Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Serial Attached SCSI (SAS) Expander discovery and configuration
   4 *
   5 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   7 *
   8 * This file is licensed under GPLv2.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#include <linux/scatterlist.h>
  12#include <linux/blkdev.h>
  13#include <linux/slab.h>
  14#include <asm/unaligned.h>
  15
  16#include "sas_internal.h"
  17
  18#include <scsi/sas_ata.h>
  19#include <scsi/scsi_transport.h>
  20#include <scsi/scsi_transport_sas.h>
  21#include "scsi_sas_internal.h"
  22
  23static int sas_discover_expander(struct domain_device *dev);
  24static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  25static int sas_configure_phy(struct domain_device *dev, int phy_id,
  26			     u8 *sas_addr, int include);
  27static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  28
  29/* ---------- SMP task management ---------- */
  30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  31/* Give it some long enough timeout. In seconds. */
  32#define SMP_TIMEOUT 10
  33
  34static int smp_execute_task_sg(struct domain_device *dev,
  35		struct scatterlist *req, struct scatterlist *resp)
  36{
  37	int res, retry;
  38	struct sas_task *task = NULL;
  39	struct sas_internal *i =
  40		to_sas_internal(dev->port->ha->shost->transportt);
  41	struct sas_ha_struct *ha = dev->port->ha;
  42
  43	pm_runtime_get_sync(ha->dev);
  44	mutex_lock(&dev->ex_dev.cmd_mutex);
  45	for (retry = 0; retry < 3; retry++) {
  46		if (test_bit(SAS_DEV_GONE, &dev->state)) {
  47			res = -ECOMM;
  48			break;
  49		}
  50
  51		task = sas_alloc_slow_task(GFP_KERNEL);
  52		if (!task) {
  53			res = -ENOMEM;
  54			break;
  55		}
  56		task->dev = dev;
  57		task->task_proto = dev->tproto;
  58		task->smp_task.smp_req = *req;
  59		task->smp_task.smp_resp = *resp;
  60
  61		task->task_done = sas_task_internal_done;
  62
  63		task->slow_task->timer.function = sas_task_internal_timedout;
  64		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  65		add_timer(&task->slow_task->timer);
 
  66
  67		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
  68
  69		if (res) {
  70			del_timer_sync(&task->slow_task->timer);
  71			pr_notice("executing SMP task failed:%d\n", res);
  72			break;
  73		}
  74
  75		wait_for_completion(&task->slow_task->completion);
  76		res = -ECOMM;
  77		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
  78			pr_notice("smp task timed out or aborted\n");
  79			i->dft->lldd_abort_task(task);
  80			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
  81				pr_notice("SMP task aborted and not done\n");
  82				break;
  83			}
  84		}
  85		if (task->task_status.resp == SAS_TASK_COMPLETE &&
  86		    task->task_status.stat == SAS_SAM_STAT_GOOD) {
  87			res = 0;
  88			break;
  89		}
  90		if (task->task_status.resp == SAS_TASK_COMPLETE &&
  91		    task->task_status.stat == SAS_DATA_UNDERRUN) {
  92			/* no error, but return the number of bytes of
  93			 * underrun */
  94			res = task->task_status.residual;
  95			break;
  96		}
  97		if (task->task_status.resp == SAS_TASK_COMPLETE &&
  98		    task->task_status.stat == SAS_DATA_OVERRUN) {
  99			res = -EMSGSIZE;
 100			break;
 101		}
 102		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
 103		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
 104			break;
 105		else {
 106			pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
 107				  __func__,
 108				  SAS_ADDR(dev->sas_addr),
 109				  task->task_status.resp,
 110				  task->task_status.stat);
 111			sas_free_task(task);
 112			task = NULL;
 113		}
 114	}
 115	mutex_unlock(&dev->ex_dev.cmd_mutex);
 116	pm_runtime_put_sync(ha->dev);
 117
 118	BUG_ON(retry == 3 && task != NULL);
 119	sas_free_task(task);
 120	return res;
 121}
 122
 123static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
 124			    void *resp, int resp_size)
 125{
 126	struct scatterlist req_sg;
 127	struct scatterlist resp_sg;
 128
 129	sg_init_one(&req_sg, req, req_size);
 130	sg_init_one(&resp_sg, resp, resp_size);
 131	return smp_execute_task_sg(dev, &req_sg, &resp_sg);
 132}
 133
 134/* ---------- Allocations ---------- */
 135
 136static inline void *alloc_smp_req(int size)
 137{
 138	u8 *p = kzalloc(size, GFP_KERNEL);
 139	if (p)
 140		p[0] = SMP_REQUEST;
 141	return p;
 142}
 143
 144static inline void *alloc_smp_resp(int size)
 145{
 146	return kzalloc(size, GFP_KERNEL);
 147}
 148
 149static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
 150{
 151	switch (phy->routing_attr) {
 152	case TABLE_ROUTING:
 153		if (dev->ex_dev.t2t_supp)
 154			return 'U';
 155		else
 156			return 'T';
 157	case DIRECT_ROUTING:
 158		return 'D';
 159	case SUBTRACTIVE_ROUTING:
 160		return 'S';
 161	default:
 162		return '?';
 163	}
 164}
 165
 166static enum sas_device_type to_dev_type(struct discover_resp *dr)
 167{
 168	/* This is detecting a failure to transmit initial dev to host
 169	 * FIS as described in section J.5 of sas-2 r16
 170	 */
 171	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
 172	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
 173		return SAS_SATA_PENDING;
 174	else
 175		return dr->attached_dev_type;
 176}
 177
 178static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
 179			   struct smp_disc_resp *disc_resp)
 180{
 181	enum sas_device_type dev_type;
 182	enum sas_linkrate linkrate;
 183	u8 sas_addr[SAS_ADDR_SIZE];
 184	struct discover_resp *dr = &disc_resp->disc;
 
 185	struct sas_ha_struct *ha = dev->port->ha;
 186	struct expander_device *ex = &dev->ex_dev;
 187	struct ex_phy *phy = &ex->ex_phy[phy_id];
 188	struct sas_rphy *rphy = dev->rphy;
 189	bool new_phy = !phy->phy;
 190	char *type;
 191
 192	if (new_phy) {
 193		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
 194			return;
 195		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 196
 197		/* FIXME: error_handling */
 198		BUG_ON(!phy->phy);
 199	}
 200
 201	switch (disc_resp->result) {
 202	case SMP_RESP_PHY_VACANT:
 203		phy->phy_state = PHY_VACANT;
 204		break;
 205	default:
 206		phy->phy_state = PHY_NOT_PRESENT;
 207		break;
 208	case SMP_RESP_FUNC_ACC:
 209		phy->phy_state = PHY_EMPTY; /* do not know yet */
 210		break;
 211	}
 212
 213	/* check if anything important changed to squelch debug */
 214	dev_type = phy->attached_dev_type;
 215	linkrate  = phy->linkrate;
 216	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 217
 218	/* Handle vacant phy - rest of dr data is not valid so skip it */
 219	if (phy->phy_state == PHY_VACANT) {
 220		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 221		phy->attached_dev_type = SAS_PHY_UNUSED;
 222		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
 223			phy->phy_id = phy_id;
 224			goto skip;
 225		} else
 226			goto out;
 227	}
 228
 229	phy->attached_dev_type = to_dev_type(dr);
 230	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 231		goto out;
 232	phy->phy_id = phy_id;
 233	phy->linkrate = dr->linkrate;
 234	phy->attached_sata_host = dr->attached_sata_host;
 235	phy->attached_sata_dev  = dr->attached_sata_dev;
 236	phy->attached_sata_ps   = dr->attached_sata_ps;
 237	phy->attached_iproto = dr->iproto << 1;
 238	phy->attached_tproto = dr->tproto << 1;
 239	/* help some expanders that fail to zero sas_address in the 'no
 240	 * device' case
 241	 */
 242	if (phy->attached_dev_type == SAS_PHY_UNUSED ||
 243	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
 244		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 245	else
 246		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 247	phy->attached_phy_id = dr->attached_phy_id;
 248	phy->phy_change_count = dr->change_count;
 249	phy->routing_attr = dr->routing_attr;
 250	phy->virtual = dr->virtual;
 251	phy->last_da_index = -1;
 252
 253	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
 254	phy->phy->identify.device_type = dr->attached_dev_type;
 255	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 256	phy->phy->identify.target_port_protocols = phy->attached_tproto;
 257	if (!phy->attached_tproto && dr->attached_sata_dev)
 258		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
 259	phy->phy->identify.phy_identifier = phy_id;
 260	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 261	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 262	phy->phy->minimum_linkrate = dr->pmin_linkrate;
 263	phy->phy->maximum_linkrate = dr->pmax_linkrate;
 264	phy->phy->negotiated_linkrate = phy->linkrate;
 265	phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
 266
 267 skip:
 268	if (new_phy)
 269		if (sas_phy_add(phy->phy)) {
 270			sas_phy_free(phy->phy);
 271			return;
 272		}
 273
 274 out:
 275	switch (phy->attached_dev_type) {
 276	case SAS_SATA_PENDING:
 277		type = "stp pending";
 278		break;
 279	case SAS_PHY_UNUSED:
 280		type = "no device";
 281		break;
 282	case SAS_END_DEVICE:
 283		if (phy->attached_iproto) {
 284			if (phy->attached_tproto)
 285				type = "host+target";
 286			else
 287				type = "host";
 288		} else {
 289			if (dr->attached_sata_dev)
 290				type = "stp";
 291			else
 292				type = "ssp";
 293		}
 294		break;
 295	case SAS_EDGE_EXPANDER_DEVICE:
 296	case SAS_FANOUT_EXPANDER_DEVICE:
 297		type = "smp";
 298		break;
 299	default:
 300		type = "unknown";
 301	}
 302
 303	/* this routine is polled by libata error recovery so filter
 304	 * unimportant messages
 305	 */
 306	if (new_phy || phy->attached_dev_type != dev_type ||
 307	    phy->linkrate != linkrate ||
 308	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
 309		/* pass */;
 310	else
 311		return;
 312
 313	/* if the attached device type changed and ata_eh is active,
 314	 * make sure we run revalidation when eh completes (see:
 315	 * sas_enable_revalidation)
 316	 */
 317	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 318		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
 319
 320	pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
 321		 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
 322		 SAS_ADDR(dev->sas_addr), phy->phy_id,
 323		 sas_route_char(dev, phy), phy->linkrate,
 324		 SAS_ADDR(phy->attached_sas_addr), type);
 325}
 326
 327/* check if we have an existing attached ata device on this expander phy */
 328struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
 329{
 330	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
 331	struct domain_device *dev;
 332	struct sas_rphy *rphy;
 333
 334	if (!ex_phy->port)
 335		return NULL;
 336
 337	rphy = ex_phy->port->rphy;
 338	if (!rphy)
 339		return NULL;
 340
 341	dev = sas_find_dev_by_rphy(rphy);
 342
 343	if (dev && dev_is_sata(dev))
 344		return dev;
 345
 346	return NULL;
 347}
 348
 349#define DISCOVER_REQ_SIZE  16
 350#define DISCOVER_RESP_SIZE sizeof(struct smp_disc_resp)
 351
 352static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 353				      struct smp_disc_resp *disc_resp,
 354				      int single)
 355{
 356	struct discover_resp *dr = &disc_resp->disc;
 357	int res;
 358
 359	disc_req[9] = single;
 360
 361	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 362			       disc_resp, DISCOVER_RESP_SIZE);
 363	if (res)
 364		return res;
 
