Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * message.c - synchronous message handling
   4 *
   5 * Released under the GPLv2 only.
   6 */
   7
   8#include <linux/acpi.h>
   9#include <linux/pci.h>	/* for scatterlist macros */
  10#include <linux/usb.h>
  11#include <linux/module.h>
  12#include <linux/of.h>
  13#include <linux/slab.h>
 
  14#include <linux/mm.h>
  15#include <linux/timer.h>
  16#include <linux/ctype.h>
  17#include <linux/nls.h>
  18#include <linux/device.h>
  19#include <linux/scatterlist.h>
  20#include <linux/usb/cdc.h>
  21#include <linux/usb/quirks.h>
  22#include <linux/usb/hcd.h>	/* for usbcore internals */
  23#include <linux/usb/of.h>
  24#include <asm/byteorder.h>
  25
  26#include "usb.h"
  27
  28static void cancel_async_set_config(struct usb_device *udev);
  29
  30struct api_context {
  31	struct completion	done;
  32	int			status;
  33};
  34
  35static void usb_api_blocking_completion(struct urb *urb)
  36{
  37	struct api_context *ctx = urb->context;
  38
  39	ctx->status = urb->status;
  40	complete(&ctx->done);
  41}
  42
  43
  44/*
  45 * Starts urb and waits for completion or timeout. Note that this call
  46 * is NOT interruptible. Many device driver i/o requests should be
  47 * interruptible and therefore these drivers should implement their
  48 * own interruptible routines.
  49 */
  50static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
  51{
  52	struct api_context ctx;
  53	unsigned long expire;
  54	int retval;
  55
  56	init_completion(&ctx.done);
  57	urb->context = &ctx;
  58	urb->actual_length = 0;
  59	retval = usb_submit_urb(urb, GFP_NOIO);
  60	if (unlikely(retval))
  61		goto out;
  62
  63	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
  64	if (!wait_for_completion_timeout(&ctx.done, expire)) {
  65		usb_kill_urb(urb);
  66		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
  67
  68		dev_dbg(&urb->dev->dev,
  69			"%s timed out on ep%d%s len=%u/%u\n",
  70			current->comm,
  71			usb_endpoint_num(&urb->ep->desc),
  72			usb_urb_dir_in(urb) ? "in" : "out",
  73			urb->actual_length,
  74			urb->transfer_buffer_length);
  75	} else
  76		retval = ctx.status;
  77out:
  78	if (actual_length)
  79		*actual_length = urb->actual_length;
  80
  81	usb_free_urb(urb);
  82	return retval;
  83}
  84
  85/*-------------------------------------------------------------------*/
  86/* returns status (negative) or length (positive) */
  87static int usb_internal_control_msg(struct usb_device *usb_dev,
  88				    unsigned int pipe,
  89				    struct usb_ctrlrequest *cmd,
  90				    void *data, int len, int timeout)
  91{
  92	struct urb *urb;
  93	int retv;
  94	int length;
  95
  96	urb = usb_alloc_urb(0, GFP_NOIO);
  97	if (!urb)
  98		return -ENOMEM;
  99
 100	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
 101			     len, usb_api_blocking_completion, NULL);
 102
 103	retv = usb_start_wait_urb(urb, timeout, &length);
 104	if (retv < 0)
 105		return retv;
 106	else
 107		return length;
 108}
 109
 110/**
 111 * usb_control_msg - Builds a control urb, sends it off and waits for completion
 112 * @dev: pointer to the usb device to send the message to
 113 * @pipe: endpoint "pipe" to send the message to
 114 * @request: USB message request value
 115 * @requesttype: USB message request type value
 116 * @value: USB message value
 117 * @index: USB message index value
 118 * @data: pointer to the data to send
 119 * @size: length in bytes of the data to send
 120 * @timeout: time in msecs to wait for the message to complete before timing
 121 *	out (if 0 the wait is forever)
 122 *
 123 * Context: task context, might sleep.
 124 *
 125 * This function sends a simple control message to a specified endpoint and
 126 * waits for the message to complete, or timeout.
 127 *
 128 * Don't use this function from within an interrupt context. If you need
 129 * an asynchronous message, or need to send a message from within interrupt
 130 * context, use usb_submit_urb(). If a thread in your driver uses this call,
 131 * make sure your disconnect() method can wait for it to complete. Since you
 132 * don't have a handle on the URB used, you can't cancel the request.
 133 *
 134 * Return: If successful, the number of bytes transferred. Otherwise, a negative
 135 * error number.
 
 
 
 
 136 */
 137int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
 138		    __u8 requesttype, __u16 value, __u16 index, void *data,
 139		    __u16 size, int timeout)
 140{
 141	struct usb_ctrlrequest *dr;
 142	int ret;
 143
 144	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
 145	if (!dr)
 146		return -ENOMEM;
 147
 148	dr->bRequestType = requesttype;
 149	dr->bRequest = request;
 150	dr->wValue = cpu_to_le16(value);
 151	dr->wIndex = cpu_to_le16(index);
 152	dr->wLength = cpu_to_le16(size);
 153
 154	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
 155
 156	/* Linger a bit, prior to the next control message. */
 157	if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
 158		msleep(200);
 159
 160	kfree(dr);
 161
 162	return ret;
 163}
 164EXPORT_SYMBOL_GPL(usb_control_msg);
 165
 166/**
 167 * usb_control_msg_send - Builds a control "send" message, sends it off and waits for completion
 168 * @dev: pointer to the usb device to send the message to
 169 * @endpoint: endpoint to send the message to
 170 * @request: USB message request value
 171 * @requesttype: USB message request type value
 172 * @value: USB message value
 173 * @index: USB message index value
 174 * @driver_data: pointer to the data to send
 175 * @size: length in bytes of the data to send
 176 * @timeout: time in msecs to wait for the message to complete before timing
 177 *	out (if 0 the wait is forever)
 178 * @memflags: the flags for memory allocation for buffers
 179 *
 180 * Context: !in_interrupt ()
 181 *
 182 * This function sends a control message to a specified endpoint that is not
 183 * expected to fill in a response (i.e. a "send message") and waits for the
 184 * message to complete, or timeout.
 185 *
 186 * Do not use this function from within an interrupt context. If you need
 187 * an asynchronous message, or need to send a message from within interrupt
 188 * context, use usb_submit_urb(). If a thread in your driver uses this call,
 189 * make sure your disconnect() method can wait for it to complete. Since you
 190 * don't have a handle on the URB used, you can't cancel the request.
 191 *
 192 * The data pointer can be made to a reference on the stack, or anywhere else,
 193 * as it will not be modified at all.  This does not have the restriction that
 194 * usb_control_msg() has where the data pointer must be to dynamically allocated
 195 * memory (i.e. memory that can be successfully DMAed to a device).
 196 *
 197 * Return: If successful, 0 is returned, Otherwise, a negative error number.
 198 */
 199int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
 200			 __u8 requesttype, __u16 value, __u16 index,
 201			 const void *driver_data, __u16 size, int timeout,
 202			 gfp_t memflags)
 203{
 204	unsigned int pipe = usb_sndctrlpipe(dev, endpoint);
 205	int ret;
 206	u8 *data = NULL;
 207
 208	if (size) {
 209		data = kmemdup(driver_data, size, memflags);
 210		if (!data)
 211			return -ENOMEM;
 212	}
 213
 214	ret = usb_control_msg(dev, pipe, request, requesttype, value, index,
 215			      data, size, timeout);
 216	kfree(data);
 217
 218	if (ret < 0)
 219		return ret;
 220
 221	return 0;
 222}
 223EXPORT_SYMBOL_GPL(usb_control_msg_send);
 224
 225/**
 226 * usb_control_msg_recv - Builds a control "receive" message, sends it off and waits for completion
 227 * @dev: pointer to the usb device to send the message to
 228 * @endpoint: endpoint to send the message to
 229 * @request: USB message request value
 230 * @requesttype: USB message request type value
 231 * @value: USB message value
 232 * @index: USB message index value
 233 * @driver_data: pointer to the data to be filled in by the message
 234 * @size: length in bytes of the data to be received
 235 * @timeout: time in msecs to wait for the message to complete before timing
 236 *	out (if 0 the wait is forever)
 237 * @memflags: the flags for memory allocation for buffers
 238 *
 239 * Context: !in_interrupt ()
 240 *
 241 * This function sends a control message to a specified endpoint that is
 242 * expected to fill in a response (i.e. a "receive message") and waits for the
 243 * message to complete, or timeout.
 244 *
 245 * Do not use this function from within an interrupt context. If you need
 246 * an asynchronous message, or need to send a message from within interrupt
 247 * context, use usb_submit_urb(). If a thread in your driver uses this call,
 248 * make sure your disconnect() method can wait for it to complete. Since you
 249 * don't have a handle on the URB used, you can't cancel the request.
 250 *
 251 * The data pointer can be made to a reference on the stack, or anywhere else
 252 * that can be successfully written to.  This function does not have the
 253 * restriction that usb_control_msg() has where the data pointer must be to
 254 * dynamically allocated memory (i.e. memory that can be successfully DMAed to a
 255 * device).
 256 *
 257 * The "whole" message must be properly received from the device in order for
 258 * this function to be successful.  If a device returns less than the expected
 259 * amount of data, then the function will fail.  Do not use this for messages
 260 * where a variable amount of data might be returned.
 261 *
 262 * Return: If successful, 0 is returned, Otherwise, a negative error number.
 263 */
 264int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
 265			 __u8 requesttype, __u16 value, __u16 index,
 266			 void *driver_data, __u16 size, int timeout,
 267			 gfp_t memflags)
 268{
 269	unsigned int pipe = usb_rcvctrlpipe(dev, endpoint);
 270	int ret;
 271	u8 *data;
 272
 273	if (!size || !driver_data)
 274		return -EINVAL;
 275
 276	data = kmalloc(size, memflags);
 277	if (!data)
 278		return -ENOMEM;
 279
 280	ret = usb_control_msg(dev, pipe, request, requesttype, value, index,
 281			      data, size, timeout);
 282
 283	if (ret < 0)
 284		goto exit;
 285
 286	if (ret == size) {
 287		memcpy(driver_data, data, size);
 288		ret = 0;
 289	} else {
 290		ret = -EREMOTEIO;
 291	}
 292
 293exit:
 294	kfree(data);
 295	return ret;
 296}
 297EXPORT_SYMBOL_GPL(usb_control_msg_recv);
 298
 299/**
 300 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
 301 * @usb_dev: pointer to the usb device to send the message to
 302 * @pipe: endpoint "pipe" to send the message to
 303 * @data: pointer to the data to send
 304 * @len: length in bytes of the data to send
 305 * @actual_length: pointer to a location to put the actual length transferred
 306 *	in bytes
 307 * @timeout: time in msecs to wait for the message to complete before
 308 *	timing out (if 0 the wait is forever)
 309 *
 310 * Context: task context, might sleep.
 311 *
 312 * This function sends a simple interrupt message to a specified endpoint and
 313 * waits for the message to complete, or timeout.
 314 *
 315 * Don't use this function from within an interrupt context. If you need
 316 * an asynchronous message, or need to send a message from within interrupt
 317 * context, use usb_submit_urb() If a thread in your driver uses this call,
 318 * make sure your disconnect() method can wait for it to complete. Since you
 319 * don't have a handle on the URB used, you can't cancel the request.
 320 *
 321 * Return:
 322 * If successful, 0. Otherwise a negative error number. The number of actual
 323 * bytes transferred will be stored in the @actual_length parameter.
 324 */
 325int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
 326		      void *data, int len, int *actual_length, int timeout)
 327{
 328	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
 329}
 330EXPORT_SYMBOL_GPL(usb_interrupt_msg);
 331
 332/**
 333 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
 334 * @usb_dev: pointer to the usb device to send the message to
 335 * @pipe: endpoint "pipe" to send the message to
 336 * @data: pointer to the data to send
 337 * @len: length in bytes of the data to send
 338 * @actual_length: pointer to a location to put the actual length transferred
 339 *	in bytes
 340 * @timeout: time in msecs to wait for the message to complete before
 341 *	timing out (if 0 the wait is forever)
 342 *
 343 * Context: task context, might sleep.
 344 *
 345 * This function sends a simple bulk message to a specified endpoint
 346 * and waits for the message to complete, or timeout.
 347 *
 348 * Don't use this function from within an interrupt context. If you need
 349 * an asynchronous message, or need to send a message from within interrupt
 350 * context, use usb_submit_urb() If a thread in your driver uses this call,
 351 * make sure your disconnect() method can wait for it to complete. Since you
 352 * don't have a handle on the URB used, you can't cancel the request.
 
 
 
 
 353 *
 354 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
 355 * users are forced to abuse this routine by using it to submit URBs for
 356 * interrupt endpoints.  We will take the liberty of creating an interrupt URB
 357 * (with the default interval) if the target is an interrupt endpoint.
 358 *
 359 * Return:
 360 * If successful, 0. Otherwise a negative error number. The number of actual
 361 * bytes transferred will be stored in the @actual_length parameter.
 362 *
 363 */
 364int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
 365		 void *data, int len, int *actual_length, int timeout)
 366{
 367	struct urb *urb;
 368	struct usb_host_endpoint *ep;
 369
 370	ep = usb_pipe_endpoint(usb_dev, pipe);
 371	if (!ep || len < 0)
 372		return -EINVAL;
 373
 374	urb = usb_alloc_urb(0, GFP_KERNEL);
 375	if (!urb)
 376		return -ENOMEM;
 377
 378	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
 379			USB_ENDPOINT_XFER_INT) {
 380		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
 381		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
 382				usb_api_blocking_completion, NULL,
 383				ep->desc.bInterval);
 384	} else
 385		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
 386				usb_api_blocking_completion, NULL);
 387
 388	return usb_start_wait_urb(urb, timeout, actual_length);
 389}
 390EXPORT_SYMBOL_GPL(usb_bulk_msg);
 391
 392/*-------------------------------------------------------------------*/
 393
 394static void sg_clean(struct usb_sg_request *io)
 395{
 396	if (io->urbs) {
 397		while (io->entries--)
 398			usb_free_urb(io->urbs[io->entries]);
 399		kfree(io->urbs);
 400		io->urbs = NULL;
 401	}
 402	io->dev = NULL;
 403}
 404
 405static void sg_complete(struct urb *urb)
 406{
 407	unsigned long flags;
 408	struct usb_sg_request *io = urb->context;
 409	int status = urb->status;
 410
 411	spin_lock_irqsave(&io->lock, flags);
 412
 413	/* In 2.5 we require hcds' endpoint queues not to progress after fault
 414	 * reports, until the completion callback (this!) returns.  That lets
 415	 * device driver code (like this routine) unlink queued urbs first,
 416	 * if it needs to, since the HC won't work on them at all.  So it's
 417	 * not possible for page N+1 to overwrite page N, and so on.
 418	 *
 419	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
 420	 * complete before the HCD can get requests away from hardware,
 421	 * though never during cleanup after a hard fault.
 422	 */
 423	if (io->status
 424			&& (io->status != -ECONNRESET
 425				|| status != -ECONNRESET)
 426			&& urb->actual_length) {
 427		dev_err(io->dev->bus->controller,
 428			"dev %s ep%d%s scatterlist error %d/%d\n",
 429			io->dev->devpath,
 430			usb_endpoint_num(&urb->ep->desc),
 431			usb_urb_dir_in(urb) ? "in" : "out",
 432			status, io->status);
 433		/* BUG (); */
 434	}
 435
 436	if (io->status == 0 && status && status != -ECONNRESET) {
 437		int i, found, retval;
 438
 439		io->status = status;
 440
 441		/* the previous urbs, and this one, completed already.
 442		 * unlink pending urbs so they won't rx/tx bad data.
 443		 * careful: unlink can sometimes be synchronous...
 444		 */
 445		spin_unlock_irqrestore(&io->lock, flags);
 446		for (i = 0, found = 0; i < io->entries; i++) {
 447			if (!io->urbs[i])
 448				continue;
 449			if (found) {
 450				usb_block_urb(io->urbs[i]);
 451				retval = usb_unlink_urb(io->urbs[i]);
 452				if (retval != -EINPROGRESS &&
 453				    retval != -ENODEV &&
 454				    retval != -EBUSY &&
 455				    retval != -EIDRM)
 456					dev_err(&io->dev->dev,
 457						"%s, unlink --> %d\n",
 458						__func__, retval);
 459			} else if (urb == io->urbs[i])
 460				found = 1;
 461		}
 462		spin_lock_irqsave(&io->lock, flags);
 463	}
 464
 465	/* on the last completion, signal usb_sg_wait() */
 466	io->bytes += urb->actual_length;
 467	io->count--;
 468	if (!io->count)
 469		complete(&io->complete);
 470
 471	spin_unlock_irqrestore(&io->lock, flags);
 472}
 473
 474
 475/**
 476 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
 477 * @io: request block being initialized.  until usb_sg_wait() returns,
 478 *	treat this as a pointer to an opaque block of memory,
 479 * @dev: the usb device that will send or receive the data
 480 * @pipe: endpoint "pipe" used to transfer the data
 481 * @period: polling rate for interrupt endpoints, in frames or
 482 * 	(for high speed endpoints) microframes; ignored for bulk
 483 * @sg: scatterlist entries
 484 * @nents: how many entries in the scatterlist
 485 * @length: how many bytes to send from the scatterlist, or zero to
 486 * 	send every byte identified in the list.
 487 * @mem_flags: SLAB_* flags affecting memory allocations in this call
 488 *
 489 * This initializes a scatter/gather request, allocating resources such as
 490 * I/O mappings and urb memory (except maybe memory used by USB controller
 491 * drivers).
 492 *
 493 * The request must be issued using usb_sg_wait(), which waits for the I/O to
 494 * complete (or to be canceled) and then cleans up all resources allocated by
 495 * usb_sg_init().
 496 *
 497 * The request may be canceled with usb_sg_cancel(), either before or after
 498 * usb_sg_wait() is called.
 499 *
 500 * Return: Zero for success, else a negative errno value.
 501 */
 502int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
 503		unsigned pipe, unsigned	period, struct scatterlist *sg,
 504		int nents, size_t length, gfp_t mem_flags)
 505{
 506	int i;
 507	int urb_flags;
 508	int use_sg;
 509
 510	if (!io || !dev || !sg
 511			|| usb_pipecontrol(pipe)
 512			|| usb_pipeisoc(pipe)
 513			|| nents <= 0)
 514		return -EINVAL;
 515
 516	spin_lock_init(&io->lock);
 517	io->dev = dev;
 518	io->pipe = pipe;
 519
 520	if (dev->bus->sg_tablesize > 0) {
 521		use_sg = true;
 522		io->entries = 1;
 523	} else {
 524		use_sg = false;
 525		io->entries = nents;
 526	}
 527
 528	/* initialize all the urbs we'll use */
 529	io->urbs = kmalloc_array(io->entries, sizeof(*io->urbs), mem_flags);
 530	if (!io->urbs)
 531		goto nomem;
 532
 533	urb_flags = URB_NO_INTERRUPT;
 534	if (usb_pipein(pipe))
 535		urb_flags |= URB_SHORT_NOT_OK;
 536
 537	for_each_sg(sg, sg, io->entries, i) {
 538		struct urb *urb;
 539		unsigned len;
 540
 541		urb = usb_alloc_urb(0, mem_flags);
 542		if (!urb) {
 543			io->entries = i;
 544			goto nomem;
 545		}
 546		io->urbs[i] = urb;
 547
 548		urb->dev = NULL;
 549		urb->pipe = pipe;
 550		urb->interval = period;
 551		urb->transfer_flags = urb_flags;
 552		urb->complete = sg_complete;
 553		urb->context = io;
 554		urb->sg = sg;
 555
 556		if (use_sg) {
 557			/* There is no single transfer buffer */
 558			urb->transfer_buffer = NULL;
 559			urb->num_sgs = nents;
 560
 561			/* A length of zero means transfer the whole sg list */
 562			len = length;
 563			if (len == 0) {
 564				struct scatterlist	*sg2;
 565				int			j;
 566
 567				for_each_sg(sg, sg2, nents, j)
 568					len += sg2->length;
 569			}
 570		} else {
 571			/*
 572			 * Some systems can't use DMA; they use PIO instead.
 573			 * For their sakes, transfer_buffer is set whenever
 574			 * possible.
 575			 */
 576			if (!PageHighMem(sg_page(sg)))
 577				urb->transfer_buffer = sg_virt(sg);
 578			else
 579				urb->transfer_buffer = NULL;
 580
 581			len = sg->length;
 582			if (length) {
 583				len = min_t(size_t, len, length);
 584				length -= len;
 585				if (length == 0)
 586					io->entries = i + 1;
 587			}
 588		}
 589		urb->transfer_buffer_length = len;
 590	}
 591	io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
 592
 593	/* transaction state */
 594	io->count = io->entries;
 595	io->status = 0;
 596	io->bytes = 0;
 597	init_completion(&io->complete);
 598	return 0;
 599
 600nomem:
 601	sg_clean(io);
 602	return -ENOMEM;
 603}
 604EXPORT_SYMBOL_GPL(usb_sg_init);
 605
 606/**
 607 * usb_sg_wait - synchronously execute scatter/gather request
 608 * @io: request block handle, as initialized with usb_sg_init().
 609 * 	some fields become accessible when this call returns.
 610 *
 611 * Context: task context, might sleep.
 612 *
 613 * This function blocks until the specified I/O operation completes.  It
 614 * leverages the grouping of the related I/O requests to get good transfer
 615 * rates, by queueing the requests.  At higher speeds, such queuing can
 616 * significantly improve USB throughput.
 617 *
 618 * There are three kinds of completion for this function.
 619 *
 620 * (1) success, where io->status is zero.  The number of io->bytes
 621 *     transferred is as requested.
 622 * (2) error, where io->status is a negative errno value.  The number
 623 *     of io->bytes transferred before the error is usually less
 624 *     than requested, and can be nonzero.
 625 * (3) cancellation, a type of error with status -ECONNRESET that
 626 *     is initiated by usb_sg_cancel().
 627 *
 628 * When this function returns, all memory allocated through usb_sg_init() or
 629 * this call will have been freed.  The request block parameter may still be
 630 * passed to usb_sg_cancel(), or it may be freed.  It could also be
 631 * reinitialized and then reused.
 632 *
 633 * Data Transfer Rates:
 634 *
 635 * Bulk transfers are valid for full or high speed endpoints.
 636 * The best full speed data rate is 19 packets of 64 bytes each
 637 * per frame, or 1216 bytes per millisecond.
 638 * The best high speed data rate is 13 packets of 512 bytes each
 639 * per microframe, or 52 KBytes per millisecond.
 640 *
 641 * The reason to use interrupt transfers through this API would most likely
 642 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
 643 * could be transferred.  That capability is less useful for low or full
 644 * speed interrupt endpoints, which allow at most one packet per millisecond,
 645 * of at most 8 or 64 bytes (respectively).
 646 *
 647 * It is not necessary to call this function to reserve bandwidth for devices
 648 * under an xHCI host controller, as the bandwidth is reserved when the
 649 * configuration or interface alt setting is selected.
 650 */
 651void usb_sg_wait(struct usb_sg_request *io)
 652{
 653	int i;
 654	int entries = io->entries;
 655
 656	/* queue the urbs.  */
 657	spin_lock_irq(&io->lock);
 658	i = 0;
 659	while (i < entries && !io->status) {
 660		int retval;
 661
 662		io->urbs[i]->dev = io->dev;
 663		spin_unlock_irq(&io->lock);
 664
 665		retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
 666
 
