Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *   (c) 2003-2012 Advanced Micro Devices, Inc.
 
 
 
   4 *
   5 *  Maintainer:
   6 *  Andreas Herrmann <herrmann.der.user@googlemail.com>
   7 *
   8 *  Based on the powernow-k7.c module written by Dave Jones.
   9 *  (C) 2003 Dave Jones on behalf of SuSE Labs
  10 *  (C) 2004 Dominik Brodowski <linux@brodo.de>
  11 *  (C) 2004 Pavel Machek <pavel@ucw.cz>
 
  12 *  Based upon datasheets & sample CPUs kindly provided by AMD.
  13 *
  14 *  Valuable input gratefully received from Dave Jones, Pavel Machek,
  15 *  Dominik Brodowski, Jacob Shin, and others.
  16 *  Originally developed by Paul Devriendt.
  17 *
  18 *  Processor information obtained from Chapter 9 (Power and Thermal
  19 *  Management) of the "BIOS and Kernel Developer's Guide (BKDG) for
  20 *  the AMD Athlon 64 and AMD Opteron Processors" and section "2.x
  21 *  Power Management" in BKDGs for newer AMD CPU families.
  22 *
  23 *  Tables for specific CPUs can be inferred from AMD's processor
  24 *  power and thermal data sheets, (e.g. 30417.pdf, 30430.pdf, 43375.pdf)
  25 */
  26
  27#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  28
  29#include <linux/kernel.h>
  30#include <linux/smp.h>
  31#include <linux/module.h>
  32#include <linux/init.h>
  33#include <linux/cpufreq.h>
  34#include <linux/slab.h>
  35#include <linux/string.h>
  36#include <linux/cpumask.h>
  37#include <linux/io.h>
  38#include <linux/delay.h>
  39
  40#include <asm/msr.h>
  41#include <asm/cpu_device_id.h>
  42
  43#include <linux/acpi.h>
  44#include <linux/mutex.h>
  45#include <acpi/processor.h>
  46
 
  47#define VERSION "version 2.20.00"
  48#include "powernow-k8.h"
 
  49
  50/* serialize freq changes  */
  51static DEFINE_MUTEX(fidvid_mutex);
  52
  53static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
  54
 
 
 
 
 
 
 
 
 
  55static struct cpufreq_driver cpufreq_amd64_driver;
  56
 
 
 
 
 
 
 
  57/* Return a frequency in MHz, given an input fid */
  58static u32 find_freq_from_fid(u32 fid)
  59{
  60	return 800 + (fid * 100);
  61}
  62
  63/* Return a frequency in KHz, given an input fid */
  64static u32 find_khz_freq_from_fid(u32 fid)
  65{
  66	return 1000 * find_freq_from_fid(fid);
  67}
  68
 
 
 
 
 
 
  69/* Return the vco fid for an input fid
  70 *
  71 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
  72 * only from corresponding high fids. This returns "high" fid corresponding to
  73 * "low" one.
  74 */
  75static u32 convert_fid_to_vco_fid(u32 fid)
  76{
  77	if (fid < HI_FID_TABLE_BOTTOM)
  78		return 8 + (2 * fid);
  79	else
  80		return fid;
  81}
  82
  83/*
  84 * Return 1 if the pending bit is set. Unless we just instructed the processor
  85 * to transition to a new state, seeing this bit set is really bad news.
  86 */
  87static int pending_bit_stuck(void)
  88{
  89	u32 lo, hi __always_unused;
 
 
 
  90
  91	rdmsr(MSR_FIDVID_STATUS, lo, hi);
  92	return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
  93}
  94
  95/*
  96 * Update the global current fid / vid values from the status msr.
  97 * Returns 1 on error.
  98 */
  99static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
 100{
 101	u32 lo, hi;
 102	u32 i = 0;
 103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104	do {
 105		if (i++ > 10000) {
 106			pr_debug("detected change pending stuck\n");
 107			return 1;
 108		}
 109		rdmsr(MSR_FIDVID_STATUS, lo, hi);
 110	} while (lo & MSR_S_LO_CHANGE_PENDING);
 111
 112	data->currvid = hi & MSR_S_HI_CURRENT_VID;
 113	data->currfid = lo & MSR_S_LO_CURRENT_FID;
 114
 115	return 0;
 116}
 117
 118/* the isochronous relief time */
 119static void count_off_irt(struct powernow_k8_data *data)
 120{
 121	udelay((1 << data->irt) * 10);
 
 122}
 123
 124/* the voltage stabilization time */
 125static void count_off_vst(struct powernow_k8_data *data)
 126{
 127	udelay(data->vstable * VST_UNITS_20US);
 
 128}
 129
 130/* need to init the control msr to a safe value (for each cpu) */
 131static void fidvid_msr_init(void)
 132{
 133	u32 lo, hi;
 134	u8 fid, vid;
 135
 136	rdmsr(MSR_FIDVID_STATUS, lo, hi);
 137	vid = hi & MSR_S_HI_CURRENT_VID;
 138	fid = lo & MSR_S_LO_CURRENT_FID;
 139	lo = fid | (vid << MSR_C_LO_VID_SHIFT);
 140	hi = MSR_C_HI_STP_GNT_BENIGN;
 141	pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
 142	wrmsr(MSR_FIDVID_CTL, lo, hi);
 143}
 144
 145/* write the new fid value along with the other control fields to the msr */
 146static int write_new_fid(struct powernow_k8_data *data, u32 fid)
 147{
 148	u32 lo;
 149	u32 savevid = data->currvid;
 150	u32 i = 0;
 151
 152	if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
 153		pr_err("internal error - overflow on fid write\n");
 154		return 1;
 155	}
 156
 157	lo = fid;
 158	lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
 159	lo |= MSR_C_LO_INIT_FID_VID;
 160
 161	pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
 162		fid, lo, data->plllock * PLL_LOCK_CONVERSION);
 163
 164	do {
 165		wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
 166		if (i++ > 100) {
 167			pr_err("Hardware error - pending bit very stuck - no further pstate changes possible\n");
 
 
 168			return 1;
 169		}
 170	} while (query_current_values_with_pending_wait(data));
 171
 172	count_off_irt(data);
 173
 174	if (savevid != data->currvid) {
 175		pr_err("vid change on fid trans, old 0x%x, new 0x%x\n",
 176		       savevid, data->currvid);
 
 177		return 1;
 178	}
 179
 180	if (fid != data->currfid) {
 181		pr_err("fid trans failed, fid 0x%x, curr 0x%x\n", fid,
 
 182			data->currfid);
 183		return 1;
 184	}
 185
 186	return 0;
 187}
 188
 189/* Write a new vid to the hardware */
 190static int write_new_vid(struct powernow_k8_data *data, u32 vid)
 191{
 192	u32 lo;
 193	u32 savefid = data->currfid;
 194	int i = 0;
 195
 196	if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
 197		pr_err("internal error - overflow on vid write\n");
 198		return 1;
 199	}
 200
 201	lo = data->currfid;
 202	lo |= (vid << MSR_C_LO_VID_SHIFT);
 203	lo |= MSR_C_LO_INIT_FID_VID;
 204
 205	pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
 206		vid, lo, STOP_GRANT_5NS);
 207
 208	do {
 209		wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
 210		if (i++ > 100) {
 211			pr_err("internal error - pending bit very stuck - no further pstate changes possible\n");
 
 
 212			return 1;
 213		}
 214	} while (query_current_values_with_pending_wait(data));
 215
 216	if (savefid != data->currfid) {
 217		pr_err("fid changed on vid trans, old 0x%x new 0x%x\n",
 218			savefid, data->currfid);
 
 219		return 1;
 220	}
 221
 222	if (vid != data->currvid) {
 223		pr_err("vid trans failed, vid 0x%x, curr 0x%x\n",
 
 224				vid, data->currvid);
 225		return 1;
 226	}
 227
 228	return 0;
 229}
 230
 231/*
 232 * Reduce the vid by the max of step or reqvid.
 233 * Decreasing vid codes represent increasing voltages:
 234 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
 235 */
 236static int decrease_vid_code_by_step(struct powernow_k8_data *data,
 237		u32 reqvid, u32 step)
 238{
 239	if ((data->currvid - reqvid) > step)
 240		reqvid = data->currvid - step;
 241
 242	if (write_new_vid(data, reqvid))
 243		return 1;
 244
 245	count_off_vst(data);
 246
 247	return 0;
 248}
 249
 
 
 
 
 
 
 
 
 250/* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
 251static int transition_fid_vid(struct powernow_k8_data *data,
 252		u32 reqfid, u32 reqvid)
 253{
 254	if (core_voltage_pre_transition(data, reqvid, reqfid))
 255		return 1;
 256
 257	if (core_frequency_transition(data, reqfid))
 258		return 1;
 259
 260	if (core_voltage_post_transition(data, reqvid))
 261		return 1;
 262
 263	if (query_current_values_with_pending_wait(data))
 264		return 1;
 265
 266	if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
 267		pr_err("failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n",
 
 268				smp_processor_id(),
 269				reqfid, reqvid, data->currfid, data->currvid);
 270		return 1;
 271	}
 272
 273	pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
 274		smp_processor_id(), data->currfid, data->currvid);
 275
 276	return 0;
 277}
 278
 279/* Phase 1 - core voltage transition ... setup voltage */
 280static int core_voltage_pre_transition(struct powernow_k8_data *data,
 281		u32 reqvid, u32 reqfid)
 282{
 283	u32 rvosteps = data->rvo;
 284	u32 savefid = data->currfid;
 285	u32 maxvid, lo __always_unused, rvomult = 1;
 286
 287	pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n",
 
 288		smp_processor_id(),
 289		data->currfid, data->currvid, reqvid, data->rvo);
 290
 291	if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
 292		rvomult = 2;
 293	rvosteps *= rvomult;
 294	rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
 295	maxvid = 0x1f & (maxvid >> 16);
 296	pr_debug("ph1 maxvid=0x%x\n", maxvid);
 297	if (reqvid < maxvid) /* lower numbers are higher voltages */
 298		reqvid = maxvid;
 299
 300	while (data->currvid > reqvid) {
 301		pr_debug("ph1: curr 0x%x, req vid 0x%x\n",
 302			data->currvid, reqvid);
 303		if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
 304			return 1;
 305	}
 306
 307	while ((rvosteps > 0) &&
 308			((rvomult * data->rvo + data->currvid) > reqvid)) {
 309		if (data->currvid == maxvid) {
 310			rvosteps = 0;
 311		} else {
 312			pr_debug("ph1: changing vid for rvo, req 0x%x\n",
 313				data->currvid - 1);
 314			if (decrease_vid_code_by_step(data, data->currvid-1, 1))
 315				return 1;
 316			rvosteps--;
 317		}
 318	}
 319
 320	if (query_current_values_with_pending_wait(data))
 321		return 1;
 322
 323	if (savefid != data->currfid) {
 324		pr_err("ph1 err, currfid changed 0x%x\n", data->currfid);
 
 325		return 1;
 326	}
 327
 328	pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n",
 329		data->currfid, data->currvid);
 330
 331	return 0;
 332}
 333
 334/* Phase 2 - core frequency transition */
 335static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
 336{
 337	u32 vcoreqfid, vcocurrfid, vcofiddiff;
 338	u32 fid_interval, savevid = data->currvid;
 339
 340	if (data->currfid == reqfid) {
 341		pr_err("ph2 null fid transition 0x%x\n", data->currfid);
 
 342		return 0;
 343	}
 344
 345	pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n",
 
