Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* auditsc.c -- System-call auditing support
   3 * Handles all system-call specific auditing features.
   4 *
   5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   6 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   7 * Copyright (C) 2005, 2006 IBM Corporation
   8 * All Rights Reserved.
   9 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  11 *
  12 * Many of the ideas implemented here are from Stephen C. Tweedie,
  13 * especially the idea of avoiding a copy by using getname.
  14 *
  15 * The method for actual interception of syscall entry and exit (not in
  16 * this file -- see entry.S) is based on a GPL'd patch written by
  17 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  18 *
  19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  20 * 2006.
  21 *
  22 * The support of additional filter rules compares (>, <, >=, <=) was
  23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  24 *
  25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  26 * filesystem information.
  27 *
  28 * Subject and object context labeling support added by <danjones@us.ibm.com>
  29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/init.h>
  35#include <asm/types.h>
  36#include <linux/atomic.h>
  37#include <linux/fs.h>
  38#include <linux/namei.h>
  39#include <linux/mm.h>
  40#include <linux/export.h>
  41#include <linux/slab.h>
  42#include <linux/mount.h>
  43#include <linux/socket.h>
  44#include <linux/mqueue.h>
  45#include <linux/audit.h>
  46#include <linux/personality.h>
  47#include <linux/time.h>
  48#include <linux/netlink.h>
  49#include <linux/compiler.h>
  50#include <asm/unistd.h>
  51#include <linux/security.h>
  52#include <linux/list.h>
 
  53#include <linux/binfmts.h>
  54#include <linux/highmem.h>
  55#include <linux/syscalls.h>
  56#include <asm/syscall.h>
  57#include <linux/capability.h>
  58#include <linux/fs_struct.h>
  59#include <linux/compat.h>
  60#include <linux/ctype.h>
  61#include <linux/string.h>
  62#include <linux/uaccess.h>
  63#include <linux/fsnotify_backend.h>
  64#include <uapi/linux/limits.h>
  65#include <uapi/linux/netfilter/nf_tables.h>
  66#include <uapi/linux/openat2.h> // struct open_how
  67#include <uapi/linux/fanotify.h>
  68
  69#include "audit.h"
  70
  71/* flags stating the success for a syscall */
  72#define AUDITSC_INVALID 0
  73#define AUDITSC_SUCCESS 1
  74#define AUDITSC_FAILURE 2
  75
  76/* no execve audit message should be longer than this (userspace limits),
  77 * see the note near the top of audit_log_execve_info() about this value */
  78#define MAX_EXECVE_AUDIT_LEN 7500
 
  79
  80/* max length to print of cmdline/proctitle value during audit */
  81#define MAX_PROCTITLE_AUDIT_LEN 128
 
 
 
  82
  83/* number of audit rules */
  84int audit_n_rules;
  85
  86/* determines whether we collect data for signals sent */
  87int audit_signals;
  88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  89struct audit_aux_data {
  90	struct audit_aux_data	*next;
  91	int			type;
  92};
  93
 
 
  94/* Number of target pids per aux struct. */
  95#define AUDIT_AUX_PIDS	16
  96
 
 
 
 
 
 
 
  97struct audit_aux_data_pids {
  98	struct audit_aux_data	d;
  99	pid_t			target_pid[AUDIT_AUX_PIDS];
 100	kuid_t			target_auid[AUDIT_AUX_PIDS];
 101	kuid_t			target_uid[AUDIT_AUX_PIDS];
 102	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 103	u32			target_sid[AUDIT_AUX_PIDS];
 104	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 105	int			pid_count;
 106};
 107
 108struct audit_aux_data_bprm_fcaps {
 109	struct audit_aux_data	d;
 110	struct audit_cap_data	fcap;
 111	unsigned int		fcap_ver;
 112	struct audit_cap_data	old_pcap;
 113	struct audit_cap_data	new_pcap;
 114};
 115
 
 
 
 
 
 
 116struct audit_tree_refs {
 117	struct audit_tree_refs *next;
 118	struct audit_chunk *c[31];
 119};
 120
 121struct audit_nfcfgop_tab {
 122	enum audit_nfcfgop	op;
 123	const char		*s;
 124};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 125
 126static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
 127	{ AUDIT_XT_OP_REGISTER,			"xt_register"		   },
 128	{ AUDIT_XT_OP_REPLACE,			"xt_replace"		   },
 129	{ AUDIT_XT_OP_UNREGISTER,		"xt_unregister"		   },
 130	{ AUDIT_NFT_OP_TABLE_REGISTER,		"nft_register_table"	   },
 131	{ AUDIT_NFT_OP_TABLE_UNREGISTER,	"nft_unregister_table"	   },
 132	{ AUDIT_NFT_OP_CHAIN_REGISTER,		"nft_register_chain"	   },
 133	{ AUDIT_NFT_OP_CHAIN_UNREGISTER,	"nft_unregister_chain"	   },
 134	{ AUDIT_NFT_OP_RULE_REGISTER,		"nft_register_rule"	   },
 135	{ AUDIT_NFT_OP_RULE_UNREGISTER,		"nft_unregister_rule"	   },
 136	{ AUDIT_NFT_OP_SET_REGISTER,		"nft_register_set"	   },
 137	{ AUDIT_NFT_OP_SET_UNREGISTER,		"nft_unregister_set"	   },
 138	{ AUDIT_NFT_OP_SETELEM_REGISTER,	"nft_register_setelem"	   },
 139	{ AUDIT_NFT_OP_SETELEM_UNREGISTER,	"nft_unregister_setelem"   },
 140	{ AUDIT_NFT_OP_GEN_REGISTER,		"nft_register_gen"	   },
 141	{ AUDIT_NFT_OP_OBJ_REGISTER,		"nft_register_obj"	   },
 142	{ AUDIT_NFT_OP_OBJ_UNREGISTER,		"nft_unregister_obj"	   },
 143	{ AUDIT_NFT_OP_OBJ_RESET,		"nft_reset_obj"		   },
 144	{ AUDIT_NFT_OP_FLOWTABLE_REGISTER,	"nft_register_flowtable"   },
 145	{ AUDIT_NFT_OP_FLOWTABLE_UNREGISTER,	"nft_unregister_flowtable" },
 146	{ AUDIT_NFT_OP_SETELEM_RESET,		"nft_reset_setelem"        },
 147	{ AUDIT_NFT_OP_RULE_RESET,		"nft_reset_rule"           },
 148	{ AUDIT_NFT_OP_INVALID,			"nft_invalid"		   },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 149};
 150
 
 
 
 
 
 
 
 
 151static int audit_match_perm(struct audit_context *ctx, int mask)
 152{
 153	unsigned n;
 154
 155	if (unlikely(!ctx))
 156		return 0;
 157	n = ctx->major;
 158
 159	switch (audit_classify_syscall(ctx->arch, n)) {
 160	case AUDITSC_NATIVE:
 161		if ((mask & AUDIT_PERM_WRITE) &&
 162		     audit_match_class(AUDIT_CLASS_WRITE, n))
 163			return 1;
 164		if ((mask & AUDIT_PERM_READ) &&
 165		     audit_match_class(AUDIT_CLASS_READ, n))
 166			return 1;
 167		if ((mask & AUDIT_PERM_ATTR) &&
 168		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 169			return 1;
 170		return 0;
 171	case AUDITSC_COMPAT: /* 32bit on biarch */
 172		if ((mask & AUDIT_PERM_WRITE) &&
 173		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 174			return 1;
 175		if ((mask & AUDIT_PERM_READ) &&
 176		     audit_match_class(AUDIT_CLASS_READ_32, n))
 177			return 1;
 178		if ((mask & AUDIT_PERM_ATTR) &&
 179		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 180			return 1;
 181		return 0;
 182	case AUDITSC_OPEN:
 183		return mask & ACC_MODE(ctx->argv[1]);
 184	case AUDITSC_OPENAT:
 185		return mask & ACC_MODE(ctx->argv[2]);
 186	case AUDITSC_SOCKETCALL:
 187		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 188	case AUDITSC_EXECVE:
 189		return mask & AUDIT_PERM_EXEC;
 190	case AUDITSC_OPENAT2:
 191		return mask & ACC_MODE((u32)ctx->openat2.flags);
 192	default:
 193		return 0;
 194	}
 195}
 196
 197static int audit_match_filetype(struct audit_context *ctx, int val)
 198{
 199	struct audit_names *n;
 200	umode_t mode = (umode_t)val;
 201
 202	if (unlikely(!ctx))
 203		return 0;
 204
 205	list_for_each_entry(n, &ctx->names_list, list) {
 206		if ((n->ino != AUDIT_INO_UNSET) &&
 207		    ((n->mode & S_IFMT) == mode))
 208			return 1;
 209	}
 210
 211	return 0;
 212}
 213
 214/*
 215 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 216 * ->first_trees points to its beginning, ->trees - to the current end of data.
 217 * ->tree_count is the number of free entries in array pointed to by ->trees.
 218 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 219 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 220 * it's going to remain 1-element for almost any setup) until we free context itself.
 221 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 222 */
 223
 
 224static void audit_set_auditable(struct audit_context *ctx)
 225{
 226	if (!ctx->prio) {
 227		ctx->prio = 1;
 228		ctx->current_state = AUDIT_STATE_RECORD;
 229	}
 230}
 231
 232static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 233{
 234	struct audit_tree_refs *p = ctx->trees;
 235	int left = ctx->tree_count;
 236
 237	if (likely(left)) {
 238		p->c[--left] = chunk;
 239		ctx->tree_count = left;
 240		return 1;
 241	}
 242	if (!p)
 243		return 0;
 244	p = p->next;
 245	if (p) {
 246		p->c[30] = chunk;
 247		ctx->trees = p;
 248		ctx->tree_count = 30;
 249		return 1;
 250	}
 251	return 0;
 252}
 253
 254static int grow_tree_refs(struct audit_context *ctx)
 255{
 256	struct audit_tree_refs *p = ctx->trees;
 257
 258	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 259	if (!ctx->trees) {
 260		ctx->trees = p;
 261		return 0;
 262	}
 263	if (p)
 264		p->next = ctx->trees;
 265	else
 266		ctx->first_trees = ctx->trees;
 267	ctx->tree_count = 31;
 268	return 1;
 269}
 
 270
 271static void unroll_tree_refs(struct audit_context *ctx,
 272		      struct audit_tree_refs *p, int count)
 273{
 
 274	struct audit_tree_refs *q;
 275	int n;
 276
 277	if (!p) {
 278		/* we started with empty chain */
 279		p = ctx->first_trees;
 280		count = 31;
 281		/* if the very first allocation has failed, nothing to do */
 282		if (!p)
 283			return;
 284	}
 285	n = count;
 286	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 287		while (n--) {
 288			audit_put_chunk(q->c[n]);
 289			q->c[n] = NULL;
 290		}
 291	}
 292	while (n-- > ctx->tree_count) {
 293		audit_put_chunk(q->c[n]);
 294		q->c[n] = NULL;
 295	}
 296	ctx->trees = p;
 297	ctx->tree_count = count;
 
 298}
 299
 300static void free_tree_refs(struct audit_context *ctx)
 301{
 302	struct audit_tree_refs *p, *q;
 303
 304	for (p = ctx->first_trees; p; p = q) {
 305		q = p->next;
 306		kfree(p);
 307	}
 308}
 309
 310static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 311{
 
 312	struct audit_tree_refs *p;
 313	int n;
 314
 315	if (!tree)
 316		return 0;
 317	/* full ones */
 318	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 319		for (n = 0; n < 31; n++)
 320			if (audit_tree_match(p->c[n], tree))
 321				return 1;
 322	}
 323	/* partial */
 324	if (p) {
 325		for (n = ctx->tree_count; n < 31; n++)
 326			if (audit_tree_match(p->c[n], tree))
 327				return 1;
 328	}
 
 329	return 0;
 330}
 331
 332static int audit_compare_uid(kuid_t uid,
 333			     struct audit_names *name,
 334			     struct audit_field *f,
 335			     struct audit_context *ctx)
 
 336{
 337	struct audit_names *n;
 
 
 338	int rc;
 339
 
 
 340	if (name) {
 341		rc = audit_uid_comparator(uid, f->op, name->uid);
 
 
 
 
 342		if (rc)
 343			return rc;
 344	}
 345
 346	if (ctx) {
 347		list_for_each_entry(n, &ctx->names_list, list) {
 348			rc = audit_uid_comparator(uid, f->op, n->uid);
 349			if (rc)
 350				return rc;
 351		}
 352	}
 353	return 0;
 354}
 355
 356static int audit_compare_gid(kgid_t gid,
 357			     struct audit_names *name,
 358			     struct audit_field *f,
 359			     struct audit_context *ctx)
 360{
 361	struct audit_names *n;
 362	int rc;
 363
 364	if (name) {
 365		rc = audit_gid_comparator(gid, f->op, name->gid);
 366		if (rc)
 367			return rc;
 368	}
 369
 370	if (ctx) {
 371		list_for_each_entry(n, &ctx->names_list, list) {
 372			rc = audit_gid_comparator(gid, f->op, n->gid);
 373			if (rc)
 374				return rc;
 375		}
 376	}
 377	return 0;
 378}
 379
 380static int audit_field_compare(struct task_struct *tsk,
 381			       const struct cred *cred,
 382			       struct audit_field *f,
 383			       struct audit_context *ctx,
 384			       struct audit_names *name)
 385{
 386	switch (f->val) {
 387	/* process to file object comparisons */
 388	case AUDIT_COMPARE_UID_TO_OBJ_UID:
 389		return audit_compare_uid(cred->uid, name, f, ctx);
 
 
 390	case AUDIT_COMPARE_GID_TO_OBJ_GID:
 391		return audit_compare_gid(cred->gid, name, f, ctx);
 
 
 392	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 393		return audit_compare_uid(cred->euid, name, f, ctx);
 
 
 394	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 395		return audit_compare_gid(cred->egid, name, f, ctx);
 
 
 396	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 397		return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
 
 
 398	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 399		return audit_compare_uid(cred->suid, name, f, ctx);
 
 
 400	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 401		return audit_compare_gid(cred->sgid, name, f, ctx);
 
 
 402	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 403		return audit_compare_uid(cred->fsuid, name, f, ctx);
 
 
 404	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 405		return audit_compare_gid(cred->fsgid, name, f, ctx);
 
 
 406	/* uid comparisons */
 407	case AUDIT_COMPARE_UID_TO_AUID:
 408		return audit_uid_comparator(cred->uid, f->op,
 409					    audit_get_loginuid(tsk));
 410	case AUDIT_COMPARE_UID_TO_EUID:
 411		return audit_uid_comparator(cred->uid, f->op, cred->euid);
 412	case AUDIT_COMPARE_UID_TO_SUID:
 413		return audit_uid_comparator(cred->uid, f->op, cred->suid);
 414	case AUDIT_COMPARE_UID_TO_FSUID:
 415		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 416	/* auid comparisons */
 417	case AUDIT_COMPARE_AUID_TO_EUID:
 418		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 419					    cred->euid);
 420	case AUDIT_COMPARE_AUID_TO_SUID:
 421		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 422					    cred->suid);
 423	case AUDIT_COMPARE_AUID_TO_FSUID:
 424		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 425					    cred->fsuid);
 426	/* euid comparisons */
 427	case AUDIT_COMPARE_EUID_TO_SUID:
 428		return audit_uid_comparator(cred->euid, f->op, cred->suid);
 429	case AUDIT_COMPARE_EUID_TO_FSUID:
 430		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 431	/* suid comparisons */
 432	case AUDIT_COMPARE_SUID_TO_FSUID:
 433		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 434	/* gid comparisons */
 435	case AUDIT_COMPARE_GID_TO_EGID:
 436		return audit_gid_comparator(cred->gid, f->op, cred->egid);
 437	case AUDIT_COMPARE_GID_TO_SGID:
 438		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 439	case AUDIT_COMPARE_GID_TO_FSGID:
 440		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 441	/* egid comparisons */
 442	case AUDIT_COMPARE_EGID_TO_SGID:
 443		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 444	case AUDIT_COMPARE_EGID_TO_FSGID:
 445		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 446	/* sgid comparison */
 447	case AUDIT_COMPARE_SGID_TO_FSGID:
 448		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 449	default:
 450		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 451		return 0;
 452	}
 453	return 0;
 454}
 455
 456/* Determine if any context name data matches a rule's watch data */
 457/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 458 * otherwise.
 459 *
 460 * If task_creation is true, this is an explicit indication that we are
 461 * filtering a task rule at task creation time.  This and tsk == current are
 462 * the only situations where tsk->cred may be accessed without an rcu read lock.
 463 */
 464static int audit_filter_rules(struct task_struct *tsk,
 465			      struct audit_krule *rule,
 466			      struct audit_context *ctx,
 467			      struct audit_names *name,
 468			      enum audit_state *state,
 469			      bool task_creation)
 470{
 471	const struct cred *cred;
 472	int i, need_sid = 1;
 473	u32 sid;
 474	unsigned int sessionid;
 475
 476	if (ctx && rule->prio <= ctx->prio)
 477		return 0;
 478
 479	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 480
 481	for (i = 0; i < rule->field_count; i++) {
 482		struct audit_field *f = &rule->fields[i];
 483		struct audit_names *n;
 484		int result = 0;
 485		pid_t pid;
 486
 487		switch (f->type) {
 488		case AUDIT_PID:
 489			pid = task_tgid_nr(tsk);
 490			result = audit_comparator(pid, f->op, f->val);
 491			break;
 492		case AUDIT_PPID:
 493			if (ctx) {
 494				if (!ctx->ppid)
 495					ctx->ppid = task_ppid_nr(tsk);
 496				result = audit_comparator(ctx->ppid, f->op, f->val);
 497			}
 498			break;
 499		case AUDIT_EXE:
 500			result = audit_exe_compare(tsk, rule->exe);
 501			if (f->op == Audit_not_equal)
 502				result = !result;
 503			break;
 504		case AUDIT_UID:
 505			result = audit_uid_comparator(cred->uid, f->op, f->uid);
 506			break;
 507		case AUDIT_EUID:
 508			result = audit_uid_comparator(cred->euid, f->op, f->uid);
 509			break;
 510		case AUDIT_SUID:
 511			result = audit_uid_comparator(cred->suid, f->op, f->uid);
 512			break;
 513		case AUDIT_FSUID:
 514			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 515			break;
 516		case AUDIT_GID:
 517			result = audit_gid_comparator(cred->gid, f->op, f->gid);
 518			if (f->op == Audit_equal) {
 519				if (!result)
 520					result = groups_search(cred->group_info, f->gid);
 521			} else if (f->op == Audit_not_equal) {
 522				if (result)
 523					result = !groups_search(cred->group_info, f->gid);
 524			}
 525			break;
 526		case AUDIT_EGID:
 527			result = audit_gid_comparator(cred->egid, f->op, f->gid);
 528			if (f->op == Audit_equal) {
 529				if (!result)
 530					result = groups_search(cred->group_info, f->gid);
 531			} else if (f->op == Audit_not_equal) {
 532				if (result)
 533					result = !groups_search(cred->group_info, f->gid);
 534			}
 535			break;
 536		case AUDIT_SGID:
 537			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 538			break;
 539		case AUDIT_FSGID:
 540			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 541			break;
 542		case AUDIT_SESSIONID:
 543			sessionid = audit_get_sessionid(tsk);
 544			result = audit_comparator(sessionid, f->op, f->val);
 545			break;
 546		case AUDIT_PERS:
 547			result = audit_comparator(tsk->personality, f->op, f->val);
 548			break;
 549		case AUDIT_ARCH:
 550			if (ctx)
 551				result = audit_comparator(ctx->arch, f->op, f->val);
 552			break;
 553
 554		case AUDIT_EXIT:
 555			if (ctx && ctx->return_valid != AUDITSC_INVALID)
 556				result = audit_comparator(ctx->return_code, f->op, f->val);
 557			break;
 558		case AUDIT_SUCCESS:
 559			if (ctx && ctx->return_valid != AUDITSC_INVALID) {
 560				if (f->val)
 561					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 562				else
 563					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 564			}
 565			break;
 566		case AUDIT_DEVMAJOR:
 567			if (name) {
 568				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 569				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 570					++result;
 571			} else if (ctx) {
 572				list_for_each_entry(n, &ctx->names_list, list) {
 573					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 574					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 575						++result;
 576						break;
 577					}
 578				}
 579			}
 580			break;
 581		case AUDIT_DEVMINOR:
 582			if (name) {
 583				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 584				    audit_comparator(MINOR(name->rdev), f->op, f->val))
 585					++result;
 586			} else if (ctx) {
 587				list_for_each_entry(n, &ctx->names_list, list) {
 588					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 589					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 590						++result;
 591						break;
 592					}
 593				}
 594			}
 595			break;
 596		case AUDIT_INODE:
 597			if (name)
 598				result = audit_comparator(name->ino, f->op, f->val);
 599			else if (ctx) {
 600				list_for_each_entry(n, &ctx->names_list, list) {
 601					if (audit_comparator(n->ino, f->op, f->val)) {
 602						++result;
 603						break;
 604					}
 605				}
 606			}
 607			break;
 608		case AUDIT_OBJ_UID:
 609			if (name) {
 610				result = audit_uid_comparator(name->uid, f->op, f->uid);
 611			} else if (ctx) {
 612				list_for_each_entry(n, &ctx->names_list, list) {
 613					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 614						++result;
 615						break;
 616					}
 617				}
 618			}
 619			break;
 620		case AUDIT_OBJ_GID:
 621			if (name) {
 622				result = audit_gid_comparator(name->gid, f->op, f->gid);
 623			} else if (ctx) {
 624				list_for_each_entry(n, &ctx->names_list, list) {
 625					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 626						++result;
 627						break;
 628					}
 629				}
 630			}
 631			break;
 632		case AUDIT_WATCH:
 633			if (name) {
 634				result = audit_watch_compare(rule->watch,
 635							     name->ino,
 636							     name->dev);
 637				if (f->op == Audit_not_equal)
 638					result = !result;
 639			}
 640			break;
 641		case AUDIT_DIR:
 642			if (ctx) {
 643				result = match_tree_refs(ctx, rule->tree);
 644				if (f->op == Audit_not_equal)
 645					result = !result;
 646			}
 647			break;
 648		case AUDIT_LOGINUID:
 649			result = audit_uid_comparator(audit_get_loginuid(tsk),
 650						      f->op, f->uid);
 651			break;
 652		case AUDIT_LOGINUID_SET:
 653			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 654			break;
 655		case AUDIT_SADDR_FAM:
 656			if (ctx && ctx->sockaddr)
 657				result = audit_comparator(ctx->sockaddr->ss_family,
 658							  f->op, f->val);
 659			break;
 660		case AUDIT_SUBJ_USER:
 661		case AUDIT_SUBJ_ROLE:
 662		case AUDIT_SUBJ_TYPE:
 663		case AUDIT_SUBJ_SEN:
 664		case AUDIT_SUBJ_CLR:
 665			/* NOTE: this may return negative values indicating
 666			   a temporary error.  We simply treat this as a
 667			   match for now to avoid losing information that
 668			   may be wanted.   An error message will also be
 669			   logged upon error */
 670			if (f->lsm_rule) {
 671				if (need_sid) {
 672					/* @tsk should always be equal to
 673					 * @current with the exception of
 674					 * fork()/copy_process() in which case
 675					 * the new @tsk creds are still a dup
 676					 * of @current's creds so we can still
 677					 * use security_current_getsecid_subj()
 678					 * here even though it always refs
 679					 * @current's creds
 680					 */
 681					security_current_getsecid_subj(&sid);
 682					need_sid = 0;
 683				}
 684				result = security_audit_rule_match(sid, f->type,
 685								   f->op,
 686								   f->lsm_rule);
 