 
 
 
 667		switch (retval) {
 668			/* maybe we retrying will recover */
 669		case -ENXIO:	/* hc didn't queue this one */
 670		case -EAGAIN:
 671		case -ENOMEM:
 672			retval = 0;
 673			yield();
 674			break;
 675
 676			/* no error? continue immediately.
 677			 *
 678			 * NOTE: to work better with UHCI (4K I/O buffer may
 679			 * need 3K of TDs) it may be good to limit how many
 680			 * URBs are queued at once; N milliseconds?
 681			 */
 682		case 0:
 683			++i;
 684			cpu_relax();
 685			break;
 686
 687			/* fail any uncompleted urbs */
 688		default:
 689			io->urbs[i]->status = retval;
 690			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
 691				__func__, retval);
 692			usb_sg_cancel(io);
 693		}
 694		spin_lock_irq(&io->lock);
 695		if (retval && (io->status == 0 || io->status == -ECONNRESET))
 696			io->status = retval;
 697	}
 698	io->count -= entries - i;
 699	if (io->count == 0)
 700		complete(&io->complete);
 701	spin_unlock_irq(&io->lock);
 702
 703	/* OK, yes, this could be packaged as non-blocking.
 704	 * So could the submit loop above ... but it's easier to
 705	 * solve neither problem than to solve both!
 706	 */
 707	wait_for_completion(&io->complete);
 708
 709	sg_clean(io);
 710}
 711EXPORT_SYMBOL_GPL(usb_sg_wait);
 712
 713/**
 714 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
 715 * @io: request block, initialized with usb_sg_init()
 716 *
 717 * This stops a request after it has been started by usb_sg_wait().
 718 * It can also prevents one initialized by usb_sg_init() from starting,
 719 * so that call just frees resources allocated to the request.
 720 */
 721void usb_sg_cancel(struct usb_sg_request *io)
 722{
 723	unsigned long flags;
 724	int i, retval;
 725
 726	spin_lock_irqsave(&io->lock, flags);
 727	if (io->status || io->count == 0) {
 728		spin_unlock_irqrestore(&io->lock, flags);
 729		return;
 730	}
 731	/* shut everything down */
 732	io->status = -ECONNRESET;
 733	io->count++;		/* Keep the request alive until we're done */
 734	spin_unlock_irqrestore(&io->lock, flags);
 735
 736	for (i = io->entries - 1; i >= 0; --i) {
 737		usb_block_urb(io->urbs[i]);
 
 
 
 
 
 
 738
 739		retval = usb_unlink_urb(io->urbs[i]);
 740		if (retval != -EINPROGRESS
 741		    && retval != -ENODEV
 742		    && retval != -EBUSY
 743		    && retval != -EIDRM)
 744			dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
 745				 __func__, retval);
 
 
 
 
 746	}
 747
 748	spin_lock_irqsave(&io->lock, flags);
 749	io->count--;
 750	if (!io->count)
 751		complete(&io->complete);
 752	spin_unlock_irqrestore(&io->lock, flags);
 753}
 754EXPORT_SYMBOL_GPL(usb_sg_cancel);
 755
 756/*-------------------------------------------------------------------*/
 757
 758/**
 759 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
 760 * @dev: the device whose descriptor is being retrieved
 761 * @type: the descriptor type (USB_DT_*)
 762 * @index: the number of the descriptor
 763 * @buf: where to put the descriptor
 764 * @size: how big is "buf"?
 765 *
 766 * Context: task context, might sleep.
 767 *
 768 * Gets a USB descriptor.  Convenience functions exist to simplify
 769 * getting some types of descriptors.  Use
 770 * usb_get_string() or usb_string() for USB_DT_STRING.
 771 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
 772 * are part of the device structure.
 773 * In addition to a number of USB-standard descriptors, some
 774 * devices also use class-specific or vendor-specific descriptors.
 775 *
 776 * This call is synchronous, and may not be used in an interrupt context.
 777 *
 778 * Return: The number of bytes received on success, or else the status code
 779 * returned by the underlying usb_control_msg() call.
 780 */
 781int usb_get_descriptor(struct usb_device *dev, unsigned char type,
 782		       unsigned char index, void *buf, int size)
 783{
 784	int i;
 785	int result;
 786
 787	if (size <= 0)		/* No point in asking for no data */
 788		return -EINVAL;
 789
 790	memset(buf, 0, size);	/* Make sure we parse really received data */
 791
 792	for (i = 0; i < 3; ++i) {
 793		/* retry on length 0 or error; some devices are flakey */
 794		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 795				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
 796				(type << 8) + index, 0, buf, size,
 797				USB_CTRL_GET_TIMEOUT);
 798		if (result <= 0 && result != -ETIMEDOUT)
 799			continue;
 800		if (result > 1 && ((u8 *)buf)[1] != type) {
 801			result = -ENODATA;
 802			continue;
 803		}
 804		break;
 805	}
 806	return result;
 807}
 808EXPORT_SYMBOL_GPL(usb_get_descriptor);
 809
 810/**
 811 * usb_get_string - gets a string descriptor
 812 * @dev: the device whose string descriptor is being retrieved
 813 * @langid: code for language chosen (from string descriptor zero)
 814 * @index: the number of the descriptor
 815 * @buf: where to put the string
 816 * @size: how big is "buf"?
 817 *
 818 * Context: task context, might sleep.
 819 *
 820 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
 821 * in little-endian byte order).
 822 * The usb_string() function will often be a convenient way to turn
 823 * these strings into kernel-printable form.
 824 *
 825 * Strings may be referenced in device, configuration, interface, or other
 826 * descriptors, and could also be used in vendor-specific ways.
 827 *
 828 * This call is synchronous, and may not be used in an interrupt context.
 829 *
 830 * Return: The number of bytes received on success, or else the status code
 831 * returned by the underlying usb_control_msg() call.
 832 */
 833static int usb_get_string(struct usb_device *dev, unsigned short langid,
 834			  unsigned char index, void *buf, int size)
 835{
 836	int i;
 837	int result;
 838
 839	if (size <= 0)		/* No point in asking for no data */
 840		return -EINVAL;
 841
 842	for (i = 0; i < 3; ++i) {
 843		/* retry on length 0 or stall; some devices are flakey */
 844		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 845			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
 846			(USB_DT_STRING << 8) + index, langid, buf, size,
 847			USB_CTRL_GET_TIMEOUT);
 848		if (result == 0 || result == -EPIPE)
 849			continue;
 850		if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
 851			result = -ENODATA;
 852			continue;
 853		}
 854		break;
 855	}
 856	return result;
 857}
 858
 859static void usb_try_string_workarounds(unsigned char *buf, int *length)
 860{
 861	int newlength, oldlength = *length;
 862
 863	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
 864		if (!isprint(buf[newlength]) || buf[newlength + 1])
 865			break;
 866
 867	if (newlength > 2) {
 868		buf[0] = newlength;
 869		*length = newlength;
 870	}
 871}
 872
 873static int usb_string_sub(struct usb_device *dev, unsigned int langid,
 874			  unsigned int index, unsigned char *buf)
 875{
 876	int rc;
 877
 878	/* Try to read the string descriptor by asking for the maximum
 879	 * possible number of bytes */
 880	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
 881		rc = -EIO;
 882	else
 883		rc = usb_get_string(dev, langid, index, buf, 255);
 884
 885	/* If that failed try to read the descriptor length, then
 886	 * ask for just that many bytes */
 887	if (rc < 2) {
 888		rc = usb_get_string(dev, langid, index, buf, 2);
 889		if (rc == 2)
 890			rc = usb_get_string(dev, langid, index, buf, buf[0]);
 891	}
 892
 893	if (rc >= 2) {
 894		if (!buf[0] && !buf[1])
 895			usb_try_string_workarounds(buf, &rc);
 896
 897		/* There might be extra junk at the end of the descriptor */
 898		if (buf[0] < rc)
 899			rc = buf[0];
 900
 901		rc = rc - (rc & 1); /* force a multiple of two */
 902	}
 903
 904	if (rc < 2)
 905		rc = (rc < 0 ? rc : -EINVAL);
 906
 907	return rc;
 908}
 909
 910static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
 911{
 912	int err;
 913
 914	if (dev->have_langid)
 915		return 0;
 916
 917	if (dev->string_langid < 0)
 918		return -EPIPE;
 919
 920	err = usb_string_sub(dev, 0, 0, tbuf);
 921
 922	/* If the string was reported but is malformed, default to english
 923	 * (0x0409) */
 924	if (err == -ENODATA || (err > 0 && err < 4)) {
 925		dev->string_langid = 0x0409;
 926		dev->have_langid = 1;
 927		dev_err(&dev->dev,
 928			"language id specifier not provided by device, defaulting to English\n");
 
 
 929		return 0;
 930	}
 931
 932	/* In case of all other errors, we assume the device is not able to
 933	 * deal with strings at all. Set string_langid to -1 in order to
 934	 * prevent any string to be retrieved from the device */
 935	if (err < 0) {
 936		dev_info(&dev->dev, "string descriptor 0 read error: %d\n",
 937					err);
 938		dev->string_langid = -1;
 939		return -EPIPE;
 940	}
 941
 942	/* always use the first langid listed */
 943	dev->string_langid = tbuf[2] | (tbuf[3] << 8);
 944	dev->have_langid = 1;
 945	dev_dbg(&dev->dev, "default language 0x%04x\n",
 946				dev->string_langid);
 947	return 0;
 948}
 949
 950/**
 951 * usb_string - returns UTF-8 version of a string descriptor
 952 * @dev: the device whose string descriptor is being retrieved
 953 * @index: the number of the descriptor
 954 * @buf: where to put the string
 955 * @size: how big is "buf"?
 956 *
 957 * Context: task context, might sleep.
 958 *
 959 * This converts the UTF-16LE encoded strings returned by devices, from
 960 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
 961 * that are more usable in most kernel contexts.  Note that this function
 962 * chooses strings in the first language supported by the device.
 963 *
 964 * This call is synchronous, and may not be used in an interrupt context.
 965 *
 966 * Return: length of the string (>= 0) or usb_control_msg status (< 0).
 967 */
 968int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
 969{
 970	unsigned char *tbuf;
 971	int err;
 972
 973	if (dev->state == USB_STATE_SUSPENDED)
 974		return -EHOSTUNREACH;
 975	if (size <= 0 || !buf)
 976		return -EINVAL;
 977	buf[0] = 0;
 978	if (index <= 0 || index >= 256)
 979		return -EINVAL;
 980	tbuf = kmalloc(256, GFP_NOIO);
 981	if (!tbuf)
 982		return -ENOMEM;
 983
 984	err = usb_get_langid(dev, tbuf);
 985	if (err < 0)
 986		goto errout;
 987
 988	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
 989	if (err < 0)
 990		goto errout;
 991
 992	size--;		/* leave room for trailing NULL char in output buffer */
 993	err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
 994			UTF16_LITTLE_ENDIAN, buf, size);
 995	buf[err] = 0;
 996
 997	if (tbuf[1] != USB_DT_STRING)
 998		dev_dbg(&dev->dev,
 999			"wrong descriptor type %02x for string %d (\"%s\")\n",
1000			tbuf[1], index, buf);
1001
1002 errout:
1003	kfree(tbuf);
1004	return err;
1005}
1006EXPORT_SYMBOL_GPL(usb_string);
1007
1008/* one UTF-8-encoded 16-bit character has at most three bytes */
1009#define MAX_USB_STRING_SIZE (127 * 3 + 1)
1010
1011/**
1012 * usb_cache_string - read a string descriptor and cache it for later use
1013 * @udev: the device whose string descriptor is being read
1014 * @index: the descriptor index
1015 *
1016 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
1017 * or %NULL if the index is 0 or the string could not be read.
1018 */
1019char *usb_cache_string(struct usb_device *udev, int index)
1020{
1021	char *buf;
1022	char *smallbuf = NULL;
1023	int len;
1024
1025	if (index <= 0)
1026		return NULL;
1027
1028	buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
1029	if (buf) {
1030		len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
1031		if (len > 0) {
1032			smallbuf = kmalloc(++len, GFP_NOIO);
1033			if (!smallbuf)
1034				return buf;
1035			memcpy(smallbuf, buf, len);
1036		}
1037		kfree(buf);
1038	}
1039	return smallbuf;
1040}
1041EXPORT_SYMBOL_GPL(usb_cache_string);
1042
1043/*
1044 * usb_get_device_descriptor - read the device descriptor
1045 * @udev: the device whose device descriptor should be read
 
 
1046 *
1047 * Context: task context, might sleep.
 
1048 *
1049 * Not exported, only for use by the core.  If drivers really want to read
1050 * the device descriptor directly, they can call usb_get_descriptor() with
1051 * type = USB_DT_DEVICE and index = 0.
1052 *
1053 * Returns: a pointer to a dynamically allocated usb_device_descriptor
1054 * structure (which the caller must deallocate), or an ERR_PTR value.
 