 346		smp_processor_id(),
 347		data->currfid, data->currvid, reqfid);
 348
 349	vcoreqfid = convert_fid_to_vco_fid(reqfid);
 350	vcocurrfid = convert_fid_to_vco_fid(data->currfid);
 351	vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
 352	    : vcoreqfid - vcocurrfid;
 353
 354	if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
 355		vcofiddiff = 0;
 356
 357	while (vcofiddiff > 2) {
 358		(data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
 359
 360		if (reqfid > data->currfid) {
 361			if (data->currfid > LO_FID_TABLE_TOP) {
 362				if (write_new_fid(data,
 363						data->currfid + fid_interval))
 364					return 1;
 365			} else {
 366				if (write_new_fid
 367				    (data,
 368				     2 + convert_fid_to_vco_fid(data->currfid)))
 369					return 1;
 370			}
 371		} else {
 372			if (write_new_fid(data, data->currfid - fid_interval))
 373				return 1;
 374		}
 375
 376		vcocurrfid = convert_fid_to_vco_fid(data->currfid);
 377		vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
 378		    : vcoreqfid - vcocurrfid;
 379	}
 380
 381	if (write_new_fid(data, reqfid))
 382		return 1;
 383
 384	if (query_current_values_with_pending_wait(data))
 385		return 1;
 386
 387	if (data->currfid != reqfid) {
 388		pr_err("ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n",
 
 
 389			data->currfid, reqfid);
 390		return 1;
 391	}
 392
 393	if (savevid != data->currvid) {
 394		pr_err("ph2: vid changed, save 0x%x, curr 0x%x\n",
 395			savevid, data->currvid);
 396		return 1;
 397	}
 398
 399	pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n",
 400		data->currfid, data->currvid);
 401
 402	return 0;
 403}
 404
 405/* Phase 3 - core voltage transition flow ... jump to the final vid. */
 406static int core_voltage_post_transition(struct powernow_k8_data *data,
 407		u32 reqvid)
 408{
 409	u32 savefid = data->currfid;
 410	u32 savereqvid = reqvid;
 411
 412	pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
 413		smp_processor_id(),
 414		data->currfid, data->currvid);
 415
 416	if (reqvid != data->currvid) {
 417		if (write_new_vid(data, reqvid))
 418			return 1;
 419
 420		if (savefid != data->currfid) {
 421			pr_err("ph3: bad fid change, save 0x%x, curr 0x%x\n",
 422				savefid, data->currfid);
 
 423			return 1;
 424		}
 425
 426		if (data->currvid != reqvid) {
 427			pr_err("ph3: failed vid transition\n, req 0x%x, curr 0x%x",
 428				reqvid, data->currvid);
 
 
 429			return 1;
 430		}
 431	}
 432
 433	if (query_current_values_with_pending_wait(data))
 434		return 1;
 435
 436	if (savereqvid != data->currvid) {
 437		pr_debug("ph3 failed, currvid 0x%x\n", data->currvid);
 438		return 1;
 439	}
 440
 441	if (savefid != data->currfid) {
 442		pr_debug("ph3 failed, currfid changed 0x%x\n",
 443			data->currfid);
 444		return 1;
 445	}
 446
 447	pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n",
 448		data->currfid, data->currvid);
 449
 450	return 0;
 451}
 452
 453static const struct x86_cpu_id powernow_k8_ids[] = {
 454	/* IO based frequency switching */
 455	X86_MATCH_VENDOR_FAM(AMD, 0xf, NULL),
 
 
 456	{}
 457};
 458MODULE_DEVICE_TABLE(x86cpu, powernow_k8_ids);
 459
 460static void check_supported_cpu(void *_rc)
 461{
 462	u32 eax, ebx, ecx, edx;
 463	int *rc = _rc;
 464
 465	*rc = -ENODEV;
 466
 467	eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
 468
 469	if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
 470		if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
 471		    ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
 472			pr_info("Processor cpuid %x not supported\n", eax);
 
 473			return;
 474		}
 475
 476		eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
 477		if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
 478			pr_info("No frequency change capabilities detected\n");
 
 479			return;
 480		}
 481
 482		cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
 483		if ((edx & P_STATE_TRANSITION_CAPABLE)
 484			!= P_STATE_TRANSITION_CAPABLE) {
 485			pr_info("Power state transitions not supported\n");
 
 486			return;
 487		}
 488		*rc = 0;
 
 
 
 
 
 489	}
 
 
 490}
 491
 492static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
 493		u8 maxvid)
 494{
 495	unsigned int j;
 496	u8 lastfid = 0xff;
 497
 498	for (j = 0; j < data->numps; j++) {
 499		if (pst[j].vid > LEAST_VID) {
 500			pr_err(FW_BUG "vid %d invalid : 0x%x\n", j,
 501				pst[j].vid);
 502			return -EINVAL;
 503		}
 504		if (pst[j].vid < data->rvo) {
 505			/* vid + rvo >= 0 */
 506			pr_err(FW_BUG "0 vid exceeded with pstate %d\n", j);
 
 507			return -ENODEV;
 508		}
 509		if (pst[j].vid < maxvid + data->rvo) {
 510			/* vid + rvo >= maxvid */
 511			pr_err(FW_BUG "maxvid exceeded with pstate %d\n", j);
 
 512			return -ENODEV;
 513		}
 514		if (pst[j].fid > MAX_FID) {
 515			pr_err(FW_BUG "maxfid exceeded with pstate %d\n", j);
 
 516			return -ENODEV;
 517		}
 518		if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
 519			/* Only first fid is allowed to be in "low" range */
 520			pr_err(FW_BUG "two low fids - %d : 0x%x\n", j,
 521				pst[j].fid);
 522			return -EINVAL;
 523		}
 524		if (pst[j].fid < lastfid)
 525			lastfid = pst[j].fid;
 526	}
 527	if (lastfid & 1) {
 528		pr_err(FW_BUG "lastfid invalid\n");
 529		return -EINVAL;
 530	}
 531	if (lastfid > LO_FID_TABLE_TOP)
 532		pr_info(FW_BUG "first fid not from lo freq table\n");
 
 533
 534	return 0;
 535}
 536
 537static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
 538		unsigned int entry)
 539{
 540	powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
 541}
 542
 543static void print_basics(struct powernow_k8_data *data)
 544{
 545	int j;
 546	for (j = 0; j < data->numps; j++) {
 547		if (data->powernow_table[j].frequency !=
 548				CPUFREQ_ENTRY_INVALID) {
 549			pr_info("fid 0x%x (%d MHz), vid 0x%x\n",
 550				data->powernow_table[j].driver_data & 0xff,
 551				data->powernow_table[j].frequency/1000,
 552				data->powernow_table[j].driver_data >> 8);
 
 
 
 
 
 
 
 
 553		}
 554	}
 555	if (data->batps)
 556		pr_info("Only %d pstates on battery\n", data->batps);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 557}
 558
 559static int fill_powernow_table(struct powernow_k8_data *data,
 560		struct pst_s *pst, u8 maxvid)
 561{
 562	struct cpufreq_frequency_table *powernow_table;
 563	unsigned int j;
 564
 565	if (data->batps) {
 566		/* use ACPI support to get full speed on mains power */
 567		pr_warn("Only %d pstates usable (use ACPI driver for full range\n",
 568			data->batps);
 
 569		data->numps = data->batps;
 570	}
 571
 572	for (j = 1; j < data->numps; j++) {
 573		if (pst[j-1].fid >= pst[j].fid) {
 574			pr_err("PST out of sequence\n");
 575			return -EINVAL;
 576		}
 577	}
 578
 579	if (data->numps < 2) {
 580		pr_err("no p states to transition\n");
 581		return -ENODEV;
 582	}
 583
 584	if (check_pst_table(data, pst, maxvid))
 585		return -EINVAL;
 586
 587	powernow_table = kzalloc((sizeof(*powernow_table)
 588		* (data->numps + 1)), GFP_KERNEL);
 589	if (!powernow_table)
 
 590		return -ENOMEM;
 
 591
 592	for (j = 0; j < data->numps; j++) {
 593		int freq;
 594		powernow_table[j].driver_data = pst[j].fid; /* lower 8 bits */
 595		powernow_table[j].driver_data |= (pst[j].vid << 8); /* upper 8 bits */
 596		freq = find_khz_freq_from_fid(pst[j].fid);
 597		powernow_table[j].frequency = freq;
 598	}
 599	powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
 600	powernow_table[data->numps].driver_data = 0;
 601
 602	if (query_current_values_with_pending_wait(data)) {
 603		kfree(powernow_table);
 604		return -EIO;
 605	}
 606
 607	pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
 608	data->powernow_table = powernow_table;
 609	if (cpumask_first(topology_core_cpumask(data->cpu)) == data->cpu)
 610		print_basics(data);
 611
 612	for (j = 0; j < data->numps; j++)
 613		if ((pst[j].fid == data->currfid) &&
 614		    (pst[j].vid == data->currvid))
 615			return 0;
 616
 617	pr_debug("currfid/vid do not match PST, ignoring\n");
 618	return 0;
 619}
 620
 621/* Find and validate the PSB/PST table in BIOS. */
 622static int find_psb_table(struct powernow_k8_data *data)
 623{
 624	struct psb_s *psb;
 625	unsigned int i;
 626	u32 mvs;
 627	u8 maxvid;
 628	u32 cpst = 0;
 629	u32 thiscpuid;
 630
 631	for (i = 0xc0000; i < 0xffff0; i += 0x10) {
 632		/* Scan BIOS looking for the signature. */
 633		/* It can not be at ffff0 - it is too big. */
 634
 635		psb = phys_to_virt(i);
 636		if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
 637			continue;
 638
 639		pr_debug("found PSB header at 0x%p\n", psb);
 640
 641		pr_debug("table vers: 0x%x\n", psb->tableversion);
 642		if (psb->tableversion != PSB_VERSION_1_4) {
 643			pr_err(FW_BUG "PSB table is not v1.4\n");
 644			return -ENODEV;
 645		}
 646
 647		pr_debug("flags: 0x%x\n", psb->flags1);
 648		if (psb->flags1) {
 649			pr_err(FW_BUG "unknown flags\n");
 650			return -ENODEV;
 651		}
 652
 653		data->vstable = psb->vstable;
 654		pr_debug("voltage stabilization time: %d(*20us)\n",
 655				data->vstable);
 656
 657		pr_debug("flags2: 0x%x\n", psb->flags2);
 658		data->rvo = psb->flags2 & 3;
 659		data->irt = ((psb->flags2) >> 2) & 3;
 660		mvs = ((psb->flags2) >> 4) & 3;
 661		data->vidmvs = 1 << mvs;
 662		data->batps = ((psb->flags2) >> 6) & 3;
 663
 664		pr_debug("ramp voltage offset: %d\n", data->rvo);
 665		pr_debug("isochronous relief time: %d\n", data->irt);
 666		pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
 667
 668		pr_debug("numpst: 0x%x\n", psb->num_tables);
 669		cpst = psb->num_tables;
 670		if ((psb->cpuid == 0x00000fc0) ||
 671		    (psb->cpuid == 0x00000fe0)) {
 672			thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
 673			if ((thiscpuid == 0x00000fc0) ||
 674			    (thiscpuid == 0x00000fe0))
 675				cpst = 1;
 676		}
 677		if (cpst != 1) {
 678			pr_err(FW_BUG "numpst must be 1\n");
 679			return -ENODEV;
 680		}
 681
 682		data->plllock = psb->plllocktime;
 683		pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
 684		pr_debug("maxfid: 0x%x\n", psb->maxfid);
 685		pr_debug("maxvid: 0x%x\n", psb->maxvid);
 686		maxvid = psb->maxvid;
 687
 688		data->numps = psb->numps;
 689		pr_debug("numpstates: 0x%x\n", data->numps);
 690		return fill_powernow_table(data,
 691				(struct pst_s *)(psb+1), maxvid);
 692	}
 693	/*
 694	 * If you see this message, complain to BIOS manufacturer. If
 695	 * he tells you "we do not support Linux" or some similar
 696	 * nonsense, remember that Windows 2000 uses the same legacy
 697	 * mechanism that the old Linux PSB driver uses. Tell them it
 698	 * is broken with Windows 2000.
 699	 *
 700	 * The reference to the AMD documentation is chapter 9 in the
 701	 * BIOS and Kernel Developer's Guide, which is available on
 702	 * www.amd.com
 703	 */
 704	pr_err(FW_BUG "No PSB or ACPI _PSS objects\n");
 705	pr_err("Make sure that your BIOS is up to date and Cool'N'Quiet support is enabled in BIOS setup\n");
 
