Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2#include "audit.h"
   3#include <linux/fsnotify_backend.h>
   4#include <linux/namei.h>
   5#include <linux/mount.h>
   6#include <linux/kthread.h>
   7#include <linux/refcount.h>
   8#include <linux/slab.h>
   9
  10struct audit_tree;
  11struct audit_chunk;
  12
  13struct audit_tree {
  14	refcount_t count;
  15	int goner;
  16	struct audit_chunk *root;
  17	struct list_head chunks;
  18	struct list_head rules;
  19	struct list_head list;
  20	struct list_head same_root;
  21	struct rcu_head head;
  22	char pathname[];
  23};
  24
  25struct audit_chunk {
  26	struct list_head hash;
  27	unsigned long key;
  28	struct fsnotify_mark *mark;
  29	struct list_head trees;		/* with root here */
 
  30	int count;
  31	atomic_long_t refs;
  32	struct rcu_head head;
  33	struct audit_node {
  34		struct list_head list;
  35		struct audit_tree *owner;
  36		unsigned index;		/* index; upper bit indicates 'will prune' */
  37	} owners[] __counted_by(count);
  38};
  39
  40struct audit_tree_mark {
  41	struct fsnotify_mark mark;
  42	struct audit_chunk *chunk;
  43};
  44
  45static LIST_HEAD(tree_list);
  46static LIST_HEAD(prune_list);
  47static struct task_struct *prune_thread;
  48
  49/*
  50 * One struct chunk is attached to each inode of interest through
  51 * audit_tree_mark (fsnotify mark). We replace struct chunk on tagging /
  52 * untagging, the mark is stable as long as there is chunk attached. The
  53 * association between mark and chunk is protected by hash_lock and
  54 * audit_tree_group->mark_mutex. Thus as long as we hold
  55 * audit_tree_group->mark_mutex and check that the mark is alive by
  56 * FSNOTIFY_MARK_FLAG_ATTACHED flag check, we are sure the mark points to
  57 * the current chunk.
  58 *
  59 * Rules have pointer to struct audit_tree.
  60 * Rules have struct list_head rlist forming a list of rules over
  61 * the same tree.
  62 * References to struct chunk are collected at audit_inode{,_child}()
  63 * time and used in AUDIT_TREE rule matching.
  64 * These references are dropped at the same time we are calling
  65 * audit_free_names(), etc.
  66 *
  67 * Cyclic lists galore:
  68 * tree.chunks anchors chunk.owners[].list			hash_lock
  69 * tree.rules anchors rule.rlist				audit_filter_mutex
  70 * chunk.trees anchors tree.same_root				hash_lock
  71 * chunk.hash is a hash with middle bits of watch.inode as
  72 * a hash function.						RCU, hash_lock
  73 *
  74 * tree is refcounted; one reference for "some rules on rules_list refer to
  75 * it", one for each chunk with pointer to it.
  76 *
  77 * chunk is refcounted by embedded .refs. Mark associated with the chunk holds
  78 * one chunk reference. This reference is dropped either when a mark is going
  79 * to be freed (corresponding inode goes away) or when chunk attached to the
  80 * mark gets replaced. This reference must be dropped using
  81 * audit_mark_put_chunk() to make sure the reference is dropped only after RCU
  82 * grace period as it protects RCU readers of the hash table.
  83 *
  84 * node.index allows to get from node.list to containing chunk.
  85 * MSB of that sucker is stolen to mark taggings that we might have to
  86 * revert - several operations have very unpleasant cleanup logics and
  87 * that makes a difference.  Some.
  88 */
  89
  90static struct fsnotify_group *audit_tree_group __ro_after_init;
  91static struct kmem_cache *audit_tree_mark_cachep __ro_after_init;
  92
  93static struct audit_tree *alloc_tree(const char *s)
  94{
  95	struct audit_tree *tree;
  96
  97	tree = kmalloc(struct_size(tree, pathname, strlen(s) + 1), GFP_KERNEL);
  98	if (tree) {
  99		refcount_set(&tree->count, 1);
 100		tree->goner = 0;
 101		INIT_LIST_HEAD(&tree->chunks);
 102		INIT_LIST_HEAD(&tree->rules);
 103		INIT_LIST_HEAD(&tree->list);
 104		INIT_LIST_HEAD(&tree->same_root);
 105		tree->root = NULL;
 106		strcpy(tree->pathname, s);
 107	}
 108	return tree;
 109}
 110
 111static inline void get_tree(struct audit_tree *tree)
 112{
 113	refcount_inc(&tree->count);
 114}
 115
 116static inline void put_tree(struct audit_tree *tree)
 117{
 118	if (refcount_dec_and_test(&tree->count))
 119		kfree_rcu(tree, head);
 120}
 121
 122/* to avoid bringing the entire thing in audit.h */
 123const char *audit_tree_path(struct audit_tree *tree)
 124{
 125	return tree->pathname;
 126}
 127
 128static void free_chunk(struct audit_chunk *chunk)
 129{
 130	int i;
 131
 132	for (i = 0; i < chunk->count; i++) {
 133		if (chunk->owners[i].owner)
 134			put_tree(chunk->owners[i].owner);
 135	}
 136	kfree(chunk);
 137}
 138
 139void audit_put_chunk(struct audit_chunk *chunk)
 140{
 141	if (atomic_long_dec_and_test(&chunk->refs))
 142		free_chunk(chunk);
 143}
 144
 145static void __put_chunk(struct rcu_head *rcu)
 146{
 147	struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
 148	audit_put_chunk(chunk);
 149}
 150
 151/*
 152 * Drop reference to the chunk that was held by the mark. This is the reference
 153 * that gets dropped after we've removed the chunk from the hash table and we
 154 * use it to make sure chunk cannot be freed before RCU grace period expires.
 155 */
 156static void audit_mark_put_chunk(struct audit_chunk *chunk)
 157{
 
 158	call_rcu(&chunk->head, __put_chunk);
 159}
 160
 161static inline struct audit_tree_mark *audit_mark(struct fsnotify_mark *mark)
 162{
 163	return container_of(mark, struct audit_tree_mark, mark);
 164}
 165
 166static struct audit_chunk *mark_chunk(struct fsnotify_mark *mark)
 167{
 168	return audit_mark(mark)->chunk;
 169}
 170
 171static void audit_tree_destroy_watch(struct fsnotify_mark *mark)
 172{
 173	kmem_cache_free(audit_tree_mark_cachep, audit_mark(mark));
 174}
 175
 176static struct fsnotify_mark *alloc_mark(void)
 177{
 178	struct audit_tree_mark *amark;
 179
 180	amark = kmem_cache_zalloc(audit_tree_mark_cachep, GFP_KERNEL);
 181	if (!amark)
 182		return NULL;
 183	fsnotify_init_mark(&amark->mark, audit_tree_group);
 184	amark->mark.mask = FS_IN_IGNORED;
 185	return &amark->mark;
 186}
 187
 188static struct audit_chunk *alloc_chunk(int count)
 189{
 190	struct audit_chunk *chunk;
 
 191	int i;
 192
 193	chunk = kzalloc(struct_size(chunk, owners, count), GFP_KERNEL);
 
 194	if (!chunk)
 195		return NULL;
 196
 197	INIT_LIST_HEAD(&chunk->hash);
 198	INIT_LIST_HEAD(&chunk->trees);
 199	chunk->count = count;
 200	atomic_long_set(&chunk->refs, 1);
 201	for (i = 0; i < count; i++) {
 202		INIT_LIST_HEAD(&chunk->owners[i].list);
 203		chunk->owners[i].index = i;
 204	}
 
 205	return chunk;
 206}
 207
 208enum {HASH_SIZE = 128};
 209static struct list_head chunk_hash_heads[HASH_SIZE];
 210static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
 211
 212/* Function to return search key in our hash from inode. */
 213static unsigned long inode_to_key(const struct inode *inode)
 214{
 215	/* Use address pointed to by connector->obj as the key */
 216	return (unsigned long)&inode->i_fsnotify_marks;
 217}
 218
 219static inline struct list_head *chunk_hash(unsigned long key)
 220{
 221	unsigned long n = key / L1_CACHE_BYTES;
 222	return chunk_hash_heads + n % HASH_SIZE;
 223}
 224
 225/* hash_lock & mark->group->mark_mutex is held by caller */
 226static void insert_hash(struct audit_chunk *chunk)
 227{
 
