Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */
   3
   4#include <linux/kernel.h>
   5#include <linux/module.h>
   6#include <crypto/algapi.h>
   7#include <crypto/internal/skcipher.h>
   8#include <crypto/internal/des.h>
   9#include <crypto/xts.h>
  10#include <crypto/sm4.h>
  11#include <crypto/scatterwalk.h>
  12
  13#include "cc_driver.h"
  14#include "cc_lli_defs.h"
  15#include "cc_buffer_mgr.h"
  16#include "cc_cipher.h"
  17#include "cc_request_mgr.h"
  18
  19#define MAX_SKCIPHER_SEQ_LEN 6
  20
  21#define template_skcipher	template_u.skcipher
  22
  23struct cc_user_key_info {
  24	u8 *key;
  25	dma_addr_t key_dma_addr;
  26};
  27
  28struct cc_hw_key_info {
  29	enum cc_hw_crypto_key key1_slot;
  30	enum cc_hw_crypto_key key2_slot;
  31};
  32
  33struct cc_cpp_key_info {
  34	u8 slot;
  35	enum cc_cpp_alg alg;
  36};
  37
  38enum cc_key_type {
  39	CC_UNPROTECTED_KEY,		/* User key */
  40	CC_HW_PROTECTED_KEY,		/* HW (FDE) key */
  41	CC_POLICY_PROTECTED_KEY,	/* CPP key */
  42	CC_INVALID_PROTECTED_KEY	/* Invalid key */
  43};
  44
  45struct cc_cipher_ctx {
  46	struct cc_drvdata *drvdata;
  47	int keylen;
  48	int cipher_mode;
  49	int flow_mode;
  50	unsigned int flags;
  51	enum cc_key_type key_type;
  52	struct cc_user_key_info user;
  53	union {
  54		struct cc_hw_key_info hw;
  55		struct cc_cpp_key_info cpp;
  56	};
  57	struct crypto_shash *shash_tfm;
  58	struct crypto_skcipher *fallback_tfm;
  59	bool fallback_on;
  60};
  61
  62static void cc_cipher_complete(struct device *dev, void *cc_req, int err);
  63
  64static inline enum cc_key_type cc_key_type(struct crypto_tfm *tfm)
  65{
  66	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
  67
  68	return ctx_p->key_type;
  69}
  70
  71static int validate_keys_sizes(struct cc_cipher_ctx *ctx_p, u32 size)
  72{
  73	switch (ctx_p->flow_mode) {
  74	case S_DIN_to_AES:
  75		switch (size) {
  76		case CC_AES_128_BIT_KEY_SIZE:
  77		case CC_AES_192_BIT_KEY_SIZE:
  78			if (ctx_p->cipher_mode != DRV_CIPHER_XTS)
  79				return 0;
  80			break;
  81		case CC_AES_256_BIT_KEY_SIZE:
  82			return 0;
  83		case (CC_AES_192_BIT_KEY_SIZE * 2):
  84		case (CC_AES_256_BIT_KEY_SIZE * 2):
  85			if (ctx_p->cipher_mode == DRV_CIPHER_XTS ||
  86			    ctx_p->cipher_mode == DRV_CIPHER_ESSIV)
  87				return 0;
  88			break;
  89		default:
  90			break;
  91		}
  92		break;
  93	case S_DIN_to_DES:
  94		if (size == DES3_EDE_KEY_SIZE || size == DES_KEY_SIZE)
  95			return 0;
  96		break;
  97	case S_DIN_to_SM4:
  98		if (size == SM4_KEY_SIZE)
  99			return 0;
 100		break;
 101	default:
 102		break;
 103	}
 104	return -EINVAL;
 105}
 106
 107static int validate_data_size(struct cc_cipher_ctx *ctx_p,
 108			      unsigned int size)
 109{
 110	switch (ctx_p->flow_mode) {
 111	case S_DIN_to_AES:
 112		switch (ctx_p->cipher_mode) {
 113		case DRV_CIPHER_XTS:
 114		case DRV_CIPHER_CBC_CTS:
 115			if (size >= AES_BLOCK_SIZE)
 116				return 0;
 117			break;
 118		case DRV_CIPHER_OFB:
 119		case DRV_CIPHER_CTR:
 120				return 0;
 121		case DRV_CIPHER_ECB:
 122		case DRV_CIPHER_CBC:
 123		case DRV_CIPHER_ESSIV:
 124			if (IS_ALIGNED(size, AES_BLOCK_SIZE))
 125				return 0;
 126			break;
 127		default:
 128			break;
 129		}
 130		break;
 131	case S_DIN_to_DES:
 132		if (IS_ALIGNED(size, DES_BLOCK_SIZE))
 133			return 0;
 134		break;
 135	case S_DIN_to_SM4:
 136		switch (ctx_p->cipher_mode) {
 137		case DRV_CIPHER_CTR:
 138			return 0;
 139		case DRV_CIPHER_ECB:
 140		case DRV_CIPHER_CBC:
 141			if (IS_ALIGNED(size, SM4_BLOCK_SIZE))
 142				return 0;
 143			break;
 144		default:
 145			break;
 146		}
 147		break;
 148	default:
 149		break;
 150	}
 151	return -EINVAL;
 152}
 153
 154static int cc_cipher_init(struct crypto_tfm *tfm)
 155{
 156	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
 157	struct cc_crypto_alg *cc_alg =
 158			container_of(tfm->__crt_alg, struct cc_crypto_alg,
 159				     skcipher_alg.base);
 160	struct device *dev = drvdata_to_dev(cc_alg->drvdata);
 161	unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
 162	unsigned int fallback_req_size = 0;
 163
 164	dev_dbg(dev, "Initializing context @%p for %s\n", ctx_p,
 165		crypto_tfm_alg_name(tfm));
 166
 167	ctx_p->cipher_mode = cc_alg->cipher_mode;
 168	ctx_p->flow_mode = cc_alg->flow_mode;
 169	ctx_p->drvdata = cc_alg->drvdata;
 170
 171	if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
 172		const char *name = crypto_tfm_alg_name(tfm);
 173
 174		/* Alloc hash tfm for essiv */
 175		ctx_p->shash_tfm = crypto_alloc_shash("sha256", 0, 0);
 176		if (IS_ERR(ctx_p->shash_tfm)) {
 177			dev_err(dev, "Error allocating hash tfm for ESSIV.\n");
 178			return PTR_ERR(ctx_p->shash_tfm);
 179		}
 180		max_key_buf_size <<= 1;
 181
 182		/* Alloc fallabck tfm or essiv when key size != 256 bit */
 183		ctx_p->fallback_tfm =
 184			crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
 185
 186		if (IS_ERR(ctx_p->fallback_tfm)) {
 187			/* Note we're still allowing registration with no fallback since it's
 188			 * better to have most modes supported than none at all.