 706	return -ENODEV;
 707}
 708
 709static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
 710		unsigned int index)
 711{
 712	u64 control;
 713
 714	if (!data->acpi_data.state_count)
 715		return;
 716
 717	control = data->acpi_data.states[index].control;
 718	data->irt = (control >> IRT_SHIFT) & IRT_MASK;
 719	data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
 720	data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
 721	data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
 722	data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
 723	data->vstable = (control >> VST_SHIFT) & VST_MASK;
 724}
 725
 726static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
 727{
 728	struct cpufreq_frequency_table *powernow_table;
 729	int ret_val = -ENODEV;
 730	u64 control, status;
 731
 732	if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
 733		pr_debug("register performance failed: bad ACPI data\n");
 734		return -EIO;
 735	}
 736
 737	/* verify the data contained in the ACPI structures */
 738	if (data->acpi_data.state_count <= 1) {
 739		pr_debug("No ACPI P-States\n");
 740		goto err_out;
 741	}
 742
 743	control = data->acpi_data.control_register.space_id;
 744	status = data->acpi_data.status_register.space_id;
 745
 746	if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
 747	    (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
 748		pr_debug("Invalid control/status registers (%llx - %llx)\n",
 749			control, status);
 750		goto err_out;
 751	}
 752
 753	/* fill in data->powernow_table */
 754	powernow_table = kzalloc((sizeof(*powernow_table)
 755		* (data->acpi_data.state_count + 1)), GFP_KERNEL);
 756	if (!powernow_table)
 
 757		goto err_out;
 
 758
 759	/* fill in data */
 760	data->numps = data->acpi_data.state_count;
 761	powernow_k8_acpi_pst_values(data, 0);
 762
 763	ret_val = fill_powernow_table_fidvid(data, powernow_table);
 
 
 
 764	if (ret_val)
 765		goto err_out_mem;
 766
 767	powernow_table[data->acpi_data.state_count].frequency =
 768		CPUFREQ_TABLE_END;
 
 769	data->powernow_table = powernow_table;
 770
 771	if (cpumask_first(topology_core_cpumask(data->cpu)) == data->cpu)
 772		print_basics(data);
 773
 774	/* notify BIOS that we exist */
 775	acpi_processor_notify_smm(THIS_MODULE);
 776
 777	if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
 778		pr_err("unable to alloc powernow_k8_data cpumask\n");
 
 779		ret_val = -ENOMEM;
 780		goto err_out_mem;
 781	}
 782
 783	return 0;
 784
 785err_out_mem:
 786	kfree(powernow_table);
 787
 788err_out:
 789	acpi_processor_unregister_performance(data->cpu);
 790
 791	/* data->acpi_data.state_count informs us at ->exit()
 792	 * whether ACPI was used */
 793	data->acpi_data.state_count = 0;
 794
 795	return ret_val;
 796}
 797
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 798static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
 799		struct cpufreq_frequency_table *powernow_table)
 800{
 801	int i;
 802
 803	for (i = 0; i < data->acpi_data.state_count; i++) {
 804		u32 fid;
 805		u32 vid;
 806		u32 freq, index;
 807		u64 status, control;
 808
 809		if (data->exttype) {
 810			status =  data->acpi_data.states[i].status;
 811			fid = status & EXT_FID_MASK;
 812			vid = (status >> VID_SHIFT) & EXT_VID_MASK;
 813		} else {
 814			control =  data->acpi_data.states[i].control;
 815			fid = control & FID_MASK;
 816			vid = (control >> VID_SHIFT) & VID_MASK;
 817		}
 818
 819		pr_debug("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
 820
 821		index = fid | (vid<<8);
 822		powernow_table[i].driver_data = index;
 823
 824		freq = find_khz_freq_from_fid(fid);
 825		powernow_table[i].frequency = freq;
 826
 827		/* verify frequency is OK */
 828		if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
 829			pr_debug("invalid freq %u kHz, ignoring\n", freq);
 830			invalidate_entry(powernow_table, i);
 831			continue;
 832		}
 833
 834		/* verify voltage is OK -
 835		 * BIOSs are using "off" to indicate invalid */
 836		if (vid == VID_OFF) {
 837			pr_debug("invalid vid %u, ignoring\n", vid);
 838			invalidate_entry(powernow_table, i);
 839			continue;
 840		}
 841
 842		if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
 843			pr_info("invalid freq entries %u kHz vs. %u kHz\n",
 844				freq, (unsigned int)
 
 845				(data->acpi_data.states[i].core_frequency
 846				 * 1000));
 847			invalidate_entry(powernow_table, i);
 848			continue;
 849		}
 850	}
 851	return 0;
 852}
 853
 854static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
 855{
 856	if (data->acpi_data.state_count)
 857		acpi_processor_unregister_performance(data->cpu);
 
 858	free_cpumask_var(data->acpi_data.shared_cpu_map);
 859}
 860
 861static int get_transition_latency(struct powernow_k8_data *data)
 862{
 863	int max_latency = 0;
 864	int i;
 865	for (i = 0; i < data->acpi_data.state_count; i++) {
 866		int cur_latency = data->acpi_data.states[i].transition_latency
 867			+ data->acpi_data.states[i].bus_master_latency;
 868		if (cur_latency > max_latency)
 869			max_latency = cur_latency;
 870	}
 871	if (max_latency == 0) {
 872		pr_err(FW_WARN "Invalid zero transition latency\n");
 
 
 
 
 
 
 
 
 873		max_latency = 1;
 874	}
 875	/* value in usecs, needs to be in nanoseconds */
 876	return 1000 * max_latency;
 877}
 878
 879/* Take a frequency, and issue the fid/vid transition command */
 880static int transition_frequency_fidvid(struct powernow_k8_data *data,
 881		unsigned int index,
 882		struct cpufreq_policy *policy)
 883{
 884	u32 fid = 0;
 885	u32 vid = 0;
 886	int res;
 887	struct cpufreq_freqs freqs;
 888
 889	pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
 890
 891	/* fid/vid correctness check for k8 */
 892	/* fid are the lower 8 bits of the index we stored into
 893	 * the cpufreq frequency table in find_psb_table, vid
 894	 * are the upper 8 bits.
 895	 */
 896	fid = data->powernow_table[index].driver_data & 0xFF;
 897	vid = (data->powernow_table[index].driver_data & 0xFF00) >> 8;
 898
 899	pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
 900
 901	if (query_current_values_with_pending_wait(data))
 902		return 1;
 903
 904	if ((data->currvid == vid) && (data->currfid == fid)) {
 905		pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n",
 906			fid, vid);
 907		return 0;
 908	}
 909
 910	pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n",
 911		smp_processor_id(), fid, vid);
 912	freqs.old = find_khz_freq_from_fid(data->currfid);
 913	freqs.new = find_khz_freq_from_fid(fid);
 914
 915	cpufreq_freq_transition_begin(policy, &freqs);
 
 
 
 
 916	res = transition_fid_vid(data, fid, vid);
 917	cpufreq_freq_transition_end(policy, &freqs, res);
 
 
 
 918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919	return res;
 920}
 921
 922struct powernowk8_target_arg {
 923	struct cpufreq_policy		*pol;
 924	unsigned			newstate;
 
 925};
 926
 927static long powernowk8_target_fn(void *arg)
 928{
 929	struct powernowk8_target_arg *pta = arg;
 930	struct cpufreq_policy *pol = pta->pol;
 931	unsigned newstate = pta->newstate;
 
 932	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
 933	u32 checkfid;
 934	u32 checkvid;
 
 935	int ret;
 936
 937	if (!data)
 938		return -EINVAL;
 939
 940	checkfid = data->currfid;
 941	checkvid = data->currvid;
 942
 943	if (pending_bit_stuck()) {
 944		pr_err("failing targ, change pending bit set\n");
 945		return -EIO;
 946	}
 947
 948	pr_debug("targ: cpu %d, %d kHz, min %d, max %d\n",
 949		pol->cpu, data->powernow_table[newstate].frequency, pol->min,
 950		pol->max);
 951
 952	if (query_current_values_with_pending_wait(data))
 953		return -EIO;
 954
 955	pr_debug("targ: curr fid 0x%x, vid 0x%x\n",
 
 956		data->currfid, data->currvid);
 957
 958	if ((checkvid != data->currvid) ||
 959	    (checkfid != data->currfid)) {
 960		pr_info("error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
 961		       checkfid, data->currfid,
 962		       checkvid, data->currvid);
 
 
 
 963	}
 964
 
 
 
 
 965	mutex_lock(&fidvid_mutex);
 966
 967	powernow_k8_acpi_pst_values(data, newstate);
 968
 969	ret = transition_frequency_fidvid(data, newstate, pol);
 970
 
 
 
 971	if (ret) {
 972		pr_err("transition frequency failed\n");
 973		mutex_unlock(&fidvid_mutex);
 974		return 1;
 975	}
 976	mutex_unlock(&fidvid_mutex);
 977
 978	pol->cur = find_khz_freq_from_fid(data->currfid);
 
 
 
 
 979
 980	return 0;
 981}
 982
 983/* Driver entry point to switch to the target frequency */
 984static int powernowk8_target(struct cpufreq_policy *pol, unsigned index)
 
 985{
 986	struct powernowk8_target_arg pta = { .pol = pol, .newstate = index };
 
 987
 988	return work_on_cpu(pol->cpu, powernowk8_target_fn, &pta);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 989}
 990
 991struct init_on_cpu {
 992	struct powernow_k8_data *data;
 993	int rc;
 994};
 995
 996static void powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
 997{
 998	struct init_on_cpu *init_on_cpu = _init_on_cpu;
 999
1000	if (pending_bit_stuck()) {
1001		pr_err("failing init, change pending bit set\n");
1002		init_on_cpu->rc = -ENODEV;
1003		return;
1004	}
1005
1006	if (query_current_values_with_pending_wait(init_on_cpu->data)) {
1007		init_on_cpu->rc = -ENODEV;
1008		return;
1009	}
1010
1011	fidvid_msr_init();
 
1012
1013	init_on_cpu->rc = 0;
1014}
1015
1016#define MISSING_PSS_MSG \
1017	FW_BUG "No compatible ACPI _PSS objects found.\n" \
1018	FW_BUG "First, make sure Cool'N'Quiet is enabled in the BIOS.\n" \
1019	FW_BUG "If that doesn't help, try upgrading your BIOS.\n"
1020
1021/* per CPU init entry point to the driver */
1022static int powernowk8_cpu_init(struct cpufreq_policy *pol)
1023{
 
 
 
1024	struct powernow_k8_data *data;
1025	struct init_on_cpu init_on_cpu;
1026	int rc, cpu;
 
 
 
 
1027
1028	smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
1029	if (rc)
1030		return -ENODEV;
1031
1032	data = kzalloc(sizeof(*data), GFP_KERNEL);
1033	if (!data)
 
