Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 *
5 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 *
8 * This file is licensed under GPLv2.
9 */
10
11#include <linux/scatterlist.h>
12#include <linux/blkdev.h>
13#include <linux/slab.h>
14#include <asm/unaligned.h>
15
16#include "sas_internal.h"
17
18#include <scsi/sas_ata.h>
19#include <scsi/scsi_transport.h>
20#include <scsi/scsi_transport_sas.h>
21#include "scsi_sas_internal.h"
22
23static int sas_discover_expander(struct domain_device *dev);
24static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
25static int sas_configure_phy(struct domain_device *dev, int phy_id,
26 u8 *sas_addr, int include);
27static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
28
29/* ---------- SMP task management ---------- */
30
31/* Give it some long enough timeout. In seconds. */
32#define SMP_TIMEOUT 10
33
34static int smp_execute_task_sg(struct domain_device *dev,
35 struct scatterlist *req, struct scatterlist *resp)
36{
37 int res, retry;
38 struct sas_task *task = NULL;
39 struct sas_internal *i =
40 to_sas_internal(dev->port->ha->shost->transportt);
41 struct sas_ha_struct *ha = dev->port->ha;
42
43 pm_runtime_get_sync(ha->dev);
44 mutex_lock(&dev->ex_dev.cmd_mutex);
45 for (retry = 0; retry < 3; retry++) {
46 if (test_bit(SAS_DEV_GONE, &dev->state)) {
47 res = -ECOMM;
48 break;
49 }
50
51 task = sas_alloc_slow_task(GFP_KERNEL);
52 if (!task) {
53 res = -ENOMEM;
54 break;
55 }
56 task->dev = dev;
57 task->task_proto = dev->tproto;
58 task->smp_task.smp_req = *req;
59 task->smp_task.smp_resp = *resp;
60
61 task->task_done = sas_task_internal_done;
62
63 task->slow_task->timer.function = sas_task_internal_timedout;
64 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
65 add_timer(&task->slow_task->timer);
66
67 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
68
69 if (res) {
70 del_timer_sync(&task->slow_task->timer);
71 pr_notice("executing SMP task failed:%d\n", res);
72 break;
73 }
74
75 wait_for_completion(&task->slow_task->completion);
76 res = -ECOMM;
77 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
78 pr_notice("smp task timed out or aborted\n");
79 i->dft->lldd_abort_task(task);
80 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
81 pr_notice("SMP task aborted and not done\n");
82 break;
83 }
84 }
85 if (task->task_status.resp == SAS_TASK_COMPLETE &&
86 task->task_status.stat == SAS_SAM_STAT_GOOD) {
87 res = 0;
88 break;
89 }
90 if (task->task_status.resp == SAS_TASK_COMPLETE &&
91 task->task_status.stat == SAS_DATA_UNDERRUN) {
92 /* no error, but return the number of bytes of
93 * underrun */
94 res = task->task_status.residual;
95 break;
96 }
97 if (task->task_status.resp == SAS_TASK_COMPLETE &&
98 task->task_status.stat == SAS_DATA_OVERRUN) {
99 res = -EMSGSIZE;
100 break;
101 }
102 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
103 task->task_status.stat == SAS_DEVICE_UNKNOWN)
104 break;
105 else {
106 pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
107 __func__,
108 SAS_ADDR(dev->sas_addr),
109 task->task_status.resp,
110 task->task_status.stat);
111 sas_free_task(task);
112 task = NULL;
113 }
114 }
115 mutex_unlock(&dev->ex_dev.cmd_mutex);
116 pm_runtime_put_sync(ha->dev);
117
118 BUG_ON(retry == 3 && task != NULL);
119 sas_free_task(task);
120 return res;
121}
122
123static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
124 void *resp, int resp_size)
125{
126 struct scatterlist req_sg;
127 struct scatterlist resp_sg;
128
129 sg_init_one(&req_sg, req, req_size);
130 sg_init_one(&resp_sg, resp, resp_size);
131 return smp_execute_task_sg(dev, &req_sg, &resp_sg);
132}
133
134/* ---------- Allocations ---------- */
135
136static inline void *alloc_smp_req(int size)
137{
138 u8 *p = kzalloc(size, GFP_KERNEL);
139 if (p)
140 p[0] = SMP_REQUEST;
141 return p;
142}
143
144static inline void *alloc_smp_resp(int size)
145{
146 return kzalloc(size, GFP_KERNEL);
147}
148
149static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
150{
151 switch (phy->routing_attr) {
152 case TABLE_ROUTING:
153 if (dev->ex_dev.t2t_supp)
154 return 'U';
155 else
156 return 'T';
157 case DIRECT_ROUTING:
158 return 'D';
159 case SUBTRACTIVE_ROUTING:
160 return 'S';
161 default:
162 return '?';
163 }
164}
165
166static enum sas_device_type to_dev_type(struct discover_resp *dr)
167{
168 /* This is detecting a failure to transmit initial dev to host
169 * FIS as described in section J.5 of sas-2 r16
170 */
171 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
172 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
173 return SAS_SATA_PENDING;
174 else
175 return dr->attached_dev_type;
176}
177
178static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
179 struct smp_disc_resp *disc_resp)
180{
181 enum sas_device_type dev_type;
182 enum sas_linkrate linkrate;
183 u8 sas_addr[SAS_ADDR_SIZE];
184 struct discover_resp *dr = &disc_resp->disc;
185 struct sas_ha_struct *ha = dev->port->ha;
186 struct expander_device *ex = &dev->ex_dev;
187 struct ex_phy *phy = &ex->ex_phy[phy_id];
188 struct sas_rphy *rphy = dev->rphy;
189 bool new_phy = !phy->phy;
190 char *type;
191
192 if (new_phy) {
193 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
194 return;
195 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
196
197 /* FIXME: error_handling */
198 BUG_ON(!phy->phy);
199 }
200
201 switch (disc_resp->result) {
202 case SMP_RESP_PHY_VACANT:
203 phy->phy_state = PHY_VACANT;
204 break;
205 default:
206 phy->phy_state = PHY_NOT_PRESENT;
207 break;
208 case SMP_RESP_FUNC_ACC:
209 phy->phy_state = PHY_EMPTY; /* do not know yet */
210 break;
211 }
212
213 /* check if anything important changed to squelch debug */
214 dev_type = phy->attached_dev_type;
215 linkrate = phy->linkrate;
216 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
217
218 /* Handle vacant phy - rest of dr data is not valid so skip it */
219 if (phy->phy_state == PHY_VACANT) {
220 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
221 phy->attached_dev_type = SAS_PHY_UNUSED;
222 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
223 phy->phy_id = phy_id;
224 goto skip;
225 } else
226 goto out;
227 }
228
229 phy->attached_dev_type = to_dev_type(dr);
230 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
231 goto out;
232 phy->phy_id = phy_id;
233 phy->linkrate = dr->linkrate;
234 phy->attached_sata_host = dr->attached_sata_host;
235 phy->attached_sata_dev = dr->attached_sata_dev;
236 phy->attached_sata_ps = dr->attached_sata_ps;
237 phy->attached_iproto = dr->iproto << 1;
238 phy->attached_tproto = dr->tproto << 1;
239 /* help some expanders that fail to zero sas_address in the 'no
240 * device' case
241 */
242 if (phy->attached_dev_type == SAS_PHY_UNUSED ||
243 phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
244 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
245 else
246 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
247 phy->attached_phy_id = dr->attached_phy_id;
248 phy->phy_change_count = dr->change_count;
249 phy->routing_attr = dr->routing_attr;
250 phy->virtual = dr->virtual;
251 phy->last_da_index = -1;
252
253 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
254 phy->phy->identify.device_type = dr->attached_dev_type;
255 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
256 phy->phy->identify.target_port_protocols = phy->attached_tproto;
257 if (!phy->attached_tproto && dr->attached_sata_dev)
258 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
259 phy->phy->identify.phy_identifier = phy_id;
260 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
261 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
262 phy->phy->minimum_linkrate = dr->pmin_linkrate;
263 phy->phy->maximum_linkrate = dr->pmax_linkrate;
264 phy->phy->negotiated_linkrate = phy->linkrate;
265 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
266
267 skip:
268 if (new_phy)
269 if (sas_phy_add(phy->phy)) {
270 sas_phy_free(phy->phy);
271 return;
272 }
273
274 out:
275 switch (phy->attached_dev_type) {
276 case SAS_SATA_PENDING:
277 type = "stp pending";
278 break;
279 case SAS_PHY_UNUSED:
280 type = "no device";
281 break;
282 case SAS_END_DEVICE:
283 if (phy->attached_iproto) {
284 if (phy->attached_tproto)
285 type = "host+target";
286 else
287 type = "host";
288 } else {
289 if (dr->attached_sata_dev)
290 type = "stp";
291 else
292 type = "ssp";
293 }
294 break;
295 case SAS_EDGE_EXPANDER_DEVICE:
296 case SAS_FANOUT_EXPANDER_DEVICE:
297 type = "smp";
298 break;
299 default:
300 type = "unknown";
301 }
302
303 /* this routine is polled by libata error recovery so filter
304 * unimportant messages
305 */
306 if (new_phy || phy->attached_dev_type != dev_type ||
307 phy->linkrate != linkrate ||
308 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
309 /* pass */;
310 else
311 return;
312
313 /* if the attached device type changed and ata_eh is active,
314 * make sure we run revalidation when eh completes (see:
315 * sas_enable_revalidation)
316 */
317 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
318 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
319
320 pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
321 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
322 SAS_ADDR(dev->sas_addr), phy->phy_id,
323 sas_route_char(dev, phy), phy->linkrate,
324 SAS_ADDR(phy->attached_sas_addr), type);
325}
326
327/* check if we have an existing attached ata device on this expander phy */
328struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
329{
330 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
331 struct domain_device *dev;
332 struct sas_rphy *rphy;
333
334 if (!ex_phy->port)
335 return NULL;
336
337 rphy = ex_phy->port->rphy;
338 if (!rphy)
339 return NULL;
340
341 dev = sas_find_dev_by_rphy(rphy);
342
343 if (dev && dev_is_sata(dev))
344 return dev;
345
346 return NULL;
347}
348
349#define DISCOVER_REQ_SIZE 16
350#define DISCOVER_RESP_SIZE sizeof(struct smp_disc_resp)
351
352static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
353 struct smp_disc_resp *disc_resp,
354 int single)
355{
356 struct discover_resp *dr = &disc_resp->disc;
357 int res;
358
359 disc_req[9] = single;
360
361 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
362 disc_resp, DISCOVER_RESP_SIZE);
363 if (res)
364 return res;
365 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
366 pr_notice("Found loopback topology, just ignore it!\n");
367 return 0;
368 }
369 sas_set_ex_phy(dev, single, disc_resp);
370 return 0;
371}
372
373int sas_ex_phy_discover(struct domain_device *dev, int single)
374{
375 struct expander_device *ex = &dev->ex_dev;
376 int res = 0;
377 u8 *disc_req;
378 struct smp_disc_resp *disc_resp;
379
380 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
381 if (!disc_req)
382 return -ENOMEM;
383
384 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
385 if (!disc_resp) {
386 kfree(disc_req);
387 return -ENOMEM;
388 }
389
390 disc_req[1] = SMP_DISCOVER;
391
392 if (0 <= single && single < ex->num_phys) {
393 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
394 } else {
395 int i;
396
397 for (i = 0; i < ex->num_phys; i++) {
398 res = sas_ex_phy_discover_helper(dev, disc_req,
399 disc_resp, i);
400 if (res)
401 goto out_err;
402 }
403 }
404out_err:
405 kfree(disc_resp);
406 kfree(disc_req);
407 return res;
408}
409
410static int sas_expander_discover(struct domain_device *dev)
411{
412 struct expander_device *ex = &dev->ex_dev;
413 int res;
414
415 ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
416 if (!ex->ex_phy)
417 return -ENOMEM;
418
419 res = sas_ex_phy_discover(dev, -1);
420 if (res)
421 goto out_err;
422
423 return 0;
424 out_err:
425 kfree(ex->ex_phy);
426 ex->ex_phy = NULL;
427 return res;
428}
429
430#define MAX_EXPANDER_PHYS 128
431
432#define RG_REQ_SIZE 8
433#define RG_RESP_SIZE sizeof(struct smp_rg_resp)
434
435static int sas_ex_general(struct domain_device *dev)
436{
437 u8 *rg_req;
438 struct smp_rg_resp *rg_resp;
439 struct report_general_resp *rg;
440 int res;
441 int i;
442
443 rg_req = alloc_smp_req(RG_REQ_SIZE);
444 if (!rg_req)
445 return -ENOMEM;
446
447 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
448 if (!rg_resp) {
449 kfree(rg_req);
450 return -ENOMEM;
451 }
452
453 rg_req[1] = SMP_REPORT_GENERAL;
454
455 for (i = 0; i < 5; i++) {
456 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
457 RG_RESP_SIZE);
458
459 if (res) {
460 pr_notice("RG to ex %016llx failed:0x%x\n",
461 SAS_ADDR(dev->sas_addr), res);
462 goto out;
463 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
464 pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
465 SAS_ADDR(dev->sas_addr), rg_resp->result);
466 res = rg_resp->result;
467 goto out;
468 }
469
470 rg = &rg_resp->rg;
471 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
472 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
473 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
474 dev->ex_dev.t2t_supp = rg->t2t_supp;
475 dev->ex_dev.conf_route_table = rg->conf_route_table;
476 dev->ex_dev.configuring = rg->configuring;
477 memcpy(dev->ex_dev.enclosure_logical_id,
478 rg->enclosure_logical_id, 8);
479
480 if (dev->ex_dev.configuring) {
481 pr_debug("RG: ex %016llx self-configuring...\n",
482 SAS_ADDR(dev->sas_addr));
483 schedule_timeout_interruptible(5*HZ);
484 } else
485 break;
486 }
487out:
488 kfree(rg_req);
489 kfree(rg_resp);
490 return res;
491}
492
493static void ex_assign_manuf_info(struct domain_device *dev, void
494 *_mi_resp)
495{
496 u8 *mi_resp = _mi_resp;
497 struct sas_rphy *rphy = dev->rphy;
498 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
499
500 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
501 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
502 memcpy(edev->product_rev, mi_resp + 36,
503 SAS_EXPANDER_PRODUCT_REV_LEN);
504
505 if (mi_resp[8] & 1) {
506 memcpy(edev->component_vendor_id, mi_resp + 40,
507 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
508 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
509 edev->component_revision_id = mi_resp[50];
510 }
511}
512
513#define MI_REQ_SIZE 8
514#define MI_RESP_SIZE 64
515
516static int sas_ex_manuf_info(struct domain_device *dev)
517{
518 u8 *mi_req;
519 u8 *mi_resp;
520 int res;
521
522 mi_req = alloc_smp_req(MI_REQ_SIZE);
523 if (!mi_req)
524 return -ENOMEM;
525
526 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
527 if (!mi_resp) {
528 kfree(mi_req);
529 return -ENOMEM;
530 }
531
532 mi_req[1] = SMP_REPORT_MANUF_INFO;
533
534 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE);
535 if (res) {
536 pr_notice("MI: ex %016llx failed:0x%x\n",
537 SAS_ADDR(dev->sas_addr), res);
538 goto out;
539 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
540 pr_debug("MI ex %016llx returned SMP result:0x%x\n",
541 SAS_ADDR(dev->sas_addr), mi_resp[2]);
542 goto out;
543 }
544
545 ex_assign_manuf_info(dev, mi_resp);
546out:
547 kfree(mi_req);
548 kfree(mi_resp);
549 return res;
550}
551
552#define PC_REQ_SIZE 44
553#define PC_RESP_SIZE 8
554
555int sas_smp_phy_control(struct domain_device *dev, int phy_id,
556 enum phy_func phy_func,
557 struct sas_phy_linkrates *rates)
558{
559 u8 *pc_req;
560 u8 *pc_resp;
561 int res;
562
563 pc_req = alloc_smp_req(PC_REQ_SIZE);
564 if (!pc_req)
565 return -ENOMEM;
566
567 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
568 if (!pc_resp) {
569 kfree(pc_req);
570 return -ENOMEM;
571 }
572
573 pc_req[1] = SMP_PHY_CONTROL;
574 pc_req[9] = phy_id;
575 pc_req[10] = phy_func;
576 if (rates) {
577 pc_req[32] = rates->minimum_linkrate << 4;
578 pc_req[33] = rates->maximum_linkrate << 4;
579 }
580
581 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE);
582 if (res) {
583 pr_err("ex %016llx phy%02d PHY control failed: %d\n",
584 SAS_ADDR(dev->sas_addr), phy_id, res);
585 } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
586 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
587 SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
588 res = pc_resp[2];
589 }
590 kfree(pc_resp);
591 kfree(pc_req);
592 return res;
593}
594
595static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
596{
597 struct expander_device *ex = &dev->ex_dev;
598 struct ex_phy *phy = &ex->ex_phy[phy_id];
599
600 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
601 phy->linkrate = SAS_PHY_DISABLED;
602}
603
604static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
605{
606 struct expander_device *ex = &dev->ex_dev;
607 int i;
608
609 for (i = 0; i < ex->num_phys; i++) {
610 struct ex_phy *phy = &ex->ex_phy[i];
611
612 if (phy->phy_state == PHY_VACANT ||
613 phy->phy_state == PHY_NOT_PRESENT)
614 continue;
615
616 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
617 sas_ex_disable_phy(dev, i);
618 }
619}
620
621static int sas_dev_present_in_domain(struct asd_sas_port *port,
622 u8 *sas_addr)
623{
624 struct domain_device *dev;
625
626 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
627 return 1;
628 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
629 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
630 return 1;
631 }
632 return 0;
633}
634
635#define RPEL_REQ_SIZE 16
636#define RPEL_RESP_SIZE 32
637int sas_smp_get_phy_events(struct sas_phy *phy)
638{
639 int res;
640 u8 *req;
641 u8 *resp;
642 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
643 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
644
645 req = alloc_smp_req(RPEL_REQ_SIZE);
646 if (!req)
647 return -ENOMEM;
648
649 resp = alloc_smp_resp(RPEL_RESP_SIZE);
650 if (!resp) {
651 kfree(req);
652 return -ENOMEM;
653 }
654
655 req[1] = SMP_REPORT_PHY_ERR_LOG;
656 req[9] = phy->number;
657
658 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
659 resp, RPEL_RESP_SIZE);
660
661 if (res)
662 goto out;
663
664 phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
665 phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
666 phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
667 phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
668
669 out:
670 kfree(req);
671 kfree(resp);
672 return res;
673
674}
675
676#ifdef CONFIG_SCSI_SAS_ATA
677
678#define RPS_REQ_SIZE 16
679#define RPS_RESP_SIZE sizeof(struct smp_rps_resp)
680
681int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
682 struct smp_rps_resp *rps_resp)
683{
684 int res;
685 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
686 u8 *resp = (u8 *)rps_resp;
687
688 if (!rps_req)
689 return -ENOMEM;
690
691 rps_req[1] = SMP_REPORT_PHY_SATA;
692 rps_req[9] = phy_id;
693
694 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
695 rps_resp, RPS_RESP_SIZE);
696
697 /* 0x34 is the FIS type for the D2H fis. There's a potential
698 * standards cockup here. sas-2 explicitly specifies the FIS
699 * should be encoded so that FIS type is in resp[24].
