Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * Cell Broadband Engine OProfile Support
   3 *
   4 * (C) Copyright IBM Corporation 2006
   5 *
   6 * Author: David Erb (djerb@us.ibm.com)
   7 * Modifications:
   8 *	   Carl Love <carll@us.ibm.com>
   9 *	   Maynard Johnson <maynardj@us.ibm.com>
  10 *
  11 * This program is free software; you can redistribute it and/or
  12 * modify it under the terms of the GNU General Public License
  13 * as published by the Free Software Foundation; either version
  14 * 2 of the License, or (at your option) any later version.
  15 */
  16
  17#include <linux/cpufreq.h>
  18#include <linux/delay.h>
  19#include <linux/init.h>
  20#include <linux/jiffies.h>
  21#include <linux/kthread.h>
  22#include <linux/oprofile.h>
  23#include <linux/percpu.h>
  24#include <linux/smp.h>
  25#include <linux/spinlock.h>
  26#include <linux/timer.h>
  27#include <asm/cell-pmu.h>
  28#include <asm/cputable.h>
  29#include <asm/firmware.h>
  30#include <asm/io.h>
  31#include <asm/oprofile_impl.h>
  32#include <asm/processor.h>
  33#include <asm/prom.h>
  34#include <asm/ptrace.h>
  35#include <asm/reg.h>
  36#include <asm/rtas.h>
  37#include <asm/cell-regs.h>
  38
  39#include "../platforms/cell/interrupt.h"
  40#include "cell/pr_util.h"
  41
  42#define PPU_PROFILING            0
  43#define SPU_PROFILING_CYCLES     1
  44#define SPU_PROFILING_EVENTS     2
  45
  46#define SPU_EVENT_NUM_START      4100
  47#define SPU_EVENT_NUM_STOP       4399
  48#define SPU_PROFILE_EVENT_ADDR          4363  /* spu, address trace, decimal */
  49#define SPU_PROFILE_EVENT_ADDR_MASK_A   0x146 /* sub unit set to zero */
  50#define SPU_PROFILE_EVENT_ADDR_MASK_B   0x186 /* sub unit set to zero */
  51
  52#define NUM_SPUS_PER_NODE    8
  53#define SPU_CYCLES_EVENT_NUM 2	/*  event number for SPU_CYCLES */
  54
  55#define PPU_CYCLES_EVENT_NUM 1	/*  event number for CYCLES */
  56#define PPU_CYCLES_GRP_NUM   1	/* special group number for identifying
  57				 * PPU_CYCLES event
  58				 */
  59#define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */
  60
  61#define NUM_THREADS 2         /* number of physical threads in
  62			       * physical processor
  63			       */
  64#define NUM_DEBUG_BUS_WORDS 4
  65#define NUM_INPUT_BUS_WORDS 2
  66
  67#define MAX_SPU_COUNT 0xFFFFFF	/* maximum 24 bit LFSR value */
  68
  69/* Minimum HW interval timer setting to send value to trace buffer is 10 cycle.
  70 * To configure counter to send value every N cycles set counter to
  71 * 2^32 - 1 - N.
  72 */
  73#define NUM_INTERVAL_CYC  0xFFFFFFFF - 10
  74
  75/*
  76 * spu_cycle_reset is the number of cycles between samples.
  77 * This variable is used for SPU profiling and should ONLY be set
  78 * at the beginning of cell_reg_setup; otherwise, it's read-only.
  79 */
  80static unsigned int spu_cycle_reset;
  81static unsigned int profiling_mode;
  82static int spu_evnt_phys_spu_indx;
  83
  84struct pmc_cntrl_data {
  85	unsigned long vcntr;
  86	unsigned long evnts;
  87	unsigned long masks;
  88	unsigned long enabled;
  89};
  90
  91/*
  92 * ibm,cbe-perftools rtas parameters
  93 */
  94struct pm_signal {
  95	u16 cpu;		/* Processor to modify */
  96	u16 sub_unit;		/* hw subunit this applies to (if applicable)*/
  97	short int signal_group; /* Signal Group to Enable/Disable */
  98	u8 bus_word;		/* Enable/Disable on this Trace/Trigger/Event
  99				 * Bus Word(s) (bitmask)
 100				 */
 101	u8 bit;			/* Trigger/Event bit (if applicable) */
 102};
 103
 104/*
 105 * rtas call arguments
 106 */
 107enum {
 108	SUBFUNC_RESET = 1,
 109	SUBFUNC_ACTIVATE = 2,
 110	SUBFUNC_DEACTIVATE = 3,
 111
 112	PASSTHRU_IGNORE = 0,
 113	PASSTHRU_ENABLE = 1,
 114	PASSTHRU_DISABLE = 2,
 115};
 116
 117struct pm_cntrl {
 118	u16 enable;
 119	u16 stop_at_max;
 120	u16 trace_mode;
 121	u16 freeze;
 122	u16 count_mode;
 123	u16 spu_addr_trace;
 124	u8  trace_buf_ovflw;
 125};
 126
 127static struct {
 128	u32 group_control;
 129	u32 debug_bus_control;
 130	struct pm_cntrl pm_cntrl;
 131	u32 pm07_cntrl[NR_PHYS_CTRS];
 132} pm_regs;
 133
 134#define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12)
 135#define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4)
 136#define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8)
 137#define GET_POLARITY(x) ((x & 0x00000002) >> 1)
 138#define GET_COUNT_CYCLES(x) (x & 0x00000001)
 139#define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
 140
 141static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
 142static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE];
 143static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
 144
 145/*
 146 * The CELL profiling code makes rtas calls to setup the debug bus to
 147 * route the performance signals.  Additionally, SPU profiling requires
 148 * a second rtas call to setup the hardware to capture the SPU PCs.
 149 * The EIO error value is returned if the token lookups or the rtas
 150 * call fail.  The EIO error number is the best choice of the existing
 151 * error numbers.  The probability of rtas related error is very low.  But
 152 * by returning EIO and printing additional information to dmsg the user
 153 * will know that OProfile did not start and dmesg will tell them why.
 154 * OProfile does not support returning errors on Stop.	Not a huge issue
 155 * since failure to reset the debug bus or stop the SPU PC collection is
 156 * not a fatel issue.  Chances are if the Stop failed, Start doesn't work
 157 * either.
 158 */
 159
 160/*
 161 * Interpetation of hdw_thread:
 162 * 0 - even virtual cpus 0, 2, 4,...
 163 * 1 - odd virtual cpus 1, 3, 5, ...
 164 *
 165 * FIXME: this is strictly wrong, we need to clean this up in a number
 166 * of places. It works for now. -arnd
 167 */
 168static u32 hdw_thread;
 169
 170static u32 virt_cntr_inter_mask;
 171static struct timer_list timer_virt_cntr;
 172static struct timer_list timer_spu_event_swap;
 173
 174/*
 175 * pm_signal needs to be global since it is initialized in
 176 * cell_reg_setup at the time when the necessary information
 177 * is available.