1034		return -ENOMEM;
 
1035
1036	data->cpu = pol->cpu;
 
1037
1038	if (powernow_k8_cpu_init_acpi(data)) {
1039		/*
1040		 * Use the PSB BIOS structure. This is only available on
1041		 * an UP version, and is deprecated by AMD.
1042		 */
1043		if (num_online_cpus() != 1) {
1044			pr_err_once(MISSING_PSS_MSG);
1045			goto err_out;
1046		}
1047		if (pol->cpu != 0) {
1048			pr_err(FW_BUG "No ACPI _PSS objects for CPU other than CPU0. Complain to your BIOS vendor.\n");
 
 
1049			goto err_out;
1050		}
1051		rc = find_psb_table(data);
1052		if (rc)
1053			goto err_out;
1054
1055		/* Take a crude guess here.
1056		 * That guess was in microseconds, so multiply with 1000 */
1057		pol->cpuinfo.transition_latency = (
1058			 ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1059			 ((1 << data->irt) * 30)) * 1000;
1060	} else /* ACPI _PSS objects available */
1061		pol->cpuinfo.transition_latency = get_transition_latency(data);
1062
1063	/* only run on specific CPU from here on */
1064	init_on_cpu.data = data;
1065	smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
1066				 &init_on_cpu, 1);
1067	rc = init_on_cpu.rc;
1068	if (rc != 0)
1069		goto err_out_exit_acpi;
1070
1071	cpumask_copy(pol->cpus, topology_core_cpumask(pol->cpu));
 
 
 
1072	data->available_cores = pol->cpus;
1073	pol->freq_table = data->powernow_table;
1074
1075	pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n",
1076		data->currfid, data->currvid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1077
1078	/* Point all the CPUs in this policy to the same data */
1079	for_each_cpu(cpu, pol->cpus)
1080		per_cpu(powernow_data, cpu) = data;
1081
1082	return 0;
1083
1084err_out_exit_acpi:
1085	powernow_k8_cpu_exit_acpi(data);
1086
1087err_out:
1088	kfree(data);
1089	return -ENODEV;
1090}
1091
1092static int powernowk8_cpu_exit(struct cpufreq_policy *pol)
1093{
1094	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1095	int cpu;
1096
1097	if (!data)
1098		return -EINVAL;
1099
1100	powernow_k8_cpu_exit_acpi(data);
1101
 
 
1102	kfree(data->powernow_table);
1103	kfree(data);
1104	/* pol->cpus will be empty here, use related_cpus instead. */
1105	for_each_cpu(cpu, pol->related_cpus)
1106		per_cpu(powernow_data, cpu) = NULL;
1107
1108	return 0;
1109}
1110
1111static void query_values_on_cpu(void *_err)
1112{
1113	int *err = _err;
1114	struct powernow_k8_data *data = __this_cpu_read(powernow_data);
1115
1116	*err = query_current_values_with_pending_wait(data);
1117}
1118
1119static unsigned int powernowk8_get(unsigned int cpu)
1120{
1121	struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
1122	unsigned int khz = 0;
1123	int err;
1124
1125	if (!data)
1126		return 0;
1127
1128	smp_call_function_single(cpu, query_values_on_cpu, &err, true);
1129	if (err)
1130		goto out;
1131
1132	khz = find_khz_freq_from_fid(data->currfid);
 
 
 
 
1133
1134
1135out:
1136	return khz;
1137}
1138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139static struct cpufreq_driver cpufreq_amd64_driver = {
1140	.flags		= CPUFREQ_ASYNC_NOTIFICATION,
1141	.verify		= cpufreq_generic_frequency_table_verify,
1142	.target_index	= powernowk8_target,
1143	.bios_limit	= acpi_processor_get_bios_limit,
1144	.init		= powernowk8_cpu_init,
1145	.exit		= powernowk8_cpu_exit,
1146	.get		= powernowk8_get,
1147	.name		= "powernow-k8",
1148	.attr		= cpufreq_generic_attr,
 
1149};
1150
1151static void __request_acpi_cpufreq(void)
 
 
 
 
 
 
 
1152{
1153	const char drv[] = "acpi-cpufreq";
1154	const char *cur_drv;
1155
1156	cur_drv = cpufreq_get_current_driver();
1157	if (!cur_drv)
1158		goto request;
1159
1160	if (strncmp(cur_drv, drv, min_t(size_t, strlen(cur_drv), strlen(drv))))
1161		pr_warn("WTF driver: %s\n", cur_drv);
 
 
 
 
1162
1163	return;
 
 
 
 
 
1164
1165 request:
1166	pr_warn("This CPU is not supported anymore, using acpi-cpufreq instead.\n");
1167	request_module(drv);
 
 
1168}
1169
 
 
 
 
1170/* driver entry point for init */
1171static int powernowk8_init(void)
1172{
1173	unsigned int i, supported_cpus = 0;
1174	int ret;
1175
1176	if (!x86_match_cpu(powernow_k8_ids))
1177		return -ENODEV;
1178
1179	if (boot_cpu_has(X86_FEATURE_HW_PSTATE)) {
1180		__request_acpi_cpufreq();
1181		return -ENODEV;
1182	}
1183
1184	cpus_read_lock();
1185	for_each_online_cpu(i) {
1186		smp_call_function_single(i, check_supported_cpu, &ret, 1);
1187		if (!ret)
 
1188			supported_cpus++;
1189	}
1190
1191	if (supported_cpus != num_online_cpus()) {
1192		cpus_read_unlock();
1193		return -ENODEV;
1194	}
1195	cpus_read_unlock();
1196
1197	ret = cpufreq_register_driver(&cpufreq_amd64_driver);
1198	if (ret)
1199		return ret;
1200
1201	pr_info("Found %d %s (%d cpu cores) (" VERSION ")\n",
1202		num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
1203
1204	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1205}
1206
1207/* driver entry point for term */
1208static void __exit powernowk8_exit(void)
1209{
1210	pr_debug("exit\n");
1211
 
 
 
 
 
 
 
1212	cpufreq_unregister_driver(&cpufreq_amd64_driver);
1213}
1214
1215MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com>");
1216MODULE_AUTHOR("Mark Langsdorf <mark.langsdorf@amd.com>");
1217MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1218MODULE_LICENSE("GPL");
1219
1220late_initcall(powernowk8_init);
1221module_exit(powernowk8_exit);
v3.5.6
 
   1/*
   2 *   (c) 2003-2012 Advanced Micro Devices, Inc.
   3 *  Your use of this code is subject to the terms and conditions of the
   4 *  GNU general public license version 2. See "COPYING" or
   5 *  http://www.gnu.org/licenses/gpl.html
   6 *
   7 *  Maintainer:
   8 *  Andreas Herrmann <andreas.herrmann3@amd.com>
   9 *
  10 *  Based on the powernow-k7.c module written by Dave Jones.
  11 *  (C) 2003 Dave Jones on behalf of SuSE Labs
  12 *  (C) 2004 Dominik Brodowski <linux@brodo.de>
  13 *  (C) 2004 Pavel Machek <pavel@ucw.cz>
  14 *  Licensed under the terms of the GNU GPL License version 2.
  15 *  Based upon datasheets & sample CPUs kindly provided by AMD.
  16 *
  17 *  Valuable input gratefully received from Dave Jones, Pavel Machek,
  18 *  Dominik Brodowski, Jacob Shin, and others.
  19 *  Originally developed by Paul Devriendt.
  20 *
  21 *  Processor information obtained from Chapter 9 (Power and Thermal
  22 *  Management) of the "BIOS and Kernel Developer's Guide (BKDG) for
  23 *  the AMD Athlon 64 and AMD Opteron Processors" and section "2.x
  24 *  Power Management" in BKDGs for newer AMD CPU families.
  25 *
  26 *  Tables for specific CPUs can be inferred from AMD's processor
  27 *  power and thermal data sheets, (e.g. 30417.pdf, 30430.pdf, 43375.pdf)
  28 */
  29
 