 
1055 */
1056struct usb_device_descriptor *usb_get_device_descriptor(struct usb_device *udev)
1057{
1058	struct usb_device_descriptor *desc;
1059	int ret;
1060
 
 
1061	desc = kmalloc(sizeof(*desc), GFP_NOIO);
1062	if (!desc)
1063		return ERR_PTR(-ENOMEM);
1064
1065	ret = usb_get_descriptor(udev, USB_DT_DEVICE, 0, desc, sizeof(*desc));
1066	if (ret == sizeof(*desc))
1067		return desc;
1068
 
1069	if (ret >= 0)
1070		ret = -EMSGSIZE;
1071	kfree(desc);
1072	return ERR_PTR(ret);
1073}
1074
1075/*
1076 * usb_set_isoch_delay - informs the device of the packet transmit delay
1077 * @dev: the device whose delay is to be informed
1078 * Context: task context, might sleep
1079 *
1080 * Since this is an optional request, we don't bother if it fails.
1081 */
1082int usb_set_isoch_delay(struct usb_device *dev)
1083{
1084	/* skip hub devices */
1085	if (dev->descriptor.bDeviceClass == USB_CLASS_HUB)
1086		return 0;
1087
1088	/* skip non-SS/non-SSP devices */
1089	if (dev->speed < USB_SPEED_SUPER)
1090		return 0;
1091
1092	return usb_control_msg_send(dev, 0,
1093			USB_REQ_SET_ISOCH_DELAY,
1094			USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
1095			dev->hub_delay, 0, NULL, 0,
1096			USB_CTRL_SET_TIMEOUT,
1097			GFP_NOIO);
1098}
1099
1100/**
1101 * usb_get_status - issues a GET_STATUS call
1102 * @dev: the device whose status is being checked
1103 * @recip: USB_RECIP_*; for device, interface, or endpoint
1104 * @type: USB_STATUS_TYPE_*; for standard or PTM status types
1105 * @target: zero (for device), else interface or endpoint number
1106 * @data: pointer to two bytes of bitmap data
1107 *
1108 * Context: task context, might sleep.
1109 *
1110 * Returns device, interface, or endpoint status.  Normally only of
1111 * interest to see if the device is self powered, or has enabled the
1112 * remote wakeup facility; or whether a bulk or interrupt endpoint
1113 * is halted ("stalled").
1114 *
1115 * Bits in these status bitmaps are set using the SET_FEATURE request,
1116 * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
1117 * function should be used to clear halt ("stall") status.
1118 *
1119 * This call is synchronous, and may not be used in an interrupt context.
1120 *
1121 * Returns 0 and the status value in *@data (in host byte order) on success,
1122 * or else the status code from the underlying usb_control_msg() call.
1123 */
1124int usb_get_status(struct usb_device *dev, int recip, int type, int target,
1125		void *data)
1126{
1127	int ret;
1128	void *status;
1129	int length;
1130
1131	switch (type) {
1132	case USB_STATUS_TYPE_STANDARD:
1133		length = 2;
1134		break;
1135	case USB_STATUS_TYPE_PTM:
1136		if (recip != USB_RECIP_DEVICE)
1137			return -EINVAL;
1138
1139		length = 4;
1140		break;
1141	default:
1142		return -EINVAL;
1143	}
1144
1145	status =  kmalloc(length, GFP_KERNEL);
1146	if (!status)
1147		return -ENOMEM;
1148
1149	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
1150		USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD,
1151		target, status, length, USB_CTRL_GET_TIMEOUT);
1152
1153	switch (ret) {
1154	case 4:
1155		if (type != USB_STATUS_TYPE_PTM) {
1156			ret = -EIO;
1157			break;
1158		}
1159
1160		*(u32 *) data = le32_to_cpu(*(__le32 *) status);
1161		ret = 0;
1162		break;
1163	case 2:
1164		if (type != USB_STATUS_TYPE_STANDARD) {
1165			ret = -EIO;
1166			break;
1167		}
1168
1169		*(u16 *) data = le16_to_cpu(*(__le16 *) status);
1170		ret = 0;
1171		break;
1172	default:
1173		ret = -EIO;
1174	}
1175
 
1176	kfree(status);
1177	return ret;
1178}
1179EXPORT_SYMBOL_GPL(usb_get_status);
1180
1181/**
1182 * usb_clear_halt - tells device to clear endpoint halt/stall condition
1183 * @dev: device whose endpoint is halted
1184 * @pipe: endpoint "pipe" being cleared
1185 *
1186 * Context: task context, might sleep.
1187 *
1188 * This is used to clear halt conditions for bulk and interrupt endpoints,
1189 * as reported by URB completion status.  Endpoints that are halted are
1190 * sometimes referred to as being "stalled".  Such endpoints are unable
1191 * to transmit or receive data until the halt status is cleared.  Any URBs
1192 * queued for such an endpoint should normally be unlinked by the driver
1193 * before clearing the halt condition, as described in sections 5.7.5
1194 * and 5.8.5 of the USB 2.0 spec.
1195 *
1196 * Note that control and isochronous endpoints don't halt, although control
1197 * endpoints report "protocol stall" (for unsupported requests) using the
1198 * same status code used to report a true stall.
1199 *
1200 * This call is synchronous, and may not be used in an interrupt context.
1201 *
1202 * Return: Zero on success, or else the status code returned by the
1203 * underlying usb_control_msg() call.
1204 */
1205int usb_clear_halt(struct usb_device *dev, int pipe)
1206{
1207	int result;
1208	int endp = usb_pipeendpoint(pipe);
1209
1210	if (usb_pipein(pipe))
1211		endp |= USB_DIR_IN;
1212
1213	/* we don't care if it wasn't halted first. in fact some devices
1214	 * (like some ibmcam model 1 units) seem to expect hosts to make
1215	 * this request for iso endpoints, which can't halt!
1216	 */
1217	result = usb_control_msg_send(dev, 0,
1218				      USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1219				      USB_ENDPOINT_HALT, endp, NULL, 0,
1220				      USB_CTRL_SET_TIMEOUT, GFP_NOIO);
1221
1222	/* don't un-halt or force to DATA0 except on success */
1223	if (result)
1224		return result;
1225
1226	/* NOTE:  seems like Microsoft and Apple don't bother verifying
1227	 * the clear "took", so some devices could lock up if you check...
1228	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1229	 *
1230	 * NOTE:  make sure the logic here doesn't diverge much from
1231	 * the copy in usb-storage, for as long as we need two copies.
1232	 */
1233
1234	usb_reset_endpoint(dev, endp);
1235
1236	return 0;
1237}
1238EXPORT_SYMBOL_GPL(usb_clear_halt);
1239
1240static int create_intf_ep_devs(struct usb_interface *intf)
1241{
1242	struct usb_device *udev = interface_to_usbdev(intf);
1243	struct usb_host_interface *alt = intf->cur_altsetting;
1244	int i;
1245
1246	if (intf->ep_devs_created || intf->unregistering)
1247		return 0;
1248
1249	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1250		(void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1251	intf->ep_devs_created = 1;
1252	return 0;
1253}
1254
1255static void remove_intf_ep_devs(struct usb_interface *intf)
1256{
1257	struct usb_host_interface *alt = intf->cur_altsetting;
1258	int i;
1259
1260	if (!intf->ep_devs_created)
1261		return;
1262
1263	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1264		usb_remove_ep_devs(&alt->endpoint[i]);
1265	intf->ep_devs_created = 0;
1266}
1267
1268/**
1269 * usb_disable_endpoint -- Disable an endpoint by address
1270 * @dev: the device whose endpoint is being disabled
1271 * @epaddr: the endpoint's address.  Endpoint number for output,
1272 *	endpoint number + USB_DIR_IN for input
1273 * @reset_hardware: flag to erase any endpoint state stored in the
1274 *	controller hardware
1275 *
1276 * Disables the endpoint for URB submission and nukes all pending URBs.
1277 * If @reset_hardware is set then also deallocates hcd/hardware state
1278 * for the endpoint.
1279 */
1280void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1281		bool reset_hardware)
1282{
1283	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1284	struct usb_host_endpoint *ep;
1285
1286	if (!dev)
1287		return;
1288
1289	if (usb_endpoint_out(epaddr)) {
1290		ep = dev->ep_out[epnum];
1291		if (reset_hardware && epnum != 0)
1292			dev->ep_out[epnum] = NULL;
1293	} else {
1294		ep = dev->ep_in[epnum];
1295		if (reset_hardware && epnum != 0)
1296			dev->ep_in[epnum] = NULL;
1297	}
1298	if (ep) {
1299		ep->enabled = 0;
1300		usb_hcd_flush_endpoint(dev, ep);
1301		if (reset_hardware)
1302			usb_hcd_disable_endpoint(dev, ep);
1303	}
1304}
1305
1306/**
1307 * usb_reset_endpoint - Reset an endpoint's state.
1308 * @dev: the device whose endpoint is to be reset
1309 * @epaddr: the endpoint's address.  Endpoint number for output,
1310 *	endpoint number + USB_DIR_IN for input
1311 *
1312 * Resets any host-side endpoint state such as the toggle bit,
1313 * sequence number or current window.
1314 */
1315void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1316{
1317	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1318	struct usb_host_endpoint *ep;
1319
1320	if (usb_endpoint_out(epaddr))
1321		ep = dev->ep_out[epnum];
1322	else
1323		ep = dev->ep_in[epnum];
1324	if (ep)
1325		usb_hcd_reset_endpoint(dev, ep);
1326}
1327EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1328
1329
1330/**
1331 * usb_disable_interface -- Disable all endpoints for an interface
1332 * @dev: the device whose interface is being disabled
1333 * @intf: pointer to the interface descriptor
1334 * @reset_hardware: flag to erase any endpoint state stored in the
1335 *	controller hardware
1336 *
1337 * Disables all the endpoints for the interface's current altsetting.
1338 */
1339void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1340		bool reset_hardware)
1341{
1342	struct usb_host_interface *alt = intf->cur_altsetting;
1343	int i;
1344
1345	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1346		usb_disable_endpoint(dev,
1347				alt->endpoint[i].desc.bEndpointAddress,
1348				reset_hardware);
1349	}
1350}
1351
1352/*
1353 * usb_disable_device_endpoints -- Disable all endpoints for a device
1354 * @dev: the device whose endpoints are being disabled
1355 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1356 */
1357static void usb_disable_device_endpoints(struct usb_device *dev, int skip_ep0)
1358{
1359	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1360	int i;
1361
1362	if (hcd->driver->check_bandwidth) {
1363		/* First pass: Cancel URBs, leave endpoint pointers intact. */
1364		for (i = skip_ep0; i < 16; ++i) {
1365			usb_disable_endpoint(dev, i, false);
1366			usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1367		}
1368		/* Remove endpoints from the host controller internal state */
1369		mutex_lock(hcd->bandwidth_mutex);
1370		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1371		mutex_unlock(hcd->bandwidth_mutex);
1372	}
1373	/* Second pass: remove endpoint pointers */
1374	for (i = skip_ep0; i < 16; ++i) {
1375		usb_disable_endpoint(dev, i, true);
1376		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1377	}
1378}
1379
1380/**
1381 * usb_disable_device - Disable all the endpoints for a USB device
1382 * @dev: the device whose endpoints are being disabled
1383 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1384 *
1385 * Disables all the device's endpoints, potentially including endpoint 0.
1386 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1387 * pending urbs) and usbcore state for the interfaces, so that usbcore
1388 * must usb_set_configuration() before any interfaces could be used.
1389 */
1390void usb_disable_device(struct usb_device *dev, int skip_ep0)
1391{
1392	int i;
 
1393
1394	/* getting rid of interfaces will disconnect
1395	 * any drivers bound to them (a key side effect)
1396	 */
1397	if (dev->actconfig) {
1398		/*
1399		 * FIXME: In order to avoid self-deadlock involving the
1400		 * bandwidth_mutex, we have to mark all the interfaces
1401		 * before unregistering any of them.
1402		 */
1403		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1404			dev->actconfig->interface[i]->unregistering = 1;
1405
1406		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1407			struct usb_interface	*interface;
1408
1409			/* remove this interface if it has been registered */
1410			interface = dev->actconfig->interface[i];
1411			if (!device_is_registered(&interface->dev))
1412				continue;
1413			dev_dbg(&dev->dev, "unregistering interface %s\n",
1414				dev_name(&interface->dev));
1415			remove_intf_ep_devs(interface);
1416			device_del(&interface->dev);
1417		}
1418
1419		/* Now that the interfaces are unbound, nobody should
1420		 * try to access them.
1421		 */
1422		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1423			put_device(&dev->actconfig->interface[i]->dev);
1424			dev->actconfig->interface[i] = NULL;
1425		}
1426
1427		usb_disable_usb2_hardware_lpm(dev);
1428		usb_unlocked_disable_lpm(dev);
1429		usb_disable_ltm(dev);
1430
1431		dev->actconfig = NULL;
1432		if (dev->state == USB_STATE_CONFIGURED)
1433			usb_set_device_state(dev, USB_STATE_ADDRESS);
1434	}
1435
1436	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1437		skip_ep0 ? "non-ep0" : "all");
1438
1439	usb_disable_device_endpoints(dev, skip_ep0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1440}
1441
1442/**
1443 * usb_enable_endpoint - Enable an endpoint for USB communications
1444 * @dev: the device whose interface is being enabled
1445 * @ep: the endpoint
1446 * @reset_ep: flag to reset the endpoint state
1447 *
1448 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1449 * For control endpoints, both the input and output sides are handled.
1450 */
1451void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1452		bool reset_ep)
1453{
1454	int epnum = usb_endpoint_num(&ep->desc);
1455	int is_out = usb_endpoint_dir_out(&ep->desc);
1456	int is_control = usb_endpoint_xfer_control(&ep->desc);
1457
1458	if (reset_ep)
1459		usb_hcd_reset_endpoint(dev, ep);
1460	if (is_out || is_control)
1461		dev->ep_out[epnum] = ep;
1462	if (!is_out || is_control)
1463		dev->ep_in[epnum] = ep;
1464	ep->enabled = 1;
1465}
1466
1467/**
1468 * usb_enable_interface - Enable all the endpoints for an interface
1469 * @dev: the device whose interface is being enabled
1470 * @intf: pointer to the interface descriptor
1471 * @reset_eps: flag to reset the endpoints' state
1472 *
1473 * Enables all the endpoints for the interface's current altsetting.
1474 */
1475void usb_enable_interface(struct usb_device *dev,
1476		struct usb_interface *intf, bool reset_eps)
1477{
1478	struct usb_host_interface *alt = intf->cur_altsetting;
1479	int i;
1480
1481	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1482		usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1483}
1484
1485/**
1486 * usb_set_interface - Makes a particular alternate setting be current
1487 * @dev: the device whose interface is being updated
1488 * @interface: the interface being updated
1489 * @alternate: the setting being chosen.
1490 *
1491 * Context: task context, might sleep.
1492 *
1493 * This is used to enable data transfers on interfaces that may not
1494 * be enabled by default.  Not all devices support such configurability.
1495 * Only the driver bound to an interface may change its setting.
1496 *
1497 * Within any given configuration, each interface may have several
1498 * alternative settings.  These are often used to control levels of
1499 * bandwidth consumption.  For example, the default setting for a high
1500 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1501 * while interrupt transfers of up to 3KBytes per microframe are legal.
1502 * Also, isochronous endpoints may never be part of an
1503 * interface's default setting.  To access such bandwidth, alternate
1504 * interface settings must be made current.
1505 *
1506 * Note that in the Linux USB subsystem, bandwidth associated with
1507 * an endpoint in a given alternate setting is not reserved until an URB
1508 * is submitted that needs that bandwidth.  Some other operating systems
1509 * allocate bandwidth early, when a configuration is chosen.
1510 *
1511 * xHCI reserves bandwidth and configures the alternate setting in
1512 * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting
1513 * may be disabled. Drivers cannot rely on any particular alternate
1514 * setting being in effect after a failure.
1515 *
1516 * This call is synchronous, and may not be used in an interrupt context.
1517 * Also, drivers must not change altsettings while urbs are scheduled for
1518 * endpoints in that interface; all such urbs must first be completed
1519 * (perhaps forced by unlinking).
1520 *
1521 * Return: Zero on success, or else the status code returned by the
1522 * underlying usb_control_msg() call.
1523 */
1524int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1525{
1526	struct usb_interface *iface;
1527	struct usb_host_interface *alt;
1528	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1529	int i, ret, manual = 0;
 
1530	unsigned int epaddr;
1531	unsigned int pipe;
1532
1533	if (dev->state == USB_STATE_SUSPENDED)
1534		return -EHOSTUNREACH;
1535
1536	iface = usb_ifnum_to_if(dev, interface);
1537	if (!iface) {
1538		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1539			interface);
1540		return -EINVAL;
1541	}
1542	if (iface->unregistering)
1543		return -ENODEV;
1544
1545	alt = usb_altnum_to_altsetting(iface, alternate);
1546	if (!alt) {
1547		dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1548			 alternate);
1549		return -EINVAL;
1550	}
1551	/*
1552	 * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth,
1553	 * including freeing dropped endpoint ring buffers.
1554	 * Make sure the interface endpoints are flushed before that
1555	 */
1556	usb_disable_interface(dev, iface, false);
1557
1558	/* Make sure we have enough bandwidth for this alternate interface.
1559	 * Remove the current alt setting and add the new alt setting.
1560	 */
1561	mutex_lock(hcd->bandwidth_mutex);
1562	/* Disable LPM, and re-enable it once the new alt setting is installed,
1563	 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1564	 */
1565	if (usb_disable_lpm(dev)) {
1566		dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__);
1567		mutex_unlock(hcd->bandwidth_mutex);
1568		return -ENOMEM;
1569	}
1570	/* Changing alt-setting also frees any allocated streams */
1571	for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1572		iface->cur_altsetting->endpoint[i].streams = 0;
1573
1574	ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1575	if (ret < 0) {
1576		dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1577				alternate);
1578		usb_enable_lpm(dev);
1579		mutex_unlock(hcd->bandwidth_mutex);
1580		return ret;
1581	}
1582
1583	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1584		ret = -EPIPE;
1585	else
1586		ret = usb_control_msg_send(dev, 0,
1587					   USB_REQ_SET_INTERFACE,
1588					   USB_RECIP_INTERFACE, alternate,
1589					   interface, NULL, 0, 5000,
1590					   GFP_NOIO);
1591
1592	/* 9.4.10 says devices don't need this and are free to STALL the
1593	 * request if the interface only has one alternate setting.
1594	 */
1595	if (ret == -EPIPE && iface->num_altsetting == 1) {
1596		dev_dbg(&dev->dev,
1597			"manual set_interface for iface %d, alt %d\n",
1598			interface, alternate);
1599		manual = 1;
1600	} else if (ret) {
1601		/* Re-instate the old alt setting */
1602		usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1603		usb_enable_lpm(dev);
1604		mutex_unlock(hcd->bandwidth_mutex);
1605		return ret;
1606	}
1607	mutex_unlock(hcd->bandwidth_mutex);
1608
1609	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1610	 * when they implement async or easily-killable versions of this or
1611	 * other "should-be-internal" functions (like clear_halt).
1612	 * should hcd+usbcore postprocess control requests?
1613	 */
1614
1615	/* prevent submissions using previous endpoint settings */
1616	if (iface->cur_altsetting != alt) {
1617		remove_intf_ep_devs(iface);
1618		usb_remove_sysfs_intf_files(iface);
1619	}
1620	usb_disable_interface(dev, iface, true);
1621
1622	iface->cur_altsetting = alt;
1623
1624	/* Now that the interface is installed, re-enable LPM. */
1625	usb_unlocked_enable_lpm(dev);
1626
1627	/* If the interface only has one altsetting and the device didn't
1628	 * accept the request, we attempt to carry out the equivalent action
1629	 * by manually clearing the HALT feature for each endpoint in the
1630	 * new altsetting.
1631	 */
1632	if (manual) {
 
 
1633		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1634			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1635			pipe = __create_pipe(dev,
1636					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1637					(usb_endpoint_out(epaddr) ?
1638					USB_DIR_OUT : USB_DIR_IN);
1639
1640			usb_clear_halt(dev, pipe);
1641		}
1642	}
1643
1644	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1645	 *
1646	 * Note:
1647	 * Despite EP0 is always present in all interfaces/AS, the list of
1648	 * endpoints from the descriptor does not contain EP0. Due to its
1649	 * omnipresence one might expect EP0 being considered "affected" by
1650	 * any SetInterface request and hence assume toggles need to be reset.
1651	 * However, EP0 toggles are re-synced for every individual transfer
1652	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1653	 * (Likewise, EP0 never "halts" on well designed devices.)
1654	 */
1655	usb_enable_interface(dev, iface, true);
1656	if (device_is_registered(&iface->dev)) {
1657		usb_create_sysfs_intf_files(iface);
1658		create_intf_ep_devs(iface);
1659	}
1660	return 0;
1661}
1662EXPORT_SYMBOL_GPL(usb_set_interface);
1663
1664/**
1665 * usb_reset_configuration - lightweight device reset
1666 * @dev: the device whose configuration is being reset
1667 *
1668 * This issues a standard SET_CONFIGURATION request to the device using
1669 * the current configuration.  The effect is to reset most USB-related
1670 * state in the device, including interface altsettings (reset to zero),
1671 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1672 * endpoints).  Other usbcore state is unchanged, including bindings of
1673 * usb device drivers to interfaces.
1674 *
1675 * Because this affects multiple interfaces, avoid using this with composite
1676 * (multi-interface) devices.  Instead, the driver for each interface may
1677 * use usb_set_interface() on the interfaces it claims.  Be careful though;
1678 * some devices don't support the SET_INTERFACE request, and others won't
1679 * reset all the interface state (notably endpoint state).  Resetting the whole
1680 * configuration would affect other drivers' interfaces.
1681 *
1682 * The caller must own the device lock.
1683 *
1684 * Return: Zero on success, else a negative error code.
1685 *
1686 * If this routine fails the device will probably be in an unusable state
1687 * with endpoints disabled, and interfaces only partially enabled.
1688 */
1689int usb_reset_configuration(struct usb_device *dev)
1690{
1691	int			i, retval;
1692	struct usb_host_config	*config;
1693	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1694
1695	if (dev->state == USB_STATE_SUSPENDED)
1696		return -EHOSTUNREACH;
1697
1698	/* caller must have locked the device and must own
1699	 * the usb bus readlock (so driver bindings are stable);
1700	 * calls during probe() are fine
1701	 */
1702
1703	usb_disable_device_endpoints(dev, 1); /* skip ep0*/
 