 365	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
 366		pr_notice("Found loopback topology, just ignore it!\n");
 367		return 0;
 368	}
 369	sas_set_ex_phy(dev, single, disc_resp);
 370	return 0;
 371}
 372
 373int sas_ex_phy_discover(struct domain_device *dev, int single)
 374{
 375	struct expander_device *ex = &dev->ex_dev;
 376	int  res = 0;
 377	u8   *disc_req;
 378	struct smp_disc_resp *disc_resp;
 379
 380	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 381	if (!disc_req)
 382		return -ENOMEM;
 383
 384	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
 385	if (!disc_resp) {
 386		kfree(disc_req);
 387		return -ENOMEM;
 388	}
 389
 390	disc_req[1] = SMP_DISCOVER;
 391
 392	if (0 <= single && single < ex->num_phys) {
 393		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 394	} else {
 395		int i;
 396
 397		for (i = 0; i < ex->num_phys; i++) {
 398			res = sas_ex_phy_discover_helper(dev, disc_req,
 399							 disc_resp, i);
 400			if (res)
 401				goto out_err;
 402		}
 403	}
 404out_err:
 405	kfree(disc_resp);
 406	kfree(disc_req);
 407	return res;
 408}
 409
 410static int sas_expander_discover(struct domain_device *dev)
 411{
 412	struct expander_device *ex = &dev->ex_dev;
 413	int res;
 414
 415	ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
 416	if (!ex->ex_phy)
 417		return -ENOMEM;
 418
 419	res = sas_ex_phy_discover(dev, -1);
 420	if (res)
 421		goto out_err;
 422
 423	return 0;
 424 out_err:
 425	kfree(ex->ex_phy);
 426	ex->ex_phy = NULL;
 427	return res;
 428}
 429
 430#define MAX_EXPANDER_PHYS 128
 431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432#define RG_REQ_SIZE   8
 433#define RG_RESP_SIZE  sizeof(struct smp_rg_resp)
 434
 435static int sas_ex_general(struct domain_device *dev)
 436{
 437	u8 *rg_req;
 438	struct smp_rg_resp *rg_resp;
 439	struct report_general_resp *rg;
 440	int res;
 441	int i;
 442
 443	rg_req = alloc_smp_req(RG_REQ_SIZE);
 444	if (!rg_req)
 445		return -ENOMEM;
 446
 447	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 448	if (!rg_resp) {
 449		kfree(rg_req);
 450		return -ENOMEM;
 451	}
 452
 453	rg_req[1] = SMP_REPORT_GENERAL;
 454
 455	for (i = 0; i < 5; i++) {
 456		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 457				       RG_RESP_SIZE);
 458
 459		if (res) {
 460			pr_notice("RG to ex %016llx failed:0x%x\n",
 461				  SAS_ADDR(dev->sas_addr), res);
 462			goto out;
 463		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 464			pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
 465				 SAS_ADDR(dev->sas_addr), rg_resp->result);
 466			res = rg_resp->result;
 467			goto out;
 468		}
 469
 470		rg = &rg_resp->rg;
 471		dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 472		dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 473		dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 474		dev->ex_dev.t2t_supp = rg->t2t_supp;
 475		dev->ex_dev.conf_route_table = rg->conf_route_table;
 476		dev->ex_dev.configuring = rg->configuring;
 477		memcpy(dev->ex_dev.enclosure_logical_id,
 478		       rg->enclosure_logical_id, 8);
 479
 480		if (dev->ex_dev.configuring) {
 481			pr_debug("RG: ex %016llx self-configuring...\n",
 482				 SAS_ADDR(dev->sas_addr));
 483			schedule_timeout_interruptible(5*HZ);
 484		} else
 485			break;
 486	}
 487out:
 488	kfree(rg_req);
 489	kfree(rg_resp);
 490	return res;
 491}
 492
 493static void ex_assign_manuf_info(struct domain_device *dev, void
 494					*_mi_resp)
 495{
 496	u8 *mi_resp = _mi_resp;
 497	struct sas_rphy *rphy = dev->rphy;
 498	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 499
 500	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 501	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 502	memcpy(edev->product_rev, mi_resp + 36,
 503	       SAS_EXPANDER_PRODUCT_REV_LEN);
 504
 505	if (mi_resp[8] & 1) {
 506		memcpy(edev->component_vendor_id, mi_resp + 40,
 507		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 508		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 509		edev->component_revision_id = mi_resp[50];
 510	}
 511}
 512
 513#define MI_REQ_SIZE   8
 514#define MI_RESP_SIZE 64
 515
 516static int sas_ex_manuf_info(struct domain_device *dev)
 517{
 518	u8 *mi_req;
 519	u8 *mi_resp;
 520	int res;
 521
 522	mi_req = alloc_smp_req(MI_REQ_SIZE);
 523	if (!mi_req)
 524		return -ENOMEM;
 525
 526	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 527	if (!mi_resp) {
 528		kfree(mi_req);
 529		return -ENOMEM;
 530	}
 531
 532	mi_req[1] = SMP_REPORT_MANUF_INFO;
 533
 534	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE);
 535	if (res) {
 536		pr_notice("MI: ex %016llx failed:0x%x\n",
 537			  SAS_ADDR(dev->sas_addr), res);
 538		goto out;
 539	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 540		pr_debug("MI ex %016llx returned SMP result:0x%x\n",
 541			 SAS_ADDR(dev->sas_addr), mi_resp[2]);
 542		goto out;
 543	}
 544
 545	ex_assign_manuf_info(dev, mi_resp);
 546out:
 547	kfree(mi_req);
 548	kfree(mi_resp);
 549	return res;
 550}
 551
 552#define PC_REQ_SIZE  44
 553#define PC_RESP_SIZE 8
 554
 555int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 556			enum phy_func phy_func,
 557			struct sas_phy_linkrates *rates)
 558{
 559	u8 *pc_req;
 560	u8 *pc_resp;
 561	int res;
 562
 563	pc_req = alloc_smp_req(PC_REQ_SIZE);
 564	if (!pc_req)
 565		return -ENOMEM;
 566
 567	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 568	if (!pc_resp) {
 569		kfree(pc_req);
 570		return -ENOMEM;
 571	}
 572
 573	pc_req[1] = SMP_PHY_CONTROL;
 574	pc_req[9] = phy_id;
 575	pc_req[10] = phy_func;
 576	if (rates) {
 577		pc_req[32] = rates->minimum_linkrate << 4;
 578		pc_req[33] = rates->maximum_linkrate << 4;
 579	}
 580
 581	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE);
 582	if (res) {
 583		pr_err("ex %016llx phy%02d PHY control failed: %d\n",
 584		       SAS_ADDR(dev->sas_addr), phy_id, res);
 585	} else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
 586		pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
 587		       SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
 588		res = pc_resp[2];
 589	}
 590	kfree(pc_resp);
 591	kfree(pc_req);
 592	return res;
 593}
 594
 595static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 596{
 597	struct expander_device *ex = &dev->ex_dev;
 598	struct ex_phy *phy = &ex->ex_phy[phy_id];
 599
 600	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 601	phy->linkrate = SAS_PHY_DISABLED;
 602}
 603
 604static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 605{
 606	struct expander_device *ex = &dev->ex_dev;
 607	int i;
 608
 609	for (i = 0; i < ex->num_phys; i++) {
 610		struct ex_phy *phy = &ex->ex_phy[i];
 611
 612		if (phy->phy_state == PHY_VACANT ||
 613		    phy->phy_state == PHY_NOT_PRESENT)
 614			continue;
 615
 616		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 617			sas_ex_disable_phy(dev, i);
 618	}
 619}
 620
 621static int sas_dev_present_in_domain(struct asd_sas_port *port,
 622					    u8 *sas_addr)
 623{
 624	struct domain_device *dev;
 625
 626	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 627		return 1;
 628	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 629		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 630			return 1;
 631	}
 632	return 0;
 633}
 634
 635#define RPEL_REQ_SIZE	16
 636#define RPEL_RESP_SIZE	32
 637int sas_smp_get_phy_events(struct sas_phy *phy)
 638{
 639	int res;
 640	u8 *req;
 641	u8 *resp;
 642	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 643	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 644
 645	req = alloc_smp_req(RPEL_REQ_SIZE);
 646	if (!req)
 647		return -ENOMEM;
 648
 649	resp = alloc_smp_resp(RPEL_RESP_SIZE);
 650	if (!resp) {
 651		kfree(req);
 652		return -ENOMEM;
 653	}
 654
 655	req[1] = SMP_REPORT_PHY_ERR_LOG;
 656	req[9] = phy->number;
 657
 658	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 659			       resp, RPEL_RESP_SIZE);
 660
 661	if (res)
 662		goto out;
 663
 664	phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
 665	phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
 666	phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
 667	phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
 668
 669 out:
 670	kfree(req);
 671	kfree(resp);
 672	return res;
 673
 674}
 675
 676#ifdef CONFIG_SCSI_SAS_ATA
 677
 678#define RPS_REQ_SIZE  16
 679#define RPS_RESP_SIZE sizeof(struct smp_rps_resp)
 680
 681int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
 682			    struct smp_rps_resp *rps_resp)
 683{
 684	int res;
 685	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 686	u8 *resp = (u8 *)rps_resp;
 687
 688	if (!rps_req)
 689		return -ENOMEM;
 690
 691	rps_req[1] = SMP_REPORT_PHY_SATA;
 692	rps_req[9] = phy_id;
 693
 694	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 695			       rps_resp, RPS_RESP_SIZE);
 696
 697	/* 0x34 is the FIS type for the D2H fis.  There's a potential
 698	 * standards cockup here.  sas-2 explicitly specifies the FIS
 699	 * should be encoded so that FIS type is in resp[24].
 700	 * However, some expanders endian reverse this.  Undo the
 701	 * reversal here */
 702	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 703		int i;
 704
 705		for (i = 0; i < 5; i++) {
 706			int j = 24 + (i*4);
 707			u8 a, b;
 708			a = resp[j + 0];
 709			b = resp[j + 1];
 710			resp[j + 0] = resp[j + 3];
 711			resp[j + 1] = resp[j + 2];
 712			resp[j + 2] = b;
 713			resp[j + 3] = a;
 714		}
 715	}
 716
 717	kfree(rps_req);
 718	return res;
 719}
 720#endif
 721
 722static void sas_ex_get_linkrate(struct domain_device *parent,
 723				       struct domain_device *child,
 724				       struct ex_phy *parent_phy)
 725{
 726	struct expander_device *parent_ex = &parent->ex_dev;
 727	struct sas_port *port;
 728	int i;
 729
 730	child->pathways = 0;
 731
 732	port = parent_phy->port;
 733
 734	for (i = 0; i < parent_ex->num_phys; i++) {
 735		struct ex_phy *phy = &parent_ex->ex_phy[i];
 736
 737		if (phy->phy_state == PHY_VACANT ||
 738		    phy->phy_state == PHY_NOT_PRESENT)
 739			continue;
 740
 741		if (sas_phy_match_dev_addr(child, phy)) {
 
 
 742			child->min_linkrate = min(parent->min_linkrate,
 743						  phy->linkrate);
 744			child->max_linkrate = max(parent->max_linkrate,
 745						  phy->linkrate);
 746			child->pathways++;
 747			sas_port_add_phy(port, phy->phy);
 748		}
 749	}
 750	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 751	child->pathways = min(child->pathways, parent->pathways);
 752}
 753
 754static int sas_ex_add_dev(struct domain_device *parent, struct ex_phy *phy,
 755			  struct domain_device *child, int phy_id)
 756{
 757	struct sas_rphy *rphy;
 758	int res;
 759
 760	child->dev_type = SAS_END_DEVICE;
 761	rphy = sas_end_device_alloc(phy->port);
 762	if (!rphy)
 763		return -ENOMEM;
 764
 765	child->tproto = phy->attached_tproto;
 766	sas_init_dev(child);
 767
 768	child->rphy = rphy;
 769	get_device(&rphy->dev);
 770	rphy->identify.phy_identifier = phy_id;
 771	sas_fill_in_rphy(child, rphy);
 772
 773	list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 774
 775	res = sas_notify_lldd_dev_found(child);
 776	if (res) {
 777		pr_notice("notify lldd for device %016llx at %016llx:%02d returned 0x%x\n",
 778			  SAS_ADDR(child->sas_addr),
 779			  SAS_ADDR(parent->sas_addr), phy_id, res);
 780		sas_rphy_free(child->rphy);
 781		list_del(&child->disco_list_node);
 782		return res;
 783	}
 784
 785	return 0;
 786}
 787
 788static struct domain_device *sas_ex_discover_end_dev(
 789	struct domain_device *parent, int phy_id)
 790{
 791	struct expander_device *parent_ex = &parent->ex_dev;
 792	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 793	struct domain_device *child = NULL;
 
 794	int res;
 795
 796	if (phy->attached_sata_host || phy->attached_sata_ps)
 797		return NULL;
 798
 799	child = sas_alloc_device();
 800	if (!child)
 801		return NULL;
 802
 803	kref_get(&parent->kref);
 804	child->parent = parent;
 805	child->port   = parent->port;
 806	child->iproto = phy->attached_iproto;
 807	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 808	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 809	if (!phy->port) {
 810		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 811		if (unlikely(!phy->port))
 812			goto out_err;
 813		if (unlikely(sas_port_add(phy->port) != 0)) {
 814			sas_port_free(phy->port);
 815			goto out_err;
 816		}
 817	}
 818	sas_ex_get_linkrate(parent, child, phy);
 819	sas_device_set_phy(child, phy->port);
 820
 
 821	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 822		res = sas_ata_add_dev(parent, phy, child, phy_id);
 823	} else if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 824		res = sas_ex_add_dev(parent, phy, child, phy_id);
 825	} else {
 826		pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
 827			  phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 828			  phy_id);
 829		res = -ENODEV;
 830	}
 831
 832	if (res)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 833		goto out_free;
 
 834
 835	list_add_tail(&child->siblings, &parent_ex->children);
 836	return child;
 837
 
 
 
 
 
 
 838 out_free:
 839	sas_port_delete(phy->port);
 840 out_err:
 841	phy->port = NULL;
 842	sas_put_device(child);
 843	return NULL;
 844}
 845
 846/* See if this phy is part of a wide port */
 847static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 848{
 849	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 850	int i;
 851
 852	for (i = 0; i < parent->ex_dev.num_phys; i++) {
 853		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 854
 855		if (ephy == phy)
 856			continue;
 857
 858		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 859			    SAS_ADDR_SIZE) && ephy->port) {
 860			sas_port_add_phy(ephy->port, phy->phy);
 861			phy->port = ephy->port;
 862			phy->phy_state = PHY_DEVICE_DISCOVERED;
 863			return true;
 864		}
 865	}
 866
 867	return false;
 868}
 869
 870static struct domain_device *sas_ex_discover_expander(
 871	struct domain_device *parent, int phy_id)
 872{
 873	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 874	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 875	struct domain_device *child = NULL;
 876	struct sas_rphy *rphy;
 877	struct sas_expander_device *edev;
 878	struct asd_sas_port *port;
 879	int res;
 880
 881	if (phy->routing_attr == DIRECT_ROUTING) {
 882		pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
 883			SAS_ADDR(parent->sas_addr), phy_id,
 884			SAS_ADDR(phy->attached_sas_addr),
 885			phy->attached_phy_id);
 
 886		return NULL;
 887	}
 888	child = sas_alloc_device();
 889	if (!child)
 890		return NULL;
 891
 892	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 893	/* FIXME: better error handling */
 894	BUG_ON(sas_port_add(phy->port) != 0);
 895
 896
 897	switch (phy->attached_dev_type) {
 898	case SAS_EDGE_EXPANDER_DEVICE:
 899		rphy = sas_expander_alloc(phy->port,
 900					  SAS_EDGE_EXPANDER_DEVICE);
 901		break;
 902	case SAS_FANOUT_EXPANDER_DEVICE:
 903		rphy = sas_expander_alloc(phy->port,
 904					  SAS_FANOUT_EXPANDER_DEVICE);
 905		break;
 906	default:
 907		rphy = NULL;	/* shut gcc up */
 908		BUG();
 909	}
 910	port = parent->port;
 911	child->rphy = rphy;
 912	get_device(&rphy->dev);
 913	edev = rphy_to_expander_device(rphy);
 914	child->dev_type = phy->attached_dev_type;
 915	kref_get(&parent->kref);
 916	child->parent = parent;
 917	child->port = port;
 918	child->iproto = phy->attached_iproto;
 919	child->tproto = phy->attached_tproto;
 920	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 921	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 922	sas_ex_get_linkrate(parent, child, phy);
 923	edev->level = parent_ex->level + 1;
 924	parent->port->disc.max_level = max(parent->port->disc.max_level,
 925					   edev->level);
 926	sas_init_dev(child);
 927	sas_fill_in_rphy(child, rphy);
 928	sas_rphy_add(rphy);
 929
 930	spin_lock_irq(&parent->port->dev_list_lock);
 931	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 932	spin_unlock_irq(&parent->port->dev_list_lock);
 933
 934	res = sas_discover_expander(child);
 935	if (res) {
 936		sas_rphy_delete(rphy);
 937		spin_lock_irq(&parent->port->dev_list_lock);
 938		list_del(&child->dev_list_node);
 939		spin_unlock_irq(&parent->port->dev_list_lock);
 940		sas_put_device(child);
 941		sas_port_delete(phy->port);
 942		phy->port = NULL;
 943		return NULL;
 944	}
 945	list_add_tail(&child->siblings, &parent->ex_dev.children);
 946	return child;
 947}
 948
 949static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
 950{
 951	struct expander_device *ex = &dev->ex_dev;
 952	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
 953	struct domain_device *child = NULL;
 954	int res = 0;
 955
 956	/* Phy state */
 957	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
 958		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
 959			res = sas_ex_phy_discover(dev, phy_id);
 960		if (res)
 961			return res;
 962	}
 963
 964	/* Parent and domain coherency */
 965	if (!dev->parent && sas_phy_match_port_addr(dev->port, ex_phy)) {
 
 966		sas_add_parent_port(dev, phy_id);
 967		return 0;
 968	}
 969	if (dev->parent && sas_phy_match_dev_addr(dev->parent, ex_phy)) {
 
 970		sas_add_parent_port(dev, phy_id);
 971		if (ex_phy->routing_attr == TABLE_ROUTING)
 972			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
 973		return 0;
 974	}
 975
 976	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
 977		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
 978
 979	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
 980		if (ex_phy->routing_attr == DIRECT_ROUTING) {
 981			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 982			sas_configure_routing(dev, ex_phy->attached_sas_addr);
 983		}
 984		return 0;
 985	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
 986		return 0;
 987
 988	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
 989	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
 990	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
 991	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
 992		pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
 993			ex_phy->attached_dev_type,
 994			SAS_ADDR(dev->sas_addr),
 995			phy_id);
 996		return 0;
 997	}
 998
 999	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1000	if (res) {
1001		pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1002			  SAS_ADDR(ex_phy->attached_sas_addr), res);
 
1003		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1004		return res;
1005	}
1006
1007	if (sas_ex_join_wide_port(dev, phy_id)) {
1008		pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1009			 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1010		return res;
1011	}
1012
1013	switch (ex_phy->attached_dev_type) {
1014	case SAS_END_DEVICE:
1015	case SAS_SATA_PENDING:
1016		child = sas_ex_discover_end_dev(dev, phy_id);
1017		break;
1018	case SAS_FANOUT_EXPANDER_DEVICE:
1019		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1020			pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1021				 SAS_ADDR(ex_phy->attached_sas_addr),
1022				 ex_phy->attached_phy_id,
1023				 SAS_ADDR(dev->sas_addr),
1024				 phy_id);
 
1025			sas_ex_disable_phy(dev, phy_id);
1026			return res;
1027		} else
1028			memcpy(dev->port->disc.fanout_sas_addr,
1029			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1030		fallthrough;
1031	case SAS_EDGE_EXPANDER_DEVICE:
1032		child = sas_ex_discover_expander(dev, phy_id);
1033		break;
1034	default:
1035		break;
1036	}
1037
1038	if (!child)
1039		pr_notice("ex %016llx phy%02d failed to discover\n",
1040			  SAS_ADDR(dev->sas_addr), phy_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1041	return res;
1042}
1043
1044static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1045{
1046	struct expander_device *ex = &dev->ex_dev;
1047	int i;
1048
1049	for (i = 0; i < ex->num_phys; i++) {
1050		struct ex_phy *phy = &ex->ex_phy[i];
1051
1052		if (phy->phy_state == PHY_VACANT ||
1053		    phy->phy_state == PHY_NOT_PRESENT)
1054			continue;
1055
1056		if (dev_is_expander(phy->attached_dev_type) &&
 