 687			}
 688			break;
 689		case AUDIT_OBJ_USER:
 690		case AUDIT_OBJ_ROLE:
 691		case AUDIT_OBJ_TYPE:
 692		case AUDIT_OBJ_LEV_LOW:
 693		case AUDIT_OBJ_LEV_HIGH:
 694			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 695			   also applies here */
 696			if (f->lsm_rule) {
 697				/* Find files that match */
 698				if (name) {
 699					result = security_audit_rule_match(
 700								name->osid,
 701								f->type,
 702								f->op,
 703								f->lsm_rule);
 704				} else if (ctx) {
 705					list_for_each_entry(n, &ctx->names_list, list) {
 706						if (security_audit_rule_match(
 707								n->osid,
 708								f->type,
 709								f->op,
 710								f->lsm_rule)) {
 711							++result;
 712							break;
 713						}
 714					}
 715				}
 716				/* Find ipc objects that match */
 717				if (!ctx || ctx->type != AUDIT_IPC)
 718					break;
 719				if (security_audit_rule_match(ctx->ipc.osid,
 720							      f->type, f->op,
 721							      f->lsm_rule))
 722					++result;
 723			}
 724			break;
 725		case AUDIT_ARG0:
 726		case AUDIT_ARG1:
 727		case AUDIT_ARG2:
 728		case AUDIT_ARG3:
 729			if (ctx)
 730				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 731			break;
 732		case AUDIT_FILTERKEY:
 733			/* ignore this field for filtering */
 734			result = 1;
 735			break;
 736		case AUDIT_PERM:
 737			result = audit_match_perm(ctx, f->val);
 738			if (f->op == Audit_not_equal)
 739				result = !result;
 740			break;
 741		case AUDIT_FILETYPE:
 742			result = audit_match_filetype(ctx, f->val);
 743			if (f->op == Audit_not_equal)
 744				result = !result;
 745			break;
 746		case AUDIT_FIELD_COMPARE:
 747			result = audit_field_compare(tsk, cred, f, ctx, name);
 748			break;
 749		}
 750		if (!result)
 751			return 0;
 752	}
 753
 754	if (ctx) {
 
 
 755		if (rule->filterkey) {
 756			kfree(ctx->filterkey);
 757			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 758		}
 759		ctx->prio = rule->prio;
 760	}
 761	switch (rule->action) {
 762	case AUDIT_NEVER:
 763		*state = AUDIT_STATE_DISABLED;
 764		break;
 765	case AUDIT_ALWAYS:
 766		*state = AUDIT_STATE_RECORD;
 767		break;
 768	}
 769	return 1;
 770}
 771
 772/* At process creation time, we can determine if system-call auditing is
 773 * completely disabled for this task.  Since we only have the task
 774 * structure at this point, we can only check uid and gid.
 775 */
 776static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 777{
 778	struct audit_entry *e;
 779	enum audit_state   state;
 780
 781	rcu_read_lock();
 782	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 783		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 784				       &state, true)) {
 785			if (state == AUDIT_STATE_RECORD)
 786				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 787			rcu_read_unlock();
 788			return state;
 789		}
 790	}
 791	rcu_read_unlock();
 792	return AUDIT_STATE_BUILD;
 793}
 794
 795static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
 796{
 797	int word, bit;
 798
 799	if (val > 0xffffffff)
 800		return false;
 801
 802	word = AUDIT_WORD(val);
 803	if (word >= AUDIT_BITMASK_SIZE)
 804		return false;
 805
 806	bit = AUDIT_BIT(val);
 807
 808	return rule->mask[word] & bit;
 809}
 810
 811/**
 812 * __audit_filter_op - common filter helper for operations (syscall/uring/etc)
 813 * @tsk: associated task
 814 * @ctx: audit context
 815 * @list: audit filter list
 816 * @name: audit_name (can be NULL)
 817 * @op: current syscall/uring_op
 818 *
 819 * Run the udit filters specified in @list against @tsk using @ctx,
 820 * @name, and @op, as necessary; the caller is responsible for ensuring
 821 * that the call is made while the RCU read lock is held. The @name
 822 * parameter can be NULL, but all others must be specified.
 823 * Returns 1/true if the filter finds a match, 0/false if none are found.
 824 */
 825static int __audit_filter_op(struct task_struct *tsk,
 826			   struct audit_context *ctx,
 827			   struct list_head *list,
 828			   struct audit_names *name,
 829			   unsigned long op)
 830{
 831	struct audit_entry *e;
 832	enum audit_state state;
 833
 834	list_for_each_entry_rcu(e, list, list) {
 835		if (audit_in_mask(&e->rule, op) &&
 836		    audit_filter_rules(tsk, &e->rule, ctx, name,
 837				       &state, false)) {
 838			ctx->current_state = state;
 839			return 1;
 840		}
 841	}
 842	return 0;
 843}
 844
 845/**
 846 * audit_filter_uring - apply filters to an io_uring operation
 847 * @tsk: associated task
 848 * @ctx: audit context
 849 */
 850static void audit_filter_uring(struct task_struct *tsk,
 851			       struct audit_context *ctx)
 852{
 853	if (auditd_test_task(tsk))
 854		return;
 855
 856	rcu_read_lock();
 857	__audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
 858			NULL, ctx->uring_op);
 859	rcu_read_unlock();
 860}
 861
 862/* At syscall exit time, this filter is called if the audit_state is
 863 * not low enough that auditing cannot take place, but is also not
 864 * high enough that we already know we have to write an audit record
 865 * (i.e., the state is AUDIT_STATE_BUILD).
 866 */
 867static void audit_filter_syscall(struct task_struct *tsk,
 868				 struct audit_context *ctx)
 869{
 870	if (auditd_test_task(tsk))
 871		return;
 872
 873	rcu_read_lock();
 874	__audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT],
 875			NULL, ctx->major);
 876	rcu_read_unlock();
 
 877}
 878
 879/*
 880 * Given an audit_name check the inode hash table to see if they match.
 881 * Called holding the rcu read lock to protect the use of audit_inode_hash
 882 */
 883static int audit_filter_inode_name(struct task_struct *tsk,
 884				   struct audit_names *n,
 885				   struct audit_context *ctx)
 886{
 887	int h = audit_hash_ino((u32)n->ino);
 888	struct list_head *list = &audit_inode_hash[h];
 
 
 
 
 
 
 
 
 889
 890	return __audit_filter_op(tsk, ctx, list, n, ctx->major);
 
 
 
 
 
 
 
 
 891}
 892
 893/* At syscall exit time, this filter is called if any audit_names have been
 894 * collected during syscall processing.  We only check rules in sublists at hash
 895 * buckets applicable to the inode numbers in audit_names.
 896 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 897 */
 898void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 899{
 900	struct audit_names *n;
 901
 902	if (auditd_test_task(tsk))
 903		return;
 904
 905	rcu_read_lock();
 906
 907	list_for_each_entry(n, &ctx->names_list, list) {
 908		if (audit_filter_inode_name(tsk, n, ctx))
 909			break;
 910	}
 911	rcu_read_unlock();
 912}
 913
 914static inline void audit_proctitle_free(struct audit_context *context)
 
 
 915{
 916	kfree(context->proctitle.value);
 917	context->proctitle.value = NULL;
 918	context->proctitle.len = 0;
 919}
 920
 921static inline void audit_free_module(struct audit_context *context)
 922{
 923	if (context->type == AUDIT_KERN_MODULE) {
 924		kfree(context->module.name);
 925		context->module.name = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 926	}
 
 
 
 927}
 
 928static inline void audit_free_names(struct audit_context *context)
 929{
 930	struct audit_names *n, *next;
 931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 932	list_for_each_entry_safe(n, next, &context->names_list, list) {
 933		list_del(&n->list);
 934		if (n->name)
 935			putname(n->name);
 936		if (n->should_free)
 937			kfree(n);
 938	}
 939	context->name_count = 0;
 940	path_put(&context->pwd);
 941	context->pwd.dentry = NULL;
 942	context->pwd.mnt = NULL;
 943}
 944
 945static inline void audit_free_aux(struct audit_context *context)
 946{
 947	struct audit_aux_data *aux;
 948
 949	while ((aux = context->aux)) {
 950		context->aux = aux->next;
 951		kfree(aux);
 952	}
 953	context->aux = NULL;
 954	while ((aux = context->aux_pids)) {
 955		context->aux_pids = aux->next;
 956		kfree(aux);
 957	}
 958	context->aux_pids = NULL;
 959}
 960
 961/**
 962 * audit_reset_context - reset a audit_context structure
 963 * @ctx: the audit_context to reset
 964 *
 965 * All fields in the audit_context will be reset to an initial state, all
 966 * references held by fields will be dropped, and private memory will be
 967 * released.  When this function returns the audit_context will be suitable
 968 * for reuse, so long as the passed context is not NULL or a dummy context.
 969 */
 970static void audit_reset_context(struct audit_context *ctx)
 971{
 972	if (!ctx)
 973		return;
 974
 975	/* if ctx is non-null, reset the "ctx->context" regardless */
 976	ctx->context = AUDIT_CTX_UNUSED;
 977	if (ctx->dummy)
 978		return;
 979
 980	/*
 981	 * NOTE: It shouldn't matter in what order we release the fields, so
 982	 *       release them in the order in which they appear in the struct;
 983	 *       this gives us some hope of quickly making sure we are
 984	 *       resetting the audit_context properly.
 985	 *
 986	 *       Other things worth mentioning:
 987	 *       - we don't reset "dummy"
 988	 *       - we don't reset "state", we do reset "current_state"
 989	 *       - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
 990	 *       - much of this is likely overkill, but play it safe for now
 991	 *       - we really need to work on improving the audit_context struct
 992	 */
 993
 994	ctx->current_state = ctx->state;
 995	ctx->serial = 0;
 996	ctx->major = 0;
 997	ctx->uring_op = 0;
 998	ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
 999	memset(ctx->argv, 0, sizeof(ctx->argv));
1000	ctx->return_code = 0;
1001	ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
1002	ctx->return_valid = AUDITSC_INVALID;
1003	audit_free_names(ctx);
1004	if (ctx->state != AUDIT_STATE_RECORD) {
1005		kfree(ctx->filterkey);
1006		ctx->filterkey = NULL;
1007	}
1008	audit_free_aux(ctx);
1009	kfree(ctx->sockaddr);
1010	ctx->sockaddr = NULL;
1011	ctx->sockaddr_len = 0;
1012	ctx->ppid = 0;
1013	ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1014	ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1015	ctx->personality = 0;
1016	ctx->arch = 0;
1017	ctx->target_pid = 0;
1018	ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1019	ctx->target_sessionid = 0;
1020	ctx->target_sid = 0;
1021	ctx->target_comm[0] = '\0';
1022	unroll_tree_refs(ctx, NULL, 0);
1023	WARN_ON(!list_empty(&ctx->killed_trees));
1024	audit_free_module(ctx);
1025	ctx->fds[0] = -1;
1026	ctx->type = 0; /* reset last for audit_free_*() */
1027}
1028
1029static inline struct audit_context *audit_alloc_context(enum audit_state state)
1030{
1031	struct audit_context *context;
1032
1033	context = kzalloc(sizeof(*context), GFP_KERNEL);
1034	if (!context)
1035		return NULL;
1036	context->context = AUDIT_CTX_UNUSED;
1037	context->state = state;
1038	context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1039	INIT_LIST_HEAD(&context->killed_trees);
1040	INIT_LIST_HEAD(&context->names_list);
1041	context->fds[0] = -1;
1042	context->return_valid = AUDITSC_INVALID;
1043	return context;
1044}
1045
1046/**
1047 * audit_alloc - allocate an audit context block for a task
1048 * @tsk: task
1049 *
1050 * Filter on the task information and allocate a per-task audit context
1051 * if necessary.  Doing so turns on system call auditing for the
1052 * specified task.  This is called from copy_process, so no lock is
1053 * needed.
1054 */
1055int audit_alloc(struct task_struct *tsk)
1056{
1057	struct audit_context *context;
1058	enum audit_state     state;
1059	char *key = NULL;
1060
1061	if (likely(!audit_ever_enabled))
1062		return 0;
1063
1064	state = audit_filter_task(tsk, &key);
1065	if (state == AUDIT_STATE_DISABLED) {
1066		clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1067		return 0;
1068	}
1069
1070	context = audit_alloc_context(state);
1071	if (!context) {
1072		kfree(key);
1073		audit_log_lost("out of memory in audit_alloc");
1074		return -ENOMEM;
1075	}
1076	context->filterkey = key;
1077
1078	audit_set_context(tsk, context);
1079	set_task_syscall_work(tsk, SYSCALL_AUDIT);
1080	return 0;
1081}
1082
1083static inline void audit_free_context(struct audit_context *context)
1084{
1085	/* resetting is extra work, but it is likely just noise */
1086	audit_reset_context(context);
1087	audit_proctitle_free(context);
1088	free_tree_refs(context);
1089	kfree(context->filterkey);
1090	kfree(context);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1091}
1092
1093static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1094				 kuid_t auid, kuid_t uid, unsigned int sessionid,
1095				 u32 sid, char *comm)
1096{
1097	struct audit_buffer *ab;
1098	char *ctx = NULL;
1099	u32 len;
1100	int rc = 0;
1101
1102	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1103	if (!ab)
1104		return rc;
1105
1106	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1107			 from_kuid(&init_user_ns, auid),
1108			 from_kuid(&init_user_ns, uid), sessionid);
1109	if (sid) {
1110		if (security_secid_to_secctx(sid, &ctx, &len)) {
1111			audit_log_format(ab, " obj=(none)");
1112			rc = 1;
1113		} else {
1114			audit_log_format(ab, " obj=%s", ctx);
1115			security_release_secctx(ctx, len);
1116		}
1117	}
1118	audit_log_format(ab, " ocomm=");
1119	audit_log_untrustedstring(ab, comm);
1120	audit_log_end(ab);
1121
1122	return rc;
1123}
1124
1125static void audit_log_execve_info(struct audit_context *context,
1126				  struct audit_buffer **ab)
1127{
1128	long len_max;
1129	long len_rem;
1130	long len_full;
1131	long len_buf;
1132	long len_abuf = 0;
1133	long len_tmp;
1134	bool require_data;
1135	bool encode;
1136	unsigned int iter;
1137	unsigned int arg;
1138	char *buf_head;
1139	char *buf;
1140	const char __user *p = (const char __user *)current->mm->arg_start;
 
 
 
 
 
 
 
 
 
 
1141
1142	/* NOTE: this buffer needs to be large enough to hold all the non-arg
1143	 *       data we put in the audit record for this argument (see the
1144	 *       code below) ... at this point in time 96 is plenty */
1145	char abuf[96];
1146
1147	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1148	 *       current value of 7500 is not as important as the fact that it
1149	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1150	 *       room if we go over a little bit in the logging below */
1151	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1152	len_max = MAX_EXECVE_AUDIT_LEN;
1153
1154	/* scratch buffer to hold the userspace args */
1155	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1156	if (!buf_head) {
1157		audit_panic("out of memory for argv string");
1158		return;
1159	}
1160	buf = buf_head;
1161
1162	audit_log_format(*ab, "argc=%d", context->execve.argc);
1163
1164	len_rem = len_max;
1165	len_buf = 0;
1166	len_full = 0;
1167	require_data = true;
1168	encode = false;
1169	iter = 0;
1170	arg = 0;
1171	do {
1172		/* NOTE: we don't ever want to trust this value for anything
1173		 *       serious, but the audit record format insists we
1174		 *       provide an argument length for really long arguments,
1175		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1176		 *       to use strncpy_from_user() to obtain this value for
1177		 *       recording in the log, although we don't use it
1178		 *       anywhere here to avoid a double-fetch problem */
1179		if (len_full == 0)
1180			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1181
1182		/* read more data from userspace */
1183		if (require_data) {
1184			/* can we make more room in the buffer? */
1185			if (buf != buf_head) {
1186				memmove(buf_head, buf, len_buf);
1187				buf = buf_head;
1188			}
1189
1190			/* fetch as much as we can of the argument */
1191			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1192						    len_max - len_buf);
1193			if (len_tmp == -EFAULT) {
1194				/* unable to copy from userspace */
1195				send_sig(SIGKILL, current, 0);
1196				goto out;
1197			} else if (len_tmp == (len_max - len_buf)) {
1198				/* buffer is not large enough */
1199				require_data = true;
1200				/* NOTE: if we are going to span multiple
1201				 *       buffers force the encoding so we stand
1202				 *       a chance at a sane len_full value and
1203				 *       consistent record encoding */
1204				encode = true;
1205				len_full = len_full * 2;
1206				p += len_tmp;
1207			} else {
1208				require_data = false;
1209				if (!encode)
1210					encode = audit_string_contains_control(
1211								buf, len_tmp);
1212				/* try to use a trusted value for len_full */
1213				if (len_full < len_max)
1214					len_full = (encode ?
1215						    len_tmp * 2 : len_tmp);
1216				p += len_tmp + 1;
1217			}
1218			len_buf += len_tmp;
1219			buf_head[len_buf] = '\0';
1220
1221			/* length of the buffer in the audit record? */
1222			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1223		}
1224
1225		/* write as much as we can to the audit log */
1226		if (len_buf >= 0) {
1227			/* NOTE: some magic numbers here - basically if we
1228			 *       can't fit a reasonable amount of data into the
1229			 *       existing audit buffer, flush it and start with
1230			 *       a new buffer */
1231			if ((sizeof(abuf) + 8) > len_rem) {
1232				len_rem = len_max;
1233				audit_log_end(*ab);
1234				*ab = audit_log_start(context,
1235						      GFP_KERNEL, AUDIT_EXECVE);
1236				if (!*ab)
1237					goto out;
1238			}
1239
1240			/* create the non-arg portion of the arg record */
1241			len_tmp = 0;
1242			if (require_data || (iter > 0) ||
1243			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1244				if (iter == 0) {
1245					len_tmp += snprintf(&abuf[len_tmp],
1246							sizeof(abuf) - len_tmp,
1247							" a%d_len=%lu",
1248							arg, len_full);
1249				}
1250				len_tmp += snprintf(&abuf[len_tmp],
1251						    sizeof(abuf) - len_tmp,
1252						    " a%d[%d]=", arg, iter++);
1253			} else
1254				len_tmp += snprintf(&abuf[len_tmp],
1255						    sizeof(abuf) - len_tmp,
1256						    " a%d=", arg);
1257			WARN_ON(len_tmp >= sizeof(abuf));
1258			abuf[sizeof(abuf) - 1] = '\0';
1259
1260			/* log the arg in the audit record */
1261			audit_log_format(*ab, "%s", abuf);
1262			len_rem -= len_tmp;
1263			len_tmp = len_buf;
1264			if (encode) {
1265				if (len_abuf > len_rem)
1266					len_tmp = len_rem / 2; /* encoding */
1267				audit_log_n_hex(*ab, buf, len_tmp);
1268				len_rem -= len_tmp * 2;
1269				len_abuf -= len_tmp * 2;
1270			} else {
1271				if (len_abuf > len_rem)
1272					len_tmp = len_rem - 2; /* quotes */
1273				audit_log_n_string(*ab, buf, len_tmp);
1274				len_rem -= len_tmp + 2;
1275				/* don't subtract the "2" because we still need
1276				 * to add quotes to the remaining string */
1277				len_abuf -= len_tmp;
1278			}
1279			len_buf -= len_tmp;
1280			buf += len_tmp;
1281		}
1282
1283		/* ready to move to the next argument? */
1284		if ((len_buf == 0) && !require_data) {
1285			arg++;
1286			iter = 0;
1287			len_full = 0;
1288			require_data = true;
1289			encode = false;
1290		}
1291	} while (arg < context->execve.argc);
1292
1293	/* NOTE: the caller handles the final audit_log_end() call */
 
1294
1295out:
1296	kfree(buf_head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1297}
1298
1299static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1300			  kernel_cap_t *cap)
1301{
1302	if (cap_isclear(*cap)) {
1303		audit_log_format(ab, " %s=0", prefix);
1304		return;
 
 
1305	}
1306	audit_log_format(ab, " %s=%016llx", prefix, cap->val);
1307}
1308
1309static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1310{
1311	if (name->fcap_ver == -1) {
1312		audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1313		return;
1314	}
1315	audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1316	audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1317	audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1318			 name->fcap.fE, name->fcap_ver,
1319			 from_kuid(&init_user_ns, name->fcap.rootid));
1320}
1321
1322static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1323{
1324	const struct audit_ntp_data *ntp = &context->time.ntp_data;
1325	const struct timespec64 *tk = &context->time.tk_injoffset;
1326	static const char * const ntp_name[] = {
1327		"offset",
1328		"freq",
1329		"status",
1330		"tai",
1331		"tick",
1332		"adjust",
1333	};
1334	int type;
1335
1336	if (context->type == AUDIT_TIME_ADJNTPVAL) {
1337		for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1338			if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1339				if (!*ab) {
1340					*ab = audit_log_start(context,
1341							GFP_KERNEL,
1342							AUDIT_TIME_ADJNTPVAL);
1343					if (!*ab)
1344						return;
1345				}
1346				audit_log_format(*ab, "op=%s old=%lli new=%lli",
1347						 ntp_name[type],
1348						 ntp->vals[type].oldval,
1349						 ntp->vals[type].newval);
1350				audit_log_end(*ab);
1351				*ab = NULL;
1352			}
1353		}
1354	}
1355	if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1356		if (!*ab) {
1357			*ab = audit_log_start(context, GFP_KERNEL,
1358					      AUDIT_TIME_INJOFFSET);
1359			if (!*ab)
1360				return;
1361		}
1362		audit_log_format(*ab, "sec=%lli nsec=%li",
1363				 (long long)tk->tv_sec, tk->tv_nsec);
1364		audit_log_end(*ab);
1365		*ab = NULL;
1366	}
 
 
 
1367}
1368
1369static void show_special(struct audit_context *context, int *call_panic)
1370{
1371	struct audit_buffer *ab;
1372	int i;
1373
1374	ab = audit_log_start(context, GFP_KERNEL, context->type);
1375	if (!ab)
1376		return;
1377
1378	switch (context->type) {
1379	case AUDIT_SOCKETCALL: {
1380		int nargs = context->socketcall.nargs;
1381
1382		audit_log_format(ab, "nargs=%d", nargs);
1383		for (i = 0; i < nargs; i++)
1384			audit_log_format(ab, " a%d=%lx", i,
1385				context->socketcall.args[i]);
1386		break; }
1387	case AUDIT_IPC: {
1388		u32 osid = context->ipc.osid;
1389
1390		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1391				 from_kuid(&init_user_ns, context->ipc.uid),
1392				 from_kgid(&init_user_ns, context->ipc.gid),
1393				 context->ipc.mode);
1394		if (osid) {
1395			char *ctx = NULL;
1396			u32 len;
1397
1398			if (security_secid_to_secctx(osid, &ctx, &len)) {
1399				audit_log_format(ab, " osid=%u", osid);
1400				*call_panic = 1;
1401			} else {
1402				audit_log_format(ab, " obj=%s", ctx);
1403				security_release_secctx(ctx, len);
1404			}
1405		}
1406		if (context->ipc.has_perm) {
1407			audit_log_end(ab);
1408			ab = audit_log_start(context, GFP_KERNEL,
1409					     AUDIT_IPC_SET_PERM);
1410			if (unlikely(!ab))
1411				return;
1412			audit_log_format(ab,
1413				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1414				context->ipc.qbytes,
1415				context->ipc.perm_uid,
1416				context->ipc.perm_gid,
1417				context->ipc.perm_mode);
 