 
 
1704
1705	config = dev->actconfig;
1706	retval = 0;
1707	mutex_lock(hcd->bandwidth_mutex);
1708	/* Disable LPM, and re-enable it once the configuration is reset, so
1709	 * that the xHCI driver can recalculate the U1/U2 timeouts.
1710	 */
1711	if (usb_disable_lpm(dev)) {
1712		dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1713		mutex_unlock(hcd->bandwidth_mutex);
1714		return -ENOMEM;
1715	}
 
 
 
 
1716
1717	/* xHCI adds all endpoints in usb_hcd_alloc_bandwidth */
1718	retval = usb_hcd_alloc_bandwidth(dev, config, NULL, NULL);
1719	if (retval < 0) {
1720		usb_enable_lpm(dev);
1721		mutex_unlock(hcd->bandwidth_mutex);
1722		return retval;
 
 
1723	}
1724	retval = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0,
1725				      config->desc.bConfigurationValue, 0,
1726				      NULL, 0, USB_CTRL_SET_TIMEOUT,
1727				      GFP_NOIO);
1728	if (retval) {
1729		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
 
 
 
 
 
 
 
 
1730		usb_enable_lpm(dev);
1731		mutex_unlock(hcd->bandwidth_mutex);
1732		return retval;
1733	}
 
 
 
 
 
 
1734	mutex_unlock(hcd->bandwidth_mutex);
1735
1736	/* re-init hc/hcd interface/endpoint state */
1737	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1738		struct usb_interface *intf = config->interface[i];
1739		struct usb_host_interface *alt;
1740
1741		alt = usb_altnum_to_altsetting(intf, 0);
1742
1743		/* No altsetting 0?  We'll assume the first altsetting.
1744		 * We could use a GetInterface call, but if a device is
1745		 * so non-compliant that it doesn't have altsetting 0
1746		 * then I wouldn't trust its reply anyway.
1747		 */
1748		if (!alt)
1749			alt = &intf->altsetting[0];
1750
1751		if (alt != intf->cur_altsetting) {
1752			remove_intf_ep_devs(intf);
1753			usb_remove_sysfs_intf_files(intf);
1754		}
1755		intf->cur_altsetting = alt;
1756		usb_enable_interface(dev, intf, true);
1757		if (device_is_registered(&intf->dev)) {
1758			usb_create_sysfs_intf_files(intf);
1759			create_intf_ep_devs(intf);
1760		}
1761	}
1762	/* Now that the interfaces are installed, re-enable LPM. */
1763	usb_unlocked_enable_lpm(dev);
1764	return 0;
1765}
1766EXPORT_SYMBOL_GPL(usb_reset_configuration);
1767
1768static void usb_release_interface(struct device *dev)
1769{
1770	struct usb_interface *intf = to_usb_interface(dev);
1771	struct usb_interface_cache *intfc =
1772			altsetting_to_usb_interface_cache(intf->altsetting);
1773
1774	kref_put(&intfc->ref, usb_release_interface_cache);
1775	usb_put_dev(interface_to_usbdev(intf));
1776	of_node_put(dev->of_node);
1777	kfree(intf);
1778}
1779
1780/*
1781 * usb_deauthorize_interface - deauthorize an USB interface
1782 *
1783 * @intf: USB interface structure
1784 */
1785void usb_deauthorize_interface(struct usb_interface *intf)
1786{
1787	struct device *dev = &intf->dev;
1788
1789	device_lock(dev->parent);
1790
1791	if (intf->authorized) {
1792		device_lock(dev);
1793		intf->authorized = 0;
1794		device_unlock(dev);
1795
1796		usb_forced_unbind_intf(intf);
1797	}
1798
1799	device_unlock(dev->parent);
1800}
1801
1802/*
1803 * usb_authorize_interface - authorize an USB interface
1804 *
1805 * @intf: USB interface structure
1806 */
1807void usb_authorize_interface(struct usb_interface *intf)
1808{
1809	struct device *dev = &intf->dev;
1810
1811	if (!intf->authorized) {
1812		device_lock(dev);
1813		intf->authorized = 1; /* authorize interface */
1814		device_unlock(dev);
1815	}
1816}
1817
1818static int usb_if_uevent(const struct device *dev, struct kobj_uevent_env *env)
1819{
1820	const struct usb_device *usb_dev;
1821	const struct usb_interface *intf;
1822	const struct usb_host_interface *alt;
1823
1824	intf = to_usb_interface(dev);
1825	usb_dev = interface_to_usbdev(intf);
1826	alt = intf->cur_altsetting;
1827
1828	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1829		   alt->desc.bInterfaceClass,
1830		   alt->desc.bInterfaceSubClass,
1831		   alt->desc.bInterfaceProtocol))
1832		return -ENOMEM;
1833
1834	if (add_uevent_var(env,
1835		   "MODALIAS=usb:"
1836		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1837		   le16_to_cpu(usb_dev->descriptor.idVendor),
1838		   le16_to_cpu(usb_dev->descriptor.idProduct),
1839		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1840		   usb_dev->descriptor.bDeviceClass,
1841		   usb_dev->descriptor.bDeviceSubClass,
1842		   usb_dev->descriptor.bDeviceProtocol,
1843		   alt->desc.bInterfaceClass,
1844		   alt->desc.bInterfaceSubClass,
1845		   alt->desc.bInterfaceProtocol,
1846		   alt->desc.bInterfaceNumber))
1847		return -ENOMEM;
1848
1849	return 0;
1850}
1851
 
 
 
 
 
 
 
 
1852struct device_type usb_if_device_type = {
1853	.name =		"usb_interface",
1854	.release =	usb_release_interface,
1855	.uevent =	usb_if_uevent,
1856};
1857
1858static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1859						struct usb_host_config *config,
1860						u8 inum)
1861{
1862	struct usb_interface_assoc_descriptor *retval = NULL;
1863	struct usb_interface_assoc_descriptor *intf_assoc;
1864	int first_intf;
1865	int last_intf;
1866	int i;
1867
1868	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1869		intf_assoc = config->intf_assoc[i];
1870		if (intf_assoc->bInterfaceCount == 0)
1871			continue;
1872
1873		first_intf = intf_assoc->bFirstInterface;
1874		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1875		if (inum >= first_intf && inum <= last_intf) {
1876			if (!retval)
1877				retval = intf_assoc;
1878			else
1879				dev_err(&dev->dev, "Interface #%d referenced"
1880					" by multiple IADs\n", inum);
1881		}
1882	}
1883
1884	return retval;
1885}
1886
1887
1888/*
1889 * Internal function to queue a device reset
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1890 * See usb_queue_reset_device() for more details
1891 */
1892static void __usb_queue_reset_device(struct work_struct *ws)
1893{
1894	int rc;
1895	struct usb_interface *iface =
1896		container_of(ws, struct usb_interface, reset_ws);
1897	struct usb_device *udev = interface_to_usbdev(iface);
1898
1899	rc = usb_lock_device_for_reset(udev, iface);
1900	if (rc >= 0) {
 
1901		usb_reset_device(udev);
 
1902		usb_unlock_device(udev);
1903	}
1904	usb_put_intf(iface);	/* Undo _get_ in usb_queue_reset_device() */
1905}
1906
1907/*
1908 * Internal function to set the wireless_status sysfs attribute
1909 * See usb_set_wireless_status() for more details
1910 */
1911static void __usb_wireless_status_intf(struct work_struct *ws)
1912{
1913	struct usb_interface *iface =
1914		container_of(ws, struct usb_interface, wireless_status_work);
1915
1916	device_lock(iface->dev.parent);
1917	if (iface->sysfs_files_created)
1918		usb_update_wireless_status_attr(iface);
1919	device_unlock(iface->dev.parent);
1920	usb_put_intf(iface);	/* Undo _get_ in usb_set_wireless_status() */
1921}
1922
1923/**
1924 * usb_set_wireless_status - sets the wireless_status struct member
1925 * @iface: the interface to modify
1926 * @status: the new wireless status
1927 *
1928 * Set the wireless_status struct member to the new value, and emit
1929 * sysfs changes as necessary.
1930 *
1931 * Returns: 0 on success, -EALREADY if already set.
1932 */
1933int usb_set_wireless_status(struct usb_interface *iface,
1934		enum usb_wireless_status status)
1935{
1936	if (iface->wireless_status == status)
1937		return -EALREADY;
1938
1939	usb_get_intf(iface);
1940	iface->wireless_status = status;
1941	schedule_work(&iface->wireless_status_work);
1942
1943	return 0;
1944}
1945EXPORT_SYMBOL_GPL(usb_set_wireless_status);
1946
1947/*
1948 * usb_set_configuration - Makes a particular device setting be current
1949 * @dev: the device whose configuration is being updated
1950 * @configuration: the configuration being chosen.
1951 *
1952 * Context: task context, might sleep. Caller holds device lock.
1953 *
1954 * This is used to enable non-default device modes.  Not all devices
1955 * use this kind of configurability; many devices only have one
1956 * configuration.
1957 *
1958 * @configuration is the value of the configuration to be installed.
1959 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1960 * must be non-zero; a value of zero indicates that the device in
1961 * unconfigured.  However some devices erroneously use 0 as one of their
1962 * configuration values.  To help manage such devices, this routine will
1963 * accept @configuration = -1 as indicating the device should be put in
1964 * an unconfigured state.
1965 *
1966 * USB device configurations may affect Linux interoperability,
1967 * power consumption and the functionality available.  For example,
1968 * the default configuration is limited to using 100mA of bus power,
1969 * so that when certain device functionality requires more power,
1970 * and the device is bus powered, that functionality should be in some
1971 * non-default device configuration.  Other device modes may also be
1972 * reflected as configuration options, such as whether two ISDN
1973 * channels are available independently; and choosing between open
1974 * standard device protocols (like CDC) or proprietary ones.
1975 *
1976 * Note that a non-authorized device (dev->authorized == 0) will only
1977 * be put in unconfigured mode.
1978 *
1979 * Note that USB has an additional level of device configurability,
1980 * associated with interfaces.  That configurability is accessed using
1981 * usb_set_interface().
1982 *
1983 * This call is synchronous. The calling context must be able to sleep,
1984 * must own the device lock, and must not hold the driver model's USB
1985 * bus mutex; usb interface driver probe() methods cannot use this routine.
1986 *
1987 * Returns zero on success, or else the status code returned by the
1988 * underlying call that failed.  On successful completion, each interface
1989 * in the original device configuration has been destroyed, and each one
1990 * in the new configuration has been probed by all relevant usb device
1991 * drivers currently known to the kernel.
1992 */
1993int usb_set_configuration(struct usb_device *dev, int configuration)
1994{
1995	int i, ret;
1996	struct usb_host_config *cp = NULL;
1997	struct usb_interface **new_interfaces = NULL;
1998	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1999	int n, nintf;
2000
2001	if (dev->authorized == 0 || configuration == -1)
2002		configuration = 0;
2003	else {
2004		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
2005			if (dev->config[i].desc.bConfigurationValue ==
2006					configuration) {
2007				cp = &dev->config[i];
2008				break;
2009			}
2010		}
2011	}
2012	if ((!cp && configuration != 0))
2013		return -EINVAL;
2014
2015	/* The USB spec says configuration 0 means unconfigured.
2016	 * But if a device includes a configuration numbered 0,
2017	 * we will accept it as a correctly configured state.
2018	 * Use -1 if you really want to unconfigure the device.
2019	 */
2020	if (cp && configuration == 0)
2021		dev_warn(&dev->dev, "config 0 descriptor??\n");
2022
2023	/* Allocate memory for new interfaces before doing anything else,
2024	 * so that if we run out then nothing will have changed. */
2025	n = nintf = 0;
2026	if (cp) {
2027		nintf = cp->desc.bNumInterfaces;
2028		new_interfaces = kmalloc_array(nintf, sizeof(*new_interfaces),
2029					       GFP_NOIO);
2030		if (!new_interfaces)
 
2031			return -ENOMEM;
 
2032
2033		for (; n < nintf; ++n) {
2034			new_interfaces[n] = kzalloc(
2035					sizeof(struct usb_interface),
2036					GFP_NOIO);
2037			if (!new_interfaces[n]) {
 
2038				ret = -ENOMEM;
2039free_interfaces:
2040				while (--n >= 0)
2041					kfree(new_interfaces[n]);
2042				kfree(new_interfaces);
2043				return ret;
2044			}
2045		}
2046
2047		i = dev->bus_mA - usb_get_max_power(dev, cp);
2048		if (i < 0)
2049			dev_warn(&dev->dev, "new config #%d exceeds power "
2050					"limit by %dmA\n",
2051					configuration, -i);
2052	}
2053
2054	/* Wake up the device so we can send it the Set-Config request */
2055	ret = usb_autoresume_device(dev);
2056	if (ret)
2057		goto free_interfaces;
2058
2059	/* if it's already configured, clear out old state first.
2060	 * getting rid of old interfaces means unbinding their drivers.
2061	 */
2062	if (dev->state != USB_STATE_ADDRESS)
2063		usb_disable_device(dev, 1);	/* Skip ep0 */
2064
2065	/* Get rid of pending async Set-Config requests for this device */
2066	cancel_async_set_config(dev);
2067
2068	/* Make sure we have bandwidth (and available HCD resources) for this
2069	 * configuration.  Remove endpoints from the schedule if we're dropping
2070	 * this configuration to set configuration 0.  After this point, the
2071	 * host controller will not allow submissions to dropped endpoints.  If
2072	 * this call fails, the device state is unchanged.
2073	 */
2074	mutex_lock(hcd->bandwidth_mutex);
2075	/* Disable LPM, and re-enable it once the new configuration is
2076	 * installed, so that the xHCI driver can recalculate the U1/U2
2077	 * timeouts.
2078	 */
2079	if (dev->actconfig && usb_disable_lpm(dev)) {
2080		dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
2081		mutex_unlock(hcd->bandwidth_mutex);
2082		ret = -ENOMEM;
2083		goto free_interfaces;
2084	}
2085	ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
2086	if (ret < 0) {
2087		if (dev->actconfig)
2088			usb_enable_lpm(dev);
2089		mutex_unlock(hcd->bandwidth_mutex);
2090		usb_autosuspend_device(dev);
2091		goto free_interfaces;
2092	}
2093
2094	/*
2095	 * Initialize the new interface structures and the
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2096	 * hc/hcd/usbcore interface/endpoint state.
2097	 */
2098	for (i = 0; i < nintf; ++i) {
2099		struct usb_interface_cache *intfc;
2100		struct usb_interface *intf;
2101		struct usb_host_interface *alt;
2102		u8 ifnum;
2103
2104		cp->interface[i] = intf = new_interfaces[i];
2105		intfc = cp->intf_cache[i];
2106		intf->altsetting = intfc->altsetting;
2107		intf->num_altsetting = intfc->num_altsetting;
2108		intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
2109		kref_get(&intfc->ref);
2110
2111		alt = usb_altnum_to_altsetting(intf, 0);
2112
2113		/* No altsetting 0?  We'll assume the first altsetting.
2114		 * We could use a GetInterface call, but if a device is
2115		 * so non-compliant that it doesn't have altsetting 0
2116		 * then I wouldn't trust its reply anyway.
2117		 */
2118		if (!alt)
2119			alt = &intf->altsetting[0];
2120
2121		ifnum = alt->desc.bInterfaceNumber;
2122		intf->intf_assoc = find_iad(dev, cp, ifnum);
2123		intf->cur_altsetting = alt;
2124		usb_enable_interface(dev, intf, true);
2125		intf->dev.parent = &dev->dev;
2126		if (usb_of_has_combined_node(dev)) {
2127			device_set_of_node_from_dev(&intf->dev, &dev->dev);
2128		} else {
2129			intf->dev.of_node = usb_of_get_interface_node(dev,
2130					configuration, ifnum);
2131		}
2132		ACPI_COMPANION_SET(&intf->dev, ACPI_COMPANION(&dev->dev));
2133		intf->dev.driver = NULL;
2134		intf->dev.bus = &usb_bus_type;
2135		intf->dev.type = &usb_if_device_type;
2136		intf->dev.groups = usb_interface_groups;
 