 228	struct list_head *list;
 229
 230	/*
 231	 * Make sure chunk is fully initialized before making it visible in the
 232	 * hash. Pairs with a data dependency barrier in READ_ONCE() in
 233	 * audit_tree_lookup().
 234	 */
 235	smp_wmb();
 236	WARN_ON_ONCE(!chunk->key);
 237	list = chunk_hash(chunk->key);
 238	list_add_rcu(&chunk->hash, list);
 239}
 240
 241/* called under rcu_read_lock */
 242struct audit_chunk *audit_tree_lookup(const struct inode *inode)
 243{
 244	unsigned long key = inode_to_key(inode);
 245	struct list_head *list = chunk_hash(key);
 246	struct audit_chunk *p;
 247
 248	list_for_each_entry_rcu(p, list, hash) {
 249		/*
 250		 * We use a data dependency barrier in READ_ONCE() to make sure
 251		 * the chunk we see is fully initialized.
 252		 */
 253		if (READ_ONCE(p->key) == key) {
 254			atomic_long_inc(&p->refs);
 255			return p;
 256		}
 257	}
 258	return NULL;
 259}
 260
 261bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
 262{
 263	int n;
 264	for (n = 0; n < chunk->count; n++)
 265		if (chunk->owners[n].owner == tree)
 266			return true;
 267	return false;
 268}
 269
 270/* tagging and untagging inodes with trees */
 271
 272static struct audit_chunk *find_chunk(struct audit_node *p)
 273{
 274	int index = p->index & ~(1U<<31);
 275	p -= index;
 276	return container_of(p, struct audit_chunk, owners[0]);
 277}
 278
 279static void replace_mark_chunk(struct fsnotify_mark *mark,
 280			       struct audit_chunk *chunk)
 281{
 282	struct audit_chunk *old;
 283
 284	assert_spin_locked(&hash_lock);
 285	old = mark_chunk(mark);
 286	audit_mark(mark)->chunk = chunk;
 287	if (chunk)
 288		chunk->mark = mark;
 289	if (old)
 290		old->mark = NULL;
 291}
 292
 293static void replace_chunk(struct audit_chunk *new, struct audit_chunk *old)
 294{
 
 
 
 295	struct audit_tree *owner;
 
 296	int i, j;
 297
 298	new->key = old->key;
 299	list_splice_init(&old->trees, &new->trees);
 300	list_for_each_entry(owner, &new->trees, same_root)
 301		owner->root = new;
 302	for (i = j = 0; j < old->count; i++, j++) {
 303		if (!old->owners[j].owner) {
 304			i--;
 305			continue;
 306		}
 307		owner = old->owners[j].owner;
 308		new->owners[i].owner = owner;
 309		new->owners[i].index = old->owners[j].index - j + i;
 310		if (!owner) /* result of earlier fallback */
 311			continue;
 312		get_tree(owner);
 313		list_replace_init(&old->owners[j].list, &new->owners[i].list);
 314	}
 315	replace_mark_chunk(old->mark, new);
 316	/*
 317	 * Make sure chunk is fully initialized before making it visible in the
 318	 * hash. Pairs with a data dependency barrier in READ_ONCE() in
 319	 * audit_tree_lookup().
 320	 */
 321	smp_wmb();
 322	list_replace_rcu(&old->hash, &new->hash);
 323}
 324
 325static void remove_chunk_node(struct audit_chunk *chunk, struct audit_node *p)
 326{
 327	struct audit_tree *owner = p->owner;
 328
 329	if (owner->root == chunk) {
 330		list_del_init(&owner->same_root);
 331		owner->root = NULL;
 332	}
 333	list_del_init(&p->list);
 334	p->owner = NULL;
 335	put_tree(owner);
 336}
 337
 338static int chunk_count_trees(struct audit_chunk *chunk)
 339{
 340	int i;
 341	int ret = 0;
 342
 343	for (i = 0; i < chunk->count; i++)
 344		if (chunk->owners[i].owner)
 345			ret++;
 346	return ret;
 347}
 348
 349static void untag_chunk(struct audit_chunk *chunk, struct fsnotify_mark *mark)
 350{
 351	struct audit_chunk *new;
 352	int size;
 
 
 
 353
 354	fsnotify_group_lock(audit_tree_group);
 355	/*
 356	 * mark_mutex stabilizes chunk attached to the mark so we can check
 357	 * whether it didn't change while we've dropped hash_lock.
 358	 */
 359	if (!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) ||
 360	    mark_chunk(mark) != chunk)
 361		goto out_mutex;
 362
 363	size = chunk_count_trees(chunk);
 364	if (!size) {
 
 365		spin_lock(&hash_lock);
 366		list_del_init(&chunk->trees);
 
 
 
 367		list_del_rcu(&chunk->hash);
 368		replace_mark_chunk(mark, NULL);
 369		spin_unlock(&hash_lock);
 370		fsnotify_detach_mark(mark);
 371		fsnotify_group_unlock(audit_tree_group);
 372		audit_mark_put_chunk(chunk);
 373		fsnotify_free_mark(mark);
 374		return;
 375	}
 376
 377	new = alloc_chunk(size);
 378	if (!new)
 379		goto out_mutex;
 380
 
 
 
 
 
 
 
 381	spin_lock(&hash_lock);
 382	/*
 383	 * This has to go last when updating chunk as once replace_chunk() is
 384	 * called, new RCU readers can see the new chunk.
 385	 */
 386	replace_chunk(new, chunk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 387	spin_unlock(&hash_lock);
 388	fsnotify_group_unlock(audit_tree_group);
 389	audit_mark_put_chunk(chunk);
 390	return;
 391
 392out_mutex:
 393	fsnotify_group_unlock(audit_tree_group);
 
 
 
 
 
 
 
 
 
 
 
 
 
 394}
 395
 396/* Call with group->mark_mutex held, releases it */
 397static int create_chunk(struct inode *inode, struct audit_tree *tree)
 398{
 399	struct fsnotify_mark *mark;
 400	struct audit_chunk *chunk = alloc_chunk(1);
 401
 402	if (!chunk) {
 403		fsnotify_group_unlock(audit_tree_group);
 404		return -ENOMEM;
 405	}
 406
 407	mark = alloc_mark();
 408	if (!mark) {
 409		fsnotify_group_unlock(audit_tree_group);
 410		kfree(chunk);
 411		return -ENOMEM;
 412	}
 413
 414	if (fsnotify_add_inode_mark_locked(mark, inode, 0)) {
 415		fsnotify_group_unlock(audit_tree_group);
 416		fsnotify_put_mark(mark);
 417		kfree(chunk);
 418		return -ENOSPC;
 419	}
 420
 
 421	spin_lock(&hash_lock);
 422	if (tree->goner) {
 423		spin_unlock(&hash_lock);
 424		fsnotify_detach_mark(mark);
 425		fsnotify_group_unlock(audit_tree_group);
 426		fsnotify_free_mark(mark);
 427		fsnotify_put_mark(mark);
 428		kfree(chunk);
 429		return 0;
 430	}
 431	replace_mark_chunk(mark, chunk);
 432	chunk->owners[0].index = (1U << 31);
 433	chunk->owners[0].owner = tree;
 434	get_tree(tree);
 435	list_add(&chunk->owners[0].list, &tree->chunks);
 436	if (!tree->root) {
 437		tree->root = chunk;
 438		list_add(&tree->same_root, &chunk->trees);
 439	}
 440	chunk->key = inode_to_key(inode);
 441	/*
 442	 * Inserting into the hash table has to go last as once we do that RCU
 443	 * readers can see the chunk.
 444	 */
 445	insert_hash(chunk);
 446	spin_unlock(&hash_lock);
 447	fsnotify_group_unlock(audit_tree_group);
 448	/*
 449	 * Drop our initial reference. When mark we point to is getting freed,
 450	 * we get notification through ->freeing_mark callback and cleanup
 451	 * chunk pointing to this mark.
 452	 */
 453	fsnotify_put_mark(mark);
 454	return 0;
 455}
 456
 457/* the first tagged inode becomes root of tree */
 458static int tag_chunk(struct inode *inode, struct audit_tree *tree)
 459{
 460	struct fsnotify_mark *mark;
 