700 * However, some expanders endian reverse this. Undo the
701 * reversal here */
702 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
703 int i;
704
705 for (i = 0; i < 5; i++) {
706 int j = 24 + (i*4);
707 u8 a, b;
708 a = resp[j + 0];
709 b = resp[j + 1];
710 resp[j + 0] = resp[j + 3];
711 resp[j + 1] = resp[j + 2];
712 resp[j + 2] = b;
713 resp[j + 3] = a;
714 }
715 }
716
717 kfree(rps_req);
718 return res;
719}
720#endif
721
722static void sas_ex_get_linkrate(struct domain_device *parent,
723 struct domain_device *child,
724 struct ex_phy *parent_phy)
725{
726 struct expander_device *parent_ex = &parent->ex_dev;
727 struct sas_port *port;
728 int i;
729
730 child->pathways = 0;
731
732 port = parent_phy->port;
733
734 for (i = 0; i < parent_ex->num_phys; i++) {
735 struct ex_phy *phy = &parent_ex->ex_phy[i];
736
737 if (phy->phy_state == PHY_VACANT ||
738 phy->phy_state == PHY_NOT_PRESENT)
739 continue;
740
741 if (sas_phy_match_dev_addr(child, phy)) {
742 child->min_linkrate = min(parent->min_linkrate,
743 phy->linkrate);
744 child->max_linkrate = max(parent->max_linkrate,
745 phy->linkrate);
746 child->pathways++;
747 sas_port_add_phy(port, phy->phy);
748 }
749 }
750 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
751 child->pathways = min(child->pathways, parent->pathways);
752}
753
754static int sas_ex_add_dev(struct domain_device *parent, struct ex_phy *phy,
755 struct domain_device *child, int phy_id)
756{
757 struct sas_rphy *rphy;
758 int res;
759
760 child->dev_type = SAS_END_DEVICE;
761 rphy = sas_end_device_alloc(phy->port);
762 if (!rphy)
763 return -ENOMEM;
764
765 child->tproto = phy->attached_tproto;
766 sas_init_dev(child);
767
768 child->rphy = rphy;
769 get_device(&rphy->dev);
770 rphy->identify.phy_identifier = phy_id;
771 sas_fill_in_rphy(child, rphy);
772
773 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
774
775 res = sas_notify_lldd_dev_found(child);
776 if (res) {
777 pr_notice("notify lldd for device %016llx at %016llx:%02d returned 0x%x\n",
778 SAS_ADDR(child->sas_addr),
779 SAS_ADDR(parent->sas_addr), phy_id, res);
780 sas_rphy_free(child->rphy);
781 list_del(&child->disco_list_node);
782 return res;
783 }
784
785 return 0;
786}
787
788static struct domain_device *sas_ex_discover_end_dev(
789 struct domain_device *parent, int phy_id)
790{
791 struct expander_device *parent_ex = &parent->ex_dev;
792 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
793 struct domain_device *child = NULL;
794 int res;
795
796 if (phy->attached_sata_host || phy->attached_sata_ps)
797 return NULL;
798
799 child = sas_alloc_device();
800 if (!child)
801 return NULL;
802
803 kref_get(&parent->kref);
804 child->parent = parent;
805 child->port = parent->port;
806 child->iproto = phy->attached_iproto;
807 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
808 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
809 if (!phy->port) {
810 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
811 if (unlikely(!phy->port))
812 goto out_err;
813 if (unlikely(sas_port_add(phy->port) != 0)) {
814 sas_port_free(phy->port);
815 goto out_err;
816 }
817 }
818 sas_ex_get_linkrate(parent, child, phy);
819 sas_device_set_phy(child, phy->port);
820
821 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
822 res = sas_ata_add_dev(parent, phy, child, phy_id);
823 } else if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
824 res = sas_ex_add_dev(parent, phy, child, phy_id);
825 } else {
826 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
827 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
828 phy_id);
829 res = -ENODEV;
830 }
831
832 if (res)
833 goto out_free;
834
835 list_add_tail(&child->siblings, &parent_ex->children);
836 return child;
837
838 out_free:
839 sas_port_delete(phy->port);
840 out_err:
841 phy->port = NULL;
842 sas_put_device(child);
843 return NULL;
844}
845
846/* See if this phy is part of a wide port */
847static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
848{
849 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
850 int i;
851
852 for (i = 0; i < parent->ex_dev.num_phys; i++) {
853 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
854
855 if (ephy == phy)
856 continue;
857
858 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
859 SAS_ADDR_SIZE) && ephy->port) {
860 sas_port_add_phy(ephy->port, phy->phy);
861 phy->port = ephy->port;
862 phy->phy_state = PHY_DEVICE_DISCOVERED;
863 return true;
864 }
865 }
866
867 return false;
868}
869
870static struct domain_device *sas_ex_discover_expander(
871 struct domain_device *parent, int phy_id)
872{
873 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
874 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
875 struct domain_device *child = NULL;
876 struct sas_rphy *rphy;
877 struct sas_expander_device *edev;
878 struct asd_sas_port *port;
879 int res;
880
881 if (phy->routing_attr == DIRECT_ROUTING) {
882 pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
883 SAS_ADDR(parent->sas_addr), phy_id,
884 SAS_ADDR(phy->attached_sas_addr),
885 phy->attached_phy_id);
886 return NULL;
887 }
888 child = sas_alloc_device();
889 if (!child)
890 return NULL;
891
892 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
893 /* FIXME: better error handling */
894 BUG_ON(sas_port_add(phy->port) != 0);
895
896
897 switch (phy->attached_dev_type) {
898 case SAS_EDGE_EXPANDER_DEVICE:
899 rphy = sas_expander_alloc(phy->port,
900 SAS_EDGE_EXPANDER_DEVICE);
901 break;
902 case SAS_FANOUT_EXPANDER_DEVICE:
903 rphy = sas_expander_alloc(phy->port,
904 SAS_FANOUT_EXPANDER_DEVICE);
905 break;
906 default:
907 rphy = NULL; /* shut gcc up */
908 BUG();
909 }
910 port = parent->port;
911 child->rphy = rphy;
912 get_device(&rphy->dev);
913 edev = rphy_to_expander_device(rphy);
914 child->dev_type = phy->attached_dev_type;
915 kref_get(&parent->kref);
916 child->parent = parent;
917 child->port = port;
918 child->iproto = phy->attached_iproto;
919 child->tproto = phy->attached_tproto;
920 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
921 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
922 sas_ex_get_linkrate(parent, child, phy);
923 edev->level = parent_ex->level + 1;
924 parent->port->disc.max_level = max(parent->port->disc.max_level,
925 edev->level);
926 sas_init_dev(child);
927 sas_fill_in_rphy(child, rphy);
928 sas_rphy_add(rphy);
929
930 spin_lock_irq(&parent->port->dev_list_lock);
931 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
932 spin_unlock_irq(&parent->port->dev_list_lock);
933
934 res = sas_discover_expander(child);
935 if (res) {
936 sas_rphy_delete(rphy);
937 spin_lock_irq(&parent->port->dev_list_lock);
938 list_del(&child->dev_list_node);
939 spin_unlock_irq(&parent->port->dev_list_lock);
940 sas_put_device(child);
941 sas_port_delete(phy->port);
942 phy->port = NULL;
943 return NULL;
944 }
945 list_add_tail(&child->siblings, &parent->ex_dev.children);
946 return child;
947}
948
949static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
950{
951 struct expander_device *ex = &dev->ex_dev;
952 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
953 struct domain_device *child = NULL;
954 int res = 0;
955
956 /* Phy state */
957 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
958 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
959 res = sas_ex_phy_discover(dev, phy_id);
960 if (res)
961 return res;
962 }
963
964 /* Parent and domain coherency */
965 if (!dev->parent && sas_phy_match_port_addr(dev->port, ex_phy)) {
966 sas_add_parent_port(dev, phy_id);
967 return 0;
968 }
969 if (dev->parent && sas_phy_match_dev_addr(dev->parent, ex_phy)) {
970 sas_add_parent_port(dev, phy_id);
971 if (ex_phy->routing_attr == TABLE_ROUTING)
972 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
973 return 0;
974 }
975
976 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
977 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
978
979 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
980 if (ex_phy->routing_attr == DIRECT_ROUTING) {
981 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
982 sas_configure_routing(dev, ex_phy->attached_sas_addr);
983 }
984 return 0;
985 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
986 return 0;
987
988 if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
989 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
990 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
991 ex_phy->attached_dev_type != SAS_SATA_PENDING) {
992 pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
993 ex_phy->attached_dev_type,
994 SAS_ADDR(dev->sas_addr),
995 phy_id);
996 return 0;
997 }
998
999 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1000 if (res) {
1001 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1002 SAS_ADDR(ex_phy->attached_sas_addr), res);
1003 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1004 return res;
1005 }
1006
1007 if (sas_ex_join_wide_port(dev, phy_id)) {
1008 pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1009 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1010 return res;
1011 }
1012
1013 switch (ex_phy->attached_dev_type) {
1014 case SAS_END_DEVICE:
1015 case SAS_SATA_PENDING:
1016 child = sas_ex_discover_end_dev(dev, phy_id);
1017 break;
1018 case SAS_FANOUT_EXPANDER_DEVICE:
1019 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1020 pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1021 SAS_ADDR(ex_phy->attached_sas_addr),
1022 ex_phy->attached_phy_id,
1023 SAS_ADDR(dev->sas_addr),
1024 phy_id);
1025 sas_ex_disable_phy(dev, phy_id);
1026 return res;
1027 } else
1028 memcpy(dev->port->disc.fanout_sas_addr,
1029 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1030 fallthrough;
1031 case SAS_EDGE_EXPANDER_DEVICE:
1032 child = sas_ex_discover_expander(dev, phy_id);
1033 break;
1034 default:
1035 break;
1036 }
1037
1038 if (!child)
1039 pr_notice("ex %016llx phy%02d failed to discover\n",
1040 SAS_ADDR(dev->sas_addr), phy_id);
1041 return res;
1042}
1043
1044static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1045{
1046 struct expander_device *ex = &dev->ex_dev;
1047 int i;
1048
1049 for (i = 0; i < ex->num_phys; i++) {
1050 struct ex_phy *phy = &ex->ex_phy[i];
1051
1052 if (phy->phy_state == PHY_VACANT ||
1053 phy->phy_state == PHY_NOT_PRESENT)
1054 continue;
1055
1056 if (dev_is_expander(phy->attached_dev_type) &&
1057 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1058
1059 memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1060
1061 return 1;
1062 }
1063 }
1064 return 0;
1065}
1066
1067static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1068{
1069 struct expander_device *ex = &dev->ex_dev;
1070 struct domain_device *child;
1071 u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1072
1073 list_for_each_entry(child, &ex->children, siblings) {
1074 if (!dev_is_expander(child->dev_type))
1075 continue;
1076 if (sub_addr[0] == 0) {
1077 sas_find_sub_addr(child, sub_addr);
1078 continue;
1079 } else {
1080 u8 s2[SAS_ADDR_SIZE];
1081
1082 if (sas_find_sub_addr(child, s2) &&
1083 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1084
1085 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1086 SAS_ADDR(dev->sas_addr),
1087 SAS_ADDR(child->sas_addr),
1088 SAS_ADDR(s2),
1089 SAS_ADDR(sub_addr));
1090
1091 sas_ex_disable_port(child, s2);
1092 }
1093 }
1094 }
1095 return 0;
1096}
1097/**
1098 * sas_ex_discover_devices - discover devices attached to this expander
1099 * @dev: pointer to the expander domain device
1100 * @single: if you want to do a single phy, else set to -1;
1101 *
1102 * Configure this expander for use with its devices and register the
1103 * devices of this expander.