 178 */
 179static struct pm_signal pm_signal[NR_PHYS_CTRS];
 180static int pm_rtas_token;    /* token for debug bus setup call */
 181static int spu_rtas_token;   /* token for SPU cycle profiling */
 182
 183static u32 reset_value[NR_PHYS_CTRS];
 184static int num_counters;
 185static int oprofile_running;
 186static DEFINE_SPINLOCK(cntr_lock);
 187
 188static u32 ctr_enabled;
 189
 190static unsigned char input_bus[NUM_INPUT_BUS_WORDS];
 191
 192/*
 193 * Firmware interface functions
 194 */
 195static int
 196rtas_ibm_cbe_perftools(int subfunc, int passthru,
 197		       void *address, unsigned long length)
 198{
 199	u64 paddr = __pa(address);
 200
 201	return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc,
 202			 passthru, paddr >> 32, paddr & 0xffffffff, length);
 203}
 204
 205static void pm_rtas_reset_signals(u32 node)
 206{
 207	int ret;
 208	struct pm_signal pm_signal_local;
 209
 210	/*
 211	 * The debug bus is being set to the passthru disable state.
 212	 * However, the FW still expects atleast one legal signal routing
 213	 * entry or it will return an error on the arguments.	If we don't
 214	 * supply a valid entry, we must ignore all return values.  Ignoring
 215	 * all return values means we might miss an error we should be
 216	 * concerned about.
 217	 */
 218
 219	/*  fw expects physical cpu #. */
 220	pm_signal_local.cpu = node;
 221	pm_signal_local.signal_group = 21;
 222	pm_signal_local.bus_word = 1;
 223	pm_signal_local.sub_unit = 0;
 224	pm_signal_local.bit = 0;
 225
 226	ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE,
 227				     &pm_signal_local,
 228				     sizeof(struct pm_signal));
 229
 230	if (unlikely(ret))
 231		/*
 232		 * Not a fatal error. For Oprofile stop, the oprofile
 233		 * functions do not support returning an error for
 234		 * failure to stop OProfile.
 235		 */
 236		printk(KERN_WARNING "%s: rtas returned: %d\n",
 237		       __func__, ret);
 238}
 239
 240static int pm_rtas_activate_signals(u32 node, u32 count)
 241{
 242	int ret;
 243	int i, j;
 244	struct pm_signal pm_signal_local[NR_PHYS_CTRS];
 245
 246	/*
 247	 * There is no debug setup required for the cycles event.
 248	 * Note that only events in the same group can be used.
 249	 * Otherwise, there will be conflicts in correctly routing
 250	 * the signals on the debug bus.  It is the responsibility
 251	 * of the OProfile user tool to check the events are in
 252	 * the same group.
 253	 */
 254	i = 0;
 255	for (j = 0; j < count; j++) {
 256		if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) {
 257
 258			/* fw expects physical cpu # */
 259			pm_signal_local[i].cpu = node;
 260			pm_signal_local[i].signal_group
 261				= pm_signal[j].signal_group;
 262			pm_signal_local[i].bus_word = pm_signal[j].bus_word;
 263			pm_signal_local[i].sub_unit = pm_signal[j].sub_unit;
 264			pm_signal_local[i].bit = pm_signal[j].bit;
 265			i++;
 266		}
 267	}
 268
 269	if (i != 0) {
 270		ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE,
 271					     pm_signal_local,
 272					     i * sizeof(struct pm_signal));
 273
 274		if (unlikely(ret)) {
 275			printk(KERN_WARNING "%s: rtas returned: %d\n",
 276			       __func__, ret);
 277			return -EIO;
 278		}
 279	}
 280
 281	return 0;
 282}
 283
 284/*
 285 * PM Signal functions
 286 */
 287static void set_pm_event(u32 ctr, int event, u32 unit_mask)
 288{
 289	struct pm_signal *p;
 290	u32 signal_bit;
 291	u32 bus_word, bus_type, count_cycles, polarity, input_control;
 292	int j, i;
 293
 294	if (event == PPU_CYCLES_EVENT_NUM) {
 295		/* Special Event: Count all cpu cycles */
 296		pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES;
 297		p = &(pm_signal[ctr]);
 298		p->signal_group = PPU_CYCLES_GRP_NUM;
 299		p->bus_word = 1;
 300		p->sub_unit = 0;
 301		p->bit = 0;
 302		goto out;
 303	} else {
 304		pm_regs.pm07_cntrl[ctr] = 0;
 305	}
 306
 307	bus_word = GET_BUS_WORD(unit_mask);
 308	bus_type = GET_BUS_TYPE(unit_mask);
 309	count_cycles = GET_COUNT_CYCLES(unit_mask);
 310	polarity = GET_POLARITY(unit_mask);
 311	input_control = GET_INPUT_CONTROL(unit_mask);
 312	signal_bit = (event % 100);
 313
 314	p = &(pm_signal[ctr]);
 315
 316	p->signal_group = event / 100;
 317	p->bus_word = bus_word;
 318	p->sub_unit = GET_SUB_UNIT(unit_mask);
 319
 320	pm_regs.pm07_cntrl[ctr] = 0;
 321	pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles);
 322	pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity);
 323	pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control);
 324
 325	/*
 326	 * Some of the islands signal selection is based on 64 bit words.
 327	 * The debug bus words are 32 bits, the input words to the performance
 328	 * counters are defined as 32 bits.  Need to convert the 64 bit island
 329	 * specification to the appropriate 32 input bit and bus word for the
 330	 * performance counter event selection.	 See the CELL Performance
 331	 * monitoring signals manual and the Perf cntr hardware descriptions
 332	 * for the details.
 333	 */
 334	if (input_control == 0) {
 335		if (signal_bit > 31) {
 336			signal_bit -= 32;
 337			if (bus_word == 0x3)
 338				bus_word = 0x2;
 339			else if (bus_word == 0xc)
 340				bus_word = 0x8;
 341		}
 342
 343		if ((bus_type == 0) && p->signal_group >= 60)
 344			bus_type = 2;
 345		if ((bus_type == 1) && p->signal_group >= 50)
 346			bus_type = 0;
 347
 348		pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit);
 349	} else {
 350		pm_regs.pm07_cntrl[ctr] = 0;
 351		p->bit = signal_bit;
 352	}
 353
 354	for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) {
 355		if (bus_word & (1 << i)) {
 356			pm_regs.debug_bus_control |=
 357				(bus_type << (30 - (2 * i)));
 358
 359			for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) {
 360				if (input_bus[j] == 0xff) {
 361					input_bus[j] = i;
 362					pm_regs.group_control |=
 363						(i << (30 - (2 * j)));
 364
 365					break;
 366				}
 367			}
 368		}
 369	}
 370out:
 371	;
 372}
 373
 374static void write_pm_cntrl(int cpu)
 375{
 376	/*
 377	 * Oprofile will use 32 bit counters, set bits 7:10 to 0
 378	 * pmregs.pm_cntrl is a global
 379	 */
 380
 381	u32 val = 0;
 382	if (pm_regs.pm_cntrl.enable == 1)
 383		val |= CBE_PM_ENABLE_PERF_MON;
 384
 385	if (pm_regs.pm_cntrl.stop_at_max == 1)
 386		val |= CBE_PM_STOP_AT_MAX;
 387
 388	if (pm_regs.pm_cntrl.trace_mode != 0)
 389		val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode);
 390
 391	if (pm_regs.pm_cntrl.trace_buf_ovflw == 1)
 392		val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw);
 393	if (pm_regs.pm_cntrl.freeze == 1)
 394		val |= CBE_PM_FREEZE_ALL_CTRS;
 395
 396	val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace);
 397
 398	/*
 399	 * Routine set_count_mode must be called previously to set
 400	 * the count mode based on the user selection of user and kernel.