1057		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1058
1059			memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1060
1061			return 1;
1062		}
1063	}
1064	return 0;
1065}
1066
1067static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1068{
1069	struct expander_device *ex = &dev->ex_dev;
1070	struct domain_device *child;
1071	u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1072
1073	list_for_each_entry(child, &ex->children, siblings) {
1074		if (!dev_is_expander(child->dev_type))
 
1075			continue;
1076		if (sub_addr[0] == 0) {
1077			sas_find_sub_addr(child, sub_addr);
1078			continue;
1079		} else {
1080			u8 s2[SAS_ADDR_SIZE];
1081
1082			if (sas_find_sub_addr(child, s2) &&
1083			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1084
1085				pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1086					  SAS_ADDR(dev->sas_addr),
1087					  SAS_ADDR(child->sas_addr),
1088					  SAS_ADDR(s2),
1089					  SAS_ADDR(sub_addr));
 
 
1090
1091				sas_ex_disable_port(child, s2);
1092			}
1093		}
1094	}
1095	return 0;
1096}
1097/**
1098 * sas_ex_discover_devices - discover devices attached to this expander
1099 * @dev: pointer to the expander domain device
1100 * @single: if you want to do a single phy, else set to -1;
1101 *
1102 * Configure this expander for use with its devices and register the
1103 * devices of this expander.
1104 */
1105static int sas_ex_discover_devices(struct domain_device *dev, int single)
1106{
1107	struct expander_device *ex = &dev->ex_dev;
1108	int i = 0, end = ex->num_phys;
1109	int res = 0;
1110
1111	if (0 <= single && single < end) {
1112		i = single;
1113		end = i+1;
1114	}
1115
1116	for ( ; i < end; i++) {
1117		struct ex_phy *ex_phy = &ex->ex_phy[i];
1118
1119		if (ex_phy->phy_state == PHY_VACANT ||
1120		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1121		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1122			continue;
1123
1124		switch (ex_phy->linkrate) {
1125		case SAS_PHY_DISABLED:
1126		case SAS_PHY_RESET_PROBLEM:
1127		case SAS_SATA_PORT_SELECTOR:
1128			continue;
1129		default:
1130			res = sas_ex_discover_dev(dev, i);
1131			if (res)
1132				break;
1133			continue;
1134		}
1135	}
1136
1137	if (!res)
1138		sas_check_level_subtractive_boundary(dev);
1139
1140	return res;
1141}
1142
1143static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1144{
1145	struct expander_device *ex = &dev->ex_dev;
1146	int i;
1147	u8  *sub_sas_addr = NULL;
1148
1149	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1150		return 0;
1151
1152	for (i = 0; i < ex->num_phys; i++) {
1153		struct ex_phy *phy = &ex->ex_phy[i];
1154
1155		if (phy->phy_state == PHY_VACANT ||
1156		    phy->phy_state == PHY_NOT_PRESENT)
1157			continue;
1158
1159		if (dev_is_expander(phy->attached_dev_type) &&
 
1160		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1161
1162			if (!sub_sas_addr)
1163				sub_sas_addr = &phy->attached_sas_addr[0];
1164			else if (SAS_ADDR(sub_sas_addr) !=
1165				 SAS_ADDR(phy->attached_sas_addr)) {
1166
1167				pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1168					  SAS_ADDR(dev->sas_addr), i,
1169					  SAS_ADDR(phy->attached_sas_addr),
1170					  SAS_ADDR(sub_sas_addr));
 
 
1171				sas_ex_disable_phy(dev, i);
1172			}
1173		}
1174	}
1175	return 0;
1176}
1177
1178static void sas_print_parent_topology_bug(struct domain_device *child,
1179						 struct ex_phy *parent_phy,
1180						 struct ex_phy *child_phy)
1181{
1182	static const char *ex_type[] = {
1183		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1184		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1185	};
1186	struct domain_device *parent = child->parent;
1187
1188	pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1189		  ex_type[parent->dev_type],
1190		  SAS_ADDR(parent->sas_addr),
1191		  parent_phy->phy_id,
1192
1193		  ex_type[child->dev_type],
1194		  SAS_ADDR(child->sas_addr),
1195		  child_phy->phy_id,
 
 
 
 
1196
1197		  sas_route_char(parent, parent_phy),
1198		  sas_route_char(child, child_phy));
1199}
1200
1201static bool sas_eeds_valid(struct domain_device *parent,
1202			   struct domain_device *child)
1203{
1204	struct sas_discovery *disc = &parent->port->disc;
1205
1206	return (SAS_ADDR(disc->eeds_a) == SAS_ADDR(parent->sas_addr) ||
1207		SAS_ADDR(disc->eeds_a) == SAS_ADDR(child->sas_addr)) &&
1208	       (SAS_ADDR(disc->eeds_b) == SAS_ADDR(parent->sas_addr) ||
1209		SAS_ADDR(disc->eeds_b) == SAS_ADDR(child->sas_addr));
1210}
1211
1212static int sas_check_eeds(struct domain_device *child,
1213			  struct ex_phy *parent_phy,
1214			  struct ex_phy *child_phy)
1215{
1216	int res = 0;
1217	struct domain_device *parent = child->parent;
1218	struct sas_discovery *disc = &parent->port->disc;
1219
1220	if (SAS_ADDR(disc->fanout_sas_addr) != 0) {
1221		res = -ENODEV;
1222		pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1223			SAS_ADDR(parent->sas_addr),
1224			parent_phy->phy_id,
1225			SAS_ADDR(child->sas_addr),
1226			child_phy->phy_id,
1227			SAS_ADDR(disc->fanout_sas_addr));
1228	} else if (SAS_ADDR(disc->eeds_a) == 0) {
1229		memcpy(disc->eeds_a, parent->sas_addr, SAS_ADDR_SIZE);
1230		memcpy(disc->eeds_b, child->sas_addr, SAS_ADDR_SIZE);
1231	} else if (!sas_eeds_valid(parent, child)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
1232		res = -ENODEV;
1233		pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1234			SAS_ADDR(parent->sas_addr),
1235			parent_phy->phy_id,
1236			SAS_ADDR(child->sas_addr),
1237			child_phy->phy_id);
 
1238	}
1239
1240	return res;
1241}
1242
1243static int sas_check_edge_expander_topo(struct domain_device *child,
1244					struct ex_phy *parent_phy)
1245{
1246	struct expander_device *child_ex = &child->ex_dev;
1247	struct expander_device *parent_ex = &child->parent->ex_dev;
1248	struct ex_phy *child_phy;
1249
1250	child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1251
1252	if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1253		if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1254		    child_phy->routing_attr != TABLE_ROUTING)
1255			goto error;
1256	} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1257		if (child_phy->routing_attr == SUBTRACTIVE_ROUTING)
1258			return sas_check_eeds(child, parent_phy, child_phy);
1259		else if (child_phy->routing_attr != TABLE_ROUTING)
1260			goto error;
1261	} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1262		if (child_phy->routing_attr != SUBTRACTIVE_ROUTING &&
1263		    (child_phy->routing_attr != TABLE_ROUTING ||
1264		     !child_ex->t2t_supp || !parent_ex->t2t_supp))
1265			goto error;
1266	}
1267
1268	return 0;
1269error:
1270	sas_print_parent_topology_bug(child, parent_phy, child_phy);
1271	return -ENODEV;
1272}
1273
1274static int sas_check_fanout_expander_topo(struct domain_device *child,
1275					  struct ex_phy *parent_phy)
1276{
1277	struct expander_device *child_ex = &child->ex_dev;
1278	struct ex_phy *child_phy;
1279
1280	child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1281
1282	if (parent_phy->routing_attr == TABLE_ROUTING &&
1283	    child_phy->routing_attr == SUBTRACTIVE_ROUTING)
1284		return 0;
1285
1286	sas_print_parent_topology_bug(child, parent_phy, child_phy);
1287
1288	return -ENODEV;
1289}
1290
1291static int sas_check_parent_topology(struct domain_device *child)
1292{
 
1293	struct expander_device *parent_ex;
1294	int i;
1295	int res = 0;
1296
1297	if (!child->parent)
1298		return 0;
1299
1300	if (!dev_is_expander(child->parent->dev_type))
 
1301		return 0;
1302
1303	parent_ex = &child->parent->ex_dev;
1304
1305	for (i = 0; i < parent_ex->num_phys; i++) {
1306		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
 
1307
1308		if (parent_phy->phy_state == PHY_VACANT ||
1309		    parent_phy->phy_state == PHY_NOT_PRESENT)
1310			continue;
1311
1312		if (!sas_phy_match_dev_addr(child, parent_phy))
1313			continue;
1314
 
 
1315		switch (child->parent->dev_type) {
1316		case SAS_EDGE_EXPANDER_DEVICE:
1317			if (sas_check_edge_expander_topo(child, parent_phy))
1318				res = -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1319			break;
1320		case SAS_FANOUT_EXPANDER_DEVICE:
1321			if (sas_check_fanout_expander_topo(child, parent_phy))
 
 
1322				res = -ENODEV;
 
1323			break;
1324		default:
1325			break;
1326		}
1327	}
1328
1329	return res;
1330}
1331
1332#define RRI_REQ_SIZE  16
1333#define RRI_RESP_SIZE 44
1334
1335static int sas_configure_present(struct domain_device *dev, int phy_id,
1336				 u8 *sas_addr, int *index, int *present)
1337{
1338	int i, res = 0;
1339	struct expander_device *ex = &dev->ex_dev;
1340	struct ex_phy *phy = &ex->ex_phy[phy_id];
1341	u8 *rri_req;
1342	u8 *rri_resp;
1343
1344	*present = 0;
1345	*index = 0;
1346
1347	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1348	if (!rri_req)
1349		return -ENOMEM;
1350
1351	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1352	if (!rri_resp) {
1353		kfree(rri_req);
1354		return -ENOMEM;
1355	}
1356
1357	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1358	rri_req[9] = phy_id;
1359
1360	for (i = 0; i < ex->max_route_indexes ; i++) {
1361		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1362		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1363				       RRI_RESP_SIZE);
1364		if (res)
1365			goto out;
1366		res = rri_resp[2];
1367		if (res == SMP_RESP_NO_INDEX) {
1368			pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1369				SAS_ADDR(dev->sas_addr), phy_id, i);
 
1370			goto out;
1371		} else if (res != SMP_RESP_FUNC_ACC) {
1372			pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1373				  __func__, SAS_ADDR(dev->sas_addr), phy_id,
1374				  i, res);
1375			goto out;
1376		}
1377		if (SAS_ADDR(sas_addr) != 0) {
1378			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1379				*index = i;
1380				if ((rri_resp[12] & 0x80) == 0x80)
1381					*present = 0;
1382				else
1383					*present = 1;
1384				goto out;
1385			} else if (SAS_ADDR(rri_resp+16) == 0) {
1386				*index = i;
1387				*present = 0;
1388				goto out;
1389			}
1390		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1391			   phy->last_da_index < i) {
1392			phy->last_da_index = i;
1393			*index = i;
1394			*present = 0;
1395			goto out;
1396		}
1397	}
1398	res = -1;
1399out:
1400	kfree(rri_req);
1401	kfree(rri_resp);
1402	return res;
1403}
1404
1405#define CRI_REQ_SIZE  44
1406#define CRI_RESP_SIZE  8
1407
1408static int sas_configure_set(struct domain_device *dev, int phy_id,
1409			     u8 *sas_addr, int index, int include)
1410{
1411	int res;
1412	u8 *cri_req;
1413	u8 *cri_resp;
1414
1415	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1416	if (!cri_req)
1417		return -ENOMEM;
1418
1419	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1420	if (!cri_resp) {
1421		kfree(cri_req);
1422		return -ENOMEM;
1423	}
1424
1425	cri_req[1] = SMP_CONF_ROUTE_INFO;
1426	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1427	cri_req[9] = phy_id;
1428	if (SAS_ADDR(sas_addr) == 0 || !include)
1429		cri_req[12] |= 0x80;
1430	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1431
1432	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1433			       CRI_RESP_SIZE);
1434	if (res)
1435		goto out;
1436	res = cri_resp[2];
1437	if (res == SMP_RESP_NO_INDEX) {
1438		pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1439			SAS_ADDR(dev->sas_addr), phy_id, index);
 
1440	}
1441out:
1442	kfree(cri_req);
1443	kfree(cri_resp);
1444	return res;
1445}
1446
1447static int sas_configure_phy(struct domain_device *dev, int phy_id,
1448				    u8 *sas_addr, int include)
1449{
1450	int index;
1451	int present;
1452	int res;
1453
1454	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1455	if (res)
1456		return res;
1457	if (include ^ present)
1458		return sas_configure_set(dev, phy_id, sas_addr, index,
1459					 include);
1460
1461	return res;
1462}
1463
1464/**
1465 * sas_configure_parent - configure routing table of parent
1466 * @parent: parent expander
1467 * @child: child expander
1468 * @sas_addr: SAS port identifier of device directly attached to child
1469 * @include: whether or not to include @child in the expander routing table
1470 */
1471static int sas_configure_parent(struct domain_device *parent,
1472				struct domain_device *child,
1473				u8 *sas_addr, int include)
1474{
1475	struct expander_device *ex_parent = &parent->ex_dev;
1476	int res = 0;
1477	int i;
1478
1479	if (parent->parent) {
1480		res = sas_configure_parent(parent->parent, parent, sas_addr,
1481					   include);
1482		if (res)
1483			return res;
1484	}
1485
1486	if (ex_parent->conf_route_table == 0) {
1487		pr_debug("ex %016llx has self-configuring routing table\n",
1488			 SAS_ADDR(parent->sas_addr));
1489		return 0;
1490	}
1491
1492	for (i = 0; i < ex_parent->num_phys; i++) {
1493		struct ex_phy *phy = &ex_parent->ex_phy[i];
1494
1495		if ((phy->routing_attr == TABLE_ROUTING) &&
1496		    sas_phy_match_dev_addr(child, phy)) {
 
1497			res = sas_configure_phy(parent, i, sas_addr, include);
1498			if (res)
1499				return res;
1500		}
1501	}
1502
1503	return res;
1504}
1505
1506/**
1507 * sas_configure_routing - configure routing
1508 * @dev: expander device
1509 * @sas_addr: port identifier of device directly attached to the expander device
1510 */
1511static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1512{
1513	if (dev->parent)
1514		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1515	return 0;
1516}
1517
1518static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1519{
1520	if (dev->parent)
1521		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1522	return 0;
1523}
1524
1525/**
1526 * sas_discover_expander - expander discovery
1527 * @dev: pointer to expander domain device
1528 *
1529 * See comment in sas_discover_sata().
1530 */
1531static int sas_discover_expander(struct domain_device *dev)
1532{
1533	int res;
1534
1535	res = sas_notify_lldd_dev_found(dev);
1536	if (res)
1537		return res;
1538
1539	res = sas_ex_general(dev);
1540	if (res)
1541		goto out_err;
1542	res = sas_ex_manuf_info(dev);
1543	if (res)
1544		goto out_err;
1545
1546	res = sas_expander_discover(dev);
1547	if (res) {
1548		pr_warn("expander %016llx discovery failed(0x%x)\n",
1549			SAS_ADDR(dev->sas_addr), res);
1550		goto out_err;
1551	}
1552
1553	sas_check_ex_subtractive_boundary(dev);
1554	res = sas_check_parent_topology(dev);
1555	if (res)
1556		goto out_err;
1557	return 0;
1558out_err:
1559	sas_notify_lldd_dev_gone(dev);
1560	return res;
1561}
1562
1563static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1564{
1565	int res = 0;
1566	struct domain_device *dev;
1567
1568	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1569		if (dev_is_expander(dev->dev_type)) {
 
