1337 * Performs necessary checks before doing a write
1338 * @iov:	io vector request
1339 * @nr_segs:	number of segments in the iovec
1340 * @count:	number of bytes to write
1341 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1342 *
1343 * Adjust number of segments and amount of bytes to write (nr_segs should be
1344 * properly initialized first). Returns appropriate error code that caller
1345 * should return or zero in case that write should be allowed.
1346 */
1347int generic_segment_checks(const struct iovec *iov,
1348			unsigned long *nr_segs, size_t *count, int access_flags)
1349{
1350	unsigned long   seg;
1351	size_t cnt = 0;
1352	for (seg = 0; seg < *nr_segs; seg++) {
1353		const struct iovec *iv = &iov[seg];
1354
1355		/*
1356		 * If any segment has a negative length, or the cumulative
1357		 * length ever wraps negative then return -EINVAL.
1358		 */
1359		cnt += iv->iov_len;
1360		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1361			return -EINVAL;
1362		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1363			continue;
1364		if (seg == 0)
1365			return -EFAULT;
1366		*nr_segs = seg;
1367		cnt -= iv->iov_len;	/* This segment is no good */
1368		break;
 
 
 
 
 
 
1369	}
1370	*count = cnt;
1371	return 0;
1372}
1373EXPORT_SYMBOL(generic_segment_checks);
1374
1375/**
1376 * generic_file_aio_read - generic filesystem read routine
1377 * @iocb:	kernel I/O control block
1378 * @iov:	io vector request
1379 * @nr_segs:	number of segments in the iovec
1380 * @pos:	current file position
1381 *
1382 * This is the "read()" routine for all filesystems
1383 * that can use the page cache directly.
1384 */
1385ssize_t
1386generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1387		unsigned long nr_segs, loff_t pos)
1388{
1389	struct file *filp = iocb->ki_filp;
1390	ssize_t retval;
1391	unsigned long seg = 0;
1392	size_t count;
1393	loff_t *ppos = &iocb->ki_pos;
1394
1395	count = 0;
1396	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1397	if (retval)
1398		return retval;
1399
1400	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1401	if (filp->f_flags & O_DIRECT) {
1402		loff_t size;
1403		struct address_space *mapping;
1404		struct inode *inode;
1405
1406		mapping = filp->f_mapping;
1407		inode = mapping->host;
1408		if (!count)
1409			goto out; /* skip atime */
1410		size = i_size_read(inode);
1411		if (pos < size) {
1412			retval = filemap_write_and_wait_range(mapping, pos,
1413					pos + iov_length(iov, nr_segs) - 1);
1414			if (!retval) {
1415				struct blk_plug plug;
1416
1417				blk_start_plug(&plug);
1418				retval = mapping->a_ops->direct_IO(READ, iocb,
1419							iov, pos, nr_segs);
1420				blk_finish_plug(&plug);
1421			}
1422			if (retval > 0) {
1423				*ppos = pos + retval;
1424				count -= retval;
1425			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1426
1427			/*
1428			 * Btrfs can have a short DIO read if we encounter
1429			 * compressed extents, so if there was an error, or if
1430			 * we've already read everything we wanted to, or if
1431			 * there was a short read because we hit EOF, go ahead
1432			 * and return.  Otherwise fallthrough to buffered io for
1433			 * the rest of the read.
1434			 */
1435			if (retval < 0 || !count || *ppos >= size) {
1436				file_accessed(filp);
 
 
 
 
 
 
 
 
 
 
1437				goto out;
1438			}
1439		}
1440	}
1441
1442	count = retval;
1443	for (seg = 0; seg < nr_segs; seg++) {
1444		read_descriptor_t desc;
1445		loff_t offset = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1446
1447		/*
1448		 * If we did a short DIO read we need to skip the section of the
1449		 * iov that we've already read data into.
1450		 */
1451		if (count) {
1452			if (count > iov[seg].iov_len) {
1453				count -= iov[seg].iov_len;
1454				continue;
1455			}
1456			offset = count;
1457			count = 0;
1458		}
1459
1460		desc.written = 0;
1461		desc.arg.buf = iov[seg].iov_base + offset;
1462		desc.count = iov[seg].iov_len - offset;
1463		if (desc.count == 0)
1464			continue;
1465		desc.error = 0;
1466		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1467		retval += desc.written;
1468		if (desc.error) {
1469			retval = retval ?: desc.error;
1470			break;
1471		}
1472		if (desc.count > 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1473			break;
1474	}
1475out:
1476	return retval;
 
 
 
 
 
 
 
 
 
 
 
1477}
1478EXPORT_SYMBOL(generic_file_aio_read);
1479
1480#ifdef CONFIG_MMU
1481/**
1482 * page_cache_read - adds requested page to the page cache if not already there
1483 * @file:	file to read
1484 * @offset:	page index
1485 *
1486 * This adds the requested page to the page cache if it isn't already there,
1487 * and schedules an I/O to read in its contents from disk.
 