2137		INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
2138		INIT_WORK(&intf->wireless_status_work, __usb_wireless_status_intf);
2139		intf->minor = -1;
2140		device_initialize(&intf->dev);
2141		pm_runtime_no_callbacks(&intf->dev);
2142		dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum,
2143				dev->devpath, configuration, ifnum);
2144		usb_get_dev(dev);
2145	}
2146	kfree(new_interfaces);
2147
2148	ret = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0,
2149				   configuration, 0, NULL, 0,
2150				   USB_CTRL_SET_TIMEOUT, GFP_NOIO);
2151	if (ret && cp) {
2152		/*
2153		 * All the old state is gone, so what else can we do?
2154		 * The device is probably useless now anyway.
2155		 */
2156		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
2157		for (i = 0; i < nintf; ++i) {
2158			usb_disable_interface(dev, cp->interface[i], true);
2159			put_device(&cp->interface[i]->dev);
2160			cp->interface[i] = NULL;
2161		}
2162		cp = NULL;
2163	}
2164
2165	dev->actconfig = cp;
2166	mutex_unlock(hcd->bandwidth_mutex);
2167
2168	if (!cp) {
2169		usb_set_device_state(dev, USB_STATE_ADDRESS);
2170
2171		/* Leave LPM disabled while the device is unconfigured. */
2172		usb_autosuspend_device(dev);
2173		return ret;
2174	}
2175	usb_set_device_state(dev, USB_STATE_CONFIGURED);
2176
2177	if (cp->string == NULL &&
2178			!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
2179		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
2180
2181	/* Now that the interfaces are installed, re-enable LPM. */
2182	usb_unlocked_enable_lpm(dev);
2183	/* Enable LTM if it was turned off by usb_disable_device. */
2184	usb_enable_ltm(dev);
2185
2186	/* Now that all the interfaces are set up, register them
2187	 * to trigger binding of drivers to interfaces.  probe()
2188	 * routines may install different altsettings and may
2189	 * claim() any interfaces not yet bound.  Many class drivers
2190	 * need that: CDC, audio, video, etc.
2191	 */
2192	for (i = 0; i < nintf; ++i) {
2193		struct usb_interface *intf = cp->interface[i];
2194
2195		if (intf->dev.of_node &&
2196		    !of_device_is_available(intf->dev.of_node)) {
2197			dev_info(&dev->dev, "skipping disabled interface %d\n",
2198				 intf->cur_altsetting->desc.bInterfaceNumber);
2199			continue;
2200		}
2201
2202		dev_dbg(&dev->dev,
2203			"adding %s (config #%d, interface %d)\n",
2204			dev_name(&intf->dev), configuration,
2205			intf->cur_altsetting->desc.bInterfaceNumber);
2206		device_enable_async_suspend(&intf->dev);
2207		ret = device_add(&intf->dev);
2208		if (ret != 0) {
2209			dev_err(&dev->dev, "device_add(%s) --> %d\n",
2210				dev_name(&intf->dev), ret);
2211			continue;
2212		}
2213		create_intf_ep_devs(intf);
2214	}
2215
2216	usb_autosuspend_device(dev);
2217	return 0;
2218}
2219EXPORT_SYMBOL_GPL(usb_set_configuration);
2220
2221static LIST_HEAD(set_config_list);
2222static DEFINE_SPINLOCK(set_config_lock);
2223
2224struct set_config_request {
2225	struct usb_device	*udev;
2226	int			config;
2227	struct work_struct	work;
2228	struct list_head	node;
2229};
2230
2231/* Worker routine for usb_driver_set_configuration() */
2232static void driver_set_config_work(struct work_struct *work)
2233{
2234	struct set_config_request *req =
2235		container_of(work, struct set_config_request, work);
2236	struct usb_device *udev = req->udev;
2237
2238	usb_lock_device(udev);
2239	spin_lock(&set_config_lock);
2240	list_del(&req->node);
2241	spin_unlock(&set_config_lock);
2242
2243	if (req->config >= -1)		/* Is req still valid? */
2244		usb_set_configuration(udev, req->config);
2245	usb_unlock_device(udev);
2246	usb_put_dev(udev);
2247	kfree(req);
2248}
2249
2250/* Cancel pending Set-Config requests for a device whose configuration
2251 * was just changed
2252 */
2253static void cancel_async_set_config(struct usb_device *udev)
2254{
2255	struct set_config_request *req;
2256
2257	spin_lock(&set_config_lock);
2258	list_for_each_entry(req, &set_config_list, node) {
2259		if (req->udev == udev)
2260			req->config = -999;	/* Mark as cancelled */
2261	}
2262	spin_unlock(&set_config_lock);
2263}
2264
2265/**
2266 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2267 * @udev: the device whose configuration is being updated
2268 * @config: the configuration being chosen.
2269 * Context: In process context, must be able to sleep
2270 *
2271 * Device interface drivers are not allowed to change device configurations.
2272 * This is because changing configurations will destroy the interface the
2273 * driver is bound to and create new ones; it would be like a floppy-disk
2274 * driver telling the computer to replace the floppy-disk drive with a
2275 * tape drive!
2276 *
2277 * Still, in certain specialized circumstances the need may arise.  This
2278 * routine gets around the normal restrictions by using a work thread to
2279 * submit the change-config request.
2280 *
2281 * Return: 0 if the request was successfully queued, error code otherwise.
2282 * The caller has no way to know whether the queued request will eventually
2283 * succeed.
2284 */
2285int usb_driver_set_configuration(struct usb_device *udev, int config)
2286{
2287	struct set_config_request *req;
2288
2289	req = kmalloc(sizeof(*req), GFP_KERNEL);
2290	if (!req)
2291		return -ENOMEM;
2292	req->udev = udev;
2293	req->config = config;
2294	INIT_WORK(&req->work, driver_set_config_work);
2295
2296	spin_lock(&set_config_lock);
2297	list_add(&req->node, &set_config_list);
2298	spin_unlock(&set_config_lock);
2299
2300	usb_get_dev(udev);
2301	schedule_work(&req->work);
2302	return 0;
2303}
2304EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2305
2306/**
2307 * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2308 * @hdr: the place to put the results of the parsing
2309 * @intf: the interface for which parsing is requested
2310 * @buffer: pointer to the extra headers to be parsed
2311 * @buflen: length of the extra headers
2312 *
2313 * This evaluates the extra headers present in CDC devices which
2314 * bind the interfaces for data and control and provide details
2315 * about the capabilities of the device.
2316 *
2317 * Return: number of descriptors parsed or -EINVAL
2318 * if the header is contradictory beyond salvage
2319 */
2320
2321int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2322				struct usb_interface *intf,
2323				u8 *buffer,
2324				int buflen)
2325{
2326	/* duplicates are ignored */
2327	struct usb_cdc_union_desc *union_header = NULL;
2328
2329	/* duplicates are not tolerated */
2330	struct usb_cdc_header_desc *header = NULL;
2331	struct usb_cdc_ether_desc *ether = NULL;
2332	struct usb_cdc_mdlm_detail_desc *detail = NULL;
2333	struct usb_cdc_mdlm_desc *desc = NULL;
2334
2335	unsigned int elength;
2336	int cnt = 0;
2337
2338	memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2339	hdr->phonet_magic_present = false;
2340	while (buflen > 0) {
2341		elength = buffer[0];
2342		if (!elength) {
2343			dev_err(&intf->dev, "skipping garbage byte\n");
2344			elength = 1;
2345			goto next_desc;
2346		}
2347		if ((buflen < elength) || (elength < 3)) {
2348			dev_err(&intf->dev, "invalid descriptor buffer length\n");
2349			break;
2350		}
2351		if (buffer[1] != USB_DT_CS_INTERFACE) {
2352			dev_err(&intf->dev, "skipping garbage\n");
2353			goto next_desc;
2354		}
2355
2356		switch (buffer[2]) {
2357		case USB_CDC_UNION_TYPE: /* we've found it */
2358			if (elength < sizeof(struct usb_cdc_union_desc))
2359				goto next_desc;
2360			if (union_header) {
2361				dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2362				goto next_desc;
2363			}
2364			union_header = (struct usb_cdc_union_desc *)buffer;
2365			break;
2366		case USB_CDC_COUNTRY_TYPE:
2367			if (elength < sizeof(struct usb_cdc_country_functional_desc))
2368				goto next_desc;
2369			hdr->usb_cdc_country_functional_desc =
2370				(struct usb_cdc_country_functional_desc *)buffer;
2371			break;
2372		case USB_CDC_HEADER_TYPE:
2373			if (elength != sizeof(struct usb_cdc_header_desc))
2374				goto next_desc;
2375			if (header)
2376				return -EINVAL;
2377			header = (struct usb_cdc_header_desc *)buffer;
2378			break;
2379		case USB_CDC_ACM_TYPE:
2380			if (elength < sizeof(struct usb_cdc_acm_descriptor))
2381				goto next_desc;
2382			hdr->usb_cdc_acm_descriptor =
2383				(struct usb_cdc_acm_descriptor *)buffer;
2384			break;
2385		case USB_CDC_ETHERNET_TYPE:
2386			if (elength != sizeof(struct usb_cdc_ether_desc))
2387				goto next_desc;
2388			if (ether)
2389				return -EINVAL;
2390			ether = (struct usb_cdc_ether_desc *)buffer;
2391			break;
2392		case USB_CDC_CALL_MANAGEMENT_TYPE:
2393			if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2394				goto next_desc;
2395			hdr->usb_cdc_call_mgmt_descriptor =
2396				(struct usb_cdc_call_mgmt_descriptor *)buffer;
2397			break;
2398		case USB_CDC_DMM_TYPE:
2399			if (elength < sizeof(struct usb_cdc_dmm_desc))
2400				goto next_desc;
2401			hdr->usb_cdc_dmm_desc =
2402				(struct usb_cdc_dmm_desc *)buffer;
2403			break;
2404		case USB_CDC_MDLM_TYPE:
2405			if (elength < sizeof(struct usb_cdc_mdlm_desc))
2406				goto next_desc;
2407			if (desc)
2408				return -EINVAL;
2409			desc = (struct usb_cdc_mdlm_desc *)buffer;
2410			break;
2411		case USB_CDC_MDLM_DETAIL_TYPE:
2412			if (elength < sizeof(struct usb_cdc_mdlm_detail_desc))
2413				goto next_desc;
2414			if (detail)
2415				return -EINVAL;
2416			detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2417			break;
2418		case USB_CDC_NCM_TYPE:
2419			if (elength < sizeof(struct usb_cdc_ncm_desc))
2420				goto next_desc;
2421			hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2422			break;
2423		case USB_CDC_MBIM_TYPE:
2424			if (elength < sizeof(struct usb_cdc_mbim_desc))
2425				goto next_desc;
2426
2427			hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2428			break;
2429		case USB_CDC_MBIM_EXTENDED_TYPE:
2430			if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2431				break;
2432			hdr->usb_cdc_mbim_extended_desc =
2433				(struct usb_cdc_mbim_extended_desc *)buffer;
2434			break;
2435		case CDC_PHONET_MAGIC_NUMBER:
2436			hdr->phonet_magic_present = true;
2437			break;
2438		default:
2439			/*
2440			 * there are LOTS more CDC descriptors that
2441			 * could legitimately be found here.
2442			 */
2443			dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2444					buffer[2], elength);
2445			goto next_desc;
2446		}
2447		cnt++;
2448next_desc:
2449		buflen -= elength;
2450		buffer += elength;
2451	}
2452	hdr->usb_cdc_union_desc = union_header;
2453	hdr->usb_cdc_header_desc = header;
2454	hdr->usb_cdc_mdlm_detail_desc = detail;
2455	hdr->usb_cdc_mdlm_desc = desc;
2456	hdr->usb_cdc_ether_desc = ether;
2457	return cnt;
2458}
2459
2460EXPORT_SYMBOL(cdc_parse_cdc_header);
v3.5.6
 
   1/*
   2 * message.c - synchronous message handling
 
 
   3 */
   4
 
   5#include <linux/pci.h>	/* for scatterlist macros */
   6#include <linux/usb.h>
   7#include <linux/module.h>
 
   8#include <linux/slab.h>
   9#include <linux/init.h>
  10#include <linux/mm.h>
  11#include <linux/timer.h>
  12#include <linux/ctype.h>
  13#include <linux/nls.h>
  14#include <linux/device.h>
  15#include <linux/scatterlist.h>
 
  16#include <linux/usb/quirks.h>
  17#include <linux/usb/hcd.h>	/* for usbcore internals */
 
  18#include <asm/byteorder.h>
  19
  20#include "usb.h"
  21
  22static void cancel_async_set_config(struct usb_device *udev);
  23
  24struct api_context {
  25	struct completion	done;
  26	int			status;
  27};
  28
  29static void usb_api_blocking_completion(struct urb *urb)
  30{
  31	struct api_context *ctx = urb->context;
  32
  33	ctx->status = urb->status;
  34	complete(&ctx->done);
  35}
  36
  37
  38/*
  39 * Starts urb and waits for completion or timeout. Note that this call
  40 * is NOT interruptible. Many device driver i/o requests should be
  41 * interruptible and therefore these drivers should implement their
  42 * own interruptible routines.
  43 */
  44static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
  45{
  46	struct api_context ctx;
  47	unsigned long expire;
  48	int retval;
  49
  50	init_completion(&ctx.done);
  51	urb->context = &ctx;
  52	urb->actual_length = 0;
  53	retval = usb_submit_urb(urb, GFP_NOIO);
  54	if (unlikely(retval))
  55		goto out;
  56
  57	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
  58	if (!wait_for_completion_timeout(&ctx.done, expire)) {
  59		usb_kill_urb(urb);
  60		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
  61
  62		dev_dbg(&urb->dev->dev,
  63			"%s timed out on ep%d%s len=%u/%u\n",
  64			current->comm,
  65			usb_endpoint_num(&urb->ep->desc),
  66			usb_urb_dir_in(urb) ? "in" : "out",
  67			urb->actual_length,
  68			urb->transfer_buffer_length);
  69	} else
  70		retval = ctx.status;
  71out:
  72	if (actual_length)
  73		*actual_length = urb->actual_length;
  74
  75	usb_free_urb(urb);
  76	return retval;
  77}
  78
  79/*-------------------------------------------------------------------*/
  80/* returns status (negative) or length (positive) */
  81static int usb_internal_control_msg(struct usb_device *usb_dev,
  82				    unsigned int pipe,
  83				    struct usb_ctrlrequest *cmd,
  84				    void *data, int len, int timeout)
  85{
  86	struct urb *urb;
  87	int retv;
  88	int length;
  89
  90	urb = usb_alloc_urb(0, GFP_NOIO);
  91	if (!urb)
  92		return -ENOMEM;
  93
  94	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
  95			     len, usb_api_blocking_completion, NULL);
  96
  97	retv = usb_start_wait_urb(urb, timeout, &length);
  98	if (retv < 0)
  99		return retv;
 100	else
 101		return length;
 102}
 103
 104/**
 105 * usb_control_msg - Builds a control urb, sends it off and waits for completion
 106 * @dev: pointer to the usb device to send the message to
 107 * @pipe: endpoint "pipe" to send the message to
 108 * @request: USB message request value
 109 * @requesttype: USB message request type value
 110 * @value: USB message value
 111 * @index: USB message index value
 112 * @data: pointer to the data to send
 113 * @size: length in bytes of the data to send
 114 * @timeout: time in msecs to wait for the message to complete before timing
 115 *	out (if 0 the wait is forever)
 116 *
 117 * Context: !in_interrupt ()
 118 *
 119 * This function sends a simple control message to a specified endpoint and
 120 * waits for the message to complete, or timeout.
 121 *
 122 * If successful, it returns the number of bytes transferred, otherwise a
 123 * negative error number.
 
 
 
 124 *
 125 * Don't use this function from within an interrupt context, like a bottom half
 126 * handler.  If you need an asynchronous message, or need to send a message
 127 * from within interrupt context, use usb_submit_urb().
 128 * If a thread in your driver uses this call, make sure your disconnect()
 129 * method can wait for it to complete.  Since you don't have a handle on the
 130 * URB used, you can't cancel the request.
 131 */
 132int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
 133		    __u8 requesttype, __u16 value, __u16 index, void *data,
 134		    __u16 size, int timeout)
 135{
 136	struct usb_ctrlrequest *dr;
 137	int ret;
 138
 139	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
 140	if (!dr)
 141		return -ENOMEM;
 142
 143	dr->bRequestType = requesttype;
 144	dr->bRequest = request;
 145	dr->wValue = cpu_to_le16(value);
 146	dr->wIndex = cpu_to_le16(index);
 147	dr->wLength = cpu_to_le16(size);
 148
 149	/* dbg("usb_control_msg"); */
 150
 151	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
 
 
 152
 153	kfree(dr);
 154
 155	return ret;
 156}
 157EXPORT_SYMBOL_GPL(usb_control_msg);
 158
 159/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
 161 * @usb_dev: pointer to the usb device to send the message to
 162 * @pipe: endpoint "pipe" to send the message to
 163 * @data: pointer to the data to send
 164 * @len: length in bytes of the data to send
 165 * @actual_length: pointer to a location to put the actual length transferred
 166 *	in bytes
 167 * @timeout: time in msecs to wait for the message to complete before
 168 *	timing out (if 0 the wait is forever)
 169 *
 170 * Context: !in_interrupt ()
 171 *
 172 * This function sends a simple interrupt message to a specified endpoint and
 173 * waits for the message to complete, or timeout.
 174 *
 175 * If successful, it returns 0, otherwise a negative error number.  The number
 176 * of actual bytes transferred will be stored in the actual_length paramater.
 177 *
 178 * Don't use this function from within an interrupt context, like a bottom half
 179 * handler.  If you need an asynchronous message, or need to send a message
 180 * from within interrupt context, use usb_submit_urb() If a thread in your
 181 * driver uses this call, make sure your disconnect() method can wait for it to
 182 * complete.  Since you don't have a handle on the URB used, you can't cancel
 183 * the request.
 184 */
 185int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
 186		      void *data, int len, int *actual_length, int timeout)
 187{
 188	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
 189}
 190EXPORT_SYMBOL_GPL(usb_interrupt_msg);
 191
 192/**
 193 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
 194 * @usb_dev: pointer to the usb device to send the message to
 195 * @pipe: endpoint "pipe" to send the message to
 196 * @data: pointer to the data to send
 197 * @len: length in bytes of the data to send
 198 * @actual_length: pointer to a location to put the actual length transferred
 199 *	in bytes
 200 * @timeout: time in msecs to wait for the message to complete before
 201 *	timing out (if 0 the wait is forever)
 202 *
 203 * Context: !in_interrupt ()
 204 *
 205 * This function sends a simple bulk message to a specified endpoint
 206 * and waits for the message to complete, or timeout.
 207 *
 208 * If successful, it returns 0, otherwise a negative error number.  The number
 209 * of actual bytes transferred will be stored in the actual_length paramater.
 210 *
 211 * Don't use this function from within an interrupt context, like a bottom half
 212 * handler.  If you need an asynchronous message, or need to send a message
 213 * from within interrupt context, use usb_submit_urb() If a thread in your
 214 * driver uses this call, make sure your disconnect() method can wait for it to
 215 * complete.  Since you don't have a handle on the URB used, you can't cancel
 216 * the request.
 217 *
 218 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
 219 * users are forced to abuse this routine by using it to submit URBs for
 220 * interrupt endpoints.  We will take the liberty of creating an interrupt URB
 221 * (with the default interval) if the target is an interrupt endpoint.
 
 
 
 
 
 222 */
 223int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
 224		 void *data, int len, int *actual_length, int timeout)
 225{
 226	struct urb *urb;
 227	struct usb_host_endpoint *ep;
 228
 229	ep = usb_pipe_endpoint(usb_dev, pipe);
 230	if (!ep || len < 0)
 231		return -EINVAL;
 232
 233	urb = usb_alloc_urb(0, GFP_KERNEL);
 234	if (!urb)
 235		return -ENOMEM;
 236
 237	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
 238			USB_ENDPOINT_XFER_INT) {
 239		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
 240		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
 241				usb_api_blocking_completion, NULL,
 242				ep->desc.bInterval);
 243	} else
 244		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
 245				usb_api_blocking_completion, NULL);
 246
 247	return usb_start_wait_urb(urb, timeout, actual_length);
 248}
 249EXPORT_SYMBOL_GPL(usb_bulk_msg);
 250
 251/*-------------------------------------------------------------------*/
 252
 253static void sg_clean(struct usb_sg_request *io)
 254{
 255	if (io->urbs) {
 256		while (io->entries--)
 257			usb_free_urb(io->urbs [io->entries]);
 258		kfree(io->urbs);
 259		io->urbs = NULL;
 260	}
 261	io->dev = NULL;
 262}
 263
 264static void sg_complete(struct urb *urb)
 265{
 
 266	struct usb_sg_request *io = urb->context;
 267	int status = urb->status;
 268
 269	spin_lock(&io->lock);
 270
 271	/* In 2.5 we require hcds' endpoint queues not to progress after fault
 272	 * reports, until the completion callback (this!) returns.  That lets
 273	 * device driver code (like this routine) unlink queued urbs first,
 274	 * if it needs to, since the HC won't work on them at all.  So it's
 275	 * not possible for page N+1 to overwrite page N, and so on.
 276	 *
 277	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
 278	 * complete before the HCD can get requests away from hardware,
 279	 * though never during cleanup after a hard fault.
 280	 */
 281	if (io->status
 282			&& (io->status != -ECONNRESET
 283				|| status != -ECONNRESET)
 284			&& urb->actual_length) {
 285		dev_err(io->dev->bus->controller,
 286			"dev %s ep%d%s scatterlist error %d/%d\n",
 287			io->dev->devpath,
 288			usb_endpoint_num(&urb->ep->desc),
 289			usb_urb_dir_in(urb) ? "in" : "out",
 290			status, io->status);
 291		/* BUG (); */
 292	}
 293
 294	if (io->status == 0 && status && status != -ECONNRESET) {
 295		int i, found, retval;
 296
 297		io->status = status;
 298
 299		/* the previous urbs, and this one, completed already.
 300		 * unlink pending urbs so they won't rx/tx bad data.
 301		 * careful: unlink can sometimes be synchronous...
 302		 */
 303		spin_unlock(&io->lock);
 304		for (i = 0, found = 0; i < io->entries; i++) {
 305			if (!io->urbs [i] || !io->urbs [i]->dev)
 306				continue;
 307			if (found) {
 308				retval = usb_unlink_urb(io->urbs [i]);
 
 309				if (retval != -EINPROGRESS &&
 310				    retval != -ENODEV &&
 311				    retval != -EBUSY &&
 312				    retval != -EIDRM)
 313					dev_err(&io->dev->dev,
 314						"%s, unlink --> %d\n",
 315						__func__, retval);
 316			} else if (urb == io->urbs [i])
 317				found = 1;
 318		}
 319		spin_lock(&io->lock);
 320	}
 321
 322	/* on the last completion, signal usb_sg_wait() */
 323	io->bytes += urb->actual_length;
 324	io->count--;
 325	if (!io->count)
 326		complete(&io->complete);
 327
 328	spin_unlock(&io->lock);
 329}
 330
 331
 332/**
 333 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
 334 * @io: request block being initialized.  until usb_sg_wait() returns,
 335 *	treat this as a pointer to an opaque block of memory,
 336 * @dev: the usb device that will send or receive the data
 337 * @pipe: endpoint "pipe" used to transfer the data
 338 * @period: polling rate for interrupt endpoints, in frames or
 339 * 	(for high speed endpoints) microframes; ignored for bulk
 340 * @sg: scatterlist entries
 341 * @nents: how many entries in the scatterlist
 342 * @length: how many bytes to send from the scatterlist, or zero to
 343 * 	send every byte identified in the list.
 344 * @mem_flags: SLAB_* flags affecting memory allocations in this call
 345 *
 346 * Returns zero for success, else a negative errno value.  This initializes a
 347 * scatter/gather request, allocating resources such as I/O mappings and urb
 348 * memory (except maybe memory used by USB controller drivers).
 349 *
 350 * The request must be issued using usb_sg_wait(), which waits for the I/O to
 351 * complete (or to be canceled) and then cleans up all resources allocated by
 352 * usb_sg_init().
 353 *
 354 * The request may be canceled with usb_sg_cancel(), either before or after
 355 * usb_sg_wait() is called.
 