 461	struct audit_chunk *chunk, *old;
 462	struct audit_node *p;
 463	int n;
 464
 465	fsnotify_group_lock(audit_tree_group);
 466	mark = fsnotify_find_mark(&inode->i_fsnotify_marks, audit_tree_group);
 467	if (!mark)
 468		return create_chunk(inode, tree);
 469
 470	/*
 471	 * Found mark is guaranteed to be attached and mark_mutex protects mark
 472	 * from getting detached and thus it makes sure there is chunk attached
 473	 * to the mark.
 474	 */
 475	/* are we already there? */
 476	spin_lock(&hash_lock);
 477	old = mark_chunk(mark);
 478	for (n = 0; n < old->count; n++) {
 479		if (old->owners[n].owner == tree) {
 480			spin_unlock(&hash_lock);
 481			fsnotify_group_unlock(audit_tree_group);
 482			fsnotify_put_mark(mark);
 483			return 0;
 484		}
 485	}
 486	spin_unlock(&hash_lock);
 487
 488	chunk = alloc_chunk(old->count + 1);
 489	if (!chunk) {
 490		fsnotify_group_unlock(audit_tree_group);
 491		fsnotify_put_mark(mark);
 492		return -ENOMEM;
 493	}
 494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 495	spin_lock(&hash_lock);
 
 
 496	if (tree->goner) {
 497		spin_unlock(&hash_lock);
 498		fsnotify_group_unlock(audit_tree_group);
 499		fsnotify_put_mark(mark);
 500		kfree(chunk);
 
 
 
 
 
 
 501		return 0;
 502	}
 503	p = &chunk->owners[chunk->count - 1];
 
 
 
 
 
 
 
 
 
 504	p->index = (chunk->count - 1) | (1U<<31);
 505	p->owner = tree;
 506	get_tree(tree);
 507	list_add(&p->list, &tree->chunks);
 
 
 
 
 508	if (!tree->root) {
 509		tree->root = chunk;
 510		list_add(&tree->same_root, &chunk->trees);
 511	}
 512	/*
 513	 * This has to go last when updating chunk as once replace_chunk() is
 514	 * called, new RCU readers can see the new chunk.
 515	 */
 516	replace_chunk(chunk, old);
 517	spin_unlock(&hash_lock);
 518	fsnotify_group_unlock(audit_tree_group);
 519	fsnotify_put_mark(mark); /* pair to fsnotify_find_mark */
 520	audit_mark_put_chunk(old);
 521
 522	return 0;
 523}
 524
 525static void audit_tree_log_remove_rule(struct audit_context *context,
 526				       struct audit_krule *rule)
 527{
 528	struct audit_buffer *ab;
 529
 530	if (!audit_enabled)
 531		return;
 532	ab = audit_log_start(context, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
 533	if (unlikely(!ab))
 534		return;
 535	audit_log_format(ab, "op=remove_rule dir=");
 536	audit_log_untrustedstring(ab, rule->tree->pathname);
 537	audit_log_key(ab, rule->filterkey);
 538	audit_log_format(ab, " list=%d res=1", rule->listnr);
 539	audit_log_end(ab);
 540}
 541
 542static void kill_rules(struct audit_context *context, struct audit_tree *tree)
 543{
 544	struct audit_krule *rule, *next;
 545	struct audit_entry *entry;
 
 546
 547	list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
 548		entry = container_of(rule, struct audit_entry, rule);
 549
 550		list_del_init(&rule->rlist);
 551		if (rule->tree) {
 552			/* not a half-baked one */
 553			audit_tree_log_remove_rule(context, rule);
 554			if (entry->rule.exe)
 555				audit_remove_mark(entry->rule.exe);
 
 
 
 
 
 556			rule->tree = NULL;
 557			list_del_rcu(&entry->list);
 558			list_del(&entry->rule.list);
 559			call_rcu(&entry->rcu, audit_free_rule_rcu);
 560		}
 561	}
 562}
 563
 564/*
 565 * Remove tree from chunks. If 'tagged' is set, remove tree only from tagged
 566 * chunks. The function expects tagged chunks are all at the beginning of the
 567 * chunks list.
 568 */
 569static void prune_tree_chunks(struct audit_tree *victim, bool tagged)
 570{
 571	spin_lock(&hash_lock);
 572	while (!list_empty(&victim->chunks)) {
 573		struct audit_node *p;
 574		struct audit_chunk *chunk;
 575		struct fsnotify_mark *mark;
 576
 577		p = list_first_entry(&victim->chunks, struct audit_node, list);
 578		/* have we run out of marked? */
 579		if (tagged && !(p->index & (1U<<31)))
 580			break;
 581		chunk = find_chunk(p);
 582		mark = chunk->mark;
 583		remove_chunk_node(chunk, p);
 584		/* Racing with audit_tree_freeing_mark()? */
 585		if (!mark)
 586			continue;
 587		fsnotify_get_mark(mark);
 588		spin_unlock(&hash_lock);
 589
 590		untag_chunk(chunk, mark);
 591		fsnotify_put_mark(mark);
 592
 593		spin_lock(&hash_lock);
 594	}
 595	spin_unlock(&hash_lock);
 596}
 597
 598/*
 599 * finish killing struct audit_tree
 600 */
 601static void prune_one(struct audit_tree *victim)
 602{
 603	prune_tree_chunks(victim, false);
 604	put_tree(victim);
 605}
 606
 607/* trim the uncommitted chunks from tree */
 608
 609static void trim_marked(struct audit_tree *tree)
 610{
 611	struct list_head *p, *q;
 612	spin_lock(&hash_lock);
 613	if (tree->goner) {
 614		spin_unlock(&hash_lock);
 615		return;
 616	}
 617	/* reorder */
 618	for (p = tree->chunks.next; p != &tree->chunks; p = q) {
 619		struct audit_node *node = list_entry(p, struct audit_node, list);
 620		q = p->next;
 621		if (node->index & (1U<<31)) {
 622			list_del_init(p);
 623			list_add(p, &tree->chunks);
 624		}
 625	}
 626	spin_unlock(&hash_lock);
 627
 628	prune_tree_chunks(tree, true);
 
 629
 630	spin_lock(&hash_lock);
 
 
 
 
 
 
 
 631	if (!tree->root && !tree->goner) {
 632		tree->goner = 1;
 633		spin_unlock(&hash_lock);
 634		mutex_lock(&audit_filter_mutex);
 635		kill_rules(audit_context(), tree);
 636		list_del_init(&tree->list);
 637		mutex_unlock(&audit_filter_mutex);
 638		prune_one(tree);
 639	} else {
 640		spin_unlock(&hash_lock);
 641	}
 642}
 643
 644static void audit_schedule_prune(void);
 645
 646/* called with audit_filter_mutex */
 647int audit_remove_tree_rule(struct audit_krule *rule)
 648{
 649	struct audit_tree *tree;
 650	tree = rule->tree;
 651	if (tree) {
 652		spin_lock(&hash_lock);
 653		list_del_init(&rule->rlist);
 654		if (list_empty(&tree->rules) && !tree->goner) {
 655			tree->root = NULL;
 656			list_del_init(&tree->same_root);
 657			tree->goner = 1;
 658			list_move(&tree->list, &prune_list);
 659			rule->tree = NULL;
 660			spin_unlock(&hash_lock);
 661			audit_schedule_prune();
 662			return 1;
 663		}
 664		rule->tree = NULL;
 665		spin_unlock(&hash_lock);
 666		return 1;
 667	}
 668	return 0;
 669}
 670
 671static int compare_root(struct vfsmount *mnt, void *arg)
 672{
 673	return inode_to_key(d_backing_inode(mnt->mnt_root)) ==
 674	       (unsigned long)arg;
 675}
 676
 677void audit_trim_trees(void)
 678{
 679	struct list_head cursor;
 680
 681	mutex_lock(&audit_filter_mutex);
 682	list_add(&cursor, &tree_list);
 683	while (cursor.next != &tree_list) {
 684		struct audit_tree *tree;
 685		struct path path;
 686		struct vfsmount *root_mnt;
 687		struct audit_node *node;
 688		int err;
 689
 690		tree = container_of(cursor.next, struct audit_tree, list);
 691		get_tree(tree);
 692		list_move(&cursor, &tree->list);
 
 693		mutex_unlock(&audit_filter_mutex);
 694
 695		err = kern_path(tree->pathname, 0, &path);
 696		if (err)
 697			goto skip_it;
 698
 699		root_mnt = collect_mounts(&path);
 700		path_put(&path);
 701		if (IS_ERR(root_mnt))
 702			goto skip_it;
 703
 704		spin_lock(&hash_lock);
 705		list_for_each_entry(node, &tree->chunks, list) {
 706			struct audit_chunk *chunk = find_chunk(node);
 707			/* this could be NULL if the watch is dying else where... */
 