 
1418		}
1419		break; }
1420	case AUDIT_MQ_OPEN:
1421		audit_log_format(ab,
1422			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1423			"mq_msgsize=%ld mq_curmsgs=%ld",
1424			context->mq_open.oflag, context->mq_open.mode,
1425			context->mq_open.attr.mq_flags,
1426			context->mq_open.attr.mq_maxmsg,
1427			context->mq_open.attr.mq_msgsize,
1428			context->mq_open.attr.mq_curmsgs);
1429		break;
1430	case AUDIT_MQ_SENDRECV:
1431		audit_log_format(ab,
1432			"mqdes=%d msg_len=%zd msg_prio=%u "
1433			"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1434			context->mq_sendrecv.mqdes,
1435			context->mq_sendrecv.msg_len,
1436			context->mq_sendrecv.msg_prio,
1437			(long long) context->mq_sendrecv.abs_timeout.tv_sec,
1438			context->mq_sendrecv.abs_timeout.tv_nsec);
1439		break;
1440	case AUDIT_MQ_NOTIFY:
1441		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1442				context->mq_notify.mqdes,
1443				context->mq_notify.sigev_signo);
1444		break;
1445	case AUDIT_MQ_GETSETATTR: {
1446		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1447
1448		audit_log_format(ab,
1449			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1450			"mq_curmsgs=%ld ",
1451			context->mq_getsetattr.mqdes,
1452			attr->mq_flags, attr->mq_maxmsg,
1453			attr->mq_msgsize, attr->mq_curmsgs);
1454		break; }
1455	case AUDIT_CAPSET:
1456		audit_log_format(ab, "pid=%d", context->capset.pid);
1457		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1458		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1459		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1460		audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1461		break;
1462	case AUDIT_MMAP:
1463		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1464				 context->mmap.flags);
1465		break;
1466	case AUDIT_OPENAT2:
1467		audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1468				 context->openat2.flags,
1469				 context->openat2.mode,
1470				 context->openat2.resolve);
1471		break;
1472	case AUDIT_EXECVE:
1473		audit_log_execve_info(context, &ab);
1474		break;
1475	case AUDIT_KERN_MODULE:
1476		audit_log_format(ab, "name=");
1477		if (context->module.name) {
1478			audit_log_untrustedstring(ab, context->module.name);
1479		} else
1480			audit_log_format(ab, "(null)");
1481
1482		break;
1483	case AUDIT_TIME_ADJNTPVAL:
1484	case AUDIT_TIME_INJOFFSET:
1485		/* this call deviates from the rest, eating the buffer */
1486		audit_log_time(context, &ab);
1487		break;
1488	}
1489	audit_log_end(ab);
1490}
1491
1492static inline int audit_proctitle_rtrim(char *proctitle, int len)
1493{
1494	char *end = proctitle + len - 1;
1495
1496	while (end > proctitle && !isprint(*end))
1497		end--;
1498
1499	/* catch the case where proctitle is only 1 non-print character */
1500	len = end - proctitle + 1;
1501	len -= isprint(proctitle[len-1]) == 0;
1502	return len;
1503}
1504
1505/*
1506 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1507 * @context: audit_context for the task
1508 * @n: audit_names structure with reportable details
1509 * @path: optional path to report instead of audit_names->name
1510 * @record_num: record number to report when handling a list of names
1511 * @call_panic: optional pointer to int that will be updated if secid fails
1512 */
1513static void audit_log_name(struct audit_context *context, struct audit_names *n,
1514		    const struct path *path, int record_num, int *call_panic)
1515{
1516	struct audit_buffer *ab;
1517
1518	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1519	if (!ab)
1520		return;
1521
1522	audit_log_format(ab, "item=%d", record_num);
1523
1524	if (path)
1525		audit_log_d_path(ab, " name=", path);
1526	else if (n->name) {
1527		switch (n->name_len) {
1528		case AUDIT_NAME_FULL:
1529			/* log the full path */
1530			audit_log_format(ab, " name=");
1531			audit_log_untrustedstring(ab, n->name->name);
1532			break;
1533		case 0:
1534			/* name was specified as a relative path and the
1535			 * directory component is the cwd
1536			 */
1537			if (context->pwd.dentry && context->pwd.mnt)
1538				audit_log_d_path(ab, " name=", &context->pwd);
1539			else
1540				audit_log_format(ab, " name=(null)");
1541			break;
1542		default:
1543			/* log the name's directory component */
1544			audit_log_format(ab, " name=");
1545			audit_log_n_untrustedstring(ab, n->name->name,
1546						    n->name_len);
1547		}
1548	} else
1549		audit_log_format(ab, " name=(null)");
1550
1551	if (n->ino != AUDIT_INO_UNSET)
1552		audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
 
 
1553				 n->ino,
1554				 MAJOR(n->dev),
1555				 MINOR(n->dev),
1556				 n->mode,
1557				 from_kuid(&init_user_ns, n->uid),
1558				 from_kgid(&init_user_ns, n->gid),
1559				 MAJOR(n->rdev),
1560				 MINOR(n->rdev));
 
1561	if (n->osid != 0) {
1562		char *ctx = NULL;
1563		u32 len;
1564
1565		if (security_secid_to_secctx(
1566			n->osid, &ctx, &len)) {
1567			audit_log_format(ab, " osid=%u", n->osid);
1568			if (call_panic)
1569				*call_panic = 2;
1570		} else {
1571			audit_log_format(ab, " obj=%s", ctx);
1572			security_release_secctx(ctx, len);
1573		}
1574	}
1575
1576	/* log the audit_names record type */
1577	switch (n->type) {
1578	case AUDIT_TYPE_NORMAL:
1579		audit_log_format(ab, " nametype=NORMAL");
1580		break;
1581	case AUDIT_TYPE_PARENT:
1582		audit_log_format(ab, " nametype=PARENT");
1583		break;
1584	case AUDIT_TYPE_CHILD_DELETE:
1585		audit_log_format(ab, " nametype=DELETE");
1586		break;
1587	case AUDIT_TYPE_CHILD_CREATE:
1588		audit_log_format(ab, " nametype=CREATE");
1589		break;
1590	default:
1591		audit_log_format(ab, " nametype=UNKNOWN");
1592		break;
1593	}
1594
1595	audit_log_fcaps(ab, n);
1596	audit_log_end(ab);
1597}
1598
1599static void audit_log_proctitle(void)
1600{
1601	int res;
1602	char *buf;
1603	char *msg = "(null)";
1604	int len = strlen(msg);
1605	struct audit_context *context = audit_context();
1606	struct audit_buffer *ab;
1607
1608	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1609	if (!ab)
1610		return;	/* audit_panic or being filtered */
1611
1612	audit_log_format(ab, "proctitle=");
1613
1614	/* Not  cached */
1615	if (!context->proctitle.value) {
1616		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1617		if (!buf)
1618			goto out;
1619		/* Historically called this from procfs naming */
1620		res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1621		if (res == 0) {
1622			kfree(buf);
1623			goto out;
1624		}
1625		res = audit_proctitle_rtrim(buf, res);
1626		if (res == 0) {
1627			kfree(buf);
1628			goto out;
1629		}
1630		context->proctitle.value = buf;
1631		context->proctitle.len = res;
1632	}
1633	msg = context->proctitle.value;
1634	len = context->proctitle.len;
1635out:
1636	audit_log_n_untrustedstring(ab, msg, len);
1637	audit_log_end(ab);
1638}
1639
1640/**
1641 * audit_log_uring - generate a AUDIT_URINGOP record
1642 * @ctx: the audit context
1643 */
1644static void audit_log_uring(struct audit_context *ctx)
1645{
1646	struct audit_buffer *ab;
1647	const struct cred *cred;
1648
1649	ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1650	if (!ab)
1651		return;
1652	cred = current_cred();
1653	audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1654	if (ctx->return_valid != AUDITSC_INVALID)
1655		audit_log_format(ab, " success=%s exit=%ld",
1656				 (ctx->return_valid == AUDITSC_SUCCESS ?
1657				  "yes" : "no"),
1658				 ctx->return_code);
1659	audit_log_format(ab,
1660			 " items=%d"
1661			 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1662			 " fsuid=%u egid=%u sgid=%u fsgid=%u",
1663			 ctx->name_count,
1664			 task_ppid_nr(current), task_tgid_nr(current),
1665			 from_kuid(&init_user_ns, cred->uid),
1666			 from_kgid(&init_user_ns, cred->gid),
1667			 from_kuid(&init_user_ns, cred->euid),
1668			 from_kuid(&init_user_ns, cred->suid),
1669			 from_kuid(&init_user_ns, cred->fsuid),
1670			 from_kgid(&init_user_ns, cred->egid),
1671			 from_kgid(&init_user_ns, cred->sgid),
1672			 from_kgid(&init_user_ns, cred->fsgid));
1673	audit_log_task_context(ab);
1674	audit_log_key(ab, ctx->filterkey);
1675	audit_log_end(ab);
1676}
1677
1678static void audit_log_exit(void)
1679{
1680	int i, call_panic = 0;
1681	struct audit_context *context = audit_context();
1682	struct audit_buffer *ab;
1683	struct audit_aux_data *aux;
 
1684	struct audit_names *n;
1685
1686	context->personality = current->personality;
 
 
 
 
 
 
 
 
 
 
 
 
 
1687
1688	switch (context->context) {
1689	case AUDIT_CTX_SYSCALL:
1690		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1691		if (!ab)
1692			return;
1693		audit_log_format(ab, "arch=%x syscall=%d",
1694				 context->arch, context->major);
1695		if (context->personality != PER_LINUX)
1696			audit_log_format(ab, " per=%lx", context->personality);
1697		if (context->return_valid != AUDITSC_INVALID)
1698			audit_log_format(ab, " success=%s exit=%ld",
1699					 (context->return_valid == AUDITSC_SUCCESS ?
1700					  "yes" : "no"),
1701					 context->return_code);
1702		audit_log_format(ab,
1703				 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1704				 context->argv[0],
1705				 context->argv[1],
1706				 context->argv[2],
1707				 context->argv[3],
1708				 context->name_count);
1709		audit_log_task_info(ab);
1710		audit_log_key(ab, context->filterkey);
1711		audit_log_end(ab);
1712		break;
1713	case AUDIT_CTX_URING:
1714		audit_log_uring(context);
1715		break;
1716	default:
1717		BUG();
1718		break;
1719	}
 
 
 
 
 
 
 
 
 
 
1720
1721	for (aux = context->aux; aux; aux = aux->next) {
1722
1723		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1724		if (!ab)
1725			continue; /* audit_panic has been called */
1726
1727		switch (aux->type) {
1728
 
 
 
 
 
1729		case AUDIT_BPRM_FCAPS: {
1730			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1731
1732			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1733			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1734			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1735			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1736			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1737			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1738			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1739			audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1740			audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1741			audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1742			audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1743			audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1744			audit_log_format(ab, " frootid=%d",
1745					 from_kuid(&init_user_ns,
1746						   axs->fcap.rootid));
1747			break; }
1748
1749		}
1750		audit_log_end(ab);
1751	}
1752
1753	if (context->type)
1754		show_special(context, &call_panic);
1755
1756	if (context->fds[0] >= 0) {
1757		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1758		if (ab) {
1759			audit_log_format(ab, "fd0=%d fd1=%d",
1760					context->fds[0], context->fds[1]);
1761			audit_log_end(ab);
1762		}
1763	}
1764
1765	if (context->sockaddr_len) {
1766		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1767		if (ab) {
1768			audit_log_format(ab, "saddr=");
1769			audit_log_n_hex(ab, (void *)context->sockaddr,
1770					context->sockaddr_len);
1771			audit_log_end(ab);
1772		}
1773	}
1774
1775	for (aux = context->aux_pids; aux; aux = aux->next) {
1776		struct audit_aux_data_pids *axs = (void *)aux;
1777
1778		for (i = 0; i < axs->pid_count; i++)
1779			if (audit_log_pid_context(context, axs->target_pid[i],
1780						  axs->target_auid[i],
1781						  axs->target_uid[i],
1782						  axs->target_sessionid[i],
1783						  axs->target_sid[i],
1784						  axs->target_comm[i]))
1785				call_panic = 1;
1786	}
1787
1788	if (context->target_pid &&
1789	    audit_log_pid_context(context, context->target_pid,
1790				  context->target_auid, context->target_uid,
1791				  context->target_sessionid,
1792				  context->target_sid, context->target_comm))
1793			call_panic = 1;
1794
1795	if (context->pwd.dentry && context->pwd.mnt) {
1796		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1797		if (ab) {
1798			audit_log_d_path(ab, "cwd=", &context->pwd);
1799			audit_log_end(ab);
1800		}
1801	}
1802
1803	i = 0;
1804	list_for_each_entry(n, &context->names_list, list) {
1805		if (n->hidden)
1806			continue;
1807		audit_log_name(context, n, NULL, i++, &call_panic);
1808	}
1809
1810	if (context->context == AUDIT_CTX_SYSCALL)
1811		audit_log_proctitle();
1812
1813	/* Send end of event record to help user space know we are finished */
1814	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1815	if (ab)
1816		audit_log_end(ab);
1817	if (call_panic)
1818		audit_panic("error in audit_log_exit()");
1819}
1820
1821/**
1822 * __audit_free - free a per-task audit context
1823 * @tsk: task whose audit context block to free
1824 *
1825 * Called from copy_process, do_exit, and the io_uring code
1826 */
1827void __audit_free(struct task_struct *tsk)
1828{
1829	struct audit_context *context = tsk->audit_context;
1830
 
1831	if (!context)
1832		return;
1833
1834	/* this may generate CONFIG_CHANGE records */
 
 
 
 
 
 
1835	if (!list_empty(&context->killed_trees))
1836		audit_kill_trees(context);
1837
1838	/* We are called either by do_exit() or the fork() error handling code;
1839	 * in the former case tsk == current and in the latter tsk is a
1840	 * random task_struct that doesn't have any meaningful data we
1841	 * need to log via audit_log_exit().
1842	 */
1843	if (tsk == current && !context->dummy) {
1844		context->return_valid = AUDITSC_INVALID;
1845		context->return_code = 0;
1846		if (context->context == AUDIT_CTX_SYSCALL) {
1847			audit_filter_syscall(tsk, context);
1848			audit_filter_inodes(tsk, context);
1849			if (context->current_state == AUDIT_STATE_RECORD)
1850				audit_log_exit();
1851		} else if (context->context == AUDIT_CTX_URING) {
1852			/* TODO: verify this case is real and valid */
1853			audit_filter_uring(tsk, context);
1854			audit_filter_inodes(tsk, context);
1855			if (context->current_state == AUDIT_STATE_RECORD)
1856				audit_log_uring(context);
1857		}
1858	}
1859
1860	audit_set_context(tsk, NULL);
1861	audit_free_context(context);
1862}
1863
1864/**
1865 * audit_return_fixup - fixup the return codes in the audit_context
1866 * @ctx: the audit_context
1867 * @success: true/false value to indicate if the operation succeeded or not
1868 * @code: operation return code
1869 *
1870 * We need to fixup the return code in the audit logs if the actual return
1871 * codes are later going to be fixed by the arch specific signal handlers.
1872 */
1873static void audit_return_fixup(struct audit_context *ctx,
1874			       int success, long code)
1875{
1876	/*
1877	 * This is actually a test for:
1878	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1879	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1880	 *
1881	 * but is faster than a bunch of ||
1882	 */
1883	if (unlikely(code <= -ERESTARTSYS) &&
1884	    (code >= -ERESTART_RESTARTBLOCK) &&
1885	    (code != -ENOIOCTLCMD))
1886		ctx->return_code = -EINTR;
1887	else
1888		ctx->return_code  = code;
1889	ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1890}
1891
1892/**
1893 * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1894 * @op: the io_uring opcode
1895 *
1896 * This is similar to audit_syscall_entry() but is intended for use by io_uring
1897 * operations.  This function should only ever be called from
1898 * audit_uring_entry() as we rely on the audit context checking present in that
1899 * function.
1900 */
1901void __audit_uring_entry(u8 op)
1902{
1903	struct audit_context *ctx = audit_context();
1904
1905	if (ctx->state == AUDIT_STATE_DISABLED)
1906		return;
1907
1908	/*
1909	 * NOTE: It's possible that we can be called from the process' context
1910	 *       before it returns to userspace, and before audit_syscall_exit()
1911	 *       is called.  In this case there is not much to do, just record
1912	 *       the io_uring details and return.
1913	 */
1914	ctx->uring_op = op;
1915	if (ctx->context == AUDIT_CTX_SYSCALL)
1916		return;
1917
1918	ctx->dummy = !audit_n_rules;
1919	if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1920		ctx->prio = 0;
1921
1922	ctx->context = AUDIT_CTX_URING;
1923	ctx->current_state = ctx->state;
1924	ktime_get_coarse_real_ts64(&ctx->ctime);
1925}
1926
1927/**
1928 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1929 * @success: true/false value to indicate if the operation succeeded or not
1930 * @code: operation return code
1931 *
1932 * This is similar to audit_syscall_exit() but is intended for use by io_uring
1933 * operations.  This function should only ever be called from
1934 * audit_uring_exit() as we rely on the audit context checking present in that
1935 * function.
1936 */
1937void __audit_uring_exit(int success, long code)
1938{
1939	struct audit_context *ctx = audit_context();
1940
1941	if (ctx->dummy) {
1942		if (ctx->context != AUDIT_CTX_URING)
1943			return;
1944		goto out;
1945	}
1946
1947	audit_return_fixup(ctx, success, code);
1948	if (ctx->context == AUDIT_CTX_SYSCALL) {
1949		/*
1950		 * NOTE: See the note in __audit_uring_entry() about the case
1951		 *       where we may be called from process context before we
1952		 *       return to userspace via audit_syscall_exit().  In this
1953		 *       case we simply emit a URINGOP record and bail, the
1954		 *       normal syscall exit handling will take care of
1955		 *       everything else.
1956		 *       It is also worth mentioning that when we are called,
1957		 *       the current process creds may differ from the creds
1958		 *       used during the normal syscall processing; keep that
1959		 *       in mind if/when we move the record generation code.
1960		 */
1961
1962		/*
1963		 * We need to filter on the syscall info here to decide if we
1964		 * should emit a URINGOP record.  I know it seems odd but this
1965		 * solves the problem where users have a filter to block *all*
1966		 * syscall records in the "exit" filter; we want to preserve
1967		 * the behavior here.
1968		 */
1969		audit_filter_syscall(current, ctx);
1970		if (ctx->current_state != AUDIT_STATE_RECORD)
1971			audit_filter_uring(current, ctx);
1972		audit_filter_inodes(current, ctx);
1973		if (ctx->current_state != AUDIT_STATE_RECORD)
1974			return;
1975
1976		audit_log_uring(ctx);
1977		return;
1978	}
1979
1980	/* this may generate CONFIG_CHANGE records */
1981	if (!list_empty(&ctx->killed_trees))
1982		audit_kill_trees(ctx);
1983
1984	/* run through both filters to ensure we set the filterkey properly */
1985	audit_filter_uring(current, ctx);
1986	audit_filter_inodes(current, ctx);
1987	if (ctx->current_state != AUDIT_STATE_RECORD)
1988		goto out;
1989	audit_log_exit();
1990
1991out:
1992	audit_reset_context(ctx);
1993}
1994
1995/**
1996 * __audit_syscall_entry - fill in an audit record at syscall entry
1997 * @major: major syscall type (function)
1998 * @a1: additional syscall register 1
1999 * @a2: additional syscall register 2
2000 * @a3: additional syscall register 3
2001 * @a4: additional syscall register 4
2002 *
2003 * Fill in audit context at syscall entry.  This only happens if the
2004 * audit context was created when the task was created and the state or
2005 * filters demand the audit context be built.  If the state from the
2006 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
2007 * then the record will be written at syscall exit time (otherwise, it
2008 * will only be written if another part of the kernel requests that it
2009 * be written).
2010 */
2011void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
2012			   unsigned long a3, unsigned long a4)
 
2013{
2014	struct audit_context *context = audit_context();
 
2015	enum audit_state     state;
2016
2017	if (!audit_enabled || !context)
2018		return;
2019
2020	WARN_ON(context->context != AUDIT_CTX_UNUSED);
2021	WARN_ON(context->name_count);
2022	if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
2023		audit_panic("unrecoverable error in audit_syscall_entry()");
2024		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2025	}
 
2026
2027	state = context->state;
2028	if (state == AUDIT_STATE_DISABLED)
2029		return;
2030
2031	context->dummy = !audit_n_rules;
2032	if (!context->dummy && state == AUDIT_STATE_BUILD) {
2033		context->prio = 0;
2034		if (auditd_test_task(current))
2035			return;
2036	}
2037
2038	context->arch	    = syscall_get_arch(current);
2039	context->major      = major;
2040	context->argv[0]    = a1;
2041	context->argv[1]    = a2;
2042	context->argv[2]    = a3;
2043	context->argv[3]    = a4;
2044	context->context = AUDIT_CTX_SYSCALL;
 
 
 
 
 
 
 
 
 
 
 
 
2045	context->current_state  = state;
2046	ktime_get_coarse_real_ts64(&context->ctime);
2047}
2048
2049/**
2050 * __audit_syscall_exit - deallocate audit context after a system call
2051 * @success: success value of the syscall
2052 * @return_code: return value of the syscall
2053 *
2054 * Tear down after system call.  If the audit context has been marked as
2055 * auditable (either because of the AUDIT_STATE_RECORD state from
2056 * filtering, or because some other part of the kernel wrote an audit
2057 * message), then write out the syscall information.  In call cases,
2058 * free the names stored from getname().
2059 */
2060void __audit_syscall_exit(int success, long return_code)
2061{
2062	struct audit_context *context = audit_context();
 
2063
2064	if (!context || context->dummy ||
2065	    context->context != AUDIT_CTX_SYSCALL)
2066		goto out;
 
2067
2068	/* this may generate CONFIG_CHANGE records */
2069	if (!list_empty(&context->killed_trees))
2070		audit_kill_trees(context);
2071
2072	audit_return_fixup(context, success, return_code);
2073	/* run through both filters to ensure we set the filterkey properly */
2074	audit_filter_syscall(current, context);
2075	audit_filter_inodes(current, context);
2076	if (context->current_state != AUDIT_STATE_RECORD)
2077		goto out;
2078
2079	audit_log_exit();
 
2080
2081out:
2082	audit_reset_context(context);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2083}
2084
2085static inline void handle_one(const struct inode *inode)
2086{
 