 
 356 */
 357int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
 358		unsigned pipe, unsigned	period, struct scatterlist *sg,
 359		int nents, size_t length, gfp_t mem_flags)
 360{
 361	int i;
 362	int urb_flags;
 363	int use_sg;
 364
 365	if (!io || !dev || !sg
 366			|| usb_pipecontrol(pipe)
 367			|| usb_pipeisoc(pipe)
 368			|| nents <= 0)
 369		return -EINVAL;
 370
 371	spin_lock_init(&io->lock);
 372	io->dev = dev;
 373	io->pipe = pipe;
 374
 375	if (dev->bus->sg_tablesize > 0) {
 376		use_sg = true;
 377		io->entries = 1;
 378	} else {
 379		use_sg = false;
 380		io->entries = nents;
 381	}
 382
 383	/* initialize all the urbs we'll use */
 384	io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags);
 385	if (!io->urbs)
 386		goto nomem;
 387
 388	urb_flags = URB_NO_INTERRUPT;
 389	if (usb_pipein(pipe))
 390		urb_flags |= URB_SHORT_NOT_OK;
 391
 392	for_each_sg(sg, sg, io->entries, i) {
 393		struct urb *urb;
 394		unsigned len;
 395
 396		urb = usb_alloc_urb(0, mem_flags);
 397		if (!urb) {
 398			io->entries = i;
 399			goto nomem;
 400		}
 401		io->urbs[i] = urb;
 402
 403		urb->dev = NULL;
 404		urb->pipe = pipe;
 405		urb->interval = period;
 406		urb->transfer_flags = urb_flags;
 407		urb->complete = sg_complete;
 408		urb->context = io;
 409		urb->sg = sg;
 410
 411		if (use_sg) {
 412			/* There is no single transfer buffer */
 413			urb->transfer_buffer = NULL;
 414			urb->num_sgs = nents;
 415
 416			/* A length of zero means transfer the whole sg list */
 417			len = length;
 418			if (len == 0) {
 419				struct scatterlist	*sg2;
 420				int			j;
 421
 422				for_each_sg(sg, sg2, nents, j)
 423					len += sg2->length;
 424			}
 425		} else {
 426			/*
 427			 * Some systems can't use DMA; they use PIO instead.
 428			 * For their sakes, transfer_buffer is set whenever
 429			 * possible.
 430			 */
 431			if (!PageHighMem(sg_page(sg)))
 432				urb->transfer_buffer = sg_virt(sg);
 433			else
 434				urb->transfer_buffer = NULL;
 435
 436			len = sg->length;
 437			if (length) {
 438				len = min_t(size_t, len, length);
 439				length -= len;
 440				if (length == 0)
 441					io->entries = i + 1;
 442			}
 443		}
 444		urb->transfer_buffer_length = len;
 445	}
 446	io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
 447
 448	/* transaction state */
 449	io->count = io->entries;
 450	io->status = 0;
 451	io->bytes = 0;
 452	init_completion(&io->complete);
 453	return 0;
 454
 455nomem:
 456	sg_clean(io);
 457	return -ENOMEM;
 458}
 459EXPORT_SYMBOL_GPL(usb_sg_init);
 460
 461/**
 462 * usb_sg_wait - synchronously execute scatter/gather request
 463 * @io: request block handle, as initialized with usb_sg_init().
 464 * 	some fields become accessible when this call returns.
 465 * Context: !in_interrupt ()
 
 466 *
 467 * This function blocks until the specified I/O operation completes.  It
 468 * leverages the grouping of the related I/O requests to get good transfer
 469 * rates, by queueing the requests.  At higher speeds, such queuing can
 470 * significantly improve USB throughput.
 471 *
 472 * There are three kinds of completion for this function.
 
 473 * (1) success, where io->status is zero.  The number of io->bytes
 474 *     transferred is as requested.
 475 * (2) error, where io->status is a negative errno value.  The number
 476 *     of io->bytes transferred before the error is usually less
 477 *     than requested, and can be nonzero.
 478 * (3) cancellation, a type of error with status -ECONNRESET that
 479 *     is initiated by usb_sg_cancel().
 480 *
 481 * When this function returns, all memory allocated through usb_sg_init() or
 482 * this call will have been freed.  The request block parameter may still be
 483 * passed to usb_sg_cancel(), or it may be freed.  It could also be
 484 * reinitialized and then reused.
 485 *
 486 * Data Transfer Rates:
 487 *
 488 * Bulk transfers are valid for full or high speed endpoints.
 489 * The best full speed data rate is 19 packets of 64 bytes each
 490 * per frame, or 1216 bytes per millisecond.
 491 * The best high speed data rate is 13 packets of 512 bytes each
 492 * per microframe, or 52 KBytes per millisecond.
 493 *
 494 * The reason to use interrupt transfers through this API would most likely
 495 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
 496 * could be transferred.  That capability is less useful for low or full
 497 * speed interrupt endpoints, which allow at most one packet per millisecond,
 498 * of at most 8 or 64 bytes (respectively).
 499 *
 500 * It is not necessary to call this function to reserve bandwidth for devices
 501 * under an xHCI host controller, as the bandwidth is reserved when the
 502 * configuration or interface alt setting is selected.
 503 */
 504void usb_sg_wait(struct usb_sg_request *io)
 505{
 506	int i;
 507	int entries = io->entries;
 508
 509	/* queue the urbs.  */
 510	spin_lock_irq(&io->lock);
 511	i = 0;
 512	while (i < entries && !io->status) {
 513		int retval;
 514
 515		io->urbs[i]->dev = io->dev;
 516		retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC);
 
 
 517
 518		/* after we submit, let completions or cancelations fire;
 519		 * we handshake using io->status.
 520		 */
 521		spin_unlock_irq(&io->lock);
 522		switch (retval) {
 523			/* maybe we retrying will recover */
 524		case -ENXIO:	/* hc didn't queue this one */
 525		case -EAGAIN:
 526		case -ENOMEM:
 527			retval = 0;
 528			yield();
 529			break;
 530
 531			/* no error? continue immediately.
 532			 *
 533			 * NOTE: to work better with UHCI (4K I/O buffer may
 534			 * need 3K of TDs) it may be good to limit how many
 535			 * URBs are queued at once; N milliseconds?
 536			 */
 537		case 0:
 538			++i;
 539			cpu_relax();
 540			break;
 541
 542			/* fail any uncompleted urbs */
 543		default:
 544			io->urbs[i]->status = retval;
 545			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
 546				__func__, retval);
 547			usb_sg_cancel(io);
 548		}
 549		spin_lock_irq(&io->lock);
 550		if (retval && (io->status == 0 || io->status == -ECONNRESET))
 551			io->status = retval;
 552	}
 553	io->count -= entries - i;
 554	if (io->count == 0)
 555		complete(&io->complete);
 556	spin_unlock_irq(&io->lock);
 557
 558	/* OK, yes, this could be packaged as non-blocking.
 559	 * So could the submit loop above ... but it's easier to
 560	 * solve neither problem than to solve both!
 561	 */
 562	wait_for_completion(&io->complete);
 563
 564	sg_clean(io);
 565}
 566EXPORT_SYMBOL_GPL(usb_sg_wait);
 567
 568/**
 569 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
 570 * @io: request block, initialized with usb_sg_init()
 571 *
 572 * This stops a request after it has been started by usb_sg_wait().
 573 * It can also prevents one initialized by usb_sg_init() from starting,
 574 * so that call just frees resources allocated to the request.
 575 */
 576void usb_sg_cancel(struct usb_sg_request *io)
 577{
 578	unsigned long flags;
 
 579
 580	spin_lock_irqsave(&io->lock, flags);
 
 
 
 
 
 
 
 
 581
 582	/* shut everything down, if it didn't already */
 583	if (!io->status) {
 584		int i;
 585
 586		io->status = -ECONNRESET;
 587		spin_unlock(&io->lock);
 588		for (i = 0; i < io->entries; i++) {
 589			int retval;
 590
 591			if (!io->urbs [i]->dev)
 592				continue;
 593			retval = usb_unlink_urb(io->urbs [i]);
 594			if (retval != -EINPROGRESS
 595					&& retval != -ENODEV
 596					&& retval != -EBUSY
 597					&& retval != -EIDRM)
 598				dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
 599					__func__, retval);
 600		}
 601		spin_lock(&io->lock);
 602	}
 
 
 
 
 
 603	spin_unlock_irqrestore(&io->lock, flags);
 604}
 605EXPORT_SYMBOL_GPL(usb_sg_cancel);
 606
 607/*-------------------------------------------------------------------*/
 608
 609/**
 610 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
 611 * @dev: the device whose descriptor is being retrieved
 612 * @type: the descriptor type (USB_DT_*)
 613 * @index: the number of the descriptor
 614 * @buf: where to put the descriptor
 615 * @size: how big is "buf"?
 616 * Context: !in_interrupt ()
 
 617 *
 618 * Gets a USB descriptor.  Convenience functions exist to simplify
 619 * getting some types of descriptors.  Use
 620 * usb_get_string() or usb_string() for USB_DT_STRING.
 621 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
 622 * are part of the device structure.
 623 * In addition to a number of USB-standard descriptors, some
 624 * devices also use class-specific or vendor-specific descriptors.
 625 *
 626 * This call is synchronous, and may not be used in an interrupt context.
 627 *
 628 * Returns the number of bytes received on success, or else the status code
 629 * returned by the underlying usb_control_msg() call.
 630 */
 631int usb_get_descriptor(struct usb_device *dev, unsigned char type,
 632		       unsigned char index, void *buf, int size)
 633{
 634	int i;
 635	int result;
 636
 
 
 
 637	memset(buf, 0, size);	/* Make sure we parse really received data */
 638
 639	for (i = 0; i < 3; ++i) {
 640		/* retry on length 0 or error; some devices are flakey */
 641		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 642				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
 643				(type << 8) + index, 0, buf, size,
 644				USB_CTRL_GET_TIMEOUT);
 645		if (result <= 0 && result != -ETIMEDOUT)
 646			continue;
 647		if (result > 1 && ((u8 *)buf)[1] != type) {
 648			result = -ENODATA;
 649			continue;
 650		}
 651		break;
 652	}
 653	return result;
 654}
 655EXPORT_SYMBOL_GPL(usb_get_descriptor);
 656
 657/**
 658 * usb_get_string - gets a string descriptor
 659 * @dev: the device whose string descriptor is being retrieved
 660 * @langid: code for language chosen (from string descriptor zero)
 661 * @index: the number of the descriptor
 662 * @buf: where to put the string
 663 * @size: how big is "buf"?
 664 * Context: !in_interrupt ()
 
 665 *
 666 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
 667 * in little-endian byte order).
 668 * The usb_string() function will often be a convenient way to turn
 669 * these strings into kernel-printable form.
 670 *
 671 * Strings may be referenced in device, configuration, interface, or other
 672 * descriptors, and could also be used in vendor-specific ways.
 673 *
 674 * This call is synchronous, and may not be used in an interrupt context.
 675 *
 676 * Returns the number of bytes received on success, or else the status code
 677 * returned by the underlying usb_control_msg() call.
 678 */
 679static int usb_get_string(struct usb_device *dev, unsigned short langid,
 680			  unsigned char index, void *buf, int size)
 681{
 682	int i;
 683	int result;
 684
 
 
 
 685	for (i = 0; i < 3; ++i) {
 686		/* retry on length 0 or stall; some devices are flakey */
 687		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 688			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
 689			(USB_DT_STRING << 8) + index, langid, buf, size,
 690			USB_CTRL_GET_TIMEOUT);
 691		if (result == 0 || result == -EPIPE)
 692			continue;
 693		if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
 694			result = -ENODATA;
 695			continue;
 696		}
 697		break;
 698	}
 699	return result;
 700}
 701
 702static void usb_try_string_workarounds(unsigned char *buf, int *length)
 703{
 704	int newlength, oldlength = *length;
 705
 706	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
 707		if (!isprint(buf[newlength]) || buf[newlength + 1])
 708			break;
 709
 710	if (newlength > 2) {
 711		buf[0] = newlength;
 712		*length = newlength;
 713	}
 714}
 715
 716static int usb_string_sub(struct usb_device *dev, unsigned int langid,
 717			  unsigned int index, unsigned char *buf)
 718{
 719	int rc;
 720
 721	/* Try to read the string descriptor by asking for the maximum
 722	 * possible number of bytes */
 723	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
 724		rc = -EIO;
 725	else
 726		rc = usb_get_string(dev, langid, index, buf, 255);
 727
 728	/* If that failed try to read the descriptor length, then
 729	 * ask for just that many bytes */
 730	if (rc < 2) {
 731		rc = usb_get_string(dev, langid, index, buf, 2);
 732		if (rc == 2)
 733			rc = usb_get_string(dev, langid, index, buf, buf[0]);
 734	}
 735
 736	if (rc >= 2) {
 737		if (!buf[0] && !buf[1])
 738			usb_try_string_workarounds(buf, &rc);
 739
 740		/* There might be extra junk at the end of the descriptor */
 741		if (buf[0] < rc)
 742			rc = buf[0];
 743
 744		rc = rc - (rc & 1); /* force a multiple of two */
 745	}
 746
 747	if (rc < 2)
 748		rc = (rc < 0 ? rc : -EINVAL);
 749
 750	return rc;
 751}
 752
 753static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
 754{
 755	int err;
 756
 757	if (dev->have_langid)
 758		return 0;
 759
 760	if (dev->string_langid < 0)
 761		return -EPIPE;
 762
 763	err = usb_string_sub(dev, 0, 0, tbuf);
 764
 765	/* If the string was reported but is malformed, default to english
 766	 * (0x0409) */
 767	if (err == -ENODATA || (err > 0 && err < 4)) {
 768		dev->string_langid = 0x0409;
 769		dev->have_langid = 1;
 770		dev_err(&dev->dev,
 771			"string descriptor 0 malformed (err = %d), "
 772			"defaulting to 0x%04x\n",
 773				err, dev->string_langid);
 774		return 0;
 775	}
 776
 777	/* In case of all other errors, we assume the device is not able to
 778	 * deal with strings at all. Set string_langid to -1 in order to
 779	 * prevent any string to be retrieved from the device */
 780	if (err < 0) {
 781		dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
 782					err);
 783		dev->string_langid = -1;
 784		return -EPIPE;
 785	}
 786
 787	/* always use the first langid listed */
 788	dev->string_langid = tbuf[2] | (tbuf[3] << 8);
 789	dev->have_langid = 1;
 790	dev_dbg(&dev->dev, "default language 0x%04x\n",
 791				dev->string_langid);
 792	return 0;
 793}
 794
 795/**
 796 * usb_string - returns UTF-8 version of a string descriptor
 797 * @dev: the device whose string descriptor is being retrieved
 798 * @index: the number of the descriptor
 799 * @buf: where to put the string
 800 * @size: how big is "buf"?
 801 * Context: !in_interrupt ()
 
 802 *
 803 * This converts the UTF-16LE encoded strings returned by devices, from
 804 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
 805 * that are more usable in most kernel contexts.  Note that this function
 806 * chooses strings in the first language supported by the device.
 807 *
 808 * This call is synchronous, and may not be used in an interrupt context.
 809 *
 810 * Returns length of the string (>= 0) or usb_control_msg status (< 0).
 811 */
 812int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
 813{
 814	unsigned char *tbuf;
 815	int err;
 816
 817	if (dev->state == USB_STATE_SUSPENDED)
 818		return -EHOSTUNREACH;
 819	if (size <= 0 || !buf || !index)
 820		return -EINVAL;
 821	buf[0] = 0;
 
 
 822	tbuf = kmalloc(256, GFP_NOIO);
 823	if (!tbuf)
 824		return -ENOMEM;
 825
 826	err = usb_get_langid(dev, tbuf);
 827	if (err < 0)
 828		goto errout;
 829
 830	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
 831	if (err < 0)
 832		goto errout;
 833
 834	size--;		/* leave room for trailing NULL char in output buffer */
 835	err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
 836			UTF16_LITTLE_ENDIAN, buf, size);
 837	buf[err] = 0;
 838
 839	if (tbuf[1] != USB_DT_STRING)
 840		dev_dbg(&dev->dev,
 841			"wrong descriptor type %02x for string %d (\"%s\")\n",
 842			tbuf[1], index, buf);
 843
 844 errout:
 845	kfree(tbuf);
 846	return err;
 847}
 848EXPORT_SYMBOL_GPL(usb_string);
 849
 850/* one UTF-8-encoded 16-bit character has at most three bytes */
 851#define MAX_USB_STRING_SIZE (127 * 3 + 1)
 852
 853/**
 854 * usb_cache_string - read a string descriptor and cache it for later use
 855 * @udev: the device whose string descriptor is being read
 856 * @index: the descriptor index
 857 *
 858 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
 859 * or NULL if the index is 0 or the string could not be read.
 860 */
 861char *usb_cache_string(struct usb_device *udev, int index)
 862{
 863	char *buf;
 864	char *smallbuf = NULL;
 865	int len;
 866
 867	if (index <= 0)
 868		return NULL;
 869
 870	buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
 871	if (buf) {
 872		len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
 873		if (len > 0) {
 874			smallbuf = kmalloc(++len, GFP_NOIO);
 875			if (!smallbuf)
 876				return buf;
 877			memcpy(smallbuf, buf, len);
 878		}
 879		kfree(buf);
 880	}
 881	return smallbuf;
 882}
 
 883
 884/*
 885 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
 886 * @dev: the device whose device descriptor is being updated
 887 * @size: how much of the descriptor to read
 888 * Context: !in_interrupt ()
 889 *
 890 * Updates the copy of the device descriptor stored in the device structure,
 891 * which dedicates space for this purpose.
 892 *
 893 * Not exported, only for use by the core.  If drivers really want to read
 894 * the device descriptor directly, they can call usb_get_descriptor() with
 895 * type = USB_DT_DEVICE and index = 0.
 896 *
 897 * This call is synchronous, and may not be used in an interrupt context.
 898 *
 899 * Returns the number of bytes received on success, or else the status code
 900 * returned by the underlying usb_control_msg() call.
 901 */
 902int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
 903{
 904	struct usb_device_descriptor *desc;
 905	int ret;
 906
 907	if (size > sizeof(*desc))
 908		return -EINVAL;
 909	desc = kmalloc(sizeof(*desc), GFP_NOIO);
 910	if (!desc)
 911		return -ENOMEM;
 