 
 
 
 
1488 */
1489static int page_cache_read(struct file *file, pgoff_t offset)
 
1490{
1491	struct address_space *mapping = file->f_mapping;
1492	struct page *page; 
1493	int ret;
1494
1495	do {
1496		page = page_cache_alloc_cold(mapping);
1497		if (!page)
1498			return -ENOMEM;
1499
1500		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1501		if (ret == 0)
1502			ret = mapping->a_ops->readpage(file, page);
1503		else if (ret == -EEXIST)
1504			ret = 0; /* losing race to add is OK */
1505
1506		page_cache_release(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1507
1508	} while (ret == AOP_TRUNCATED_PAGE);
1509		
1510	return ret;
1511}
1512
1513#define MMAP_LOTSAMISS  (100)
1514
1515/*
1516 * Synchronous readahead happens when we don't even find
1517 * a page in the page cache at all.
 
 
 
1518 */
1519static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1520				   struct file_ra_state *ra,
1521				   struct file *file,
1522				   pgoff_t offset)
1523{
1524	unsigned long ra_pages;
 
1525	struct address_space *mapping = file->f_mapping;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1526
1527	/* If we don't want any read-ahead, don't bother */
1528	if (VM_RandomReadHint(vma))
1529		return;
1530	if (!ra->ra_pages)
1531		return;
1532
1533	if (VM_SequentialReadHint(vma)) {
1534		page_cache_sync_readahead(mapping, ra, file, offset,
1535					  ra->ra_pages);
1536		return;
1537	}
1538
1539	/* Avoid banging the cache line if not needed */
1540	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1541		ra->mmap_miss++;
 
1542
1543	/*
1544	 * Do we miss much more than hit in this file? If so,
1545	 * stop bothering with read-ahead. It will only hurt.
1546	 */
1547	if (ra->mmap_miss > MMAP_LOTSAMISS)
1548		return;
1549
1550	/*
1551	 * mmap read-around
1552	 */
1553	ra_pages = max_sane_readahead(ra->ra_pages);
1554	ra->start = max_t(long, 0, offset - ra_pages / 2);
1555	ra->size = ra_pages;
1556	ra->async_size = ra_pages / 4;
1557	ra_submit(ra, mapping, file);
 
 
1558}
1559
1560/*
1561 * Asynchronous readahead happens when we find the page and PG_readahead,
1562 * so we want to possibly extend the readahead further..
 
1563 */
1564static void do_async_mmap_readahead(struct vm_area_struct *vma,
1565				    struct file_ra_state *ra,
1566				    struct file *file,
1567				    struct page *page,
1568				    pgoff_t offset)
1569{
1570	struct address_space *mapping = file->f_mapping;
 
 
 
 
1571
1572	/* If we don't want any read-ahead, don't bother */
1573	if (VM_RandomReadHint(vma))
1574		return;
1575	if (ra->mmap_miss > 0)
1576		ra->mmap_miss--;
1577	if (PageReadahead(page))
1578		page_cache_async_readahead(mapping, ra, file,
1579					   page, offset, ra->ra_pages);
 
 
 
 
 
1580}
1581
1582/**
1583 * filemap_fault - read in file data for page fault handling
1584 * @vma:	vma in which the fault was taken
1585 * @vmf:	struct vm_fault containing details of the fault
1586 *
1587 * filemap_fault() is invoked via the vma operations vector for a
1588 * mapped memory region to read in file data during a page fault.
1589 *
1590 * The goto's are kind of ugly, but this streamlines the normal case of having
1591 * it in the page cache, and handles the special cases reasonably without
1592 * having a lot of duplicated code.
 
 
 
 
 
 
 
 
 
 
 
 
1593 */
1594int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1595{
1596	int error;
1597	struct file *file = vma->vm_file;
 
1598	struct address_space *mapping = file->f_mapping;
1599	struct file_ra_state *ra = &file->f_ra;
1600	struct inode *inode = mapping->host;
1601	pgoff_t offset = vmf->pgoff;
1602	struct page *page;
1603	pgoff_t size;
1604	int ret = 0;
1605
1606	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1607	if (offset >= size)
1608		return VM_FAULT_SIGBUS;
1609
1610	/*
1611	 * Do we have something in the page cache already?
1612	 */
1613	page = find_get_page(mapping, offset);
1614	if (likely(page)) {
1615		/*
1616		 * We found the page, so try async readahead before
1617		 * waiting for the lock.
1618		 */
1619		do_async_mmap_readahead(vma, ra, file, page, offset);
 
 
 
 
 
1620	} else {
1621		/* No page in the page cache at all */
1622		do_sync_mmap_readahead(vma, ra, file, offset);
1623		count_vm_event(PGMAJFAULT);
1624		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1625		ret = VM_FAULT_MAJOR;
 
1626retry_find:
1627		page = find_get_page(mapping, offset);
1628		if (!page)
1629			goto no_cached_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1630	}
1631
1632	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1633		page_cache_release(page);
1634		return ret | VM_FAULT_RETRY;
1635	}
1636
1637	/* Did it get truncated? */
1638	if (unlikely(page->mapping != mapping)) {
1639		unlock_page(page);
1640		put_page(page);
1641		goto retry_find;
1642	}
1643	VM_BUG_ON(page->index != offset);
1644
1645	/*
1646	 * We have a locked page in the page cache, now we need to check
1647	 * that it's up-to-date. If not, it is going to be due to an error.
 