 189			 */
 190			dev_warn(dev, "Error allocating fallback algo %s. Some modes may be available.\n",
 191			       name);
 192			ctx_p->fallback_tfm = NULL;
 193		} else {
 194			fallback_req_size = crypto_skcipher_reqsize(ctx_p->fallback_tfm);
 195		}
 196	}
 197
 198	crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
 199				    sizeof(struct cipher_req_ctx) + fallback_req_size);
 200
 201	/* Allocate key buffer, cache line aligned */
 202	ctx_p->user.key = kzalloc(max_key_buf_size, GFP_KERNEL);
 203	if (!ctx_p->user.key)
 204		goto free_fallback;
 205
 206	dev_dbg(dev, "Allocated key buffer in context. key=@%p\n",
 207		ctx_p->user.key);
 208
 209	/* Map key buffer */
 210	ctx_p->user.key_dma_addr = dma_map_single(dev, ctx_p->user.key,
 211						  max_key_buf_size,
 212						  DMA_TO_DEVICE);
 213	if (dma_mapping_error(dev, ctx_p->user.key_dma_addr)) {
 214		dev_err(dev, "Mapping Key %u B at va=%pK for DMA failed\n",
 215			max_key_buf_size, ctx_p->user.key);
 216		goto free_key;
 217	}
 218	dev_dbg(dev, "Mapped key %u B at va=%pK to dma=%pad\n",
 219		max_key_buf_size, ctx_p->user.key, &ctx_p->user.key_dma_addr);
 220
 221	return 0;
 222
 223free_key:
 224	kfree(ctx_p->user.key);
 225free_fallback:
 226	crypto_free_skcipher(ctx_p->fallback_tfm);
 227	crypto_free_shash(ctx_p->shash_tfm);
 228
 229	return -ENOMEM;
 230}
 231
 232static void cc_cipher_exit(struct crypto_tfm *tfm)
 233{
 234	struct crypto_alg *alg = tfm->__crt_alg;
 235	struct cc_crypto_alg *cc_alg =
 236			container_of(alg, struct cc_crypto_alg,
 237				     skcipher_alg.base);
 238	unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
 239	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
 240	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
 241
 242	dev_dbg(dev, "Clearing context @%p for %s\n",
 243		crypto_tfm_ctx(tfm), crypto_tfm_alg_name(tfm));
 244
 245	if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
 246		/* Free hash tfm for essiv */
 247		crypto_free_shash(ctx_p->shash_tfm);
 248		ctx_p->shash_tfm = NULL;
 249		crypto_free_skcipher(ctx_p->fallback_tfm);
 250		ctx_p->fallback_tfm = NULL;
 251	}
 252
 253	/* Unmap key buffer */
 254	dma_unmap_single(dev, ctx_p->user.key_dma_addr, max_key_buf_size,
 255			 DMA_TO_DEVICE);
 256	dev_dbg(dev, "Unmapped key buffer key_dma_addr=%pad\n",
 257		&ctx_p->user.key_dma_addr);
 258
 259	/* Free key buffer in context */
 260	dev_dbg(dev, "Free key buffer in context. key=@%p\n", ctx_p->user.key);
 261	kfree_sensitive(ctx_p->user.key);
 262}
 263
 264struct tdes_keys {
 265	u8	key1[DES_KEY_SIZE];
 266	u8	key2[DES_KEY_SIZE];
 267	u8	key3[DES_KEY_SIZE];
 268};
 269
 270static enum cc_hw_crypto_key cc_slot_to_hw_key(u8 slot_num)
 271{
 272	switch (slot_num) {
 273	case 0:
 274		return KFDE0_KEY;
 275	case 1:
 276		return KFDE1_KEY;
 277	case 2:
 278		return KFDE2_KEY;
 279	case 3:
 280		return KFDE3_KEY;
 281	}
 282	return END_OF_KEYS;
 283}
 284
 285static u8 cc_slot_to_cpp_key(u8 slot_num)
 286{
 287	return (slot_num - CC_FIRST_CPP_KEY_SLOT);
 288}
 289
 290static inline enum cc_key_type cc_slot_to_key_type(u8 slot_num)
 291{
 292	if (slot_num >= CC_FIRST_HW_KEY_SLOT && slot_num <= CC_LAST_HW_KEY_SLOT)
 293		return CC_HW_PROTECTED_KEY;
 294	else if (slot_num >=  CC_FIRST_CPP_KEY_SLOT &&
 295		 slot_num <=  CC_LAST_CPP_KEY_SLOT)
 296		return CC_POLICY_PROTECTED_KEY;
 297	else
 298		return CC_INVALID_PROTECTED_KEY;
 299}
 300
 301static int cc_cipher_sethkey(struct crypto_skcipher *sktfm, const u8 *key,
 302			     unsigned int keylen)
 303{
 304	struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm);
 305	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
 306	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
 307	struct cc_hkey_info hki;
 308
 309	dev_dbg(dev, "Setting HW key in context @%p for %s. keylen=%u\n",
 310		ctx_p, crypto_tfm_alg_name(tfm), keylen);
 311	dump_byte_array("key", key, keylen);
 312
 313	/* STAT_PHASE_0: Init and sanity checks */
 314
 315	/* This check the size of the protected key token */
 316	if (keylen != sizeof(hki)) {
 317		dev_err(dev, "Unsupported protected key size %d.\n", keylen);
 318		return -EINVAL;
 319	}
 320
 321	memcpy(&hki, key, keylen);
 322
 323	/* The real key len for crypto op is the size of the HW key
 324	 * referenced by the HW key slot, not the hardware key token
 325	 */
 326	keylen = hki.keylen;
 327
 328	if (validate_keys_sizes(ctx_p, keylen)) {
 329		dev_dbg(dev, "Unsupported key size %d.\n", keylen);
 330		return -EINVAL;
 331	}
 332
 333	ctx_p->keylen = keylen;
 334	ctx_p->fallback_on = false;
 335
 336	switch (cc_slot_to_key_type(hki.hw_key1)) {
 337	case CC_HW_PROTECTED_KEY:
 338		if (ctx_p->flow_mode == S_DIN_to_SM4) {
 339			dev_err(dev, "Only AES HW protected keys are supported\n");
 340			return -EINVAL;
 341		}
 342
 343		ctx_p->hw.key1_slot = cc_slot_to_hw_key(hki.hw_key1);
 344		if (ctx_p->hw.key1_slot == END_OF_KEYS) {
 345			dev_err(dev, "Unsupported hw key1 number (%d)\n",
 346				hki.hw_key1);
 347			return -EINVAL;
 348		}
 349
 350		if (ctx_p->cipher_mode == DRV_CIPHER_XTS ||
 351		    ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
 352			if (hki.hw_key1 == hki.hw_key2) {
 353				dev_err(dev, "Illegal hw key numbers (%d,%d)\n",
 354					hki.hw_key1, hki.hw_key2);
 355				return -EINVAL;
 356			}
 357
 358			ctx_p->hw.key2_slot = cc_slot_to_hw_key(hki.hw_key2);
 359			if (ctx_p->hw.key2_slot == END_OF_KEYS) {
 360				dev_err(dev, "Unsupported hw key2 number (%d)\n",
 361					hki.hw_key2);
 362				return -EINVAL;
 363			}
 364		}
 365
 366		ctx_p->key_type = CC_HW_PROTECTED_KEY;
 367		dev_dbg(dev, "HW protected key  %d/%d set\n.",
 368			ctx_p->hw.key1_slot, ctx_p->hw.key2_slot);
 369		break;
 370
 371	case CC_POLICY_PROTECTED_KEY:
 372		if (ctx_p->drvdata->hw_rev < CC_HW_REV_713) {
 373			dev_err(dev, "CPP keys not supported in this hardware revision.\n");
 374			return -EINVAL;
 375		}