1570			struct sas_expander_device *ex =
1571				rphy_to_expander_device(dev->rphy);
1572
1573			if (level == ex->level)
1574				res = sas_ex_discover_devices(dev, -1);
1575			else if (level > 0)
1576				res = sas_ex_discover_devices(port->port_dev, -1);
1577
1578		}
1579	}
1580
1581	return res;
1582}
1583
1584static int sas_ex_bfs_disc(struct asd_sas_port *port)
1585{
1586	int res;
1587	int level;
1588
1589	do {
1590		level = port->disc.max_level;
1591		res = sas_ex_level_discovery(port, level);
1592		mb();
1593	} while (level < port->disc.max_level);
1594
1595	return res;
1596}
1597
1598int sas_discover_root_expander(struct domain_device *dev)
1599{
1600	int res;
1601	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1602
1603	res = sas_rphy_add(dev->rphy);
1604	if (res)
1605		goto out_err;
1606
1607	ex->level = dev->port->disc.max_level; /* 0 */
1608	res = sas_discover_expander(dev);
1609	if (res)
1610		goto out_err2;
1611
1612	sas_ex_bfs_disc(dev->port);
1613
1614	return res;
1615
1616out_err2:
1617	sas_rphy_remove(dev->rphy);
1618out_err:
1619	return res;
1620}
1621
1622/* ---------- Domain revalidation ---------- */
1623
1624static int sas_get_phy_discover(struct domain_device *dev,
1625				int phy_id, struct smp_disc_resp *disc_resp)
1626{
1627	int res;
1628	u8 *disc_req;
1629
1630	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1631	if (!disc_req)
1632		return -ENOMEM;
1633
1634	disc_req[1] = SMP_DISCOVER;
1635	disc_req[9] = phy_id;
1636
1637	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1638			       disc_resp, DISCOVER_RESP_SIZE);
1639	if (res)
1640		goto out;
1641	if (disc_resp->result != SMP_RESP_FUNC_ACC)
1642		res = disc_resp->result;
 
 
1643out:
1644	kfree(disc_req);
1645	return res;
1646}
1647
1648static int sas_get_phy_change_count(struct domain_device *dev,
1649				    int phy_id, int *pcc)
1650{
1651	int res;
1652	struct smp_disc_resp *disc_resp;
1653
1654	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1655	if (!disc_resp)
1656		return -ENOMEM;
1657
1658	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1659	if (!res)
1660		*pcc = disc_resp->disc.change_count;
1661
1662	kfree(disc_resp);
1663	return res;
1664}
1665
1666int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1667			     u8 *sas_addr, enum sas_device_type *type)
1668{
1669	int res;
1670	struct smp_disc_resp *disc_resp;
 
1671
1672	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1673	if (!disc_resp)
1674		return -ENOMEM;
 
1675
1676	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1677	if (res == 0) {
1678		memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1679		       SAS_ADDR_SIZE);
1680		*type = to_dev_type(&disc_resp->disc);
1681		if (*type == 0)
1682			memset(sas_addr, 0, SAS_ADDR_SIZE);
1683	}
1684	kfree(disc_resp);
1685	return res;
1686}
1687
1688static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1689			      int from_phy, bool update)
1690{
1691	struct expander_device *ex = &dev->ex_dev;
1692	int res = 0;
1693	int i;
1694
1695	for (i = from_phy; i < ex->num_phys; i++) {
1696		int phy_change_count = 0;
1697
1698		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1699		switch (res) {
1700		case SMP_RESP_PHY_VACANT:
1701		case SMP_RESP_NO_PHY:
1702			continue;
1703		case SMP_RESP_FUNC_ACC:
1704			break;
1705		default:
1706			return res;
1707		}
1708
1709		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1710			if (update)
1711				ex->ex_phy[i].phy_change_count =
1712					phy_change_count;
1713			*phy_id = i;
1714			return 0;
1715		}
1716	}
1717	return 0;
1718}
1719
1720static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1721{
1722	int res;
1723	u8  *rg_req;
1724	struct smp_rg_resp  *rg_resp;
1725
1726	rg_req = alloc_smp_req(RG_REQ_SIZE);
1727	if (!rg_req)
1728		return -ENOMEM;
1729
1730	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1731	if (!rg_resp) {
1732		kfree(rg_req);
1733		return -ENOMEM;
1734	}
1735
1736	rg_req[1] = SMP_REPORT_GENERAL;
1737
1738	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1739			       RG_RESP_SIZE);
1740	if (res)
1741		goto out;
1742	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1743		res = rg_resp->result;
1744		goto out;
1745	}
1746
1747	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1748out:
1749	kfree(rg_resp);
1750	kfree(rg_req);
1751	return res;
1752}
1753/**
1754 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1755 * @dev:domain device to be detect.
1756 * @src_dev: the device which originated BROADCAST(CHANGE).
1757 *
1758 * Add self-configuration expander support. Suppose two expander cascading,
1759 * when the first level expander is self-configuring, hotplug the disks in
1760 * second level expander, BROADCAST(CHANGE) will not only be originated
1761 * in the second level expander, but also be originated in the first level
1762 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1763 * expander changed count in two level expanders will all increment at least
1764 * once, but the phy which chang count has changed is the source device which
1765 * we concerned.
1766 */
1767
1768static int sas_find_bcast_dev(struct domain_device *dev,
1769			      struct domain_device **src_dev)
1770{
1771	struct expander_device *ex = &dev->ex_dev;
1772	int ex_change_count = -1;
1773	int phy_id = -1;
1774	int res;
1775	struct domain_device *ch;
1776
1777	res = sas_get_ex_change_count(dev, &ex_change_count);
1778	if (res)
1779		goto out;
1780	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1781		/* Just detect if this expander phys phy change count changed,
1782		* in order to determine if this expander originate BROADCAST,
1783		* and do not update phy change count field in our structure.
1784		*/
1785		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1786		if (phy_id != -1) {
1787			*src_dev = dev;
1788			ex->ex_change_count = ex_change_count;
1789			pr_info("ex %016llx phy%02d change count has changed\n",
1790				SAS_ADDR(dev->sas_addr), phy_id);
1791			return res;
1792		} else
1793			pr_info("ex %016llx phys DID NOT change\n",
1794				SAS_ADDR(dev->sas_addr));
1795	}
1796	list_for_each_entry(ch, &ex->children, siblings) {
1797		if (dev_is_expander(ch->dev_type)) {
1798			res = sas_find_bcast_dev(ch, src_dev);
1799			if (*src_dev)
1800				return res;
1801		}
1802	}
1803out:
1804	return res;
1805}
1806
1807static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1808{
1809	struct expander_device *ex = &dev->ex_dev;
1810	struct domain_device *child, *n;
1811
1812	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1813		set_bit(SAS_DEV_GONE, &child->state);
1814		if (dev_is_expander(child->dev_type))
 
1815			sas_unregister_ex_tree(port, child);
1816		else
1817			sas_unregister_dev(port, child);
1818	}
1819	sas_unregister_dev(port, dev);
1820}
1821
1822static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1823					 int phy_id, bool last)
1824{
1825	struct expander_device *ex_dev = &parent->ex_dev;
1826	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1827	struct domain_device *child, *n, *found = NULL;
1828	if (last) {
1829		list_for_each_entry_safe(child, n,
1830			&ex_dev->children, siblings) {
1831			if (sas_phy_match_dev_addr(child, phy)) {
 
1832				set_bit(SAS_DEV_GONE, &child->state);
1833				if (dev_is_expander(child->dev_type))
 
1834					sas_unregister_ex_tree(parent->port, child);
1835				else
1836					sas_unregister_dev(parent->port, child);
1837				found = child;
1838				break;
1839			}
1840		}
1841		sas_disable_routing(parent, phy->attached_sas_addr);
1842	}
1843	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1844	if (phy->port) {
1845		sas_port_delete_phy(phy->port, phy->phy);
1846		sas_device_set_phy(found, phy->port);
1847		if (phy->port->num_phys == 0)
1848			list_add_tail(&phy->port->del_list,
1849				&parent->port->sas_port_del_list);
1850		phy->port = NULL;
1851	}
1852}
1853
1854static int sas_discover_bfs_by_root_level(struct domain_device *root,
1855					  const int level)
1856{
1857	struct expander_device *ex_root = &root->ex_dev;
1858	struct domain_device *child;
1859	int res = 0;
1860
1861	list_for_each_entry(child, &ex_root->children, siblings) {
1862		if (dev_is_expander(child->dev_type)) {
 
1863			struct sas_expander_device *ex =
1864				rphy_to_expander_device(child->rphy);
1865
1866			if (level > ex->level)
1867				res = sas_discover_bfs_by_root_level(child,
1868								     level);
1869			else if (level == ex->level)
1870				res = sas_ex_discover_devices(child, -1);
1871		}
1872	}
1873	return res;
1874}
1875
1876static int sas_discover_bfs_by_root(struct domain_device *dev)
1877{
1878	int res;
1879	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1880	int level = ex->level+1;
1881
1882	res = sas_ex_discover_devices(dev, -1);
1883	if (res)
1884		goto out;
1885	do {
1886		res = sas_discover_bfs_by_root_level(dev, level);
1887		mb();
1888		level += 1;
1889	} while (level <= dev->port->disc.max_level);
1890out:
1891	return res;
1892}
1893
1894static int sas_discover_new(struct domain_device *dev, int phy_id)
1895{
1896	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1897	struct domain_device *child;
1898	int res;
1899
1900	pr_debug("ex %016llx phy%02d new device attached\n",
1901		 SAS_ADDR(dev->sas_addr), phy_id);
1902	res = sas_ex_phy_discover(dev, phy_id);
1903	if (res)
1904		return res;
1905
1906	if (sas_ex_join_wide_port(dev, phy_id))
1907		return 0;
1908
1909	res = sas_ex_discover_devices(dev, phy_id);
1910	if (res)
1911		return res;
1912	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1913		if (sas_phy_match_dev_addr(child, ex_phy)) {
1914			if (dev_is_expander(child->dev_type))
 
 
1915				res = sas_discover_bfs_by_root(child);
1916			break;
1917		}
1918	}
1919	return res;
1920}
1921
1922static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1923{
1924	if (old == new)
1925		return true;
1926
1927	/* treat device directed resets as flutter, if we went
1928	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1929	 */
1930	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1931	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1932		return true;
1933
1934	return false;
1935}
1936
1937static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1938			      bool last, int sibling)
1939{
1940	struct expander_device *ex = &dev->ex_dev;
1941	struct ex_phy *phy = &ex->ex_phy[phy_id];
1942	enum sas_device_type type = SAS_PHY_UNUSED;
1943	u8 sas_addr[SAS_ADDR_SIZE];
1944	char msg[80] = "";
1945	int res;
1946
1947	if (!last)
1948		sprintf(msg, ", part of a wide port with phy%02d", sibling);
1949
1950	pr_debug("ex %016llx rediscovering phy%02d%s\n",
1951		 SAS_ADDR(dev->sas_addr), phy_id, msg);
1952
1953	memset(sas_addr, 0, SAS_ADDR_SIZE);
1954	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
1955	switch (res) {
1956	case SMP_RESP_NO_PHY:
1957		phy->phy_state = PHY_NOT_PRESENT;
1958		sas_unregister_devs_sas_addr(dev, phy_id, last);
1959		return res;
1960	case SMP_RESP_PHY_VACANT:
1961		phy->phy_state = PHY_VACANT;
1962		sas_unregister_devs_sas_addr(dev, phy_id, last);
1963		return res;
1964	case SMP_RESP_FUNC_ACC:
1965		break;
1966	case -ECOMM:
1967		break;
1968	default:
1969		return res;
1970	}
1971
1972	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
1973		phy->phy_state = PHY_EMPTY;
1974		sas_unregister_devs_sas_addr(dev, phy_id, last);
1975		/*
1976		 * Even though the PHY is empty, for convenience we discover
1977		 * the PHY to update the PHY info, like negotiated linkrate.
1978		 */
1979		sas_ex_phy_discover(dev, phy_id);
1980		return res;
1981	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
1982		   dev_type_flutter(type, phy->attached_dev_type)) {
1983		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
1984		char *action = "";
1985
1986		sas_ex_phy_discover(dev, phy_id);
1987
1988		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
1989			action = ", needs recovery";
1990		pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
1991			 SAS_ADDR(dev->sas_addr), phy_id, action);
1992		return res;
1993	}
1994
1995	/* we always have to delete the old device when we went here */
1996	pr_info("ex %016llx phy%02d replace %016llx\n",
1997		SAS_ADDR(dev->sas_addr), phy_id,
1998		SAS_ADDR(phy->attached_sas_addr));
1999	sas_unregister_devs_sas_addr(dev, phy_id, last);
 
 
 
2000
2001	return sas_discover_new(dev, phy_id);
2002}
2003
2004/**
2005 * sas_rediscover - revalidate the domain.
2006 * @dev:domain device to be detect.
2007 * @phy_id: the phy id will be detected.
2008 *
2009 * NOTE: this process _must_ quit (return) as soon as any connection
2010 * errors are encountered.  Connection recovery is done elsewhere.
2011 * Discover process only interrogates devices in order to discover the
2012 * domain.For plugging out, we un-register the device only when it is
2013 * the last phy in the port, for other phys in this port, we just delete it
2014 * from the port.For inserting, we do discovery when it is the
2015 * first phy,for other phys in this port, we add it to the port to
2016 * forming the wide-port.
2017 */
2018static int sas_rediscover(struct domain_device *dev, const int phy_id)
2019{
2020	struct expander_device *ex = &dev->ex_dev;
2021	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2022	int res = 0;
2023	int i;
2024	bool last = true;	/* is this the last phy of the port */
2025
2026	pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2027		 SAS_ADDR(dev->sas_addr), phy_id);
2028
2029	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2030		for (i = 0; i < ex->num_phys; i++) {
2031			struct ex_phy *phy = &ex->ex_phy[i];
2032
2033			if (i == phy_id)
2034				continue;
2035			if (sas_phy_addr_match(phy, changed_phy)) {
 
 
 
2036				last = false;
2037				break;
2038			}
2039		}
2040		res = sas_rediscover_dev(dev, phy_id, last, i);
2041	} else
2042		res = sas_discover_new(dev, phy_id);
2043	return res;
2044}
2045
2046/**
2047 * sas_ex_revalidate_domain - revalidate the domain
2048 * @port_dev: port domain device.
2049 *
2050 * NOTE: this process _must_ quit (return) as soon as any connection
2051 * errors are encountered.  Connection recovery is done elsewhere.
2052 * Discover process only interrogates devices in order to discover the
2053 * domain.
2054 */
2055int sas_ex_revalidate_domain(struct domain_device *port_dev)
2056{
2057	int res;
2058	struct domain_device *dev = NULL;
2059
2060	res = sas_find_bcast_dev(port_dev, &dev);
2061	if (res == 0 && dev) {
2062		struct expander_device *ex = &dev->ex_dev;
2063		int i = 0, phy_id;
2064
2065		do {
2066			phy_id = -1;
2067			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2068			if (phy_id == -1)
2069				break;
2070			res = sas_rediscover(dev, phy_id);
2071			i = phy_id + 1;
2072		} while (i < ex->num_phys);
 
 
 
2073	}
2074	return res;
2075}
2076
2077int sas_find_attached_phy_id(struct expander_device *ex_dev,
2078			     struct domain_device *dev)
2079{
2080	struct ex_phy *phy;
2081	int phy_id;
 
2082
2083	for (phy_id = 0; phy_id < ex_dev->num_phys; phy_id++) {
2084		phy = &ex_dev->ex_phy[phy_id];
2085		if (sas_phy_match_dev_addr(dev, phy))
2086			return phy_id;
2087	}
2088
2089	return -ENODEV;
2090}
2091EXPORT_SYMBOL_GPL(sas_find_attached_phy_id);
2092
2093void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2094		struct sas_rphy *rphy)
2095{
2096	struct domain_device *dev;
2097	unsigned int rcvlen = 0;
2098	int ret = -EINVAL;
2099
2100	/* no rphy means no smp target support (ie aic94xx host) */
2101	if (!rphy)
2102		return sas_smp_host_handler(job, shost);
2103
2104	switch (rphy->identify.device_type) {
2105	case SAS_EDGE_EXPANDER_DEVICE:
2106	case SAS_FANOUT_EXPANDER_DEVICE:
2107		break;
2108	default:
2109		pr_err("%s: can we send a smp request to a device?\n",
2110		       __func__);
2111		goto out;
2112	}
2113
2114	dev = sas_find_dev_by_rphy(rphy);
2115	if (!dev) {
2116		pr_err("%s: fail to find a domain_device?\n", __func__);
2117		goto out;
2118	}
2119
2120	/* do we need to support multiple segments? */
2121	if (job->request_payload.sg_cnt > 1 ||
2122	    job->reply_payload.sg_cnt > 1) {
2123		pr_info("%s: multiple segments req %u, rsp %u\n",
2124			__func__, job->request_payload.payload_len,
2125			job->reply_payload.payload_len);
2126		goto out;
2127	}
2128
2129	ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2130			job->reply_payload.sg_list);
2131	if (ret >= 0) {
2132		/* bsg_job_done() requires the length received  */
2133		rcvlen = job->reply_payload.payload_len - ret;
 