1648	 */
1649	if (unlikely(!PageUptodate(page)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1650		goto page_not_uptodate;
 
 
 
 
 
 
 
 
 
 
 
 
 
1651
1652	/*
1653	 * Found the page and have a reference on it.
1654	 * We must recheck i_size under page lock.
1655	 */
1656	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1657	if (unlikely(offset >= size)) {
1658		unlock_page(page);
1659		page_cache_release(page);
1660		return VM_FAULT_SIGBUS;
1661	}
1662
1663	vmf->page = page;
1664	return ret | VM_FAULT_LOCKED;
1665
1666no_cached_page:
1667	/*
1668	 * We're only likely to ever get here if MADV_RANDOM is in
1669	 * effect.
 
 
1670	 */
1671	error = page_cache_read(file, offset);
 
 
 
 
1672
1673	/*
1674	 * The page we want has now been added to the page cache.
1675	 * In the unlikely event that someone removed it in the
1676	 * meantime, we'll just come back here and read it again.
1677	 */
1678	if (error >= 0)
1679		goto retry_find;
 
 
 
1680
 
1681	/*
1682	 * An error return from page_cache_read can result if the
1683	 * system is low on memory, or a problem occurs while trying
1684	 * to schedule I/O.
1685	 */
1686	if (error == -ENOMEM)
1687		return VM_FAULT_OOM;
1688	return VM_FAULT_SIGBUS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1689
1690page_not_uptodate:
1691	/*
1692	 * Umm, take care of errors if the page isn't up-to-date.
1693	 * Try to re-read it _once_. We do this synchronously,
1694	 * because there really aren't any performance issues here
1695	 * and we need to check for errors.
1696	 */
1697	ClearPageError(page);
1698	error = mapping->a_ops->readpage(file, page);
1699	if (!error) {
1700		wait_on_page_locked(page);
1701		if (!PageUptodate(page))
1702			error = -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1703	}
1704	page_cache_release(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1705
1706	if (!error || error == AOP_TRUNCATED_PAGE)
1707		goto retry_find;
 
1708
1709	/* Things didn't work out. Return zero to tell the mm layer so. */
1710	shrink_readahead_size_eio(file, ra);
1711	return VM_FAULT_SIGBUS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1712}
1713EXPORT_SYMBOL(filemap_fault);
1714
1715const struct vm_operations_struct generic_file_vm_ops = {
1716	.fault		= filemap_fault,
 
 
1717};
1718
1719/* This is used for a general mmap of a disk file */
1720
1721int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1722{
1723	struct address_space *mapping = file->f_mapping;
1724
1725	if (!mapping->a_ops->readpage)
1726		return -ENOEXEC;
1727	file_accessed(file);
1728	vma->vm_ops = &generic_file_vm_ops;
1729	vma->vm_flags |= VM_CAN_NONLINEAR;
1730	return 0;
1731}
1732
1733/*
1734 * This is for filesystems which do not implement ->writepage.
1735 */
1736int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1737{
1738	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1739		return -EINVAL;
1740	return generic_file_mmap(file, vma);
1741}
1742#else
1743int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
 
 
 
 
1744{
1745	return -ENOSYS;
1746}
1747int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1748{
1749	return -ENOSYS;
1750}
1751#endif /* CONFIG_MMU */
1752
 
1753EXPORT_SYMBOL(generic_file_mmap);
1754EXPORT_SYMBOL(generic_file_readonly_mmap);
1755
1756static struct page *__read_cache_page(struct address_space *mapping,
1757				pgoff_t index,
1758				int (*filler)(void *, struct page *),
1759				void *data,
1760				gfp_t gfp)
1761{
1762	struct page *page;
1763	int err;
 
 
 
1764repeat:
1765	page = find_get_page(mapping, index);
1766	if (!page) {
1767		page = __page_cache_alloc(gfp | __GFP_COLD);
1768		if (!page)
1769			return ERR_PTR(-ENOMEM);
1770		err = add_to_page_cache_lru(page, mapping, index, gfp);
1771		if (unlikely(err)) {
1772			page_cache_release(page);
1773			if (err == -EEXIST)
1774				goto repeat;
1775			/* Presumably ENOMEM for radix tree node */
1776			return ERR_PTR(err);
1777		}
1778		err = filler(data, page);
1779		if (err < 0) {
1780			page_cache_release(page);
1781			page = ERR_PTR(err);
1782		}
1783	}
1784	return page;
1785}
1786
1787static struct page *do_read_cache_page(struct address_space *mapping,
1788				pgoff_t index,
1789				int (*filler)(void *, struct page *),
1790				void *data,
1791				gfp_t gfp)
1792
1793{
1794	struct page *page;
1795	int err;
 