 376
 377		if (ctx_p->cipher_mode != DRV_CIPHER_CBC &&
 378		    ctx_p->cipher_mode != DRV_CIPHER_CTR) {
 379			dev_err(dev, "CPP keys only supported in CBC or CTR modes.\n");
 380			return -EINVAL;
 381		}
 382
 383		ctx_p->cpp.slot = cc_slot_to_cpp_key(hki.hw_key1);
 384		if (ctx_p->flow_mode == S_DIN_to_AES)
 385			ctx_p->cpp.alg = CC_CPP_AES;
 386		else /* Must be SM4 since due to sethkey registration */
 387			ctx_p->cpp.alg = CC_CPP_SM4;
 388		ctx_p->key_type = CC_POLICY_PROTECTED_KEY;
 389		dev_dbg(dev, "policy protected key alg: %d slot: %d.\n",
 390			ctx_p->cpp.alg, ctx_p->cpp.slot);
 391		break;
 392
 393	default:
 394		dev_err(dev, "Unsupported protected key (%d)\n", hki.hw_key1);
 395		return -EINVAL;
 396	}
 397
 398	return 0;
 399}
 400
 401static int cc_cipher_setkey(struct crypto_skcipher *sktfm, const u8 *key,
 402			    unsigned int keylen)
 403{
 404	struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm);
 405	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
 406	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
 407	struct cc_crypto_alg *cc_alg =
 408			container_of(tfm->__crt_alg, struct cc_crypto_alg,
 409				     skcipher_alg.base);
 410	unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
 411
 412	dev_dbg(dev, "Setting key in context @%p for %s. keylen=%u\n",
 413		ctx_p, crypto_tfm_alg_name(tfm), keylen);
 414	dump_byte_array("key", key, keylen);
 415
 416	/* STAT_PHASE_0: Init and sanity checks */
 417
 418	if (validate_keys_sizes(ctx_p, keylen)) {
 419		dev_dbg(dev, "Invalid key size %d.\n", keylen);
 420		return -EINVAL;
 421	}
 422
 423	if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
 424
 425		/* We only support 256 bit ESSIV-CBC-AES keys */
 426		if (keylen != AES_KEYSIZE_256)  {
 427			unsigned int flags = crypto_tfm_get_flags(tfm) & CRYPTO_TFM_REQ_MASK;
 428
 429			if (likely(ctx_p->fallback_tfm)) {
 430				ctx_p->fallback_on = true;
 431				crypto_skcipher_clear_flags(ctx_p->fallback_tfm,
 432							    CRYPTO_TFM_REQ_MASK);
 433				crypto_skcipher_clear_flags(ctx_p->fallback_tfm, flags);
 434				return crypto_skcipher_setkey(ctx_p->fallback_tfm, key, keylen);
 435			}
 436
 437			dev_dbg(dev, "Unsupported key size %d and no fallback.\n", keylen);
 438			return -EINVAL;
 439		}
 440
 441		/* Internal ESSIV key buffer is double sized */
 442		max_key_buf_size <<= 1;
 443	}
 444
 445	ctx_p->fallback_on = false;
 446	ctx_p->key_type = CC_UNPROTECTED_KEY;
 447
 448	/*
 449	 * Verify DES weak keys
 450	 * Note that we're dropping the expanded key since the
 451	 * HW does the expansion on its own.
 452	 */
 453	if (ctx_p->flow_mode == S_DIN_to_DES) {
 454		if ((keylen == DES3_EDE_KEY_SIZE &&
 455		     verify_skcipher_des3_key(sktfm, key)) ||
 456		    verify_skcipher_des_key(sktfm, key)) {
 457			dev_dbg(dev, "weak DES key");
 458			return -EINVAL;
 459		}
 460	}
 461
 462	if (ctx_p->cipher_mode == DRV_CIPHER_XTS &&
 463	    xts_verify_key(sktfm, key, keylen)) {
 464		dev_dbg(dev, "weak XTS key");
 465		return -EINVAL;
 466	}
 467
 468	/* STAT_PHASE_1: Copy key to ctx */
 469	dma_sync_single_for_cpu(dev, ctx_p->user.key_dma_addr,
 470				max_key_buf_size, DMA_TO_DEVICE);
 471
 472	memcpy(ctx_p->user.key, key, keylen);
 473
 474	if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
 475		/* sha256 for key2 - use sw implementation */
 476		int err;
 477
 478		err = crypto_shash_tfm_digest(ctx_p->shash_tfm,
 479					      ctx_p->user.key, keylen,
 480					      ctx_p->user.key + keylen);
 481		if (err) {
 482			dev_err(dev, "Failed to hash ESSIV key.\n");
 483			return err;
 484		}
 485
 486		keylen <<= 1;
 487	}
 488	dma_sync_single_for_device(dev, ctx_p->user.key_dma_addr,
 489				   max_key_buf_size, DMA_TO_DEVICE);
 490	ctx_p->keylen = keylen;
 491
 492	dev_dbg(dev, "return safely");
 493	return 0;
 494}
 495
 496static int cc_out_setup_mode(struct cc_cipher_ctx *ctx_p)
 497{
 498	switch (ctx_p->flow_mode) {
 499	case S_DIN_to_AES:
 500		return S_AES_to_DOUT;
 501	case S_DIN_to_DES:
 502		return S_DES_to_DOUT;
 503	case S_DIN_to_SM4:
 504		return S_SM4_to_DOUT;
 505	default:
 506		return ctx_p->flow_mode;
 507	}
 508}
 509
 510static void cc_setup_readiv_desc(struct crypto_tfm *tfm,
 511				 struct cipher_req_ctx *req_ctx,
 512				 unsigned int ivsize, struct cc_hw_desc desc[],
 513				 unsigned int *seq_size)
 514{
 515	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
 516	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
 517	int cipher_mode = ctx_p->cipher_mode;
 518	int flow_mode = cc_out_setup_mode(ctx_p);
 519	int direction = req_ctx->gen_ctx.op_type;
 520	dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
 521
 522	if (ctx_p->key_type == CC_POLICY_PROTECTED_KEY)
 523		return;
 524
 525	switch (cipher_mode) {
 526	case DRV_CIPHER_ECB:
 527		break;
 528	case DRV_CIPHER_CBC:
 529	case DRV_CIPHER_CBC_CTS:
 530	case DRV_CIPHER_CTR:
 531	case DRV_CIPHER_OFB:
 532		/* Read next IV */
 533		hw_desc_init(&desc[*seq_size]);
 534		set_dout_dlli(&desc[*seq_size], iv_dma_addr, ivsize, NS_BIT, 1);
 535		set_cipher_config0(&desc[*seq_size], direction);
 536		set_flow_mode(&desc[*seq_size], flow_mode);
 537		set_cipher_mode(&desc[*seq_size], cipher_mode);
 538		if (cipher_mode == DRV_CIPHER_CTR ||
 539		    cipher_mode == DRV_CIPHER_OFB) {
 540			set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE1);
 541		} else {
 542			set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE0);
 543		}
 544		set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
 545		(*seq_size)++;
 546		break;
 547	case DRV_CIPHER_XTS:
 548	case DRV_CIPHER_ESSIV:
 549		/*  IV */
 550		hw_desc_init(&desc[*seq_size]);
 551		set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE1);
 552		set_cipher_mode(&desc[*seq_size], cipher_mode);
 553		set_cipher_config0(&desc[*seq_size], direction);
 554		set_flow_mode(&desc[*seq_size], flow_mode);