1104 */
1105static int sas_ex_discover_devices(struct domain_device *dev, int single)
1106{
1107 struct expander_device *ex = &dev->ex_dev;
1108 int i = 0, end = ex->num_phys;
1109 int res = 0;
1110
1111 if (0 <= single && single < end) {
1112 i = single;
1113 end = i+1;
1114 }
1115
1116 for ( ; i < end; i++) {
1117 struct ex_phy *ex_phy = &ex->ex_phy[i];
1118
1119 if (ex_phy->phy_state == PHY_VACANT ||
1120 ex_phy->phy_state == PHY_NOT_PRESENT ||
1121 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1122 continue;
1123
1124 switch (ex_phy->linkrate) {
1125 case SAS_PHY_DISABLED:
1126 case SAS_PHY_RESET_PROBLEM:
1127 case SAS_SATA_PORT_SELECTOR:
1128 continue;
1129 default:
1130 res = sas_ex_discover_dev(dev, i);
1131 if (res)
1132 break;
1133 continue;
1134 }
1135 }
1136
1137 if (!res)
1138 sas_check_level_subtractive_boundary(dev);
1139
1140 return res;
1141}
1142
1143static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1144{
1145 struct expander_device *ex = &dev->ex_dev;
1146 int i;
1147 u8 *sub_sas_addr = NULL;
1148
1149 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1150 return 0;
1151
1152 for (i = 0; i < ex->num_phys; i++) {
1153 struct ex_phy *phy = &ex->ex_phy[i];
1154
1155 if (phy->phy_state == PHY_VACANT ||
1156 phy->phy_state == PHY_NOT_PRESENT)
1157 continue;
1158
1159 if (dev_is_expander(phy->attached_dev_type) &&
1160 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1161
1162 if (!sub_sas_addr)
1163 sub_sas_addr = &phy->attached_sas_addr[0];
1164 else if (SAS_ADDR(sub_sas_addr) !=
1165 SAS_ADDR(phy->attached_sas_addr)) {
1166
1167 pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1168 SAS_ADDR(dev->sas_addr), i,
1169 SAS_ADDR(phy->attached_sas_addr),
1170 SAS_ADDR(sub_sas_addr));
1171 sas_ex_disable_phy(dev, i);
1172 }
1173 }
1174 }
1175 return 0;
1176}
1177
1178static void sas_print_parent_topology_bug(struct domain_device *child,
1179 struct ex_phy *parent_phy,
1180 struct ex_phy *child_phy)
1181{
1182 static const char *ex_type[] = {
1183 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1184 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1185 };
1186 struct domain_device *parent = child->parent;
1187
1188 pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1189 ex_type[parent->dev_type],
1190 SAS_ADDR(parent->sas_addr),
1191 parent_phy->phy_id,
1192
1193 ex_type[child->dev_type],
1194 SAS_ADDR(child->sas_addr),
1195 child_phy->phy_id,
1196
1197 sas_route_char(parent, parent_phy),
1198 sas_route_char(child, child_phy));
1199}
1200
1201static bool sas_eeds_valid(struct domain_device *parent,
1202 struct domain_device *child)
1203{
1204 struct sas_discovery *disc = &parent->port->disc;
1205
1206 return (SAS_ADDR(disc->eeds_a) == SAS_ADDR(parent->sas_addr) ||
1207 SAS_ADDR(disc->eeds_a) == SAS_ADDR(child->sas_addr)) &&
1208 (SAS_ADDR(disc->eeds_b) == SAS_ADDR(parent->sas_addr) ||
1209 SAS_ADDR(disc->eeds_b) == SAS_ADDR(child->sas_addr));
1210}
1211
1212static int sas_check_eeds(struct domain_device *child,
1213 struct ex_phy *parent_phy,
1214 struct ex_phy *child_phy)
1215{
1216 int res = 0;
1217 struct domain_device *parent = child->parent;
1218 struct sas_discovery *disc = &parent->port->disc;
1219
1220 if (SAS_ADDR(disc->fanout_sas_addr) != 0) {
1221 res = -ENODEV;
1222 pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1223 SAS_ADDR(parent->sas_addr),
1224 parent_phy->phy_id,
1225 SAS_ADDR(child->sas_addr),
1226 child_phy->phy_id,
1227 SAS_ADDR(disc->fanout_sas_addr));
1228 } else if (SAS_ADDR(disc->eeds_a) == 0) {
1229 memcpy(disc->eeds_a, parent->sas_addr, SAS_ADDR_SIZE);
1230 memcpy(disc->eeds_b, child->sas_addr, SAS_ADDR_SIZE);
1231 } else if (!sas_eeds_valid(parent, child)) {
1232 res = -ENODEV;
1233 pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1234 SAS_ADDR(parent->sas_addr),
1235 parent_phy->phy_id,
1236 SAS_ADDR(child->sas_addr),
1237 child_phy->phy_id);
1238 }
1239
1240 return res;
1241}
1242
1243static int sas_check_edge_expander_topo(struct domain_device *child,
1244 struct ex_phy *parent_phy)
1245{
1246 struct expander_device *child_ex = &child->ex_dev;
1247 struct expander_device *parent_ex = &child->parent->ex_dev;
1248 struct ex_phy *child_phy;
1249
1250 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1251
1252 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1253 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1254 child_phy->routing_attr != TABLE_ROUTING)
1255 goto error;
1256 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1257 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING)
1258 return sas_check_eeds(child, parent_phy, child_phy);
1259 else if (child_phy->routing_attr != TABLE_ROUTING)
1260 goto error;
1261 } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1262 if (child_phy->routing_attr != SUBTRACTIVE_ROUTING &&
1263 (child_phy->routing_attr != TABLE_ROUTING ||
1264 !child_ex->t2t_supp || !parent_ex->t2t_supp))
1265 goto error;
1266 }
1267
1268 return 0;
1269error:
1270 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1271 return -ENODEV;
1272}
1273
1274static int sas_check_fanout_expander_topo(struct domain_device *child,
1275 struct ex_phy *parent_phy)
1276{
1277 struct expander_device *child_ex = &child->ex_dev;
1278 struct ex_phy *child_phy;
1279
1280 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1281
1282 if (parent_phy->routing_attr == TABLE_ROUTING &&
1283 child_phy->routing_attr == SUBTRACTIVE_ROUTING)
1284 return 0;
1285
1286 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1287
1288 return -ENODEV;
1289}
1290
1291static int sas_check_parent_topology(struct domain_device *child)
1292{
1293 struct expander_device *parent_ex;
1294 int i;
1295 int res = 0;
1296
1297 if (!child->parent)
1298 return 0;
1299
1300 if (!dev_is_expander(child->parent->dev_type))
1301 return 0;
1302
1303 parent_ex = &child->parent->ex_dev;
1304
1305 for (i = 0; i < parent_ex->num_phys; i++) {
1306 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1307
1308 if (parent_phy->phy_state == PHY_VACANT ||
1309 parent_phy->phy_state == PHY_NOT_PRESENT)
1310 continue;
1311
1312 if (!sas_phy_match_dev_addr(child, parent_phy))
1313 continue;
1314
1315 switch (child->parent->dev_type) {
1316 case SAS_EDGE_EXPANDER_DEVICE:
1317 if (sas_check_edge_expander_topo(child, parent_phy))
1318 res = -ENODEV;
1319 break;
1320 case SAS_FANOUT_EXPANDER_DEVICE:
1321 if (sas_check_fanout_expander_topo(child, parent_phy))
1322 res = -ENODEV;
1323 break;
1324 default:
1325 break;
1326 }
1327 }
1328
1329 return res;
1330}
1331
1332#define RRI_REQ_SIZE 16
1333#define RRI_RESP_SIZE 44
1334
1335static int sas_configure_present(struct domain_device *dev, int phy_id,
1336 u8 *sas_addr, int *index, int *present)
1337{
1338 int i, res = 0;
1339 struct expander_device *ex = &dev->ex_dev;
1340 struct ex_phy *phy = &ex->ex_phy[phy_id];
1341 u8 *rri_req;
1342 u8 *rri_resp;
1343
1344 *present = 0;
1345 *index = 0;
1346
1347 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1348 if (!rri_req)
1349 return -ENOMEM;
1350
1351 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1352 if (!rri_resp) {
1353 kfree(rri_req);
1354 return -ENOMEM;
1355 }
1356
1357 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1358 rri_req[9] = phy_id;
1359
1360 for (i = 0; i < ex->max_route_indexes ; i++) {
1361 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1362 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1363 RRI_RESP_SIZE);
1364 if (res)
1365 goto out;
1366 res = rri_resp[2];
1367 if (res == SMP_RESP_NO_INDEX) {
1368 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1369 SAS_ADDR(dev->sas_addr), phy_id, i);
1370 goto out;
1371 } else if (res != SMP_RESP_FUNC_ACC) {
1372 pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1373 __func__, SAS_ADDR(dev->sas_addr), phy_id,
1374 i, res);
1375 goto out;
1376 }
1377 if (SAS_ADDR(sas_addr) != 0) {
1378 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1379 *index = i;
1380 if ((rri_resp[12] & 0x80) == 0x80)
1381 *present = 0;
1382 else
1383 *present = 1;
1384 goto out;
1385 } else if (SAS_ADDR(rri_resp+16) == 0) {
1386 *index = i;
1387 *present = 0;
1388 goto out;
1389 }
1390 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1391 phy->last_da_index < i) {
1392 phy->last_da_index = i;
1393 *index = i;
1394 *present = 0;
1395 goto out;
1396 }
1397 }
1398 res = -1;
1399out:
1400 kfree(rri_req);
1401 kfree(rri_resp);
1402 return res;
1403}
1404
1405#define CRI_REQ_SIZE 44
1406#define CRI_RESP_SIZE 8
1407
1408static int sas_configure_set(struct domain_device *dev, int phy_id,
1409 u8 *sas_addr, int index, int include)
1410{
1411 int res;
1412 u8 *cri_req;
1413 u8 *cri_resp;
1414
1415 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1416 if (!cri_req)
1417 return -ENOMEM;
1418
1419 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1420 if (!cri_resp) {
1421 kfree(cri_req);
1422 return -ENOMEM;
1423 }
1424
1425 cri_req[1] = SMP_CONF_ROUTE_INFO;
1426 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1427 cri_req[9] = phy_id;
1428 if (SAS_ADDR(sas_addr) == 0 || !include)
1429 cri_req[12] |= 0x80;
1430 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1431
1432 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1433 CRI_RESP_SIZE);
1434 if (res)
1435 goto out;
1436 res = cri_resp[2];
1437 if (res == SMP_RESP_NO_INDEX) {
1438 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1439 SAS_ADDR(dev->sas_addr), phy_id, index);
1440 }
1441out:
1442 kfree(cri_req);
1443 kfree(cri_resp);
1444 return res;
1445}
1446
1447static int sas_configure_phy(struct domain_device *dev, int phy_id,
1448 u8 *sas_addr, int include)
1449{
1450 int index;
1451 int present;
1452 int res;
1453
1454 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1455 if (res)
1456 return res;
1457 if (include ^ present)
1458 return sas_configure_set(dev, phy_id, sas_addr, index,
1459 include);
1460
1461 return res;
1462}
1463
1464/**
1465 * sas_configure_parent - configure routing table of parent
1466 * @parent: parent expander
1467 * @child: child expander
1468 * @sas_addr: SAS port identifier of device directly attached to child
1469 * @include: whether or not to include @child in the expander routing table
1470 */
1471static int sas_configure_parent(struct domain_device *parent,
1472 struct domain_device *child,
1473 u8 *sas_addr, int include)
1474{
1475 struct expander_device *ex_parent = &parent->ex_dev;
1476 int res = 0;
1477 int i;
1478
1479 if (parent->parent) {
1480 res = sas_configure_parent(parent->parent, parent, sas_addr,
1481 include);
1482 if (res)
1483 return res;
1484 }
1485
1486 if (ex_parent->conf_route_table == 0) {
1487 pr_debug("ex %016llx has self-configuring routing table\n",
1488 SAS_ADDR(parent->sas_addr));
1489 return 0;
1490 }
1491
1492 for (i = 0; i < ex_parent->num_phys; i++) {
1493 struct ex_phy *phy = &ex_parent->ex_phy[i];
1494
1495 if ((phy->routing_attr == TABLE_ROUTING) &&
1496 sas_phy_match_dev_addr(child, phy)) {
1497 res = sas_configure_phy(parent, i, sas_addr, include);
1498 if (res)
1499 return res;
1500 }
1501 }
1502
1503 return res;
1504}
1505
1506/**
1507 * sas_configure_routing - configure routing
1508 * @dev: expander device
1509 * @sas_addr: port identifier of device directly attached to the expander device
1510 */
1511static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1512{
1513 if (dev->parent)
1514 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1515 return 0;
1516}
1517
1518static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1519{
1520 if (dev->parent)
1521 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1522 return 0;
1523}
1524
1525/**
1526 * sas_discover_expander - expander discovery
1527 * @dev: pointer to expander domain device
1528 *
1529 * See comment in sas_discover_sata().