 
 
1796
1797retry:
1798	page = __read_cache_page(mapping, index, filler, data, gfp);
1799	if (IS_ERR(page))
1800		return page;
1801	if (PageUptodate(page))
1802		goto out;
 
1803
1804	lock_page(page);
1805	if (!page->mapping) {
1806		unlock_page(page);
1807		page_cache_release(page);
1808		goto retry;
1809	}
1810	if (PageUptodate(page)) {
1811		unlock_page(page);
1812		goto out;
1813	}
1814	err = filler(data, page);
1815	if (err < 0) {
1816		page_cache_release(page);
1817		return ERR_PTR(err);
1818	}
 
1819out:
1820	mark_page_accessed(page);
1821	return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1822}
 
1823
1824/**
1825 * read_cache_page_async - read into page cache, fill it if needed
1826 * @mapping:	the page's address_space
1827 * @index:	the page index
1828 * @filler:	function to perform the read
1829 * @data:	first arg to filler(data, page) function, often left as NULL
 
 
1830 *
1831 * Same as read_cache_page, but don't wait for page to become unlocked
1832 * after submitting it to the filler.
 
1833 *
1834 * Read into the page cache. If a page already exists, and PageUptodate() is
1835 * not set, try to fill the page but don't wait for it to become unlocked.
1836 *
1837 * If the page does not get brought uptodate, return -EIO.
1838 */
1839struct page *read_cache_page_async(struct address_space *mapping,
1840				pgoff_t index,
1841				int (*filler)(void *, struct page *),
1842				void *data)
 
 
 
 
 
1843{
1844	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
 
 
 
 
 
1845}
1846EXPORT_SYMBOL(read_cache_page_async);
1847
1848static struct page *wait_on_page_read(struct page *page)
 
1849{
1850	if (!IS_ERR(page)) {
1851		wait_on_page_locked(page);
1852		if (!PageUptodate(page)) {
1853			page_cache_release(page);
1854			page = ERR_PTR(-EIO);
1855		}
1856	}
1857	return page;
1858}
 
1859
1860/**
1861 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1862 * @mapping:	the page's address_space
1863 * @index:	the page index
1864 * @gfp:	the page allocator flags to use if allocating
1865 *
1866 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1867 * any new page allocations done using the specified allocation flags.
1868 *
1869 * If the page does not get brought uptodate, return -EIO.
 
 
 