 401	 */
 402	val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode);
 403	cbe_write_pm(cpu, pm_control, val);
 404}
 405
 406static inline void
 407set_count_mode(u32 kernel, u32 user)
 408{
 409	/*
 410	 * The user must specify user and kernel if they want them. If
 411	 *  neither is specified, OProfile will count in hypervisor mode.
 412	 *  pm_regs.pm_cntrl is a global
 413	 */
 414	if (kernel) {
 415		if (user)
 416			pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES;
 417		else
 418			pm_regs.pm_cntrl.count_mode =
 419				CBE_COUNT_SUPERVISOR_MODE;
 420	} else {
 421		if (user)
 422			pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE;
 423		else
 424			pm_regs.pm_cntrl.count_mode =
 425				CBE_COUNT_HYPERVISOR_MODE;
 426	}
 427}
 428
 429static inline void enable_ctr(u32 cpu, u32 ctr, u32 *pm07_cntrl)
 430{
 431
 432	pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE;
 433	cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]);
 434}
 435
 436/*
 437 * Oprofile is expected to collect data on all CPUs simultaneously.
 438 * However, there is one set of performance counters per node.	There are
 439 * two hardware threads or virtual CPUs on each node.  Hence, OProfile must
 440 * multiplex in time the performance counter collection on the two virtual
 441 * CPUs.  The multiplexing of the performance counters is done by this
 442 * virtual counter routine.
 443 *
 444 * The pmc_values used below is defined as 'per-cpu' but its use is
 445 * more akin to 'per-node'.  We need to store two sets of counter
 446 * values per node -- one for the previous run and one for the next.
 447 * The per-cpu[NR_PHYS_CTRS] gives us the storage we need.  Each odd/even
 448 * pair of per-cpu arrays is used for storing the previous and next
 449 * pmc values for a given node.
 450 * NOTE: We use the per-cpu variable to improve cache performance.
 451 *
 452 * This routine will alternate loading the virtual counters for
 453 * virtual CPUs
 454 */
 455static void cell_virtual_cntr(unsigned long data)
 456{
 457	int i, prev_hdw_thread, next_hdw_thread;
 458	u32 cpu;
 459	unsigned long flags;
 460
 461	/*
 462	 * Make sure that the interrupt_hander and the virt counter are
 463	 * not both playing with the counters on the same node.
 464	 */
 465
 466	spin_lock_irqsave(&cntr_lock, flags);
 467
 468	prev_hdw_thread = hdw_thread;
 469
 470	/* switch the cpu handling the interrupts */
 471	hdw_thread = 1 ^ hdw_thread;
 472	next_hdw_thread = hdw_thread;
 473
 474	pm_regs.group_control = 0;
 475	pm_regs.debug_bus_control = 0;
 476
 477	for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
 478		input_bus[i] = 0xff;
 479
 480	/*
 481	 * There are some per thread events.  Must do the
 482	 * set event, for the thread that is being started
 483	 */
 484	for (i = 0; i < num_counters; i++)
 485		set_pm_event(i,
 486			pmc_cntrl[next_hdw_thread][i].evnts,
 487			pmc_cntrl[next_hdw_thread][i].masks);
 488
 489	/*
 490	 * The following is done only once per each node, but
 491	 * we need cpu #, not node #, to pass to the cbe_xxx functions.
 492	 */
 493	for_each_online_cpu(cpu) {
 494		if (cbe_get_hw_thread_id(cpu))
 495			continue;
 496
 497		/*
 498		 * stop counters, save counter values, restore counts
 499		 * for previous thread
 500		 */
 501		cbe_disable_pm(cpu);
 502		cbe_disable_pm_interrupts(cpu);
 503		for (i = 0; i < num_counters; i++) {
 504			per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
 505				= cbe_read_ctr(cpu, i);
 506
 507			if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
 508			    == 0xFFFFFFFF)
 509				/* If the cntr value is 0xffffffff, we must
 510				 * reset that to 0xfffffff0 when the current
 511				 * thread is restarted.	 This will generate a
 512				 * new interrupt and make sure that we never
 513				 * restore the counters to the max value.  If
 514				 * the counters were restored to the max value,
 515				 * they do not increment and no interrupts are
 516				 * generated.  Hence no more samples will be
 517				 * collected on that cpu.
 518				 */
 519				cbe_write_ctr(cpu, i, 0xFFFFFFF0);
 520			else
 521				cbe_write_ctr(cpu, i,
 522					      per_cpu(pmc_values,
 523						      cpu +
 524						      next_hdw_thread)[i]);
 525		}
 526
 527		/*
 528		 * Switch to the other thread. Change the interrupt
 529		 * and control regs to be scheduled on the CPU
 530		 * corresponding to the thread to execute.
 531		 */
 532		for (i = 0; i < num_counters; i++) {
 533			if (pmc_cntrl[next_hdw_thread][i].enabled) {
 534				/*
 535				 * There are some per thread events.
 536				 * Must do the set event, enable_cntr
 537				 * for each cpu.
 538				 */
 539				enable_ctr(cpu, i,
 540					   pm_regs.pm07_cntrl);
 541			} else {
 542				cbe_write_pm07_control(cpu, i, 0);
 543			}
 544		}
 545
 546		/* Enable interrupts on the CPU thread that is starting */
 547		cbe_enable_pm_interrupts(cpu, next_hdw_thread,
 548					 virt_cntr_inter_mask);
 549		cbe_enable_pm(cpu);
 550	}
 551
 552	spin_unlock_irqrestore(&cntr_lock, flags);
 553
 554	mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
 555}
 556
 557static void start_virt_cntrs(void)
 558{
 559	init_timer(&timer_virt_cntr);
 560	timer_virt_cntr.function = cell_virtual_cntr;
 561	timer_virt_cntr.data = 0UL;
 562	timer_virt_cntr.expires = jiffies + HZ / 10;
 563	add_timer(&timer_virt_cntr);
 564}
 565
 566static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr,
 567			struct op_system_config *sys, int num_ctrs)
 568{
 569	spu_cycle_reset = ctr[0].count;
 570
 571	/*
 572	 * Each node will need to make the rtas call to start
 573	 * and stop SPU profiling.  Get the token once and store it.
 574	 */
 575	spu_rtas_token = rtas_token("ibm,cbe-spu-perftools");
 576
 577	if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) {
 578		printk(KERN_ERR
 579		       "%s: rtas token ibm,cbe-spu-perftools unknown\n",
 580		       __func__);
 581		return -EIO;
 582	}
 583	return 0;
 584}
 585
 586/* Unfortunately, the hardware will only support event profiling
 587 * on one SPU per node at a time.  Therefore, we must time slice
 588 * the profiling across all SPUs in the node.  Note, we do this
 589 * in parallel for each node.  The following routine is called
 590 * periodically based on kernel timer to switch which SPU is
 591 * being monitored in a round robbin fashion.