2134		ret = 0;
 
 
 
2135	}
2136
2137out:
2138	bsg_job_done(job, ret, rcvlen);
2139}
v3.5.6
 
   1/*
   2 * Serial Attached SCSI (SAS) Expander discovery and configuration
   3 *
   4 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   6 *
   7 * This file is licensed under GPLv2.
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License as
  11 * published by the Free Software Foundation; either version 2 of the
  12 * License, or (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  22 *
  23 */
  24
  25#include <linux/scatterlist.h>
  26#include <linux/blkdev.h>
  27#include <linux/slab.h>
 
  28
  29#include "sas_internal.h"
  30
  31#include <scsi/sas_ata.h>
  32#include <scsi/scsi_transport.h>
  33#include <scsi/scsi_transport_sas.h>
  34#include "../scsi_sas_internal.h"
  35
  36static int sas_discover_expander(struct domain_device *dev);
  37static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  38static int sas_configure_phy(struct domain_device *dev, int phy_id,
  39			     u8 *sas_addr, int include);
  40static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  41
  42/* ---------- SMP task management ---------- */
  43
  44static void smp_task_timedout(unsigned long _task)
  45{
  46	struct sas_task *task = (void *) _task;
  47	unsigned long flags;
  48
  49	spin_lock_irqsave(&task->task_state_lock, flags);
  50	if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
  51		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
  52	spin_unlock_irqrestore(&task->task_state_lock, flags);
  53
  54	complete(&task->completion);
  55}
  56
  57static void smp_task_done(struct sas_task *task)
  58{
  59	if (!del_timer(&task->timer))
  60		return;
  61	complete(&task->completion);
  62}
  63
  64/* Give it some long enough timeout. In seconds. */
  65#define SMP_TIMEOUT 10
  66
  67static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
  68			    void *resp, int resp_size)
  69{
  70	int res, retry;
  71	struct sas_task *task = NULL;
  72	struct sas_internal *i =
  73		to_sas_internal(dev->port->ha->core.shost->transportt);
 
  74
 
  75	mutex_lock(&dev->ex_dev.cmd_mutex);
  76	for (retry = 0; retry < 3; retry++) {
  77		if (test_bit(SAS_DEV_GONE, &dev->state)) {
  78			res = -ECOMM;
  79			break;
  80		}
  81
  82		task = sas_alloc_task(GFP_KERNEL);
  83		if (!task) {
  84			res = -ENOMEM;
  85			break;
  86		}
  87		task->dev = dev;
  88		task->task_proto = dev->tproto;
  89		sg_init_one(&task->smp_task.smp_req, req, req_size);
  90		sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
  91
  92		task->task_done = smp_task_done;
  93
  94		task->timer.data = (unsigned long) task;
  95		task->timer.function = smp_task_timedout;
  96		task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  97		add_timer(&task->timer);
  98
  99		res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
 100
 101		if (res) {
 102			del_timer(&task->timer);
 103			SAS_DPRINTK("executing SMP task failed:%d\n", res);
 104			break;
 105		}
 106
 107		wait_for_completion(&task->completion);
 108		res = -ECOMM;
 109		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
 110			SAS_DPRINTK("smp task timed out or aborted\n");
 111			i->dft->lldd_abort_task(task);
 112			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
 113				SAS_DPRINTK("SMP task aborted and not done\n");
 114				break;
 115			}
 116		}
 117		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 118		    task->task_status.stat == SAM_STAT_GOOD) {
 119			res = 0;
 120			break;
 121		}
 122		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 123		    task->task_status.stat == SAS_DATA_UNDERRUN) {
 124			/* no error, but return the number of bytes of
 125			 * underrun */
 126			res = task->task_status.residual;
 127			break;
 128		}
 129		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 130		    task->task_status.stat == SAS_DATA_OVERRUN) {
 131			res = -EMSGSIZE;
 132			break;
 133		}
 134		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
 135		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
 136			break;
 137		else {
 138			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
 139				    "status 0x%x\n", __func__,
 140				    SAS_ADDR(dev->sas_addr),
 141				    task->task_status.resp,
 142				    task->task_status.stat);
 143			sas_free_task(task);
 144			task = NULL;
 145		}
 146	}
 147	mutex_unlock(&dev->ex_dev.cmd_mutex);
 
 148
 149	BUG_ON(retry == 3 && task != NULL);
 150	sas_free_task(task);
 151	return res;
 152}
 153
 
 
 
 
 
 
 
 
 
 
 
 154/* ---------- Allocations ---------- */
 155
 156static inline void *alloc_smp_req(int size)
 157{
 158	u8 *p = kzalloc(size, GFP_KERNEL);
 159	if (p)
 160		p[0] = SMP_REQUEST;
 161	return p;
 162}
 163
 164static inline void *alloc_smp_resp(int size)
 165{
 166	return kzalloc(size, GFP_KERNEL);
 167}
 168
 169static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
 170{
 171	switch (phy->routing_attr) {
 172	case TABLE_ROUTING:
 173		if (dev->ex_dev.t2t_supp)
 174			return 'U';
 175		else
 176			return 'T';
 177	case DIRECT_ROUTING:
 178		return 'D';
 179	case SUBTRACTIVE_ROUTING:
 180		return 'S';
 181	default:
 182		return '?';
 183	}
 184}
 185
 186static enum sas_dev_type to_dev_type(struct discover_resp *dr)
 187{
 188	/* This is detecting a failure to transmit initial dev to host
 189	 * FIS as described in section J.5 of sas-2 r16
 190	 */
 191	if (dr->attached_dev_type == NO_DEVICE && dr->attached_sata_dev &&
 192	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
 193		return SATA_PENDING;
 194	else
 195		return dr->attached_dev_type;
 196}
 197
 198static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
 
 199{
 200	enum sas_dev_type dev_type;
 201	enum sas_linkrate linkrate;
 202	u8 sas_addr[SAS_ADDR_SIZE];
 203	struct smp_resp *resp = rsp;
 204	struct discover_resp *dr = &resp->disc;
 205	struct sas_ha_struct *ha = dev->port->ha;
 206	struct expander_device *ex = &dev->ex_dev;
 207	struct ex_phy *phy = &ex->ex_phy[phy_id];
 208	struct sas_rphy *rphy = dev->rphy;
 209	bool new_phy = !phy->phy;
 210	char *type;
 211
 212	if (new_phy) {
 213		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
 214			return;
 215		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 216
 217		/* FIXME: error_handling */
 218		BUG_ON(!phy->phy);
 219	}
 220
 221	switch (resp->result) {
 222	case SMP_RESP_PHY_VACANT:
 223		phy->phy_state = PHY_VACANT;
 224		break;
 225	default:
 226		phy->phy_state = PHY_NOT_PRESENT;
 227		break;
 228	case SMP_RESP_FUNC_ACC:
 229		phy->phy_state = PHY_EMPTY; /* do not know yet */
 230		break;
 231	}
 232
 233	/* check if anything important changed to squelch debug */
 234	dev_type = phy->attached_dev_type;
 235	linkrate  = phy->linkrate;
 236	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 237
 
 
 
 
 
 
 
 
 
 
 
 238	phy->attached_dev_type = to_dev_type(dr);
 239	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 240		goto out;
 241	phy->phy_id = phy_id;
 242	phy->linkrate = dr->linkrate;
 243	phy->attached_sata_host = dr->attached_sata_host;
 244	phy->attached_sata_dev  = dr->attached_sata_dev;
 245	phy->attached_sata_ps   = dr->attached_sata_ps;
 246	phy->attached_iproto = dr->iproto << 1;
 247	phy->attached_tproto = dr->tproto << 1;
 248	/* help some expanders that fail to zero sas_address in the 'no
 249	 * device' case
 250	 */
 251	if (phy->attached_dev_type == NO_DEVICE ||
 252	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
 253		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 254	else
 255		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 256	phy->attached_phy_id = dr->attached_phy_id;
 257	phy->phy_change_count = dr->change_count;
 258	phy->routing_attr = dr->routing_attr;
 259	phy->virtual = dr->virtual;
 260	phy->last_da_index = -1;
 261
 262	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
 263	phy->phy->identify.device_type = dr->attached_dev_type;
 264	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 265	phy->phy->identify.target_port_protocols = phy->attached_tproto;
 266	if (!phy->attached_tproto && dr->attached_sata_dev)
 267		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
 268	phy->phy->identify.phy_identifier = phy_id;
 269	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 270	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 271	phy->phy->minimum_linkrate = dr->pmin_linkrate;
 272	phy->phy->maximum_linkrate = dr->pmax_linkrate;
 273	phy->phy->negotiated_linkrate = phy->linkrate;
 
 274
 
 275	if (new_phy)
 276		if (sas_phy_add(phy->phy)) {
 277			sas_phy_free(phy->phy);
 278			return;
 279		}
 280
 281 out:
 282	switch (phy->attached_dev_type) {
 283	case SATA_PENDING:
 284		type = "stp pending";
 285		break;
 286	case NO_DEVICE:
 287		type = "no device";
 288		break;
 289	case SAS_END_DEV:
 290		if (phy->attached_iproto) {
 291			if (phy->attached_tproto)
 292				type = "host+target";
 293			else
 294				type = "host";
 295		} else {
 296			if (dr->attached_sata_dev)
 297				type = "stp";
 298			else
 299				type = "ssp";
 300		}
 301		break;
 302	case EDGE_DEV:
 303	case FANOUT_DEV:
 304		type = "smp";
 305		break;
 306	default:
 307		type = "unknown";
 308	}
 309
 310	/* this routine is polled by libata error recovery so filter
 311	 * unimportant messages
 312	 */
 313	if (new_phy || phy->attached_dev_type != dev_type ||
 314	    phy->linkrate != linkrate ||
 315	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
 316		/* pass */;
 317	else
 318		return;
 319
 320	/* if the attached device type changed and ata_eh is active,
 321	 * make sure we run revalidation when eh completes (see:
 322	 * sas_enable_revalidation)
 323	 */
 324	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 325		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
 326
 327	SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
 328		    test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
 329		    SAS_ADDR(dev->sas_addr), phy->phy_id,
 330		    sas_route_char(dev, phy), phy->linkrate,
 331		    SAS_ADDR(phy->attached_sas_addr), type);
 332}
 333
 334/* check if we have an existing attached ata device on this expander phy */
 335struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
 336{
 337	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
 338	struct domain_device *dev;
 339	struct sas_rphy *rphy;
 340
 341	if (!ex_phy->port)
 342		return NULL;
 343
 344	rphy = ex_phy->port->rphy;
 345	if (!rphy)
 346		return NULL;
 347
 348	dev = sas_find_dev_by_rphy(rphy);
 349
 350	if (dev && dev_is_sata(dev))
 351		return dev;
 352
 353	return NULL;
 354}
 355
 356#define DISCOVER_REQ_SIZE  16
 357#define DISCOVER_RESP_SIZE 56
 358
 359static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 360				      u8 *disc_resp, int single)
 
 361{
 362	struct discover_resp *dr;
 363	int res;
 364
 365	disc_req[9] = single;
 366
 367	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 368			       disc_resp, DISCOVER_RESP_SIZE);
 369	if (res)
 370		return res;
 371	dr = &((struct smp_resp *)disc_resp)->disc;
 372	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
 373		sas_printk("Found loopback topology, just ignore it!\n");
 374		return 0;
 375	}
 376	sas_set_ex_phy(dev, single, disc_resp);
 377	return 0;
 378}
 379
 380int sas_ex_phy_discover(struct domain_device *dev, int single)
 381{
 382	struct expander_device *ex = &dev->ex_dev;
 383	int  res = 0;
 384	u8   *disc_req;
 385	u8   *disc_resp;
 386
 387	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 388	if (!disc_req)
 389		return -ENOMEM;
 390
 391	disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
 392	if (!disc_resp) {
 393		kfree(disc_req);
 394		return -ENOMEM;
 395	}
 396
 397	disc_req[1] = SMP_DISCOVER;
 398
 399	if (0 <= single && single < ex->num_phys) {
 400		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 401	} else {
 402		int i;
 403
 404		for (i = 0; i < ex->num_phys; i++) {
 405			res = sas_ex_phy_discover_helper(dev, disc_req,
 406							 disc_resp, i);
 407			if (res)
 408				goto out_err;
 409		}
 410	}
 411out_err:
 412	kfree(disc_resp);
 413	kfree(disc_req);
 414	return res;
 415}
 416
 417static int sas_expander_discover(struct domain_device *dev)
 418{
 419	struct expander_device *ex = &dev->ex_dev;
 420	int res = -ENOMEM;
 421
 422	ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
 423	if (!ex->ex_phy)
 424		return -ENOMEM;
 425
 426	res = sas_ex_phy_discover(dev, -1);
 427	if (res)
 428		goto out_err;
 429
 430	return 0;
 431 out_err:
 432	kfree(ex->ex_phy);
 433	ex->ex_phy = NULL;
 434	return res;
 435}
 436
 437#define MAX_EXPANDER_PHYS 128
 438
 439static void ex_assign_report_general(struct domain_device *dev,
 440					    struct smp_resp *resp)
 441{
 442	struct report_general_resp *rg = &resp->rg;
 443
 444	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 445	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 446	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 447	dev->ex_dev.t2t_supp = rg->t2t_supp;
 448	dev->ex_dev.conf_route_table = rg->conf_route_table;
 449	dev->ex_dev.configuring = rg->configuring;
 450	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
 451}
 452
 453#define RG_REQ_SIZE   8
 454#define RG_RESP_SIZE 32
 455
 456static int sas_ex_general(struct domain_device *dev)
 457{
 458	u8 *rg_req;
 459	struct smp_resp *rg_resp;
 
 460	int res;
 461	int i;
 462
 463	rg_req = alloc_smp_req(RG_REQ_SIZE);
 464	if (!rg_req)
 465		return -ENOMEM;
 466
 467	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 468	if (!rg_resp) {
 469		kfree(rg_req);
 470		return -ENOMEM;
 471	}
 472
 473	rg_req[1] = SMP_REPORT_GENERAL;
 474
 475	for (i = 0; i < 5; i++) {
 476		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 477				       RG_RESP_SIZE);
 478
 479		if (res) {
 480			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
 481				    SAS_ADDR(dev->sas_addr), res);
 482			goto out;
 483		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 484			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
 485				    SAS_ADDR(dev->sas_addr), rg_resp->result);
 486			res = rg_resp->result;
 487			goto out;
 488		}
 489
 490		ex_assign_report_general(dev, rg_resp);
 
 
 
 
 
 
 