1530 */
1531static int sas_discover_expander(struct domain_device *dev)
1532{
1533 int res;
1534
1535 res = sas_notify_lldd_dev_found(dev);
1536 if (res)
1537 return res;
1538
1539 res = sas_ex_general(dev);
1540 if (res)
1541 goto out_err;
1542 res = sas_ex_manuf_info(dev);
1543 if (res)
1544 goto out_err;
1545
1546 res = sas_expander_discover(dev);
1547 if (res) {
1548 pr_warn("expander %016llx discovery failed(0x%x)\n",
1549 SAS_ADDR(dev->sas_addr), res);
1550 goto out_err;
1551 }
1552
1553 sas_check_ex_subtractive_boundary(dev);
1554 res = sas_check_parent_topology(dev);
1555 if (res)
1556 goto out_err;
1557 return 0;
1558out_err:
1559 sas_notify_lldd_dev_gone(dev);
1560 return res;
1561}
1562
1563static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1564{
1565 int res = 0;
1566 struct domain_device *dev;
1567
1568 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1569 if (dev_is_expander(dev->dev_type)) {
1570 struct sas_expander_device *ex =
1571 rphy_to_expander_device(dev->rphy);
1572
1573 if (level == ex->level)
1574 res = sas_ex_discover_devices(dev, -1);
1575 else if (level > 0)
1576 res = sas_ex_discover_devices(port->port_dev, -1);
1577
1578 }
1579 }
1580
1581 return res;
1582}
1583
1584static int sas_ex_bfs_disc(struct asd_sas_port *port)
1585{
1586 int res;
1587 int level;
1588
1589 do {
1590 level = port->disc.max_level;
1591 res = sas_ex_level_discovery(port, level);
1592 mb();
1593 } while (level < port->disc.max_level);
1594
1595 return res;
1596}
1597
1598int sas_discover_root_expander(struct domain_device *dev)
1599{
1600 int res;
1601 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1602
1603 res = sas_rphy_add(dev->rphy);
1604 if (res)
1605 goto out_err;
1606
1607 ex->level = dev->port->disc.max_level; /* 0 */
1608 res = sas_discover_expander(dev);
1609 if (res)
1610 goto out_err2;
1611
1612 sas_ex_bfs_disc(dev->port);
1613
1614 return res;
1615
1616out_err2:
1617 sas_rphy_remove(dev->rphy);
1618out_err:
1619 return res;
1620}
1621
1622/* ---------- Domain revalidation ---------- */
1623
1624static int sas_get_phy_discover(struct domain_device *dev,
1625 int phy_id, struct smp_disc_resp *disc_resp)
1626{
1627 int res;
1628 u8 *disc_req;
1629
1630 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1631 if (!disc_req)
1632 return -ENOMEM;
1633
1634 disc_req[1] = SMP_DISCOVER;
1635 disc_req[9] = phy_id;
1636
1637 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1638 disc_resp, DISCOVER_RESP_SIZE);
1639 if (res)
1640 goto out;
1641 if (disc_resp->result != SMP_RESP_FUNC_ACC)
1642 res = disc_resp->result;
1643out:
1644 kfree(disc_req);
1645 return res;
1646}
1647
1648static int sas_get_phy_change_count(struct domain_device *dev,
1649 int phy_id, int *pcc)
1650{
1651 int res;
1652 struct smp_disc_resp *disc_resp;
1653
1654 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1655 if (!disc_resp)
1656 return -ENOMEM;
1657
1658 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1659 if (!res)
1660 *pcc = disc_resp->disc.change_count;
1661
1662 kfree(disc_resp);
1663 return res;
1664}
1665
1666int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1667 u8 *sas_addr, enum sas_device_type *type)
1668{
1669 int res;
1670 struct smp_disc_resp *disc_resp;
1671
1672 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1673 if (!disc_resp)
1674 return -ENOMEM;
1675
1676 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1677 if (res == 0) {
1678 memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1679 SAS_ADDR_SIZE);
1680 *type = to_dev_type(&disc_resp->disc);
1681 if (*type == 0)
1682 memset(sas_addr, 0, SAS_ADDR_SIZE);
1683 }
1684 kfree(disc_resp);
1685 return res;
1686}
1687
1688static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1689 int from_phy, bool update)
1690{
1691 struct expander_device *ex = &dev->ex_dev;
1692 int res = 0;
1693 int i;
1694
1695 for (i = from_phy; i < ex->num_phys; i++) {
1696 int phy_change_count = 0;
1697
1698 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1699 switch (res) {
1700 case SMP_RESP_PHY_VACANT:
1701 case SMP_RESP_NO_PHY:
1702 continue;
1703 case SMP_RESP_FUNC_ACC:
1704 break;
1705 default:
1706 return res;
1707 }
1708
1709 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1710 if (update)
1711 ex->ex_phy[i].phy_change_count =
1712 phy_change_count;
1713 *phy_id = i;
1714 return 0;
1715 }
1716 }
1717 return 0;
1718}
1719
1720static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1721{
1722 int res;
1723 u8 *rg_req;
1724 struct smp_rg_resp *rg_resp;
1725
1726 rg_req = alloc_smp_req(RG_REQ_SIZE);
1727 if (!rg_req)
1728 return -ENOMEM;
1729
1730 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1731 if (!rg_resp) {
1732 kfree(rg_req);
1733 return -ENOMEM;
1734 }
1735
1736 rg_req[1] = SMP_REPORT_GENERAL;
1737
1738 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1739 RG_RESP_SIZE);
1740 if (res)
1741 goto out;
1742 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1743 res = rg_resp->result;
1744 goto out;
1745 }
1746
1747 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1748out:
1749 kfree(rg_resp);
1750 kfree(rg_req);
1751 return res;
1752}
1753/**
1754 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1755 * @dev:domain device to be detect.
1756 * @src_dev: the device which originated BROADCAST(CHANGE).
1757 *
1758 * Add self-configuration expander support. Suppose two expander cascading,
1759 * when the first level expander is self-configuring, hotplug the disks in
1760 * second level expander, BROADCAST(CHANGE) will not only be originated
1761 * in the second level expander, but also be originated in the first level
1762 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1763 * expander changed count in two level expanders will all increment at least
1764 * once, but the phy which chang count has changed is the source device which
1765 * we concerned.
1766 */
1767
1768static int sas_find_bcast_dev(struct domain_device *dev,
1769 struct domain_device **src_dev)
1770{
1771 struct expander_device *ex = &dev->ex_dev;
1772 int ex_change_count = -1;
1773 int phy_id = -1;
1774 int res;
1775 struct domain_device *ch;
1776
1777 res = sas_get_ex_change_count(dev, &ex_change_count);
1778 if (res)
1779 goto out;
1780 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1781 /* Just detect if this expander phys phy change count changed,
1782 * in order to determine if this expander originate BROADCAST,
1783 * and do not update phy change count field in our structure.
1784 */
1785 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1786 if (phy_id != -1) {
1787 *src_dev = dev;
1788 ex->ex_change_count = ex_change_count;
1789 pr_info("ex %016llx phy%02d change count has changed\n",
1790 SAS_ADDR(dev->sas_addr), phy_id);
1791 return res;
1792 } else
1793 pr_info("ex %016llx phys DID NOT change\n",
1794 SAS_ADDR(dev->sas_addr));
1795 }
1796 list_for_each_entry(ch, &ex->children, siblings) {
1797 if (dev_is_expander(ch->dev_type)) {
1798 res = sas_find_bcast_dev(ch, src_dev);
1799 if (*src_dev)
1800 return res;
1801 }
1802 }
1803out:
1804 return res;
1805}
1806
1807static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1808{
1809 struct expander_device *ex = &dev->ex_dev;
1810 struct domain_device *child, *n;
1811
1812 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1813 set_bit(SAS_DEV_GONE, &child->state);
1814 if (dev_is_expander(child->dev_type))
1815 sas_unregister_ex_tree(port, child);
1816 else
1817 sas_unregister_dev(port, child);
1818 }
1819 sas_unregister_dev(port, dev);
1820}
1821
1822static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1823 int phy_id, bool last)
1824{
1825 struct expander_device *ex_dev = &parent->ex_dev;
1826 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1827 struct domain_device *child, *n, *found = NULL;
1828 if (last) {
1829 list_for_each_entry_safe(child, n,
1830 &ex_dev->children, siblings) {
1831 if (sas_phy_match_dev_addr(child, phy)) {
1832 set_bit(SAS_DEV_GONE, &child->state);
1833 if (dev_is_expander(child->dev_type))
1834 sas_unregister_ex_tree(parent->port, child);
1835 else
1836 sas_unregister_dev(parent->port, child);
1837 found = child;
1838 break;
1839 }
1840 }
1841 sas_disable_routing(parent, phy->attached_sas_addr);
1842 }
1843 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1844 if (phy->port) {
1845 sas_port_delete_phy(phy->port, phy->phy);
1846 sas_device_set_phy(found, phy->port);
1847 if (phy->port->num_phys == 0)
1848 list_add_tail(&phy->port->del_list,
1849 &parent->port->sas_port_del_list);
1850 phy->port = NULL;
1851 }
1852}
1853
1854static int sas_discover_bfs_by_root_level(struct domain_device *root,
1855 const int level)
1856{
1857 struct expander_device *ex_root = &root->ex_dev;
1858 struct domain_device *child;
1859 int res = 0;
1860
1861 list_for_each_entry(child, &ex_root->children, siblings) {
1862 if (dev_is_expander(child->dev_type)) {
1863 struct sas_expander_device *ex =
1864 rphy_to_expander_device(child->rphy);
1865
1866 if (level > ex->level)
1867 res = sas_discover_bfs_by_root_level(child,
1868 level);
1869 else if (level == ex->level)
1870 res = sas_ex_discover_devices(child, -1);
1871 }
1872 }
1873 return res;
1874}
1875
1876static int sas_discover_bfs_by_root(struct domain_device *dev)
1877{
1878 int res;
1879 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1880 int level = ex->level+1;
1881
1882 res = sas_ex_discover_devices(dev, -1);
1883 if (res)
1884 goto out;
1885 do {
1886 res = sas_discover_bfs_by_root_level(dev, level);
1887 mb();
1888 level += 1;
1889 } while (level <= dev->port->disc.max_level);
1890out:
1891 return res;
1892}
1893
1894static int sas_discover_new(struct domain_device *dev, int phy_id)
1895{
1896 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1897 struct domain_device *child;
1898 int res;
1899
1900 pr_debug("ex %016llx phy%02d new device attached\n",
1901 SAS_ADDR(dev->sas_addr), phy_id);
1902 res = sas_ex_phy_discover(dev, phy_id);
1903 if (res)
1904 return res;
1905
1906 if (sas_ex_join_wide_port(dev, phy_id))
1907 return 0;
1908
1909 res = sas_ex_discover_devices(dev, phy_id);
1910 if (res)
1911 return res;
1912 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1913 if (sas_phy_match_dev_addr(child, ex_phy)) {
1914 if (dev_is_expander(child->dev_type))
1915 res = sas_discover_bfs_by_root(child);
1916 break;
1917 }
1918 }
1919 return res;
1920}
1921
1922static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1923{
1924 if (old == new)
1925 return true;
1926
1927 /* treat device directed resets as flutter, if we went
1928 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1929 */
1930 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1931 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1932 return true;
1933
1934 return false;
1935}
1936
1937static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1938 bool last, int sibling)
1939{
1940 struct expander_device *ex = &dev->ex_dev;
1941 struct ex_phy *phy = &ex->ex_phy[phy_id];
1942 enum sas_device_type type = SAS_PHY_UNUSED;
1943 u8 sas_addr[SAS_ADDR_SIZE];
1944 char msg[80] = "";
1945 int res;
1946
1947 if (!last)
1948 sprintf(msg, ", part of a wide port with phy%02d", sibling);
1949
1950 pr_debug("ex %016llx rediscovering phy%02d%s\n",
1951 SAS_ADDR(dev->sas_addr), phy_id, msg);
1952
1953 memset(sas_addr, 0, SAS_ADDR_SIZE);
1954 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
1955 switch (res) {
1956 case SMP_RESP_NO_PHY:
1957 phy->phy_state = PHY_NOT_PRESENT;
1958 sas_unregister_devs_sas_addr(dev, phy_id, last);
1959 return res;
1960 case SMP_RESP_PHY_VACANT:
1961 phy->phy_state = PHY_VACANT;
1962 sas_unregister_devs_sas_addr(dev, phy_id, last);
1963 return res;
1964 case SMP_RESP_FUNC_ACC:
1965 break;
1966 case -ECOMM:
1967 break;
1968 default:
1969 return res;
1970 }
1971
1972 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
1973 phy->phy_state = PHY_EMPTY;
1974 sas_unregister_devs_sas_addr(dev, phy_id, last);
1975 /*
1976 * Even though the PHY is empty, for convenience we discover
1977 * the PHY to update the PHY info, like negotiated linkrate.
1978 */
1979 sas_ex_phy_discover(dev, phy_id);
1980 return res;
1981 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
1982 dev_type_flutter(type, phy->attached_dev_type)) {
1983 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
1984 char *action = "";
1985
1986 sas_ex_phy_discover(dev, phy_id);
1987
1988 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
1989 action = ", needs recovery";
1990 pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
1991 SAS_ADDR(dev->sas_addr), phy_id, action);
1992 return res;
1993 }
1994
1995 /* we always have to delete the old device when we went here */
1996 pr_info("ex %016llx phy%02d replace %016llx\n",
1997 SAS_ADDR(dev->sas_addr), phy_id,
1998 SAS_ADDR(phy->attached_sas_addr));
1999 sas_unregister_devs_sas_addr(dev, phy_id, last);
2000
2001 return sas_discover_new(dev, phy_id);
2002}
2003
2004/**
2005 * sas_rediscover - revalidate the domain.
2006 * @dev:domain device to be detect.
2007 * @phy_id: the phy id will be detected.
2008 *
2009 * NOTE: this process _must_ quit (return) as soon as any connection
2010 * errors are encountered. Connection recovery is done elsewhere.
2011 * Discover process only interrogates devices in order to discover the
2012 * domain.For plugging out, we un-register the device only when it is
2013 * the last phy in the port, for other phys in this port, we just delete it
2014 * from the port.For inserting, we do discovery when it is the
2015 * first phy,for other phys in this port, we add it to the port to
2016 * forming the wide-port.
2017 */
2018static int sas_rediscover(struct domain_device *dev, const int phy_id)
2019{
2020 struct expander_device *ex = &dev->ex_dev;
2021 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2022 int res = 0;
2023 int i;
2024 bool last = true; /* is this the last phy of the port */
2025
2026 pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2027 SAS_ADDR(dev->sas_addr), phy_id);
2028
2029 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2030 for (i = 0; i < ex->num_phys; i++) {
2031 struct ex_phy *phy = &ex->ex_phy[i];
2032
2033 if (i == phy_id)
2034 continue;
2035 if (sas_phy_addr_match(phy, changed_phy)) {
2036 last = false;
2037 break;
2038 }
2039 }
2040 res = sas_rediscover_dev(dev, phy_id, last, i);
2041 } else
2042 res = sas_discover_new(dev, phy_id);
2043 return res;
2044}
2045
2046/**
2047 * sas_ex_revalidate_domain - revalidate the domain
2048 * @port_dev: port domain device.
2049 *
2050 * NOTE: this process _must_ quit (return) as soon as any connection
2051 * errors are encountered. Connection recovery is done elsewhere.
2052 * Discover process only interrogates devices in order to discover the
2053 * domain.