 
  30#include <linux/kernel.h>
  31#include <linux/smp.h>
  32#include <linux/module.h>
  33#include <linux/init.h>
  34#include <linux/cpufreq.h>
  35#include <linux/slab.h>
  36#include <linux/string.h>
  37#include <linux/cpumask.h>
  38#include <linux/io.h>
  39#include <linux/delay.h>
  40
  41#include <asm/msr.h>
  42#include <asm/cpu_device_id.h>
  43
  44#include <linux/acpi.h>
  45#include <linux/mutex.h>
  46#include <acpi/processor.h>
  47
  48#define PFX "powernow-k8: "
  49#define VERSION "version 2.20.00"
  50#include "powernow-k8.h"
  51#include "mperf.h"
  52
  53/* serialize freq changes  */
  54static DEFINE_MUTEX(fidvid_mutex);
  55
  56static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
  57
  58static int cpu_family = CPU_OPTERON;
  59
  60/* array to map SW pstate number to acpi state */
  61static u32 ps_to_as[8];
  62
  63/* core performance boost */
  64static bool cpb_capable, cpb_enabled;
  65static struct msr __percpu *msrs;
  66
  67static struct cpufreq_driver cpufreq_amd64_driver;
  68
  69#ifndef CONFIG_SMP
  70static inline const struct cpumask *cpu_core_mask(int cpu)
  71{
  72	return cpumask_of(0);
  73}
  74#endif
  75
  76/* Return a frequency in MHz, given an input fid */
  77static u32 find_freq_from_fid(u32 fid)
  78{
  79	return 800 + (fid * 100);
  80}
  81
  82/* Return a frequency in KHz, given an input fid */
  83static u32 find_khz_freq_from_fid(u32 fid)
  84{
  85	return 1000 * find_freq_from_fid(fid);
  86}
  87
  88static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
  89				     u32 pstate)
  90{
  91	return data[ps_to_as[pstate]].frequency;
  92}
  93
  94/* Return the vco fid for an input fid
  95 *
  96 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
  97 * only from corresponding high fids. This returns "high" fid corresponding to
  98 * "low" one.
  99 */
 100static u32 convert_fid_to_vco_fid(u32 fid)
 101{
 102	if (fid < HI_FID_TABLE_BOTTOM)
 103		return 8 + (2 * fid);
 104	else
 105		return fid;
 106}
 107
 108/*
 109 * Return 1 if the pending bit is set. Unless we just instructed the processor
 110 * to transition to a new state, seeing this bit set is really bad news.
 111 */
 112static int pending_bit_stuck(void)
 113{
 114	u32 lo, hi;
 115
 116	if (cpu_family == CPU_HW_PSTATE)
 117		return 0;
 118
 119	rdmsr(MSR_FIDVID_STATUS, lo, hi);
 120	return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
 121}
 122
 123/*
 124 * Update the global current fid / vid values from the status msr.
 125 * Returns 1 on error.
 126 */
 127static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
 128{
 129	u32 lo, hi;
 130	u32 i = 0;
 131
 132	if (cpu_family == CPU_HW_PSTATE) {
 133		rdmsr(MSR_PSTATE_STATUS, lo, hi);
 134		i = lo & HW_PSTATE_MASK;
 135		data->currpstate = i;
 136
 137		/*
 138		 * a workaround for family 11h erratum 311 might cause
 139		 * an "out-of-range Pstate if the core is in Pstate-0
 140		 */
 141		if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
 142			data->currpstate = HW_PSTATE_0;
 143
 144		return 0;
 145	}
 146	do {
 147		if (i++ > 10000) {
 148			pr_debug("detected change pending stuck\n");
 149			return 1;
 150		}
 151		rdmsr(MSR_FIDVID_STATUS, lo, hi);
 152	} while (lo & MSR_S_LO_CHANGE_PENDING);
 153
 154	data->currvid = hi & MSR_S_HI_CURRENT_VID;
 155	data->currfid = lo & MSR_S_LO_CURRENT_FID;
 156
 157	return 0;
 158}
 159
 160/* the isochronous relief time */
 161static void count_off_irt(struct powernow_k8_data *data)
 162{
 163	udelay((1 << data->irt) * 10);
 164	return;
 165}
 166
 167/* the voltage stabilization time */
 168static void count_off_vst(struct powernow_k8_data *data)
 169{
 170	udelay(data->vstable * VST_UNITS_20US);
 171	return;
 172}
 173
 174/* need to init the control msr to a safe value (for each cpu) */
 175static void fidvid_msr_init(void)
 176{
 177	u32 lo, hi;
 178	u8 fid, vid;
 179
 180	rdmsr(MSR_FIDVID_STATUS, lo, hi);
 181	vid = hi & MSR_S_HI_CURRENT_VID;
 182	fid = lo & MSR_S_LO_CURRENT_FID;
 183	lo = fid | (vid << MSR_C_LO_VID_SHIFT);
 184	hi = MSR_C_HI_STP_GNT_BENIGN;
 185	pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
 186	wrmsr(MSR_FIDVID_CTL, lo, hi);
 187}
 188
 189/* write the new fid value along with the other control fields to the msr */
 190static int write_new_fid(struct powernow_k8_data *data, u32 fid)
 191{
 192	u32 lo;
 193	u32 savevid = data->currvid;
 194	u32 i = 0;
 195
 196	if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
 197		printk(KERN_ERR PFX "internal error - overflow on fid write\n");
 198		return 1;
 199	}
 200
 201	lo = fid;
 202	lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
 203	lo |= MSR_C_LO_INIT_FID_VID;
 204
 205	pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
 206		fid, lo, data->plllock * PLL_LOCK_CONVERSION);
 207
 208	do {
 209		wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
 210		if (i++ > 100) {
 211			printk(KERN_ERR PFX
 212				"Hardware error - pending bit very stuck - "
 213				"no further pstate changes possible\n");
 214			return 1;
 215		}
 216	} while (query_current_values_with_pending_wait(data));
 217
 218	count_off_irt(data);
 219
 220	if (savevid != data->currvid) {
 221		printk(KERN_ERR PFX
 222			"vid change on fid trans, old 0x%x, new 0x%x\n",
 223			savevid, data->currvid);
 224		return 1;
 225	}
 226
 227	if (fid != data->currfid) {
 228		printk(KERN_ERR PFX
 229			"fid trans failed, fid 0x%x, curr 0x%x\n", fid,
 230			data->currfid);
 231		return 1;
 232	}
 233
 234	return 0;
 235}
 236
 237/* Write a new vid to the hardware */
 238static int write_new_vid(struct powernow_k8_data *data, u32 vid)
 239{
 240	u32 lo;
 241	u32 savefid = data->currfid;
 242	int i = 0;
 243
 244	if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
 245		printk(KERN_ERR PFX "internal error - overflow on vid write\n");
 246		return 1;
 247	}
 248
 249	lo = data->currfid;
 250	lo |= (vid << MSR_C_LO_VID_SHIFT);
 251	lo |= MSR_C_LO_INIT_FID_VID;
 252
 253	pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
 254		vid, lo, STOP_GRANT_5NS);
 255
 256	do {
 257		wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
 258		if (i++ > 100) {
 259			printk(KERN_ERR PFX "internal error - pending bit "
 260					"very stuck - no further pstate "
 261					"changes possible\n");
 262			return 1;
 263		}
 264	} while (query_current_values_with_pending_wait(data));
 265
 266	if (savefid != data->currfid) {
 267		printk(KERN_ERR PFX "fid changed on vid trans, old "
 268			"0x%x new 0x%x\n",
 269		       savefid, data->currfid);
 270		return 1;
 271	}
 272
 273	if (vid != data->currvid) {
 274		printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
 275				"curr 0x%x\n",
 276				vid, data->currvid);
 277		return 1;
 278	}
 279
 280	return 0;
 281}
 282
 283/*
 284 * Reduce the vid by the max of step or reqvid.
 285 * Decreasing vid codes represent increasing voltages:
 286 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
 287 */
 288static int decrease_vid_code_by_step(struct powernow_k8_data *data,
 289		u32 reqvid, u32 step)
 290{
 291	if ((data->currvid - reqvid) > step)
 292		reqvid = data->currvid - step;
 293
 294	if (write_new_vid(data, reqvid))
 295		return 1;
 296
 297	count_off_vst(data);
 298
 299	return 0;
 300}
 301
 302/* Change hardware pstate by single MSR write */
 303static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
 304{
 305	wrmsr(MSR_PSTATE_CTRL, pstate, 0);
 306	data->currpstate = pstate;
 307	return 0;
 308}
 309
 310/* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
 311static int transition_fid_vid(struct powernow_k8_data *data,
 312		u32 reqfid, u32 reqvid)
 313{
 314	if (core_voltage_pre_transition(data, reqvid, reqfid))
 315		return 1;
 316
 317	if (core_frequency_transition(data, reqfid))
 318		return 1;
 319
 320	if (core_voltage_post_transition(data, reqvid))
 321		return 1;
 322
 323	if (query_current_values_with_pending_wait(data))
 324		return 1;
 325
 326	if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
 327		printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
 328				"curr 0x%x 0x%x\n",
 329				smp_processor_id(),
 330				reqfid, reqvid, data->currfid, data->currvid);
 331		return 1;
 332	}
 333
 334	pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
 335		smp_processor_id(), data->currfid, data->currvid);
 336
 337	return 0;
 338}
 339
 340/* Phase 1 - core voltage transition ... setup voltage */
 341static int core_voltage_pre_transition(struct powernow_k8_data *data,
 342		u32 reqvid, u32 reqfid)
 343{
 344	u32 rvosteps = data->rvo;
 345	u32 savefid = data->currfid;
 346	u32 maxvid, lo, rvomult = 1;
 347
 348	pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
 349		"reqvid 0x%x, rvo 0x%x\n",
 350		smp_processor_id(),
 351		data->currfid, data->currvid, reqvid, data->rvo);
 352
 353	if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
 354		rvomult = 2;
 355	rvosteps *= rvomult;
 356	rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
 357	maxvid = 0x1f & (maxvid >> 16);
 358	pr_debug("ph1 maxvid=0x%x\n", maxvid);
 359	if (reqvid < maxvid) /* lower numbers are higher voltages */
 360		reqvid = maxvid;
 361
 362	while (data->currvid > reqvid) {
 363		pr_debug("ph1: curr 0x%x, req vid 0x%x\n",
 364			data->currvid, reqvid);
 365		if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
 366			return 1;
 367	}
 368
 369	while ((rvosteps > 0) &&
 370			((rvomult * data->rvo + data->currvid) > reqvid)) {
 371		if (data->currvid == maxvid) {
 372			rvosteps = 0;
 373		} else {
 374			pr_debug("ph1: changing vid for rvo, req 0x%x\n",
 375				data->currvid - 1);
 376			if (decrease_vid_code_by_step(data, data->currvid-1, 1))
 377				return 1;
 378			rvosteps--;
 379		}
 380	}
 381
 382	if (query_current_values_with_pending_wait(data))
 383		return 1;
 384
 385	if (savefid != data->currfid) {
 386		printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
 387				data->currfid);
 388		return 1;
 389	}
 390
 391	pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n",
 392		data->currfid, data->currvid);
 393
 394	return 0;
 395}
 396
 397/* Phase 2 - core frequency transition */
 398static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
 399{
 400	u32 vcoreqfid, vcocurrfid, vcofiddiff;
 401	u32 fid_interval, savevid = data->currvid;
 402
 403	if (data->currfid == reqfid) {
 404		printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
 405				data->currfid);
 406		return 0;
 407	}
 408
 409	pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
 410		"reqfid 0x%x\n",
 411		smp_processor_id(),
 412		data->currfid, data->currvid, reqfid);
 413
 414	vcoreqfid = convert_fid_to_vco_fid(reqfid);
 415	vcocurrfid = convert_fid_to_vco_fid(data->currfid);
 416	vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
 417	    : vcoreqfid - vcocurrfid;
 418
 419	if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
 420		vcofiddiff = 0;
 421
 422	while (vcofiddiff > 2) {
 423		(data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
 424
 425		if (reqfid > data->currfid) {
 426			if (data->currfid > LO_FID_TABLE_TOP) {
 427				if (write_new_fid(data,
 428						data->currfid + fid_interval))
 429					return 1;
 430			} else {
 431				if (write_new_fid
 432				    (data,
 433				     2 + convert_fid_to_vco_fid(data->currfid)))
 434					return 1;
 435			}
 436		} else {
 437			if (write_new_fid(data, data->currfid - fid_interval))
 438				return 1;
 439		}
 440
 441		vcocurrfid = convert_fid_to_vco_fid(data->currfid);
 442		vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
 443		    : vcoreqfid - vcocurrfid;
 444	}
 445
 446	if (write_new_fid(data, reqfid))
 447		return 1;
 448
 449	if (query_current_values_with_pending_wait(data))
 450		return 1;
 451
 452	if (data->currfid != reqfid) {
 453		printk(KERN_ERR PFX
 454			"ph2: mismatch, failed fid transition, "
 455			"curr 0x%x, req 0x%x\n",
 456			data->currfid, reqfid);
 457		return 1;
 458	}
 459
 460	if (savevid != data->currvid) {
 461		printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
 462			savevid, data->currvid);
 463		return 1;
 464	}
 465
 466	pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n",
 467		data->currfid, data->currvid);
 468
 469	return 0;
 470}
 471
 472/* Phase 3 - core voltage transition flow ... jump to the final vid. */
 473static int core_voltage_post_transition(struct powernow_k8_data *data,
 474		u32 reqvid)
 475{
 476	u32 savefid = data->currfid;
 477	u32 savereqvid = reqvid;
 478
 479	pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
 480		smp_processor_id(),
 481		data->currfid, data->currvid);
 482
 483	if (reqvid != data->currvid) {
 484		if (write_new_vid(data, reqvid))
 485			return 1;
 486
 487		if (savefid != data->currfid) {
 488			printk(KERN_ERR PFX
 489			       "ph3: bad fid change, save 0x%x, curr 0x%x\n",
 490			       savefid, data->currfid);
 491			return 1;
 492		}
 493
 494		if (data->currvid != reqvid) {
 495			printk(KERN_ERR PFX
 496			       "ph3: failed vid transition\n, "
 497			       "req 0x%x, curr 0x%x",
 498			       reqvid, data->currvid);
 499			return 1;
 500		}
 501	}
 502
 503	if (query_current_values_with_pending_wait(data))
 504		return 1;
 505
 506	if (savereqvid != data->currvid) {
 507		pr_debug("ph3 failed, currvid 0x%x\n", data->currvid);
 508		return 1;
 509	}
 510
 511	if (savefid != data->currfid) {
 512		pr_debug("ph3 failed, currfid changed 0x%x\n",
 513			data->currfid);
 514		return 1;
 515	}
 516
 517	pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n",
 518		data->currfid, data->currvid);
 519
 520	return 0;
 521}
 522
 523static const struct x86_cpu_id powernow_k8_ids[] = {
 524	/* IO based frequency switching */
 525	{ X86_VENDOR_AMD, 0xf },
 526	/* MSR based frequency switching supported */
 527	X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
 528	{}
 529};
 530MODULE_DEVICE_TABLE(x86cpu, powernow_k8_ids);
 531
 532static void check_supported_cpu(void *_rc)
 533{
 534	u32 eax, ebx, ecx, edx;
 535	int *rc = _rc;
 536
 537	*rc = -ENODEV;
 538
 539	eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
 540
 541	if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
 542		if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
 543		    ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
 544			printk(KERN_INFO PFX
 545				"Processor cpuid %x not supported\n", eax);
 546			return;
 547		}
 548
 549		eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
 550		if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
 551			printk(KERN_INFO PFX
 552			       "No frequency change capabilities detected\n");
 553			return;
 554		}
 555
 556		cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
 557		if ((edx & P_STATE_TRANSITION_CAPABLE)
 558			!= P_STATE_TRANSITION_CAPABLE) {
 559			printk(KERN_INFO PFX
 560				"Power state transitions not supported\n");
 561			return;
 562		}
 563	} else { /* must be a HW Pstate capable processor */
 564		cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
 565		if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
 566			cpu_family = CPU_HW_PSTATE;
 567		else
 568			return;
 569	}
 570
 571	*rc = 0;
 572}
 573
 574static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
 575		u8 maxvid)
 576{
 577	unsigned int j;
 578	u8 lastfid = 0xff;
 579
 580	for (j = 0; j < data->numps; j++) {
 581		if (pst[j].vid > LEAST_VID) {
 582			printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
 583			       j, pst[j].vid);
 584			return -EINVAL;
 585		}
 586		if (pst[j].vid < data->rvo) {
 587			/* vid + rvo >= 0 */
 588			printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
 589			       " %d\n", j);
 590			return -ENODEV;
 591		}
 592		if (pst[j].vid < maxvid + data->rvo) {
 593			/* vid + rvo >= maxvid */
 594			printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
 595			       " %d\n", j);
 596			return -ENODEV;
 597		}
 598		if (pst[j].fid > MAX_FID) {
 599			printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
 600			       " %d\n", j);
 601			return -ENODEV;
 602		}
 603		if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
 604			/* Only first fid is allowed to be in "low" range */
 605			printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
 606			       "0x%x\n", j, pst[j].fid);
 607			return -EINVAL;
 608		}
 609		if (pst[j].fid < lastfid)
 610			lastfid = pst[j].fid;
 611	}
 612	if (lastfid & 1) {
 613		printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
 614		return -EINVAL;
 615	}
 616	if (lastfid > LO_FID_TABLE_TOP)
 617		printk(KERN_INFO FW_BUG PFX
 618			"first fid not from lo freq table\n");
 619
 620	return 0;
 621}
 622
 623static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
 624		unsigned int entry)
 625{
 626	powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
 627}
 628
 629static void print_basics(struct powernow_k8_data *data)
 630{
 631	int j;
 632	for (j = 0; j < data->numps; j++) {
 633		if (data->powernow_table[j].frequency !=
 634				CPUFREQ_ENTRY_INVALID) {
 635			if (cpu_family == CPU_HW_PSTATE) {
 636				printk(KERN_INFO PFX
 637					"   %d : pstate %d (%d MHz)\n", j,
 638					data->powernow_table[j].index,
 639					data->powernow_table[j].frequency/1000);
 640			} else {
 641				printk(KERN_INFO PFX
 642					"fid 0x%x (%d MHz), vid 0x%x\n",
 643					data->powernow_table[j].index & 0xff,
 644					data->powernow_table[j].frequency/1000,
 645					data->powernow_table[j].index >> 8);
 646			}
 647		}
 648	}
 649	if (data->batps)
 650		printk(KERN_INFO PFX "Only %d pstates on battery\n",
 651				data->batps);
 652}
 653
 654static u32 freq_from_fid_did(u32 fid, u32 did)
 655{
 656	u32 mhz = 0;
 657
 658	if (boot_cpu_data.x86 == 0x10)
 659		mhz = (100 * (fid + 0x10)) >> did;
 660	else if (boot_cpu_data.x86 == 0x11)
 661		mhz = (100 * (fid + 8)) >> did;
 662	else
 663		BUG();
 664
 665	return mhz * 1000;
 666}
 667
 668static int fill_powernow_table(struct powernow_k8_data *data,
 669		struct pst_s *pst, u8 maxvid)
 670{
 671	struct cpufreq_frequency_table *powernow_table;
 672	unsigned int j;
 673
 674	if (data->batps) {
 675		/* use ACPI support to get full speed on mains power */
 676		printk(KERN_WARNING PFX
 677			"Only %d pstates usable (use ACPI driver for full "
 678			"range\n", data->batps);
 679		data->numps = data->batps;
 680	}
 681
 682	for (j = 1; j < data->numps; j++) {
 683		if (pst[j-1].fid >= pst[j].fid) {
 684			printk(KERN_ERR PFX "PST out of sequence\n");
 685			return -EINVAL;
 686		}
 687	}
 688
 689	if (data->numps < 2) {
 690		printk(KERN_ERR PFX "no p states to transition\n");
 691		return -ENODEV;
 692	}
 693
 694	if (check_pst_table(data, pst, maxvid))
 695		return -EINVAL;
 696
 697	powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
 698		* (data->numps + 1)), GFP_KERNEL);
 699	if (!powernow_table) {
 700		printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
 701		return -ENOMEM;
 702	}
 703
 704	for (j = 0; j < data->numps; j++) {
 705		int freq;
 706		powernow_table[j].index = pst[j].fid; /* lower 8 bits */
 707		powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
 708		freq = find_khz_freq_from_fid(pst[j].fid);
 709		powernow_table[j].frequency = freq;
 710	}
 711	powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
 712	powernow_table[data->numps].index = 0;
 713
 714	if (query_current_values_with_pending_wait(data)) {
 715		kfree(powernow_table);
 716		return -EIO;
 717	}
 718
 719	pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
 720	data->powernow_table = powernow_table;
 721	if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
 722		print_basics(data);
 723
 724	for (j = 0; j < data->numps; j++)
 725		if ((pst[j].fid == data->currfid) &&
 726		    (pst[j].vid == data->currvid))
 727			return 0;
 728
 729	pr_debug("currfid/vid do not match PST, ignoring\n");
 730	return 0;
 731}
 732
 733/* Find and validate the PSB/PST table in BIOS. */
 734static int find_psb_table(struct powernow_k8_data *data)
 735{
 736	struct psb_s *psb;
 737	unsigned int i;
 738	u32 mvs;
 739	u8 maxvid;
 740	u32 cpst = 0;
 741	u32 thiscpuid;
 742
 743	for (i = 0xc0000; i < 0xffff0; i += 0x10) {
 744		/* Scan BIOS looking for the signature. */
 745		/* It can not be at ffff0 - it is too big. */
 746
 747		psb = phys_to_virt(i);
 748		if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
 749			continue;
 750
 751		pr_debug("found PSB header at 0x%p\n", psb);
 752
 753		pr_debug("table vers: 0x%x\n", psb->tableversion);
 754		if (psb->tableversion != PSB_VERSION_1_4) {
 755			printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
 756			return -ENODEV;
 757		}
 758
 759		pr_debug("flags: 0x%x\n", psb->flags1);
 760		if (psb->flags1) {
 761			printk(KERN_ERR FW_BUG PFX "unknown flags\n");
 762			return -ENODEV;
 763		}
 764
 765		data->vstable = psb->vstable;
 766		pr_debug("voltage stabilization time: %d(*20us)\n",
 767				data->vstable);
 768
 769		pr_debug("flags2: 0x%x\n", psb->flags2);
 770		data->rvo = psb->flags2 & 3;
 771		data->irt = ((psb->flags2) >> 2) & 3;
 772		mvs = ((psb->flags2) >> 4) & 3;
 773		data->vidmvs = 1 << mvs;
 774		data->batps = ((psb->flags2) >> 6) & 3;
 775
 776		pr_debug("ramp voltage offset: %d\n", data->rvo);
 777		pr_debug("isochronous relief time: %d\n", data->irt);
 778		pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
 779
 780		pr_debug("numpst: 0x%x\n", psb->num_tables);
 781		cpst = psb->num_tables;
 782		if ((psb->cpuid == 0x00000fc0) ||
 783		    (psb->cpuid == 0x00000fe0)) {
 784			thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
 785			if ((thiscpuid == 0x00000fc0) ||
 786			    (thiscpuid == 0x00000fe0))
 787				cpst = 1;
 788		}
 789		if (cpst != 1) {
 790			printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
 791			return -ENODEV;
 792		}
 793
 794		data->plllock = psb->plllocktime;
 795		pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
 796		pr_debug("maxfid: 0x%x\n", psb->maxfid);
 797		pr_debug("maxvid: 0x%x\n", psb->maxvid);
 798		maxvid = psb->maxvid;
 799
 800		data->numps = psb->numps;
 801		pr_debug("numpstates: 0x%x\n", data->numps);
 802		return fill_powernow_table(data,
 803				(struct pst_s *)(psb+1), maxvid);
 804	}
 805	/*
 806	 * If you see this message, complain to BIOS manufacturer. If
 807	 * he tells you "we do not support Linux" or some similar
 808	 * nonsense, remember that Windows 2000 uses the same legacy
 809	 * mechanism that the old Linux PSB driver uses. Tell them it
 810	 * is broken with Windows 2000.
 811	 *
 812	 * The reference to the AMD documentation is chapter 9 in the
 813	 * BIOS and Kernel Developer's Guide, which is available on
 814	 * www.amd.com
 815	 */
 816	printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
 817	printk(KERN_ERR PFX "Make sure that your BIOS is up to date"
 818		" and Cool'N'Quiet support is enabled in BIOS setup\n");
 819	return -ENODEV;
 820}
 821
 822static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
 823		unsigned int index)
 824{
 825	u64 control;
 826
 827	if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
 828		return;
 829
 830	control = data->acpi_data.states[index].control;
 831	data->irt = (control >> IRT_SHIFT) & IRT_MASK;
 832	data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
 833	data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
 834	data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
 835	data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
 836	data->vstable = (control >> VST_SHIFT) & VST_MASK;
 837}
 838
 839static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
 840{
 841	struct cpufreq_frequency_table *powernow_table;
 842	int ret_val = -ENODEV;
 843	u64 control, status;
 844
 845	if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
 846		pr_debug("register performance failed: bad ACPI data\n");
 847		return -EIO;
 848	}
 849
 850	/* verify the data contained in the ACPI structures */
 851	if (data->acpi_data.state_count <= 1) {
 852		pr_debug("No ACPI P-States\n");
 853		goto err_out;
 854	}
 855
 856	control = data->acpi_data.control_register.space_id;
 857	status = data->acpi_data.status_register.space_id;
 858
 859	if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
 860	    (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
 861		pr_debug("Invalid control/status registers (%llx - %llx)\n",
 862			control, status);
 863		goto err_out;
 864	}
 865
 866	/* fill in data->powernow_table */
 867	powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
 868		* (data->acpi_data.state_count + 1)), GFP_KERNEL);
 869	if (!powernow_table) {
 870		pr_debug("powernow_table memory alloc failure\n");
 871		goto err_out;
 872	}
 873
 874	/* fill in data */
 875	data->numps = data->acpi_data.state_count;
 876	powernow_k8_acpi_pst_values(data, 0);
 877
 878	if (cpu_family == CPU_HW_PSTATE)
 879		ret_val = fill_powernow_table_pstate(data, powernow_table);
 880	else
 881		ret_val = fill_powernow_table_fidvid(data, powernow_table);
 882	if (ret_val)
 883		goto err_out_mem;
 884
 885	powernow_table[data->acpi_data.state_count].frequency =
 886		CPUFREQ_TABLE_END;
 887	powernow_table[data->acpi_data.state_count].index = 0;
 888	data->powernow_table = powernow_table;
 889
 890	if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
 891		print_basics(data);
 892
 893	/* notify BIOS that we exist */
 894	acpi_processor_notify_smm(THIS_MODULE);
 895
 896	if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
 897		printk(KERN_ERR PFX
 898				"unable to alloc powernow_k8_data cpumask\n");
 899		ret_val = -ENOMEM;
 900		goto err_out_mem;
 901	}
 902
 903	return 0;
 904
 905err_out_mem:
 906	kfree(powernow_table);
 907
 908err_out:
 909	acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
 910
 911	/* data->acpi_data.state_count informs us at ->exit()
 912	 * whether ACPI was used */
 913	data->acpi_data.state_count = 0;
 914
 915	return ret_val;
 916}
 917
 918static int fill_powernow_table_pstate(struct powernow_k8_data *data,
 919		struct cpufreq_frequency_table *powernow_table)
 920{
 921	int i;
 922	u32 hi = 0, lo = 0;
 923	rdmsr(MSR_PSTATE_CUR_LIMIT, lo, hi);
 924	data->max_hw_pstate = (lo & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
 925
 926	for (i = 0; i < data->acpi_data.state_count; i++) {
 927		u32 index;
 928
 929		index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
 930		if (index > data->max_hw_pstate) {
 931			printk(KERN_ERR PFX "invalid pstate %d - "
 932					"bad value %d.\n", i, index);
 933			printk(KERN_ERR PFX "Please report to BIOS "
 934					"manufacturer\n");
 935			invalidate_entry(powernow_table, i);
 936			continue;
 937		}
 938
 939		ps_to_as[index] = i;
 940
 941		/* Frequency may be rounded for these */
 942		if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10)
 943				 || boot_cpu_data.x86 == 0x11) {
 944
 945			rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
 946			if (!(hi & HW_PSTATE_VALID_MASK)) {
 947				pr_debug("invalid pstate %d, ignoring\n", index);
 948				invalidate_entry(powernow_table, i);
 949				continue;
 950			}
 951
 952			powernow_table[i].frequency =
 953				freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
 954		} else
 955			powernow_table[i].frequency =
 956				data->acpi_data.states[i].core_frequency * 1000;
 957
 958		powernow_table[i].index = index;
 959	}
 960	return 0;
 961}
 962
 963static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
 964		struct cpufreq_frequency_table *powernow_table)
 965{
 966	int i;
 967
 968	for (i = 0; i < data->acpi_data.state_count; i++) {
 969		u32 fid;
 970		u32 vid;
 971		u32 freq, index;
 972		u64 status, control;
 973
 974		if (data->exttype) {
 975			status =  data->acpi_data.states[i].status;
 976			fid = status & EXT_FID_MASK;
 977			vid = (status >> VID_SHIFT) & EXT_VID_MASK;
 978		} else {
 979			control =  data->acpi_data.states[i].control;
 980			fid = control & FID_MASK;
 981			vid = (control >> VID_SHIFT) & VID_MASK;
 982		}
 983
 984		pr_debug("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
 985
 986		index = fid | (vid<<8);
 987		powernow_table[i].index = index;
 988
 989		freq = find_khz_freq_from_fid(fid);
 990		powernow_table[i].frequency = freq;
 991
 992		/* verify frequency is OK */
 993		if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
 994			pr_debug("invalid freq %u kHz, ignoring\n", freq);
 995			invalidate_entry(powernow_table, i);
 996			continue;
 997		}
 998
 999		/* verify voltage is OK -
1000		 * BIOSs are using "off" to indicate invalid */
1001		if (vid == VID_OFF) {
1002			pr_debug("invalid vid %u, ignoring\n", vid);
1003			invalidate_entry(powernow_table, i);
1004			continue;
1005		}
1006
1007		if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
1008			printk(KERN_INFO PFX "invalid freq entries "
1009				"%u kHz vs. %u kHz\n", freq,
1010				(unsigned int)
1011				(data->acpi_data.states[i].core_frequency
1012				 * 1000));
1013			invalidate_entry(powernow_table, i);
1014			continue;
1015		}
1016	}
1017	return 0;
1018}
1019
1020static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
1021{
1022	if (data->acpi_data.state_count)
1023		acpi_processor_unregister_performance(&data->acpi_data,
1024				data->cpu);
1025	free_cpumask_var(data->acpi_data.shared_cpu_map);
1026}
1027
1028static int get_transition_latency(struct powernow_k8_data *data)
1029{
1030	int max_latency = 0;
1031	int i;
1032	for (i = 0; i < data->acpi_data.state_count; i++) {
1033		int cur_latency = data->acpi_data.states[i].transition_latency
1034			+ data->acpi_data.states[i].bus_master_latency;
1035		if (cur_latency > max_latency)
1036			max_latency = cur_latency;
1037	}
1038	if (max_latency == 0) {
1039		/*
1040		 * Fam 11h and later may return 0 as transition latency. This
1041		 * is intended and means "very fast". While cpufreq core and
1042		 * governors currently can handle that gracefully, better set it
1043		 * to 1 to avoid problems in the future.
1044		 */
1045		if (boot_cpu_data.x86 < 0x11)
1046			printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
1047				"latency\n");
1048		max_latency = 1;
1049	}
1050	/* value in usecs, needs to be in nanoseconds */
1051	return 1000 * max_latency;
1052}
1053
1054/* Take a frequency, and issue the fid/vid transition command */
1055static int transition_frequency_fidvid(struct powernow_k8_data *data,
1056		unsigned int index)
 