 708			node->index |= 1U<<31;
 709			if (iterate_mounts(compare_root,
 710					   (void *)(chunk->key),
 711					   root_mnt))
 712				node->index &= ~(1U<<31);
 713		}
 714		spin_unlock(&hash_lock);
 715		trim_marked(tree);
 
 716		drop_collected_mounts(root_mnt);
 717skip_it:
 718		put_tree(tree);
 719		mutex_lock(&audit_filter_mutex);
 720	}
 721	list_del(&cursor);
 722	mutex_unlock(&audit_filter_mutex);
 723}
 724
 725int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
 726{
 727
 728	if (pathname[0] != '/' ||
 729	    (rule->listnr != AUDIT_FILTER_EXIT &&
 730	     rule->listnr != AUDIT_FILTER_URING_EXIT) ||
 731	    op != Audit_equal ||
 732	    rule->inode_f || rule->watch || rule->tree)
 733		return -EINVAL;
 734	rule->tree = alloc_tree(pathname);
 735	if (!rule->tree)
 736		return -ENOMEM;
 737	return 0;
 738}
 739
 740void audit_put_tree(struct audit_tree *tree)
 741{
 742	put_tree(tree);
 743}
 744
 745static int tag_mount(struct vfsmount *mnt, void *arg)
 746{
 747	return tag_chunk(d_backing_inode(mnt->mnt_root), arg);
 748}
 749
 750/*
 751 * That gets run when evict_chunk() ends up needing to kill audit_tree.
 752 * Runs from a separate thread.
 753 */
 754static int prune_tree_thread(void *unused)
 755{
 756	for (;;) {
 757		if (list_empty(&prune_list)) {
 758			set_current_state(TASK_INTERRUPTIBLE);
 759			schedule();
 760		}
 761
 762		audit_ctl_lock();
 763		mutex_lock(&audit_filter_mutex);
 764
 765		while (!list_empty(&prune_list)) {
 766			struct audit_tree *victim;
 767
 768			victim = list_entry(prune_list.next,
 769					struct audit_tree, list);
 770			list_del_init(&victim->list);
 771
 772			mutex_unlock(&audit_filter_mutex);
 773
 774			prune_one(victim);
 775
 776			mutex_lock(&audit_filter_mutex);
 777		}
 778
 779		mutex_unlock(&audit_filter_mutex);
 780		audit_ctl_unlock();
 781	}
 782	return 0;
 783}
 784
 785static int audit_launch_prune(void)
 786{
 787	if (prune_thread)
 788		return 0;
 789	prune_thread = kthread_run(prune_tree_thread, NULL,
 790				"audit_prune_tree");
 791	if (IS_ERR(prune_thread)) {
 792		pr_err("cannot start thread audit_prune_tree");
 793		prune_thread = NULL;
 794		return -ENOMEM;
 795	}
 796	return 0;
 797}
 798
 799/* called with audit_filter_mutex */
 800int audit_add_tree_rule(struct audit_krule *rule)
 801{
 802	struct audit_tree *seed = rule->tree, *tree;
 803	struct path path;
 804	struct vfsmount *mnt;
 805	int err;
 806
 807	rule->tree = NULL;
 808	list_for_each_entry(tree, &tree_list, list) {
 809		if (!strcmp(seed->pathname, tree->pathname)) {
 810			put_tree(seed);
 811			rule->tree = tree;
 812			list_add(&rule->rlist, &tree->rules);
 813			return 0;
 814		}
 815	}
 816	tree = seed;
 817	list_add(&tree->list, &tree_list);
 818	list_add(&rule->rlist, &tree->rules);
 819	/* do not set rule->tree yet */
 820	mutex_unlock(&audit_filter_mutex);
 821
 822	if (unlikely(!prune_thread)) {
 823		err = audit_launch_prune();
 824		if (err)
 825			goto Err;
 826	}
 827
 828	err = kern_path(tree->pathname, 0, &path);
 829	if (err)
 830		goto Err;
 831	mnt = collect_mounts(&path);
 832	path_put(&path);
 833	if (IS_ERR(mnt)) {
 834		err = PTR_ERR(mnt);
 835		goto Err;
 836	}
 837
 838	get_tree(tree);
 839	err = iterate_mounts(tag_mount, tree, mnt);
 840	drop_collected_mounts(mnt);
 841
 842	if (!err) {
 843		struct audit_node *node;
 844		spin_lock(&hash_lock);
 845		list_for_each_entry(node, &tree->chunks, list)
 846			node->index &= ~(1U<<31);
 847		spin_unlock(&hash_lock);
 848	} else {
 849		trim_marked(tree);
 850		goto Err;
 851	}
 852
 853	mutex_lock(&audit_filter_mutex);
 854	if (list_empty(&rule->rlist)) {
 855		put_tree(tree);
 856		return -ENOENT;
 857	}
 858	rule->tree = tree;
 859	put_tree(tree);
 860
 861	return 0;
 862Err:
 863	mutex_lock(&audit_filter_mutex);
 864	list_del_init(&tree->list);
 865	list_del_init(&tree->rules);
 866	put_tree(tree);
 867	return err;
 868}
 869
 870int audit_tag_tree(char *old, char *new)
 871{
 872	struct list_head cursor, barrier;
 873	int failed = 0;
 874	struct path path1, path2;
 875	struct vfsmount *tagged;
 876	int err;
 877
 878	err = kern_path(new, 0, &path2);
 879	if (err)
 880		return err;
 881	tagged = collect_mounts(&path2);
 882	path_put(&path2);
 883	if (IS_ERR(tagged))
 884		return PTR_ERR(tagged);
 885
 886	err = kern_path(old, 0, &path1);
 887	if (err) {
 888		drop_collected_mounts(tagged);
 889		return err;
 890	}
 891
 892	mutex_lock(&audit_filter_mutex);
 893	list_add(&barrier, &tree_list);
 894	list_add(&cursor, &barrier);
 895
 896	while (cursor.next != &tree_list) {
 897		struct audit_tree *tree;
 898		int good_one = 0;
 899
 900		tree = container_of(cursor.next, struct audit_tree, list);
 901		get_tree(tree);
 902		list_move(&cursor, &tree->list);
 
 903		mutex_unlock(&audit_filter_mutex);
 904
 905		err = kern_path(tree->pathname, 0, &path2);
 906		if (!err) {
 907			good_one = path_is_under(&path1, &path2);
 908			path_put(&path2);
 909		}
 910
 911		if (!good_one) {
 912			put_tree(tree);
 913			mutex_lock(&audit_filter_mutex);
 914			continue;
 915		}
 916
 917		failed = iterate_mounts(tag_mount, tree, tagged);
 918		if (failed) {
 919			put_tree(tree);
 920			mutex_lock(&audit_filter_mutex);
 921			break;
 922		}
 923
 924		mutex_lock(&audit_filter_mutex);
 925		spin_lock(&hash_lock);
 926		if (!tree->goner) {
 927			list_move(&tree->list, &tree_list);
 
 928		}
 929		spin_unlock(&hash_lock);
 930		put_tree(tree);
 931	}
 932
 933	while (barrier.prev != &tree_list) {
 934		struct audit_tree *tree;
 935
 936		tree = container_of(barrier.prev, struct audit_tree, list);
 937		get_tree(tree);
 938		list_move(&tree->list, &barrier);
 
 939		mutex_unlock(&audit_filter_mutex);
 940
 941		if (!failed) {
 942			struct audit_node *node;
 943			spin_lock(&hash_lock);
 944			list_for_each_entry(node, &tree->chunks, list)
 945				node->index &= ~(1U<<31);
 946			spin_unlock(&hash_lock);
 947		} else {
 948			trim_marked(tree);
 949		}
 950
 951		put_tree(tree);
 952		mutex_lock(&audit_filter_mutex);
 953	}
 954	list_del(&barrier);
 955	list_del(&cursor);
 956	mutex_unlock(&audit_filter_mutex);
 957	path_put(&path1);
 958	drop_collected_mounts(tagged);
 959	return failed;
 960}
 961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 962
 963static void audit_schedule_prune(void)
 964{
 965	wake_up_process(prune_thread);
 966}
 967
 968/*
 969 * ... and that one is done if evict_chunk() decides to delay until the end
 970 * of syscall.  Runs synchronously.
 971 */
 972void audit_kill_trees(struct audit_context *context)
 973{
 974	struct list_head *list = &context->killed_trees;
 975
 976	audit_ctl_lock();
 977	mutex_lock(&audit_filter_mutex);
 978
 979	while (!list_empty(list)) {
 980		struct audit_tree *victim;
 981
 982		victim = list_entry(list->next, struct audit_tree, list);
 983		kill_rules(context, victim);
 984		list_del_init(&victim->list);
 985
 986		mutex_unlock(&audit_filter_mutex);
 987
 988		prune_one(victim);
 989
 990		mutex_lock(&audit_filter_mutex);
 991	}
 992
 993	mutex_unlock(&audit_filter_mutex);
 994	audit_ctl_unlock();
 995}
 996
 997/*
 998 *  Here comes the stuff asynchronous to auditctl operations
 999 */
1000
1001static void evict_chunk(struct audit_chunk *chunk)
1002{
1003	struct audit_tree *owner;
1004	struct list_head *postponed = audit_killed_trees();
1005	int need_prune = 0;
1006	int n;
1007
 