2087	struct audit_context *context;
2088	struct audit_tree_refs *p;
2089	struct audit_chunk *chunk;
2090	int count;
2091
2092	if (likely(!inode->i_fsnotify_marks))
2093		return;
2094	context = audit_context();
2095	p = context->trees;
2096	count = context->tree_count;
2097	rcu_read_lock();
2098	chunk = audit_tree_lookup(inode);
2099	rcu_read_unlock();
2100	if (!chunk)
2101		return;
2102	if (likely(put_tree_ref(context, chunk)))
2103		return;
2104	if (unlikely(!grow_tree_refs(context))) {
2105		pr_warn("out of memory, audit has lost a tree reference\n");
2106		audit_set_auditable(context);
2107		audit_put_chunk(chunk);
2108		unroll_tree_refs(context, p, count);
2109		return;
2110	}
2111	put_tree_ref(context, chunk);
 
2112}
2113
2114static void handle_path(const struct dentry *dentry)
2115{
 
2116	struct audit_context *context;
2117	struct audit_tree_refs *p;
2118	const struct dentry *d, *parent;
2119	struct audit_chunk *drop;
2120	unsigned long seq;
2121	int count;
2122
2123	context = audit_context();
2124	p = context->trees;
2125	count = context->tree_count;
2126retry:
2127	drop = NULL;
2128	d = dentry;
2129	rcu_read_lock();
2130	seq = read_seqbegin(&rename_lock);
2131	for (;;) {
2132		struct inode *inode = d_backing_inode(d);
2133
2134		if (inode && unlikely(inode->i_fsnotify_marks)) {
2135			struct audit_chunk *chunk;
2136
2137			chunk = audit_tree_lookup(inode);
2138			if (chunk) {
2139				if (unlikely(!put_tree_ref(context, chunk))) {
2140					drop = chunk;
2141					break;
2142				}
2143			}
2144		}
2145		parent = d->d_parent;
2146		if (parent == d)
2147			break;
2148		d = parent;
2149	}
2150	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
2151		rcu_read_unlock();
2152		if (!drop) {
2153			/* just a race with rename */
2154			unroll_tree_refs(context, p, count);
2155			goto retry;
2156		}
2157		audit_put_chunk(drop);
2158		if (grow_tree_refs(context)) {
2159			/* OK, got more space */
2160			unroll_tree_refs(context, p, count);
2161			goto retry;
2162		}
2163		/* too bad */
2164		pr_warn("out of memory, audit has lost a tree reference\n");
 
2165		unroll_tree_refs(context, p, count);
2166		audit_set_auditable(context);
2167		return;
2168	}
2169	rcu_read_unlock();
 
2170}
2171
2172static struct audit_names *audit_alloc_name(struct audit_context *context,
2173						unsigned char type)
2174{
2175	struct audit_names *aname;
2176
2177	if (context->name_count < AUDIT_NAMES) {
2178		aname = &context->preallocated_names[context->name_count];
2179		memset(aname, 0, sizeof(*aname));
2180	} else {
2181		aname = kzalloc(sizeof(*aname), GFP_NOFS);
2182		if (!aname)
2183			return NULL;
2184		aname->should_free = true;
2185	}
2186
2187	aname->ino = AUDIT_INO_UNSET;
2188	aname->type = type;
2189	list_add_tail(&aname->list, &context->names_list);
2190
2191	context->name_count++;
2192	if (!context->pwd.dentry)
2193		get_fs_pwd(current->fs, &context->pwd);
 
2194	return aname;
2195}
2196
2197/**
2198 * __audit_reusename - fill out filename with info from existing entry
2199 * @uptr: userland ptr to pathname
2200 *
2201 * Search the audit_names list for the current audit context. If there is an
2202 * existing entry with a matching "uptr" then return the filename
2203 * associated with that audit_name. If not, return NULL.
2204 */
2205struct filename *
2206__audit_reusename(const __user char *uptr)
2207{
2208	struct audit_context *context = audit_context();
2209	struct audit_names *n;
2210
2211	list_for_each_entry(n, &context->names_list, list) {
2212		if (!n->name)
2213			continue;
2214		if (n->name->uptr == uptr) {
2215			atomic_inc(&n->name->refcnt);
2216			return n->name;
2217		}
2218	}
2219	return NULL;
2220}
2221
2222/**
2223 * __audit_getname - add a name to the list
2224 * @name: name to add
2225 *
2226 * Add a name to the list of audit names for this context.
2227 * Called from fs/namei.c:getname().
2228 */
2229void __audit_getname(struct filename *name)
2230{
2231	struct audit_context *context = audit_context();
2232	struct audit_names *n;
2233
2234	if (context->context == AUDIT_CTX_UNUSED)
 
 
 
 
 
2235		return;
 
2236
2237	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2238	if (!n)
2239		return;
2240
2241	n->name = name;
2242	n->name_len = AUDIT_NAME_FULL;
2243	name->aname = n;
2244	atomic_inc(&name->refcnt);
 
 
2245}
2246
2247static inline int audit_copy_fcaps(struct audit_names *name,
2248				   const struct dentry *dentry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2249{
2250	struct cpu_vfs_cap_data caps;
2251	int rc;
2252
2253	if (!dentry)
2254		return 0;
2255
2256	rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps);
2257	if (rc)
2258		return rc;
2259
2260	name->fcap.permitted = caps.permitted;
2261	name->fcap.inheritable = caps.inheritable;
2262	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2263	name->fcap.rootid = caps.rootid;
2264	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2265				VFS_CAP_REVISION_SHIFT;
2266
2267	return 0;
2268}
2269
 
2270/* Copy inode data into an audit_names. */
2271static void audit_copy_inode(struct audit_names *name,
2272			     const struct dentry *dentry,
2273			     struct inode *inode, unsigned int flags)
2274{
2275	name->ino   = inode->i_ino;
2276	name->dev   = inode->i_sb->s_dev;
2277	name->mode  = inode->i_mode;
2278	name->uid   = inode->i_uid;
2279	name->gid   = inode->i_gid;
2280	name->rdev  = inode->i_rdev;
2281	security_inode_getsecid(inode, &name->osid);
2282	if (flags & AUDIT_INODE_NOEVAL) {
2283		name->fcap_ver = -1;
2284		return;
2285	}
2286	audit_copy_fcaps(name, dentry);
2287}
2288
2289/**
2290 * __audit_inode - store the inode and device from a lookup
2291 * @name: name being audited
2292 * @dentry: dentry being audited
2293 * @flags: attributes for this particular entry
 
2294 */
2295void __audit_inode(struct filename *name, const struct dentry *dentry,
2296		   unsigned int flags)
2297{
2298	struct audit_context *context = audit_context();
2299	struct inode *inode = d_backing_inode(dentry);
2300	struct audit_names *n;
2301	bool parent = flags & AUDIT_INODE_PARENT;
2302	struct audit_entry *e;
2303	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2304	int i;
2305
2306	if (context->context == AUDIT_CTX_UNUSED)
2307		return;
2308
2309	rcu_read_lock();
2310	list_for_each_entry_rcu(e, list, list) {
2311		for (i = 0; i < e->rule.field_count; i++) {
2312			struct audit_field *f = &e->rule.fields[i];
2313
2314			if (f->type == AUDIT_FSTYPE
2315			    && audit_comparator(inode->i_sb->s_magic,
2316						f->op, f->val)
2317			    && e->rule.action == AUDIT_NEVER) {
2318				rcu_read_unlock();
2319				return;
2320			}
2321		}
2322	}
2323	rcu_read_unlock();
2324
2325	if (!name)
2326		goto out_alloc;
2327
2328	/*
2329	 * If we have a pointer to an audit_names entry already, then we can
2330	 * just use it directly if the type is correct.
2331	 */
2332	n = name->aname;
2333	if (n) {
2334		if (parent) {
2335			if (n->type == AUDIT_TYPE_PARENT ||
2336			    n->type == AUDIT_TYPE_UNKNOWN)
2337				goto out;
2338		} else {
2339			if (n->type != AUDIT_TYPE_PARENT)
2340				goto out;
2341		}
2342	}
2343
2344	list_for_each_entry_reverse(n, &context->names_list, list) {
2345		if (n->ino) {
2346			/* valid inode number, use that for the comparison */
2347			if (n->ino != inode->i_ino ||
2348			    n->dev != inode->i_sb->s_dev)
2349				continue;
2350		} else if (n->name) {
2351			/* inode number has not been set, check the name */
2352			if (strcmp(n->name->name, name->name))
2353				continue;
2354		} else
2355			/* no inode and no name (?!) ... this is odd ... */
2356			continue;
2357
2358		/* match the correct record type */
2359		if (parent) {
2360			if (n->type == AUDIT_TYPE_PARENT ||
2361			    n->type == AUDIT_TYPE_UNKNOWN)
2362				goto out;
2363		} else {
2364			if (n->type != AUDIT_TYPE_PARENT)
2365				goto out;
2366		}
2367	}
2368
2369out_alloc:
2370	/* unable to find an entry with both a matching name and type */
2371	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2372	if (!n)
2373		return;
2374	if (name) {
2375		n->name = name;
2376		atomic_inc(&name->refcnt);
2377	}
2378
2379out:
2380	if (parent) {
2381		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2382		n->type = AUDIT_TYPE_PARENT;
2383		if (flags & AUDIT_INODE_HIDDEN)
2384			n->hidden = true;
2385	} else {
2386		n->name_len = AUDIT_NAME_FULL;
2387		n->type = AUDIT_TYPE_NORMAL;
2388	}
2389	handle_path(dentry);
2390	audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2391}
2392
2393void __audit_file(const struct file *file)
2394{
2395	__audit_inode(NULL, file->f_path.dentry, 0);
2396}
2397
2398/**
2399 * __audit_inode_child - collect inode info for created/removed objects
2400 * @parent: inode of dentry parent
2401 * @dentry: dentry being audited
2402 * @type:   AUDIT_TYPE_* value that we're looking for
2403 *
2404 * For syscalls that create or remove filesystem objects, audit_inode
2405 * can only collect information for the filesystem object's parent.
2406 * This call updates the audit context with the child's information.
2407 * Syscalls that create a new filesystem object must be hooked after
2408 * the object is created.  Syscalls that remove a filesystem object
2409 * must be hooked prior, in order to capture the target inode during
2410 * unsuccessful attempts.
2411 */
2412void __audit_inode_child(struct inode *parent,
2413			 const struct dentry *dentry,
2414			 const unsigned char type)
2415{
2416	struct audit_context *context = audit_context();
2417	struct inode *inode = d_backing_inode(dentry);
2418	const struct qstr *dname = &dentry->d_name;
2419	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2420	struct audit_entry *e;
2421	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2422	int i;
2423
2424	if (context->context == AUDIT_CTX_UNUSED)
2425		return;
2426
2427	rcu_read_lock();
2428	list_for_each_entry_rcu(e, list, list) {
2429		for (i = 0; i < e->rule.field_count; i++) {
2430			struct audit_field *f = &e->rule.fields[i];
2431
2432			if (f->type == AUDIT_FSTYPE
2433			    && audit_comparator(parent->i_sb->s_magic,
2434						f->op, f->val)
2435			    && e->rule.action == AUDIT_NEVER) {
2436				rcu_read_unlock();
2437				return;
2438			}
2439		}
2440	}
2441	rcu_read_unlock();
2442
2443	if (inode)
2444		handle_one(inode);
2445
2446	/* look for a parent entry first */
2447	list_for_each_entry(n, &context->names_list, list) {
2448		if (!n->name ||
2449		    (n->type != AUDIT_TYPE_PARENT &&
2450		     n->type != AUDIT_TYPE_UNKNOWN))
2451			continue;
2452
2453		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2454		    !audit_compare_dname_path(dname,
2455					      n->name->name, n->name_len)) {
2456			if (n->type == AUDIT_TYPE_UNKNOWN)
2457				n->type = AUDIT_TYPE_PARENT;
2458			found_parent = n;
2459			break;
2460		}
2461	}
2462
2463	cond_resched();
2464
2465	/* is there a matching child entry? */
2466	list_for_each_entry(n, &context->names_list, list) {
2467		/* can only match entries that have a name */
2468		if (!n->name ||
2469		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2470			continue;
2471
2472		if (!strcmp(dname->name, n->name->name) ||
2473		    !audit_compare_dname_path(dname, n->name->name,
2474						found_parent ?
2475						found_parent->name_len :
2476						AUDIT_NAME_FULL)) {
2477			if (n->type == AUDIT_TYPE_UNKNOWN)
2478				n->type = type;
2479			found_child = n;
2480			break;
2481		}
2482	}
2483
 
2484	if (!found_parent) {
2485		/* create a new, "anonymous" parent record */
2486		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2487		if (!n)
2488			return;
2489		audit_copy_inode(n, NULL, parent, 0);
2490	}
2491
2492	if (!found_child) {
2493		found_child = audit_alloc_name(context, type);
2494		if (!found_child)
2495			return;
2496
2497		/* Re-use the name belonging to the slot for a matching parent
2498		 * directory. All names for this context are relinquished in
2499		 * audit_free_names() */
2500		if (found_parent) {
2501			found_child->name = found_parent->name;
2502			found_child->name_len = AUDIT_NAME_FULL;
2503			atomic_inc(&found_child->name->refcnt);
 
2504		}
2505	}
2506
2507	if (inode)
2508		audit_copy_inode(found_child, dentry, inode, 0);
2509	else
2510		found_child->ino = AUDIT_INO_UNSET;
2511}
2512EXPORT_SYMBOL_GPL(__audit_inode_child);
2513
2514/**
2515 * auditsc_get_stamp - get local copies of audit_context values
2516 * @ctx: audit_context for the task
2517 * @t: timespec64 to store time recorded in the audit_context
2518 * @serial: serial value that is recorded in the audit_context
2519 *
2520 * Also sets the context as auditable.
2521 */
2522int auditsc_get_stamp(struct audit_context *ctx,
2523		       struct timespec64 *t, unsigned int *serial)
2524{
2525	if (ctx->context == AUDIT_CTX_UNUSED)
2526		return 0;
2527	if (!ctx->serial)
2528		ctx->serial = audit_serial();
2529	t->tv_sec  = ctx->ctime.tv_sec;
2530	t->tv_nsec = ctx->ctime.tv_nsec;
2531	*serial    = ctx->serial;
2532	if (!ctx->prio) {
2533		ctx->prio = 1;
2534		ctx->current_state = AUDIT_STATE_RECORD;
2535	}
2536	return 1;
2537}
2538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2539/**
2540 * __audit_mq_open - record audit data for a POSIX MQ open
2541 * @oflag: open flag
2542 * @mode: mode bits
2543 * @attr: queue attributes
2544 *
2545 */
2546void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2547{
2548	struct audit_context *context = audit_context();
2549
2550	if (attr)
2551		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2552	else
2553		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2554
2555	context->mq_open.oflag = oflag;
2556	context->mq_open.mode = mode;
2557
2558	context->type = AUDIT_MQ_OPEN;
2559}
2560
2561/**
2562 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2563 * @mqdes: MQ descriptor
2564 * @msg_len: Message length
2565 * @msg_prio: Message priority
2566 * @abs_timeout: Message timeout in absolute time
2567 *
2568 */
2569void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2570			const struct timespec64 *abs_timeout)
2571{
2572	struct audit_context *context = audit_context();
2573	struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2574
2575	if (abs_timeout)
2576		memcpy(p, abs_timeout, sizeof(*p));
2577	else
2578		memset(p, 0, sizeof(*p));
2579
2580	context->mq_sendrecv.mqdes = mqdes;
2581	context->mq_sendrecv.msg_len = msg_len;
2582	context->mq_sendrecv.msg_prio = msg_prio;
2583
2584	context->type = AUDIT_MQ_SENDRECV;
2585}
2586
2587/**
2588 * __audit_mq_notify - record audit data for a POSIX MQ notify
2589 * @mqdes: MQ descriptor
2590 * @notification: Notification event
2591 *
2592 */
2593
2594void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2595{
2596	struct audit_context *context = audit_context();
2597
2598	if (notification)
2599		context->mq_notify.sigev_signo = notification->sigev_signo;
2600	else
2601		context->mq_notify.sigev_signo = 0;
2602
2603	context->mq_notify.mqdes = mqdes;
2604	context->type = AUDIT_MQ_NOTIFY;
2605}
2606
2607/**
2608 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2609 * @mqdes: MQ descriptor
2610 * @mqstat: MQ flags
2611 *
2612 */
2613void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2614{
2615	struct audit_context *context = audit_context();
2616
2617	context->mq_getsetattr.mqdes = mqdes;
2618	context->mq_getsetattr.mqstat = *mqstat;
2619	context->type = AUDIT_MQ_GETSETATTR;
2620}
2621
2622/**
2623 * __audit_ipc_obj - record audit data for ipc object
2624 * @ipcp: ipc permissions
2625 *
2626 */
2627void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2628{
2629	struct audit_context *context = audit_context();
2630
2631	context->ipc.uid = ipcp->uid;
2632	context->ipc.gid = ipcp->gid;
2633	context->ipc.mode = ipcp->mode;
2634	context->ipc.has_perm = 0;
2635	security_ipc_getsecid(ipcp, &context->ipc.osid);
2636	context->type = AUDIT_IPC;
2637}
2638
2639/**
2640 * __audit_ipc_set_perm - record audit data for new ipc permissions
2641 * @qbytes: msgq bytes
2642 * @uid: msgq user id
2643 * @gid: msgq group id
2644 * @mode: msgq mode (permissions)
2645 *
2646 * Called only after audit_ipc_obj().
2647 */
2648void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2649{
2650	struct audit_context *context = audit_context();
2651
2652	context->ipc.qbytes = qbytes;
2653	context->ipc.perm_uid = uid;
2654	context->ipc.perm_gid = gid;
2655	context->ipc.perm_mode = mode;
2656	context->ipc.has_perm = 1;
2657}
2658
2659void __audit_bprm(struct linux_binprm *bprm)
2660{
2661	struct audit_context *context = audit_context();
 
 
 
 
 
2662
2663	context->type = AUDIT_EXECVE;
2664	context->execve.argc = bprm->argc;
 
 
 
 
 
2665}
2666
2667
2668/**
2669 * __audit_socketcall - record audit data for sys_socketcall
2670 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2671 * @args: args array
2672 *
2673 */
2674int __audit_socketcall(int nargs, unsigned long *args)
2675{
2676	struct audit_context *context = audit_context();
2677
2678	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2679		return -EINVAL;
2680	context->type = AUDIT_SOCKETCALL;
2681	context->socketcall.nargs = nargs;
2682	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2683	return 0;
2684}
2685
2686/**
2687 * __audit_fd_pair - record audit data for pipe and socketpair
2688 * @fd1: the first file descriptor
2689 * @fd2: the second file descriptor
2690 *
2691 */
2692void __audit_fd_pair(int fd1, int fd2)
2693{
2694	struct audit_context *context = audit_context();
2695
2696	context->fds[0] = fd1;
2697	context->fds[1] = fd2;
2698}
2699
2700/**
2701 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2702 * @len: data length in user space
2703 * @a: data address in kernel space
2704 *
2705 * Returns 0 for success or NULL context or < 0 on error.
2706 */
2707int __audit_sockaddr(int len, void *a)
2708{
2709	struct audit_context *context = audit_context();
2710
2711	if (!context->sockaddr) {
2712		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2713
2714		if (!p)
2715			return -ENOMEM;
2716		context->sockaddr = p;
2717	}
2718
2719	context->sockaddr_len = len;
2720	memcpy(context->sockaddr, a, len);
2721	return 0;
2722}
2723
2724void __audit_ptrace(struct task_struct *t)
2725{
2726	struct audit_context *context = audit_context();
2727
2728	context->target_pid = task_tgid_nr(t);
2729	context->target_auid = audit_get_loginuid(t);
2730	context->target_uid = task_uid(t);
2731	context->target_sessionid = audit_get_sessionid(t);
2732	security_task_getsecid_obj(t, &context->target_sid);
2733	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2734}
2735
2736/**
2737 * audit_signal_info_syscall - record signal info for syscalls
 
2738 * @t: task being signaled
2739 *
2740 * If the audit subsystem is being terminated, record the task (pid)
2741 * and uid that is doing that.
2742 */
2743int audit_signal_info_syscall(struct task_struct *t)
2744{
2745	struct audit_aux_data_pids *axp;
2746	struct audit_context *ctx = audit_context();
2747	kuid_t t_uid = task_uid(t);
2748
2749	if (!audit_signals || audit_dummy_context())
2750		return 0;
 
 
 
 
 
 
 
 
 
 
 
2751
2752	/* optimize the common case by putting first signal recipient directly
2753	 * in audit_context */
2754	if (!ctx->target_pid) {
2755		ctx->target_pid = task_tgid_nr(t);
2756		ctx->target_auid = audit_get_loginuid(t);
2757		ctx->target_uid = t_uid;
2758		ctx->target_sessionid = audit_get_sessionid(t);
2759		security_task_getsecid_obj(t, &ctx->target_sid);
2760		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2761		return 0;
2762	}
2763
2764	axp = (void *)ctx->aux_pids;
2765	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2766		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2767		if (!axp)
2768			return -ENOMEM;
2769
2770		axp->d.type = AUDIT_OBJ_PID;
2771		axp->d.next = ctx->aux_pids;
2772		ctx->aux_pids = (void *)axp;
2773	}
2774	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2775
2776	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2777	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2778	axp->target_uid[axp->pid_count] = t_uid;
2779	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2780	security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
2781	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2782	axp->pid_count++;
2783
2784	return 0;
2785}
2786
2787/**
2788 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2789 * @bprm: pointer to the bprm being processed
2790 * @new: the proposed new credentials
2791 * @old: the old credentials
2792 *
2793 * Simply check if the proc already has the caps given by the file and if not
2794 * store the priv escalation info for later auditing at the end of the syscall
2795 *
2796 * -Eric
2797 */
2798int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2799			   const struct cred *new, const struct cred *old)
2800{
2801	struct audit_aux_data_bprm_fcaps *ax;
2802	struct audit_context *context = audit_context();
2803	struct cpu_vfs_cap_data vcaps;
 
2804
2805	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2806	if (!ax)
2807		return -ENOMEM;
2808
2809	ax->d.type = AUDIT_BPRM_FCAPS;
2810	ax->d.next = context->aux;
2811	context->aux = (void *)ax;
2812
2813	get_vfs_caps_from_disk(&nop_mnt_idmap,
2814			       bprm->file->f_path.dentry, &vcaps);
 
2815
2816	ax->fcap.permitted = vcaps.permitted;
2817	ax->fcap.inheritable = vcaps.inheritable;
2818	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2819	ax->fcap.rootid = vcaps.rootid;
2820	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2821
2822	ax->old_pcap.permitted   = old->cap_permitted;
2823	ax->old_pcap.inheritable = old->cap_inheritable;
2824	ax->old_pcap.effective   = old->cap_effective;
2825	ax->old_pcap.ambient     = old->cap_ambient;
2826
2827	ax->new_pcap.permitted   = new->cap_permitted;
2828	ax->new_pcap.inheritable = new->cap_inheritable;
2829	ax->new_pcap.effective   = new->cap_effective;
2830	ax->new_pcap.ambient     = new->cap_ambient;
2831	return 0;
2832}
2833
2834/**
2835 * __audit_log_capset - store information about the arguments to the capset syscall
 