 
1870 */
1871struct page *read_cache_page_gfp(struct address_space *mapping,
1872				pgoff_t index,
1873				gfp_t gfp)
1874{
1875	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1876
1877	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1878}
1879EXPORT_SYMBOL(read_cache_page_gfp);
1880
1881/**
1882 * read_cache_page - read into page cache, fill it if needed
1883 * @mapping:	the page's address_space
1884 * @index:	the page index
1885 * @filler:	function to perform the read
1886 * @data:	first arg to filler(data, page) function, often left as NULL
1887 *
1888 * Read into the page cache. If a page already exists, and PageUptodate() is
1889 * not set, try to fill the page then wait for it to become unlocked.
1890 *
1891 * If the page does not get brought uptodate, return -EIO.
1892 */
1893struct page *read_cache_page(struct address_space *mapping,
1894				pgoff_t index,
1895				int (*filler)(void *, struct page *),
1896				void *data)
1897{
1898	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1899}
1900EXPORT_SYMBOL(read_cache_page);
1901
1902static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1903			const struct iovec *iov, size_t base, size_t bytes)
1904{
1905	size_t copied = 0, left = 0;
1906
1907	while (bytes) {
1908		char __user *buf = iov->iov_base + base;
1909		int copy = min(bytes, iov->iov_len - base);
1910
1911		base = 0;
1912		left = __copy_from_user_inatomic(vaddr, buf, copy);
1913		copied += copy;
1914		bytes -= copy;
1915		vaddr += copy;
1916		iov++;
1917
1918		if (unlikely(left))
1919			break;
1920	}
1921	return copied - left;
1922}
1923
1924/*
1925 * Copy as much as we can into the page and return the number of bytes which
1926 * were successfully copied.  If a fault is encountered then return the number of
1927 * bytes which were copied.
1928 */
1929size_t iov_iter_copy_from_user_atomic(struct page *page,
1930		struct iov_iter *i, unsigned long offset, size_t bytes)
1931{
1932	char *kaddr;
1933	size_t copied;
1934
1935	BUG_ON(!in_atomic());
1936	kaddr = kmap_atomic(page);
1937	if (likely(i->nr_segs == 1)) {
1938		int left;
1939		char __user *buf = i->iov->iov_base + i->iov_offset;
1940		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1941		copied = bytes - left;
1942	} else {
1943		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1944						i->iov, i->iov_offset, bytes);
1945	}
1946	kunmap_atomic(kaddr);
1947
1948	return copied;
1949}
1950EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1951
1952/*
1953 * This has the same sideeffects and return value as
1954 * iov_iter_copy_from_user_atomic().
1955 * The difference is that it attempts to resolve faults.
1956 * Page must not be locked.
1957 */
1958size_t iov_iter_copy_from_user(struct page *page,
1959		struct iov_iter *i, unsigned long offset, size_t bytes)
1960{
1961	char *kaddr;
1962	size_t copied;
1963
1964	kaddr = kmap(page);
1965	if (likely(i->nr_segs == 1)) {
1966		int left;
1967		char __user *buf = i->iov->iov_base + i->iov_offset;
1968		left = __copy_from_user(kaddr + offset, buf, bytes);
1969		copied = bytes - left;
1970	} else {
1971		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1972						i->iov, i->iov_offset, bytes);
1973	}
1974	kunmap(page);
1975	return copied;
1976}
1977EXPORT_SYMBOL(iov_iter_copy_from_user);
1978
1979void iov_iter_advance(struct iov_iter *i, size_t bytes)
1980{
1981	BUG_ON(i->count < bytes);
1982
1983	if (likely(i->nr_segs == 1)) {
1984		i->iov_offset += bytes;
1985		i->count -= bytes;
1986	} else {
1987		const struct iovec *iov = i->iov;
1988		size_t base = i->iov_offset;
1989		unsigned long nr_segs = i->nr_segs;
1990
1991		/*
1992		 * The !iov->iov_len check ensures we skip over unlikely
1993		 * zero-length segments (without overruning the iovec).
1994		 */
1995		while (bytes || unlikely(i->count && !iov->iov_len)) {
1996			int copy;
1997
1998			copy = min(bytes, iov->iov_len - base);
1999			BUG_ON(!i->count || i->count < copy);
2000			i->count -= copy;
2001			bytes -= copy;
2002			base += copy;
2003			if (iov->iov_len == base) {
2004				iov++;
2005				nr_segs--;
2006				base = 0;
2007			}
2008		}
2009		i->iov = iov;
2010		i->iov_offset = base;
2011		i->nr_segs = nr_segs;
2012	}
2013}
2014EXPORT_SYMBOL(iov_iter_advance);
2015
2016/*
2017 * Fault in the first iovec of the given iov_iter, to a maximum length
2018 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2019 * accessed (ie. because it is an invalid address).
2020 *
2021 * writev-intensive code may want this to prefault several iovecs -- that
2022 * would be possible (callers must not rely on the fact that _only_ the
2023 * first iovec will be faulted with the current implementation).
2024 */
2025int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2026{
2027	char __user *buf = i->iov->iov_base + i->iov_offset;
2028	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2029	return fault_in_pages_readable(buf, bytes);
2030}
2031EXPORT_SYMBOL(iov_iter_fault_in_readable);
2032
2033/*
2034 * Return the count of just the current iov_iter segment.
2035 */
2036size_t iov_iter_single_seg_count(struct iov_iter *i)
2037{
2038	const struct iovec *iov = i->iov;
2039	if (i->nr_segs == 1)
2040		return i->count;
2041	else
2042		return min(i->count, iov->iov_len - i->iov_offset);
2043}
2044EXPORT_SYMBOL(iov_iter_single_seg_count);
2045
2046/*
2047 * Performs necessary checks before doing a write
2048 *
2049 * Can adjust writing position or amount of bytes to write.
2050 * Returns appropriate error code that caller should return or
2051 * zero in case that write should be allowed.
2052 */
2053inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2054{
2055	struct inode *inode = file->f_mapping->host;
2056	unsigned long limit = rlimit(RLIMIT_FSIZE);
 