1057{
1058	u32 fid = 0;
1059	u32 vid = 0;
1060	int res, i;
1061	struct cpufreq_freqs freqs;
1062
1063	pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1064
1065	/* fid/vid correctness check for k8 */
1066	/* fid are the lower 8 bits of the index we stored into
1067	 * the cpufreq frequency table in find_psb_table, vid
1068	 * are the upper 8 bits.
1069	 */
1070	fid = data->powernow_table[index].index & 0xFF;
1071	vid = (data->powernow_table[index].index & 0xFF00) >> 8;
1072
1073	pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
1074
1075	if (query_current_values_with_pending_wait(data))
1076		return 1;
1077
1078	if ((data->currvid == vid) && (data->currfid == fid)) {
1079		pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n",
1080			fid, vid);
1081		return 0;
1082	}
1083
1084	pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1085		smp_processor_id(), fid, vid);
1086	freqs.old = find_khz_freq_from_fid(data->currfid);
1087	freqs.new = find_khz_freq_from_fid(fid);
1088
1089	for_each_cpu(i, data->available_cores) {
1090		freqs.cpu = i;
1091		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1092	}
1093
1094	res = transition_fid_vid(data, fid, vid);
1095	if (res)
1096		return res;
1097
1098	freqs.new = find_khz_freq_from_fid(data->currfid);
1099
1100	for_each_cpu(i, data->available_cores) {
1101		freqs.cpu = i;
1102		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1103	}
1104	return res;
1105}
1106
1107/* Take a frequency, and issue the hardware pstate transition command */
1108static int transition_frequency_pstate(struct powernow_k8_data *data,
1109		unsigned int index)
1110{
1111	u32 pstate = 0;
1112	int res, i;
1113	struct cpufreq_freqs freqs;
1114
1115	pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1116
1117	/* get MSR index for hardware pstate transition */
1118	pstate = index & HW_PSTATE_MASK;
1119	if (pstate > data->max_hw_pstate)
1120		return -EINVAL;
1121
1122	freqs.old = find_khz_freq_from_pstate(data->powernow_table,
1123			data->currpstate);
1124	freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1125
1126	for_each_cpu(i, data->available_cores) {
1127		freqs.cpu = i;
1128		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1129	}
1130
1131	res = transition_pstate(data, pstate);
1132	freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1133
1134	for_each_cpu(i, data->available_cores) {
1135		freqs.cpu = i;
1136		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1137	}
1138	return res;
1139}
1140
1141struct powernowk8_target_arg {
1142	struct cpufreq_policy		*pol;
1143	unsigned			targfreq;
1144	unsigned			relation;
1145};
1146
1147static long powernowk8_target_fn(void *arg)
1148{
1149	struct powernowk8_target_arg *pta = arg;
1150	struct cpufreq_policy *pol = pta->pol;
1151	unsigned targfreq = pta->targfreq;
1152	unsigned relation = pta->relation;
1153	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1154	u32 checkfid;
1155	u32 checkvid;
1156	unsigned int newstate;
1157	int ret;
1158
1159	if (!data)
1160		return -EINVAL;
1161
1162	checkfid = data->currfid;
1163	checkvid = data->currvid;
1164
1165	if (pending_bit_stuck()) {
1166		printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1167		return -EIO;
1168	}
1169
1170	pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1171		pol->cpu, targfreq, pol->min, pol->max, relation);
 