 555		set_dout_dlli(&desc[*seq_size], iv_dma_addr, CC_AES_BLOCK_SIZE,
 556			     NS_BIT, 1);
 557		set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
 558		(*seq_size)++;
 559		break;
 560	default:
 561		dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
 562	}
 563}
 564
 565
 566static void cc_setup_state_desc(struct crypto_tfm *tfm,
 567				 struct cipher_req_ctx *req_ctx,
 568				 unsigned int ivsize, unsigned int nbytes,
 569				 struct cc_hw_desc desc[],
 570				 unsigned int *seq_size)
 571{
 572	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
 573	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
 574	int cipher_mode = ctx_p->cipher_mode;
 575	int flow_mode = ctx_p->flow_mode;
 576	int direction = req_ctx->gen_ctx.op_type;
 577	dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
 578
 579	switch (cipher_mode) {
 580	case DRV_CIPHER_ECB:
 581		break;
 582	case DRV_CIPHER_CBC:
 583	case DRV_CIPHER_CBC_CTS:
 584	case DRV_CIPHER_CTR:
 585	case DRV_CIPHER_OFB:
 586		/* Load IV */
 587		hw_desc_init(&desc[*seq_size]);
 588		set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr, ivsize,
 589			     NS_BIT);
 590		set_cipher_config0(&desc[*seq_size], direction);
 591		set_flow_mode(&desc[*seq_size], flow_mode);
 592		set_cipher_mode(&desc[*seq_size], cipher_mode);
 593		if (cipher_mode == DRV_CIPHER_CTR ||
 594		    cipher_mode == DRV_CIPHER_OFB) {
 595			set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1);
 596		} else {
 597			set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE0);
 598		}
 599		(*seq_size)++;
 600		break;
 601	case DRV_CIPHER_XTS:
 602	case DRV_CIPHER_ESSIV:
 603		break;
 604	default:
 605		dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
 606	}
 607}
 608
 609
 610static void cc_setup_xex_state_desc(struct crypto_tfm *tfm,
 611				 struct cipher_req_ctx *req_ctx,
 612				 unsigned int ivsize, unsigned int nbytes,
 613				 struct cc_hw_desc desc[],
 614				 unsigned int *seq_size)
 615{
 616	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
 617	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
 618	int cipher_mode = ctx_p->cipher_mode;
 619	int flow_mode = ctx_p->flow_mode;
 620	int direction = req_ctx->gen_ctx.op_type;
 621	dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr;
 622	unsigned int key_len = (ctx_p->keylen / 2);
 623	dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
 624	unsigned int key_offset = key_len;
 625
 626	switch (cipher_mode) {
 627	case DRV_CIPHER_ECB:
 628		break;
 629	case DRV_CIPHER_CBC:
 630	case DRV_CIPHER_CBC_CTS:
 631	case DRV_CIPHER_CTR:
 632	case DRV_CIPHER_OFB:
 633		break;
 634	case DRV_CIPHER_XTS:
 635	case DRV_CIPHER_ESSIV:
 636
 637		if (cipher_mode == DRV_CIPHER_ESSIV)
 638			key_len = SHA256_DIGEST_SIZE;
 639
 640		/* load XEX key */
 641		hw_desc_init(&desc[*seq_size]);
 642		set_cipher_mode(&desc[*seq_size], cipher_mode);
 643		set_cipher_config0(&desc[*seq_size], direction);
 644		if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
 645			set_hw_crypto_key(&desc[*seq_size],
 646					  ctx_p->hw.key2_slot);
 647		} else {
 648			set_din_type(&desc[*seq_size], DMA_DLLI,
 649				     (key_dma_addr + key_offset),
 650				     key_len, NS_BIT);
 651		}
 652		set_xex_data_unit_size(&desc[*seq_size], nbytes);
 653		set_flow_mode(&desc[*seq_size], S_DIN_to_AES2);
 654		set_key_size_aes(&desc[*seq_size], key_len);
 655		set_setup_mode(&desc[*seq_size], SETUP_LOAD_XEX_KEY);
 656		(*seq_size)++;
 657
 658		/* Load IV */
 659		hw_desc_init(&desc[*seq_size]);
 660		set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1);
 661		set_cipher_mode(&desc[*seq_size], cipher_mode);
 662		set_cipher_config0(&desc[*seq_size], direction);
 663		set_key_size_aes(&desc[*seq_size], key_len);
 664		set_flow_mode(&desc[*seq_size], flow_mode);
 665		set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr,
 666			     CC_AES_BLOCK_SIZE, NS_BIT);
 667		(*seq_size)++;
 668		break;
 669	default:
 670		dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
 671	}
 672}
 673
 674static int cc_out_flow_mode(struct cc_cipher_ctx *ctx_p)
 675{
 676	switch (ctx_p->flow_mode) {
 677	case S_DIN_to_AES:
 678		return DIN_AES_DOUT;
 679	case S_DIN_to_DES:
 680		return DIN_DES_DOUT;
 681	case S_DIN_to_SM4:
 682		return DIN_SM4_DOUT;
 683	default:
 684		return ctx_p->flow_mode;
 685	}
 686}
 687
 688static void cc_setup_key_desc(struct crypto_tfm *tfm,
 689			      struct cipher_req_ctx *req_ctx,
 690			      unsigned int nbytes, struct cc_hw_desc desc[],
 691			      unsigned int *seq_size)
 692{
 693	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
 694	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
 695	int cipher_mode = ctx_p->cipher_mode;
 696	int flow_mode = ctx_p->flow_mode;
 697	int direction = req_ctx->gen_ctx.op_type;
 698	dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr;
 699	unsigned int key_len = ctx_p->keylen;
 700	unsigned int din_size;
 701
 702	switch (cipher_mode) {
 703	case DRV_CIPHER_CBC:
 704	case DRV_CIPHER_CBC_CTS:
 705	case DRV_CIPHER_CTR:
 706	case DRV_CIPHER_OFB:
 707	case DRV_CIPHER_ECB:
 708		/* Load key */
 709		hw_desc_init(&desc[*seq_size]);
 710		set_cipher_mode(&desc[*seq_size], cipher_mode);
 711		set_cipher_config0(&desc[*seq_size], direction);
 712
 713		if (cc_key_type(tfm) == CC_POLICY_PROTECTED_KEY) {
 714			/* We use the AES key size coding for all CPP algs */
 715			set_key_size_aes(&desc[*seq_size], key_len);
 716			set_cpp_crypto_key(&desc[*seq_size], ctx_p->cpp.slot);
 717			flow_mode = cc_out_flow_mode(ctx_p);
 718		} else {
 719			if (flow_mode == S_DIN_to_AES) {
 720				if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
 721					set_hw_crypto_key(&desc[*seq_size],
 722							  ctx_p->hw.key1_slot);
 723				} else {
 724					/* CC_POLICY_UNPROTECTED_KEY
 725					 * Invalid keys are filtered out in
 726					 * sethkey()
 727					 */
 728					din_size = (key_len == 24) ?