2057
2058        if (unlikely(*pos < 0))
2059                return -EINVAL;
2060
2061	if (!isblk) {
2062		/* FIXME: this is for backwards compatibility with 2.4 */
2063		if (file->f_flags & O_APPEND)
2064                        *pos = i_size_read(inode);
2065
2066		if (limit != RLIM_INFINITY) {
2067			if (*pos >= limit) {
2068				send_sig(SIGXFSZ, current, 0);
2069				return -EFBIG;
2070			}
2071			if (*count > limit - (typeof(limit))*pos) {
2072				*count = limit - (typeof(limit))*pos;
2073			}
2074		}
2075	}
2076
2077	/*
2078	 * LFS rule
2079	 */
2080	if (unlikely(*pos + *count > MAX_NON_LFS &&
2081				!(file->f_flags & O_LARGEFILE))) {
2082		if (*pos >= MAX_NON_LFS) {
2083			return -EFBIG;
2084		}
2085		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2086			*count = MAX_NON_LFS - (unsigned long)*pos;
2087		}
2088	}
2089
2090	/*
2091	 * Are we about to exceed the fs block limit ?
2092	 *
2093	 * If we have written data it becomes a short write.  If we have
2094	 * exceeded without writing data we send a signal and return EFBIG.
2095	 * Linus frestrict idea will clean these up nicely..
2096	 */
2097	if (likely(!isblk)) {
2098		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2099			if (*count || *pos > inode->i_sb->s_maxbytes) {
2100				return -EFBIG;
2101			}
2102			/* zero-length writes at ->s_maxbytes are OK */
2103		}
2104
2105		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2106			*count = inode->i_sb->s_maxbytes - *pos;
2107	} else {
2108#ifdef CONFIG_BLOCK
2109		loff_t isize;
2110		if (bdev_read_only(I_BDEV(inode)))
2111			return -EPERM;
2112		isize = i_size_read(inode);
2113		if (*pos >= isize) {
2114			if (*count || *pos > isize)
2115				return -ENOSPC;
2116		}
2117
2118		if (*pos + *count > isize)
2119			*count = isize - *pos;
2120#else
2121		return -EPERM;
2122#endif
2123	}
2124	return 0;
2125}
2126EXPORT_SYMBOL(generic_write_checks);
2127
2128int pagecache_write_begin(struct file *file, struct address_space *mapping,
2129				loff_t pos, unsigned len, unsigned flags,
2130				struct page **pagep, void **fsdata)
2131{
2132	const struct address_space_operations *aops = mapping->a_ops;
2133
2134	return aops->write_begin(file, mapping, pos, len, flags,
2135							pagep, fsdata);
2136}
2137EXPORT_SYMBOL(pagecache_write_begin);
2138
2139int pagecache_write_end(struct file *file, struct address_space *mapping,
2140				loff_t pos, unsigned len, unsigned copied,
2141				struct page *page, void *fsdata)
2142{
2143	const struct address_space_operations *aops = mapping->a_ops;
2144
2145	mark_page_accessed(page);
2146	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
 
 
 
2147}
2148EXPORT_SYMBOL(pagecache_write_end);
2149
2150ssize_t
2151generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2152		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2153		size_t count, size_t ocount)
2154{
2155	struct file	*file = iocb->ki_filp;
2156	struct address_space *mapping = file->f_mapping;
2157	struct inode	*inode = mapping->host;
2158	ssize_t		written;
2159	size_t		write_len;
2160	pgoff_t		end;
2161
2162	if (count != ocount)
2163		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2164
2165	write_len = iov_length(iov, *nr_segs);
2166	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2167
2168	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2169	if (written)
2170		goto out;
2171
2172	/*
2173	 * After a write we want buffered reads to be sure to go to disk to get
2174	 * the new data.  We invalidate clean cached page from the region we're
2175	 * about to write.  We do this *before* the write so that we can return
2176	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2177	 */
2178	if (mapping->nrpages) {
2179		written = invalidate_inode_pages2_range(mapping,
2180					pos >> PAGE_CACHE_SHIFT, end);
2181		/*
2182		 * If a page can not be invalidated, return 0 to fall back
2183		 * to buffered write.
2184		 */
2185		if (written) {
2186			if (written == -EBUSY)
2187				return 0;
2188			goto out;
2189		}
2190	}
2191
2192	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2193
2194	/*
2195	 * Finally, try again to invalidate clean pages which might have been
2196	 * cached by non-direct readahead, or faulted in by get_user_pages()
2197	 * if the source of the write was an mmap'ed region of the file
2198	 * we're writing.  Either one is a pretty crazy thing to do,
2199	 * so we don't support it 100%.  If this invalidation
2200	 * fails, tough, the write still worked...
 
 
 
 
 
 
 
 
 
2201	 */
2202	if (mapping->nrpages) {
2203		invalidate_inode_pages2_range(mapping,
2204					      pos >> PAGE_CACHE_SHIFT, end);
2205	}
2206
2207	if (written > 0) {
2208		pos += written;
 
2209		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2210			i_size_write(inode, pos);
2211			mark_inode_dirty(inode);
2212		}
2213		*ppos = pos;
2214	}
2215out:
 
2216	return written;
2217}
2218EXPORT_SYMBOL(generic_file_direct_write);
2219
2220/*
2221 * Find or create a page at the given pagecache position. Return the locked
2222 * page. This function is specifically for buffered writes.
2223 */
2224struct page *grab_cache_page_write_begin(struct address_space *mapping,
2225					pgoff_t index, unsigned flags)
2226{
2227	int status;
2228	gfp_t gfp_mask;
2229	struct page *page;
2230	gfp_t gfp_notmask = 0;
2231
2232	gfp_mask = mapping_gfp_mask(mapping);
2233	if (mapping_cap_account_dirty(mapping))
2234		gfp_mask |= __GFP_WRITE;
2235	if (flags & AOP_FLAG_NOFS)
2236		gfp_notmask = __GFP_FS;
2237repeat:
2238	page = find_lock_page(mapping, index);
2239	if (page)
2240		goto found;
2241
2242	page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2243	if (!page)
2244		return NULL;
2245	status = add_to_page_cache_lru(page, mapping, index,
2246						GFP_KERNEL & ~gfp_notmask);
2247	if (unlikely(status)) {
2248		page_cache_release(page);
2249		if (status == -EEXIST)
2250			goto repeat;
2251		return NULL;
2252	}
2253found:
2254	wait_on_page_writeback(page);
2255	return page;
2256}
2257EXPORT_SYMBOL(grab_cache_page_write_begin);
2258
2259static ssize_t generic_perform_write(struct file *file,
2260				struct iov_iter *i, loff_t pos)
2261{
 