 
 
 
 912
 913	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
 914	if (ret >= 0)
 915		memcpy(&dev->descriptor, desc, size);
 916	kfree(desc);
 917	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918}
 919
 920/**
 921 * usb_get_status - issues a GET_STATUS call
 922 * @dev: the device whose status is being checked
 923 * @type: USB_RECIP_*; for device, interface, or endpoint
 
 924 * @target: zero (for device), else interface or endpoint number
 925 * @data: pointer to two bytes of bitmap data
 926 * Context: !in_interrupt ()
 
 927 *
 928 * Returns device, interface, or endpoint status.  Normally only of
 929 * interest to see if the device is self powered, or has enabled the
 930 * remote wakeup facility; or whether a bulk or interrupt endpoint
 931 * is halted ("stalled").
 932 *
 933 * Bits in these status bitmaps are set using the SET_FEATURE request,
 934 * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
 935 * function should be used to clear halt ("stall") status.
 936 *
 937 * This call is synchronous, and may not be used in an interrupt context.
 938 *
 939 * Returns the number of bytes received on success, or else the status code
 940 * returned by the underlying usb_control_msg() call.
 941 */
 942int usb_get_status(struct usb_device *dev, int type, int target, void *data)
 
 943{
 944	int ret;
 945	u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 946
 
 947	if (!status)
 948		return -ENOMEM;
 949
 950	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 951		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
 952		sizeof(*status), USB_CTRL_GET_TIMEOUT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 953
 954	*(u16 *)data = *status;
 955	kfree(status);
 956	return ret;
 957}
 958EXPORT_SYMBOL_GPL(usb_get_status);
 959
 960/**
 961 * usb_clear_halt - tells device to clear endpoint halt/stall condition
 962 * @dev: device whose endpoint is halted
 963 * @pipe: endpoint "pipe" being cleared
 964 * Context: !in_interrupt ()
 
 965 *
 966 * This is used to clear halt conditions for bulk and interrupt endpoints,
 967 * as reported by URB completion status.  Endpoints that are halted are
 968 * sometimes referred to as being "stalled".  Such endpoints are unable
 969 * to transmit or receive data until the halt status is cleared.  Any URBs
 970 * queued for such an endpoint should normally be unlinked by the driver
 971 * before clearing the halt condition, as described in sections 5.7.5
 972 * and 5.8.5 of the USB 2.0 spec.
 973 *
 974 * Note that control and isochronous endpoints don't halt, although control
 975 * endpoints report "protocol stall" (for unsupported requests) using the
 976 * same status code used to report a true stall.
 977 *
 978 * This call is synchronous, and may not be used in an interrupt context.
 979 *
 980 * Returns zero on success, or else the status code returned by the
 981 * underlying usb_control_msg() call.
 982 */
 983int usb_clear_halt(struct usb_device *dev, int pipe)
 984{
 985	int result;
 986	int endp = usb_pipeendpoint(pipe);
 987
 988	if (usb_pipein(pipe))
 989		endp |= USB_DIR_IN;
 990
 991	/* we don't care if it wasn't halted first. in fact some devices
 992	 * (like some ibmcam model 1 units) seem to expect hosts to make
 993	 * this request for iso endpoints, which can't halt!
 994	 */
 995	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
 996		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
 997		USB_ENDPOINT_HALT, endp, NULL, 0,
 998		USB_CTRL_SET_TIMEOUT);
 999
1000	/* don't un-halt or force to DATA0 except on success */
1001	if (result < 0)
1002		return result;
1003
1004	/* NOTE:  seems like Microsoft and Apple don't bother verifying
1005	 * the clear "took", so some devices could lock up if you check...
1006	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1007	 *
1008	 * NOTE:  make sure the logic here doesn't diverge much from
1009	 * the copy in usb-storage, for as long as we need two copies.
1010	 */
1011
1012	usb_reset_endpoint(dev, endp);
1013
1014	return 0;
1015}
1016EXPORT_SYMBOL_GPL(usb_clear_halt);
1017
1018static int create_intf_ep_devs(struct usb_interface *intf)
1019{
1020	struct usb_device *udev = interface_to_usbdev(intf);
1021	struct usb_host_interface *alt = intf->cur_altsetting;
1022	int i;
1023
1024	if (intf->ep_devs_created || intf->unregistering)
1025		return 0;
1026
1027	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1028		(void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1029	intf->ep_devs_created = 1;
1030	return 0;
1031}
1032
1033static void remove_intf_ep_devs(struct usb_interface *intf)
1034{
1035	struct usb_host_interface *alt = intf->cur_altsetting;
1036	int i;
1037
1038	if (!intf->ep_devs_created)
1039		return;
1040
1041	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1042		usb_remove_ep_devs(&alt->endpoint[i]);
1043	intf->ep_devs_created = 0;
1044}
1045
1046/**
1047 * usb_disable_endpoint -- Disable an endpoint by address
1048 * @dev: the device whose endpoint is being disabled
1049 * @epaddr: the endpoint's address.  Endpoint number for output,
1050 *	endpoint number + USB_DIR_IN for input
1051 * @reset_hardware: flag to erase any endpoint state stored in the
1052 *	controller hardware
1053 *
1054 * Disables the endpoint for URB submission and nukes all pending URBs.
1055 * If @reset_hardware is set then also deallocates hcd/hardware state
1056 * for the endpoint.
1057 */
1058void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1059		bool reset_hardware)
1060{
1061	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1062	struct usb_host_endpoint *ep;
1063
1064	if (!dev)
1065		return;
1066
1067	if (usb_endpoint_out(epaddr)) {
1068		ep = dev->ep_out[epnum];
1069		if (reset_hardware)
1070			dev->ep_out[epnum] = NULL;
1071	} else {
1072		ep = dev->ep_in[epnum];
1073		if (reset_hardware)
1074			dev->ep_in[epnum] = NULL;
1075	}
1076	if (ep) {
1077		ep->enabled = 0;
1078		usb_hcd_flush_endpoint(dev, ep);
1079		if (reset_hardware)
1080			usb_hcd_disable_endpoint(dev, ep);
1081	}
1082}
1083
1084/**
1085 * usb_reset_endpoint - Reset an endpoint's state.
1086 * @dev: the device whose endpoint is to be reset
1087 * @epaddr: the endpoint's address.  Endpoint number for output,
1088 *	endpoint number + USB_DIR_IN for input
1089 *
1090 * Resets any host-side endpoint state such as the toggle bit,
1091 * sequence number or current window.
1092 */
1093void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1094{
1095	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1096	struct usb_host_endpoint *ep;
1097
1098	if (usb_endpoint_out(epaddr))
1099		ep = dev->ep_out[epnum];
1100	else
1101		ep = dev->ep_in[epnum];
1102	if (ep)
1103		usb_hcd_reset_endpoint(dev, ep);
1104}
1105EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1106
1107
1108/**
1109 * usb_disable_interface -- Disable all endpoints for an interface
1110 * @dev: the device whose interface is being disabled
1111 * @intf: pointer to the interface descriptor
1112 * @reset_hardware: flag to erase any endpoint state stored in the
1113 *	controller hardware
1114 *
1115 * Disables all the endpoints for the interface's current altsetting.
1116 */
1117void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1118		bool reset_hardware)
1119{
1120	struct usb_host_interface *alt = intf->cur_altsetting;
1121	int i;
1122
1123	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1124		usb_disable_endpoint(dev,
1125				alt->endpoint[i].desc.bEndpointAddress,
1126				reset_hardware);
1127	}
1128}
1129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1130/**
1131 * usb_disable_device - Disable all the endpoints for a USB device
1132 * @dev: the device whose endpoints are being disabled
1133 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1134 *
1135 * Disables all the device's endpoints, potentially including endpoint 0.
1136 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1137 * pending urbs) and usbcore state for the interfaces, so that usbcore
1138 * must usb_set_configuration() before any interfaces could be used.
1139 */
1140void usb_disable_device(struct usb_device *dev, int skip_ep0)
1141{
1142	int i;
1143	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1144
1145	/* getting rid of interfaces will disconnect
1146	 * any drivers bound to them (a key side effect)
1147	 */
1148	if (dev->actconfig) {
1149		/*
1150		 * FIXME: In order to avoid self-deadlock involving the
1151		 * bandwidth_mutex, we have to mark all the interfaces
1152		 * before unregistering any of them.
1153		 */
1154		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1155			dev->actconfig->interface[i]->unregistering = 1;
1156
1157		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1158			struct usb_interface	*interface;
1159
1160			/* remove this interface if it has been registered */
1161			interface = dev->actconfig->interface[i];
1162			if (!device_is_registered(&interface->dev))
1163				continue;
1164			dev_dbg(&dev->dev, "unregistering interface %s\n",
1165				dev_name(&interface->dev));
1166			remove_intf_ep_devs(interface);
1167			device_del(&interface->dev);
1168		}
1169
1170		/* Now that the interfaces are unbound, nobody should
1171		 * try to access them.
1172		 */
1173		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1174			put_device(&dev->actconfig->interface[i]->dev);
1175			dev->actconfig->interface[i] = NULL;
1176		}
 
 
1177		usb_unlocked_disable_lpm(dev);
 
 
1178		dev->actconfig = NULL;
1179		if (dev->state == USB_STATE_CONFIGURED)
1180			usb_set_device_state(dev, USB_STATE_ADDRESS);
1181	}
1182
1183	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1184		skip_ep0 ? "non-ep0" : "all");
1185	if (hcd->driver->check_bandwidth) {
1186		/* First pass: Cancel URBs, leave endpoint pointers intact. */
1187		for (i = skip_ep0; i < 16; ++i) {
1188			usb_disable_endpoint(dev, i, false);
1189			usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1190		}
1191		/* Remove endpoints from the host controller internal state */
1192		mutex_lock(hcd->bandwidth_mutex);
1193		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1194		mutex_unlock(hcd->bandwidth_mutex);
1195		/* Second pass: remove endpoint pointers */
1196	}
1197	for (i = skip_ep0; i < 16; ++i) {
1198		usb_disable_endpoint(dev, i, true);
1199		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1200	}
1201}
1202
1203/**
1204 * usb_enable_endpoint - Enable an endpoint for USB communications
1205 * @dev: the device whose interface is being enabled
1206 * @ep: the endpoint
1207 * @reset_ep: flag to reset the endpoint state
1208 *
1209 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1210 * For control endpoints, both the input and output sides are handled.
1211 */
1212void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1213		bool reset_ep)
1214{
1215	int epnum = usb_endpoint_num(&ep->desc);
1216	int is_out = usb_endpoint_dir_out(&ep->desc);
1217	int is_control = usb_endpoint_xfer_control(&ep->desc);
1218
1219	if (reset_ep)
1220		usb_hcd_reset_endpoint(dev, ep);
1221	if (is_out || is_control)
1222		dev->ep_out[epnum] = ep;
1223	if (!is_out || is_control)
1224		dev->ep_in[epnum] = ep;
1225	ep->enabled = 1;
1226}
1227
1228/**
1229 * usb_enable_interface - Enable all the endpoints for an interface
1230 * @dev: the device whose interface is being enabled
1231 * @intf: pointer to the interface descriptor
1232 * @reset_eps: flag to reset the endpoints' state
1233 *
1234 * Enables all the endpoints for the interface's current altsetting.
1235 */
1236void usb_enable_interface(struct usb_device *dev,
1237		struct usb_interface *intf, bool reset_eps)
1238{
1239	struct usb_host_interface *alt = intf->cur_altsetting;
1240	int i;
1241
1242	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1243		usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1244}
1245
1246/**
1247 * usb_set_interface - Makes a particular alternate setting be current
1248 * @dev: the device whose interface is being updated
1249 * @interface: the interface being updated
1250 * @alternate: the setting being chosen.
1251 * Context: !in_interrupt ()
 
1252 *
1253 * This is used to enable data transfers on interfaces that may not
1254 * be enabled by default.  Not all devices support such configurability.
1255 * Only the driver bound to an interface may change its setting.
1256 *
1257 * Within any given configuration, each interface may have several
1258 * alternative settings.  These are often used to control levels of
1259 * bandwidth consumption.  For example, the default setting for a high
1260 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1261 * while interrupt transfers of up to 3KBytes per microframe are legal.
1262 * Also, isochronous endpoints may never be part of an
1263 * interface's default setting.  To access such bandwidth, alternate
1264 * interface settings must be made current.
1265 *
1266 * Note that in the Linux USB subsystem, bandwidth associated with
1267 * an endpoint in a given alternate setting is not reserved until an URB
1268 * is submitted that needs that bandwidth.  Some other operating systems
1269 * allocate bandwidth early, when a configuration is chosen.
1270 *
 
 
 
 
 
1271 * This call is synchronous, and may not be used in an interrupt context.
1272 * Also, drivers must not change altsettings while urbs are scheduled for
1273 * endpoints in that interface; all such urbs must first be completed
1274 * (perhaps forced by unlinking).
1275 *
1276 * Returns zero on success, or else the status code returned by the
1277 * underlying usb_control_msg() call.
1278 */
1279int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1280{
1281	struct usb_interface *iface;
1282	struct usb_host_interface *alt;
1283	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1284	int ret;
1285	int manual = 0;
1286	unsigned int epaddr;
1287	unsigned int pipe;
1288
1289	if (dev->state == USB_STATE_SUSPENDED)
1290		return -EHOSTUNREACH;
1291
1292	iface = usb_ifnum_to_if(dev, interface);
1293	if (!iface) {
1294		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1295			interface);
1296		return -EINVAL;
1297	}
1298	if (iface->unregistering)
1299		return -ENODEV;
1300
1301	alt = usb_altnum_to_altsetting(iface, alternate);
1302	if (!alt) {
1303		dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1304			 alternate);
1305		return -EINVAL;
1306	}
 
 
 
 
 
 
1307
1308	/* Make sure we have enough bandwidth for this alternate interface.
1309	 * Remove the current alt setting and add the new alt setting.
1310	 */
1311	mutex_lock(hcd->bandwidth_mutex);
1312	/* Disable LPM, and re-enable it once the new alt setting is installed,
1313	 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1314	 */
1315	if (usb_disable_lpm(dev)) {
1316		dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__);
1317		mutex_unlock(hcd->bandwidth_mutex);
1318		return -ENOMEM;
1319	}
 
 
 
 
1320	ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1321	if (ret < 0) {
1322		dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1323				alternate);
1324		usb_enable_lpm(dev);
1325		mutex_unlock(hcd->bandwidth_mutex);
1326		return ret;
1327	}
1328
1329	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1330		ret = -EPIPE;
1331	else
1332		ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1333				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1334				   alternate, interface, NULL, 0, 5000);
 
 
1335
1336	/* 9.4.10 says devices don't need this and are free to STALL the
1337	 * request if the interface only has one alternate setting.
1338	 */
1339	if (ret == -EPIPE && iface->num_altsetting == 1) {
1340		dev_dbg(&dev->dev,
1341			"manual set_interface for iface %d, alt %d\n",
1342			interface, alternate);
1343		manual = 1;
1344	} else if (ret < 0) {
1345		/* Re-instate the old alt setting */
1346		usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1347		usb_enable_lpm(dev);
1348		mutex_unlock(hcd->bandwidth_mutex);
1349		return ret;
1350	}
1351	mutex_unlock(hcd->bandwidth_mutex);
1352
1353	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1354	 * when they implement async or easily-killable versions of this or
1355	 * other "should-be-internal" functions (like clear_halt).
1356	 * should hcd+usbcore postprocess control requests?
1357	 */
1358
1359	/* prevent submissions using previous endpoint settings */
1360	if (iface->cur_altsetting != alt) {
1361		remove_intf_ep_devs(iface);
1362		usb_remove_sysfs_intf_files(iface);
1363	}
1364	usb_disable_interface(dev, iface, true);
1365
1366	iface->cur_altsetting = alt;
1367
1368	/* Now that the interface is installed, re-enable LPM. */
1369	usb_unlocked_enable_lpm(dev);
1370
1371	/* If the interface only has one altsetting and the device didn't
1372	 * accept the request, we attempt to carry out the equivalent action
1373	 * by manually clearing the HALT feature for each endpoint in the
1374	 * new altsetting.
1375	 */
1376	if (manual) {
1377		int i;
1378
1379		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1380			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1381			pipe = __create_pipe(dev,
1382					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1383					(usb_endpoint_out(epaddr) ?
1384					USB_DIR_OUT : USB_DIR_IN);
1385
1386			usb_clear_halt(dev, pipe);
1387		}
1388	}
1389
1390	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1391	 *
1392	 * Note:
1393	 * Despite EP0 is always present in all interfaces/AS, the list of
1394	 * endpoints from the descriptor does not contain EP0. Due to its
1395	 * omnipresence one might expect EP0 being considered "affected" by
1396	 * any SetInterface request and hence assume toggles need to be reset.
1397	 * However, EP0 toggles are re-synced for every individual transfer
1398	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1399	 * (Likewise, EP0 never "halts" on well designed devices.)
1400	 */
1401	usb_enable_interface(dev, iface, true);
1402	if (device_is_registered(&iface->dev)) {
1403		usb_create_sysfs_intf_files(iface);
1404		create_intf_ep_devs(iface);
1405	}
1406	return 0;
1407}
1408EXPORT_SYMBOL_GPL(usb_set_interface);
1409
1410/**
1411 * usb_reset_configuration - lightweight device reset
1412 * @dev: the device whose configuration is being reset
1413 *
1414 * This issues a standard SET_CONFIGURATION request to the device using
1415 * the current configuration.  The effect is to reset most USB-related
1416 * state in the device, including interface altsettings (reset to zero),
1417 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1418 * endpoints).  Other usbcore state is unchanged, including bindings of
1419 * usb device drivers to interfaces.
1420 *
1421 * Because this affects multiple interfaces, avoid using this with composite
1422 * (multi-interface) devices.  Instead, the driver for each interface may
1423 * use usb_set_interface() on the interfaces it claims.  Be careful though;
1424 * some devices don't support the SET_INTERFACE request, and others won't
1425 * reset all the interface state (notably endpoint state).  Resetting the whole
1426 * configuration would affect other drivers' interfaces.
1427 *
1428 * The caller must own the device lock.
1429 *
1430 * Returns zero on success, else a negative error code.
 