 
 491
 492		if (dev->ex_dev.configuring) {
 493			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
 494				    SAS_ADDR(dev->sas_addr));
 495			schedule_timeout_interruptible(5*HZ);
 496		} else
 497			break;
 498	}
 499out:
 500	kfree(rg_req);
 501	kfree(rg_resp);
 502	return res;
 503}
 504
 505static void ex_assign_manuf_info(struct domain_device *dev, void
 506					*_mi_resp)
 507{
 508	u8 *mi_resp = _mi_resp;
 509	struct sas_rphy *rphy = dev->rphy;
 510	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 511
 512	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 513	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 514	memcpy(edev->product_rev, mi_resp + 36,
 515	       SAS_EXPANDER_PRODUCT_REV_LEN);
 516
 517	if (mi_resp[8] & 1) {
 518		memcpy(edev->component_vendor_id, mi_resp + 40,
 519		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 520		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 521		edev->component_revision_id = mi_resp[50];
 522	}
 523}
 524
 525#define MI_REQ_SIZE   8
 526#define MI_RESP_SIZE 64
 527
 528static int sas_ex_manuf_info(struct domain_device *dev)
 529{
 530	u8 *mi_req;
 531	u8 *mi_resp;
 532	int res;
 533
 534	mi_req = alloc_smp_req(MI_REQ_SIZE);
 535	if (!mi_req)
 536		return -ENOMEM;
 537
 538	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 539	if (!mi_resp) {
 540		kfree(mi_req);
 541		return -ENOMEM;
 542	}
 543
 544	mi_req[1] = SMP_REPORT_MANUF_INFO;
 545
 546	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
 547	if (res) {
 548		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
 549			    SAS_ADDR(dev->sas_addr), res);
 550		goto out;
 551	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 552		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
 553			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
 554		goto out;
 555	}
 556
 557	ex_assign_manuf_info(dev, mi_resp);
 558out:
 559	kfree(mi_req);
 560	kfree(mi_resp);
 561	return res;
 562}
 563
 564#define PC_REQ_SIZE  44
 565#define PC_RESP_SIZE 8
 566
 567int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 568			enum phy_func phy_func,
 569			struct sas_phy_linkrates *rates)
 570{
 571	u8 *pc_req;
 572	u8 *pc_resp;
 573	int res;
 574
 575	pc_req = alloc_smp_req(PC_REQ_SIZE);
 576	if (!pc_req)
 577		return -ENOMEM;
 578
 579	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 580	if (!pc_resp) {
 581		kfree(pc_req);
 582		return -ENOMEM;
 583	}
 584
 585	pc_req[1] = SMP_PHY_CONTROL;
 586	pc_req[9] = phy_id;
 587	pc_req[10]= phy_func;
 588	if (rates) {
 589		pc_req[32] = rates->minimum_linkrate << 4;
 590		pc_req[33] = rates->maximum_linkrate << 4;
 591	}
 592
 593	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
 594
 
 
 
 
 
 
 
 595	kfree(pc_resp);
 596	kfree(pc_req);
 597	return res;
 598}
 599
 600static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 601{
 602	struct expander_device *ex = &dev->ex_dev;
 603	struct ex_phy *phy = &ex->ex_phy[phy_id];
 604
 605	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 606	phy->linkrate = SAS_PHY_DISABLED;
 607}
 608
 609static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 610{
 611	struct expander_device *ex = &dev->ex_dev;
 612	int i;
 613
 614	for (i = 0; i < ex->num_phys; i++) {
 615		struct ex_phy *phy = &ex->ex_phy[i];
 616
 617		if (phy->phy_state == PHY_VACANT ||
 618		    phy->phy_state == PHY_NOT_PRESENT)
 619			continue;
 620
 621		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 622			sas_ex_disable_phy(dev, i);
 623	}
 624}
 625
 626static int sas_dev_present_in_domain(struct asd_sas_port *port,
 627					    u8 *sas_addr)
 628{
 629	struct domain_device *dev;
 630
 631	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 632		return 1;
 633	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 634		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 635			return 1;
 636	}
 637	return 0;
 638}
 639
 640#define RPEL_REQ_SIZE	16
 641#define RPEL_RESP_SIZE	32
 642int sas_smp_get_phy_events(struct sas_phy *phy)
 643{
 644	int res;
 645	u8 *req;
 646	u8 *resp;
 647	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 648	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 649
 650	req = alloc_smp_req(RPEL_REQ_SIZE);
 651	if (!req)
 652		return -ENOMEM;
 653
 654	resp = alloc_smp_resp(RPEL_RESP_SIZE);
 655	if (!resp) {
 656		kfree(req);
 657		return -ENOMEM;
 658	}
 659
 660	req[1] = SMP_REPORT_PHY_ERR_LOG;
 661	req[9] = phy->number;
 662
 663	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 664			            resp, RPEL_RESP_SIZE);
 665
 666	if (!res)
 667		goto out;
 668
 669	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
 670	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
 671	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
 672	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
 673
 674 out:
 
 675	kfree(resp);
 676	return res;
 677
 678}
 679
 680#ifdef CONFIG_SCSI_SAS_ATA
 681
 682#define RPS_REQ_SIZE  16
 683#define RPS_RESP_SIZE 60
 684
 685int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
 686			    struct smp_resp *rps_resp)
 687{
 688	int res;
 689	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 690	u8 *resp = (u8 *)rps_resp;
 691
 692	if (!rps_req)
 693		return -ENOMEM;
 694
 695	rps_req[1] = SMP_REPORT_PHY_SATA;
 696	rps_req[9] = phy_id;
 697
 698	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 699			            rps_resp, RPS_RESP_SIZE);
 700
 701	/* 0x34 is the FIS type for the D2H fis.  There's a potential
 702	 * standards cockup here.  sas-2 explicitly specifies the FIS
 703	 * should be encoded so that FIS type is in resp[24].
 704	 * However, some expanders endian reverse this.  Undo the
 705	 * reversal here */
 706	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 707		int i;
 708
 709		for (i = 0; i < 5; i++) {
 710			int j = 24 + (i*4);
 711			u8 a, b;
 712			a = resp[j + 0];
 713			b = resp[j + 1];
 714			resp[j + 0] = resp[j + 3];
 715			resp[j + 1] = resp[j + 2];
 716			resp[j + 2] = b;
 717			resp[j + 3] = a;
 718		}
 719	}
 720
 721	kfree(rps_req);
 722	return res;
 723}
 724#endif
 725
 726static void sas_ex_get_linkrate(struct domain_device *parent,
 727				       struct domain_device *child,
 728				       struct ex_phy *parent_phy)
 729{
 730	struct expander_device *parent_ex = &parent->ex_dev;
 731	struct sas_port *port;
 732	int i;
 733
 734	child->pathways = 0;
 735
 736	port = parent_phy->port;
 737
 738	for (i = 0; i < parent_ex->num_phys; i++) {
 739		struct ex_phy *phy = &parent_ex->ex_phy[i];
 740
 741		if (phy->phy_state == PHY_VACANT ||
 742		    phy->phy_state == PHY_NOT_PRESENT)
 743			continue;
 744
 745		if (SAS_ADDR(phy->attached_sas_addr) ==
 746		    SAS_ADDR(child->sas_addr)) {
 747
 748			child->min_linkrate = min(parent->min_linkrate,
 749						  phy->linkrate);
 750			child->max_linkrate = max(parent->max_linkrate,
 751						  phy->linkrate);
 752			child->pathways++;
 753			sas_port_add_phy(port, phy->phy);
 754		}
 755	}
 756	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 757	child->pathways = min(child->pathways, parent->pathways);
 758}
 759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 760static struct domain_device *sas_ex_discover_end_dev(
 761	struct domain_device *parent, int phy_id)
 762{
 763	struct expander_device *parent_ex = &parent->ex_dev;
 764	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 765	struct domain_device *child = NULL;
 766	struct sas_rphy *rphy;
 767	int res;
 768
 769	if (phy->attached_sata_host || phy->attached_sata_ps)
 770		return NULL;
 771
 772	child = sas_alloc_device();
 773	if (!child)
 774		return NULL;
 775
 776	kref_get(&parent->kref);
 777	child->parent = parent;
 778	child->port   = parent->port;
 779	child->iproto = phy->attached_iproto;
 780	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 781	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 782	if (!phy->port) {
 783		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 784		if (unlikely(!phy->port))
 785			goto out_err;
 786		if (unlikely(sas_port_add(phy->port) != 0)) {
 787			sas_port_free(phy->port);
 788			goto out_err;
 789		}
 790	}
 791	sas_ex_get_linkrate(parent, child, phy);
 792	sas_device_set_phy(child, phy->port);
 793
 794#ifdef CONFIG_SCSI_SAS_ATA
 795	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 796		res = sas_get_ata_info(child, phy);
 797		if (res)
 798			goto out_free;
 
 
 
 
 
 
 799
 800		sas_init_dev(child);
 801		res = sas_ata_init(child);
 802		if (res)
 803			goto out_free;
 804		rphy = sas_end_device_alloc(phy->port);
 805		if (!rphy)
 806			goto out_free;
 807
 808		child->rphy = rphy;
 809		get_device(&rphy->dev);
 810
 811		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 812
 813		res = sas_discover_sata(child);
 814		if (res) {
 815			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
 816				    "%016llx:0x%x returned 0x%x\n",
 817				    SAS_ADDR(child->sas_addr),
 818				    SAS_ADDR(parent->sas_addr), phy_id, res);
 819			goto out_list_del;
 820		}
 821	} else
 822#endif
 823	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 824		child->dev_type = SAS_END_DEV;
 825		rphy = sas_end_device_alloc(phy->port);
 826		/* FIXME: error handling */
 827		if (unlikely(!rphy))
 828			goto out_free;
 829		child->tproto = phy->attached_tproto;
 830		sas_init_dev(child);
 831
 832		child->rphy = rphy;
 833		get_device(&rphy->dev);
 834		sas_fill_in_rphy(child, rphy);
 835
 836		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 837
 838		res = sas_discover_end_dev(child);
 839		if (res) {
 840			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
 841				    "at %016llx:0x%x returned 0x%x\n",
 842				    SAS_ADDR(child->sas_addr),
 843				    SAS_ADDR(parent->sas_addr), phy_id, res);
 844			goto out_list_del;
 845		}
 846	} else {
 847		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
 848			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 849			    phy_id);
 850		goto out_free;
 851	}
 852
 853	list_add_tail(&child->siblings, &parent_ex->children);
 854	return child;
 855
 856 out_list_del:
 857	sas_rphy_free(child->rphy);
 858	list_del(&child->disco_list_node);
 859	spin_lock_irq(&parent->port->dev_list_lock);
 860	list_del(&child->dev_list_node);
 861	spin_unlock_irq(&parent->port->dev_list_lock);
 862 out_free:
 863	sas_port_delete(phy->port);
 864 out_err:
 865	phy->port = NULL;
 866	sas_put_device(child);
 867	return NULL;
 868}
 869
 870/* See if this phy is part of a wide port */
 871static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 872{
 873	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 874	int i;
 875
 876	for (i = 0; i < parent->ex_dev.num_phys; i++) {
 877		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 878
 879		if (ephy == phy)
 880			continue;
 881
 882		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 883			    SAS_ADDR_SIZE) && ephy->port) {
 884			sas_port_add_phy(ephy->port, phy->phy);
 885			phy->port = ephy->port;
 886			phy->phy_state = PHY_DEVICE_DISCOVERED;
 887			return true;
 888		}
 889	}
 890
 891	return false;
 892}
 893
 894static struct domain_device *sas_ex_discover_expander(
 895	struct domain_device *parent, int phy_id)
 896{
 897	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 898	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 899	struct domain_device *child = NULL;
 900	struct sas_rphy *rphy;
 901	struct sas_expander_device *edev;
 902	struct asd_sas_port *port;
 903	int res;
 904
 905	if (phy->routing_attr == DIRECT_ROUTING) {
 906		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
 907			    "allowed\n",
 908			    SAS_ADDR(parent->sas_addr), phy_id,
 909			    SAS_ADDR(phy->attached_sas_addr),
 910			    phy->attached_phy_id);
 911		return NULL;
 912	}
 913	child = sas_alloc_device();
 914	if (!child)
 915		return NULL;
 916
 917	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 918	/* FIXME: better error handling */
 919	BUG_ON(sas_port_add(phy->port) != 0);
 920
 921
 922	switch (phy->attached_dev_type) {
 923	case EDGE_DEV:
 924		rphy = sas_expander_alloc(phy->port,
 925					  SAS_EDGE_EXPANDER_DEVICE);
 926		break;
 927	case FANOUT_DEV:
 928		rphy = sas_expander_alloc(phy->port,
 929					  SAS_FANOUT_EXPANDER_DEVICE);
 930		break;
 931	default:
 932		rphy = NULL;	/* shut gcc up */
 933		BUG();
 934	}
 935	port = parent->port;
 936	child->rphy = rphy;
 937	get_device(&rphy->dev);
 938	edev = rphy_to_expander_device(rphy);
 939	child->dev_type = phy->attached_dev_type;
 940	kref_get(&parent->kref);
 941	child->parent = parent;
 942	child->port = port;
 943	child->iproto = phy->attached_iproto;
 944	child->tproto = phy->attached_tproto;
 945	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 946	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 947	sas_ex_get_linkrate(parent, child, phy);
 948	edev->level = parent_ex->level + 1;
 949	parent->port->disc.max_level = max(parent->port->disc.max_level,
 950					   edev->level);
 951	sas_init_dev(child);
 952	sas_fill_in_rphy(child, rphy);
 953	sas_rphy_add(rphy);
 954
 955	spin_lock_irq(&parent->port->dev_list_lock);
 956	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 957	spin_unlock_irq(&parent->port->dev_list_lock);
 958
 959	res = sas_discover_expander(child);
 960	if (res) {
 961		sas_rphy_delete(rphy);
 962		spin_lock_irq(&parent->port->dev_list_lock);
 963		list_del(&child->dev_list_node);
 964		spin_unlock_irq(&parent->port->dev_list_lock);
 965		sas_put_device(child);
 