2054 */
2055int sas_ex_revalidate_domain(struct domain_device *port_dev)
2056{
2057 int res;
2058 struct domain_device *dev = NULL;
2059
2060 res = sas_find_bcast_dev(port_dev, &dev);
2061 if (res == 0 && dev) {
2062 struct expander_device *ex = &dev->ex_dev;
2063 int i = 0, phy_id;
2064
2065 do {
2066 phy_id = -1;
2067 res = sas_find_bcast_phy(dev, &phy_id, i, true);
2068 if (phy_id == -1)
2069 break;
2070 res = sas_rediscover(dev, phy_id);
2071 i = phy_id + 1;
2072 } while (i < ex->num_phys);
2073 }
2074 return res;
2075}
2076
2077int sas_find_attached_phy_id(struct expander_device *ex_dev,
2078 struct domain_device *dev)
2079{
2080 struct ex_phy *phy;
2081 int phy_id;
2082
2083 for (phy_id = 0; phy_id < ex_dev->num_phys; phy_id++) {
2084 phy = &ex_dev->ex_phy[phy_id];
2085 if (sas_phy_match_dev_addr(dev, phy))
2086 return phy_id;
2087 }
2088
2089 return -ENODEV;
2090}
2091EXPORT_SYMBOL_GPL(sas_find_attached_phy_id);
2092
2093void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2094 struct sas_rphy *rphy)
2095{
2096 struct domain_device *dev;
2097 unsigned int rcvlen = 0;
2098 int ret = -EINVAL;
2099
2100 /* no rphy means no smp target support (ie aic94xx host) */
2101 if (!rphy)
2102 return sas_smp_host_handler(job, shost);
2103
2104 switch (rphy->identify.device_type) {
2105 case SAS_EDGE_EXPANDER_DEVICE:
2106 case SAS_FANOUT_EXPANDER_DEVICE:
2107 break;
2108 default:
2109 pr_err("%s: can we send a smp request to a device?\n",
2110 __func__);
2111 goto out;
2112 }
2113
2114 dev = sas_find_dev_by_rphy(rphy);
2115 if (!dev) {
2116 pr_err("%s: fail to find a domain_device?\n", __func__);
2117 goto out;
2118 }
2119
2120 /* do we need to support multiple segments? */
2121 if (job->request_payload.sg_cnt > 1 ||
2122 job->reply_payload.sg_cnt > 1) {
2123 pr_info("%s: multiple segments req %u, rsp %u\n",
2124 __func__, job->request_payload.payload_len,
2125 job->reply_payload.payload_len);
2126 goto out;
2127 }
2128
2129 ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2130 job->reply_payload.sg_list);
2131 if (ret >= 0) {
2132 /* bsg_job_done() requires the length received */
2133 rcvlen = job->reply_payload.payload_len - ret;
2134 ret = 0;
2135 }
2136
2137out:
2138 bsg_job_done(job, ret, rcvlen);
2139}
1/*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
3 *
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 *
23 */
24
25#include <linux/scatterlist.h>
26#include <linux/blkdev.h>
27#include <linux/slab.h>
28
29#include "sas_internal.h"
30
31#include <scsi/sas_ata.h>
32#include <scsi/scsi_transport.h>
33#include <scsi/scsi_transport_sas.h>
34#include "../scsi_sas_internal.h"
35
36static int sas_discover_expander(struct domain_device *dev);
37static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38static int sas_configure_phy(struct domain_device *dev, int phy_id,
39 u8 *sas_addr, int include);
40static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
41
42/* ---------- SMP task management ---------- */
43
44static void smp_task_timedout(unsigned long _task)
45{
46 struct sas_task *task = (void *) _task;
47 unsigned long flags;
48
49 spin_lock_irqsave(&task->task_state_lock, flags);
50 if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
51 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
52 spin_unlock_irqrestore(&task->task_state_lock, flags);
53
54 complete(&task->completion);
55}
56
57static void smp_task_done(struct sas_task *task)
58{
59 if (!del_timer(&task->timer))
60 return;
61 complete(&task->completion);
62}
63
64/* Give it some long enough timeout. In seconds. */
65#define SMP_TIMEOUT 10
66
67static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
68 void *resp, int resp_size)
69{
70 int res, retry;
71 struct sas_task *task = NULL;
72 struct sas_internal *i =
73 to_sas_internal(dev->port->ha->core.shost->transportt);
74
75 mutex_lock(&dev->ex_dev.cmd_mutex);
76 for (retry = 0; retry < 3; retry++) {
77 if (test_bit(SAS_DEV_GONE, &dev->state)) {
78 res = -ECOMM;
79 break;
80 }
81
82 task = sas_alloc_task(GFP_KERNEL);
83 if (!task) {
84 res = -ENOMEM;
85 break;
86 }
87 task->dev = dev;
88 task->task_proto = dev->tproto;
89 sg_init_one(&task->smp_task.smp_req, req, req_size);
90 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
91
92 task->task_done = smp_task_done;
93
94 task->timer.data = (unsigned long) task;
95 task->timer.function = smp_task_timedout;
96 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
97 add_timer(&task->timer);
98
99 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
100
101 if (res) {
102 del_timer(&task->timer);
103 SAS_DPRINTK("executing SMP task failed:%d\n", res);
104 break;
105 }
106
107 wait_for_completion(&task->completion);
108 res = -ECOMM;
109 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
110 SAS_DPRINTK("smp task timed out or aborted\n");
111 i->dft->lldd_abort_task(task);
112 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
113 SAS_DPRINTK("SMP task aborted and not done\n");
114 break;
115 }
116 }
117 if (task->task_status.resp == SAS_TASK_COMPLETE &&
118 task->task_status.stat == SAM_STAT_GOOD) {
119 res = 0;
120 break;
121 }
122 if (task->task_status.resp == SAS_TASK_COMPLETE &&
123 task->task_status.stat == SAS_DATA_UNDERRUN) {
124 /* no error, but return the number of bytes of
125 * underrun */
126 res = task->task_status.residual;
127 break;
128 }
129 if (task->task_status.resp == SAS_TASK_COMPLETE &&
130 task->task_status.stat == SAS_DATA_OVERRUN) {
131 res = -EMSGSIZE;
132 break;
133 }
134 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
135 task->task_status.stat == SAS_DEVICE_UNKNOWN)
136 break;
137 else {
138 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
139 "status 0x%x\n", __func__,
140 SAS_ADDR(dev->sas_addr),
141 task->task_status.resp,
142 task->task_status.stat);
143 sas_free_task(task);
144 task = NULL;
145 }
146 }
147 mutex_unlock(&dev->ex_dev.cmd_mutex);
148
149 BUG_ON(retry == 3 && task != NULL);
150 sas_free_task(task);
151 return res;
152}
153
154/* ---------- Allocations ---------- */
155
156static inline void *alloc_smp_req(int size)
157{
158 u8 *p = kzalloc(size, GFP_KERNEL);
159 if (p)
160 p[0] = SMP_REQUEST;
161 return p;
162}
163
164static inline void *alloc_smp_resp(int size)
165{
166 return kzalloc(size, GFP_KERNEL);
167}
168
169static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
170{
171 switch (phy->routing_attr) {
172 case TABLE_ROUTING:
173 if (dev->ex_dev.t2t_supp)
174 return 'U';
175 else
176 return 'T';
177 case DIRECT_ROUTING:
178 return 'D';
179 case SUBTRACTIVE_ROUTING:
180 return 'S';
181 default:
182 return '?';
183 }
184}
185
186static enum sas_dev_type to_dev_type(struct discover_resp *dr)
187{
188 /* This is detecting a failure to transmit initial dev to host
189 * FIS as described in section J.5 of sas-2 r16
190 */
191 if (dr->attached_dev_type == NO_DEVICE && dr->attached_sata_dev &&
192 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
193 return SATA_PENDING;
194 else
195 return dr->attached_dev_type;
196}
197
198static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
199{
200 enum sas_dev_type dev_type;
201 enum sas_linkrate linkrate;
202 u8 sas_addr[SAS_ADDR_SIZE];
203 struct smp_resp *resp = rsp;
204 struct discover_resp *dr = &resp->disc;
205 struct sas_ha_struct *ha = dev->port->ha;
206 struct expander_device *ex = &dev->ex_dev;
207 struct ex_phy *phy = &ex->ex_phy[phy_id];
208 struct sas_rphy *rphy = dev->rphy;
209 bool new_phy = !phy->phy;
210 char *type;
211
212 if (new_phy) {
213 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
214 return;
215 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
216
217 /* FIXME: error_handling */
218 BUG_ON(!phy->phy);
219 }
220
221 switch (resp->result) {
222 case SMP_RESP_PHY_VACANT:
223 phy->phy_state = PHY_VACANT;
224 break;
225 default:
226 phy->phy_state = PHY_NOT_PRESENT;
227 break;
228 case SMP_RESP_FUNC_ACC:
229 phy->phy_state = PHY_EMPTY; /* do not know yet */
230 break;
231 }
232
233 /* check if anything important changed to squelch debug */
234 dev_type = phy->attached_dev_type;
235 linkrate = phy->linkrate;
236 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
237
238 phy->attached_dev_type = to_dev_type(dr);
239 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
240 goto out;
241 phy->phy_id = phy_id;
242 phy->linkrate = dr->linkrate;
243 phy->attached_sata_host = dr->attached_sata_host;
244 phy->attached_sata_dev = dr->attached_sata_dev;
245 phy->attached_sata_ps = dr->attached_sata_ps;
246 phy->attached_iproto = dr->iproto << 1;
247 phy->attached_tproto = dr->tproto << 1;
248 /* help some expanders that fail to zero sas_address in the 'no
249 * device' case
250 */
251 if (phy->attached_dev_type == NO_DEVICE ||
252 phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
253 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
254 else
255 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
256 phy->attached_phy_id = dr->attached_phy_id;
257 phy->phy_change_count = dr->change_count;
258 phy->routing_attr = dr->routing_attr;
259 phy->virtual = dr->virtual;
260 phy->last_da_index = -1;
261
262 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
263 phy->phy->identify.device_type = dr->attached_dev_type;
264 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
265 phy->phy->identify.target_port_protocols = phy->attached_tproto;
266 if (!phy->attached_tproto && dr->attached_sata_dev)
267 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
268 phy->phy->identify.phy_identifier = phy_id;
269 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
270 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
271 phy->phy->minimum_linkrate = dr->pmin_linkrate;
272 phy->phy->maximum_linkrate = dr->pmax_linkrate;
273 phy->phy->negotiated_linkrate = phy->linkrate;
274
275 if (new_phy)
276 if (sas_phy_add(phy->phy)) {
277 sas_phy_free(phy->phy);
278 return;
279 }
280
281 out:
282 switch (phy->attached_dev_type) {
283 case SATA_PENDING:
284 type = "stp pending";
285 break;
286 case NO_DEVICE:
287 type = "no device";
288 break;
289 case SAS_END_DEV:
290 if (phy->attached_iproto) {
291 if (phy->attached_tproto)
292 type = "host+target";
293 else
294 type = "host";
295 } else {
296 if (dr->attached_sata_dev)
297 type = "stp";
298 else
299 type = "ssp";
300 }
301 break;
302 case EDGE_DEV:
303 case FANOUT_DEV:
304 type = "smp";
305 break;
306 default:
307 type = "unknown";
308 }
309
310 /* this routine is polled by libata error recovery so filter
311 * unimportant messages
312 */
313 if (new_phy || phy->attached_dev_type != dev_type ||
314 phy->linkrate != linkrate ||
315 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
316 /* pass */;
317 else
318 return;
319
320 /* if the attached device type changed and ata_eh is active,
321 * make sure we run revalidation when eh completes (see:
322 * sas_enable_revalidation)
323 */
324 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
325 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
326
327 SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
328 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
329 SAS_ADDR(dev->sas_addr), phy->phy_id,
330 sas_route_char(dev, phy), phy->linkrate,
331 SAS_ADDR(phy->attached_sas_addr), type);
332}
333
334/* check if we have an existing attached ata device on this expander phy */
335struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
336{
337 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
338 struct domain_device *dev;
339 struct sas_rphy *rphy;
340
341 if (!ex_phy->port)
342 return NULL;
343
344 rphy = ex_phy->port->rphy;
345 if (!rphy)
346 return NULL;
347
348 dev = sas_find_dev_by_rphy(rphy);
349
350 if (dev && dev_is_sata(dev))
351 return dev;
352
353 return NULL;
354}
355
356#define DISCOVER_REQ_SIZE 16
357#define DISCOVER_RESP_SIZE 56
358
359static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
360 u8 *disc_resp, int single)
361{
362 struct discover_resp *dr;
363 int res;
364
365 disc_req[9] = single;
366
367 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
368 disc_resp, DISCOVER_RESP_SIZE);
369 if (res)
370 return res;
371 dr = &((struct smp_resp *)disc_resp)->disc;
372 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
373 sas_printk("Found loopback topology, just ignore it!\n");
374 return 0;
375 }
376 sas_set_ex_phy(dev, single, disc_resp);
377 return 0;
378}
379
380int sas_ex_phy_discover(struct domain_device *dev, int single)
381{
382 struct expander_device *ex = &dev->ex_dev;
383 int res = 0;
384 u8 *disc_req;
385 u8 *disc_resp;
386
387 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
388 if (!disc_req)
389 return -ENOMEM;
390
391 disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
392 if (!disc_resp) {
393 kfree(disc_req);
394 return -ENOMEM;
395 }
396
397 disc_req[1] = SMP_DISCOVER;
398
399 if (0 <= single && single < ex->num_phys) {
400 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
401 } else {
402 int i;
403
404 for (i = 0; i < ex->num_phys; i++) {
405 res = sas_ex_phy_discover_helper(dev, disc_req,
406 disc_resp, i);
407 if (res)
408 goto out_err;
409 }
410 }
411out_err:
412 kfree(disc_resp);
413 kfree(disc_req);
414 return res;
415}
416
417static int sas_expander_discover(struct domain_device *dev)
418{
419 struct expander_device *ex = &dev->ex_dev;
420 int res = -ENOMEM;
421
422 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
423 if (!ex->ex_phy)
424 return -ENOMEM;
425
426 res = sas_ex_phy_discover(dev, -1);
427 if (res)
428 goto out_err;
429
430 return 0;
431 out_err:
432 kfree(ex->ex_phy);
433 ex->ex_phy = NULL;
434 return res;
435}
436
437#define MAX_EXPANDER_PHYS 128
438
439static void ex_assign_report_general(struct domain_device *dev,
440 struct smp_resp *resp)
441{
442 struct report_general_resp *rg = &resp->rg;
443
444 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
445 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
446 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
447 dev->ex_dev.t2t_supp = rg->t2t_supp;
448 dev->ex_dev.conf_route_table = rg->conf_route_table;
449 dev->ex_dev.configuring = rg->configuring;
450 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
451}
452
453#define RG_REQ_SIZE 8
454#define RG_RESP_SIZE 32
455
456static int sas_ex_general(struct domain_device *dev)
457{
458 u8 *rg_req;
459 struct smp_resp *rg_resp;
460 int res;
461 int i;
462
463 rg_req = alloc_smp_req(RG_REQ_SIZE);
464 if (!rg_req)
465 return -ENOMEM;
466
467 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
468 if (!rg_resp) {
469 kfree(rg_req);
470 return -ENOMEM;
471 }
472
473 rg_req[1] = SMP_REPORT_GENERAL;
474
475 for (i = 0; i < 5; i++) {
476 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
477 RG_RESP_SIZE);
478
479 if (res) {
480 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
481 SAS_ADDR(dev->sas_addr), res);
482 goto out;
483 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
484 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
485 SAS_ADDR(dev->sas_addr), rg_resp->result);
486 res = rg_resp->result;
487 goto out;
488 }
489
490 ex_assign_report_general(dev, rg_resp);
491
492 if (dev->ex_dev.configuring) {
493 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
494 SAS_ADDR(dev->sas_addr));
495 schedule_timeout_interruptible(5*HZ);
496 } else
497 break;
498 }
499out:
500 kfree(rg_req);
501 kfree(rg_resp);
502 return res;
503}
504
505static void ex_assign_manuf_info(struct domain_device *dev, void
506 *_mi_resp)
507{
508 u8 *mi_resp = _mi_resp;
509 struct sas_rphy *rphy = dev->rphy;
510 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
511
512 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
513 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
514 memcpy(edev->product_rev, mi_resp + 36,
515 SAS_EXPANDER_PRODUCT_REV_LEN);
516
517 if (mi_resp[8] & 1) {
518 memcpy(edev->component_vendor_id, mi_resp + 40,
519 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
520 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
521 edev->component_revision_id = mi_resp[50];
522 }
523}
524
525#define MI_REQ_SIZE 8
526#define MI_RESP_SIZE 64
527
528static int sas_ex_manuf_info(struct domain_device *dev)
529{
530 u8 *mi_req;
531 u8 *mi_resp;
532 int res;
533
534 mi_req = alloc_smp_req(MI_REQ_SIZE);
535 if (!mi_req)
536 return -ENOMEM;
537
538 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
539 if (!mi_resp) {
540 kfree(mi_req);
541 return -ENOMEM;
542 }
543
544 mi_req[1] = SMP_REPORT_MANUF_INFO;
545
546 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
547 if (res) {
548 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
549 SAS_ADDR(dev->sas_addr), res);
550 goto out;
551 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
552 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
553 SAS_ADDR(dev->sas_addr), mi_resp[2]);
554 goto out;
555 }
556
557 ex_assign_manuf_info(dev, mi_resp);
558out:
559 kfree(mi_req);
560 kfree(mi_resp);
561 return res;
562}
563
564#define PC_REQ_SIZE 44
565#define PC_RESP_SIZE 8
566
567int sas_smp_phy_control(struct domain_device *dev, int phy_id,
568 enum phy_func phy_func,
569 struct sas_phy_linkrates *rates)
570{
571 u8 *pc_req;
572 u8 *pc_resp;
573 int res;
574
575 pc_req = alloc_smp_req(PC_REQ_SIZE);
576 if (!pc_req)
577 return -ENOMEM;
578
579 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
580 if (!pc_resp) {
581 kfree(pc_req);
582 return -ENOMEM;
583 }
584
585 pc_req[1] = SMP_PHY_CONTROL;
586 pc_req[9] = phy_id;
587 pc_req[10]= phy_func;
588 if (rates) {
589 pc_req[32] = rates->minimum_linkrate << 4;
590 pc_req[33] = rates->maximum_linkrate << 4;
591 }
592
593 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
594
595 kfree(pc_resp);
596 kfree(pc_req);
597 return res;
598}
599
600static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
601{
602 struct expander_device *ex = &dev->ex_dev;
603 struct ex_phy *phy = &ex->ex_phy[phy_id];
604
605 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
606 phy->linkrate = SAS_PHY_DISABLED;
607}
608
609static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
610{
611 struct expander_device *ex = &dev->ex_dev;
612 int i;
613
614 for (i = 0; i < ex->num_phys; i++) {
615 struct ex_phy *phy = &ex->ex_phy[i];
616
617 if (phy->phy_state == PHY_VACANT ||
618 phy->phy_state == PHY_NOT_PRESENT)
619 continue;
620
621 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
622 sas_ex_disable_phy(dev, i);
623 }
624}
625
626static int sas_dev_present_in_domain(struct asd_sas_port *port,
627 u8 *sas_addr)
628{
629 struct domain_device *dev;
630
631 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
632 return 1;
633 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
634 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
635 return 1;
636 }
637 return 0;
638}
639
640#define RPEL_REQ_SIZE 16
641#define RPEL_RESP_SIZE 32
642int sas_smp_get_phy_events(struct sas_phy *phy)
643{
644 int res;
645 u8 *req;
646 u8 *resp;
647 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
648 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
649
650 req = alloc_smp_req(RPEL_REQ_SIZE);
651 if (!req)
652 return -ENOMEM;
653
654 resp = alloc_smp_resp(RPEL_RESP_SIZE);
655 if (!resp) {
656 kfree(req);
657 return -ENOMEM;
658 }
659
660 req[1] = SMP_REPORT_PHY_ERR_LOG;
661 req[9] = phy->number;
662
663 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
664 resp, RPEL_RESP_SIZE);
665
666 if (!res)
667 goto out;
668
669 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
670 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
671 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
672 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
673
674 out:
675 kfree(resp);
676 return res;
677
678}
679
680#ifdef CONFIG_SCSI_SAS_ATA
681
682#define RPS_REQ_SIZE 16
683#define RPS_RESP_SIZE 60
684
685int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
686 struct smp_resp *rps_resp)
687{
688 int res;
689 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
690 u8 *resp = (u8 *)rps_resp;
691
692 if (!rps_req)
693 return -ENOMEM;
694
695 rps_req[1] = SMP_REPORT_PHY_SATA;
696 rps_req[9] = phy_id;
697
698 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
699 rps_resp, RPS_RESP_SIZE);
700
701 /* 0x34 is the FIS type for the D2H fis. There's a potential
702 * standards cockup here. sas-2 explicitly specifies the FIS
703 * should be encoded so that FIS type is in resp[24].