 592 */
 593static void spu_evnt_swap(unsigned long data)
 594{
 595	int node;
 596	int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx;
 597	unsigned long flags;
 598	int cpu;
 599	int ret;
 600	u32 interrupt_mask;
 601
 602
 603	/* enable interrupts on cntr 0 */
 604	interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0);
 605
 606	hdw_thread = 0;
 607
 608	/* Make sure spu event interrupt handler and spu event swap
 609	 * don't access the counters simultaneously.
 610	 */
 611	spin_lock_irqsave(&cntr_lock, flags);
 612
 613	cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx;
 614
 615	if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE)
 616		spu_evnt_phys_spu_indx = 0;
 617
 618	pm_signal[0].sub_unit = spu_evnt_phys_spu_indx;
 619	pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
 620	pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
 621
 622	/* switch the SPU being profiled on each node */
 623	for_each_online_cpu(cpu) {
 624		if (cbe_get_hw_thread_id(cpu))
 625			continue;
 626
 627		node = cbe_cpu_to_node(cpu);
 628		cur_phys_spu = (node * NUM_SPUS_PER_NODE)
 629			+ cur_spu_evnt_phys_spu_indx;
 630		nxt_phys_spu = (node * NUM_SPUS_PER_NODE)
 631			+ spu_evnt_phys_spu_indx;
 632
 633		/*
 634		 * stop counters, save counter values, restore counts
 635		 * for previous physical SPU
 636		 */
 637		cbe_disable_pm(cpu);
 638		cbe_disable_pm_interrupts(cpu);
 639
 640		spu_pm_cnt[cur_phys_spu]
 641			= cbe_read_ctr(cpu, 0);
 642
 643		/* restore previous count for the next spu to sample */
 644		/* NOTE, hardware issue, counter will not start if the
 645		 * counter value is at max (0xFFFFFFFF).
 646		 */
 647		if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF)
 648			cbe_write_ctr(cpu, 0, 0xFFFFFFF0);
 649		 else
 650			 cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]);
 651
 652		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
 653
 654		/* setup the debug bus measure the one event and
 655		 * the two events to route the next SPU's PC on
 656		 * the debug bus
 657		 */
 658		ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3);
 659		if (ret)
 660			printk(KERN_ERR "%s: pm_rtas_activate_signals failed, "
 661			       "SPU event swap\n", __func__);
 662
 663		/* clear the trace buffer, don't want to take PC for
 664		 * previous SPU*/
 665		cbe_write_pm(cpu, trace_address, 0);
 666
 667		enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
 668
 669		/* Enable interrupts on the CPU thread that is starting */
 670		cbe_enable_pm_interrupts(cpu, hdw_thread,
 671					 interrupt_mask);
 672		cbe_enable_pm(cpu);
 673	}
 674
 675	spin_unlock_irqrestore(&cntr_lock, flags);
 676
 677	/* swap approximately every 0.1 seconds */
 678	mod_timer(&timer_spu_event_swap, jiffies + HZ / 25);
 679}
 680
 681static void start_spu_event_swap(void)
 682{
 683	init_timer(&timer_spu_event_swap);
 684	timer_spu_event_swap.function = spu_evnt_swap;
 685	timer_spu_event_swap.data = 0UL;
 686	timer_spu_event_swap.expires = jiffies + HZ / 25;
 687	add_timer(&timer_spu_event_swap);
 688}
 689
 690static int cell_reg_setup_spu_events(struct op_counter_config *ctr,
 691			struct op_system_config *sys, int num_ctrs)
 692{
 693	int i;
 694
 695	/* routine is called once for all nodes */
 696
 697	spu_evnt_phys_spu_indx = 0;
 698	/*
 699	 * For all events except PPU CYCLEs, each node will need to make
 700	 * the rtas cbe-perftools call to setup and reset the debug bus.
 701	 * Make the token lookup call once and store it in the global
 702	 * variable pm_rtas_token.
 703	 */
 704	pm_rtas_token = rtas_token("ibm,cbe-perftools");
 705
 706	if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
 707		printk(KERN_ERR
 708		       "%s: rtas token ibm,cbe-perftools unknown\n",
 709		       __func__);
 710		return -EIO;
 711	}
 712
 713	/* setup the pm_control register settings,
 714	 * settings will be written per node by the
 715	 * cell_cpu_setup() function.
 716	 */
 717	pm_regs.pm_cntrl.trace_buf_ovflw = 1;
 718
 719	/* Use the occurrence trace mode to have SPU PC saved
 720	 * to the trace buffer.  Occurrence data in trace buffer
 721	 * is not used.  Bit 2 must be set to store SPU addresses.
 722	 */
 723	pm_regs.pm_cntrl.trace_mode = 2;
 724
 725	pm_regs.pm_cntrl.spu_addr_trace = 0x1;  /* using debug bus
 726						   event 2 & 3 */
 727
 728	/* setup the debug bus event array with the SPU PC routing events.
 729	*  Note, pm_signal[0] will be filled in by set_pm_event() call below.
 730	*/
 731	pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
 732	pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A);
 733	pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100;
 734	pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
 735
 736	pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
 737	pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B);
 738	pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100;
 739	pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
 740
 741	/* Set the user selected spu event to profile on,
 742	 * note, only one SPU profiling event is supported
 743	 */
 744	num_counters = 1;  /* Only support one SPU event at a time */
 745	set_pm_event(0, ctr[0].event, ctr[0].unit_mask);
 746
 747	reset_value[0] = 0xFFFFFFFF - ctr[0].count;
 748
 749	/* global, used by cell_cpu_setup */
 750	ctr_enabled |= 1;
 751
 752	/* Initialize the count for each SPU to the reset value */
 753	for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++)
 754		spu_pm_cnt[i] = reset_value[0];
 755
 756	return 0;
 757}
 758
 759static int cell_reg_setup_ppu(struct op_counter_config *ctr,
 760			struct op_system_config *sys, int num_ctrs)
 761{
 762	/* routine is called once for all nodes */
 763	int i, j, cpu;
 764
 765	num_counters = num_ctrs;
 766
 767	if (unlikely(num_ctrs > NR_PHYS_CTRS)) {
 768		printk(KERN_ERR
 769		       "%s: Oprofile, number of specified events " \
 770		       "exceeds number of physical counters\n",
 771		       __func__);
 772		return -EIO;
 773	}
 774
 775	set_count_mode(sys->enable_kernel, sys->enable_user);
 776
 777	/* Setup the thread 0 events */
 778	for (i = 0; i < num_ctrs; ++i) {
 779
 780		pmc_cntrl[0][i].evnts = ctr[i].event;
 781		pmc_cntrl[0][i].masks = ctr[i].unit_mask;
 782		pmc_cntrl[0][i].enabled = ctr[i].enabled;
 783		pmc_cntrl[0][i].vcntr = i;
 784
 785		for_each_possible_cpu(j)
 786			per_cpu(pmc_values, j)[i] = 0;
 787	}
 788
 789	/*
 790	 * Setup the thread 1 events, map the thread 0 event to the
 791	 * equivalent thread 1 event.