1172
1173	if (query_current_values_with_pending_wait(data))
1174		return -EIO;
1175
1176	if (cpu_family != CPU_HW_PSTATE) {
1177		pr_debug("targ: curr fid 0x%x, vid 0x%x\n",
1178		data->currfid, data->currvid);
1179
1180		if ((checkvid != data->currvid) ||
1181		    (checkfid != data->currfid)) {
1182			printk(KERN_INFO PFX
1183				"error - out of sync, fix 0x%x 0x%x, "
1184				"vid 0x%x 0x%x\n",
1185				checkfid, data->currfid,
1186				checkvid, data->currvid);
1187		}
1188	}
1189
1190	if (cpufreq_frequency_table_target(pol, data->powernow_table,
1191				targfreq, relation, &newstate))
1192		return -EIO;
1193
1194	mutex_lock(&fidvid_mutex);
1195
1196	powernow_k8_acpi_pst_values(data, newstate);
1197
1198	if (cpu_family == CPU_HW_PSTATE)
1199		ret = transition_frequency_pstate(data,
1200			data->powernow_table[newstate].index);
1201	else
1202		ret = transition_frequency_fidvid(data, newstate);
1203	if (ret) {
1204		printk(KERN_ERR PFX "transition frequency failed\n");
1205		mutex_unlock(&fidvid_mutex);
1206		return 1;
1207	}
1208	mutex_unlock(&fidvid_mutex);
1209
1210	if (cpu_family == CPU_HW_PSTATE)
1211		pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1212				data->powernow_table[newstate].index);
1213	else
1214		pol->cur = find_khz_freq_from_fid(data->currfid);
1215
1216	return 0;
1217}
1218
1219/* Driver entry point to switch to the target frequency */
1220static int powernowk8_target(struct cpufreq_policy *pol,
1221		unsigned targfreq, unsigned relation)
1222{
1223	struct powernowk8_target_arg pta = { .pol = pol, .targfreq = targfreq,
1224					     .relation = relation };
1225
1226	/*
1227	 * Must run on @pol->cpu.  cpufreq core is responsible for ensuring
1228	 * that we're bound to the current CPU and pol->cpu stays online.
1229	 */
1230	if (smp_processor_id() == pol->cpu)
1231		return powernowk8_target_fn(&pta);
1232	else
1233		return work_on_cpu(pol->cpu, powernowk8_target_fn, &pta);
1234}
1235
1236/* Driver entry point to verify the policy and range of frequencies */
1237static int powernowk8_verify(struct cpufreq_policy *pol)
1238{
1239	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1240
1241	if (!data)
1242		return -EINVAL;
1243
1244	return cpufreq_frequency_table_verify(pol, data->powernow_table);
1245}
1246
1247struct init_on_cpu {
1248	struct powernow_k8_data *data;
1249	int rc;
1250};
1251
1252static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
1253{
1254	struct init_on_cpu *init_on_cpu = _init_on_cpu;
1255
1256	if (pending_bit_stuck()) {
1257		printk(KERN_ERR PFX "failing init, change pending bit set\n");
1258		init_on_cpu->rc = -ENODEV;
1259		return;
1260	}
1261
1262	if (query_current_values_with_pending_wait(init_on_cpu->data)) {
1263		init_on_cpu->rc = -ENODEV;
1264		return;
1265	}
1266
1267	if (cpu_family == CPU_OPTERON)
1268		fidvid_msr_init();
1269
1270	init_on_cpu->rc = 0;
1271}
1272
 