 729						AES_MAX_KEY_SIZE : key_len;
 730
 731					set_din_type(&desc[*seq_size], DMA_DLLI,
 732						     key_dma_addr, din_size,
 733						     NS_BIT);
 734				}
 735				set_key_size_aes(&desc[*seq_size], key_len);
 736			} else {
 737				/*des*/
 738				set_din_type(&desc[*seq_size], DMA_DLLI,
 739					     key_dma_addr, key_len, NS_BIT);
 740				set_key_size_des(&desc[*seq_size], key_len);
 741			}
 742			set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0);
 743		}
 744		set_flow_mode(&desc[*seq_size], flow_mode);
 745		(*seq_size)++;
 746		break;
 747	case DRV_CIPHER_XTS:
 748	case DRV_CIPHER_ESSIV:
 749		/* Load AES key */
 750		hw_desc_init(&desc[*seq_size]);
 751		set_cipher_mode(&desc[*seq_size], cipher_mode);
 752		set_cipher_config0(&desc[*seq_size], direction);
 753		if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
 754			set_hw_crypto_key(&desc[*seq_size],
 755					  ctx_p->hw.key1_slot);
 756		} else {
 757			set_din_type(&desc[*seq_size], DMA_DLLI, key_dma_addr,
 758				     (key_len / 2), NS_BIT);
 759		}
 760		set_key_size_aes(&desc[*seq_size], (key_len / 2));
 761		set_flow_mode(&desc[*seq_size], flow_mode);
 762		set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0);
 763		(*seq_size)++;
 764		break;
 765	default:
 766		dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
 767	}
 768}
 769
 770static void cc_setup_mlli_desc(struct crypto_tfm *tfm,
 771			       struct cipher_req_ctx *req_ctx,
 772			       struct scatterlist *dst, struct scatterlist *src,
 773			       unsigned int nbytes, void *areq,
 774			       struct cc_hw_desc desc[], unsigned int *seq_size)
 775{
 776	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
 777	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
 778
 779	if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) {
 780		/* bypass */
 781		dev_dbg(dev, " bypass params addr %pad length 0x%X addr 0x%08X\n",
 782			&req_ctx->mlli_params.mlli_dma_addr,
 783			req_ctx->mlli_params.mlli_len,
 784			ctx_p->drvdata->mlli_sram_addr);
 785		hw_desc_init(&desc[*seq_size]);
 786		set_din_type(&desc[*seq_size], DMA_DLLI,
 787			     req_ctx->mlli_params.mlli_dma_addr,
 788			     req_ctx->mlli_params.mlli_len, NS_BIT);
 789		set_dout_sram(&desc[*seq_size],
 790			      ctx_p->drvdata->mlli_sram_addr,
 791			      req_ctx->mlli_params.mlli_len);
 792		set_flow_mode(&desc[*seq_size], BYPASS);
 793		(*seq_size)++;
 794	}
 795}
 796
 797static void cc_setup_flow_desc(struct crypto_tfm *tfm,
 798			       struct cipher_req_ctx *req_ctx,
 799			       struct scatterlist *dst, struct scatterlist *src,
 800			       unsigned int nbytes, struct cc_hw_desc desc[],
 801			       unsigned int *seq_size)
 802{
 803	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
 804	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
 805	unsigned int flow_mode = cc_out_flow_mode(ctx_p);
 806	bool last_desc = (ctx_p->key_type == CC_POLICY_PROTECTED_KEY ||
 807			  ctx_p->cipher_mode == DRV_CIPHER_ECB);
 808
 809	/* Process */
 810	if (req_ctx->dma_buf_type == CC_DMA_BUF_DLLI) {
 811		dev_dbg(dev, " data params addr %pad length 0x%X\n",
 812			&sg_dma_address(src), nbytes);
 813		dev_dbg(dev, " data params addr %pad length 0x%X\n",
 814			&sg_dma_address(dst), nbytes);
 815		hw_desc_init(&desc[*seq_size]);
 816		set_din_type(&desc[*seq_size], DMA_DLLI, sg_dma_address(src),
 817			     nbytes, NS_BIT);
 818		set_dout_dlli(&desc[*seq_size], sg_dma_address(dst),
 819			      nbytes, NS_BIT, (!last_desc ? 0 : 1));
 820		if (last_desc)
 821			set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
 822
 823		set_flow_mode(&desc[*seq_size], flow_mode);
 824		(*seq_size)++;
 825	} else {
 826		hw_desc_init(&desc[*seq_size]);
 827		set_din_type(&desc[*seq_size], DMA_MLLI,
 828			     ctx_p->drvdata->mlli_sram_addr,
 829			     req_ctx->in_mlli_nents, NS_BIT);
 830		if (req_ctx->out_nents == 0) {
 831			dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n",
 832				ctx_p->drvdata->mlli_sram_addr,
 833				ctx_p->drvdata->mlli_sram_addr);
 834			set_dout_mlli(&desc[*seq_size],
 835				      ctx_p->drvdata->mlli_sram_addr,
 836				      req_ctx->in_mlli_nents, NS_BIT,
 837				      (!last_desc ? 0 : 1));
 838		} else {
 839			dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n",
 840				ctx_p->drvdata->mlli_sram_addr,
 841				ctx_p->drvdata->mlli_sram_addr +
 842				(u32)LLI_ENTRY_BYTE_SIZE * req_ctx->in_nents);
 843			set_dout_mlli(&desc[*seq_size],
 844				      (ctx_p->drvdata->mlli_sram_addr +
 845				       (LLI_ENTRY_BYTE_SIZE *
 846					req_ctx->in_mlli_nents)),
 847				      req_ctx->out_mlli_nents, NS_BIT,
 848				      (!last_desc ? 0 : 1));
 849		}
 850		if (last_desc)
 851			set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
 852
 853		set_flow_mode(&desc[*seq_size], flow_mode);
 854		(*seq_size)++;
 855	}
 856}
 857
 858static void cc_cipher_complete(struct device *dev, void *cc_req, int err)
 859{
 860	struct skcipher_request *req = (struct skcipher_request *)cc_req;
 861	struct scatterlist *dst = req->dst;
 862	struct scatterlist *src = req->src;
 863	struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
 864	struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req);
 865	unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm);
 866
 867	if (err != -EINPROGRESS) {
 868		/* Not a BACKLOG notification */
 869		cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
 870		memcpy(req->iv, req_ctx->iv, ivsize);
 871		kfree_sensitive(req_ctx->iv);
 872	}
 873
 874	skcipher_request_complete(req, err);
 875}
 876
 877static int cc_cipher_process(struct skcipher_request *req,
 878			     enum drv_crypto_direction direction)
 879{
 880	struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req);
 881	struct crypto_tfm *tfm = crypto_skcipher_tfm(sk_tfm);
 882	struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
 883	unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm);
 884	struct scatterlist *dst = req->dst;
 885	struct scatterlist *src = req->src;
 886	unsigned int nbytes = req->cryptlen;
 887	void *iv = req->iv;
 888	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
 889	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
 890	struct cc_hw_desc desc[MAX_SKCIPHER_SEQ_LEN];
 891	struct cc_crypto_req cc_req = {};
 892	int rc;
 893	unsigned int seq_len = 0;
 894	gfp_t flags = cc_gfp_flags(&req->base);
 895
 896	dev_dbg(dev, "%s req=%p iv=%p nbytes=%d\n",
 897		((direction == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
 898		"Encrypt" : "Decrypt"), req, iv, nbytes);
 899
 900	/* STAT_PHASE_0: Init and sanity checks */
 901
 902	if (validate_data_size(ctx_p, nbytes)) {
 903		dev_dbg(dev, "Unsupported data size %d.\n", nbytes);
 904		rc = -EINVAL;
 905		goto exit_process;
 906	}
 907	if (nbytes == 0) {
 908		/* No data to process is valid */
 909		rc = 0;
 910		goto exit_process;
 911	}
 912
 913	if (ctx_p->fallback_on) {
 914		struct skcipher_request *subreq = skcipher_request_ctx(req);
 915
 916		*subreq = *req;
 917		skcipher_request_set_tfm(subreq, ctx_p->fallback_tfm);
 918		if (direction == DRV_CRYPTO_DIRECTION_ENCRYPT)
 919			return crypto_skcipher_encrypt(subreq);
 920		else
 921			return crypto_skcipher_decrypt(subreq);
 922	}
 923
 924	/* The IV we are handed may be allocated from the stack so
 925	 * we must copy it to a DMAable buffer before use.