 
 966		return NULL;
 967	}
 968	list_add_tail(&child->siblings, &parent->ex_dev.children);
 969	return child;
 970}
 971
 972static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
 973{
 974	struct expander_device *ex = &dev->ex_dev;
 975	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
 976	struct domain_device *child = NULL;
 977	int res = 0;
 978
 979	/* Phy state */
 980	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
 981		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
 982			res = sas_ex_phy_discover(dev, phy_id);
 983		if (res)
 984			return res;
 985	}
 986
 987	/* Parent and domain coherency */
 988	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
 989			     SAS_ADDR(dev->port->sas_addr))) {
 990		sas_add_parent_port(dev, phy_id);
 991		return 0;
 992	}
 993	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
 994			    SAS_ADDR(dev->parent->sas_addr))) {
 995		sas_add_parent_port(dev, phy_id);
 996		if (ex_phy->routing_attr == TABLE_ROUTING)
 997			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
 998		return 0;
 999	}
1000
1001	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1002		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1003
1004	if (ex_phy->attached_dev_type == NO_DEVICE) {
1005		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1006			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1007			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1008		}
1009		return 0;
1010	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1011		return 0;
1012
1013	if (ex_phy->attached_dev_type != SAS_END_DEV &&
1014	    ex_phy->attached_dev_type != FANOUT_DEV &&
1015	    ex_phy->attached_dev_type != EDGE_DEV &&
1016	    ex_phy->attached_dev_type != SATA_PENDING) {
1017		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1018			    "phy 0x%x\n", ex_phy->attached_dev_type,
1019			    SAS_ADDR(dev->sas_addr),
1020			    phy_id);
1021		return 0;
1022	}
1023
1024	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1025	if (res) {
1026		SAS_DPRINTK("configure routing for dev %016llx "
1027			    "reported 0x%x. Forgotten\n",
1028			    SAS_ADDR(ex_phy->attached_sas_addr), res);
1029		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1030		return res;
1031	}
1032
1033	if (sas_ex_join_wide_port(dev, phy_id)) {
1034		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1035			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1036		return res;
1037	}
1038
1039	switch (ex_phy->attached_dev_type) {
1040	case SAS_END_DEV:
1041	case SATA_PENDING:
1042		child = sas_ex_discover_end_dev(dev, phy_id);
1043		break;
1044	case FANOUT_DEV:
1045		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1046			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1047				    "attached to ex %016llx phy 0x%x\n",
1048				    SAS_ADDR(ex_phy->attached_sas_addr),
1049				    ex_phy->attached_phy_id,
1050				    SAS_ADDR(dev->sas_addr),
1051				    phy_id);
1052			sas_ex_disable_phy(dev, phy_id);
1053			break;
1054		} else
1055			memcpy(dev->port->disc.fanout_sas_addr,
1056			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1057		/* fallthrough */
1058	case EDGE_DEV:
1059		child = sas_ex_discover_expander(dev, phy_id);
1060		break;
1061	default:
1062		break;
1063	}
1064
1065	if (child) {
1066		int i;
1067
1068		for (i = 0; i < ex->num_phys; i++) {
1069			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1070			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1071				continue;
1072			/*
1073			 * Due to races, the phy might not get added to the
1074			 * wide port, so we add the phy to the wide port here.
1075			 */
1076			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1077			    SAS_ADDR(child->sas_addr)) {
1078				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1079				if (sas_ex_join_wide_port(dev, i))
1080					SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1081						    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1082
1083			}
1084		}
1085	}
1086
1087	return res;
1088}
1089
1090static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1091{
1092	struct expander_device *ex = &dev->ex_dev;
1093	int i;
1094
1095	for (i = 0; i < ex->num_phys; i++) {
1096		struct ex_phy *phy = &ex->ex_phy[i];
1097
1098		if (phy->phy_state == PHY_VACANT ||
1099		    phy->phy_state == PHY_NOT_PRESENT)
1100			continue;
1101
1102		if ((phy->attached_dev_type == EDGE_DEV ||
1103		     phy->attached_dev_type == FANOUT_DEV) &&
1104		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1105
1106			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1107
1108			return 1;
1109		}
1110	}
1111	return 0;
1112}
1113
1114static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1115{
1116	struct expander_device *ex = &dev->ex_dev;
1117	struct domain_device *child;
1118	u8 sub_addr[8] = {0, };
1119
1120	list_for_each_entry(child, &ex->children, siblings) {
1121		if (child->dev_type != EDGE_DEV &&
1122		    child->dev_type != FANOUT_DEV)
1123			continue;
1124		if (sub_addr[0] == 0) {
1125			sas_find_sub_addr(child, sub_addr);
1126			continue;
1127		} else {
1128			u8 s2[8];
1129
1130			if (sas_find_sub_addr(child, s2) &&
1131			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1132
1133				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1134					    "diverges from subtractive "
1135					    "boundary %016llx\n",
1136					    SAS_ADDR(dev->sas_addr),
1137					    SAS_ADDR(child->sas_addr),
1138					    SAS_ADDR(s2),
1139					    SAS_ADDR(sub_addr));
1140
1141				sas_ex_disable_port(child, s2);
1142			}
1143		}
1144	}
1145	return 0;
1146}
1147/**
1148 * sas_ex_discover_devices -- discover devices attached to this expander
1149 * dev: pointer to the expander domain device
1150 * single: if you want to do a single phy, else set to -1;
1151 *
1152 * Configure this expander for use with its devices and register the
1153 * devices of this expander.
1154 */
1155static int sas_ex_discover_devices(struct domain_device *dev, int single)
1156{
1157	struct expander_device *ex = &dev->ex_dev;
1158	int i = 0, end = ex->num_phys;
1159	int res = 0;
1160
1161	if (0 <= single && single < end) {
1162		i = single;
1163		end = i+1;
1164	}
1165
1166	for ( ; i < end; i++) {
1167		struct ex_phy *ex_phy = &ex->ex_phy[i];
1168
1169		if (ex_phy->phy_state == PHY_VACANT ||
1170		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1171		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1172			continue;
1173
1174		switch (ex_phy->linkrate) {
1175		case SAS_PHY_DISABLED:
1176		case SAS_PHY_RESET_PROBLEM:
1177		case SAS_SATA_PORT_SELECTOR:
1178			continue;
1179		default:
1180			res = sas_ex_discover_dev(dev, i);
1181			if (res)
1182				break;
1183			continue;
1184		}
1185	}
1186
1187	if (!res)
1188		sas_check_level_subtractive_boundary(dev);
1189
1190	return res;
1191}
1192
1193static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1194{
1195	struct expander_device *ex = &dev->ex_dev;
1196	int i;
1197	u8  *sub_sas_addr = NULL;
1198
1199	if (dev->dev_type != EDGE_DEV)
1200		return 0;
1201
1202	for (i = 0; i < ex->num_phys; i++) {
1203		struct ex_phy *phy = &ex->ex_phy[i];
1204
1205		if (phy->phy_state == PHY_VACANT ||
1206		    phy->phy_state == PHY_NOT_PRESENT)
1207			continue;
1208
1209		if ((phy->attached_dev_type == FANOUT_DEV ||
1210		     phy->attached_dev_type == EDGE_DEV) &&
1211		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1212
1213			if (!sub_sas_addr)
1214				sub_sas_addr = &phy->attached_sas_addr[0];
1215			else if (SAS_ADDR(sub_sas_addr) !=
1216				 SAS_ADDR(phy->attached_sas_addr)) {
1217
1218				SAS_DPRINTK("ex %016llx phy 0x%x "
1219					    "diverges(%016llx) on subtractive "
1220					    "boundary(%016llx). Disabled\n",
1221					    SAS_ADDR(dev->sas_addr), i,
1222					    SAS_ADDR(phy->attached_sas_addr),
1223					    SAS_ADDR(sub_sas_addr));
1224				sas_ex_disable_phy(dev, i);
1225			}
1226		}
1227	}
1228	return 0;
1229}
1230
1231static void sas_print_parent_topology_bug(struct domain_device *child,
1232						 struct ex_phy *parent_phy,
1233						 struct ex_phy *child_phy)
1234{
1235	static const char *ex_type[] = {
1236		[EDGE_DEV] = "edge",
1237		[FANOUT_DEV] = "fanout",
1238	};
1239	struct domain_device *parent = child->parent;
1240
1241	sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1242		   "phy 0x%x has %c:%c routing link!\n",
 
 
1243
1244		   ex_type[parent->dev_type],
1245		   SAS_ADDR(parent->sas_addr),
1246		   parent_phy->phy_id,
1247
1248		   ex_type[child->dev_type],
1249		   SAS_ADDR(child->sas_addr),
1250		   child_phy->phy_id,
1251
1252		   sas_route_char(parent, parent_phy),
1253		   sas_route_char(child, child_phy));
 
 
 
 
 
 
 
 
 
 
 
1254}
1255
1256static int sas_check_eeds(struct domain_device *child,
1257				 struct ex_phy *parent_phy,
1258				 struct ex_phy *child_phy)
1259{
1260	int res = 0;
1261	struct domain_device *parent = child->parent;
 
1262
1263	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1264		res = -ENODEV;
1265		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1266			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1267			    SAS_ADDR(parent->sas_addr),
1268			    parent_phy->phy_id,
1269			    SAS_ADDR(child->sas_addr),
1270			    child_phy->phy_id,
1271			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1272	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1273		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1274		       SAS_ADDR_SIZE);
1275		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1276		       SAS_ADDR_SIZE);
1277	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1278		    SAS_ADDR(parent->sas_addr)) ||
1279		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1280		    SAS_ADDR(child->sas_addr)))
1281		   &&
1282		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1283		     SAS_ADDR(parent->sas_addr)) ||
1284		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1285		     SAS_ADDR(child->sas_addr))))
1286		;
1287	else {
1288		res = -ENODEV;
1289		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1290			    "phy 0x%x link forms a third EEDS!\n",
1291			    SAS_ADDR(parent->sas_addr),
1292			    parent_phy->phy_id,
1293			    SAS_ADDR(child->sas_addr),
1294			    child_phy->phy_id);
1295	}
1296
1297	return res;
1298}
1299
1300/* Here we spill over 80 columns.  It is intentional.
1301 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1302static int sas_check_parent_topology(struct domain_device *child)
1303{
1304	struct expander_device *child_ex = &child->ex_dev;
1305	struct expander_device *parent_ex;
1306	int i;
1307	int res = 0;
1308
1309	if (!child->parent)
1310		return 0;
1311
1312	if (child->parent->dev_type != EDGE_DEV &&
1313	    child->parent->dev_type != FANOUT_DEV)
1314		return 0;
1315
1316	parent_ex = &child->parent->ex_dev;
1317
1318	for (i = 0; i < parent_ex->num_phys; i++) {
1319		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1320		struct ex_phy *child_phy;
1321
1322		if (parent_phy->phy_state == PHY_VACANT ||
1323		    parent_phy->phy_state == PHY_NOT_PRESENT)
1324			continue;
1325
1326		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1327			continue;
1328
1329		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1330
1331		switch (child->parent->dev_type) {
1332		case EDGE_DEV:
1333			if (child->dev_type == FANOUT_DEV) {
1334				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1335				    child_phy->routing_attr != TABLE_ROUTING) {
1336					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1337					res = -ENODEV;
1338				}
1339			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1340				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1341					res = sas_check_eeds(child, parent_phy, child_phy);
1342				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1343					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1344					res = -ENODEV;
1345				}
1346			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1347				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1348				    (child_phy->routing_attr == TABLE_ROUTING &&
1349				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1350					/* All good */;
1351				} else {
1352					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1353					res = -ENODEV;
1354				}
1355			}
1356			break;
1357		case FANOUT_DEV:
1358			if (parent_phy->routing_attr != TABLE_ROUTING ||
1359			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1360				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1361				res = -ENODEV;
1362			}
1363			break;
1364		default:
1365			break;
1366		}
1367	}
1368
1369	return res;
1370}
1371
1372#define RRI_REQ_SIZE  16
1373#define RRI_RESP_SIZE 44
1374
1375static int sas_configure_present(struct domain_device *dev, int phy_id,
1376				 u8 *sas_addr, int *index, int *present)
1377{
1378	int i, res = 0;
1379	struct expander_device *ex = &dev->ex_dev;
1380	struct ex_phy *phy = &ex->ex_phy[phy_id];
1381	u8 *rri_req;
1382	u8 *rri_resp;
1383
1384	*present = 0;
1385	*index = 0;
1386
1387	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1388	if (!rri_req)
1389		return -ENOMEM;
1390
1391	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1392	if (!rri_resp) {
1393		kfree(rri_req);
1394		return -ENOMEM;
1395	}
1396
1397	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1398	rri_req[9] = phy_id;
1399
1400	for (i = 0; i < ex->max_route_indexes ; i++) {
1401		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1402		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1403				       RRI_RESP_SIZE);
1404		if (res)
1405			goto out;
1406		res = rri_resp[2];
1407		if (res == SMP_RESP_NO_INDEX) {
1408			SAS_DPRINTK("overflow of indexes: dev %016llx "
1409				    "phy 0x%x index 0x%x\n",
1410				    SAS_ADDR(dev->sas_addr), phy_id, i);
1411			goto out;
1412		} else if (res != SMP_RESP_FUNC_ACC) {
1413			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1414				    "result 0x%x\n", __func__,
1415				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1416			goto out;
1417		}
1418		if (SAS_ADDR(sas_addr) != 0) {
1419			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1420				*index = i;
1421				if ((rri_resp[12] & 0x80) == 0x80)
1422					*present = 0;
1423				else
1424					*present = 1;
1425				goto out;
1426			} else if (SAS_ADDR(rri_resp+16) == 0) {
1427				*index = i;
1428				*present = 0;
1429				goto out;
1430			}
1431		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1432			   phy->last_da_index < i) {
1433			phy->last_da_index = i;
1434			*index = i;
1435			*present = 0;
1436			goto out;
1437		}
1438	}
1439	res = -1;
1440out:
1441	kfree(rri_req);
1442	kfree(rri_resp);
1443	return res;
1444}
1445
1446#define CRI_REQ_SIZE  44
1447#define CRI_RESP_SIZE  8
1448
1449static int sas_configure_set(struct domain_device *dev, int phy_id,
1450			     u8 *sas_addr, int index, int include)
1451{
1452	int res;
1453	u8 *cri_req;
1454	u8 *cri_resp;
1455
1456	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1457	if (!cri_req)
1458		return -ENOMEM;
1459
1460	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1461	if (!cri_resp) {
1462		kfree(cri_req);
1463		return -ENOMEM;
1464	}
1465
1466	cri_req[1] = SMP_CONF_ROUTE_INFO;
1467	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1468	cri_req[9] = phy_id;
1469	if (SAS_ADDR(sas_addr) == 0 || !include)
1470		cri_req[12] |= 0x80;
1471	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1472
1473	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1474			       CRI_RESP_SIZE);
1475	if (res)
1476		goto out;
1477	res = cri_resp[2];
1478	if (res == SMP_RESP_NO_INDEX) {
1479		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1480			    "index 0x%x\n",
1481			    SAS_ADDR(dev->sas_addr), phy_id, index);
1482	}
1483out:
1484	kfree(cri_req);
1485	kfree(cri_resp);
1486	return res;
1487}
1488
1489static int sas_configure_phy(struct domain_device *dev, int phy_id,
1490				    u8 *sas_addr, int include)
1491{
1492	int index;
1493	int present;
1494	int res;
1495
1496	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1497	if (res)
1498		return res;
1499	if (include ^ present)
1500		return sas_configure_set(dev, phy_id, sas_addr, index,include);
 
1501
1502	return res;
1503}
1504
1505/**
1506 * sas_configure_parent -- configure routing table of parent
1507 * parent: parent expander
1508 * child: child expander
1509 * sas_addr: SAS port identifier of device directly attached to child
 
1510 */
1511static int sas_configure_parent(struct domain_device *parent,
1512				struct domain_device *child,
1513				u8 *sas_addr, int include)
1514{
1515	struct expander_device *ex_parent = &parent->ex_dev;
1516	int res = 0;
1517	int i;
1518
1519	if (parent->parent) {
1520		res = sas_configure_parent(parent->parent, parent, sas_addr,
1521					   include);
1522		if (res)
1523			return res;
1524	}
1525
1526	if (ex_parent->conf_route_table == 0) {
1527		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1528			    SAS_ADDR(parent->sas_addr));
1529		return 0;
1530	}
1531
1532	for (i = 0; i < ex_parent->num_phys; i++) {
1533		struct ex_phy *phy = &ex_parent->ex_phy[i];
1534
1535		if ((phy->routing_attr == TABLE_ROUTING) &&
1536		    (SAS_ADDR(phy->attached_sas_addr) ==
1537		     SAS_ADDR(child->sas_addr))) {
1538			res = sas_configure_phy(parent, i, sas_addr, include);
1539			if (res)
1540				return res;
1541		}
1542	}
1543
1544	return res;
1545}
1546
1547/**
1548 * sas_configure_routing -- configure routing
1549 * dev: expander device
1550 * sas_addr: port identifier of device directly attached to the expander device
1551 */
1552static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1553{
1554	if (dev->parent)
1555		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1556	return 0;
1557}
1558
1559static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1560{
1561	if (dev->parent)
1562		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1563	return 0;
1564}
1565
1566/**
1567 * sas_discover_expander -- expander discovery
1568 * @ex: pointer to expander domain device
1569 *
1570 * See comment in sas_discover_sata().
1571 */
1572static int sas_discover_expander(struct domain_device *dev)
1573{
1574	int res;
1575
1576	res = sas_notify_lldd_dev_found(dev);
1577	if (res)
1578		return res;
1579
1580	res = sas_ex_general(dev);
1581	if (res)
1582		goto out_err;
1583	res = sas_ex_manuf_info(dev);
1584	if (res)
1585		goto out_err;
1586
1587	res = sas_expander_discover(dev);
1588	if (res) {
1589		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1590			    SAS_ADDR(dev->sas_addr), res);
1591		goto out_err;
1592	}
1593
1594	sas_check_ex_subtractive_boundary(dev);
1595	res = sas_check_parent_topology(dev);
1596	if (res)
1597		goto out_err;
1598	return 0;
1599out_err:
1600	sas_notify_lldd_dev_gone(dev);
1601	return res;
1602}
1603
1604static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1605{
1606	int res = 0;
1607	struct domain_device *dev;
1608
1609	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1610		if (dev->dev_type == EDGE_DEV ||
1611		    dev->dev_type == FANOUT_DEV) {
1612			struct sas_expander_device *ex =
1613				rphy_to_expander_device(dev->rphy);
1614
1615			if (level == ex->level)
1616				res = sas_ex_discover_devices(dev, -1);
1617			else if (level > 0)
1618				res = sas_ex_discover_devices(port->port_dev, -1);
1619
1620		}
1621	}
1622
1623	return res;
1624}
1625
1626static int sas_ex_bfs_disc(struct asd_sas_port *port)
1627{
1628	int res;
1629	int level;
1630
1631	do {
1632		level = port->disc.max_level;
1633		res = sas_ex_level_discovery(port, level);
1634		mb();
1635	} while (level < port->disc.max_level);
1636
1637	return res;
1638}
1639
1640int sas_discover_root_expander(struct domain_device *dev)
1641{
1642	int res;
1643	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1644
1645	res = sas_rphy_add(dev->rphy);
1646	if (res)
1647		goto out_err;
1648
1649	ex->level = dev->port->disc.max_level; /* 0 */
1650	res = sas_discover_expander(dev);
1651	if (res)
1652		goto out_err2;
1653
1654	sas_ex_bfs_disc(dev->port);
1655
1656	return res;
1657
1658out_err2:
1659	sas_rphy_remove(dev->rphy);
1660out_err:
1661	return res;
1662}
1663
1664/* ---------- Domain revalidation ---------- */
1665
1666static int sas_get_phy_discover(struct domain_device *dev,
1667				int phy_id, struct smp_resp *disc_resp)
1668{
1669	int res;
1670	u8 *disc_req;
1671
1672	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1673	if (!disc_req)
1674		return -ENOMEM;
1675
1676	disc_req[1] = SMP_DISCOVER;
1677	disc_req[9] = phy_id;
1678
1679	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1680			       disc_resp, DISCOVER_RESP_SIZE);
1681	if (res)
1682		goto out;
1683	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1684		res = disc_resp->result;
1685		goto out;
1686	}
1687out:
1688	kfree(disc_req);
1689	return res;
1690}
1691
1692static int sas_get_phy_change_count(struct domain_device *dev,
1693				    int phy_id, int *pcc)
1694{
1695	int res;
1696	struct smp_resp *disc_resp;
1697
1698	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1699	if (!disc_resp)
1700		return -ENOMEM;
1701
1702	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1703	if (!res)
1704		*pcc = disc_resp->disc.change_count;
1705
1706	kfree(disc_resp);
1707	return res;
1708}
1709
1710static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1711				    u8 *sas_addr, enum sas_dev_type *type)
1712{
1713	int res;
1714	struct smp_resp *disc_resp;
1715	struct discover_resp *dr;
1716
1717	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1718	if (!disc_resp)
1719		return -ENOMEM;
1720	dr = &disc_resp->disc;
1721
1722	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1723	if (res == 0) {
1724		memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1725		*type = to_dev_type(dr);
 