704 * However, some expanders endian reverse this. Undo the
705 * reversal here */
706 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
707 int i;
708
709 for (i = 0; i < 5; i++) {
710 int j = 24 + (i*4);
711 u8 a, b;
712 a = resp[j + 0];
713 b = resp[j + 1];
714 resp[j + 0] = resp[j + 3];
715 resp[j + 1] = resp[j + 2];
716 resp[j + 2] = b;
717 resp[j + 3] = a;
718 }
719 }
720
721 kfree(rps_req);
722 return res;
723}
724#endif
725
726static void sas_ex_get_linkrate(struct domain_device *parent,
727 struct domain_device *child,
728 struct ex_phy *parent_phy)
729{
730 struct expander_device *parent_ex = &parent->ex_dev;
731 struct sas_port *port;
732 int i;
733
734 child->pathways = 0;
735
736 port = parent_phy->port;
737
738 for (i = 0; i < parent_ex->num_phys; i++) {
739 struct ex_phy *phy = &parent_ex->ex_phy[i];
740
741 if (phy->phy_state == PHY_VACANT ||
742 phy->phy_state == PHY_NOT_PRESENT)
743 continue;
744
745 if (SAS_ADDR(phy->attached_sas_addr) ==
746 SAS_ADDR(child->sas_addr)) {
747
748 child->min_linkrate = min(parent->min_linkrate,
749 phy->linkrate);
750 child->max_linkrate = max(parent->max_linkrate,
751 phy->linkrate);
752 child->pathways++;
753 sas_port_add_phy(port, phy->phy);
754 }
755 }
756 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
757 child->pathways = min(child->pathways, parent->pathways);
758}
759
760static struct domain_device *sas_ex_discover_end_dev(
761 struct domain_device *parent, int phy_id)
762{
763 struct expander_device *parent_ex = &parent->ex_dev;
764 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
765 struct domain_device *child = NULL;
766 struct sas_rphy *rphy;
767 int res;
768
769 if (phy->attached_sata_host || phy->attached_sata_ps)
770 return NULL;
771
772 child = sas_alloc_device();
773 if (!child)
774 return NULL;
775
776 kref_get(&parent->kref);
777 child->parent = parent;
778 child->port = parent->port;
779 child->iproto = phy->attached_iproto;
780 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
781 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
782 if (!phy->port) {
783 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
784 if (unlikely(!phy->port))
785 goto out_err;
786 if (unlikely(sas_port_add(phy->port) != 0)) {
787 sas_port_free(phy->port);
788 goto out_err;
789 }
790 }
791 sas_ex_get_linkrate(parent, child, phy);
792 sas_device_set_phy(child, phy->port);
793
794#ifdef CONFIG_SCSI_SAS_ATA
795 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
796 res = sas_get_ata_info(child, phy);
797 if (res)
798 goto out_free;
799
800 sas_init_dev(child);
801 res = sas_ata_init(child);
802 if (res)
803 goto out_free;
804 rphy = sas_end_device_alloc(phy->port);
805 if (!rphy)
806 goto out_free;
807
808 child->rphy = rphy;
809 get_device(&rphy->dev);
810
811 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
812
813 res = sas_discover_sata(child);
814 if (res) {
815 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
816 "%016llx:0x%x returned 0x%x\n",
817 SAS_ADDR(child->sas_addr),
818 SAS_ADDR(parent->sas_addr), phy_id, res);
819 goto out_list_del;
820 }
821 } else
822#endif
823 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
824 child->dev_type = SAS_END_DEV;
825 rphy = sas_end_device_alloc(phy->port);
826 /* FIXME: error handling */
827 if (unlikely(!rphy))
828 goto out_free;
829 child->tproto = phy->attached_tproto;
830 sas_init_dev(child);
831
832 child->rphy = rphy;
833 get_device(&rphy->dev);
834 sas_fill_in_rphy(child, rphy);
835
836 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
837
838 res = sas_discover_end_dev(child);
839 if (res) {
840 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
841 "at %016llx:0x%x returned 0x%x\n",
842 SAS_ADDR(child->sas_addr),
843 SAS_ADDR(parent->sas_addr), phy_id, res);
844 goto out_list_del;
845 }
846 } else {
847 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
848 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
849 phy_id);
850 goto out_free;
851 }
852
853 list_add_tail(&child->siblings, &parent_ex->children);
854 return child;
855
856 out_list_del:
857 sas_rphy_free(child->rphy);
858 list_del(&child->disco_list_node);
859 spin_lock_irq(&parent->port->dev_list_lock);
860 list_del(&child->dev_list_node);
861 spin_unlock_irq(&parent->port->dev_list_lock);
862 out_free:
863 sas_port_delete(phy->port);
864 out_err:
865 phy->port = NULL;
866 sas_put_device(child);
867 return NULL;
868}
869
870/* See if this phy is part of a wide port */
871static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
872{
873 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
874 int i;
875
876 for (i = 0; i < parent->ex_dev.num_phys; i++) {
877 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
878
879 if (ephy == phy)
880 continue;
881
882 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
883 SAS_ADDR_SIZE) && ephy->port) {
884 sas_port_add_phy(ephy->port, phy->phy);
885 phy->port = ephy->port;
886 phy->phy_state = PHY_DEVICE_DISCOVERED;
887 return true;
888 }
889 }
890
891 return false;
892}
893
894static struct domain_device *sas_ex_discover_expander(
895 struct domain_device *parent, int phy_id)
896{
897 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
898 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
899 struct domain_device *child = NULL;
900 struct sas_rphy *rphy;
901 struct sas_expander_device *edev;
902 struct asd_sas_port *port;
903 int res;
904
905 if (phy->routing_attr == DIRECT_ROUTING) {
906 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
907 "allowed\n",
908 SAS_ADDR(parent->sas_addr), phy_id,
909 SAS_ADDR(phy->attached_sas_addr),
910 phy->attached_phy_id);
911 return NULL;
912 }
913 child = sas_alloc_device();
914 if (!child)
915 return NULL;
916
917 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
918 /* FIXME: better error handling */
919 BUG_ON(sas_port_add(phy->port) != 0);
920
921
922 switch (phy->attached_dev_type) {
923 case EDGE_DEV:
924 rphy = sas_expander_alloc(phy->port,
925 SAS_EDGE_EXPANDER_DEVICE);
926 break;
927 case FANOUT_DEV:
928 rphy = sas_expander_alloc(phy->port,
929 SAS_FANOUT_EXPANDER_DEVICE);
930 break;
931 default:
932 rphy = NULL; /* shut gcc up */
933 BUG();
934 }
935 port = parent->port;
936 child->rphy = rphy;
937 get_device(&rphy->dev);
938 edev = rphy_to_expander_device(rphy);
939 child->dev_type = phy->attached_dev_type;
940 kref_get(&parent->kref);
941 child->parent = parent;
942 child->port = port;
943 child->iproto = phy->attached_iproto;
944 child->tproto = phy->attached_tproto;
945 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
946 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
947 sas_ex_get_linkrate(parent, child, phy);
948 edev->level = parent_ex->level + 1;
949 parent->port->disc.max_level = max(parent->port->disc.max_level,
950 edev->level);
951 sas_init_dev(child);
952 sas_fill_in_rphy(child, rphy);
953 sas_rphy_add(rphy);
954
955 spin_lock_irq(&parent->port->dev_list_lock);
956 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
957 spin_unlock_irq(&parent->port->dev_list_lock);
958
959 res = sas_discover_expander(child);
960 if (res) {
961 sas_rphy_delete(rphy);
962 spin_lock_irq(&parent->port->dev_list_lock);
963 list_del(&child->dev_list_node);
964 spin_unlock_irq(&parent->port->dev_list_lock);
965 sas_put_device(child);
966 return NULL;
967 }
968 list_add_tail(&child->siblings, &parent->ex_dev.children);
969 return child;
970}
971
972static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
973{
974 struct expander_device *ex = &dev->ex_dev;
975 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
976 struct domain_device *child = NULL;
977 int res = 0;
978
979 /* Phy state */
980 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
981 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
982 res = sas_ex_phy_discover(dev, phy_id);
983 if (res)
984 return res;
985 }
986
987 /* Parent and domain coherency */
988 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
989 SAS_ADDR(dev->port->sas_addr))) {
990 sas_add_parent_port(dev, phy_id);
991 return 0;
992 }
993 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
994 SAS_ADDR(dev->parent->sas_addr))) {
995 sas_add_parent_port(dev, phy_id);
996 if (ex_phy->routing_attr == TABLE_ROUTING)
997 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
998 return 0;
999 }
1000
1001 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1002 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1003
1004 if (ex_phy->attached_dev_type == NO_DEVICE) {
1005 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1006 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1007 sas_configure_routing(dev, ex_phy->attached_sas_addr);
1008 }
1009 return 0;
1010 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1011 return 0;
1012
1013 if (ex_phy->attached_dev_type != SAS_END_DEV &&
1014 ex_phy->attached_dev_type != FANOUT_DEV &&
1015 ex_phy->attached_dev_type != EDGE_DEV &&
1016 ex_phy->attached_dev_type != SATA_PENDING) {
1017 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1018 "phy 0x%x\n", ex_phy->attached_dev_type,
1019 SAS_ADDR(dev->sas_addr),
1020 phy_id);
1021 return 0;
1022 }
1023
1024 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1025 if (res) {
1026 SAS_DPRINTK("configure routing for dev %016llx "
1027 "reported 0x%x. Forgotten\n",
1028 SAS_ADDR(ex_phy->attached_sas_addr), res);
1029 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1030 return res;
1031 }
1032
1033 if (sas_ex_join_wide_port(dev, phy_id)) {
1034 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1035 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1036 return res;
1037 }
1038
1039 switch (ex_phy->attached_dev_type) {
1040 case SAS_END_DEV:
1041 case SATA_PENDING:
1042 child = sas_ex_discover_end_dev(dev, phy_id);
1043 break;
1044 case FANOUT_DEV:
1045 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1046 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1047 "attached to ex %016llx phy 0x%x\n",
1048 SAS_ADDR(ex_phy->attached_sas_addr),
1049 ex_phy->attached_phy_id,
1050 SAS_ADDR(dev->sas_addr),
1051 phy_id);
1052 sas_ex_disable_phy(dev, phy_id);
1053 break;
1054 } else
1055 memcpy(dev->port->disc.fanout_sas_addr,
1056 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1057 /* fallthrough */
1058 case EDGE_DEV:
1059 child = sas_ex_discover_expander(dev, phy_id);
1060 break;
1061 default:
1062 break;
1063 }
1064
1065 if (child) {
1066 int i;
1067
1068 for (i = 0; i < ex->num_phys; i++) {
1069 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1070 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1071 continue;
1072 /*
1073 * Due to races, the phy might not get added to the
1074 * wide port, so we add the phy to the wide port here.
1075 */
1076 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1077 SAS_ADDR(child->sas_addr)) {
1078 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1079 if (sas_ex_join_wide_port(dev, i))
1080 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1081 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1082
1083 }
1084 }
1085 }
1086
1087 return res;
1088}
1089
1090static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1091{
1092 struct expander_device *ex = &dev->ex_dev;
1093 int i;
1094
1095 for (i = 0; i < ex->num_phys; i++) {
1096 struct ex_phy *phy = &ex->ex_phy[i];
1097
1098 if (phy->phy_state == PHY_VACANT ||
1099 phy->phy_state == PHY_NOT_PRESENT)
1100 continue;
1101
1102 if ((phy->attached_dev_type == EDGE_DEV ||
1103 phy->attached_dev_type == FANOUT_DEV) &&
1104 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1105
1106 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1107
1108 return 1;
1109 }
1110 }
1111 return 0;
1112}
1113
1114static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1115{
1116 struct expander_device *ex = &dev->ex_dev;
1117 struct domain_device *child;
1118 u8 sub_addr[8] = {0, };
1119
1120 list_for_each_entry(child, &ex->children, siblings) {
1121 if (child->dev_type != EDGE_DEV &&
1122 child->dev_type != FANOUT_DEV)
1123 continue;
1124 if (sub_addr[0] == 0) {
1125 sas_find_sub_addr(child, sub_addr);
1126 continue;
1127 } else {
1128 u8 s2[8];
1129
1130 if (sas_find_sub_addr(child, s2) &&
1131 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1132
1133 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1134 "diverges from subtractive "
1135 "boundary %016llx\n",
1136 SAS_ADDR(dev->sas_addr),
1137 SAS_ADDR(child->sas_addr),
1138 SAS_ADDR(s2),
1139 SAS_ADDR(sub_addr));
1140
1141 sas_ex_disable_port(child, s2);
1142 }
1143 }
1144 }
1145 return 0;
1146}
1147/**
1148 * sas_ex_discover_devices -- discover devices attached to this expander
1149 * dev: pointer to the expander domain device
1150 * single: if you want to do a single phy, else set to -1;
1151 *
1152 * Configure this expander for use with its devices and register the
1153 * devices of this expander.