 792	 */
 793	for (i = 0; i < num_ctrs; ++i) {
 794		if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111))
 795			pmc_cntrl[1][i].evnts = ctr[i].event + 19;
 796		else if (ctr[i].event == 2203)
 797			pmc_cntrl[1][i].evnts = ctr[i].event;
 798		else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215))
 799			pmc_cntrl[1][i].evnts = ctr[i].event + 16;
 800		else
 801			pmc_cntrl[1][i].evnts = ctr[i].event;
 802
 803		pmc_cntrl[1][i].masks = ctr[i].unit_mask;
 804		pmc_cntrl[1][i].enabled = ctr[i].enabled;
 805		pmc_cntrl[1][i].vcntr = i;
 806	}
 807
 808	for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
 809		input_bus[i] = 0xff;
 810
 811	/*
 812	 * Our counters count up, and "count" refers to
 813	 * how much before the next interrupt, and we interrupt
 814	 * on overflow.	 So we calculate the starting value
 815	 * which will give us "count" until overflow.
 816	 * Then we set the events on the enabled counters.
 817	 */
 818	for (i = 0; i < num_counters; ++i) {
 819		/* start with virtual counter set 0 */
 820		if (pmc_cntrl[0][i].enabled) {
 821			/* Using 32bit counters, reset max - count */
 822			reset_value[i] = 0xFFFFFFFF - ctr[i].count;
 823			set_pm_event(i,
 824				     pmc_cntrl[0][i].evnts,
 825				     pmc_cntrl[0][i].masks);
 826
 827			/* global, used by cell_cpu_setup */
 828			ctr_enabled |= (1 << i);
 829		}
 830	}
 831
 832	/* initialize the previous counts for the virtual cntrs */
 833	for_each_online_cpu(cpu)
 834		for (i = 0; i < num_counters; ++i) {
 835			per_cpu(pmc_values, cpu)[i] = reset_value[i];
 836		}
 837
 838	return 0;
 839}
 840
 841
 842/* This function is called once for all cpus combined */
 843static int cell_reg_setup(struct op_counter_config *ctr,
 844			struct op_system_config *sys, int num_ctrs)
 845{
 846	int ret=0;
 847	spu_cycle_reset = 0;
 848
 849	/* initialize the spu_arr_trace value, will be reset if
 850	 * doing spu event profiling.
 851	 */
 852	pm_regs.group_control = 0;
 853	pm_regs.debug_bus_control = 0;
 854	pm_regs.pm_cntrl.stop_at_max = 1;
 855	pm_regs.pm_cntrl.trace_mode = 0;
 856	pm_regs.pm_cntrl.freeze = 1;
 857	pm_regs.pm_cntrl.trace_buf_ovflw = 0;
 858	pm_regs.pm_cntrl.spu_addr_trace = 0;
 859
 860	/*
 861	 * For all events except PPU CYCLEs, each node will need to make
 862	 * the rtas cbe-perftools call to setup and reset the debug bus.
 863	 * Make the token lookup call once and store it in the global
 864	 * variable pm_rtas_token.
 865	 */
 866	pm_rtas_token = rtas_token("ibm,cbe-perftools");
 867
 868	if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
 869		printk(KERN_ERR
 870		       "%s: rtas token ibm,cbe-perftools unknown\n",
 871		       __func__);
 872		return -EIO;
 873	}
 874
 875	if (ctr[0].event == SPU_CYCLES_EVENT_NUM) {
 876		profiling_mode = SPU_PROFILING_CYCLES;
 877		ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs);
 878	} else if ((ctr[0].event >= SPU_EVENT_NUM_START) &&
 879		   (ctr[0].event <= SPU_EVENT_NUM_STOP)) {
 880		profiling_mode = SPU_PROFILING_EVENTS;
 881		spu_cycle_reset = ctr[0].count;
 882
 883		/* for SPU event profiling, need to setup the
 884		 * pm_signal array with the events to route the
 885		 * SPU PC before making the FW call.  Note, only
 886		 * one SPU event for profiling can be specified
 887		 * at a time.
 888		 */
 889		cell_reg_setup_spu_events(ctr, sys, num_ctrs);
 890	} else {
 891		profiling_mode = PPU_PROFILING;
 892		ret = cell_reg_setup_ppu(ctr, sys, num_ctrs);
 893	}
 894
 895	return ret;
 896}
 897
 898
 899
 900/* This function is called once for each cpu */
 901static int cell_cpu_setup(struct op_counter_config *cntr)
 902{
 903	u32 cpu = smp_processor_id();
 904	u32 num_enabled = 0;
 905	int i;
 906	int ret;
 907
 908	/* Cycle based SPU profiling does not use the performance
 909	 * counters.  The trace array is configured to collect
 910	 * the data.
 911	 */
 912	if (profiling_mode == SPU_PROFILING_CYCLES)
 913		return 0;
 914
 915	/* There is one performance monitor per processor chip (i.e. node),
 916	 * so we only need to perform this function once per node.
 917	 */
 918	if (cbe_get_hw_thread_id(cpu))
 919		return 0;
 920
 921	/* Stop all counters */
 922	cbe_disable_pm(cpu);
 923	cbe_disable_pm_interrupts(cpu);
 924
 925	cbe_write_pm(cpu, pm_start_stop, 0);
 926	cbe_write_pm(cpu, group_control, pm_regs.group_control);
 927	cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
 928	write_pm_cntrl(cpu);
 929
 930	for (i = 0; i < num_counters; ++i) {
 931		if (ctr_enabled & (1 << i)) {
 932			pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu);
 933			num_enabled++;
 934		}
 935	}
 936
 937	/*
 938	 * The pm_rtas_activate_signals will return -EIO if the FW
 939	 * call failed.