 
 
 
 
1273/* per CPU init entry point to the driver */
1274static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1275{
1276	static const char ACPI_PSS_BIOS_BUG_MSG[] =
1277		KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
1278		FW_BUG PFX "Try again with latest BIOS.\n";
1279	struct powernow_k8_data *data;
1280	struct init_on_cpu init_on_cpu;
1281	int rc;
1282	struct cpuinfo_x86 *c = &cpu_data(pol->cpu);
1283
1284	if (!cpu_online(pol->cpu))
1285		return -ENODEV;
1286
1287	smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
1288	if (rc)
1289		return -ENODEV;
1290
1291	data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1292	if (!data) {
1293		printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1294		return -ENOMEM;
1295	}
1296
1297	data->cpu = pol->cpu;
1298	data->currpstate = HW_PSTATE_INVALID;
1299
1300	if (powernow_k8_cpu_init_acpi(data)) {
1301		/*
1302		 * Use the PSB BIOS structure. This is only available on
1303		 * an UP version, and is deprecated by AMD.
1304		 */
1305		if (num_online_cpus() != 1) {
1306			printk_once(ACPI_PSS_BIOS_BUG_MSG);
1307			goto err_out;
1308		}
1309		if (pol->cpu != 0) {
1310			printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1311			       "CPU other than CPU0. Complain to your BIOS "
1312			       "vendor.\n");
1313			goto err_out;
1314		}
1315		rc = find_psb_table(data);
1316		if (rc)
1317			goto err_out;
1318
1319		/* Take a crude guess here.
1320		 * That guess was in microseconds, so multiply with 1000 */
1321		pol->cpuinfo.transition_latency = (
1322			 ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1323			 ((1 << data->irt) * 30)) * 1000;
1324	} else /* ACPI _PSS objects available */
1325		pol->cpuinfo.transition_latency = get_transition_latency(data);
1326
1327	/* only run on specific CPU from here on */
1328	init_on_cpu.data = data;
1329	smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
1330				 &init_on_cpu, 1);
1331	rc = init_on_cpu.rc;
1332	if (rc != 0)
1333		goto err_out_exit_acpi;
1334
1335	if (cpu_family == CPU_HW_PSTATE)
1336		cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
1337	else
1338		cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
1339	data->available_cores = pol->cpus;
 
1340
1341	if (cpu_family == CPU_HW_PSTATE)
1342		pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1343				data->currpstate);
1344	else
1345		pol->cur = find_khz_freq_from_fid(data->currfid);
1346	pr_debug("policy current frequency %d kHz\n", pol->cur);
1347
1348	/* min/max the cpu is capable of */
1349	if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1350		printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1351		powernow_k8_cpu_exit_acpi(data);
1352		kfree(data->powernow_table);
1353		kfree(data);
1354		return -EINVAL;
1355	}
1356
1357	/* Check for APERF/MPERF support in hardware */
1358	if (cpu_has(c, X86_FEATURE_APERFMPERF))
1359		cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf;
1360
1361	cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1362
1363	if (cpu_family == CPU_HW_PSTATE)
1364		pr_debug("cpu_init done, current pstate 0x%x\n",
1365				data->currpstate);
1366	else
1367		pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n",
1368			data->currfid, data->currvid);
1369
1370	per_cpu(powernow_data, pol->cpu) = data;
 
 
1371
1372	return 0;
1373
1374err_out_exit_acpi:
1375	powernow_k8_cpu_exit_acpi(data);
1376
1377err_out:
1378	kfree(data);
1379	return -ENODEV;
1380}
1381
1382static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
1383{
1384	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
 
1385
1386	if (!data)
1387		return -EINVAL;
1388
1389	powernow_k8_cpu_exit_acpi(data);
1390
1391	cpufreq_frequency_table_put_attr(pol->cpu);
1392
1393	kfree(data->powernow_table);
1394	kfree(data);
1395	per_cpu(powernow_data, pol->cpu) = NULL;
 
 
1396
1397	return 0;
1398}
1399
1400static void query_values_on_cpu(void *_err)
1401{
1402	int *err = _err;
1403	struct powernow_k8_data *data = __this_cpu_read(powernow_data);
1404
1405	*err = query_current_values_with_pending_wait(data);
1406}
1407
1408static unsigned int powernowk8_get(unsigned int cpu)
1409{
1410	struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
1411	unsigned int khz = 0;
1412	int err;
1413
1414	if (!data)
1415		return 0;
1416
1417	smp_call_function_single(cpu, query_values_on_cpu, &err, true);
1418	if (err)
1419		goto out;
1420
1421	if (cpu_family == CPU_HW_PSTATE)
1422		khz = find_khz_freq_from_pstate(data->powernow_table,
1423						data->currpstate);
1424	else
1425		khz = find_khz_freq_from_fid(data->currfid);
1426
1427
1428out:
1429	return khz;
1430}
1431
1432static void _cpb_toggle_msrs(bool t)
1433{
1434	int cpu;
1435
1436	get_online_cpus();
1437
1438	rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1439
1440	for_each_cpu(cpu, cpu_online_mask) {
1441		struct msr *reg = per_cpu_ptr(msrs, cpu);
1442		if (t)
1443			reg->l &= ~BIT(25);
1444		else
1445			reg->l |= BIT(25);
1446	}
1447	wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1448
1449	put_online_cpus();
1450}
1451
1452/*
1453 * Switch on/off core performance boosting.
1454 *
1455 * 0=disable
1456 * 1=enable.
1457 */
1458static void cpb_toggle(bool t)
1459{
1460	if (!cpb_capable)
1461		return;
1462
1463	if (t && !cpb_enabled) {
1464		cpb_enabled = true;
1465		_cpb_toggle_msrs(t);
1466		printk(KERN_INFO PFX "Core Boosting enabled.\n");
1467	} else if (!t && cpb_enabled) {
1468		cpb_enabled = false;
1469		_cpb_toggle_msrs(t);
1470		printk(KERN_INFO PFX "Core Boosting disabled.\n");
1471	}
1472}
1473
1474static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
1475				 size_t count)
1476{
1477	int ret = -EINVAL;
1478	unsigned long val = 0;
1479
1480	ret = strict_strtoul(buf, 10, &val);
1481	if (!ret && (val == 0 || val == 1) && cpb_capable)
1482		cpb_toggle(val);
1483	else
1484		return -EINVAL;
1485
1486	return count;
1487}
1488
1489static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
1490{
1491	return sprintf(buf, "%u\n", cpb_enabled);
1492}
1493
1494#define define_one_rw(_name) \
1495static struct freq_attr _name = \
1496__ATTR(_name, 0644, show_##_name, store_##_name)
1497
1498define_one_rw(cpb);
1499
1500static struct freq_attr *powernow_k8_attr[] = {
1501	&cpufreq_freq_attr_scaling_available_freqs,
1502	&cpb,
1503	NULL,
1504};
1505
1506static struct cpufreq_driver cpufreq_amd64_driver = {
1507	.verify		= powernowk8_verify,
1508	.target		= powernowk8_target,
 
1509	.bios_limit	= acpi_processor_get_bios_limit,
1510	.init		= powernowk8_cpu_init,
1511	.exit		= __devexit_p(powernowk8_cpu_exit),
1512	.get		= powernowk8_get,
1513	.name		= "powernow-k8",
1514	.owner		= THIS_MODULE,
1515	.attr		= powernow_k8_attr,
1516};
1517
1518/*
1519 * Clear the boost-disable flag on the CPU_DOWN path so that this cpu
1520 * cannot block the remaining ones from boosting. On the CPU_UP path we
1521 * simply keep the boost-disable flag in sync with the current global
1522 * state.
1523 */
1524static int cpb_notify(struct notifier_block *nb, unsigned long action,
1525		      void *hcpu)
1526{
1527	unsigned cpu = (long)hcpu;
1528	u32 lo, hi;
1529
1530	switch (action) {
1531	case CPU_UP_PREPARE:
1532	case CPU_UP_PREPARE_FROZEN:
1533
1534		if (!cpb_enabled) {
1535			rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1536			lo |= BIT(25);
1537			wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1538		}
1539		break;
1540
1541	case CPU_DOWN_PREPARE:
1542	case CPU_DOWN_PREPARE_FROZEN:
1543		rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1544		lo &= ~BIT(25);
1545		wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1546		break;
1547
1548	default:
1549		break;
1550	}
1551
1552	return NOTIFY_OK;
1553}
1554
1555static struct notifier_block cpb_nb = {
1556	.notifier_call		= cpb_notify,
1557};
1558
1559/* driver entry point for init */
1560static int __cpuinit powernowk8_init(void)
1561{
1562	unsigned int i, supported_cpus = 0, cpu;
1563	int rv;
1564
1565	if (!x86_match_cpu(powernow_k8_ids))
1566		return -ENODEV;
1567
 
 
 
 
 
 
1568	for_each_online_cpu(i) {
1569		int rc;
1570		smp_call_function_single(i, check_supported_cpu, &rc, 1);
1571		if (rc == 0)
1572			supported_cpus++;
1573	}
1574
1575	if (supported_cpus != num_online_cpus())
 
1576		return -ENODEV;
 
 
1577
1578	printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n",
 
 
 
 
1579		num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
1580
1581	if (boot_cpu_has(X86_FEATURE_CPB)) {
1582
1583		cpb_capable = true;
1584
1585		msrs = msrs_alloc();
1586		if (!msrs) {
1587			printk(KERN_ERR "%s: Error allocating msrs!\n", __func__);
1588			return -ENOMEM;
1589		}
1590
1591		register_cpu_notifier(&cpb_nb);
1592
1593		rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1594
1595		for_each_cpu(cpu, cpu_online_mask) {
1596			struct msr *reg = per_cpu_ptr(msrs, cpu);
1597			cpb_enabled |= !(!!(reg->l & BIT(25)));
1598		}
1599
1600		printk(KERN_INFO PFX "Core Performance Boosting: %s.\n",
1601			(cpb_enabled ? "on" : "off"));
1602	}
1603
1604	rv = cpufreq_register_driver(&cpufreq_amd64_driver);
1605	if (rv < 0 && boot_cpu_has(X86_FEATURE_CPB)) {
1606		unregister_cpu_notifier(&cpb_nb);
1607		msrs_free(msrs);
1608		msrs = NULL;
1609	}
1610	return rv;
1611}
1612
1613/* driver entry point for term */
1614static void __exit powernowk8_exit(void)
1615{
1616	pr_debug("exit\n");
1617
1618	if (boot_cpu_has(X86_FEATURE_CPB)) {
1619		msrs_free(msrs);
1620		msrs = NULL;
1621
1622		unregister_cpu_notifier(&cpb_nb);
1623	}
1624
1625	cpufreq_unregister_driver(&cpufreq_amd64_driver);
1626}
1627
1628MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1629		"Mark Langsdorf <mark.langsdorf@amd.com>");
1630MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1631MODULE_LICENSE("GPL");
1632
1633late_initcall(powernowk8_init);
1634module_exit(powernowk8_exit);