 926	 */
 927	req_ctx->iv = kmemdup(iv, ivsize, flags);
 928	if (!req_ctx->iv) {
 929		rc = -ENOMEM;
 930		goto exit_process;
 931	}
 932
 933	/* Setup request structure */
 934	cc_req.user_cb = cc_cipher_complete;
 935	cc_req.user_arg = req;
 936
 937	/* Setup CPP operation details */
 938	if (ctx_p->key_type == CC_POLICY_PROTECTED_KEY) {
 939		cc_req.cpp.is_cpp = true;
 940		cc_req.cpp.alg = ctx_p->cpp.alg;
 941		cc_req.cpp.slot = ctx_p->cpp.slot;
 942	}
 943
 944	/* Setup request context */
 945	req_ctx->gen_ctx.op_type = direction;
 946
 947	/* STAT_PHASE_1: Map buffers */
 948
 949	rc = cc_map_cipher_request(ctx_p->drvdata, req_ctx, ivsize, nbytes,
 950				      req_ctx->iv, src, dst, flags);
 951	if (rc) {
 952		dev_err(dev, "map_request() failed\n");
 953		goto exit_process;
 954	}
 955
 956	/* STAT_PHASE_2: Create sequence */
 957
 958	/* Setup state (IV)  */
 959	cc_setup_state_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len);
 960	/* Setup MLLI line, if needed */
 961	cc_setup_mlli_desc(tfm, req_ctx, dst, src, nbytes, req, desc, &seq_len);
 962	/* Setup key */
 963	cc_setup_key_desc(tfm, req_ctx, nbytes, desc, &seq_len);
 964	/* Setup state (IV and XEX key)  */
 965	cc_setup_xex_state_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len);
 966	/* Data processing */
 967	cc_setup_flow_desc(tfm, req_ctx, dst, src, nbytes, desc, &seq_len);
 968	/* Read next IV */
 969	cc_setup_readiv_desc(tfm, req_ctx, ivsize, desc, &seq_len);
 970
 971	/* STAT_PHASE_3: Lock HW and push sequence */
 972
 973	rc = cc_send_request(ctx_p->drvdata, &cc_req, desc, seq_len,
 974			     &req->base);
 975	if (rc != -EINPROGRESS && rc != -EBUSY) {
 976		/* Failed to send the request or request completed
 977		 * synchronously
 978		 */
 979		cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
 980	}
 981
 982exit_process:
 983	if (rc != -EINPROGRESS && rc != -EBUSY) {
 984		kfree_sensitive(req_ctx->iv);
 985	}
 986
 987	return rc;
 988}
 989
 990static int cc_cipher_encrypt(struct skcipher_request *req)
 991{
 992	struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
 993
 994	memset(req_ctx, 0, sizeof(*req_ctx));
 995
 996	return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
 997}
 998
 999static int cc_cipher_decrypt(struct skcipher_request *req)
1000{
1001	struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
1002
1003	memset(req_ctx, 0, sizeof(*req_ctx));
1004
1005	return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_DECRYPT);
1006}
1007
1008/* Block cipher alg */
1009static const struct cc_alg_template skcipher_algs[] = {
1010	{
1011		.name = "xts(paes)",
1012		.driver_name = "xts-paes-ccree",
1013		.blocksize = 1,
1014		.template_skcipher = {
1015			.setkey = cc_cipher_sethkey,
1016			.encrypt = cc_cipher_encrypt,
1017			.decrypt = cc_cipher_decrypt,
1018			.min_keysize = CC_HW_KEY_SIZE,
1019			.max_keysize = CC_HW_KEY_SIZE,
1020			.ivsize = AES_BLOCK_SIZE,
1021			},
1022		.cipher_mode = DRV_CIPHER_XTS,
1023		.flow_mode = S_DIN_to_AES,
1024		.min_hw_rev = CC_HW_REV_630,
1025		.std_body = CC_STD_NIST,
1026		.sec_func = true,
1027	},
1028	{
1029		.name = "essiv(cbc(paes),sha256)",
1030		.driver_name = "essiv-paes-ccree",
1031		.blocksize = AES_BLOCK_SIZE,
1032		.template_skcipher = {
1033			.setkey = cc_cipher_sethkey,
1034			.encrypt = cc_cipher_encrypt,
1035			.decrypt = cc_cipher_decrypt,
1036			.min_keysize = CC_HW_KEY_SIZE,
1037			.max_keysize = CC_HW_KEY_SIZE,
1038			.ivsize = AES_BLOCK_SIZE,
1039			},
1040		.cipher_mode = DRV_CIPHER_ESSIV,
1041		.flow_mode = S_DIN_to_AES,
1042		.min_hw_rev = CC_HW_REV_712,
1043		.std_body = CC_STD_NIST,
1044		.sec_func = true,
1045	},
1046	{
1047		.name = "ecb(paes)",
1048		.driver_name = "ecb-paes-ccree",
1049		.blocksize = AES_BLOCK_SIZE,
1050		.template_skcipher = {
1051			.setkey = cc_cipher_sethkey,
1052			.encrypt = cc_cipher_encrypt,
1053			.decrypt = cc_cipher_decrypt,
1054			.min_keysize = CC_HW_KEY_SIZE,
1055			.max_keysize = CC_HW_KEY_SIZE,
1056			.ivsize = 0,
1057			},
1058		.cipher_mode = DRV_CIPHER_ECB,
1059		.flow_mode = S_DIN_to_AES,
1060		.min_hw_rev = CC_HW_REV_712,
1061		.std_body = CC_STD_NIST,
1062		.sec_func = true,
1063	},
1064	{
1065		.name = "cbc(paes)",
1066		.driver_name = "cbc-paes-ccree",
1067		.blocksize = AES_BLOCK_SIZE,
1068		.template_skcipher = {
1069			.setkey = cc_cipher_sethkey,
1070			.encrypt = cc_cipher_encrypt,
1071			.decrypt = cc_cipher_decrypt,
1072			.min_keysize = CC_HW_KEY_SIZE,
1073			.max_keysize = CC_HW_KEY_SIZE,
1074			.ivsize = AES_BLOCK_SIZE,
1075		},
1076		.cipher_mode = DRV_CIPHER_CBC,
1077		.flow_mode = S_DIN_to_AES,
1078		.min_hw_rev = CC_HW_REV_712,
1079		.std_body = CC_STD_NIST,
1080		.sec_func = true,
1081	},
1082	{
1083		.name = "cts(cbc(paes))",
1084		.driver_name = "cts-cbc-paes-ccree",
1085		.blocksize = AES_BLOCK_SIZE,
1086		.template_skcipher = {
1087			.setkey = cc_cipher_sethkey,
1088			.encrypt = cc_cipher_encrypt,
1089			.decrypt = cc_cipher_decrypt,
1090			.min_keysize = CC_HW_KEY_SIZE,
1091			.max_keysize = CC_HW_KEY_SIZE,
1092			.ivsize = AES_BLOCK_SIZE,
1093			},
1094		.cipher_mode = DRV_CIPHER_CBC_CTS,
1095		.flow_mode = S_DIN_to_AES,
1096		.min_hw_rev = CC_HW_REV_712,
1097		.std_body = CC_STD_NIST,
1098		.sec_func = true,
1099	},
1100	{
1101		.name = "ctr(paes)",
1102		.driver_name = "ctr-paes-ccree",
1103		.blocksize = 1,
1104		.template_skcipher = {
1105			.setkey = cc_cipher_sethkey,
1106			.encrypt = cc_cipher_encrypt,
1107			.decrypt = cc_cipher_decrypt,
1108			.min_keysize = CC_HW_KEY_SIZE,
1109			.max_keysize = CC_HW_KEY_SIZE,
1110			.ivsize = AES_BLOCK_SIZE,
1111			},
1112		.cipher_mode = DRV_CIPHER_CTR,
1113		.flow_mode = S_DIN_to_AES,
1114		.min_hw_rev = CC_HW_REV_712,
1115		.std_body = CC_STD_NIST,
1116		.sec_func = true,
1117	},
1118	{
1119		/* See https://www.mail-archive.com/linux-crypto@vger.kernel.org/msg40576.html
1120		 * for the reason why this differs from the generic
1121		 * implementation.