1726		if (*type == 0)
1727			memset(sas_addr, 0, 8);
1728	}
1729	kfree(disc_resp);
1730	return res;
1731}
1732
1733static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1734			      int from_phy, bool update)
1735{
1736	struct expander_device *ex = &dev->ex_dev;
1737	int res = 0;
1738	int i;
1739
1740	for (i = from_phy; i < ex->num_phys; i++) {
1741		int phy_change_count = 0;
1742
1743		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1744		switch (res) {
1745		case SMP_RESP_PHY_VACANT:
1746		case SMP_RESP_NO_PHY:
1747			continue;
1748		case SMP_RESP_FUNC_ACC:
1749			break;
1750		default:
1751			return res;
1752		}
1753
1754		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1755			if (update)
1756				ex->ex_phy[i].phy_change_count =
1757					phy_change_count;
1758			*phy_id = i;
1759			return 0;
1760		}
1761	}
1762	return 0;
1763}
1764
1765static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1766{
1767	int res;
1768	u8  *rg_req;
1769	struct smp_resp  *rg_resp;
1770
1771	rg_req = alloc_smp_req(RG_REQ_SIZE);
1772	if (!rg_req)
1773		return -ENOMEM;
1774
1775	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1776	if (!rg_resp) {
1777		kfree(rg_req);
1778		return -ENOMEM;
1779	}
1780
1781	rg_req[1] = SMP_REPORT_GENERAL;
1782
1783	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1784			       RG_RESP_SIZE);
1785	if (res)
1786		goto out;
1787	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1788		res = rg_resp->result;
1789		goto out;
1790	}
1791
1792	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1793out:
1794	kfree(rg_resp);
1795	kfree(rg_req);
1796	return res;
1797}
1798/**
1799 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1800 * @dev:domain device to be detect.
1801 * @src_dev: the device which originated BROADCAST(CHANGE).
1802 *
1803 * Add self-configuration expander suport. Suppose two expander cascading,
1804 * when the first level expander is self-configuring, hotplug the disks in
1805 * second level expander, BROADCAST(CHANGE) will not only be originated
1806 * in the second level expander, but also be originated in the first level
1807 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1808 * expander changed count in two level expanders will all increment at least
1809 * once, but the phy which chang count has changed is the source device which
1810 * we concerned.
1811 */
1812
1813static int sas_find_bcast_dev(struct domain_device *dev,
1814			      struct domain_device **src_dev)
1815{
1816	struct expander_device *ex = &dev->ex_dev;
1817	int ex_change_count = -1;
1818	int phy_id = -1;
1819	int res;
1820	struct domain_device *ch;
1821
1822	res = sas_get_ex_change_count(dev, &ex_change_count);
1823	if (res)
1824		goto out;
1825	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1826		/* Just detect if this expander phys phy change count changed,
1827		* in order to determine if this expander originate BROADCAST,
1828		* and do not update phy change count field in our structure.
1829		*/
1830		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1831		if (phy_id != -1) {
1832			*src_dev = dev;
1833			ex->ex_change_count = ex_change_count;
1834			SAS_DPRINTK("Expander phy change count has changed\n");
 
1835			return res;
1836		} else
1837			SAS_DPRINTK("Expander phys DID NOT change\n");
 
1838	}
1839	list_for_each_entry(ch, &ex->children, siblings) {
1840		if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1841			res = sas_find_bcast_dev(ch, src_dev);
1842			if (*src_dev)
1843				return res;
1844		}
1845	}
1846out:
1847	return res;
1848}
1849
1850static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1851{
1852	struct expander_device *ex = &dev->ex_dev;
1853	struct domain_device *child, *n;
1854
1855	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1856		set_bit(SAS_DEV_GONE, &child->state);
1857		if (child->dev_type == EDGE_DEV ||
1858		    child->dev_type == FANOUT_DEV)
1859			sas_unregister_ex_tree(port, child);
1860		else
1861			sas_unregister_dev(port, child);
1862	}
1863	sas_unregister_dev(port, dev);
1864}
1865
1866static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1867					 int phy_id, bool last)
1868{
1869	struct expander_device *ex_dev = &parent->ex_dev;
1870	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1871	struct domain_device *child, *n, *found = NULL;
1872	if (last) {
1873		list_for_each_entry_safe(child, n,
1874			&ex_dev->children, siblings) {
1875			if (SAS_ADDR(child->sas_addr) ==
1876			    SAS_ADDR(phy->attached_sas_addr)) {
1877				set_bit(SAS_DEV_GONE, &child->state);
1878				if (child->dev_type == EDGE_DEV ||
1879				    child->dev_type == FANOUT_DEV)
1880					sas_unregister_ex_tree(parent->port, child);
1881				else
1882					sas_unregister_dev(parent->port, child);
1883				found = child;
1884				break;
1885			}
1886		}
1887		sas_disable_routing(parent, phy->attached_sas_addr);
1888	}
1889	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1890	if (phy->port) {
1891		sas_port_delete_phy(phy->port, phy->phy);
1892		sas_device_set_phy(found, phy->port);
1893		if (phy->port->num_phys == 0)
1894			sas_port_delete(phy->port);
 
1895		phy->port = NULL;
1896	}
1897}
1898
1899static int sas_discover_bfs_by_root_level(struct domain_device *root,
1900					  const int level)
1901{
1902	struct expander_device *ex_root = &root->ex_dev;
1903	struct domain_device *child;
1904	int res = 0;
1905
1906	list_for_each_entry(child, &ex_root->children, siblings) {
1907		if (child->dev_type == EDGE_DEV ||
1908		    child->dev_type == FANOUT_DEV) {
1909			struct sas_expander_device *ex =
1910				rphy_to_expander_device(child->rphy);
1911
1912			if (level > ex->level)
1913				res = sas_discover_bfs_by_root_level(child,
1914								     level);
1915			else if (level == ex->level)
1916				res = sas_ex_discover_devices(child, -1);
1917		}
1918	}
1919	return res;
1920}
1921
1922static int sas_discover_bfs_by_root(struct domain_device *dev)
1923{
1924	int res;
1925	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1926	int level = ex->level+1;
1927
1928	res = sas_ex_discover_devices(dev, -1);
1929	if (res)
1930		goto out;
1931	do {
1932		res = sas_discover_bfs_by_root_level(dev, level);
1933		mb();
1934		level += 1;
1935	} while (level <= dev->port->disc.max_level);
1936out:
1937	return res;
1938}
1939
1940static int sas_discover_new(struct domain_device *dev, int phy_id)
1941{
1942	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1943	struct domain_device *child;
1944	int res;
1945
1946	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1947		    SAS_ADDR(dev->sas_addr), phy_id);
1948	res = sas_ex_phy_discover(dev, phy_id);
1949	if (res)
1950		return res;
1951
1952	if (sas_ex_join_wide_port(dev, phy_id))
1953		return 0;
1954
1955	res = sas_ex_discover_devices(dev, phy_id);
1956	if (res)
1957		return res;
1958	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1959		if (SAS_ADDR(child->sas_addr) ==
1960		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1961			if (child->dev_type == EDGE_DEV ||
1962			    child->dev_type == FANOUT_DEV)
1963				res = sas_discover_bfs_by_root(child);
1964			break;
1965		}
1966	}
1967	return res;
1968}
1969
1970static bool dev_type_flutter(enum sas_dev_type new, enum sas_dev_type old)
1971{
1972	if (old == new)
1973		return true;
1974
1975	/* treat device directed resets as flutter, if we went
1976	 * SAS_END_DEV to SATA_PENDING the link needs recovery
1977	 */
1978	if ((old == SATA_PENDING && new == SAS_END_DEV) ||
1979	    (old == SAS_END_DEV && new == SATA_PENDING))
1980		return true;
1981
1982	return false;
1983}
1984
1985static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
 
1986{
1987	struct expander_device *ex = &dev->ex_dev;
1988	struct ex_phy *phy = &ex->ex_phy[phy_id];
1989	enum sas_dev_type type = NO_DEVICE;
1990	u8 sas_addr[8];
 
1991	int res;
1992
 
 
 
 
 
 
 
1993	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
1994	switch (res) {
1995	case SMP_RESP_NO_PHY:
1996		phy->phy_state = PHY_NOT_PRESENT;
1997		sas_unregister_devs_sas_addr(dev, phy_id, last);
1998		return res;
1999	case SMP_RESP_PHY_VACANT:
2000		phy->phy_state = PHY_VACANT;
2001		sas_unregister_devs_sas_addr(dev, phy_id, last);
2002		return res;
2003	case SMP_RESP_FUNC_ACC:
2004		break;
 
 
 
 
2005	}
2006
2007	if (SAS_ADDR(sas_addr) == 0) {
2008		phy->phy_state = PHY_EMPTY;
2009		sas_unregister_devs_sas_addr(dev, phy_id, last);
 
 
 
 
 
2010		return res;
2011	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2012		   dev_type_flutter(type, phy->attached_dev_type)) {
2013		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2014		char *action = "";
2015
2016		sas_ex_phy_discover(dev, phy_id);
2017
2018		if (ata_dev && phy->attached_dev_type == SATA_PENDING)
2019			action = ", needs recovery";
2020		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2021			    SAS_ADDR(dev->sas_addr), phy_id, action);
2022		return res;
2023	}
2024
2025	/* delete the old link */
2026	if (SAS_ADDR(phy->attached_sas_addr) &&
2027	    SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2028		SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2029			    SAS_ADDR(dev->sas_addr), phy_id,
2030			    SAS_ADDR(phy->attached_sas_addr));
2031		sas_unregister_devs_sas_addr(dev, phy_id, last);
2032	}
2033
2034	return sas_discover_new(dev, phy_id);
2035}
2036
2037/**
2038 * sas_rediscover - revalidate the domain.
2039 * @dev:domain device to be detect.
2040 * @phy_id: the phy id will be detected.
2041 *
2042 * NOTE: this process _must_ quit (return) as soon as any connection
2043 * errors are encountered.  Connection recovery is done elsewhere.
2044 * Discover process only interrogates devices in order to discover the
2045 * domain.For plugging out, we un-register the device only when it is
2046 * the last phy in the port, for other phys in this port, we just delete it
2047 * from the port.For inserting, we do discovery when it is the
2048 * first phy,for other phys in this port, we add it to the port to
2049 * forming the wide-port.
2050 */
2051static int sas_rediscover(struct domain_device *dev, const int phy_id)
2052{
2053	struct expander_device *ex = &dev->ex_dev;
2054	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2055	int res = 0;
2056	int i;
2057	bool last = true;	/* is this the last phy of the port */
2058
2059	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2060		    SAS_ADDR(dev->sas_addr), phy_id);
2061
2062	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2063		for (i = 0; i < ex->num_phys; i++) {
2064			struct ex_phy *phy = &ex->ex_phy[i];
2065
2066			if (i == phy_id)
2067				continue;
2068			if (SAS_ADDR(phy->attached_sas_addr) ==
2069			    SAS_ADDR(changed_phy->attached_sas_addr)) {
2070				SAS_DPRINTK("phy%d part of wide port with "
2071					    "phy%d\n", phy_id, i);
2072				last = false;
2073				break;
2074			}
2075		}
2076		res = sas_rediscover_dev(dev, phy_id, last);
2077	} else
2078		res = sas_discover_new(dev, phy_id);
2079	return res;
2080}
2081
2082/**
2083 * sas_revalidate_domain -- revalidate the domain
2084 * @port: port to the domain of interest
2085 *
2086 * NOTE: this process _must_ quit (return) as soon as any connection
2087 * errors are encountered.  Connection recovery is done elsewhere.
2088 * Discover process only interrogates devices in order to discover the
2089 * domain.
2090 */
2091int sas_ex_revalidate_domain(struct domain_device *port_dev)
2092{
2093	int res;
2094	struct domain_device *dev = NULL;
2095
2096	res = sas_find_bcast_dev(port_dev, &dev);
2097	while (res == 0 && dev) {
2098		struct expander_device *ex = &dev->ex_dev;
2099		int i = 0, phy_id;
2100
2101		do {
2102			phy_id = -1;
2103			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2104			if (phy_id == -1)
2105				break;
2106			res = sas_rediscover(dev, phy_id);
2107			i = phy_id + 1;
2108		} while (i < ex->num_phys);
2109
2110		dev = NULL;
2111		res = sas_find_bcast_dev(port_dev, &dev);
2112	}
2113	return res;
2114}
2115
2116int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
2117		    struct request *req)
2118{
2119	struct domain_device *dev;
2120	int ret, type;
2121	struct request *rsp = req->next_rq;
2122
2123	if (!rsp) {
2124		printk("%s: space for a smp response is missing\n",
2125		       __func__);
2126		return -EINVAL;
2127	}
2128
 
 
 
 
 
 
 
 
 
 
 
2129	/* no rphy means no smp target support (ie aic94xx host) */
2130	if (!rphy)
2131		return sas_smp_host_handler(shost, req, rsp);
2132
2133	type = rphy->identify.device_type;
2134
2135	if (type != SAS_EDGE_EXPANDER_DEVICE &&
2136	    type != SAS_FANOUT_EXPANDER_DEVICE) {
2137		printk("%s: can we send a smp request to a device?\n",
 
2138		       __func__);
2139		return -EINVAL;
2140	}
2141
2142	dev = sas_find_dev_by_rphy(rphy);
2143	if (!dev) {
2144		printk("%s: fail to find a domain_device?\n", __func__);
2145		return -EINVAL;
2146	}
2147
2148	/* do we need to support multiple segments? */
2149	if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2150		printk("%s: multiple segments req %u %u, rsp %u %u\n",
2151		       __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2152		       rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2153		return -EINVAL;
 
2154	}
2155
2156	ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2157			       bio_data(rsp->bio), blk_rq_bytes(rsp));
2158	if (ret > 0) {
2159		/* positive number is the untransferred residual */
2160		rsp->resid_len = ret;
2161		req->resid_len = 0;
2162		ret = 0;
2163	} else if (ret == 0) {
2164		rsp->resid_len = 0;
2165		req->resid_len = 0;
2166	}
2167
2168	return ret;
 
2169}