 
 
 
1008	mutex_lock(&audit_filter_mutex);
1009	spin_lock(&hash_lock);
1010	while (!list_empty(&chunk->trees)) {
1011		owner = list_entry(chunk->trees.next,
1012				   struct audit_tree, same_root);
1013		owner->goner = 1;
1014		owner->root = NULL;
1015		list_del_init(&owner->same_root);
1016		spin_unlock(&hash_lock);
1017		if (!postponed) {
1018			kill_rules(audit_context(), owner);
1019			list_move(&owner->list, &prune_list);
1020			need_prune = 1;
1021		} else {
1022			list_move(&owner->list, postponed);
1023		}
1024		spin_lock(&hash_lock);
1025	}
1026	list_del_rcu(&chunk->hash);
1027	for (n = 0; n < chunk->count; n++)
1028		list_del_init(&chunk->owners[n].list);
1029	spin_unlock(&hash_lock);
1030	mutex_unlock(&audit_filter_mutex);
1031	if (need_prune)
1032		audit_schedule_prune();
 
1033}
1034
1035static int audit_tree_handle_event(struct fsnotify_mark *mark, u32 mask,
1036				   struct inode *inode, struct inode *dir,
1037				   const struct qstr *file_name, u32 cookie)
 
1038{
1039	return 0;
 
1040}
1041
1042static void audit_tree_freeing_mark(struct fsnotify_mark *mark,
1043				    struct fsnotify_group *group)
1044{
1045	struct audit_chunk *chunk;
1046
1047	fsnotify_group_lock(mark->group);
1048	spin_lock(&hash_lock);
1049	chunk = mark_chunk(mark);
1050	replace_mark_chunk(mark, NULL);
1051	spin_unlock(&hash_lock);
1052	fsnotify_group_unlock(mark->group);
1053	if (chunk) {
1054		evict_chunk(chunk);
1055		audit_mark_put_chunk(chunk);
1056	}
1057
1058	/*
1059	 * We are guaranteed to have at least one reference to the mark from
1060	 * either the inode or the caller of fsnotify_destroy_mark().
1061	 */
1062	BUG_ON(refcount_read(&mark->refcnt) < 1);
 
1063}
1064
1065static const struct fsnotify_ops audit_tree_ops = {
1066	.handle_inode_event = audit_tree_handle_event,
 
 
 
1067	.freeing_mark = audit_tree_freeing_mark,
1068	.free_mark = audit_tree_destroy_watch,
1069};
1070
1071static int __init audit_tree_init(void)
1072{
1073	int i;
1074
1075	audit_tree_mark_cachep = KMEM_CACHE(audit_tree_mark, SLAB_PANIC);
1076
1077	audit_tree_group = fsnotify_alloc_group(&audit_tree_ops, 0);
1078	if (IS_ERR(audit_tree_group))
1079		audit_panic("cannot initialize fsnotify group for rectree watches");
1080
1081	for (i = 0; i < HASH_SIZE; i++)
1082		INIT_LIST_HEAD(&chunk_hash_heads[i]);
1083
1084	return 0;
1085}
1086__initcall(audit_tree_init);
v3.5.6
 
  1#include "audit.h"
  2#include <linux/fsnotify_backend.h>
  3#include <linux/namei.h>
  4#include <linux/mount.h>
  5#include <linux/kthread.h>
 
  6#include <linux/slab.h>
  7
  8struct audit_tree;
  9struct audit_chunk;
 10
 11struct audit_tree {
 12	atomic_t count;
 13	int goner;
 14	struct audit_chunk *root;
 15	struct list_head chunks;
 16	struct list_head rules;
 17	struct list_head list;
 18	struct list_head same_root;
 19	struct rcu_head head;
 20	char pathname[];
 21};
 22
 23struct audit_chunk {
 24	struct list_head hash;
 25	struct fsnotify_mark mark;
 
 26	struct list_head trees;		/* with root here */
 27	int dead;
 28	int count;
 29	atomic_long_t refs;
 30	struct rcu_head head;
 31	struct node {
 32		struct list_head list;
 33		struct audit_tree *owner;
 34		unsigned index;		/* index; upper bit indicates 'will prune' */
 35	} owners[];
 
 
 
 
 
 36};
 37
 38static LIST_HEAD(tree_list);
 39static LIST_HEAD(prune_list);
 
 40
 41/*
 42 * One struct chunk is attached to each inode of interest.
 43 * We replace struct chunk on tagging/untagging.
 
 
 
 
 
 
 
 44 * Rules have pointer to struct audit_tree.
 45 * Rules have struct list_head rlist forming a list of rules over
 46 * the same tree.
 47 * References to struct chunk are collected at audit_inode{,_child}()
 48 * time and used in AUDIT_TREE rule matching.
 49 * These references are dropped at the same time we are calling
 50 * audit_free_names(), etc.
 51 *
 52 * Cyclic lists galore:
 53 * tree.chunks anchors chunk.owners[].list			hash_lock
 54 * tree.rules anchors rule.rlist				audit_filter_mutex
 55 * chunk.trees anchors tree.same_root				hash_lock
 56 * chunk.hash is a hash with middle bits of watch.inode as
 57 * a hash function.						RCU, hash_lock
 58 *
 59 * tree is refcounted; one reference for "some rules on rules_list refer to
 60 * it", one for each chunk with pointer to it.
 61 *
 62 * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
 63 * of watch contributes 1 to .refs).
 
 
 
 
 64 *
 65 * node.index allows to get from node.list to containing chunk.
 66 * MSB of that sucker is stolen to mark taggings that we might have to
 67 * revert - several operations have very unpleasant cleanup logics and
 68 * that makes a difference.  Some.
 69 */
 70
 71static struct fsnotify_group *audit_tree_group;
 
 72
 73static struct audit_tree *alloc_tree(const char *s)
 74{
 75	struct audit_tree *tree;
 76
 77	tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
 78	if (tree) {
 79		atomic_set(&tree->count, 1);
 80		tree->goner = 0;
 81		INIT_LIST_HEAD(&tree->chunks);
 82		INIT_LIST_HEAD(&tree->rules);
 83		INIT_LIST_HEAD(&tree->list);
 84		INIT_LIST_HEAD(&tree->same_root);
 85		tree->root = NULL;
 86		strcpy(tree->pathname, s);
 87	}
 88	return tree;
 89}
 90
 91static inline void get_tree(struct audit_tree *tree)
 92{
 93	atomic_inc(&tree->count);
 94}
 95
 96static inline void put_tree(struct audit_tree *tree)
 97{
 98	if (atomic_dec_and_test(&tree->count))
 99		kfree_rcu(tree, head);
100}
101
102/* to avoid bringing the entire thing in audit.h */
103const char *audit_tree_path(struct audit_tree *tree)
104{
105	return tree->pathname;
106}
107
108static void free_chunk(struct audit_chunk *chunk)
109{
110	int i;
111
112	for (i = 0; i < chunk->count; i++) {
113		if (chunk->owners[i].owner)
114			put_tree(chunk->owners[i].owner);
115	}
116	kfree(chunk);
117}
118
119void audit_put_chunk(struct audit_chunk *chunk)
120{
121	if (atomic_long_dec_and_test(&chunk->refs))
122		free_chunk(chunk);
123}
124
125static void __put_chunk(struct rcu_head *rcu)
126{
127	struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
128	audit_put_chunk(chunk);
129}
130
131static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
 
 
 
 
 