 940	 */
 941	if (profiling_mode == SPU_PROFILING_EVENTS) {
 942		/* For SPU event profiling also need to setup the
 943		 * pm interval timer
 944		 */
 945		ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
 946					       num_enabled+2);
 947		/* store PC from debug bus to Trace buffer as often
 948		 * as possible (every 10 cycles)
 949		 */
 950		cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
 951		return ret;
 952	} else
 953		return pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
 954						num_enabled);
 955}
 956
 957#define ENTRIES	 303
 958#define MAXLFSR	 0xFFFFFF
 959
 960/* precomputed table of 24 bit LFSR values */
 961static int initial_lfsr[] = {
 962 8221349, 12579195, 5379618, 10097839, 7512963, 7519310, 3955098, 10753424,
 963 15507573, 7458917, 285419, 2641121, 9780088, 3915503, 6668768, 1548716,
 964 4885000, 8774424, 9650099, 2044357, 2304411, 9326253, 10332526, 4421547,
 965 3440748, 10179459, 13332843, 10375561, 1313462, 8375100, 5198480, 6071392,
 966 9341783, 1526887, 3985002, 1439429, 13923762, 7010104, 11969769, 4547026,
 967 2040072, 4025602, 3437678, 7939992, 11444177, 4496094, 9803157, 10745556,
 968 3671780, 4257846, 5662259, 13196905, 3237343, 12077182, 16222879, 7587769,
 969 14706824, 2184640, 12591135, 10420257, 7406075, 3648978, 11042541, 15906893,
 970 11914928, 4732944, 10695697, 12928164, 11980531, 4430912, 11939291, 2917017,
 971 6119256, 4172004, 9373765, 8410071, 14788383, 5047459, 5474428, 1737756,
 972 15967514, 13351758, 6691285, 8034329, 2856544, 14394753, 11310160, 12149558,
 973 7487528, 7542781, 15668898, 12525138, 12790975, 3707933, 9106617, 1965401,
 974 16219109, 12801644, 2443203, 4909502, 8762329, 3120803, 6360315, 9309720,
 975 15164599, 10844842, 4456529, 6667610, 14924259, 884312, 6234963, 3326042,
 976 15973422, 13919464, 5272099, 6414643, 3909029, 2764324, 5237926, 4774955,
 977 10445906, 4955302, 5203726, 10798229, 11443419, 2303395, 333836, 9646934,
 978 3464726, 4159182, 568492, 995747, 10318756, 13299332, 4836017, 8237783,
 979 3878992, 2581665, 11394667, 5672745, 14412947, 3159169, 9094251, 16467278,
 980 8671392, 15230076, 4843545, 7009238, 15504095, 1494895, 9627886, 14485051,
 981 8304291, 252817, 12421642, 16085736, 4774072, 2456177, 4160695, 15409741,
 982 4902868, 5793091, 13162925, 16039714, 782255, 11347835, 14884586, 366972,
 983 16308990, 11913488, 13390465, 2958444, 10340278, 1177858, 1319431, 10426302,
 984 2868597, 126119, 5784857, 5245324, 10903900, 16436004, 3389013, 1742384,
 985 14674502, 10279218, 8536112, 10364279, 6877778, 14051163, 1025130, 6072469,
 986 1988305, 8354440, 8216060, 16342977, 13112639, 3976679, 5913576, 8816697,
 987 6879995, 14043764, 3339515, 9364420, 15808858, 12261651, 2141560, 5636398,
 988 10345425, 10414756, 781725, 6155650, 4746914, 5078683, 7469001, 6799140,
 989 10156444, 9667150, 10116470, 4133858, 2121972, 1124204, 1003577, 1611214,
 990 14304602, 16221850, 13878465, 13577744, 3629235, 8772583, 10881308, 2410386,
 991 7300044, 5378855, 9301235, 12755149, 4977682, 8083074, 10327581, 6395087,
 992 9155434, 15501696, 7514362, 14520507, 15808945, 3244584, 4741962, 9658130,
 993 14336147, 8654727, 7969093, 15759799, 14029445, 5038459, 9894848, 8659300,
 994 13699287, 8834306, 10712885, 14753895, 10410465, 3373251, 309501, 9561475,
 995 5526688, 14647426, 14209836, 5339224, 207299, 14069911, 8722990, 2290950,
 996 3258216, 12505185, 6007317, 9218111, 14661019, 10537428, 11731949, 9027003,
 997 6641507, 9490160, 200241, 9720425, 16277895, 10816638, 1554761, 10431375,
 998 7467528, 6790302, 3429078, 14633753, 14428997, 11463204, 3576212, 2003426,
 999 6123687, 820520, 9992513, 15784513, 5778891, 6428165, 8388607
1000};
1001
1002/*
1003 * The hardware uses an LFSR counting sequence to determine when to capture
1004 * the SPU PCs.	 An LFSR sequence is like a puesdo random number sequence
1005 * where each number occurs once in the sequence but the sequence is not in
1006 * numerical order. The SPU PC capture is done when the LFSR sequence reaches
1007 * the last value in the sequence.  Hence the user specified value N
1008 * corresponds to the LFSR number that is N from the end of the sequence.
1009 *
1010 * To avoid the time to compute the LFSR, a lookup table is used.  The 24 bit
1011 * LFSR sequence is broken into four ranges.  The spacing of the precomputed
1012 * values is adjusted in each range so the error between the user specifed
1013 * number (N) of events between samples and the actual number of events based
1014 * on the precomputed value will be les then about 6.2%.  Note, if the user
1015 * specifies N < 2^16, the LFSR value that is 2^16 from the end will be used.
1016 * This is to prevent the loss of samples because the trace buffer is full.
1017 *
1018 *	   User specified N		     Step between	   Index in
1019 *					 precomputed values	 precomputed
1020 *								    table
1021 * 0		    to	2^16-1			----		      0
1022 * 2^16	    to	2^16+2^19-1		2^12		    1 to 128
1023 * 2^16+2^19	    to	2^16+2^19+2^22-1	2^15		  129 to 256
1024 * 2^16+2^19+2^22  to	2^24-1			2^18		  257 to 302
1025 *
1026 *
1027 * For example, the LFSR values in the second range are computed for 2^16,
1028 * 2^16+2^12, ... , 2^19-2^16, 2^19 and stored in the table at indicies
1029 * 1, 2,..., 127, 128.
1030 *
1031 * The 24 bit LFSR value for the nth number in the sequence can be
1032 * calculated using the following code:
1033 *
1034 * #define size 24
1035 * int calculate_lfsr(int n)
1036 * {
1037 *	int i;
1038 *	unsigned int newlfsr0;
1039 *	unsigned int lfsr = 0xFFFFFF;
1040 *	unsigned int howmany = n;
1041 *
1042 *	for (i = 2; i < howmany + 2; i++) {
1043 *		newlfsr0 = (((lfsr >> (size - 1 - 0)) & 1) ^
1044 *		((lfsr >> (size - 1 - 1)) & 1) ^
1045 *		(((lfsr >> (size - 1 - 6)) & 1) ^
1046 *		((lfsr >> (size - 1 - 23)) & 1)));
1047 *
1048 *		lfsr >>= 1;
1049 *		lfsr = lfsr | (newlfsr0 << (size - 1));
1050 *	}
1051 *	return lfsr;
1052 * }
1053 */
1054
1055#define V2_16  (0x1 << 16)
1056#define V2_19  (0x1 << 19)
1057#define V2_22  (0x1 << 22)
1058
1059static int calculate_lfsr(int n)
1060{
1061	/*
1062	 * The ranges and steps are in powers of 2 so the calculations
1063	 * can be done using shifts rather then divide.