 
 
1431 */
1432int usb_reset_configuration(struct usb_device *dev)
1433{
1434	int			i, retval;
1435	struct usb_host_config	*config;
1436	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1437
1438	if (dev->state == USB_STATE_SUSPENDED)
1439		return -EHOSTUNREACH;
1440
1441	/* caller must have locked the device and must own
1442	 * the usb bus readlock (so driver bindings are stable);
1443	 * calls during probe() are fine
1444	 */
1445
1446	for (i = 1; i < 16; ++i) {
1447		usb_disable_endpoint(dev, i, true);
1448		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1449	}
1450
1451	config = dev->actconfig;
1452	retval = 0;
1453	mutex_lock(hcd->bandwidth_mutex);
1454	/* Disable LPM, and re-enable it once the configuration is reset, so
1455	 * that the xHCI driver can recalculate the U1/U2 timeouts.
1456	 */
1457	if (usb_disable_lpm(dev)) {
1458		dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1459		mutex_unlock(hcd->bandwidth_mutex);
1460		return -ENOMEM;
1461	}
1462	/* Make sure we have enough bandwidth for each alternate setting 0 */
1463	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1464		struct usb_interface *intf = config->interface[i];
1465		struct usb_host_interface *alt;
1466
1467		alt = usb_altnum_to_altsetting(intf, 0);
1468		if (!alt)
1469			alt = &intf->altsetting[0];
1470		if (alt != intf->cur_altsetting)
1471			retval = usb_hcd_alloc_bandwidth(dev, NULL,
1472					intf->cur_altsetting, alt);
1473		if (retval < 0)
1474			break;
1475	}
1476	/* If not, reinstate the old alternate settings */
1477	if (retval < 0) {
1478reset_old_alts:
1479		for (i--; i >= 0; i--) {
1480			struct usb_interface *intf = config->interface[i];
1481			struct usb_host_interface *alt;
1482
1483			alt = usb_altnum_to_altsetting(intf, 0);
1484			if (!alt)
1485				alt = &intf->altsetting[0];
1486			if (alt != intf->cur_altsetting)
1487				usb_hcd_alloc_bandwidth(dev, NULL,
1488						alt, intf->cur_altsetting);
1489		}
1490		usb_enable_lpm(dev);
1491		mutex_unlock(hcd->bandwidth_mutex);
1492		return retval;
1493	}
1494	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1495			USB_REQ_SET_CONFIGURATION, 0,
1496			config->desc.bConfigurationValue, 0,
1497			NULL, 0, USB_CTRL_SET_TIMEOUT);
1498	if (retval < 0)
1499		goto reset_old_alts;
1500	mutex_unlock(hcd->bandwidth_mutex);
1501
1502	/* re-init hc/hcd interface/endpoint state */
1503	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1504		struct usb_interface *intf = config->interface[i];
1505		struct usb_host_interface *alt;
1506
1507		alt = usb_altnum_to_altsetting(intf, 0);
1508
1509		/* No altsetting 0?  We'll assume the first altsetting.
1510		 * We could use a GetInterface call, but if a device is
1511		 * so non-compliant that it doesn't have altsetting 0
1512		 * then I wouldn't trust its reply anyway.
1513		 */
1514		if (!alt)
1515			alt = &intf->altsetting[0];
1516
1517		if (alt != intf->cur_altsetting) {
1518			remove_intf_ep_devs(intf);
1519			usb_remove_sysfs_intf_files(intf);
1520		}
1521		intf->cur_altsetting = alt;
1522		usb_enable_interface(dev, intf, true);
1523		if (device_is_registered(&intf->dev)) {
1524			usb_create_sysfs_intf_files(intf);
1525			create_intf_ep_devs(intf);
1526		}
1527	}
1528	/* Now that the interfaces are installed, re-enable LPM. */
1529	usb_unlocked_enable_lpm(dev);
1530	return 0;
1531}
1532EXPORT_SYMBOL_GPL(usb_reset_configuration);
1533
1534static void usb_release_interface(struct device *dev)
1535{
1536	struct usb_interface *intf = to_usb_interface(dev);
1537	struct usb_interface_cache *intfc =
1538			altsetting_to_usb_interface_cache(intf->altsetting);
1539
1540	kref_put(&intfc->ref, usb_release_interface_cache);
 
 
1541	kfree(intf);
1542}
1543
1544#ifdef	CONFIG_HOTPLUG
1545static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1546{
1547	struct usb_device *usb_dev;
1548	struct usb_interface *intf;
1549	struct usb_host_interface *alt;
1550
1551	intf = to_usb_interface(dev);
1552	usb_dev = interface_to_usbdev(intf);
1553	alt = intf->cur_altsetting;
1554
1555	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1556		   alt->desc.bInterfaceClass,
1557		   alt->desc.bInterfaceSubClass,
1558		   alt->desc.bInterfaceProtocol))
1559		return -ENOMEM;
1560
1561	if (add_uevent_var(env,
1562		   "MODALIAS=usb:"
1563		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1564		   le16_to_cpu(usb_dev->descriptor.idVendor),
1565		   le16_to_cpu(usb_dev->descriptor.idProduct),
1566		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1567		   usb_dev->descriptor.bDeviceClass,
1568		   usb_dev->descriptor.bDeviceSubClass,
1569		   usb_dev->descriptor.bDeviceProtocol,
1570		   alt->desc.bInterfaceClass,
1571		   alt->desc.bInterfaceSubClass,
1572		   alt->desc.bInterfaceProtocol))
 
1573		return -ENOMEM;
1574
1575	return 0;
1576}
1577
1578#else
1579
1580static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1581{
1582	return -ENODEV;
1583}
1584#endif	/* CONFIG_HOTPLUG */
1585
1586struct device_type usb_if_device_type = {
1587	.name =		"usb_interface",
1588	.release =	usb_release_interface,
1589	.uevent =	usb_if_uevent,
1590};
1591
1592static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1593						struct usb_host_config *config,
1594						u8 inum)
1595{
1596	struct usb_interface_assoc_descriptor *retval = NULL;
1597	struct usb_interface_assoc_descriptor *intf_assoc;
1598	int first_intf;
1599	int last_intf;
1600	int i;
1601
1602	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1603		intf_assoc = config->intf_assoc[i];
1604		if (intf_assoc->bInterfaceCount == 0)
1605			continue;
1606
1607		first_intf = intf_assoc->bFirstInterface;
1608		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1609		if (inum >= first_intf && inum <= last_intf) {
1610			if (!retval)
1611				retval = intf_assoc;
1612			else
1613				dev_err(&dev->dev, "Interface #%d referenced"
1614					" by multiple IADs\n", inum);
1615		}
1616	}
1617
1618	return retval;
1619}
1620
1621
1622/*
1623 * Internal function to queue a device reset
1624 *
1625 * This is initialized into the workstruct in 'struct
1626 * usb_device->reset_ws' that is launched by
1627 * message.c:usb_set_configuration() when initializing each 'struct
1628 * usb_interface'.
1629 *
1630 * It is safe to get the USB device without reference counts because
1631 * the life cycle of @iface is bound to the life cycle of @udev. Then,
1632 * this function will be ran only if @iface is alive (and before
1633 * freeing it any scheduled instances of it will have been cancelled).
1634 *
1635 * We need to set a flag (usb_dev->reset_running) because when we call
1636 * the reset, the interfaces might be unbound. The current interface
1637 * cannot try to remove the queued work as it would cause a deadlock
1638 * (you cannot remove your work from within your executing
1639 * workqueue). This flag lets it know, so that
1640 * usb_cancel_queued_reset() doesn't try to do it.
1641 *
1642 * See usb_queue_reset_device() for more details
1643 */
1644static void __usb_queue_reset_device(struct work_struct *ws)
1645{
1646	int rc;
1647	struct usb_interface *iface =
1648		container_of(ws, struct usb_interface, reset_ws);
1649	struct usb_device *udev = interface_to_usbdev(iface);
1650
1651	rc = usb_lock_device_for_reset(udev, iface);
1652	if (rc >= 0) {
1653		iface->reset_running = 1;
1654		usb_reset_device(udev);
1655		iface->reset_running = 0;
1656		usb_unlock_device(udev);
1657	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1658}
1659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1660
1661/*
1662 * usb_set_configuration - Makes a particular device setting be current
1663 * @dev: the device whose configuration is being updated
1664 * @configuration: the configuration being chosen.
1665 * Context: !in_interrupt(), caller owns the device lock
 
1666 *
1667 * This is used to enable non-default device modes.  Not all devices
1668 * use this kind of configurability; many devices only have one
1669 * configuration.
1670 *
1671 * @configuration is the value of the configuration to be installed.
1672 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1673 * must be non-zero; a value of zero indicates that the device in
1674 * unconfigured.  However some devices erroneously use 0 as one of their
1675 * configuration values.  To help manage such devices, this routine will
1676 * accept @configuration = -1 as indicating the device should be put in
1677 * an unconfigured state.
1678 *
1679 * USB device configurations may affect Linux interoperability,
1680 * power consumption and the functionality available.  For example,
1681 * the default configuration is limited to using 100mA of bus power,
1682 * so that when certain device functionality requires more power,
1683 * and the device is bus powered, that functionality should be in some
1684 * non-default device configuration.  Other device modes may also be
1685 * reflected as configuration options, such as whether two ISDN
1686 * channels are available independently; and choosing between open
1687 * standard device protocols (like CDC) or proprietary ones.
1688 *
1689 * Note that a non-authorized device (dev->authorized == 0) will only
1690 * be put in unconfigured mode.
1691 *
1692 * Note that USB has an additional level of device configurability,
1693 * associated with interfaces.  That configurability is accessed using
1694 * usb_set_interface().
1695 *
1696 * This call is synchronous. The calling context must be able to sleep,
1697 * must own the device lock, and must not hold the driver model's USB
1698 * bus mutex; usb interface driver probe() methods cannot use this routine.
1699 *
1700 * Returns zero on success, or else the status code returned by the
1701 * underlying call that failed.  On successful completion, each interface
1702 * in the original device configuration has been destroyed, and each one
1703 * in the new configuration has been probed by all relevant usb device
1704 * drivers currently known to the kernel.
1705 */
1706int usb_set_configuration(struct usb_device *dev, int configuration)
1707{
1708	int i, ret;
1709	struct usb_host_config *cp = NULL;
1710	struct usb_interface **new_interfaces = NULL;
1711	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1712	int n, nintf;
1713
1714	if (dev->authorized == 0 || configuration == -1)
1715		configuration = 0;
1716	else {
1717		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1718			if (dev->config[i].desc.bConfigurationValue ==
1719					configuration) {
1720				cp = &dev->config[i];
1721				break;
1722			}
1723		}
1724	}
1725	if ((!cp && configuration != 0))
1726		return -EINVAL;
1727
1728	/* The USB spec says configuration 0 means unconfigured.
1729	 * But if a device includes a configuration numbered 0,
1730	 * we will accept it as a correctly configured state.
1731	 * Use -1 if you really want to unconfigure the device.
1732	 */
1733	if (cp && configuration == 0)
1734		dev_warn(&dev->dev, "config 0 descriptor??\n");
1735
1736	/* Allocate memory for new interfaces before doing anything else,
1737	 * so that if we run out then nothing will have changed. */
1738	n = nintf = 0;
1739	if (cp) {
1740		nintf = cp->desc.bNumInterfaces;
1741		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1742				GFP_NOIO);
1743		if (!new_interfaces) {
1744			dev_err(&dev->dev, "Out of memory\n");
1745			return -ENOMEM;
1746		}
1747
1748		for (; n < nintf; ++n) {
1749			new_interfaces[n] = kzalloc(
1750					sizeof(struct usb_interface),
1751					GFP_NOIO);
1752			if (!new_interfaces[n]) {
1753				dev_err(&dev->dev, "Out of memory\n");
1754				ret = -ENOMEM;
1755free_interfaces:
1756				while (--n >= 0)
1757					kfree(new_interfaces[n]);
1758				kfree(new_interfaces);
1759				return ret;
1760			}
1761		}
1762
1763		i = dev->bus_mA - cp->desc.bMaxPower * 2;
1764		if (i < 0)
1765			dev_warn(&dev->dev, "new config #%d exceeds power "
1766					"limit by %dmA\n",
1767					configuration, -i);
1768	}
1769
1770	/* Wake up the device so we can send it the Set-Config request */
1771	ret = usb_autoresume_device(dev);
1772	if (ret)
1773		goto free_interfaces;
1774
1775	/* if it's already configured, clear out old state first.
1776	 * getting rid of old interfaces means unbinding their drivers.
1777	 */
1778	if (dev->state != USB_STATE_ADDRESS)
1779		usb_disable_device(dev, 1);	/* Skip ep0 */
1780
1781	/* Get rid of pending async Set-Config requests for this device */
1782	cancel_async_set_config(dev);
1783
1784	/* Make sure we have bandwidth (and available HCD resources) for this
1785	 * configuration.  Remove endpoints from the schedule if we're dropping
1786	 * this configuration to set configuration 0.  After this point, the
1787	 * host controller will not allow submissions to dropped endpoints.  If
1788	 * this call fails, the device state is unchanged.
1789	 */
1790	mutex_lock(hcd->bandwidth_mutex);
1791	/* Disable LPM, and re-enable it once the new configuration is
1792	 * installed, so that the xHCI driver can recalculate the U1/U2
1793	 * timeouts.
1794	 */
1795	if (dev->actconfig && usb_disable_lpm(dev)) {
1796		dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1797		mutex_unlock(hcd->bandwidth_mutex);
1798		return -ENOMEM;
 
1799	}
1800	ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1801	if (ret < 0) {
1802		if (dev->actconfig)
1803			usb_enable_lpm(dev);
1804		mutex_unlock(hcd->bandwidth_mutex);
1805		usb_autosuspend_device(dev);
1806		goto free_interfaces;
1807	}
1808
1809	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1810			      USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1811			      NULL, 0, USB_CTRL_SET_TIMEOUT);
1812	if (ret < 0) {
1813		/* All the old state is gone, so what else can we do?
1814		 * The device is probably useless now anyway.
1815		 */
1816		cp = NULL;
1817	}
1818
1819	dev->actconfig = cp;
1820	if (!cp) {
1821		usb_set_device_state(dev, USB_STATE_ADDRESS);
1822		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1823		/* Leave LPM disabled while the device is unconfigured. */
1824		mutex_unlock(hcd->bandwidth_mutex);
1825		usb_autosuspend_device(dev);
1826		goto free_interfaces;
1827	}
1828	mutex_unlock(hcd->bandwidth_mutex);
1829	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1830
1831	/* Initialize the new interface structures and the
1832	 * hc/hcd/usbcore interface/endpoint state.
1833	 */
1834	for (i = 0; i < nintf; ++i) {
1835		struct usb_interface_cache *intfc;
1836		struct usb_interface *intf;
1837		struct usb_host_interface *alt;
 
1838
1839		cp->interface[i] = intf = new_interfaces[i];
1840		intfc = cp->intf_cache[i];
1841		intf->altsetting = intfc->altsetting;
1842		intf->num_altsetting = intfc->num_altsetting;
 
1843		kref_get(&intfc->ref);
1844
1845		alt = usb_altnum_to_altsetting(intf, 0);
1846
1847		/* No altsetting 0?  We'll assume the first altsetting.
1848		 * We could use a GetInterface call, but if a device is
1849		 * so non-compliant that it doesn't have altsetting 0
1850		 * then I wouldn't trust its reply anyway.
1851		 */
1852		if (!alt)
1853			alt = &intf->altsetting[0];
1854
1855		intf->intf_assoc =
1856			find_iad(dev, cp, alt->desc.bInterfaceNumber);
1857		intf->cur_altsetting = alt;
1858		usb_enable_interface(dev, intf, true);
1859		intf->dev.parent = &dev->dev;
 
 
 
 
 
 
 
1860		intf->dev.driver = NULL;
1861		intf->dev.bus = &usb_bus_type;
1862		intf->dev.type = &usb_if_device_type;
1863		intf->dev.groups = usb_interface_groups;
1864		intf->dev.dma_mask = dev->dev.dma_mask;
1865		INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
 
1866		intf->minor = -1;
1867		device_initialize(&intf->dev);
1868		pm_runtime_no_callbacks(&intf->dev);
1869		dev_set_name(&intf->dev, "%d-%s:%d.%d",
1870			dev->bus->busnum, dev->devpath,
1871			configuration, alt->desc.bInterfaceNumber);
1872	}
1873	kfree(new_interfaces);
1874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1875	if (cp->string == NULL &&
1876			!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1877		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1878
1879	/* Now that the interfaces are installed, re-enable LPM. */
1880	usb_unlocked_enable_lpm(dev);
 
 
1881
1882	/* Now that all the interfaces are set up, register them
1883	 * to trigger binding of drivers to interfaces.  probe()
1884	 * routines may install different altsettings and may
1885	 * claim() any interfaces not yet bound.  Many class drivers
1886	 * need that: CDC, audio, video, etc.
1887	 */
1888	for (i = 0; i < nintf; ++i) {
1889		struct usb_interface *intf = cp->interface[i];
1890
 
 
 
 
 
 
 
1891		dev_dbg(&dev->dev,
1892			"adding %s (config #%d, interface %d)\n",
1893			dev_name(&intf->dev), configuration,
1894			intf->cur_altsetting->desc.bInterfaceNumber);
1895		device_enable_async_suspend(&intf->dev);
1896		ret = device_add(&intf->dev);
1897		if (ret != 0) {
1898			dev_err(&dev->dev, "device_add(%s) --> %d\n",
1899				dev_name(&intf->dev), ret);
1900			continue;
1901		}
1902		create_intf_ep_devs(intf);
1903	}
1904
1905	usb_autosuspend_device(dev);
1906	return 0;
1907}
 
1908
1909static LIST_HEAD(set_config_list);
1910static DEFINE_SPINLOCK(set_config_lock);
1911
1912struct set_config_request {
1913	struct usb_device	*udev;
1914	int			config;
1915	struct work_struct	work;
1916	struct list_head	node;
1917};
1918
1919/* Worker routine for usb_driver_set_configuration() */
1920static void driver_set_config_work(struct work_struct *work)
1921{
1922	struct set_config_request *req =
1923		container_of(work, struct set_config_request, work);
1924	struct usb_device *udev = req->udev;
1925
1926	usb_lock_device(udev);
1927	spin_lock(&set_config_lock);
1928	list_del(&req->node);
1929	spin_unlock(&set_config_lock);
1930
1931	if (req->config >= -1)		/* Is req still valid? */
1932		usb_set_configuration(udev, req->config);
1933	usb_unlock_device(udev);
1934	usb_put_dev(udev);
1935	kfree(req);
1936}
1937
1938/* Cancel pending Set-Config requests for a device whose configuration
1939 * was just changed
1940 */
1941static void cancel_async_set_config(struct usb_device *udev)
1942{
1943	struct set_config_request *req;
1944
1945	spin_lock(&set_config_lock);
1946	list_for_each_entry(req, &set_config_list, node) {
1947		if (req->udev == udev)
1948			req->config = -999;	/* Mark as cancelled */
1949	}
1950	spin_unlock(&set_config_lock);
1951}
1952
1953/**
1954 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1955 * @udev: the device whose configuration is being updated
1956 * @config: the configuration being chosen.
1957 * Context: In process context, must be able to sleep
1958 *
1959 * Device interface drivers are not allowed to change device configurations.
1960 * This is because changing configurations will destroy the interface the
1961 * driver is bound to and create new ones; it would be like a floppy-disk
1962 * driver telling the computer to replace the floppy-disk drive with a
1963 * tape drive!
1964 *
1965 * Still, in certain specialized circumstances the need may arise.  This
1966 * routine gets around the normal restrictions by using a work thread to
1967 * submit the change-config request.
1968 *
1969 * Returns 0 if the request was successfully queued, error code otherwise.
1970 * The caller has no way to know whether the queued request will eventually
1971 * succeed.
1972 */
1973int usb_driver_set_configuration(struct usb_device *udev, int config)
1974{
1975	struct set_config_request *req;
1976
1977	req = kmalloc(sizeof(*req), GFP_KERNEL);
1978	if (!req)
1979		return -ENOMEM;
1980	req->udev = udev;
1981	req->config = config;
1982	INIT_WORK(&req->work, driver_set_config_work);
1983
1984	spin_lock(&set_config_lock);
1985	list_add(&req->node, &set_config_list);
1986	spin_unlock(&set_config_lock);
1987
1988	usb_get_dev(udev);
1989	schedule_work(&req->work);
1990	return 0;
1991}
1992EXPORT_SYMBOL_GPL(usb_driver_set_configuration);