2836 * @new: the new credentials
2837 * @old: the old (current) credentials
2838 *
2839 * Record the arguments userspace sent to sys_capset for later printing by the
2840 * audit system if applicable
2841 */
2842void __audit_log_capset(const struct cred *new, const struct cred *old)
 
2843{
2844	struct audit_context *context = audit_context();
2845
2846	context->capset.pid = task_tgid_nr(current);
2847	context->capset.cap.effective   = new->cap_effective;
2848	context->capset.cap.inheritable = new->cap_effective;
2849	context->capset.cap.permitted   = new->cap_permitted;
2850	context->capset.cap.ambient     = new->cap_ambient;
2851	context->type = AUDIT_CAPSET;
2852}
2853
2854void __audit_mmap_fd(int fd, int flags)
2855{
2856	struct audit_context *context = audit_context();
2857
2858	context->mmap.fd = fd;
2859	context->mmap.flags = flags;
2860	context->type = AUDIT_MMAP;
2861}
2862
2863void __audit_openat2_how(struct open_how *how)
2864{
2865	struct audit_context *context = audit_context();
2866
2867	context->openat2.flags = how->flags;
2868	context->openat2.mode = how->mode;
2869	context->openat2.resolve = how->resolve;
2870	context->type = AUDIT_OPENAT2;
2871}
2872
2873void __audit_log_kern_module(char *name)
2874{
2875	struct audit_context *context = audit_context();
2876
2877	context->module.name = kstrdup(name, GFP_KERNEL);
2878	if (!context->module.name)
2879		audit_log_lost("out of memory in __audit_log_kern_module");
2880	context->type = AUDIT_KERN_MODULE;
2881}
2882
2883void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar)
2884{
2885	/* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */
2886	switch (friar->hdr.type) {
2887	case FAN_RESPONSE_INFO_NONE:
2888		audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2889			  "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2",
2890			  response, FAN_RESPONSE_INFO_NONE);
2891		break;
2892	case FAN_RESPONSE_INFO_AUDIT_RULE:
2893		audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2894			  "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u",
2895			  response, friar->hdr.type, friar->rule_number,
2896			  friar->subj_trust, friar->obj_trust);
2897	}
2898}
2899
2900void __audit_tk_injoffset(struct timespec64 offset)
2901{
2902	struct audit_context *context = audit_context();
2903
2904	/* only set type if not already set by NTP */
2905	if (!context->type)
2906		context->type = AUDIT_TIME_INJOFFSET;
2907	memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2908}
2909
2910void __audit_ntp_log(const struct audit_ntp_data *ad)
2911{
2912	struct audit_context *context = audit_context();
2913	int type;
2914
2915	for (type = 0; type < AUDIT_NTP_NVALS; type++)
2916		if (ad->vals[type].newval != ad->vals[type].oldval) {
2917			/* unconditionally set type, overwriting TK */
2918			context->type = AUDIT_TIME_ADJNTPVAL;
2919			memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2920			break;
2921		}
2922}
2923
2924void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2925		       enum audit_nfcfgop op, gfp_t gfp)
2926{
2927	struct audit_buffer *ab;
2928	char comm[sizeof(current->comm)];
2929
2930	ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2931	if (!ab)
2932		return;
2933	audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2934			 name, af, nentries, audit_nfcfgs[op].s);
2935
2936	audit_log_format(ab, " pid=%u", task_pid_nr(current));
2937	audit_log_task_context(ab); /* subj= */
2938	audit_log_format(ab, " comm=");
2939	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2940	audit_log_end(ab);
2941}
2942EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2943
2944static void audit_log_task(struct audit_buffer *ab)
2945{
2946	kuid_t auid, uid;
2947	kgid_t gid;
2948	unsigned int sessionid;
2949	char comm[sizeof(current->comm)];
2950
2951	auid = audit_get_loginuid(current);
2952	sessionid = audit_get_sessionid(current);
2953	current_uid_gid(&uid, &gid);
2954
2955	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2956			 from_kuid(&init_user_ns, auid),
2957			 from_kuid(&init_user_ns, uid),
2958			 from_kgid(&init_user_ns, gid),
2959			 sessionid);
2960	audit_log_task_context(ab);
2961	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2962	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2963	audit_log_d_path_exe(ab, current->mm);
 
 
2964}
2965
2966/**
2967 * audit_core_dumps - record information about processes that end abnormally
2968 * @signr: signal value
2969 *
2970 * If a process ends with a core dump, something fishy is going on and we
2971 * should record the event for investigation.
2972 */
2973void audit_core_dumps(long signr)
2974{
2975	struct audit_buffer *ab;
2976
2977	if (!audit_enabled)
2978		return;
2979
2980	if (signr == SIGQUIT)	/* don't care for those */
2981		return;
2982
2983	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2984	if (unlikely(!ab))
2985		return;
2986	audit_log_task(ab);
2987	audit_log_format(ab, " sig=%ld res=1", signr);
2988	audit_log_end(ab);
2989}
2990
2991/**
2992 * audit_seccomp - record information about a seccomp action
2993 * @syscall: syscall number
2994 * @signr: signal value
2995 * @code: the seccomp action
2996 *
2997 * Record the information associated with a seccomp action. Event filtering for
2998 * seccomp actions that are not to be logged is done in seccomp_log().
2999 * Therefore, this function forces auditing independent of the audit_enabled
3000 * and dummy context state because seccomp actions should be logged even when
3001 * audit is not in use.
3002 */
3003void audit_seccomp(unsigned long syscall, long signr, int code)
3004{
3005	struct audit_buffer *ab;
3006
3007	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
3008	if (unlikely(!ab))
3009		return;
3010	audit_log_task(ab);
3011	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
3012			 signr, syscall_get_arch(current), syscall,
3013			 in_compat_syscall(), KSTK_EIP(current), code);
3014	audit_log_end(ab);
3015}
3016
3017void audit_seccomp_actions_logged(const char *names, const char *old_names,
3018				  int res)
3019{
3020	struct audit_buffer *ab;
3021
3022	if (!audit_enabled)
3023		return;
3024
3025	ab = audit_log_start(audit_context(), GFP_KERNEL,
3026			     AUDIT_CONFIG_CHANGE);
3027	if (unlikely(!ab))
3028		return;
3029
3030	audit_log_format(ab,
3031			 "op=seccomp-logging actions=%s old-actions=%s res=%d",
3032			 names, old_names, res);
3033	audit_log_end(ab);
3034}
3035
3036struct list_head *audit_killed_trees(void)
3037{
3038	struct audit_context *ctx = audit_context();
3039	if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
3040		return NULL;
3041	return &ctx->killed_trees;
3042}
v3.5.6
 
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
 
 
  45#include <linux/init.h>
  46#include <asm/types.h>
  47#include <linux/atomic.h>
  48#include <linux/fs.h>
  49#include <linux/namei.h>
  50#include <linux/mm.h>
  51#include <linux/export.h>
  52#include <linux/slab.h>
  53#include <linux/mount.h>
  54#include <linux/socket.h>
  55#include <linux/mqueue.h>
  56#include <linux/audit.h>
  57#include <linux/personality.h>
  58#include <linux/time.h>
  59#include <linux/netlink.h>
  60#include <linux/compiler.h>
  61#include <asm/unistd.h>
  62#include <linux/security.h>
  63#include <linux/list.h>
  64#include <linux/tty.h>
  65#include <linux/binfmts.h>
  66#include <linux/highmem.h>
  67#include <linux/syscalls.h>
 
  68#include <linux/capability.h>
  69#include <linux/fs_struct.h>
  70#include <linux/compat.h>
 
 
 
 
 
 
 
 
  71
  72#include "audit.h"
  73
  74/* flags stating the success for a syscall */
  75#define AUDITSC_INVALID 0
  76#define AUDITSC_SUCCESS 1
  77#define AUDITSC_FAILURE 2
  78
  79/* AUDIT_NAMES is the number of slots we reserve in the audit_context
  80 * for saving names from getname().  If we get more names we will allocate
  81 * a name dynamically and also add those to the list anchored by names_list. */
  82#define AUDIT_NAMES	5
  83
  84/* Indicates that audit should log the full pathname. */
  85#define AUDIT_NAME_FULL -1
  86
  87/* no execve audit message should be longer than this (userspace limits) */
  88#define MAX_EXECVE_AUDIT_LEN 7500
  89
  90/* number of audit rules */
  91int audit_n_rules;
  92
  93/* determines whether we collect data for signals sent */
  94int audit_signals;
  95
  96struct audit_cap_data {
  97	kernel_cap_t		permitted;
  98	kernel_cap_t		inheritable;
  99	union {
 100		unsigned int	fE;		/* effective bit of a file capability */
 101		kernel_cap_t	effective;	/* effective set of a process */
 102	};
 103};
 104
 105/* When fs/namei.c:getname() is called, we store the pointer in name and
 106 * we don't let putname() free it (instead we free all of the saved
 107 * pointers at syscall exit time).
 108 *
 109 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
 110struct audit_names {
 111	struct list_head list;		/* audit_context->names_list */
 112	const char	*name;
 113	unsigned long	ino;
 114	dev_t		dev;
 115	umode_t		mode;
 116	uid_t		uid;
 117	gid_t		gid;
 118	dev_t		rdev;
 119	u32		osid;
 120	struct audit_cap_data fcap;
 121	unsigned int	fcap_ver;
 122	int		name_len;	/* number of name's characters to log */
 123	bool		name_put;	/* call __putname() for this name */
 124	/*
 125	 * This was an allocated audit_names and not from the array of
 126	 * names allocated in the task audit context.  Thus this name
 127	 * should be freed on syscall exit
 128	 */
 129	bool		should_free;
 130};
 131
 132struct audit_aux_data {
 133	struct audit_aux_data	*next;
 134	int			type;
 135};
 136
 137#define AUDIT_AUX_IPCPERM	0
 138
 139/* Number of target pids per aux struct. */
 140#define AUDIT_AUX_PIDS	16
 141
 142struct audit_aux_data_execve {
 143	struct audit_aux_data	d;
 144	int argc;
 145	int envc;
 146	struct mm_struct *mm;
 147};
 148
 149struct audit_aux_data_pids {
 150	struct audit_aux_data	d;
 151	pid_t			target_pid[AUDIT_AUX_PIDS];
 152	uid_t			target_auid[AUDIT_AUX_PIDS];
 153	uid_t			target_uid[AUDIT_AUX_PIDS];
 154	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 155	u32			target_sid[AUDIT_AUX_PIDS];
 156	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 157	int			pid_count;
 158};
 159
 160struct audit_aux_data_bprm_fcaps {
 161	struct audit_aux_data	d;
 162	struct audit_cap_data	fcap;
 163	unsigned int		fcap_ver;
 164	struct audit_cap_data	old_pcap;
 165	struct audit_cap_data	new_pcap;
 166};
 167
 168struct audit_aux_data_capset {
 169	struct audit_aux_data	d;
 170	pid_t			pid;
 171	struct audit_cap_data	cap;
 172};
 173
 174struct audit_tree_refs {
 175	struct audit_tree_refs *next;
 176	struct audit_chunk *c[31];
 177};
 178
 179/* The per-task audit context. */
 180struct audit_context {
 181	int		    dummy;	/* must be the first element */
 182	int		    in_syscall;	/* 1 if task is in a syscall */
 183	enum audit_state    state, current_state;
 184	unsigned int	    serial;     /* serial number for record */
 185	int		    major;      /* syscall number */
 186	struct timespec	    ctime;      /* time of syscall entry */
 187	unsigned long	    argv[4];    /* syscall arguments */
 188	long		    return_code;/* syscall return code */
 189	u64		    prio;
 190	int		    return_valid; /* return code is valid */
 191	/*
 192	 * The names_list is the list of all audit_names collected during this
 193	 * syscall.  The first AUDIT_NAMES entries in the names_list will
 194	 * actually be from the preallocated_names array for performance
 195	 * reasons.  Except during allocation they should never be referenced
 196	 * through the preallocated_names array and should only be found/used
 197	 * by running the names_list.
 198	 */
 199	struct audit_names  preallocated_names[AUDIT_NAMES];
 200	int		    name_count; /* total records in names_list */
 201	struct list_head    names_list;	/* anchor for struct audit_names->list */
 202	char *		    filterkey;	/* key for rule that triggered record */
 203	struct path	    pwd;
 204	struct audit_context *previous; /* For nested syscalls */
 205	struct audit_aux_data *aux;
 206	struct audit_aux_data *aux_pids;
 207	struct sockaddr_storage *sockaddr;
 208	size_t sockaddr_len;
 209				/* Save things to print about task_struct */
 210	pid_t		    pid, ppid;
 211	uid_t		    uid, euid, suid, fsuid;
 212	gid_t		    gid, egid, sgid, fsgid;
 213	unsigned long	    personality;
 214	int		    arch;
 215
 216	pid_t		    target_pid;
 217	uid_t		    target_auid;
 218	uid_t		    target_uid;
 219	unsigned int	    target_sessionid;
 220	u32		    target_sid;
 221	char		    target_comm[TASK_COMM_LEN];
 222
 223	struct audit_tree_refs *trees, *first_trees;
 224	struct list_head killed_trees;
 225	int tree_count;
 226
 227	int type;
 228	union {
 229		struct {
 230			int nargs;
 231			long args[6];
 232		} socketcall;
 233		struct {
 234			uid_t			uid;
 235			gid_t			gid;
 236			umode_t			mode;
 237			u32			osid;
 238			int			has_perm;
 239			uid_t			perm_uid;
 240			gid_t			perm_gid;
 241			umode_t			perm_mode;
 242			unsigned long		qbytes;
 243		} ipc;
 244		struct {
 245			mqd_t			mqdes;
 246			struct mq_attr 		mqstat;
 247		} mq_getsetattr;
 248		struct {
 249			mqd_t			mqdes;
 250			int			sigev_signo;
 251		} mq_notify;
 252		struct {
 253			mqd_t			mqdes;
 254			size_t			msg_len;
 255			unsigned int		msg_prio;
 256			struct timespec		abs_timeout;
 257		} mq_sendrecv;
 258		struct {
 259			int			oflag;
 260			umode_t			mode;
 261			struct mq_attr		attr;
 262		} mq_open;
 263		struct {
 264			pid_t			pid;
 265			struct audit_cap_data	cap;
 266		} capset;
 267		struct {
 268			int			fd;
 269			int			flags;
 270		} mmap;
 271	};
 272	int fds[2];
 273
 274#if AUDIT_DEBUG
 275	int		    put_count;
 276	int		    ino_count;
 277#endif
 278};
 279
 280static inline int open_arg(int flags, int mask)
 281{
 282	int n = ACC_MODE(flags);
 283	if (flags & (O_TRUNC | O_CREAT))
 284		n |= AUDIT_PERM_WRITE;
 285	return n & mask;
 286}
 287
 288static int audit_match_perm(struct audit_context *ctx, int mask)
 289{
 290	unsigned n;
 
 291	if (unlikely(!ctx))
 292		return 0;
 293	n = ctx->major;
 294
 295	switch (audit_classify_syscall(ctx->arch, n)) {
 296	case 0:	/* native */
 297		if ((mask & AUDIT_PERM_WRITE) &&
 298		     audit_match_class(AUDIT_CLASS_WRITE, n))
 299			return 1;
 300		if ((mask & AUDIT_PERM_READ) &&
 301		     audit_match_class(AUDIT_CLASS_READ, n))
 302			return 1;
 303		if ((mask & AUDIT_PERM_ATTR) &&
 304		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 305			return 1;
 306		return 0;
 307	case 1: /* 32bit on biarch */
 308		if ((mask & AUDIT_PERM_WRITE) &&
 309		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 310			return 1;
 311		if ((mask & AUDIT_PERM_READ) &&
 312		     audit_match_class(AUDIT_CLASS_READ_32, n))
 313			return 1;
 314		if ((mask & AUDIT_PERM_ATTR) &&
 315		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 316			return 1;
 317		return 0;
 318	case 2: /* open */
 319		return mask & ACC_MODE(ctx->argv[1]);
 320	case 3: /* openat */
 321		return mask & ACC_MODE(ctx->argv[2]);
 322	case 4: /* socketcall */
 323		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 324	case 5: /* execve */
 325		return mask & AUDIT_PERM_EXEC;
 
 
 326	default:
 327		return 0;
 328	}
 329}
 330
 331static int audit_match_filetype(struct audit_context *ctx, int val)
 332{
 333	struct audit_names *n;
 334	umode_t mode = (umode_t)val;
 335
 336	if (unlikely(!ctx))
 337		return 0;
 338
 339	list_for_each_entry(n, &ctx->names_list, list) {
 340		if ((n->ino != -1) &&
 341		    ((n->mode & S_IFMT) == mode))
 342			return 1;
 343	}
 344
 345	return 0;
 346}
 347
 348/*
 349 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 350 * ->first_trees points to its beginning, ->trees - to the current end of data.
 351 * ->tree_count is the number of free entries in array pointed to by ->trees.
 352 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 353 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 354 * it's going to remain 1-element for almost any setup) until we free context itself.
 355 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 356 */
 357
 358#ifdef CONFIG_AUDIT_TREE
 359static void audit_set_auditable(struct audit_context *ctx)
 360{
 361	if (!ctx->prio) {
 362		ctx->prio = 1;
 363		ctx->current_state = AUDIT_RECORD_CONTEXT;
 364	}
 365}
 366
 367static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 368{
 369	struct audit_tree_refs *p = ctx->trees;
 370	int left = ctx->tree_count;
 
 371	if (likely(left)) {
 372		p->c[--left] = chunk;
 373		ctx->tree_count = left;
 374		return 1;
 375	}
 376	if (!p)
 377		return 0;
 378	p = p->next;
 379	if (p) {
 380		p->c[30] = chunk;
 381		ctx->trees = p;
 382		ctx->tree_count = 30;
 383		return 1;
 384	}
 385	return 0;
 386}
 387
 388static int grow_tree_refs(struct audit_context *ctx)
 389{
 390	struct audit_tree_refs *p = ctx->trees;
 
 391	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 392	if (!ctx->trees) {
 393		ctx->trees = p;
 394		return 0;
 395	}
 396	if (p)
 397		p->next = ctx->trees;
 398	else
 399		ctx->first_trees = ctx->trees;
 400	ctx->tree_count = 31;
 401	return 1;
 402}
 403#endif
 404
 405static void unroll_tree_refs(struct audit_context *ctx,
 406		      struct audit_tree_refs *p, int count)
 407{
 408#ifdef CONFIG_AUDIT_TREE
 409	struct audit_tree_refs *q;
 410	int n;
 
 411	if (!p) {
 412		/* we started with empty chain */
 413		p = ctx->first_trees;
 414		count = 31;
 415		/* if the very first allocation has failed, nothing to do */
 416		if (!p)
 417			return;
 418	}
 419	n = count;
 420	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 421		while (n--) {
 422			audit_put_chunk(q->c[n]);
 423			q->c[n] = NULL;
 424		}
 425	}
 426	while (n-- > ctx->tree_count) {
 427		audit_put_chunk(q->c[n]);
 428		q->c[n] = NULL;
 429	}
 430	ctx->trees = p;
 431	ctx->tree_count = count;
 432#endif
 433}
 434
 435static void free_tree_refs(struct audit_context *ctx)
 436{
 437	struct audit_tree_refs *p, *q;
 
 438	for (p = ctx->first_trees; p; p = q) {
 439		q = p->next;
 440		kfree(p);
 441	}
 442}
 443
 444static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 445{
 446#ifdef CONFIG_AUDIT_TREE
 447	struct audit_tree_refs *p;
 448	int n;
 
 449	if (!tree)
 450		return 0;
 451	/* full ones */
 452	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 453		for (n = 0; n < 31; n++)
 454			if (audit_tree_match(p->c[n], tree))
 455				return 1;
 456	}
 457	/* partial */
 458	if (p) {
 459		for (n = ctx->tree_count; n < 31; n++)
 460			if (audit_tree_match(p->c[n], tree))
 461				return 1;
 462	}
 463#endif
 464	return 0;
 465}
 466
 467static int audit_compare_id(uid_t uid1,
 468			    struct audit_names *name,
 469			    unsigned long name_offset,
 470			    struct audit_field *f,
 471			    struct audit_context *ctx)
 472{
 473	struct audit_names *n;
 474	unsigned long addr;
 475	uid_t uid2;
 476	int rc;
 477
 478	BUILD_BUG_ON(sizeof(uid_t) != sizeof(gid_t));
 479
 480	if (name) {
 481		addr = (unsigned long)name;
 482		addr += name_offset;
 483
 484		uid2 = *(uid_t *)addr;
 485		rc = audit_comparator(uid1, f->op, uid2);
 486		if (rc)
 487			return rc;
 488	}
 489
 490	if (ctx) {
 491		list_for_each_entry(n, &ctx->names_list, list) {
 492			addr = (unsigned long)n;
 493			addr += name_offset;
 
 
 
 
 
 494
 495			uid2 = *(uid_t *)addr;
 
 
 
 
 
 
 496
 497			rc = audit_comparator(uid1, f->op, uid2);
 
 
 
 
 
 
 
 
 498			if (rc)
 499				return rc;
 500		}
 501	}
 502	return 0;
 503}
 504
 505static int audit_field_compare(struct task_struct *tsk,
 506			       const struct cred *cred,
 507			       struct audit_field *f,
 508			       struct audit_context *ctx,
 509			       struct audit_names *name)
 510{
 511	switch (f->val) {
 512	/* process to file object comparisons */
 513	case AUDIT_COMPARE_UID_TO_OBJ_UID:
 514		return audit_compare_id(cred->uid,
 515					name, offsetof(struct audit_names, uid),
 516					f, ctx);
 517	case AUDIT_COMPARE_GID_TO_OBJ_GID:
 518		return audit_compare_id(cred->gid,
 519					name, offsetof(struct audit_names, gid),
 520					f, ctx);
 521	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 522		return audit_compare_id(cred->euid,
 523					name, offsetof(struct audit_names, uid),
 524					f, ctx);
 525	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 526		return audit_compare_id(cred->egid,
 527					name, offsetof(struct audit_names, gid),
 528					f, ctx);
 529	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 530		return audit_compare_id(tsk->loginuid,
 531					name, offsetof(struct audit_names, uid),
 532					f, ctx);
 533	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 534		return audit_compare_id(cred->suid,
 535					name, offsetof(struct audit_names, uid),
 536					f, ctx);
 537	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 538		return audit_compare_id(cred->sgid,
 539					name, offsetof(struct audit_names, gid),
 540					f, ctx);
 541	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 542		return audit_compare_id(cred->fsuid,
 543					name, offsetof(struct audit_names, uid),
 544					f, ctx);
 545	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 546		return audit_compare_id(cred->fsgid,
 547					name, offsetof(struct audit_names, gid),
 548					f, ctx);
 549	/* uid comparisons */
 550	case AUDIT_COMPARE_UID_TO_AUID:
 551		return audit_comparator(cred->uid, f->op, tsk->loginuid);
 
 552	case AUDIT_COMPARE_UID_TO_EUID:
 553		return audit_comparator(cred->uid, f->op, cred->euid);
 554	case AUDIT_COMPARE_UID_TO_SUID:
 555		return audit_comparator(cred->uid, f->op, cred->suid);
 556	case AUDIT_COMPARE_UID_TO_FSUID:
 557		return audit_comparator(cred->uid, f->op, cred->fsuid);
 558	/* auid comparisons */
 559	case AUDIT_COMPARE_AUID_TO_EUID:
 560		return audit_comparator(tsk->loginuid, f->op, cred->euid);
 