1064	 */
1065	int index;
1066
1067	if ((n >> 16) == 0)
1068		index = 0;
1069	else if (((n - V2_16) >> 19) == 0)
1070		index = ((n - V2_16) >> 12) + 1;
1071	else if (((n - V2_16 - V2_19) >> 22) == 0)
1072		index = ((n - V2_16 - V2_19) >> 15 ) + 1 + 128;
1073	else if (((n - V2_16 - V2_19 - V2_22) >> 24) == 0)
1074		index = ((n - V2_16 - V2_19 - V2_22) >> 18 ) + 1 + 256;
1075	else
1076		index = ENTRIES-1;
1077
1078	/* make sure index is valid */
1079	if ((index >= ENTRIES) || (index < 0))
1080		index = ENTRIES-1;
1081
1082	return initial_lfsr[index];
1083}
1084
1085static int pm_rtas_activate_spu_profiling(u32 node)
1086{
1087	int ret, i;
1088	struct pm_signal pm_signal_local[NUM_SPUS_PER_NODE];
1089
1090	/*
1091	 * Set up the rtas call to configure the debug bus to
1092	 * route the SPU PCs.  Setup the pm_signal for each SPU
1093	 */
1094	for (i = 0; i < ARRAY_SIZE(pm_signal_local); i++) {
1095		pm_signal_local[i].cpu = node;
1096		pm_signal_local[i].signal_group = 41;
1097		/* spu i on word (i/2) */
1098		pm_signal_local[i].bus_word = 1 << i / 2;
1099		/* spu i */
1100		pm_signal_local[i].sub_unit = i;
1101		pm_signal_local[i].bit = 63;
1102	}
1103
1104	ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE,
1105				     PASSTHRU_ENABLE, pm_signal_local,
1106				     (ARRAY_SIZE(pm_signal_local)
1107				      * sizeof(struct pm_signal)));
1108
1109	if (unlikely(ret)) {
1110		printk(KERN_WARNING "%s: rtas returned: %d\n",
1111		       __func__, ret);
1112		return -EIO;
1113	}
1114
1115	return 0;
1116}
1117
1118#ifdef CONFIG_CPU_FREQ
1119static int
1120oprof_cpufreq_notify(struct notifier_block *nb, unsigned long val, void *data)
1121{
1122	int ret = 0;
1123	struct cpufreq_freqs *frq = data;
1124	if ((val == CPUFREQ_PRECHANGE && frq->old < frq->new) ||
1125	    (val == CPUFREQ_POSTCHANGE && frq->old > frq->new) ||
1126	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE))
1127		set_spu_profiling_frequency(frq->new, spu_cycle_reset);
1128	return ret;
1129}
1130
1131static struct notifier_block cpu_freq_notifier_block = {
1132	.notifier_call	= oprof_cpufreq_notify
1133};
1134#endif
1135
1136/*
1137 * Note the generic OProfile stop calls do not support returning
1138 * an error on stop.  Hence, will not return an error if the FW
1139 * calls fail on stop.	Failure to reset the debug bus is not an issue.
1140 * Failure to disable the SPU profiling is not an issue.  The FW calls
1141 * to enable the performance counters and debug bus will work even if
1142 * the hardware was not cleanly reset.
1143 */
1144static void cell_global_stop_spu_cycles(void)
1145{
1146	int subfunc, rtn_value;
1147	unsigned int lfsr_value;
1148	int cpu;
1149
1150	oprofile_running = 0;
1151	smp_wmb();
1152
1153#ifdef CONFIG_CPU_FREQ
1154	cpufreq_unregister_notifier(&cpu_freq_notifier_block,
1155				    CPUFREQ_TRANSITION_NOTIFIER);
1156#endif
1157
1158	for_each_online_cpu(cpu) {
1159		if (cbe_get_hw_thread_id(cpu))
1160			continue;
1161
1162		subfunc = 3;	/*
1163				 * 2 - activate SPU tracing,
1164				 * 3 - deactivate
1165				 */
1166		lfsr_value = 0x8f100000;
1167
1168		rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL,
1169				      subfunc, cbe_cpu_to_node(cpu),
1170				      lfsr_value);
1171
1172		if (unlikely(rtn_value != 0)) {
1173			printk(KERN_ERR
1174			       "%s: rtas call ibm,cbe-spu-perftools " \
1175			       "failed, return = %d\n",
1176			       __func__, rtn_value);
1177		}
1178
1179		/* Deactivate the signals */
1180		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1181	}
1182
1183	stop_spu_profiling_cycles();
1184}
1185
1186static void cell_global_stop_spu_events(void)
1187{
1188	int cpu;
1189	oprofile_running = 0;
1190
1191	stop_spu_profiling_events();
1192	smp_wmb();
1193
1194	for_each_online_cpu(cpu) {
1195		if (cbe_get_hw_thread_id(cpu))
1196			continue;
1197
1198		cbe_sync_irq(cbe_cpu_to_node(cpu));
1199		/* Stop the counters */
1200		cbe_disable_pm(cpu);
1201		cbe_write_pm07_control(cpu, 0, 0);
1202
1203		/* Deactivate the signals */
1204		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1205
1206		/* Deactivate interrupts */
1207		cbe_disable_pm_interrupts(cpu);
1208	}
1209	del_timer_sync(&timer_spu_event_swap);
1210}
1211
1212static void cell_global_stop_ppu(void)
1213{
1214	int cpu;
1215
1216	/*
1217	 * This routine will be called once for the system.
1218	 * There is one performance monitor per node, so we
1219	 * only need to perform this function once per node.
1220	 */
1221	del_timer_sync(&timer_virt_cntr);
1222	oprofile_running = 0;
1223	smp_wmb();
1224
1225	for_each_online_cpu(cpu) {
1226		if (cbe_get_hw_thread_id(cpu))
1227			continue;
1228
1229		cbe_sync_irq(cbe_cpu_to_node(cpu));
1230		/* Stop the counters */
1231		cbe_disable_pm(cpu);
1232
1233		/* Deactivate the signals */
1234		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1235
1236		/* Deactivate interrupts */
1237		cbe_disable_pm_interrupts(cpu);
1238	}
1239}
1240
1241static void cell_global_stop(void)
1242{
1243	if (profiling_mode == PPU_PROFILING)
1244		cell_global_stop_ppu();
1245	else if (profiling_mode == SPU_PROFILING_EVENTS)
1246		cell_global_stop_spu_events();
1247	else
1248		cell_global_stop_spu_cycles();
1249}
1250
1251static int cell_global_start_spu_cycles(struct op_counter_config *ctr)
1252{
1253	int subfunc;
1254	unsigned int lfsr_value;
1255	int cpu;
1256	int ret;
1257	int rtas_error;
1258	unsigned int cpu_khzfreq = 0;
1259
1260	/* The SPU profiling uses time-based profiling based on
1261	 * cpu frequency, so if configured with the CPU_FREQ
1262	 * option, we should detect frequency changes and react
1263	 * accordingly.
1264	 */
1265#ifdef CONFIG_CPU_FREQ
1266	ret = cpufreq_register_notifier(&cpu_freq_notifier_block,
1267					CPUFREQ_TRANSITION_NOTIFIER);
1268	if (ret < 0)
1269		/* this is not a fatal error */
1270		printk(KERN_ERR "CPU freq change registration failed: %d\n",
1271		       ret);
1272
1273	else
1274		cpu_khzfreq = cpufreq_quick_get(smp_processor_id());
1275#endif
1276
1277	set_spu_profiling_frequency(cpu_khzfreq, spu_cycle_reset);
1278
1279	for_each_online_cpu(cpu) {
1280		if (cbe_get_hw_thread_id(cpu))
1281			continue;
1282
1283		/*
1284		 * Setup SPU cycle-based profiling.
1285		 * Set perf_mon_control bit 0 to a zero before
1286		 * enabling spu collection hardware.