1154 */
1155static int sas_ex_discover_devices(struct domain_device *dev, int single)
1156{
1157 struct expander_device *ex = &dev->ex_dev;
1158 int i = 0, end = ex->num_phys;
1159 int res = 0;
1160
1161 if (0 <= single && single < end) {
1162 i = single;
1163 end = i+1;
1164 }
1165
1166 for ( ; i < end; i++) {
1167 struct ex_phy *ex_phy = &ex->ex_phy[i];
1168
1169 if (ex_phy->phy_state == PHY_VACANT ||
1170 ex_phy->phy_state == PHY_NOT_PRESENT ||
1171 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1172 continue;
1173
1174 switch (ex_phy->linkrate) {
1175 case SAS_PHY_DISABLED:
1176 case SAS_PHY_RESET_PROBLEM:
1177 case SAS_SATA_PORT_SELECTOR:
1178 continue;
1179 default:
1180 res = sas_ex_discover_dev(dev, i);
1181 if (res)
1182 break;
1183 continue;
1184 }
1185 }
1186
1187 if (!res)
1188 sas_check_level_subtractive_boundary(dev);
1189
1190 return res;
1191}
1192
1193static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1194{
1195 struct expander_device *ex = &dev->ex_dev;
1196 int i;
1197 u8 *sub_sas_addr = NULL;
1198
1199 if (dev->dev_type != EDGE_DEV)
1200 return 0;
1201
1202 for (i = 0; i < ex->num_phys; i++) {
1203 struct ex_phy *phy = &ex->ex_phy[i];
1204
1205 if (phy->phy_state == PHY_VACANT ||
1206 phy->phy_state == PHY_NOT_PRESENT)
1207 continue;
1208
1209 if ((phy->attached_dev_type == FANOUT_DEV ||
1210 phy->attached_dev_type == EDGE_DEV) &&
1211 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1212
1213 if (!sub_sas_addr)
1214 sub_sas_addr = &phy->attached_sas_addr[0];
1215 else if (SAS_ADDR(sub_sas_addr) !=
1216 SAS_ADDR(phy->attached_sas_addr)) {
1217
1218 SAS_DPRINTK("ex %016llx phy 0x%x "
1219 "diverges(%016llx) on subtractive "
1220 "boundary(%016llx). Disabled\n",
1221 SAS_ADDR(dev->sas_addr), i,
1222 SAS_ADDR(phy->attached_sas_addr),
1223 SAS_ADDR(sub_sas_addr));
1224 sas_ex_disable_phy(dev, i);
1225 }
1226 }
1227 }
1228 return 0;
1229}
1230
1231static void sas_print_parent_topology_bug(struct domain_device *child,
1232 struct ex_phy *parent_phy,
1233 struct ex_phy *child_phy)
1234{
1235 static const char *ex_type[] = {
1236 [EDGE_DEV] = "edge",
1237 [FANOUT_DEV] = "fanout",
1238 };
1239 struct domain_device *parent = child->parent;
1240
1241 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1242 "phy 0x%x has %c:%c routing link!\n",
1243
1244 ex_type[parent->dev_type],
1245 SAS_ADDR(parent->sas_addr),
1246 parent_phy->phy_id,
1247
1248 ex_type[child->dev_type],
1249 SAS_ADDR(child->sas_addr),
1250 child_phy->phy_id,
1251
1252 sas_route_char(parent, parent_phy),
1253 sas_route_char(child, child_phy));
1254}
1255
1256static int sas_check_eeds(struct domain_device *child,
1257 struct ex_phy *parent_phy,
1258 struct ex_phy *child_phy)
1259{
1260 int res = 0;
1261 struct domain_device *parent = child->parent;
1262
1263 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1264 res = -ENODEV;
1265 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1266 "phy S:0x%x, while there is a fanout ex %016llx\n",
1267 SAS_ADDR(parent->sas_addr),
1268 parent_phy->phy_id,
1269 SAS_ADDR(child->sas_addr),
1270 child_phy->phy_id,
1271 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1272 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1273 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1274 SAS_ADDR_SIZE);
1275 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1276 SAS_ADDR_SIZE);
1277 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1278 SAS_ADDR(parent->sas_addr)) ||
1279 (SAS_ADDR(parent->port->disc.eeds_a) ==
1280 SAS_ADDR(child->sas_addr)))
1281 &&
1282 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1283 SAS_ADDR(parent->sas_addr)) ||
1284 (SAS_ADDR(parent->port->disc.eeds_b) ==
1285 SAS_ADDR(child->sas_addr))))
1286 ;
1287 else {
1288 res = -ENODEV;
1289 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1290 "phy 0x%x link forms a third EEDS!\n",
1291 SAS_ADDR(parent->sas_addr),
1292 parent_phy->phy_id,
1293 SAS_ADDR(child->sas_addr),
1294 child_phy->phy_id);
1295 }
1296
1297 return res;
1298}
1299
1300/* Here we spill over 80 columns. It is intentional.
1301 */
1302static int sas_check_parent_topology(struct domain_device *child)
1303{
1304 struct expander_device *child_ex = &child->ex_dev;
1305 struct expander_device *parent_ex;
1306 int i;
1307 int res = 0;
1308
1309 if (!child->parent)
1310 return 0;
1311
1312 if (child->parent->dev_type != EDGE_DEV &&
1313 child->parent->dev_type != FANOUT_DEV)
1314 return 0;
1315
1316 parent_ex = &child->parent->ex_dev;
1317
1318 for (i = 0; i < parent_ex->num_phys; i++) {
1319 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1320 struct ex_phy *child_phy;
1321
1322 if (parent_phy->phy_state == PHY_VACANT ||
1323 parent_phy->phy_state == PHY_NOT_PRESENT)
1324 continue;
1325
1326 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1327 continue;
1328
1329 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1330
1331 switch (child->parent->dev_type) {
1332 case EDGE_DEV:
1333 if (child->dev_type == FANOUT_DEV) {
1334 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1335 child_phy->routing_attr != TABLE_ROUTING) {
1336 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1337 res = -ENODEV;
1338 }
1339 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1340 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1341 res = sas_check_eeds(child, parent_phy, child_phy);
1342 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1343 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1344 res = -ENODEV;
1345 }
1346 } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1347 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1348 (child_phy->routing_attr == TABLE_ROUTING &&
1349 child_ex->t2t_supp && parent_ex->t2t_supp)) {
1350 /* All good */;
1351 } else {
1352 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1353 res = -ENODEV;
1354 }
1355 }
1356 break;
1357 case FANOUT_DEV:
1358 if (parent_phy->routing_attr != TABLE_ROUTING ||
1359 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1360 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1361 res = -ENODEV;
1362 }
1363 break;
1364 default:
1365 break;
1366 }
1367 }
1368
1369 return res;
1370}
1371
1372#define RRI_REQ_SIZE 16
1373#define RRI_RESP_SIZE 44
1374
1375static int sas_configure_present(struct domain_device *dev, int phy_id,
1376 u8 *sas_addr, int *index, int *present)
1377{
1378 int i, res = 0;
1379 struct expander_device *ex = &dev->ex_dev;
1380 struct ex_phy *phy = &ex->ex_phy[phy_id];
1381 u8 *rri_req;
1382 u8 *rri_resp;
1383
1384 *present = 0;
1385 *index = 0;
1386
1387 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1388 if (!rri_req)
1389 return -ENOMEM;
1390
1391 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1392 if (!rri_resp) {
1393 kfree(rri_req);
1394 return -ENOMEM;
1395 }
1396
1397 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1398 rri_req[9] = phy_id;
1399
1400 for (i = 0; i < ex->max_route_indexes ; i++) {
1401 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1402 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1403 RRI_RESP_SIZE);
1404 if (res)
1405 goto out;
1406 res = rri_resp[2];
1407 if (res == SMP_RESP_NO_INDEX) {
1408 SAS_DPRINTK("overflow of indexes: dev %016llx "
1409 "phy 0x%x index 0x%x\n",
1410 SAS_ADDR(dev->sas_addr), phy_id, i);
1411 goto out;
1412 } else if (res != SMP_RESP_FUNC_ACC) {
1413 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1414 "result 0x%x\n", __func__,
1415 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1416 goto out;
1417 }
1418 if (SAS_ADDR(sas_addr) != 0) {
1419 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1420 *index = i;
1421 if ((rri_resp[12] & 0x80) == 0x80)
1422 *present = 0;
1423 else
1424 *present = 1;
1425 goto out;
1426 } else if (SAS_ADDR(rri_resp+16) == 0) {
1427 *index = i;
1428 *present = 0;
1429 goto out;
1430 }
1431 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1432 phy->last_da_index < i) {
1433 phy->last_da_index = i;
1434 *index = i;
1435 *present = 0;
1436 goto out;
1437 }
1438 }
1439 res = -1;
1440out:
1441 kfree(rri_req);
1442 kfree(rri_resp);
1443 return res;
1444}
1445
1446#define CRI_REQ_SIZE 44
1447#define CRI_RESP_SIZE 8
1448
1449static int sas_configure_set(struct domain_device *dev, int phy_id,
1450 u8 *sas_addr, int index, int include)
1451{
1452 int res;
1453 u8 *cri_req;
1454 u8 *cri_resp;
1455
1456 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1457 if (!cri_req)
1458 return -ENOMEM;
1459
1460 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1461 if (!cri_resp) {
1462 kfree(cri_req);
1463 return -ENOMEM;
1464 }
1465
1466 cri_req[1] = SMP_CONF_ROUTE_INFO;
1467 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1468 cri_req[9] = phy_id;
1469 if (SAS_ADDR(sas_addr) == 0 || !include)
1470 cri_req[12] |= 0x80;
1471 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1472
1473 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1474 CRI_RESP_SIZE);
1475 if (res)
1476 goto out;
1477 res = cri_resp[2];
1478 if (res == SMP_RESP_NO_INDEX) {
1479 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1480 "index 0x%x\n",
1481 SAS_ADDR(dev->sas_addr), phy_id, index);
1482 }
1483out:
1484 kfree(cri_req);
1485 kfree(cri_resp);
1486 return res;
1487}
1488
1489static int sas_configure_phy(struct domain_device *dev, int phy_id,
1490 u8 *sas_addr, int include)
1491{
1492 int index;
1493 int present;
1494 int res;
1495
1496 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1497 if (res)
1498 return res;
1499 if (include ^ present)
1500 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1501
1502 return res;
1503}
1504
1505/**
1506 * sas_configure_parent -- configure routing table of parent
1507 * parent: parent expander
1508 * child: child expander
1509 * sas_addr: SAS port identifier of device directly attached to child
1510 */
1511static int sas_configure_parent(struct domain_device *parent,
1512 struct domain_device *child,
1513 u8 *sas_addr, int include)
1514{
1515 struct expander_device *ex_parent = &parent->ex_dev;
1516 int res = 0;
1517 int i;
1518
1519 if (parent->parent) {
1520 res = sas_configure_parent(parent->parent, parent, sas_addr,
1521 include);
1522 if (res)
1523 return res;
1524 }
1525
1526 if (ex_parent->conf_route_table == 0) {
1527 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1528 SAS_ADDR(parent->sas_addr));
1529 return 0;
1530 }
1531
1532 for (i = 0; i < ex_parent->num_phys; i++) {
1533 struct ex_phy *phy = &ex_parent->ex_phy[i];
1534
1535 if ((phy->routing_attr == TABLE_ROUTING) &&
1536 (SAS_ADDR(phy->attached_sas_addr) ==
1537 SAS_ADDR(child->sas_addr))) {
1538 res = sas_configure_phy(parent, i, sas_addr, include);
1539 if (res)
1540 return res;
1541 }
1542 }
1543
1544 return res;
1545}
1546
1547/**
1548 * sas_configure_routing -- configure routing
1549 * dev: expander device
1550 * sas_addr: port identifier of device directly attached to the expander device
1551 */
1552static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1553{
1554 if (dev->parent)
1555 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1556 return 0;
1557}
1558
1559static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1560{
1561 if (dev->parent)
1562 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1563 return 0;
1564}
1565
1566/**
1567 * sas_discover_expander -- expander discovery
1568 * @ex: pointer to expander domain device
1569 *
1570 * See comment in sas_discover_sata().