 
2262	struct address_space *mapping = file->f_mapping;
2263	const struct address_space_operations *a_ops = mapping->a_ops;
2264	long status = 0;
2265	ssize_t written = 0;
2266	unsigned int flags = 0;
2267
2268	/*
2269	 * Copies from kernel address space cannot fail (NFSD is a big user).
2270	 */
2271	if (segment_eq(get_fs(), KERNEL_DS))
2272		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2273
2274	do {
2275		struct page *page;
2276		unsigned long offset;	/* Offset into pagecache page */
2277		unsigned long bytes;	/* Bytes to write to page */
2278		size_t copied;		/* Bytes copied from user */
2279		void *fsdata;
2280
2281		offset = (pos & (PAGE_CACHE_SIZE - 1));
2282		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2283						iov_iter_count(i));
2284
2285again:
2286		/*
2287		 * Bring in the user page that we will copy from _first_.
2288		 * Otherwise there's a nasty deadlock on copying from the
2289		 * same page as we're writing to, without it being marked
2290		 * up-to-date.
2291		 *
2292		 * Not only is this an optimisation, but it is also required
2293		 * to check that the address is actually valid, when atomic
2294		 * usercopies are used, below.
2295		 */
2296		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2297			status = -EFAULT;
2298			break;
2299		}
2300
2301		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
 
 
 
 
 
2302						&page, &fsdata);
2303		if (unlikely(status))
2304			break;
2305
2306		if (mapping_writably_mapped(mapping))
2307			flush_dcache_page(page);
2308
2309		pagefault_disable();
2310		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2311		pagefault_enable();
2312		flush_dcache_page(page);
2313
2314		mark_page_accessed(page);
2315		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2316						page, fsdata);
2317		if (unlikely(status < 0))
2318			break;
2319		copied = status;
2320
 
2321		cond_resched();
2322
2323		iov_iter_advance(i, copied);
2324		if (unlikely(copied == 0)) {
2325			/*
2326			 * If we were unable to copy any data at all, we must
2327			 * fall back to a single segment length write.
2328			 *
2329			 * If we didn't fallback here, we could livelock
2330			 * because not all segments in the iov can be copied at
2331			 * once without a pagefault.
2332			 */
2333			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2334						iov_iter_single_seg_count(i));
2335			goto again;
2336		}
2337		pos += copied;
2338		written += copied;
2339
2340		balance_dirty_pages_ratelimited(mapping);
2341		if (fatal_signal_pending(current)) {
2342			status = -EINTR;
2343			break;
2344		}
2345	} while (iov_iter_count(i));
2346
2347	return written ? written : status;
 
 
 
2348}
2349
2350ssize_t
2351generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2352		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2353		size_t count, ssize_t written)
2354{
2355	struct file *file = iocb->ki_filp;
2356	ssize_t status;
2357	struct iov_iter i;
2358
2359	iov_iter_init(&i, iov, nr_segs, count, written);
2360	status = generic_perform_write(file, &i, pos);
2361
2362	if (likely(status >= 0)) {
2363		written += status;
2364		*ppos = pos + status;
2365  	}
2366	
2367	return written ? written : status;
2368}
2369EXPORT_SYMBOL(generic_file_buffered_write);
2370
2371/**
2372 * __generic_file_aio_write - write data to a file
2373 * @iocb:	IO state structure (file, offset, etc.)
2374 * @iov:	vector with data to write
2375 * @nr_segs:	number of segments in the vector
2376 * @ppos:	position where to write
2377 *
2378 * This function does all the work needed for actually writing data to a
2379 * file. It does all basic checks, removes SUID from the file, updates
2380 * modification times and calls proper subroutines depending on whether we
2381 * do direct IO or a standard buffered write.
2382 *
2383 * It expects i_mutex to be grabbed unless we work on a block device or similar
2384 * object which does not need locking at all.
2385 *
2386 * This function does *not* take care of syncing data in case of O_SYNC write.
2387 * A caller has to handle it. This is mainly due to the fact that we want to
2388 * avoid syncing under i_mutex.
 