 561	case AUDIT_COMPARE_AUID_TO_SUID:
 562		return audit_comparator(tsk->loginuid, f->op, cred->suid);
 
 563	case AUDIT_COMPARE_AUID_TO_FSUID:
 564		return audit_comparator(tsk->loginuid, f->op, cred->fsuid);
 
 565	/* euid comparisons */
 566	case AUDIT_COMPARE_EUID_TO_SUID:
 567		return audit_comparator(cred->euid, f->op, cred->suid);
 568	case AUDIT_COMPARE_EUID_TO_FSUID:
 569		return audit_comparator(cred->euid, f->op, cred->fsuid);
 570	/* suid comparisons */
 571	case AUDIT_COMPARE_SUID_TO_FSUID:
 572		return audit_comparator(cred->suid, f->op, cred->fsuid);
 573	/* gid comparisons */
 574	case AUDIT_COMPARE_GID_TO_EGID:
 575		return audit_comparator(cred->gid, f->op, cred->egid);
 576	case AUDIT_COMPARE_GID_TO_SGID:
 577		return audit_comparator(cred->gid, f->op, cred->sgid);
 578	case AUDIT_COMPARE_GID_TO_FSGID:
 579		return audit_comparator(cred->gid, f->op, cred->fsgid);
 580	/* egid comparisons */
 581	case AUDIT_COMPARE_EGID_TO_SGID:
 582		return audit_comparator(cred->egid, f->op, cred->sgid);
 583	case AUDIT_COMPARE_EGID_TO_FSGID:
 584		return audit_comparator(cred->egid, f->op, cred->fsgid);
 585	/* sgid comparison */
 586	case AUDIT_COMPARE_SGID_TO_FSGID:
 587		return audit_comparator(cred->sgid, f->op, cred->fsgid);
 588	default:
 589		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 590		return 0;
 591	}
 592	return 0;
 593}
 594
 595/* Determine if any context name data matches a rule's watch data */
 596/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 597 * otherwise.
 598 *
 599 * If task_creation is true, this is an explicit indication that we are
 600 * filtering a task rule at task creation time.  This and tsk == current are
 601 * the only situations where tsk->cred may be accessed without an rcu read lock.
 602 */
 603static int audit_filter_rules(struct task_struct *tsk,
 604			      struct audit_krule *rule,
 605			      struct audit_context *ctx,
 606			      struct audit_names *name,
 607			      enum audit_state *state,
 608			      bool task_creation)
 609{
 610	const struct cred *cred;
 611	int i, need_sid = 1;
 612	u32 sid;
 
 
 
 
 613
 614	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 615
 616	for (i = 0; i < rule->field_count; i++) {
 617		struct audit_field *f = &rule->fields[i];
 618		struct audit_names *n;
 619		int result = 0;
 
 620
 621		switch (f->type) {
 622		case AUDIT_PID:
 623			result = audit_comparator(tsk->pid, f->op, f->val);
 
 624			break;
 625		case AUDIT_PPID:
 626			if (ctx) {
 627				if (!ctx->ppid)
 628					ctx->ppid = sys_getppid();
 629				result = audit_comparator(ctx->ppid, f->op, f->val);
 630			}
 631			break;
 
 
 
 
 
 632		case AUDIT_UID:
 633			result = audit_comparator(cred->uid, f->op, f->val);
 634			break;
 635		case AUDIT_EUID:
 636			result = audit_comparator(cred->euid, f->op, f->val);
 637			break;
 638		case AUDIT_SUID:
 639			result = audit_comparator(cred->suid, f->op, f->val);
 640			break;
 641		case AUDIT_FSUID:
 642			result = audit_comparator(cred->fsuid, f->op, f->val);
 643			break;
 644		case AUDIT_GID:
 645			result = audit_comparator(cred->gid, f->op, f->val);
 
 
 
 
 
 
 
 646			break;
 647		case AUDIT_EGID:
 648			result = audit_comparator(cred->egid, f->op, f->val);
 
 
 
 
 
 
 
 649			break;
 650		case AUDIT_SGID:
 651			result = audit_comparator(cred->sgid, f->op, f->val);
 652			break;
 653		case AUDIT_FSGID:
 654			result = audit_comparator(cred->fsgid, f->op, f->val);
 
 
 
 
 655			break;
 656		case AUDIT_PERS:
 657			result = audit_comparator(tsk->personality, f->op, f->val);
 658			break;
 659		case AUDIT_ARCH:
 660			if (ctx)
 661				result = audit_comparator(ctx->arch, f->op, f->val);
 662			break;
 663
 664		case AUDIT_EXIT:
 665			if (ctx && ctx->return_valid)
 666				result = audit_comparator(ctx->return_code, f->op, f->val);
 667			break;
 668		case AUDIT_SUCCESS:
 669			if (ctx && ctx->return_valid) {
 670				if (f->val)
 671					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 672				else
 673					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 674			}
 675			break;
 676		case AUDIT_DEVMAJOR:
 677			if (name) {
 678				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 679				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 680					++result;
 681			} else if (ctx) {
 682				list_for_each_entry(n, &ctx->names_list, list) {
 683					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 684					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 685						++result;
 686						break;
 687					}
 688				}
 689			}
 690			break;
 691		case AUDIT_DEVMINOR:
 692			if (name) {
 693				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 694				    audit_comparator(MINOR(name->rdev), f->op, f->val))
 695					++result;
 696			} else if (ctx) {
 697				list_for_each_entry(n, &ctx->names_list, list) {
 698					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 699					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 700						++result;
 701						break;
 702					}
 703				}
 704			}
 705			break;
 706		case AUDIT_INODE:
 707			if (name)
 708				result = (name->ino == f->val);
 709			else if (ctx) {
 710				list_for_each_entry(n, &ctx->names_list, list) {
 711					if (audit_comparator(n->ino, f->op, f->val)) {
 712						++result;
 713						break;
 714					}
 715				}
 716			}
 717			break;
 718		case AUDIT_OBJ_UID:
 719			if (name) {
 720				result = audit_comparator(name->uid, f->op, f->val);
 721			} else if (ctx) {
 722				list_for_each_entry(n, &ctx->names_list, list) {
 723					if (audit_comparator(n->uid, f->op, f->val)) {
 724						++result;
 725						break;
 726					}
 727				}
 728			}
 729			break;
 730		case AUDIT_OBJ_GID:
 731			if (name) {
 732				result = audit_comparator(name->gid, f->op, f->val);
 733			} else if (ctx) {
 734				list_for_each_entry(n, &ctx->names_list, list) {
 735					if (audit_comparator(n->gid, f->op, f->val)) {
 736						++result;
 737						break;
 738					}
 739				}
 740			}
 741			break;
 742		case AUDIT_WATCH:
 743			if (name)
 744				result = audit_watch_compare(rule->watch, name->ino, name->dev);
 
 
 
 
 
 745			break;
 746		case AUDIT_DIR:
 747			if (ctx)
 748				result = match_tree_refs(ctx, rule->tree);
 
 
 
 749			break;
 750		case AUDIT_LOGINUID:
 751			result = 0;
 752			if (ctx)
 753				result = audit_comparator(tsk->loginuid, f->op, f->val);
 
 
 
 
 
 
 
 754			break;
 755		case AUDIT_SUBJ_USER:
 756		case AUDIT_SUBJ_ROLE:
 757		case AUDIT_SUBJ_TYPE:
 758		case AUDIT_SUBJ_SEN:
 759		case AUDIT_SUBJ_CLR:
 760			/* NOTE: this may return negative values indicating
 761			   a temporary error.  We simply treat this as a
 762			   match for now to avoid losing information that
 763			   may be wanted.   An error message will also be
 764			   logged upon error */
 765			if (f->lsm_rule) {
 766				if (need_sid) {
 767					security_task_getsecid(tsk, &sid);
 
 
 
 
 
 
 
 
 
 768					need_sid = 0;
 769				}
 770				result = security_audit_rule_match(sid, f->type,
 771				                                  f->op,
 772				                                  f->lsm_rule,
 773				                                  ctx);
 774			}
 775			break;
 776		case AUDIT_OBJ_USER:
 777		case AUDIT_OBJ_ROLE:
 778		case AUDIT_OBJ_TYPE:
 779		case AUDIT_OBJ_LEV_LOW:
 780		case AUDIT_OBJ_LEV_HIGH:
 781			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 782			   also applies here */
 783			if (f->lsm_rule) {
 784				/* Find files that match */
 785				if (name) {
 786					result = security_audit_rule_match(
 787					           name->osid, f->type, f->op,
 788					           f->lsm_rule, ctx);
 
 
 789				} else if (ctx) {
 790					list_for_each_entry(n, &ctx->names_list, list) {
 791						if (security_audit_rule_match(n->osid, f->type,
 792									      f->op, f->lsm_rule,
 793									      ctx)) {
 
 
 794							++result;
 795							break;
 796						}
 797					}
 798				}
 799				/* Find ipc objects that match */
 800				if (!ctx || ctx->type != AUDIT_IPC)
 801					break;
 802				if (security_audit_rule_match(ctx->ipc.osid,
 803							      f->type, f->op,
 804							      f->lsm_rule, ctx))
 805					++result;
 806			}
 807			break;
 808		case AUDIT_ARG0:
 809		case AUDIT_ARG1:
 810		case AUDIT_ARG2:
 811		case AUDIT_ARG3:
 812			if (ctx)
 813				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 814			break;
 815		case AUDIT_FILTERKEY:
 816			/* ignore this field for filtering */
 817			result = 1;
 818			break;
 819		case AUDIT_PERM:
 820			result = audit_match_perm(ctx, f->val);
 
 
 821			break;
 822		case AUDIT_FILETYPE:
 823			result = audit_match_filetype(ctx, f->val);
 
 
 824			break;
 825		case AUDIT_FIELD_COMPARE:
 826			result = audit_field_compare(tsk, cred, f, ctx, name);
 827			break;
 828		}
 829		if (!result)
 830			return 0;
 831	}
 832
 833	if (ctx) {
 834		if (rule->prio <= ctx->prio)
 835			return 0;
 836		if (rule->filterkey) {
 837			kfree(ctx->filterkey);
 838			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 839		}
 840		ctx->prio = rule->prio;
 841	}
 842	switch (rule->action) {
 843	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
 844	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
 
 
 
 
 845	}
 846	return 1;
 847}
 848
 849/* At process creation time, we can determine if system-call auditing is
 850 * completely disabled for this task.  Since we only have the task
 851 * structure at this point, we can only check uid and gid.
 852 */
 853static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 854{
 855	struct audit_entry *e;
 856	enum audit_state   state;
 857
 858	rcu_read_lock();
 859	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 860		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 861				       &state, true)) {
 862			if (state == AUDIT_RECORD_CONTEXT)
 863				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 864			rcu_read_unlock();
 865			return state;
 866		}
 867	}
 868	rcu_read_unlock();
 869	return AUDIT_BUILD_CONTEXT;
 870}
 871
 872/* At syscall entry and exit time, this filter is called if the
 873 * audit_state is not low enough that auditing cannot take place, but is
 874 * also not high enough that we already know we have to write an audit
 875 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 876 */
 877static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 878					     struct audit_context *ctx,
 879					     struct list_head *list)
 
 
 880{
 881	struct audit_entry *e;
 882	enum audit_state state;
 883
 884	if (audit_pid && tsk->tgid == audit_pid)
 885		return AUDIT_DISABLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 886
 887	rcu_read_lock();
 888	if (!list_empty(list)) {
 889		int word = AUDIT_WORD(ctx->major);
 890		int bit  = AUDIT_BIT(ctx->major);
 891
 892		list_for_each_entry_rcu(e, list, list) {
 893			if ((e->rule.mask[word] & bit) == bit &&
 894			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
 895					       &state, false)) {
 896				rcu_read_unlock();
 897				ctx->current_state = state;
 898				return state;
 899			}
 900		}
 901	}
 
 
 
 
 
 902	rcu_read_unlock();
 903	return AUDIT_BUILD_CONTEXT;
 904}
 905
 906/*
 907 * Given an audit_name check the inode hash table to see if they match.
 908 * Called holding the rcu read lock to protect the use of audit_inode_hash
 909 */
 910static int audit_filter_inode_name(struct task_struct *tsk,
 911				   struct audit_names *n,
 912				   struct audit_context *ctx) {
 913	int word, bit;
 914	int h = audit_hash_ino((u32)n->ino);
 915	struct list_head *list = &audit_inode_hash[h];
 916	struct audit_entry *e;
 917	enum audit_state state;
 918
 919	word = AUDIT_WORD(ctx->major);
 920	bit  = AUDIT_BIT(ctx->major);
 921
 922	if (list_empty(list))
 923		return 0;
 924
 925	list_for_each_entry_rcu(e, list, list) {
 926		if ((e->rule.mask[word] & bit) == bit &&
 927		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
 928			ctx->current_state = state;
 929			return 1;
 930		}
 931	}
 932
 933	return 0;
 934}
 935
 936/* At syscall exit time, this filter is called if any audit_names have been
 937 * collected during syscall processing.  We only check rules in sublists at hash
 938 * buckets applicable to the inode numbers in audit_names.
 939 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 940 */
 941void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 942{
 943	struct audit_names *n;
 944
 945	if (audit_pid && tsk->tgid == audit_pid)
 946		return;
 947
 948	rcu_read_lock();
 949
 950	list_for_each_entry(n, &ctx->names_list, list) {
 951		if (audit_filter_inode_name(tsk, n, ctx))
 952			break;
 953	}
 954	rcu_read_unlock();
 955}
 956
 957static inline struct audit_context *audit_get_context(struct task_struct *tsk,
 958						      int return_valid,
 959						      long return_code)
 960{
 961	struct audit_context *context = tsk->audit_context;
 
 
 
 962
 963	if (!context)
 964		return NULL;
 965	context->return_valid = return_valid;
 966
 967	/*
 968	 * we need to fix up the return code in the audit logs if the actual
 969	 * return codes are later going to be fixed up by the arch specific
 970	 * signal handlers
 971	 *
 972	 * This is actually a test for:
 973	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
 974	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
 975	 *
 976	 * but is faster than a bunch of ||
 977	 */
 978	if (unlikely(return_code <= -ERESTARTSYS) &&
 979	    (return_code >= -ERESTART_RESTARTBLOCK) &&
 980	    (return_code != -ENOIOCTLCMD))
 981		context->return_code = -EINTR;
 982	else
 983		context->return_code  = return_code;
 984
 985	if (context->in_syscall && !context->dummy) {
 986		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
 987		audit_filter_inodes(tsk, context);
 988	}
 989
 990	tsk->audit_context = NULL;
 991	return context;
 992}
 993
 994static inline void audit_free_names(struct audit_context *context)
 995{
 996	struct audit_names *n, *next;
 997
 998#if AUDIT_DEBUG == 2
 999	if (context->put_count + context->ino_count != context->name_count) {
1000		printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1001		       " name_count=%d put_count=%d"
1002		       " ino_count=%d [NOT freeing]\n",
1003		       __FILE__, __LINE__,
1004		       context->serial, context->major, context->in_syscall,
1005		       context->name_count, context->put_count,
1006		       context->ino_count);
1007		list_for_each_entry(n, &context->names_list, list) {
1008			printk(KERN_ERR "names[%d] = %p = %s\n", i,
1009			       n->name, n->name ?: "(null)");
1010		}
1011		dump_stack();
1012		return;
1013	}
1014#endif
1015#if AUDIT_DEBUG
1016	context->put_count  = 0;
1017	context->ino_count  = 0;
1018#endif
1019
1020	list_for_each_entry_safe(n, next, &context->names_list, list) {
1021		list_del(&n->list);
1022		if (n->name && n->name_put)
1023			__putname(n->name);
1024		if (n->should_free)
1025			kfree(n);
1026	}
1027	context->name_count = 0;
1028	path_put(&context->pwd);
1029	context->pwd.dentry = NULL;
1030	context->pwd.mnt = NULL;
1031}
1032
1033static inline void audit_free_aux(struct audit_context *context)
1034{
1035	struct audit_aux_data *aux;
1036
1037	while ((aux = context->aux)) {
1038		context->aux = aux->next;
1039		kfree(aux);
1040	}
 
1041	while ((aux = context->aux_pids)) {
1042		context->aux_pids = aux->next;
1043		kfree(aux);
1044	}
 
1045}
1046
1047static inline void audit_zero_context(struct audit_context *context,
1048				      enum audit_state state)
 
 
 
 
 
 
 
 
1049{
1050	memset(context, 0, sizeof(*context));
1051	context->state      = state;
1052	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1053}
1054
1055static inline struct audit_context *audit_alloc_context(enum audit_state state)
1056{
1057	struct audit_context *context;
1058
1059	if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
 
1060		return NULL;
1061	audit_zero_context(context, state);
 
 
1062	INIT_LIST_HEAD(&context->killed_trees);
1063	INIT_LIST_HEAD(&context->names_list);
 
 
1064	return context;
1065}
1066
1067/**
1068 * audit_alloc - allocate an audit context block for a task
1069 * @tsk: task
1070 *
1071 * Filter on the task information and allocate a per-task audit context
1072 * if necessary.  Doing so turns on system call auditing for the
1073 * specified task.  This is called from copy_process, so no lock is
1074 * needed.
1075 */
1076int audit_alloc(struct task_struct *tsk)
1077{
1078	struct audit_context *context;
1079	enum audit_state     state;
1080	char *key = NULL;
1081
1082	if (likely(!audit_ever_enabled))
1083		return 0; /* Return if not auditing. */
1084
1085	state = audit_filter_task(tsk, &key);
1086	if (state == AUDIT_DISABLED)
 
1087		return 0;
 
1088
1089	if (!(context = audit_alloc_context(state))) {
 
1090		kfree(key);
1091		audit_log_lost("out of memory in audit_alloc");
1092		return -ENOMEM;
1093	}
1094	context->filterkey = key;
1095
1096	tsk->audit_context  = context;
1097	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1098	return 0;
1099}
1100
1101static inline void audit_free_context(struct audit_context *context)
1102{
1103	struct audit_context *previous;
1104	int		     count = 0;
1105
1106	do {
1107		previous = context->previous;
1108		if (previous || (count &&  count < 10)) {
1109			++count;
1110			printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1111			       " freeing multiple contexts (%d)\n",
1112			       context->serial, context->major,
1113			       context->name_count, count);
1114		}
1115		audit_free_names(context);
1116		unroll_tree_refs(context, NULL, 0);
1117		free_tree_refs(context);
1118		audit_free_aux(context);
1119		kfree(context->filterkey);
1120		kfree(context->sockaddr);
1121		kfree(context);
1122		context  = previous;
1123	} while (context);
1124	if (count >= 10)
1125		printk(KERN_ERR "audit: freed %d contexts\n", count);
1126}
1127
1128void audit_log_task_context(struct audit_buffer *ab)
1129{
1130	char *ctx = NULL;
1131	unsigned len;
1132	int error;
1133	u32 sid;
1134
1135	security_task_getsecid(current, &sid);
1136	if (!sid)
1137		return;
1138
1139	error = security_secid_to_secctx(sid, &ctx, &len);
1140	if (error) {
1141		if (error != -EINVAL)
1142			goto error_path;
1143		return;
1144	}
1145
1146	audit_log_format(ab, " subj=%s", ctx);
1147	security_release_secctx(ctx, len);
1148	return;
1149
1150error_path:
1151	audit_panic("error in audit_log_task_context");
1152	return;
1153}
1154
1155EXPORT_SYMBOL(audit_log_task_context);
1156
1157static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1158{
1159	char name[sizeof(tsk->comm)];
1160	struct mm_struct *mm = tsk->mm;
1161	struct vm_area_struct *vma;
1162
1163	/* tsk == current */
1164
1165	get_task_comm(name, tsk);
1166	audit_log_format(ab, " comm=");
1167	audit_log_untrustedstring(ab, name);
1168
1169	if (mm) {
1170		down_read(&mm->mmap_sem);
1171		vma = mm->mmap;
1172		while (vma) {
1173			if ((vma->vm_flags & VM_EXECUTABLE) &&
1174			    vma->vm_file) {
1175				audit_log_d_path(ab, " exe=",
1176						 &vma->vm_file->f_path);
1177				break;
1178			}
1179			vma = vma->vm_next;
1180		}
1181		up_read(&mm->mmap_sem);
1182	}
1183	audit_log_task_context(ab);
1184}
1185
1186static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1187				 uid_t auid, uid_t uid, unsigned int sessionid,
1188				 u32 sid, char *comm)
1189{
1190	struct audit_buffer *ab;
1191	char *ctx = NULL;
1192	u32 len;
1193	int rc = 0;
1194
1195	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1196	if (!ab)
1197		return rc;
1198
1199	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1200			 uid, sessionid);
1201	if (security_secid_to_secctx(sid, &ctx, &len)) {
1202		audit_log_format(ab, " obj=(none)");
1203		rc = 1;
1204	} else {
1205		audit_log_format(ab, " obj=%s", ctx);
1206		security_release_secctx(ctx, len);
 
 
 
1207	}
1208	audit_log_format(ab, " ocomm=");
1209	audit_log_untrustedstring(ab, comm);
1210	audit_log_end(ab);
1211
1212	return rc;
1213}
1214
1215/*
1216 * to_send and len_sent accounting are very loose estimates.  We aren't
1217 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1218 * within about 500 bytes (next page boundary)
1219 *
1220 * why snprintf?  an int is up to 12 digits long.  if we just assumed when
1221 * logging that a[%d]= was going to be 16 characters long we would be wasting
1222 * space in every audit message.  In one 7500 byte message we can log up to
1223 * about 1000 min size arguments.  That comes down to about 50% waste of space
1224 * if we didn't do the snprintf to find out how long arg_num_len was.
1225 */
1226static int audit_log_single_execve_arg(struct audit_context *context,
1227					struct audit_buffer **ab,
1228					int arg_num,
1229					size_t *len_sent,
1230					const char __user *p,
1231					char *buf)
1232{
1233	char arg_num_len_buf[12];
1234	const char __user *tmp_p = p;
1235	/* how many digits are in arg_num? 5 is the length of ' a=""' */
1236	size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1237	size_t len, len_left, to_send;
1238	size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1239	unsigned int i, has_cntl = 0, too_long = 0;
1240	int ret;
1241
1242	/* strnlen_user includes the null we don't want to send */
1243	len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1244
1245	/*
1246	 * We just created this mm, if we can't find the strings
1247	 * we just copied into it something is _very_ wrong. Similar
1248	 * for strings that are too long, we should not have created
1249	 * any.
1250	 */
1251	if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1252		WARN_ON(1);
1253		send_sig(SIGKILL, current, 0);
1254		return -1;
1255	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1256
1257	/* walk the whole argument looking for non-ascii chars */
1258	do {
1259		if (len_left > MAX_EXECVE_AUDIT_LEN)
1260			to_send = MAX_EXECVE_AUDIT_LEN;
1261		else
1262			to_send = len_left;
1263		ret = copy_from_user(buf, tmp_p, to_send);
1264		/*
1265		 * There is no reason for this copy to be short. We just
1266		 * copied them here, and the mm hasn't been exposed to user-
1267		 * space yet.
1268		 */
1269		if (ret) {
1270			WARN_ON(1);
1271			send_sig(SIGKILL, current, 0);
1272			return -1;
1273		}
1274		buf[to_send] = '\0';
1275		has_cntl = audit_string_contains_control(buf, to_send);
1276		if (has_cntl) {
1277			/*
1278			 * hex messages get logged as 2 bytes, so we can only
1279			 * send half as much in each message
1280			 */
1281			max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1282			break;
1283		}
1284		len_left -= to_send;
1285		tmp_p += to_send;
1286	} while (len_left > 0);
1287
1288	len_left = len;
1289
1290	if (len > max_execve_audit_len)
1291		too_long = 1;
1292
1293	/* rewalk the argument actually logging the message */
1294	for (i = 0; len_left > 0; i++) {
1295		int room_left;
1296
1297		if (len_left > max_execve_audit_len)
1298			to_send = max_execve_audit_len;
1299		else
1300			to_send = len_left;
1301
1302		/* do we have space left to send this argument in this ab? */
1303		room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1304		if (has_cntl)
1305			room_left -= (to_send * 2);
1306		else
1307			room_left -= to_send;
1308		if (room_left < 0) {
1309			*len_sent = 0;
1310			audit_log_end(*ab);
1311			*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1312			if (!*ab)
1313				return 0;
1314		}
1315
1316		/*
1317		 * first record needs to say how long the original string was
1318		 * so we can be sure nothing was lost.
1319		 */
1320		if ((i == 0) && (too_long))
1321			audit_log_format(*ab, " a%d_len=%zu", arg_num,
1322					 has_cntl ? 2*len : len);
 