1571 */
1572static int sas_discover_expander(struct domain_device *dev)
1573{
1574 int res;
1575
1576 res = sas_notify_lldd_dev_found(dev);
1577 if (res)
1578 return res;
1579
1580 res = sas_ex_general(dev);
1581 if (res)
1582 goto out_err;
1583 res = sas_ex_manuf_info(dev);
1584 if (res)
1585 goto out_err;
1586
1587 res = sas_expander_discover(dev);
1588 if (res) {
1589 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1590 SAS_ADDR(dev->sas_addr), res);
1591 goto out_err;
1592 }
1593
1594 sas_check_ex_subtractive_boundary(dev);
1595 res = sas_check_parent_topology(dev);
1596 if (res)
1597 goto out_err;
1598 return 0;
1599out_err:
1600 sas_notify_lldd_dev_gone(dev);
1601 return res;
1602}
1603
1604static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1605{
1606 int res = 0;
1607 struct domain_device *dev;
1608
1609 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1610 if (dev->dev_type == EDGE_DEV ||
1611 dev->dev_type == FANOUT_DEV) {
1612 struct sas_expander_device *ex =
1613 rphy_to_expander_device(dev->rphy);
1614
1615 if (level == ex->level)
1616 res = sas_ex_discover_devices(dev, -1);
1617 else if (level > 0)
1618 res = sas_ex_discover_devices(port->port_dev, -1);
1619
1620 }
1621 }
1622
1623 return res;
1624}
1625
1626static int sas_ex_bfs_disc(struct asd_sas_port *port)
1627{
1628 int res;
1629 int level;
1630
1631 do {
1632 level = port->disc.max_level;
1633 res = sas_ex_level_discovery(port, level);
1634 mb();
1635 } while (level < port->disc.max_level);
1636
1637 return res;
1638}
1639
1640int sas_discover_root_expander(struct domain_device *dev)
1641{
1642 int res;
1643 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1644
1645 res = sas_rphy_add(dev->rphy);
1646 if (res)
1647 goto out_err;
1648
1649 ex->level = dev->port->disc.max_level; /* 0 */
1650 res = sas_discover_expander(dev);
1651 if (res)
1652 goto out_err2;
1653
1654 sas_ex_bfs_disc(dev->port);
1655
1656 return res;
1657
1658out_err2:
1659 sas_rphy_remove(dev->rphy);
1660out_err:
1661 return res;
1662}
1663
1664/* ---------- Domain revalidation ---------- */
1665
1666static int sas_get_phy_discover(struct domain_device *dev,
1667 int phy_id, struct smp_resp *disc_resp)
1668{
1669 int res;
1670 u8 *disc_req;
1671
1672 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1673 if (!disc_req)
1674 return -ENOMEM;
1675
1676 disc_req[1] = SMP_DISCOVER;
1677 disc_req[9] = phy_id;
1678
1679 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1680 disc_resp, DISCOVER_RESP_SIZE);
1681 if (res)
1682 goto out;
1683 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1684 res = disc_resp->result;
1685 goto out;
1686 }
1687out:
1688 kfree(disc_req);
1689 return res;
1690}
1691
1692static int sas_get_phy_change_count(struct domain_device *dev,
1693 int phy_id, int *pcc)
1694{
1695 int res;
1696 struct smp_resp *disc_resp;
1697
1698 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1699 if (!disc_resp)
1700 return -ENOMEM;
1701
1702 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1703 if (!res)
1704 *pcc = disc_resp->disc.change_count;
1705
1706 kfree(disc_resp);
1707 return res;
1708}
1709
1710static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1711 u8 *sas_addr, enum sas_dev_type *type)
1712{
1713 int res;
1714 struct smp_resp *disc_resp;
1715 struct discover_resp *dr;
1716
1717 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1718 if (!disc_resp)
1719 return -ENOMEM;
1720 dr = &disc_resp->disc;
1721
1722 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1723 if (res == 0) {
1724 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1725 *type = to_dev_type(dr);
1726 if (*type == 0)
1727 memset(sas_addr, 0, 8);
1728 }
1729 kfree(disc_resp);
1730 return res;
1731}
1732
1733static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1734 int from_phy, bool update)
1735{
1736 struct expander_device *ex = &dev->ex_dev;
1737 int res = 0;
1738 int i;
1739
1740 for (i = from_phy; i < ex->num_phys; i++) {
1741 int phy_change_count = 0;
1742
1743 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1744 switch (res) {
1745 case SMP_RESP_PHY_VACANT:
1746 case SMP_RESP_NO_PHY:
1747 continue;
1748 case SMP_RESP_FUNC_ACC:
1749 break;
1750 default:
1751 return res;
1752 }
1753
1754 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1755 if (update)
1756 ex->ex_phy[i].phy_change_count =
1757 phy_change_count;
1758 *phy_id = i;
1759 return 0;
1760 }
1761 }
1762 return 0;
1763}
1764
1765static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1766{
1767 int res;
1768 u8 *rg_req;
1769 struct smp_resp *rg_resp;
1770
1771 rg_req = alloc_smp_req(RG_REQ_SIZE);
1772 if (!rg_req)
1773 return -ENOMEM;
1774
1775 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1776 if (!rg_resp) {
1777 kfree(rg_req);
1778 return -ENOMEM;
1779 }
1780
1781 rg_req[1] = SMP_REPORT_GENERAL;
1782
1783 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1784 RG_RESP_SIZE);
1785 if (res)
1786 goto out;
1787 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1788 res = rg_resp->result;
1789 goto out;
1790 }
1791
1792 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1793out:
1794 kfree(rg_resp);
1795 kfree(rg_req);
1796 return res;
1797}
1798/**
1799 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1800 * @dev:domain device to be detect.
1801 * @src_dev: the device which originated BROADCAST(CHANGE).
1802 *
1803 * Add self-configuration expander suport. Suppose two expander cascading,
1804 * when the first level expander is self-configuring, hotplug the disks in
1805 * second level expander, BROADCAST(CHANGE) will not only be originated
1806 * in the second level expander, but also be originated in the first level
1807 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1808 * expander changed count in two level expanders will all increment at least
1809 * once, but the phy which chang count has changed is the source device which
1810 * we concerned.
1811 */
1812
1813static int sas_find_bcast_dev(struct domain_device *dev,
1814 struct domain_device **src_dev)
1815{
1816 struct expander_device *ex = &dev->ex_dev;
1817 int ex_change_count = -1;
1818 int phy_id = -1;
1819 int res;
1820 struct domain_device *ch;
1821
1822 res = sas_get_ex_change_count(dev, &ex_change_count);
1823 if (res)
1824 goto out;
1825 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1826 /* Just detect if this expander phys phy change count changed,
1827 * in order to determine if this expander originate BROADCAST,
1828 * and do not update phy change count field in our structure.
1829 */
1830 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1831 if (phy_id != -1) {
1832 *src_dev = dev;
1833 ex->ex_change_count = ex_change_count;
1834 SAS_DPRINTK("Expander phy change count has changed\n");
1835 return res;
1836 } else
1837 SAS_DPRINTK("Expander phys DID NOT change\n");
1838 }
1839 list_for_each_entry(ch, &ex->children, siblings) {
1840 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1841 res = sas_find_bcast_dev(ch, src_dev);
1842 if (*src_dev)
1843 return res;
1844 }
1845 }
1846out:
1847 return res;
1848}
1849
1850static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1851{
1852 struct expander_device *ex = &dev->ex_dev;
1853 struct domain_device *child, *n;
1854
1855 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1856 set_bit(SAS_DEV_GONE, &child->state);
1857 if (child->dev_type == EDGE_DEV ||
1858 child->dev_type == FANOUT_DEV)
1859 sas_unregister_ex_tree(port, child);
1860 else
1861 sas_unregister_dev(port, child);
1862 }
1863 sas_unregister_dev(port, dev);
1864}
1865
1866static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1867 int phy_id, bool last)
1868{
1869 struct expander_device *ex_dev = &parent->ex_dev;
1870 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1871 struct domain_device *child, *n, *found = NULL;
1872 if (last) {
1873 list_for_each_entry_safe(child, n,
1874 &ex_dev->children, siblings) {
1875 if (SAS_ADDR(child->sas_addr) ==
1876 SAS_ADDR(phy->attached_sas_addr)) {
1877 set_bit(SAS_DEV_GONE, &child->state);
1878 if (child->dev_type == EDGE_DEV ||
1879 child->dev_type == FANOUT_DEV)
1880 sas_unregister_ex_tree(parent->port, child);
1881 else
1882 sas_unregister_dev(parent->port, child);
1883 found = child;
1884 break;
1885 }
1886 }
1887 sas_disable_routing(parent, phy->attached_sas_addr);
1888 }
1889 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1890 if (phy->port) {
1891 sas_port_delete_phy(phy->port, phy->phy);
1892 sas_device_set_phy(found, phy->port);
1893 if (phy->port->num_phys == 0)
1894 sas_port_delete(phy->port);
1895 phy->port = NULL;
1896 }
1897}
1898
1899static int sas_discover_bfs_by_root_level(struct domain_device *root,
1900 const int level)
1901{
1902 struct expander_device *ex_root = &root->ex_dev;
1903 struct domain_device *child;
1904 int res = 0;
1905
1906 list_for_each_entry(child, &ex_root->children, siblings) {
1907 if (child->dev_type == EDGE_DEV ||
1908 child->dev_type == FANOUT_DEV) {
1909 struct sas_expander_device *ex =
1910 rphy_to_expander_device(child->rphy);
1911
1912 if (level > ex->level)
1913 res = sas_discover_bfs_by_root_level(child,
1914 level);
1915 else if (level == ex->level)
1916 res = sas_ex_discover_devices(child, -1);
1917 }
1918 }
1919 return res;
1920}
1921
1922static int sas_discover_bfs_by_root(struct domain_device *dev)
1923{
1924 int res;
1925 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1926 int level = ex->level+1;
1927
1928 res = sas_ex_discover_devices(dev, -1);
1929 if (res)
1930 goto out;
1931 do {
1932 res = sas_discover_bfs_by_root_level(dev, level);
1933 mb();
1934 level += 1;
1935 } while (level <= dev->port->disc.max_level);
1936out:
1937 return res;
1938}
1939
1940static int sas_discover_new(struct domain_device *dev, int phy_id)
1941{
1942 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1943 struct domain_device *child;
1944 int res;
1945
1946 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1947 SAS_ADDR(dev->sas_addr), phy_id);
1948 res = sas_ex_phy_discover(dev, phy_id);
1949 if (res)
1950 return res;
1951
1952 if (sas_ex_join_wide_port(dev, phy_id))
1953 return 0;
1954
1955 res = sas_ex_discover_devices(dev, phy_id);
1956 if (res)
1957 return res;
1958 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1959 if (SAS_ADDR(child->sas_addr) ==
1960 SAS_ADDR(ex_phy->attached_sas_addr)) {
1961 if (child->dev_type == EDGE_DEV ||
1962 child->dev_type == FANOUT_DEV)
1963 res = sas_discover_bfs_by_root(child);
1964 break;
1965 }
1966 }
1967 return res;
1968}
1969
1970static bool dev_type_flutter(enum sas_dev_type new, enum sas_dev_type old)
1971{
1972 if (old == new)
1973 return true;
1974
1975 /* treat device directed resets as flutter, if we went
1976 * SAS_END_DEV to SATA_PENDING the link needs recovery
1977 */
1978 if ((old == SATA_PENDING && new == SAS_END_DEV) ||
1979 (old == SAS_END_DEV && new == SATA_PENDING))
1980 return true;
1981
1982 return false;
1983}
1984
1985static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1986{
1987 struct expander_device *ex = &dev->ex_dev;
1988 struct ex_phy *phy = &ex->ex_phy[phy_id];
1989 enum sas_dev_type type = NO_DEVICE;
1990 u8 sas_addr[8];
1991 int res;
1992
1993 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
1994 switch (res) {
1995 case SMP_RESP_NO_PHY:
1996 phy->phy_state = PHY_NOT_PRESENT;
1997 sas_unregister_devs_sas_addr(dev, phy_id, last);
1998 return res;
1999 case SMP_RESP_PHY_VACANT:
2000 phy->phy_state = PHY_VACANT;
2001 sas_unregister_devs_sas_addr(dev, phy_id, last);
2002 return res;
2003 case SMP_RESP_FUNC_ACC:
2004 break;
2005 }
2006
2007 if (SAS_ADDR(sas_addr) == 0) {
2008 phy->phy_state = PHY_EMPTY;
2009 sas_unregister_devs_sas_addr(dev, phy_id, last);
2010 return res;
2011 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2012 dev_type_flutter(type, phy->attached_dev_type)) {
2013 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2014 char *action = "";
2015
2016 sas_ex_phy_discover(dev, phy_id);
2017
2018 if (ata_dev && phy->attached_dev_type == SATA_PENDING)
2019 action = ", needs recovery";
2020 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2021 SAS_ADDR(dev->sas_addr), phy_id, action);
2022 return res;
2023 }
2024
2025 /* delete the old link */
2026 if (SAS_ADDR(phy->attached_sas_addr) &&
2027 SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2028 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2029 SAS_ADDR(dev->sas_addr), phy_id,
2030 SAS_ADDR(phy->attached_sas_addr));
2031 sas_unregister_devs_sas_addr(dev, phy_id, last);
2032 }
2033
2034 return sas_discover_new(dev, phy_id);
2035}
2036
2037/**
2038 * sas_rediscover - revalidate the domain.
2039 * @dev:domain device to be detect.
2040 * @phy_id: the phy id will be detected.
2041 *
2042 * NOTE: this process _must_ quit (return) as soon as any connection
2043 * errors are encountered. Connection recovery is done elsewhere.
2044 * Discover process only interrogates devices in order to discover the
2045 * domain.For plugging out, we un-register the device only when it is
2046 * the last phy in the port, for other phys in this port, we just delete it
2047 * from the port.For inserting, we do discovery when it is the
2048 * first phy,for other phys in this port, we add it to the port to
2049 * forming the wide-port.
2050 */
2051static int sas_rediscover(struct domain_device *dev, const int phy_id)
2052{
2053 struct expander_device *ex = &dev->ex_dev;
2054 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2055 int res = 0;
2056 int i;
2057 bool last = true; /* is this the last phy of the port */
2058
2059 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2060 SAS_ADDR(dev->sas_addr), phy_id);
2061
2062 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2063 for (i = 0; i < ex->num_phys; i++) {
2064 struct ex_phy *phy = &ex->ex_phy[i];
2065
2066 if (i == phy_id)
2067 continue;
2068 if (SAS_ADDR(phy->attached_sas_addr) ==
2069 SAS_ADDR(changed_phy->attached_sas_addr)) {
2070 SAS_DPRINTK("phy%d part of wide port with "
2071 "phy%d\n", phy_id, i);
2072 last = false;
2073 break;
2074 }
2075 }
2076 res = sas_rediscover_dev(dev, phy_id, last);
2077 } else
2078 res = sas_discover_new(dev, phy_id);
2079 return res;
2080}
2081
2082/**
2083 * sas_revalidate_domain -- revalidate the domain
2084 * @port: port to the domain of interest
2085 *
2086 * NOTE: this process _must_ quit (return) as soon as any connection
2087 * errors are encountered. Connection recovery is done elsewhere.
2088 * Discover process only interrogates devices in order to discover the
2089 * domain.
2090 */
2091int sas_ex_revalidate_domain(struct domain_device *port_dev)
2092{
2093 int res;
2094 struct domain_device *dev = NULL;
2095
2096 res = sas_find_bcast_dev(port_dev, &dev);
2097 while (res == 0 && dev) {
2098 struct expander_device *ex = &dev->ex_dev;
2099 int i = 0, phy_id;
2100
2101 do {
2102 phy_id = -1;
2103 res = sas_find_bcast_phy(dev, &phy_id, i, true);
2104 if (phy_id == -1)
2105 break;
2106 res = sas_rediscover(dev, phy_id);
2107 i = phy_id + 1;
2108 } while (i < ex->num_phys);
2109
2110 dev = NULL;
2111 res = sas_find_bcast_dev(port_dev, &dev);
2112 }
2113 return res;
2114}
2115
2116int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
2117 struct request *req)
2118{
2119 struct domain_device *dev;
2120 int ret, type;
2121 struct request *rsp = req->next_rq;
2122
2123 if (!rsp) {
2124 printk("%s: space for a smp response is missing\n",
2125 __func__);
2126 return -EINVAL;
2127 }
2128
2129 /* no rphy means no smp target support (ie aic94xx host) */
2130 if (!rphy)
2131 return sas_smp_host_handler(shost, req, rsp);
2132
2133 type = rphy->identify.device_type;
2134
2135 if (type != SAS_EDGE_EXPANDER_DEVICE &&
2136 type != SAS_FANOUT_EXPANDER_DEVICE) {
2137 printk("%s: can we send a smp request to a device?\n",
2138 __func__);
2139 return -EINVAL;
2140 }
2141
2142 dev = sas_find_dev_by_rphy(rphy);
2143 if (!dev) {
2144 printk("%s: fail to find a domain_device?\n", __func__);
2145 return -EINVAL;
2146 }
2147
2148 /* do we need to support multiple segments? */
2149 if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2150 printk("%s: multiple segments req %u %u, rsp %u %u\n",
2151 __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2152 rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2153 return -EINVAL;
2154 }
2155
2156 ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2157 bio_data(rsp->bio), blk_rq_bytes(rsp));
2158 if (ret > 0) {
2159 /* positive number is the untransferred residual */
2160 rsp->resid_len = ret;
2161 req->resid_len = 0;
2162 ret = 0;
2163 } else if (ret == 0) {
2164 rsp->resid_len = 0;
2165 req->resid_len = 0;
2166 }
2167
2168 return ret;
2169}