 
 
 
2389 */
2390ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2391				 unsigned long nr_segs, loff_t *ppos)
2392{
2393	struct file *file = iocb->ki_filp;
2394	struct address_space * mapping = file->f_mapping;
2395	size_t ocount;		/* original count */
2396	size_t count;		/* after file limit checks */
2397	struct inode 	*inode = mapping->host;
2398	loff_t		pos;
2399	ssize_t		written;
2400	ssize_t		err;
2401
2402	ocount = 0;
2403	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2404	if (err)
2405		return err;
2406
2407	count = ocount;
2408	pos = *ppos;
 
2409
2410	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2411
2412	/* We can write back this queue in page reclaim */
2413	current->backing_dev_info = mapping->backing_dev_info;
2414	written = 0;
2415
2416	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2417	if (err)
2418		goto out;
2419
2420	if (count == 0)
2421		goto out;
2422
2423	err = file_remove_suid(file);
2424	if (err)
2425		goto out;
2426
2427	err = file_update_time(file);
2428	if (err)
2429		goto out;
2430
2431	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2432	if (unlikely(file->f_flags & O_DIRECT)) {
2433		loff_t endbyte;
2434		ssize_t written_buffered;
2435
2436		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2437							ppos, count, ocount);
2438		if (written < 0 || written == count)
2439			goto out;
2440		/*
2441		 * direct-io write to a hole: fall through to buffered I/O
2442		 * for completing the rest of the request.
 
 
 
2443		 */
2444		pos += written;
2445		count -= written;
2446		written_buffered = generic_file_buffered_write(iocb, iov,
2447						nr_segs, pos, ppos, count,
2448						written);
2449		/*
2450		 * If generic_file_buffered_write() retuned a synchronous error
2451		 * then we want to return the number of bytes which were
2452		 * direct-written, or the error code if that was zero.  Note
2453		 * that this differs from normal direct-io semantics, which
2454		 * will return -EFOO even if some bytes were written.
2455		 */
2456		if (written_buffered < 0) {
2457			err = written_buffered;
2458			goto out;
2459		}
2460
2461		/*
2462		 * We need to ensure that the page cache pages are written to
2463		 * disk and invalidated to preserve the expected O_DIRECT
2464		 * semantics.
2465		 */
2466		endbyte = pos + written_buffered - written - 1;
2467		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2468		if (err == 0) {
2469			written = written_buffered;
2470			invalidate_mapping_pages(mapping,
2471						 pos >> PAGE_CACHE_SHIFT,
2472						 endbyte >> PAGE_CACHE_SHIFT);
2473		} else {
2474			/*
2475			 * We don't know how much we wrote, so just return
2476			 * the number of bytes which were direct-written
2477			 */
2478		}
2479	} else {
2480		written = generic_file_buffered_write(iocb, iov, nr_segs,
2481				pos, ppos, count, written);
2482	}
2483out:
2484	current->backing_dev_info = NULL;
2485	return written ? written : err;
2486}
2487EXPORT_SYMBOL(__generic_file_aio_write);
2488
2489/**
2490 * generic_file_aio_write - write data to a file
2491 * @iocb:	IO state structure
2492 * @iov:	vector with data to write
2493 * @nr_segs:	number of segments in the vector
2494 * @pos:	position in file where to write
2495 *
2496 * This is a wrapper around __generic_file_aio_write() to be used by most
2497 * filesystems. It takes care of syncing the file in case of O_SYNC file
2498 * and acquires i_mutex as needed.
 
 
 
 
2499 */
2500ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2501		unsigned long nr_segs, loff_t pos)
2502{
2503	struct file *file = iocb->ki_filp;
2504	struct inode *inode = file->f_mapping->host;
2505	struct blk_plug plug;
2506	ssize_t ret;
2507
2508	BUG_ON(iocb->ki_pos != pos);
2509
2510	mutex_lock(&inode->i_mutex);
2511	blk_start_plug(&plug);
2512	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2513	mutex_unlock(&inode->i_mutex);
2514
2515	if (ret > 0 || ret == -EIOCBQUEUED) {
2516		ssize_t err;
2517
2518		err = generic_write_sync(file, pos, ret);
2519		if (err < 0 && ret > 0)
2520			ret = err;
2521	}
2522	blk_finish_plug(&plug);
2523	return ret;
2524}
2525EXPORT_SYMBOL(generic_file_aio_write);
2526
2527/**
2528 * try_to_release_page() - release old fs-specific metadata on a page
 
 
2529 *
2530 * @page: the page which the kernel is trying to free
2531 * @gfp_mask: memory allocation flags (and I/O mode)
2532 *
2533 * The address_space is to try to release any data against the page
2534 * (presumably at page->private).  If the release was successful, return `1'.
2535 * Otherwise return zero.
2536 *
2537 * This may also be called if PG_fscache is set on a page, indicating that the
2538 * page is known to the local caching routines.
2539 *
2540 * The @gfp_mask argument specifies whether I/O may be performed to release
2541 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2542 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2543 */
2544int try_to_release_page(struct page *page, gfp_t gfp_mask)
 
2545{
2546	struct address_space * const mapping = page->mapping;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2547
2548	BUG_ON(!PageLocked(page));
2549	if (PageWriteback(page))
2550		return 0;
2551
2552	if (mapping && mapping->a_ops->releasepage)
2553		return mapping->a_ops->releasepage(page, gfp_mask);
2554	return try_to_free_buffers(page);
 
 
 
 
2555}
2556
2557EXPORT_SYMBOL(try_to_release_page);