132{
133	struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
134	call_rcu(&chunk->head, __put_chunk);
135}
136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137static struct audit_chunk *alloc_chunk(int count)
138{
139	struct audit_chunk *chunk;
140	size_t size;
141	int i;
142
143	size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
144	chunk = kzalloc(size, GFP_KERNEL);
145	if (!chunk)
146		return NULL;
147
148	INIT_LIST_HEAD(&chunk->hash);
149	INIT_LIST_HEAD(&chunk->trees);
150	chunk->count = count;
151	atomic_long_set(&chunk->refs, 1);
152	for (i = 0; i < count; i++) {
153		INIT_LIST_HEAD(&chunk->owners[i].list);
154		chunk->owners[i].index = i;
155	}
156	fsnotify_init_mark(&chunk->mark, audit_tree_destroy_watch);
157	return chunk;
158}
159
160enum {HASH_SIZE = 128};
161static struct list_head chunk_hash_heads[HASH_SIZE];
162static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
163
164static inline struct list_head *chunk_hash(const struct inode *inode)
 
 
 
 
 
 
 
165{
166	unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
167	return chunk_hash_heads + n % HASH_SIZE;
168}
169
170/* hash_lock & entry->lock is held by caller */
171static void insert_hash(struct audit_chunk *chunk)
172{
173	struct fsnotify_mark *entry = &chunk->mark;
174	struct list_head *list;
175
176	if (!entry->i.inode)
177		return;
178	list = chunk_hash(entry->i.inode);
 
 
 
 
 
179	list_add_rcu(&chunk->hash, list);
180}
181
182/* called under rcu_read_lock */
183struct audit_chunk *audit_tree_lookup(const struct inode *inode)
184{
185	struct list_head *list = chunk_hash(inode);
 
186	struct audit_chunk *p;
187
188	list_for_each_entry_rcu(p, list, hash) {
189		/* mark.inode may have gone NULL, but who cares? */
190		if (p->mark.i.inode == inode) {
 
 
 
191			atomic_long_inc(&p->refs);
192			return p;
193		}
194	}
195	return NULL;
196}
197
198int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
199{
200	int n;
201	for (n = 0; n < chunk->count; n++)
202		if (chunk->owners[n].owner == tree)
203			return 1;
204	return 0;
205}
206
207/* tagging and untagging inodes with trees */
208
209static struct audit_chunk *find_chunk(struct node *p)
210{
211	int index = p->index & ~(1U<<31);
212	p -= index;
213	return container_of(p, struct audit_chunk, owners[0]);
214}
215
216static void untag_chunk(struct node *p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217{
218	struct audit_chunk *chunk = find_chunk(p);
219	struct fsnotify_mark *entry = &chunk->mark;
220	struct audit_chunk *new = NULL;
221	struct audit_tree *owner;
222	int size = chunk->count - 1;
223	int i, j;
224
225	fsnotify_get_mark(entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226
227	spin_unlock(&hash_lock);
 
 
 
 
 
 
 
 
 
 
 
 
228
229	if (size)
230		new = alloc_chunk(size);
 
 
 
231
232	spin_lock(&entry->lock);
233	if (chunk->dead || !entry->i.inode) {
234		spin_unlock(&entry->lock);
235		if (new)
236			free_chunk(new);
237		goto out;
238	}
239
240	owner = p->owner;
 
 
 
 
 
 
 
241
 
242	if (!size) {
243		chunk->dead = 1;
244		spin_lock(&hash_lock);
245		list_del_init(&chunk->trees);
246		if (owner->root == chunk)
247			owner->root = NULL;
248		list_del_init(&p->list);
249		list_del_rcu(&chunk->hash);
 
250		spin_unlock(&hash_lock);
251		spin_unlock(&entry->lock);
252		fsnotify_destroy_mark(entry);
253		goto out;
 
 
254	}
255
 
256	if (!new)
257		goto Fallback;
258
259	fsnotify_duplicate_mark(&new->mark, entry);
260	if (fsnotify_add_mark(&new->mark, new->mark.group, new->mark.i.inode, NULL, 1)) {
261		fsnotify_put_mark(&new->mark);
262		goto Fallback;
263	}
264
265	chunk->dead = 1;
266	spin_lock(&hash_lock);
267	list_replace_init(&chunk->trees, &new->trees);
268	if (owner->root == chunk) {
269		list_del_init(&owner->same_root);
270		owner->root = NULL;
271	}
272
273	for (i = j = 0; j <= size; i++, j++) {
274		struct audit_tree *s;
275		if (&chunk->owners[j] == p) {
276			list_del_init(&p->list);
277			i--;
278			continue;
279		}
280		s = chunk->owners[j].owner;
281		new->owners[i].owner = s;
282		new->owners[i].index = chunk->owners[j].index - j + i;
283		if (!s) /* result of earlier fallback */
284			continue;
285		get_tree(s);
286		list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
287	}
288
289	list_replace_rcu(&chunk->hash, &new->hash);
290	list_for_each_entry(owner, &new->trees, same_root)
291		owner->root = new;
292	spin_unlock(&hash_lock);
293	spin_unlock(&entry->lock);
294	fsnotify_destroy_mark(entry);
295	goto out;
296
297Fallback:
298	// do the best we can
299	spin_lock(&hash_lock);
300	if (owner->root == chunk) {
301		list_del_init(&owner->same_root);
302		owner->root = NULL;
303	}
304	list_del_init(&p->list);
305	p->owner = NULL;
306	put_tree(owner);
307	spin_unlock(&hash_lock);
308	spin_unlock(&entry->lock);
309out:
310	fsnotify_put_mark(entry);
311	spin_lock(&hash_lock);
312}
313
 
314static int create_chunk(struct inode *inode, struct audit_tree *tree)
315{
316	struct fsnotify_mark *entry;
317	struct audit_chunk *chunk = alloc_chunk(1);
318	if (!chunk)
 
 
 
 
 
 
 
 
 
319		return -ENOMEM;
 
320
321	entry = &chunk->mark;
322	if (fsnotify_add_mark(entry, audit_tree_group, inode, NULL, 0)) {
323		fsnotify_put_mark(entry);
 
324		return -ENOSPC;
325	}
326
327	spin_lock(&entry->lock);
328	spin_lock(&hash_lock);
329	if (tree->goner) {
330		spin_unlock(&hash_lock);
331		chunk->dead = 1;
332		spin_unlock(&entry->lock);
333		fsnotify_get_mark(entry);
334		fsnotify_destroy_mark(entry);
335		fsnotify_put_mark(entry);
336		return 0;
337	}
 
338	chunk->owners[0].index = (1U << 31);
339	chunk->owners[0].owner = tree;
340	get_tree(tree);
341	list_add(&chunk->owners[0].list, &tree->chunks);
342	if (!tree->root) {
343		tree->root = chunk;
344		list_add(&tree->same_root, &chunk->trees);
345	}
 
 
 
 
 
346	insert_hash(chunk);
347	spin_unlock(&hash_lock);
348	spin_unlock(&entry->lock);
 
 
 
 
 
 
349	return 0;
350}
351
352/* the first tagged inode becomes root of tree */
353static int tag_chunk(struct inode *inode, struct audit_tree *tree)
354{
355	struct fsnotify_mark *old_entry, *chunk_entry;
356	struct audit_tree *owner;
357	struct audit_chunk *chunk, *old;
358	struct node *p;
359	int n;
360
361	old_entry = fsnotify_find_inode_mark(audit_tree_group, inode);
362	if (!old_entry)
 
363		return create_chunk(inode, tree);
364
365	old = container_of(old_entry, struct audit_chunk, mark);
366
 
 
 
367	/* are we already there? */
368	spin_lock(&hash_lock);
 
369	for (n = 0; n < old->count; n++) {
370		if (old->owners[n].owner == tree) {
371			spin_unlock(&hash_lock);
372			fsnotify_put_mark(old_entry);
 
373			return 0;
374		}
375	}
376	spin_unlock(&hash_lock);
377
378	chunk = alloc_chunk(old->count + 1);
379	if (!chunk) {
380		fsnotify_put_mark(old_entry);
 