 
 
 
 
 
 
1323
1324		/*
1325		 * normally arguments are small enough to fit and we already
1326		 * filled buf above when we checked for control characters
1327		 * so don't bother with another copy_from_user
1328		 */
1329		if (len >= max_execve_audit_len)
1330			ret = copy_from_user(buf, p, to_send);
1331		else
1332			ret = 0;
1333		if (ret) {
1334			WARN_ON(1);
1335			send_sig(SIGKILL, current, 0);
1336			return -1;
1337		}
1338		buf[to_send] = '\0';
1339
1340		/* actually log it */
1341		audit_log_format(*ab, " a%d", arg_num);
1342		if (too_long)
1343			audit_log_format(*ab, "[%d]", i);
1344		audit_log_format(*ab, "=");
1345		if (has_cntl)
1346			audit_log_n_hex(*ab, buf, to_send);
1347		else
1348			audit_log_string(*ab, buf);
1349
1350		p += to_send;
1351		len_left -= to_send;
1352		*len_sent += arg_num_len;
1353		if (has_cntl)
1354			*len_sent += to_send * 2;
1355		else
1356			*len_sent += to_send;
1357	}
1358	/* include the null we didn't log */
1359	return len + 1;
1360}
 
 
 
 
 
1361
1362static void audit_log_execve_info(struct audit_context *context,
1363				  struct audit_buffer **ab,
1364				  struct audit_aux_data_execve *axi)
1365{
1366	int i, len;
1367	size_t len_sent = 0;
1368	const char __user *p;
1369	char *buf;
 
1370
1371	if (axi->mm != current->mm)
1372		return; /* execve failed, no additional info */
1373
1374	p = (const char __user *)axi->mm->arg_start;
1375
1376	audit_log_format(*ab, "argc=%d", axi->argc);
1377
1378	/*
1379	 * we need some kernel buffer to hold the userspace args.  Just
1380	 * allocate one big one rather than allocating one of the right size
1381	 * for every single argument inside audit_log_single_execve_arg()
1382	 * should be <8k allocation so should be pretty safe.
1383	 */
1384	buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1385	if (!buf) {
1386		audit_panic("out of memory for argv string\n");
1387		return;
1388	}
1389
1390	for (i = 0; i < axi->argc; i++) {
1391		len = audit_log_single_execve_arg(context, ab, i,
1392						  &len_sent, p, buf);
1393		if (len <= 0)
1394			break;
1395		p += len;
1396	}
1397	kfree(buf);
1398}
1399
1400static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
 
1401{
1402	int i;
1403
1404	audit_log_format(ab, " %s=", prefix);
1405	CAP_FOR_EACH_U32(i) {
1406		audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1407	}
 
1408}
1409
1410static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1411{
1412	kernel_cap_t *perm = &name->fcap.permitted;
1413	kernel_cap_t *inh = &name->fcap.inheritable;
1414	int log = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1415
1416	if (!cap_isclear(*perm)) {
1417		audit_log_cap(ab, "cap_fp", perm);
1418		log = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1419	}
1420	if (!cap_isclear(*inh)) {
1421		audit_log_cap(ab, "cap_fi", inh);
1422		log = 1;
 
 
 
 
 
 
 
 
1423	}
1424
1425	if (log)
1426		audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1427}
1428
1429static void show_special(struct audit_context *context, int *call_panic)
1430{
1431	struct audit_buffer *ab;
1432	int i;
1433
1434	ab = audit_log_start(context, GFP_KERNEL, context->type);
1435	if (!ab)
1436		return;
1437
1438	switch (context->type) {
1439	case AUDIT_SOCKETCALL: {
1440		int nargs = context->socketcall.nargs;
 
1441		audit_log_format(ab, "nargs=%d", nargs);
1442		for (i = 0; i < nargs; i++)
1443			audit_log_format(ab, " a%d=%lx", i,
1444				context->socketcall.args[i]);
1445		break; }
1446	case AUDIT_IPC: {
1447		u32 osid = context->ipc.osid;
1448
1449		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1450			 context->ipc.uid, context->ipc.gid, context->ipc.mode);
 
 
1451		if (osid) {
1452			char *ctx = NULL;
1453			u32 len;
 
1454			if (security_secid_to_secctx(osid, &ctx, &len)) {
1455				audit_log_format(ab, " osid=%u", osid);
1456				*call_panic = 1;
1457			} else {
1458				audit_log_format(ab, " obj=%s", ctx);
1459				security_release_secctx(ctx, len);
1460			}
1461		}
1462		if (context->ipc.has_perm) {
1463			audit_log_end(ab);
1464			ab = audit_log_start(context, GFP_KERNEL,
1465					     AUDIT_IPC_SET_PERM);
 
 
1466			audit_log_format(ab,
1467				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1468				context->ipc.qbytes,
1469				context->ipc.perm_uid,
1470				context->ipc.perm_gid,
1471				context->ipc.perm_mode);
1472			if (!ab)
1473				return;
1474		}
1475		break; }
1476	case AUDIT_MQ_OPEN: {
1477		audit_log_format(ab,
1478			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1479			"mq_msgsize=%ld mq_curmsgs=%ld",
1480			context->mq_open.oflag, context->mq_open.mode,
1481			context->mq_open.attr.mq_flags,
1482			context->mq_open.attr.mq_maxmsg,
1483			context->mq_open.attr.mq_msgsize,
1484			context->mq_open.attr.mq_curmsgs);
1485		break; }
1486	case AUDIT_MQ_SENDRECV: {
1487		audit_log_format(ab,
1488			"mqdes=%d msg_len=%zd msg_prio=%u "
1489			"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1490			context->mq_sendrecv.mqdes,
1491			context->mq_sendrecv.msg_len,
1492			context->mq_sendrecv.msg_prio,
1493			context->mq_sendrecv.abs_timeout.tv_sec,
1494			context->mq_sendrecv.abs_timeout.tv_nsec);
1495		break; }
1496	case AUDIT_MQ_NOTIFY: {
1497		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1498				context->mq_notify.mqdes,
1499				context->mq_notify.sigev_signo);
1500		break; }
1501	case AUDIT_MQ_GETSETATTR: {
1502		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
 
1503		audit_log_format(ab,
1504			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1505			"mq_curmsgs=%ld ",
1506			context->mq_getsetattr.mqdes,
1507			attr->mq_flags, attr->mq_maxmsg,
1508			attr->mq_msgsize, attr->mq_curmsgs);
1509		break; }
1510	case AUDIT_CAPSET: {
1511		audit_log_format(ab, "pid=%d", context->capset.pid);
1512		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1513		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1514		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1515		break; }
1516	case AUDIT_MMAP: {
 
1517		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1518				 context->mmap.flags);
1519		break; }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1520	}
1521	audit_log_end(ab);
1522}
1523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1524static void audit_log_name(struct audit_context *context, struct audit_names *n,
1525			   int record_num, int *call_panic)
1526{
1527	struct audit_buffer *ab;
 
1528	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1529	if (!ab)
1530		return; /* audit_panic has been called */
1531
1532	audit_log_format(ab, "item=%d", record_num);
1533
1534	if (n->name) {
 
 
1535		switch (n->name_len) {
1536		case AUDIT_NAME_FULL:
1537			/* log the full path */
1538			audit_log_format(ab, " name=");
1539			audit_log_untrustedstring(ab, n->name);
1540			break;
1541		case 0:
1542			/* name was specified as a relative path and the
1543			 * directory component is the cwd */
1544			audit_log_d_path(ab, " name=", &context->pwd);
 
 
 
 
1545			break;
1546		default:
1547			/* log the name's directory component */
1548			audit_log_format(ab, " name=");
1549			audit_log_n_untrustedstring(ab, n->name,
1550						    n->name_len);
1551		}
1552	} else
1553		audit_log_format(ab, " name=(null)");
1554
1555	if (n->ino != (unsigned long)-1) {
1556		audit_log_format(ab, " inode=%lu"
1557				 " dev=%02x:%02x mode=%#ho"
1558				 " ouid=%u ogid=%u rdev=%02x:%02x",
1559				 n->ino,
1560				 MAJOR(n->dev),
1561				 MINOR(n->dev),
1562				 n->mode,
1563				 n->uid,
1564				 n->gid,
1565				 MAJOR(n->rdev),
1566				 MINOR(n->rdev));
1567	}
1568	if (n->osid != 0) {
1569		char *ctx = NULL;
1570		u32 len;
 
1571		if (security_secid_to_secctx(
1572			n->osid, &ctx, &len)) {
1573			audit_log_format(ab, " osid=%u", n->osid);
1574			*call_panic = 2;
 
1575		} else {
1576			audit_log_format(ab, " obj=%s", ctx);
1577			security_release_secctx(ctx, len);
1578		}
1579	}
1580
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1581	audit_log_fcaps(ab, n);
 
 
 
 
 
 
 
 
 
 
 
1582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1583	audit_log_end(ab);
1584}
1585
1586static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
 
 
 
 
1587{
 
1588	const struct cred *cred;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1589	int i, call_panic = 0;
 
1590	struct audit_buffer *ab;
1591	struct audit_aux_data *aux;
1592	const char *tty;
1593	struct audit_names *n;
1594
1595	/* tsk == current */
1596	context->pid = tsk->pid;
1597	if (!context->ppid)
1598		context->ppid = sys_getppid();
1599	cred = current_cred();
1600	context->uid   = cred->uid;
1601	context->gid   = cred->gid;
1602	context->euid  = cred->euid;
1603	context->suid  = cred->suid;
1604	context->fsuid = cred->fsuid;
1605	context->egid  = cred->egid;
1606	context->sgid  = cred->sgid;
1607	context->fsgid = cred->fsgid;
1608	context->personality = tsk->personality;
1609
1610	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1611	if (!ab)
1612		return;		/* audit_panic has been called */
1613	audit_log_format(ab, "arch=%x syscall=%d",
1614			 context->arch, context->major);
1615	if (context->personality != PER_LINUX)
1616		audit_log_format(ab, " per=%lx", context->personality);
1617	if (context->return_valid)
1618		audit_log_format(ab, " success=%s exit=%ld",
1619				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1620				 context->return_code);
1621
1622	spin_lock_irq(&tsk->sighand->siglock);
1623	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1624		tty = tsk->signal->tty->name;
1625	else
1626		tty = "(none)";
1627	spin_unlock_irq(&tsk->sighand->siglock);
1628
1629	audit_log_format(ab,
1630		  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1631		  " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1632		  " euid=%u suid=%u fsuid=%u"
1633		  " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1634		  context->argv[0],
1635		  context->argv[1],
1636		  context->argv[2],
1637		  context->argv[3],
1638		  context->name_count,
1639		  context->ppid,
1640		  context->pid,
1641		  tsk->loginuid,
1642		  context->uid,
1643		  context->gid,
1644		  context->euid, context->suid, context->fsuid,
1645		  context->egid, context->sgid, context->fsgid, tty,
1646		  tsk->sessionid);
1647
1648
1649	audit_log_task_info(ab, tsk);
1650	audit_log_key(ab, context->filterkey);
1651	audit_log_end(ab);
1652
1653	for (aux = context->aux; aux; aux = aux->next) {
1654
1655		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1656		if (!ab)
1657			continue; /* audit_panic has been called */
1658
1659		switch (aux->type) {
1660
1661		case AUDIT_EXECVE: {
1662			struct audit_aux_data_execve *axi = (void *)aux;
1663			audit_log_execve_info(context, &ab, axi);
1664			break; }
1665
1666		case AUDIT_BPRM_FCAPS: {
1667			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
 
1668			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1669			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1670			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1671			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1672			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1673			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1674			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1675			audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1676			audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1677			audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
 
 
 
 
 
1678			break; }
1679
1680		}
1681		audit_log_end(ab);
1682	}
1683
1684	if (context->type)
1685		show_special(context, &call_panic);
1686
1687	if (context->fds[0] >= 0) {
1688		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1689		if (ab) {
1690			audit_log_format(ab, "fd0=%d fd1=%d",
1691					context->fds[0], context->fds[1]);
1692			audit_log_end(ab);
1693		}
1694	}
1695
1696	if (context->sockaddr_len) {
1697		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1698		if (ab) {
1699			audit_log_format(ab, "saddr=");
1700			audit_log_n_hex(ab, (void *)context->sockaddr,
1701					context->sockaddr_len);
1702			audit_log_end(ab);
1703		}
1704	}
1705
1706	for (aux = context->aux_pids; aux; aux = aux->next) {
1707		struct audit_aux_data_pids *axs = (void *)aux;
1708
1709		for (i = 0; i < axs->pid_count; i++)
1710			if (audit_log_pid_context(context, axs->target_pid[i],
1711						  axs->target_auid[i],
1712						  axs->target_uid[i],
1713						  axs->target_sessionid[i],
1714						  axs->target_sid[i],
1715						  axs->target_comm[i]))
1716				call_panic = 1;
1717	}
1718
1719	if (context->target_pid &&
1720	    audit_log_pid_context(context, context->target_pid,
1721				  context->target_auid, context->target_uid,
1722				  context->target_sessionid,
1723				  context->target_sid, context->target_comm))
1724			call_panic = 1;
1725
1726	if (context->pwd.dentry && context->pwd.mnt) {
1727		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1728		if (ab) {
1729			audit_log_d_path(ab, " cwd=", &context->pwd);
1730			audit_log_end(ab);
1731		}
1732	}
1733
1734	i = 0;
1735	list_for_each_entry(n, &context->names_list, list)
1736		audit_log_name(context, n, i++, &call_panic);
 
 
 
 
 
 
1737
1738	/* Send end of event record to help user space know we are finished */
1739	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1740	if (ab)
1741		audit_log_end(ab);
1742	if (call_panic)
1743		audit_panic("error converting sid to string");
1744}
1745
1746/**
1747 * audit_free - free a per-task audit context
1748 * @tsk: task whose audit context block to free
1749 *
1750 * Called from copy_process and do_exit
1751 */
1752void __audit_free(struct task_struct *tsk)
1753{
1754	struct audit_context *context;
1755
1756	context = audit_get_context(tsk, 0, 0);
1757	if (!context)
1758		return;
1759
1760	/* Check for system calls that do not go through the exit
1761	 * function (e.g., exit_group), then free context block.
1762	 * We use GFP_ATOMIC here because we might be doing this
1763	 * in the context of the idle thread */
1764	/* that can happen only if we are called from do_exit() */
1765	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1766		audit_log_exit(context, tsk);
1767	if (!list_empty(&context->killed_trees))
1768		audit_kill_trees(&context->killed_trees);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1769
 
1770	audit_free_context(context);
1771}
1772
1773/**
1774 * audit_syscall_entry - fill in an audit record at syscall entry
1775 * @arch: architecture type
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1776 * @major: major syscall type (function)
1777 * @a1: additional syscall register 1
1778 * @a2: additional syscall register 2
1779 * @a3: additional syscall register 3
1780 * @a4: additional syscall register 4
1781 *
1782 * Fill in audit context at syscall entry.  This only happens if the
1783 * audit context was created when the task was created and the state or
1784 * filters demand the audit context be built.  If the state from the
1785 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1786 * then the record will be written at syscall exit time (otherwise, it
1787 * will only be written if another part of the kernel requests that it
1788 * be written).
1789 */
1790void __audit_syscall_entry(int arch, int major,
1791			 unsigned long a1, unsigned long a2,
1792			 unsigned long a3, unsigned long a4)
1793{
1794	struct task_struct *tsk = current;
1795	struct audit_context *context = tsk->audit_context;
1796	enum audit_state     state;
1797
1798	if (!context)
1799		return;
1800
1801	/*
1802	 * This happens only on certain architectures that make system
1803	 * calls in kernel_thread via the entry.S interface, instead of
1804	 * with direct calls.  (If you are porting to a new
1805	 * architecture, hitting this condition can indicate that you
1806	 * got the _exit/_leave calls backward in entry.S.)
1807	 *
1808	 * i386     no
1809	 * x86_64   no
1810	 * ppc64    yes (see arch/powerpc/platforms/iseries/misc.S)
1811	 *
1812	 * This also happens with vm86 emulation in a non-nested manner
1813	 * (entries without exits), so this case must be caught.
1814	 */
1815	if (context->in_syscall) {
1816		struct audit_context *newctx;
1817
1818#if AUDIT_DEBUG
1819		printk(KERN_ERR
1820		       "audit(:%d) pid=%d in syscall=%d;"
1821		       " entering syscall=%d\n",
1822		       context->serial, tsk->pid, context->major, major);
1823#endif
1824		newctx = audit_alloc_context(context->state);
1825		if (newctx) {
1826			newctx->previous   = context;
1827			context		   = newctx;
1828			tsk->audit_context = newctx;
1829		} else	{
1830			/* If we can't alloc a new context, the best we
1831			 * can do is to leak memory (any pending putname
1832			 * will be lost).  The only other alternative is
1833			 * to abandon auditing. */
1834			audit_zero_context(context, context->state);
1835		}
1836	}
1837	BUG_ON(context->in_syscall || context->name_count);
1838
1839	if (!audit_enabled)
 
1840		return;
1841
1842	context->arch	    = arch;
 
 
 
 
 
 
 
1843	context->major      = major;
1844	context->argv[0]    = a1;
1845	context->argv[1]    = a2;
1846	context->argv[2]    = a3;
1847	context->argv[3]    = a4;
1848
1849	state = context->state;
1850	context->dummy = !audit_n_rules;
1851	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1852		context->prio = 0;
1853		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1854	}
1855	if (state == AUDIT_DISABLED)
1856		return;
1857
1858	context->serial     = 0;
1859	context->ctime      = CURRENT_TIME;
1860	context->in_syscall = 1;
1861	context->current_state  = state;
1862	context->ppid       = 0;
1863}
1864
1865/**
1866 * audit_syscall_exit - deallocate audit context after a system call
1867 * @success: success value of the syscall
1868 * @return_code: return value of the syscall
1869 *
1870 * Tear down after system call.  If the audit context has been marked as
1871 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1872 * filtering, or because some other part of the kernel wrote an audit
1873 * message), then write out the syscall information.  In call cases,
1874 * free the names stored from getname().
1875 */
1876void __audit_syscall_exit(int success, long return_code)
1877{
1878	struct task_struct *tsk = current;
1879	struct audit_context *context;
1880
1881	if (success)
1882		success = AUDITSC_SUCCESS;
1883	else
1884		success = AUDITSC_FAILURE;
1885
1886	context = audit_get_context(tsk, success, return_code);
1887	if (!context)
1888		return;
1889
1890	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1891		audit_log_exit(context, tsk);
 
 
 
 
1892
1893	context->in_syscall = 0;
1894	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1895
1896	if (!list_empty(&context->killed_trees))
1897		audit_kill_trees(&context->killed_trees);
1898
1899	if (context->previous) {
1900		struct audit_context *new_context = context->previous;
1901		context->previous  = NULL;
1902		audit_free_context(context);
1903		tsk->audit_context = new_context;
1904	} else {
1905		audit_free_names(context);
1906		unroll_tree_refs(context, NULL, 0);
1907		audit_free_aux(context);
1908		context->aux = NULL;
1909		context->aux_pids = NULL;
1910		context->target_pid = 0;
1911		context->target_sid = 0;
1912		context->sockaddr_len = 0;
1913		context->type = 0;
1914		context->fds[0] = -1;
1915		if (context->state != AUDIT_RECORD_CONTEXT) {
1916			kfree(context->filterkey);
1917			context->filterkey = NULL;
1918		}
1919		tsk->audit_context = context;
1920	}
1921}
1922
1923static inline void handle_one(const struct inode *inode)
1924{
1925#ifdef CONFIG_AUDIT_TREE
1926	struct audit_context *context;
1927	struct audit_tree_refs *p;
1928	struct audit_chunk *chunk;
1929	int count;
1930	if (likely(hlist_empty(&inode->i_fsnotify_marks)))
 
1931		return;
1932	context = current->audit_context;
1933	p = context->trees;
1934	count = context->tree_count;
1935	rcu_read_lock();
1936	chunk = audit_tree_lookup(inode);
1937	rcu_read_unlock();
1938	if (!chunk)
1939		return;
1940	if (likely(put_tree_ref(context, chunk)))
1941		return;
1942	if (unlikely(!grow_tree_refs(context))) {
1943		printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1944		audit_set_auditable(context);
1945		audit_put_chunk(chunk);
1946		unroll_tree_refs(context, p, count);
1947		return;
1948	}
1949	put_tree_ref(context, chunk);
1950#endif
1951}
1952
1953static void handle_path(const struct dentry *dentry)
1954{
1955#ifdef CONFIG_AUDIT_TREE
1956	struct audit_context *context;
1957	struct audit_tree_refs *p;
1958	const struct dentry *d, *parent;
1959	struct audit_chunk *drop;
1960	unsigned long seq;
1961	int count;
1962
1963	context = current->audit_context;
1964	p = context->trees;
1965	count = context->tree_count;
1966retry:
1967	drop = NULL;
1968	d = dentry;
1969	rcu_read_lock();
1970	seq = read_seqbegin(&rename_lock);
1971	for(;;) {
1972		struct inode *inode = d->d_inode;
1973		if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
 
1974			struct audit_chunk *chunk;
 