1122		 */
1123		.name = "xts(aes)",
1124		.driver_name = "xts-aes-ccree",
1125		.blocksize = 1,
1126		.template_skcipher = {
1127			.setkey = cc_cipher_setkey,
1128			.encrypt = cc_cipher_encrypt,
1129			.decrypt = cc_cipher_decrypt,
1130			.min_keysize = AES_MIN_KEY_SIZE * 2,
1131			.max_keysize = AES_MAX_KEY_SIZE * 2,
1132			.ivsize = AES_BLOCK_SIZE,
1133			},
1134		.cipher_mode = DRV_CIPHER_XTS,
1135		.flow_mode = S_DIN_to_AES,
1136		.min_hw_rev = CC_HW_REV_630,
1137		.std_body = CC_STD_NIST,
1138	},
1139	{
1140		.name = "essiv(cbc(aes),sha256)",
1141		.driver_name = "essiv-aes-ccree",
1142		.blocksize = AES_BLOCK_SIZE,
1143		.template_skcipher = {
1144			.setkey = cc_cipher_setkey,
1145			.encrypt = cc_cipher_encrypt,
1146			.decrypt = cc_cipher_decrypt,
1147			.min_keysize = AES_MIN_KEY_SIZE,
1148			.max_keysize = AES_MAX_KEY_SIZE,
1149			.ivsize = AES_BLOCK_SIZE,
1150			},
1151		.cipher_mode = DRV_CIPHER_ESSIV,
1152		.flow_mode = S_DIN_to_AES,
1153		.min_hw_rev = CC_HW_REV_712,
1154		.std_body = CC_STD_NIST,
1155	},
1156	{
1157		.name = "ecb(aes)",
1158		.driver_name = "ecb-aes-ccree",
1159		.blocksize = AES_BLOCK_SIZE,
1160		.template_skcipher = {
1161			.setkey = cc_cipher_setkey,
1162			.encrypt = cc_cipher_encrypt,
1163			.decrypt = cc_cipher_decrypt,
1164			.min_keysize = AES_MIN_KEY_SIZE,
1165			.max_keysize = AES_MAX_KEY_SIZE,
1166			.ivsize = 0,
1167			},
1168		.cipher_mode = DRV_CIPHER_ECB,
1169		.flow_mode = S_DIN_to_AES,
1170		.min_hw_rev = CC_HW_REV_630,
1171		.std_body = CC_STD_NIST,
1172	},
1173	{
1174		.name = "cbc(aes)",
1175		.driver_name = "cbc-aes-ccree",
1176		.blocksize = AES_BLOCK_SIZE,
1177		.template_skcipher = {
1178			.setkey = cc_cipher_setkey,
1179			.encrypt = cc_cipher_encrypt,
1180			.decrypt = cc_cipher_decrypt,
1181			.min_keysize = AES_MIN_KEY_SIZE,
1182			.max_keysize = AES_MAX_KEY_SIZE,
1183			.ivsize = AES_BLOCK_SIZE,
1184		},
1185		.cipher_mode = DRV_CIPHER_CBC,
1186		.flow_mode = S_DIN_to_AES,
1187		.min_hw_rev = CC_HW_REV_630,
1188		.std_body = CC_STD_NIST,
1189	},
1190	{
1191		.name = "cts(cbc(aes))",
1192		.driver_name = "cts-cbc-aes-ccree",
1193		.blocksize = AES_BLOCK_SIZE,
1194		.template_skcipher = {
1195			.setkey = cc_cipher_setkey,
1196			.encrypt = cc_cipher_encrypt,
1197			.decrypt = cc_cipher_decrypt,
1198			.min_keysize = AES_MIN_KEY_SIZE,
1199			.max_keysize = AES_MAX_KEY_SIZE,
1200			.ivsize = AES_BLOCK_SIZE,
1201			},
1202		.cipher_mode = DRV_CIPHER_CBC_CTS,
1203		.flow_mode = S_DIN_to_AES,
1204		.min_hw_rev = CC_HW_REV_630,
1205		.std_body = CC_STD_NIST,
1206	},
1207	{
1208		.name = "ctr(aes)",
1209		.driver_name = "ctr-aes-ccree",
1210		.blocksize = 1,
1211		.template_skcipher = {
1212			.setkey = cc_cipher_setkey,
1213			.encrypt = cc_cipher_encrypt,
1214			.decrypt = cc_cipher_decrypt,
1215			.min_keysize = AES_MIN_KEY_SIZE,
1216			.max_keysize = AES_MAX_KEY_SIZE,
1217			.ivsize = AES_BLOCK_SIZE,
1218			},
1219		.cipher_mode = DRV_CIPHER_CTR,
1220		.flow_mode = S_DIN_to_AES,
1221		.min_hw_rev = CC_HW_REV_630,
1222		.std_body = CC_STD_NIST,
1223	},
1224	{
1225		.name = "cbc(des3_ede)",
1226		.driver_name = "cbc-3des-ccree",
1227		.blocksize = DES3_EDE_BLOCK_SIZE,
1228		.template_skcipher = {
1229			.setkey = cc_cipher_setkey,
1230			.encrypt = cc_cipher_encrypt,
1231			.decrypt = cc_cipher_decrypt,
1232			.min_keysize = DES3_EDE_KEY_SIZE,
1233			.max_keysize = DES3_EDE_KEY_SIZE,
1234			.ivsize = DES3_EDE_BLOCK_SIZE,
1235			},
1236		.cipher_mode = DRV_CIPHER_CBC,
1237		.flow_mode = S_DIN_to_DES,
1238		.min_hw_rev = CC_HW_REV_630,
1239		.std_body = CC_STD_NIST,
1240	},
1241	{
1242		.name = "ecb(des3_ede)",
1243		.driver_name = "ecb-3des-ccree",
1244		.blocksize = DES3_EDE_BLOCK_SIZE,
1245		.template_skcipher = {
1246			.setkey = cc_cipher_setkey,
1247			.encrypt = cc_cipher_encrypt,
1248			.decrypt = cc_cipher_decrypt,
1249			.min_keysize = DES3_EDE_KEY_SIZE,
1250			.max_keysize = DES3_EDE_KEY_SIZE,
1251			.ivsize = 0,
1252			},
1253		.cipher_mode = DRV_CIPHER_ECB,
1254		.flow_mode = S_DIN_to_DES,
1255		.min_hw_rev = CC_HW_REV_630,
1256		.std_body = CC_STD_NIST,
1257	},
1258	{
1259		.name = "cbc(des)",
1260		.driver_name = "cbc-des-ccree",
1261		.blocksize = DES_BLOCK_SIZE,
1262		.template_skcipher = {
1263			.setkey = cc_cipher_setkey,
1264			.encrypt = cc_cipher_encrypt,
1265			.decrypt = cc_cipher_decrypt,
1266			.min_keysize = DES_KEY_SIZE,
1267			.max_keysize = DES_KEY_SIZE,
1268			.ivsize = DES_BLOCK_SIZE,
1269			},
1270		.cipher_mode = DRV_CIPHER_CBC,
1271		.flow_mode = S_DIN_to_DES,
1272		.min_hw_rev = CC_HW_REV_630,
1273		.std_body = CC_STD_NIST,
1274	},
1275	{
1276		.name = "ecb(des)",
1277		.driver_name = "ecb-des-ccree",
1278		.blocksize = DES_BLOCK_SIZE,
1279		.template_skcipher = {
1280			.setkey = cc_cipher_setkey,
1281			.encrypt = cc_cipher_encrypt,
1282			.decrypt = cc_cipher_decrypt,
1283			.min_keysize = DES_KEY_SIZE,
1284			.max_keysize = DES_KEY_SIZE,
1285			.ivsize = 0,
1286			},
1287		.cipher_mode = DRV_CIPHER_ECB,
1288		.flow_mode = S_DIN_to_DES,
1289		.min_hw_rev = CC_HW_REV_630,
1290		.std_body = CC_STD_NIST,
1291	},
1292	{
1293		.name = "cbc(sm4)",
1294		.driver_name = "cbc-sm4-ccree",
1295		.blocksize = SM4_BLOCK_SIZE,
1296		.template_skcipher = {
1297			.setkey = cc_cipher_setkey,
1298			.encrypt = cc_cipher_encrypt,
1299			.decrypt = cc_cipher_decrypt,
1300			.min_keysize = SM4_KEY_SIZE,