381		return -ENOMEM;
382	}
383
384	chunk_entry = &chunk->mark;
385
386	spin_lock(&old_entry->lock);
387	if (!old_entry->i.inode) {
388		/* old_entry is being shot, lets just lie */
389		spin_unlock(&old_entry->lock);
390		fsnotify_put_mark(old_entry);
391		free_chunk(chunk);
392		return -ENOENT;
393	}
394
395	fsnotify_duplicate_mark(chunk_entry, old_entry);
396	if (fsnotify_add_mark(chunk_entry, chunk_entry->group, chunk_entry->i.inode, NULL, 1)) {
397		spin_unlock(&old_entry->lock);
398		fsnotify_put_mark(chunk_entry);
399		fsnotify_put_mark(old_entry);
400		return -ENOSPC;
401	}
402
403	/* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
404	spin_lock(&chunk_entry->lock);
405	spin_lock(&hash_lock);
406
407	/* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
408	if (tree->goner) {
409		spin_unlock(&hash_lock);
410		chunk->dead = 1;
411		spin_unlock(&chunk_entry->lock);
412		spin_unlock(&old_entry->lock);
413
414		fsnotify_get_mark(chunk_entry);
415		fsnotify_destroy_mark(chunk_entry);
416
417		fsnotify_put_mark(chunk_entry);
418		fsnotify_put_mark(old_entry);
419		return 0;
420	}
421	list_replace_init(&old->trees, &chunk->trees);
422	for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
423		struct audit_tree *s = old->owners[n].owner;
424		p->owner = s;
425		p->index = old->owners[n].index;
426		if (!s) /* result of fallback in untag */
427			continue;
428		get_tree(s);
429		list_replace_init(&old->owners[n].list, &p->list);
430	}
431	p->index = (chunk->count - 1) | (1U<<31);
432	p->owner = tree;
433	get_tree(tree);
434	list_add(&p->list, &tree->chunks);
435	list_replace_rcu(&old->hash, &chunk->hash);
436	list_for_each_entry(owner, &chunk->trees, same_root)
437		owner->root = chunk;
438	old->dead = 1;
439	if (!tree->root) {
440		tree->root = chunk;
441		list_add(&tree->same_root, &chunk->trees);
442	}
 
 
 
 
 
443	spin_unlock(&hash_lock);
444	spin_unlock(&chunk_entry->lock);
445	spin_unlock(&old_entry->lock);
446	fsnotify_destroy_mark(old_entry);
447	fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
448	return 0;
449}
450
451static void kill_rules(struct audit_tree *tree)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
452{
453	struct audit_krule *rule, *next;
454	struct audit_entry *entry;
455	struct audit_buffer *ab;
456
457	list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
458		entry = container_of(rule, struct audit_entry, rule);
459
460		list_del_init(&rule->rlist);
461		if (rule->tree) {
462			/* not a half-baked one */
463			ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
464			audit_log_format(ab, "op=");
465			audit_log_string(ab, "remove rule");
466			audit_log_format(ab, " dir=");
467			audit_log_untrustedstring(ab, rule->tree->pathname);
468			audit_log_key(ab, rule->filterkey);
469			audit_log_format(ab, " list=%d res=1", rule->listnr);
470			audit_log_end(ab);
471			rule->tree = NULL;
472			list_del_rcu(&entry->list);
473			list_del(&entry->rule.list);
474			call_rcu(&entry->rcu, audit_free_rule_rcu);
475		}
476	}
477}
478
479/*
480 * finish killing struct audit_tree
 
 
481 */
482static void prune_one(struct audit_tree *victim)
483{
484	spin_lock(&hash_lock);
485	while (!list_empty(&victim->chunks)) {
486		struct node *p;
 
 
487
488		p = list_entry(victim->chunks.next, struct node, list);
 
 
 
 
 
 
 
 
 
 
 
489
490		untag_chunk(p);
 
 
 
491	}
492	spin_unlock(&hash_lock);
 
 
 
 
 
 
 
 
493	put_tree(victim);
494}
495
496/* trim the uncommitted chunks from tree */
497
498static void trim_marked(struct audit_tree *tree)
499{
500	struct list_head *p, *q;
501	spin_lock(&hash_lock);
502	if (tree->goner) {
503		spin_unlock(&hash_lock);
504		return;
505	}
506	/* reorder */
507	for (p = tree->chunks.next; p != &tree->chunks; p = q) {
508		struct node *node = list_entry(p, struct node, list);
509		q = p->next;
510		if (node->index & (1U<<31)) {
511			list_del_init(p);
512			list_add(p, &tree->chunks);
513		}
514	}
 
515
516	while (!list_empty(&tree->chunks)) {
517		struct node *node;
518
519		node = list_entry(tree->chunks.next, struct node, list);
520
521		/* have we run out of marked? */
522		if (!(node->index & (1U<<31)))
523			break;
524
525		untag_chunk(node);
526	}
527	if (!tree->root && !tree->goner) {
528		tree->goner = 1;
529		spin_unlock(&hash_lock);
530		mutex_lock(&audit_filter_mutex);
531		kill_rules(tree);
532		list_del_init(&tree->list);
533		mutex_unlock(&audit_filter_mutex);
534		prune_one(tree);
535	} else {
536		spin_unlock(&hash_lock);
537	}
538}
539
540static void audit_schedule_prune(void);
541
542/* called with audit_filter_mutex */
543int audit_remove_tree_rule(struct audit_krule *rule)
544{
545	struct audit_tree *tree;
546	tree = rule->tree;
547	if (tree) {
548		spin_lock(&hash_lock);
549		list_del_init(&rule->rlist);
550		if (list_empty(&tree->rules) && !tree->goner) {
551			tree->root = NULL;
552			list_del_init(&tree->same_root);
553			tree->goner = 1;
554			list_move(&tree->list, &prune_list);
555			rule->tree = NULL;
556			spin_unlock(&hash_lock);
557			audit_schedule_prune();
558			return 1;
559		}
560		rule->tree = NULL;
561		spin_unlock(&hash_lock);
562		return 1;
563	}
564	return 0;
565}
566
567static int compare_root(struct vfsmount *mnt, void *arg)
568{
569	return mnt->mnt_root->d_inode == arg;
 
570}
571
572void audit_trim_trees(void)
573{
574	struct list_head cursor;
575
576	mutex_lock(&audit_filter_mutex);
577	list_add(&cursor, &tree_list);
578	while (cursor.next != &tree_list) {
579		struct audit_tree *tree;
580		struct path path;
581		struct vfsmount *root_mnt;
582		struct node *node;
583		int err;
584
585		tree = container_of(cursor.next, struct audit_tree, list);
586		get_tree(tree);
587		list_del(&cursor);
588		list_add(&cursor, &tree->list);
589		mutex_unlock(&audit_filter_mutex);
590
591		err = kern_path(tree->pathname, 0, &path);
592		if (err)
593			goto skip_it;
594
595		root_mnt = collect_mounts(&path);
596		path_put(&path);
597		if (!root_mnt)
598			goto skip_it;
599
600		spin_lock(&hash_lock);
601		list_for_each_entry(node, &tree->chunks, list) {
602			struct audit_chunk *chunk = find_chunk(node);
603			/* this could be NULL if the watch is dying else where... */
604			struct inode *inode = chunk->mark.i.inode;
605			node->index |= 1U<<31;
606			if (iterate_mounts(compare_root, inode, root_mnt))
 
 
607				node->index &= ~(1U<<31);
608		}
609		spin_unlock(&hash_lock);
610		trim_marked(tree);
611		put_tree(tree);
612		drop_collected_mounts(root_mnt);
613skip_it:
 
614		mutex_lock(&audit_filter_mutex);
615	}
616	list_del(&cursor);
617	mutex_unlock(&audit_filter_mutex);
618}
619
620int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
621{
622
623	if (pathname[0] != '/' ||
624	    rule->listnr != AUDIT_FILTER_EXIT ||
 
625	    op != Audit_equal ||
626	    rule->inode_f || rule->watch || rule->tree)
627		return -EINVAL;
628	rule->tree = alloc_tree(pathname);
629	if (!rule->tree)
630		return -ENOMEM;
631	return 0;
632}
633
634void audit_put_tree(struct audit_tree *tree)
635{
636	put_tree(tree);
637}
638
639static int tag_mount(struct vfsmount *mnt, void *arg)
640{
641	return tag_chunk(mnt->mnt_root->d_inode, arg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
642}
643
644/* called with audit_filter_mutex */
645int audit_add_tree_rule(struct audit_krule *rule)
646{
647	struct audit_tree *seed = rule->tree, *tree;
648	struct path path;
649	struct vfsmount *mnt;
650	int err;
651
 
652	list_for_each_entry(tree, &tree_list, list) {
653		if (!strcmp(seed->pathname, tree->pathname)) {
654			put_tree(seed);
655			rule->tree = tree;
656			list_add(&rule->rlist, &tree->rules);
657			return 0;
658		}
659	}
660	tree = seed;
661	list_add(&tree->list, &tree_list);
662	list_add(&rule->rlist, &tree->rules);
663	/* do not set rule->tree yet */
664	mutex_unlock(&audit_filter_mutex);
665
 