1975			chunk = audit_tree_lookup(inode);
1976			if (chunk) {
1977				if (unlikely(!put_tree_ref(context, chunk))) {
1978					drop = chunk;
1979					break;
1980				}
1981			}
1982		}
1983		parent = d->d_parent;
1984		if (parent == d)
1985			break;
1986		d = parent;
1987	}
1988	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1989		rcu_read_unlock();
1990		if (!drop) {
1991			/* just a race with rename */
1992			unroll_tree_refs(context, p, count);
1993			goto retry;
1994		}
1995		audit_put_chunk(drop);
1996		if (grow_tree_refs(context)) {
1997			/* OK, got more space */
1998			unroll_tree_refs(context, p, count);
1999			goto retry;
2000		}
2001		/* too bad */
2002		printk(KERN_WARNING
2003			"out of memory, audit has lost a tree reference\n");
2004		unroll_tree_refs(context, p, count);
2005		audit_set_auditable(context);
2006		return;
2007	}
2008	rcu_read_unlock();
2009#endif
2010}
2011
2012static struct audit_names *audit_alloc_name(struct audit_context *context)
 
2013{
2014	struct audit_names *aname;
2015
2016	if (context->name_count < AUDIT_NAMES) {
2017		aname = &context->preallocated_names[context->name_count];
2018		memset(aname, 0, sizeof(*aname));
2019	} else {
2020		aname = kzalloc(sizeof(*aname), GFP_NOFS);
2021		if (!aname)
2022			return NULL;
2023		aname->should_free = true;
2024	}
2025
2026	aname->ino = (unsigned long)-1;
 
2027	list_add_tail(&aname->list, &context->names_list);
2028
2029	context->name_count++;
2030#if AUDIT_DEBUG
2031	context->ino_count++;
2032#endif
2033	return aname;
2034}
2035
2036/**
2037 * audit_getname - add a name to the list
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2038 * @name: name to add
2039 *
2040 * Add a name to the list of audit names for this context.
2041 * Called from fs/namei.c:getname().
2042 */
2043void __audit_getname(const char *name)
2044{
2045	struct audit_context *context = current->audit_context;
2046	struct audit_names *n;
2047
2048	if (!context->in_syscall) {
2049#if AUDIT_DEBUG == 2
2050		printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2051		       __FILE__, __LINE__, context->serial, name);
2052		dump_stack();
2053#endif
2054		return;
2055	}
2056
2057	n = audit_alloc_name(context);
2058	if (!n)
2059		return;
2060
2061	n->name = name;
2062	n->name_len = AUDIT_NAME_FULL;
2063	n->name_put = true;
2064
2065	if (!context->pwd.dentry)
2066		get_fs_pwd(current->fs, &context->pwd);
2067}
2068
2069/* audit_putname - intercept a putname request
2070 * @name: name to intercept and delay for putname
2071 *
2072 * If we have stored the name from getname in the audit context,
2073 * then we delay the putname until syscall exit.
2074 * Called from include/linux/fs.h:putname().
2075 */
2076void audit_putname(const char *name)
2077{
2078	struct audit_context *context = current->audit_context;
2079
2080	BUG_ON(!context);
2081	if (!context->in_syscall) {
2082#if AUDIT_DEBUG == 2
2083		printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2084		       __FILE__, __LINE__, context->serial, name);
2085		if (context->name_count) {
2086			struct audit_names *n;
2087			int i;
2088
2089			list_for_each_entry(n, &context->names_list, list)
2090				printk(KERN_ERR "name[%d] = %p = %s\n", i,
2091				       n->name, n->name ?: "(null)");
2092			}
2093#endif
2094		__putname(name);
2095	}
2096#if AUDIT_DEBUG
2097	else {
2098		++context->put_count;
2099		if (context->put_count > context->name_count) {
2100			printk(KERN_ERR "%s:%d(:%d): major=%d"
2101			       " in_syscall=%d putname(%p) name_count=%d"
2102			       " put_count=%d\n",
2103			       __FILE__, __LINE__,
2104			       context->serial, context->major,
2105			       context->in_syscall, name, context->name_count,
2106			       context->put_count);
2107			dump_stack();
2108		}
2109	}
2110#endif
2111}
2112
2113static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2114{
2115	struct cpu_vfs_cap_data caps;
2116	int rc;
2117
2118	if (!dentry)
2119		return 0;
2120
2121	rc = get_vfs_caps_from_disk(dentry, &caps);
2122	if (rc)
2123		return rc;
2124
2125	name->fcap.permitted = caps.permitted;
2126	name->fcap.inheritable = caps.inheritable;
2127	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2128	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
 
 
2129
2130	return 0;
2131}
2132
2133
2134/* Copy inode data into an audit_names. */
2135static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2136			     const struct inode *inode)
 
2137{
2138	name->ino   = inode->i_ino;
2139	name->dev   = inode->i_sb->s_dev;
2140	name->mode  = inode->i_mode;
2141	name->uid   = inode->i_uid;
2142	name->gid   = inode->i_gid;
2143	name->rdev  = inode->i_rdev;
2144	security_inode_getsecid(inode, &name->osid);
 
 
 
 
2145	audit_copy_fcaps(name, dentry);
2146}
2147
2148/**
2149 * audit_inode - store the inode and device from a lookup
2150 * @name: name being audited
2151 * @dentry: dentry being audited
2152 *
2153 * Called from fs/namei.c:path_lookup().
2154 */
2155void __audit_inode(const char *name, const struct dentry *dentry)
 
2156{
2157	struct audit_context *context = current->audit_context;
2158	const struct inode *inode = dentry->d_inode;
2159	struct audit_names *n;
 
 
 
 
2160
2161	if (!context->in_syscall)
2162		return;
2163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2164	list_for_each_entry_reverse(n, &context->names_list, list) {
2165		if (n->name && (n->name == name))
2166			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2167	}
2168
2169	/* unable to find the name from a previous getname() */
2170	n = audit_alloc_name(context);
 
2171	if (!n)
2172		return;
 
 
 
 
 
2173out:
 
 
 
 
 
 
 
 
 
2174	handle_path(dentry);
2175	audit_copy_inode(n, dentry, inode);
 
 
 
 
 
2176}
2177
2178/**
2179 * audit_inode_child - collect inode info for created/removed objects
 
2180 * @dentry: dentry being audited
2181 * @parent: inode of dentry parent
2182 *
2183 * For syscalls that create or remove filesystem objects, audit_inode
2184 * can only collect information for the filesystem object's parent.
2185 * This call updates the audit context with the child's information.
2186 * Syscalls that create a new filesystem object must be hooked after
2187 * the object is created.  Syscalls that remove a filesystem object
2188 * must be hooked prior, in order to capture the target inode during
2189 * unsuccessful attempts.
2190 */
2191void __audit_inode_child(const struct dentry *dentry,
2192			 const struct inode *parent)
2193{
2194	struct audit_context *context = current->audit_context;
2195	const char *found_parent = NULL, *found_child = NULL;
2196	const struct inode *inode = dentry->d_inode;
2197	const char *dname = dentry->d_name.name;
2198	struct audit_names *n;
2199	int dirlen = 0;
 
 
2200
2201	if (!context->in_syscall)
2202		return;
2203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2204	if (inode)
2205		handle_one(inode);
2206
2207	/* parent is more likely, look for it first */
2208	list_for_each_entry(n, &context->names_list, list) {
2209		if (!n->name)
 
 
2210			continue;
2211
2212		if (n->ino == parent->i_ino &&
2213		    !audit_compare_dname_path(dname, n->name, &dirlen)) {
2214			n->name_len = dirlen; /* update parent data in place */
2215			found_parent = n->name;
2216			goto add_names;
 
 
2217		}
2218	}
2219
2220	/* no matching parent, look for matching child */
 
 
2221	list_for_each_entry(n, &context->names_list, list) {
2222		if (!n->name)
 
 
2223			continue;
2224
2225		/* strcmp() is the more likely scenario */
2226		if (!strcmp(dname, n->name) ||
2227		     !audit_compare_dname_path(dname, n->name, &dirlen)) {
2228			if (inode)
2229				audit_copy_inode(n, NULL, inode);
2230			else
2231				n->ino = (unsigned long)-1;
2232			found_child = n->name;
2233			goto add_names;
2234		}
2235	}
2236
2237add_names:
2238	if (!found_parent) {
2239		n = audit_alloc_name(context);
 
2240		if (!n)
2241			return;
2242		audit_copy_inode(n, NULL, parent);
2243	}
2244
2245	if (!found_child) {
2246		n = audit_alloc_name(context);
2247		if (!n)
2248			return;
2249
2250		/* Re-use the name belonging to the slot for a matching parent
2251		 * directory. All names for this context are relinquished in
2252		 * audit_free_names() */
2253		if (found_parent) {
2254			n->name = found_parent;
2255			n->name_len = AUDIT_NAME_FULL;
2256			/* don't call __putname() */
2257			n->name_put = false;
2258		}
 
2259
2260		if (inode)
2261			audit_copy_inode(n, NULL, inode);
2262	}
 
2263}
2264EXPORT_SYMBOL_GPL(__audit_inode_child);
2265
2266/**
2267 * auditsc_get_stamp - get local copies of audit_context values
2268 * @ctx: audit_context for the task
2269 * @t: timespec to store time recorded in the audit_context
2270 * @serial: serial value that is recorded in the audit_context
2271 *
2272 * Also sets the context as auditable.
2273 */
2274int auditsc_get_stamp(struct audit_context *ctx,
2275		       struct timespec *t, unsigned int *serial)
2276{
2277	if (!ctx->in_syscall)
2278		return 0;
2279	if (!ctx->serial)
2280		ctx->serial = audit_serial();
2281	t->tv_sec  = ctx->ctime.tv_sec;
2282	t->tv_nsec = ctx->ctime.tv_nsec;
2283	*serial    = ctx->serial;
2284	if (!ctx->prio) {
2285		ctx->prio = 1;
2286		ctx->current_state = AUDIT_RECORD_CONTEXT;
2287	}
2288	return 1;
2289}
2290
2291/* global counter which is incremented every time something logs in */
2292static atomic_t session_id = ATOMIC_INIT(0);
2293
2294/**
2295 * audit_set_loginuid - set current task's audit_context loginuid
2296 * @loginuid: loginuid value
2297 *
2298 * Returns 0.
2299 *
2300 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2301 */
2302int audit_set_loginuid(uid_t loginuid)
2303{
2304	struct task_struct *task = current;
2305	struct audit_context *context = task->audit_context;
2306	unsigned int sessionid;
2307
2308#ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2309	if (task->loginuid != -1)
2310		return -EPERM;
2311#else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2312	if (!capable(CAP_AUDIT_CONTROL))
2313		return -EPERM;
2314#endif  /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2315
2316	sessionid = atomic_inc_return(&session_id);
2317	if (context && context->in_syscall) {
2318		struct audit_buffer *ab;
2319
2320		ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2321		if (ab) {
2322			audit_log_format(ab, "login pid=%d uid=%u "
2323				"old auid=%u new auid=%u"
2324				" old ses=%u new ses=%u",
2325				task->pid, task_uid(task),
2326				task->loginuid, loginuid,
2327				task->sessionid, sessionid);
2328			audit_log_end(ab);
2329		}
2330	}
2331	task->sessionid = sessionid;
2332	task->loginuid = loginuid;
2333	return 0;
2334}
2335
2336/**
2337 * __audit_mq_open - record audit data for a POSIX MQ open
2338 * @oflag: open flag
2339 * @mode: mode bits
2340 * @attr: queue attributes
2341 *
2342 */
2343void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2344{
2345	struct audit_context *context = current->audit_context;
2346
2347	if (attr)
2348		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2349	else
2350		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2351
2352	context->mq_open.oflag = oflag;
2353	context->mq_open.mode = mode;
2354
2355	context->type = AUDIT_MQ_OPEN;
2356}
2357
2358/**
2359 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2360 * @mqdes: MQ descriptor
2361 * @msg_len: Message length
2362 * @msg_prio: Message priority
2363 * @abs_timeout: Message timeout in absolute time
2364 *
2365 */
2366void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2367			const struct timespec *abs_timeout)
2368{
2369	struct audit_context *context = current->audit_context;
2370	struct timespec *p = &context->mq_sendrecv.abs_timeout;
2371
2372	if (abs_timeout)
2373		memcpy(p, abs_timeout, sizeof(struct timespec));
2374	else
2375		memset(p, 0, sizeof(struct timespec));
2376
2377	context->mq_sendrecv.mqdes = mqdes;
2378	context->mq_sendrecv.msg_len = msg_len;
2379	context->mq_sendrecv.msg_prio = msg_prio;
2380
2381	context->type = AUDIT_MQ_SENDRECV;
2382}
2383
2384/**
2385 * __audit_mq_notify - record audit data for a POSIX MQ notify
2386 * @mqdes: MQ descriptor
2387 * @notification: Notification event
2388 *
2389 */
2390
2391void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2392{
2393	struct audit_context *context = current->audit_context;
2394
2395	if (notification)
2396		context->mq_notify.sigev_signo = notification->sigev_signo;
2397	else
2398		context->mq_notify.sigev_signo = 0;
2399
2400	context->mq_notify.mqdes = mqdes;
2401	context->type = AUDIT_MQ_NOTIFY;
2402}
2403
2404/**
2405 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2406 * @mqdes: MQ descriptor
2407 * @mqstat: MQ flags
2408 *
2409 */
2410void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2411{
2412	struct audit_context *context = current->audit_context;
 
2413	context->mq_getsetattr.mqdes = mqdes;
2414	context->mq_getsetattr.mqstat = *mqstat;
2415	context->type = AUDIT_MQ_GETSETATTR;
2416}
2417
2418/**
2419 * audit_ipc_obj - record audit data for ipc object
2420 * @ipcp: ipc permissions
2421 *
2422 */
2423void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2424{
2425	struct audit_context *context = current->audit_context;
 
2426	context->ipc.uid = ipcp->uid;
2427	context->ipc.gid = ipcp->gid;
2428	context->ipc.mode = ipcp->mode;
2429	context->ipc.has_perm = 0;
2430	security_ipc_getsecid(ipcp, &context->ipc.osid);
2431	context->type = AUDIT_IPC;
2432}
2433
2434/**
2435 * audit_ipc_set_perm - record audit data for new ipc permissions
2436 * @qbytes: msgq bytes
2437 * @uid: msgq user id
2438 * @gid: msgq group id
2439 * @mode: msgq mode (permissions)
2440 *
2441 * Called only after audit_ipc_obj().
2442 */
2443void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2444{
2445	struct audit_context *context = current->audit_context;
2446
2447	context->ipc.qbytes = qbytes;
2448	context->ipc.perm_uid = uid;
2449	context->ipc.perm_gid = gid;
2450	context->ipc.perm_mode = mode;
2451	context->ipc.has_perm = 1;
2452}
2453
2454int __audit_bprm(struct linux_binprm *bprm)
2455{
2456	struct audit_aux_data_execve *ax;
2457	struct audit_context *context = current->audit_context;
2458
2459	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2460	if (!ax)
2461		return -ENOMEM;
2462
2463	ax->argc = bprm->argc;
2464	ax->envc = bprm->envc;
2465	ax->mm = bprm->mm;
2466	ax->d.type = AUDIT_EXECVE;
2467	ax->d.next = context->aux;
2468	context->aux = (void *)ax;
2469	return 0;
2470}
2471
2472
2473/**
2474 * audit_socketcall - record audit data for sys_socketcall
2475 * @nargs: number of args
2476 * @args: args array
2477 *
2478 */
2479void __audit_socketcall(int nargs, unsigned long *args)
2480{
2481	struct audit_context *context = current->audit_context;
2482
 
 
2483	context->type = AUDIT_SOCKETCALL;
2484	context->socketcall.nargs = nargs;
2485	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
 
2486}
2487
2488/**
2489 * __audit_fd_pair - record audit data for pipe and socketpair
2490 * @fd1: the first file descriptor
2491 * @fd2: the second file descriptor
2492 *
2493 */
2494void __audit_fd_pair(int fd1, int fd2)
2495{
2496	struct audit_context *context = current->audit_context;
 
2497	context->fds[0] = fd1;
2498	context->fds[1] = fd2;
2499}
2500
2501/**
2502 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2503 * @len: data length in user space
2504 * @a: data address in kernel space
2505 *
2506 * Returns 0 for success or NULL context or < 0 on error.
2507 */
2508int __audit_sockaddr(int len, void *a)
2509{
2510	struct audit_context *context = current->audit_context;
2511
2512	if (!context->sockaddr) {
2513		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
 
2514		if (!p)
2515			return -ENOMEM;
2516		context->sockaddr = p;
2517	}
2518
2519	context->sockaddr_len = len;
2520	memcpy(context->sockaddr, a, len);
2521	return 0;
2522}
2523
2524void __audit_ptrace(struct task_struct *t)
2525{
2526	struct audit_context *context = current->audit_context;
2527
2528	context->target_pid = t->pid;
2529	context->target_auid = audit_get_loginuid(t);
2530	context->target_uid = task_uid(t);
2531	context->target_sessionid = audit_get_sessionid(t);
2532	security_task_getsecid(t, &context->target_sid);
2533	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2534}
2535
2536/**
2537 * audit_signal_info - record signal info for shutting down audit subsystem
2538 * @sig: signal value
2539 * @t: task being signaled
2540 *
2541 * If the audit subsystem is being terminated, record the task (pid)
2542 * and uid that is doing that.
2543 */
2544int __audit_signal_info(int sig, struct task_struct *t)
2545{
2546	struct audit_aux_data_pids *axp;
2547	struct task_struct *tsk = current;
2548	struct audit_context *ctx = tsk->audit_context;
2549	uid_t uid = current_uid(), t_uid = task_uid(t);
2550
2551	if (audit_pid && t->tgid == audit_pid) {
2552		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2553			audit_sig_pid = tsk->pid;
2554			if (tsk->loginuid != -1)
2555				audit_sig_uid = tsk->loginuid;
2556			else
2557				audit_sig_uid = uid;
2558			security_task_getsecid(tsk, &audit_sig_sid);
2559		}
2560		if (!audit_signals || audit_dummy_context())
2561			return 0;
2562	}
2563
2564	/* optimize the common case by putting first signal recipient directly
2565	 * in audit_context */
2566	if (!ctx->target_pid) {
2567		ctx->target_pid = t->tgid;
2568		ctx->target_auid = audit_get_loginuid(t);
2569		ctx->target_uid = t_uid;
2570		ctx->target_sessionid = audit_get_sessionid(t);
2571		security_task_getsecid(t, &ctx->target_sid);
2572		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2573		return 0;
2574	}
2575
2576	axp = (void *)ctx->aux_pids;
2577	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2578		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2579		if (!axp)
2580			return -ENOMEM;
2581
2582		axp->d.type = AUDIT_OBJ_PID;
2583		axp->d.next = ctx->aux_pids;
2584		ctx->aux_pids = (void *)axp;
2585	}
2586	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2587
2588	axp->target_pid[axp->pid_count] = t->tgid;
2589	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2590	axp->target_uid[axp->pid_count] = t_uid;
2591	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2592	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2593	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2594	axp->pid_count++;
2595
2596	return 0;
2597}
2598
2599/**
2600 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2601 * @bprm: pointer to the bprm being processed
2602 * @new: the proposed new credentials
2603 * @old: the old credentials
2604 *
2605 * Simply check if the proc already has the caps given by the file and if not
2606 * store the priv escalation info for later auditing at the end of the syscall
2607 *
2608 * -Eric
2609 */
2610int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2611			   const struct cred *new, const struct cred *old)
2612{
2613	struct audit_aux_data_bprm_fcaps *ax;
2614	struct audit_context *context = current->audit_context;
2615	struct cpu_vfs_cap_data vcaps;
2616	struct dentry *dentry;
2617
2618	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2619	if (!ax)
2620		return -ENOMEM;
2621
2622	ax->d.type = AUDIT_BPRM_FCAPS;
2623	ax->d.next = context->aux;
2624	context->aux = (void *)ax;
2625
2626	dentry = dget(bprm->file->f_dentry);
2627	get_vfs_caps_from_disk(dentry, &vcaps);
2628	dput(dentry);
2629
2630	ax->fcap.permitted = vcaps.permitted;
2631	ax->fcap.inheritable = vcaps.inheritable;
2632	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
 
2633	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2634
2635	ax->old_pcap.permitted   = old->cap_permitted;
2636	ax->old_pcap.inheritable = old->cap_inheritable;
2637	ax->old_pcap.effective   = old->cap_effective;
 
2638
2639	ax->new_pcap.permitted   = new->cap_permitted;
2640	ax->new_pcap.inheritable = new->cap_inheritable;
2641	ax->new_pcap.effective   = new->cap_effective;
 
2642	return 0;
2643}
2644
2645/**
2646 * __audit_log_capset - store information about the arguments to the capset syscall
2647 * @pid: target pid of the capset call
2648 * @new: the new credentials
2649 * @old: the old (current) credentials
2650 *
2651 * Record the aguments userspace sent to sys_capset for later printing by the
2652 * audit system if applicable
2653 */
2654void __audit_log_capset(pid_t pid,
2655		       const struct cred *new, const struct cred *old)
2656{
2657	struct audit_context *context = current->audit_context;
2658	context->capset.pid = pid;
 
2659	context->capset.cap.effective   = new->cap_effective;
2660	context->capset.cap.inheritable = new->cap_effective;
2661	context->capset.cap.permitted   = new->cap_permitted;
 
2662	context->type = AUDIT_CAPSET;
2663}
2664
2665void __audit_mmap_fd(int fd, int flags)
2666{
2667	struct audit_context *context = current->audit_context;
 
2668	context->mmap.fd = fd;
2669	context->mmap.flags = flags;
2670	context->type = AUDIT_MMAP;
2671}
2672
2673static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2674{
2675	uid_t auid, uid;
2676	gid_t gid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2677	unsigned int sessionid;
 
2678
2679	auid = audit_get_loginuid(current);
2680	sessionid = audit_get_sessionid(current);
2681	current_uid_gid(&uid, &gid);
2682
2683	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2684			 auid, uid, gid, sessionid);
 
 
 
2685	audit_log_task_context(ab);
2686	audit_log_format(ab, " pid=%d comm=", current->pid);
2687	audit_log_untrustedstring(ab, current->comm);
2688	audit_log_format(ab, " reason=");
2689	audit_log_string(ab, reason);
2690	audit_log_format(ab, " sig=%ld", signr);
2691}
 
2692/**
2693 * audit_core_dumps - record information about processes that end abnormally
2694 * @signr: signal value
2695 *
2696 * If a process ends with a core dump, something fishy is going on and we
2697 * should record the event for investigation.
2698 */
2699void audit_core_dumps(long signr)
2700{
2701	struct audit_buffer *ab;
2702
2703	if (!audit_enabled)
2704		return;
2705
2706	if (signr == SIGQUIT)	/* don't care for those */
2707		return;
2708
2709	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2710	audit_log_abend(ab, "memory violation", signr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2711	audit_log_end(ab);
2712}
2713
2714void __audit_seccomp(unsigned long syscall, long signr, int code)
 
2715{
2716	struct audit_buffer *ab;
2717
2718	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2719	audit_log_abend(ab, "seccomp", signr);
2720	audit_log_format(ab, " syscall=%ld", syscall);
2721	audit_log_format(ab, " compat=%d", is_compat_task());
2722	audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2723	audit_log_format(ab, " code=0x%x", code);
 
 
 
 
 
2724	audit_log_end(ab);
2725}
2726
2727struct list_head *audit_killed_trees(void)
2728{
2729	struct audit_context *ctx = current->audit_context;
2730	if (likely(!ctx || !ctx->in_syscall))
2731		return NULL;
2732	return &ctx->killed_trees;
2733}