1301			.max_keysize = SM4_KEY_SIZE,
1302			.ivsize = SM4_BLOCK_SIZE,
1303			},
1304		.cipher_mode = DRV_CIPHER_CBC,
1305		.flow_mode = S_DIN_to_SM4,
1306		.min_hw_rev = CC_HW_REV_713,
1307		.std_body = CC_STD_OSCCA,
1308	},
1309	{
1310		.name = "ecb(sm4)",
1311		.driver_name = "ecb-sm4-ccree",
1312		.blocksize = SM4_BLOCK_SIZE,
1313		.template_skcipher = {
1314			.setkey = cc_cipher_setkey,
1315			.encrypt = cc_cipher_encrypt,
1316			.decrypt = cc_cipher_decrypt,
1317			.min_keysize = SM4_KEY_SIZE,
1318			.max_keysize = SM4_KEY_SIZE,
1319			.ivsize = 0,
1320			},
1321		.cipher_mode = DRV_CIPHER_ECB,
1322		.flow_mode = S_DIN_to_SM4,
1323		.min_hw_rev = CC_HW_REV_713,
1324		.std_body = CC_STD_OSCCA,
1325	},
1326	{
1327		.name = "ctr(sm4)",
1328		.driver_name = "ctr-sm4-ccree",
1329		.blocksize = 1,
1330		.template_skcipher = {
1331			.setkey = cc_cipher_setkey,
1332			.encrypt = cc_cipher_encrypt,
1333			.decrypt = cc_cipher_decrypt,
1334			.min_keysize = SM4_KEY_SIZE,
1335			.max_keysize = SM4_KEY_SIZE,
1336			.ivsize = SM4_BLOCK_SIZE,
1337			},
1338		.cipher_mode = DRV_CIPHER_CTR,
1339		.flow_mode = S_DIN_to_SM4,
1340		.min_hw_rev = CC_HW_REV_713,
1341		.std_body = CC_STD_OSCCA,
1342	},
1343	{
1344		.name = "cbc(psm4)",
1345		.driver_name = "cbc-psm4-ccree",
1346		.blocksize = SM4_BLOCK_SIZE,
1347		.template_skcipher = {
1348			.setkey = cc_cipher_sethkey,
1349			.encrypt = cc_cipher_encrypt,
1350			.decrypt = cc_cipher_decrypt,
1351			.min_keysize = CC_HW_KEY_SIZE,
1352			.max_keysize = CC_HW_KEY_SIZE,
1353			.ivsize = SM4_BLOCK_SIZE,
1354			},
1355		.cipher_mode = DRV_CIPHER_CBC,
1356		.flow_mode = S_DIN_to_SM4,
1357		.min_hw_rev = CC_HW_REV_713,
1358		.std_body = CC_STD_OSCCA,
1359		.sec_func = true,
1360	},
1361	{
1362		.name = "ctr(psm4)",
1363		.driver_name = "ctr-psm4-ccree",
1364		.blocksize = SM4_BLOCK_SIZE,
1365		.template_skcipher = {
1366			.setkey = cc_cipher_sethkey,
1367			.encrypt = cc_cipher_encrypt,
1368			.decrypt = cc_cipher_decrypt,
1369			.min_keysize = CC_HW_KEY_SIZE,
1370			.max_keysize = CC_HW_KEY_SIZE,
1371			.ivsize = SM4_BLOCK_SIZE,
1372			},
1373		.cipher_mode = DRV_CIPHER_CTR,
1374		.flow_mode = S_DIN_to_SM4,
1375		.min_hw_rev = CC_HW_REV_713,
1376		.std_body = CC_STD_OSCCA,
1377		.sec_func = true,
1378	},
1379};
1380
1381static struct cc_crypto_alg *cc_create_alg(const struct cc_alg_template *tmpl,
1382					   struct device *dev)
1383{
1384	struct cc_crypto_alg *t_alg;
1385	struct skcipher_alg *alg;
1386
1387	t_alg = devm_kzalloc(dev, sizeof(*t_alg), GFP_KERNEL);
1388	if (!t_alg)
1389		return ERR_PTR(-ENOMEM);
1390
1391	alg = &t_alg->skcipher_alg;
1392
1393	memcpy(alg, &tmpl->template_skcipher, sizeof(*alg));
1394
1395	if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s",
1396		     tmpl->name) >= CRYPTO_MAX_ALG_NAME)
1397		return ERR_PTR(-EINVAL);
1398	if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
1399		     tmpl->driver_name) >= CRYPTO_MAX_ALG_NAME)
1400		return ERR_PTR(-EINVAL);
1401
1402	alg->base.cra_module = THIS_MODULE;
1403	alg->base.cra_priority = CC_CRA_PRIO;
1404	alg->base.cra_blocksize = tmpl->blocksize;
1405	alg->base.cra_alignmask = 0;
1406	alg->base.cra_ctxsize = sizeof(struct cc_cipher_ctx);
1407
1408	alg->base.cra_init = cc_cipher_init;
1409	alg->base.cra_exit = cc_cipher_exit;
1410	alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
1411
1412	t_alg->cipher_mode = tmpl->cipher_mode;
1413	t_alg->flow_mode = tmpl->flow_mode;
1414
1415	return t_alg;
1416}
1417
1418int cc_cipher_free(struct cc_drvdata *drvdata)
1419{
1420	struct cc_crypto_alg *t_alg, *n;
1421
1422	/* Remove registered algs */
1423	list_for_each_entry_safe(t_alg, n, &drvdata->alg_list, entry) {
1424		crypto_unregister_skcipher(&t_alg->skcipher_alg);
1425		list_del(&t_alg->entry);
1426	}
1427	return 0;
1428}
1429
1430int cc_cipher_alloc(struct cc_drvdata *drvdata)
1431{
1432	struct cc_crypto_alg *t_alg;
1433	struct device *dev = drvdata_to_dev(drvdata);
1434	int rc = -ENOMEM;
1435	int alg;
1436
1437	INIT_LIST_HEAD(&drvdata->alg_list);
1438
1439	/* Linux crypto */
1440	dev_dbg(dev, "Number of algorithms = %zu\n",
1441		ARRAY_SIZE(skcipher_algs));
1442	for (alg = 0; alg < ARRAY_SIZE(skcipher_algs); alg++) {
1443		if ((skcipher_algs[alg].min_hw_rev > drvdata->hw_rev) ||
1444		    !(drvdata->std_bodies & skcipher_algs[alg].std_body) ||
1445		    (drvdata->sec_disabled && skcipher_algs[alg].sec_func))
1446			continue;
1447
1448		dev_dbg(dev, "creating %s\n", skcipher_algs[alg].driver_name);
1449		t_alg = cc_create_alg(&skcipher_algs[alg], dev);
1450		if (IS_ERR(t_alg)) {
1451			rc = PTR_ERR(t_alg);
1452			dev_err(dev, "%s alg allocation failed\n",
1453				skcipher_algs[alg].driver_name);
1454			goto fail0;
1455		}
1456		t_alg->drvdata = drvdata;
1457
1458		dev_dbg(dev, "registering %s\n",
1459			skcipher_algs[alg].driver_name);
1460		rc = crypto_register_skcipher(&t_alg->skcipher_alg);
1461		dev_dbg(dev, "%s alg registration rc = %x\n",
1462			t_alg->skcipher_alg.base.cra_driver_name, rc);
1463		if (rc) {
1464			dev_err(dev, "%s alg registration failed\n",
1465				t_alg->skcipher_alg.base.cra_driver_name);
1466			goto fail0;
1467		}
1468
1469		list_add_tail(&t_alg->entry, &drvdata->alg_list);
1470		dev_dbg(dev, "Registered %s\n",
1471			t_alg->skcipher_alg.base.cra_driver_name);
1472	}
1473	return 0;
1474
1475fail0:
1476	cc_cipher_free(drvdata);
1477	return rc;
1478}