 
 
 
 
 
666	err = kern_path(tree->pathname, 0, &path);
667	if (err)
668		goto Err;
669	mnt = collect_mounts(&path);
670	path_put(&path);
671	if (!mnt) {
672		err = -ENOMEM;
673		goto Err;
674	}
675
676	get_tree(tree);
677	err = iterate_mounts(tag_mount, tree, mnt);
678	drop_collected_mounts(mnt);
679
680	if (!err) {
681		struct node *node;
682		spin_lock(&hash_lock);
683		list_for_each_entry(node, &tree->chunks, list)
684			node->index &= ~(1U<<31);
685		spin_unlock(&hash_lock);
686	} else {
687		trim_marked(tree);
688		goto Err;
689	}
690
691	mutex_lock(&audit_filter_mutex);
692	if (list_empty(&rule->rlist)) {
693		put_tree(tree);
694		return -ENOENT;
695	}
696	rule->tree = tree;
697	put_tree(tree);
698
699	return 0;
700Err:
701	mutex_lock(&audit_filter_mutex);
702	list_del_init(&tree->list);
703	list_del_init(&tree->rules);
704	put_tree(tree);
705	return err;
706}
707
708int audit_tag_tree(char *old, char *new)
709{
710	struct list_head cursor, barrier;
711	int failed = 0;
712	struct path path1, path2;
713	struct vfsmount *tagged;
714	int err;
715
716	err = kern_path(new, 0, &path2);
717	if (err)
718		return err;
719	tagged = collect_mounts(&path2);
720	path_put(&path2);
721	if (!tagged)
722		return -ENOMEM;
723
724	err = kern_path(old, 0, &path1);
725	if (err) {
726		drop_collected_mounts(tagged);
727		return err;
728	}
729
730	mutex_lock(&audit_filter_mutex);
731	list_add(&barrier, &tree_list);
732	list_add(&cursor, &barrier);
733
734	while (cursor.next != &tree_list) {
735		struct audit_tree *tree;
736		int good_one = 0;
737
738		tree = container_of(cursor.next, struct audit_tree, list);
739		get_tree(tree);
740		list_del(&cursor);
741		list_add(&cursor, &tree->list);
742		mutex_unlock(&audit_filter_mutex);
743
744		err = kern_path(tree->pathname, 0, &path2);
745		if (!err) {
746			good_one = path_is_under(&path1, &path2);
747			path_put(&path2);
748		}
749
750		if (!good_one) {
751			put_tree(tree);
752			mutex_lock(&audit_filter_mutex);
753			continue;
754		}
755
756		failed = iterate_mounts(tag_mount, tree, tagged);
757		if (failed) {
758			put_tree(tree);
759			mutex_lock(&audit_filter_mutex);
760			break;
761		}
762
763		mutex_lock(&audit_filter_mutex);
764		spin_lock(&hash_lock);
765		if (!tree->goner) {
766			list_del(&tree->list);
767			list_add(&tree->list, &tree_list);
768		}
769		spin_unlock(&hash_lock);
770		put_tree(tree);
771	}
772
773	while (barrier.prev != &tree_list) {
774		struct audit_tree *tree;
775
776		tree = container_of(barrier.prev, struct audit_tree, list);
777		get_tree(tree);
778		list_del(&tree->list);
779		list_add(&tree->list, &barrier);
780		mutex_unlock(&audit_filter_mutex);
781
782		if (!failed) {
783			struct node *node;
784			spin_lock(&hash_lock);
785			list_for_each_entry(node, &tree->chunks, list)
786				node->index &= ~(1U<<31);
787			spin_unlock(&hash_lock);
788		} else {
789			trim_marked(tree);
790		}
791
792		put_tree(tree);
793		mutex_lock(&audit_filter_mutex);
794	}
795	list_del(&barrier);
796	list_del(&cursor);
797	mutex_unlock(&audit_filter_mutex);
798	path_put(&path1);
799	drop_collected_mounts(tagged);
800	return failed;
801}
802
803/*
804 * That gets run when evict_chunk() ends up needing to kill audit_tree.
805 * Runs from a separate thread.
806 */
807static int prune_tree_thread(void *unused)
808{
809	mutex_lock(&audit_cmd_mutex);
810	mutex_lock(&audit_filter_mutex);
811
812	while (!list_empty(&prune_list)) {
813		struct audit_tree *victim;
814
815		victim = list_entry(prune_list.next, struct audit_tree, list);
816		list_del_init(&victim->list);
817
818		mutex_unlock(&audit_filter_mutex);
819
820		prune_one(victim);
821
822		mutex_lock(&audit_filter_mutex);
823	}
824
825	mutex_unlock(&audit_filter_mutex);
826	mutex_unlock(&audit_cmd_mutex);
827	return 0;
828}
829
830static void audit_schedule_prune(void)
831{
832	kthread_run(prune_tree_thread, NULL, "audit_prune_tree");
833}
834
835/*
836 * ... and that one is done if evict_chunk() decides to delay until the end
837 * of syscall.  Runs synchronously.
838 */
839void audit_kill_trees(struct list_head *list)
840{
841	mutex_lock(&audit_cmd_mutex);
 
 
842	mutex_lock(&audit_filter_mutex);
843
844	while (!list_empty(list)) {
845		struct audit_tree *victim;
846
847		victim = list_entry(list->next, struct audit_tree, list);
848		kill_rules(victim);
849		list_del_init(&victim->list);
850
851		mutex_unlock(&audit_filter_mutex);
852
853		prune_one(victim);
854
855		mutex_lock(&audit_filter_mutex);
856	}
857
858	mutex_unlock(&audit_filter_mutex);
859	mutex_unlock(&audit_cmd_mutex);
860}
861
862/*
863 *  Here comes the stuff asynchronous to auditctl operations
864 */
865
866static void evict_chunk(struct audit_chunk *chunk)
867{
868	struct audit_tree *owner;
869	struct list_head *postponed = audit_killed_trees();
870	int need_prune = 0;
871	int n;
872
873	if (chunk->dead)
874		return;
875
876	chunk->dead = 1;
877	mutex_lock(&audit_filter_mutex);
878	spin_lock(&hash_lock);
879	while (!list_empty(&chunk->trees)) {
880		owner = list_entry(chunk->trees.next,
881				   struct audit_tree, same_root);
882		owner->goner = 1;
883		owner->root = NULL;
884		list_del_init(&owner->same_root);
885		spin_unlock(&hash_lock);
886		if (!postponed) {
887			kill_rules(owner);
888			list_move(&owner->list, &prune_list);
889			need_prune = 1;
890		} else {
891			list_move(&owner->list, postponed);
892		}
893		spin_lock(&hash_lock);
894	}
895	list_del_rcu(&chunk->hash);
896	for (n = 0; n < chunk->count; n++)
897		list_del_init(&chunk->owners[n].list);
898	spin_unlock(&hash_lock);
 
899	if (need_prune)
900		audit_schedule_prune();
901	mutex_unlock(&audit_filter_mutex);
902}
903
904static int audit_tree_handle_event(struct fsnotify_group *group,
905				   struct fsnotify_mark *inode_mark,
906				   struct fsnotify_mark *vfsmonut_mark,
907				   struct fsnotify_event *event)
908{
909	BUG();
910	return -EOPNOTSUPP;
911}
912
913static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
 
914{
915	struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
916
917	evict_chunk(chunk);
918	fsnotify_put_mark(entry);
919}
 
 
 
 
 
 
 
920
921static bool audit_tree_send_event(struct fsnotify_group *group, struct inode *inode,
922				  struct fsnotify_mark *inode_mark,
923				  struct fsnotify_mark *vfsmount_mark,
924				  __u32 mask, void *data, int data_type)
925{
926	return false;
927}
928
929static const struct fsnotify_ops audit_tree_ops = {
930	.handle_event = audit_tree_handle_event,
931	.should_send_event = audit_tree_send_event,
932	.free_group_priv = NULL,
933	.free_event_priv = NULL,
934	.freeing_mark = audit_tree_freeing_mark,
 
935};
936
937static int __init audit_tree_init(void)
938{
939	int i;
940
941	audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
 
 
942	if (IS_ERR(audit_tree_group))
943		audit_panic("cannot initialize fsnotify group for rectree watches");
944
945	for (i = 0; i < HASH_SIZE; i++)
946		INIT_LIST_HEAD(&chunk_hash_heads[i]);
947
948	return 0;
949}
950__initcall(audit_tree_init);