1287		 */
1288		cbe_write_pm(cpu, pm_control, 0);
1289
1290		if (spu_cycle_reset > MAX_SPU_COUNT)
1291			/* use largest possible value */
1292			lfsr_value = calculate_lfsr(MAX_SPU_COUNT-1);
1293		else
1294			lfsr_value = calculate_lfsr(spu_cycle_reset);
1295
1296		/* must use a non zero value. Zero disables data collection. */
1297		if (lfsr_value == 0)
1298			lfsr_value = calculate_lfsr(1);
1299
1300		lfsr_value = lfsr_value << 8; /* shift lfsr to correct
1301						* register location
1302						*/
1303
1304		/* debug bus setup */
1305		ret = pm_rtas_activate_spu_profiling(cbe_cpu_to_node(cpu));
1306
1307		if (unlikely(ret)) {
1308			rtas_error = ret;
1309			goto out;
1310		}
1311
1312
1313		subfunc = 2;	/* 2 - activate SPU tracing, 3 - deactivate */
1314
1315		/* start profiling */
1316		ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc,
1317				cbe_cpu_to_node(cpu), lfsr_value);
1318
1319		if (unlikely(ret != 0)) {
1320			printk(KERN_ERR
1321			       "%s: rtas call ibm,cbe-spu-perftools failed, " \
1322			       "return = %d\n", __func__, ret);
1323			rtas_error = -EIO;
1324			goto out;
1325		}
1326	}
1327
1328	rtas_error = start_spu_profiling_cycles(spu_cycle_reset);
1329	if (rtas_error)
1330		goto out_stop;
1331
1332	oprofile_running = 1;
1333	return 0;
1334
1335out_stop:
1336	cell_global_stop_spu_cycles();	/* clean up the PMU/debug bus */
1337out:
1338	return rtas_error;
1339}
1340
1341static int cell_global_start_spu_events(struct op_counter_config *ctr)
1342{
1343	int cpu;
1344	u32 interrupt_mask = 0;
1345	int rtn = 0;
1346
1347	hdw_thread = 0;
1348
1349	/* spu event profiling, uses the performance counters to generate
1350	 * an interrupt.  The hardware is setup to store the SPU program
1351	 * counter into the trace array.  The occurrence mode is used to
1352	 * enable storing data to the trace buffer.  The bits are set
1353	 * to send/store the SPU address in the trace buffer.  The debug
1354	 * bus must be setup to route the SPU program counter onto the
1355	 * debug bus.  The occurrence data in the trace buffer is not used.
1356	 */
1357
1358	/* This routine gets called once for the system.
1359	 * There is one performance monitor per node, so we
1360	 * only need to perform this function once per node.
1361	 */
1362
1363	for_each_online_cpu(cpu) {
1364		if (cbe_get_hw_thread_id(cpu))
1365			continue;
1366
1367		/*
1368		 * Setup SPU event-based profiling.
1369		 * Set perf_mon_control bit 0 to a zero before
1370		 * enabling spu collection hardware.
1371		 *
1372		 * Only support one SPU event on one SPU per node.
1373		 */
1374		if (ctr_enabled & 1) {
1375			cbe_write_ctr(cpu, 0, reset_value[0]);
1376			enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
1377			interrupt_mask |=
1378				CBE_PM_CTR_OVERFLOW_INTR(0);
1379		} else {
1380			/* Disable counter */
1381			cbe_write_pm07_control(cpu, 0, 0);
1382		}
1383
1384		cbe_get_and_clear_pm_interrupts(cpu);
1385		cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1386		cbe_enable_pm(cpu);
1387
1388		/* clear the trace buffer */
1389		cbe_write_pm(cpu, trace_address, 0);
1390	}
1391
1392	/* Start the timer to time slice collecting the event profile
1393	 * on each of the SPUs.  Note, can collect profile on one SPU
1394	 * per node at a time.
1395	 */
1396	start_spu_event_swap();
1397	start_spu_profiling_events();
1398	oprofile_running = 1;
1399	smp_wmb();
1400
1401	return rtn;
1402}
1403
1404static int cell_global_start_ppu(struct op_counter_config *ctr)
1405{
1406	u32 cpu, i;
1407	u32 interrupt_mask = 0;
1408
1409	/* This routine gets called once for the system.
1410	 * There is one performance monitor per node, so we
1411	 * only need to perform this function once per node.
1412	 */
1413	for_each_online_cpu(cpu) {
1414		if (cbe_get_hw_thread_id(cpu))
1415			continue;
1416
1417		interrupt_mask = 0;
1418
1419		for (i = 0; i < num_counters; ++i) {
1420			if (ctr_enabled & (1 << i)) {
1421				cbe_write_ctr(cpu, i, reset_value[i]);
1422				enable_ctr(cpu, i, pm_regs.pm07_cntrl);
1423				interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i);
1424			} else {
1425				/* Disable counter */
1426				cbe_write_pm07_control(cpu, i, 0);
1427			}
1428		}
1429
1430		cbe_get_and_clear_pm_interrupts(cpu);
1431		cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1432		cbe_enable_pm(cpu);
1433	}
1434
1435	virt_cntr_inter_mask = interrupt_mask;
1436	oprofile_running = 1;
1437	smp_wmb();
1438
1439	/*
1440	 * NOTE: start_virt_cntrs will result in cell_virtual_cntr() being
1441	 * executed which manipulates the PMU.	We start the "virtual counter"
1442	 * here so that we do not need to synchronize access to the PMU in
1443	 * the above for-loop.
1444	 */
1445	start_virt_cntrs();
1446
1447	return 0;
1448}
1449
1450static int cell_global_start(struct op_counter_config *ctr)
1451{
1452	if (profiling_mode == SPU_PROFILING_CYCLES)
1453		return cell_global_start_spu_cycles(ctr);
1454	else if (profiling_mode == SPU_PROFILING_EVENTS)
1455		return cell_global_start_spu_events(ctr);
1456	else
1457		return cell_global_start_ppu(ctr);
1458}
1459
1460
1461/* The SPU interrupt handler
1462 *
1463 * SPU event profiling works as follows:
1464 * The pm_signal[0] holds the one SPU event to be measured.  It is routed on
1465 * the debug bus using word 0 or 1.  The value of pm_signal[1] and
1466 * pm_signal[2] contain the necessary events to route the SPU program
1467 * counter for the selected SPU onto the debug bus using words 2 and 3.
1468 * The pm_interval register is setup to write the SPU PC value into the
1469 * trace buffer at the maximum rate possible.  The trace buffer is configured
1470 * to store the PCs, wrapping when it is full.  The performance counter is
1471 * initialized to the max hardware count minus the number of events, N, between
1472 * samples.  Once the N events have occurred, a HW counter overflow occurs
1473 * causing the generation of a HW counter interrupt which also stops the
1474 * writing of the SPU PC values to the trace buffer.  Hence the last PC
1475 * written to the trace buffer is the SPU PC that we want.  Unfortunately,
1476 * we have to read from the beginning of the trace buffer to get to the
1477 * last value written.  We just hope the PPU has nothing better to do then
1478 * service this interrupt. The PC for the specific SPU being profiled is
1479 * extracted from the trace buffer processed and stored.  The trace buffer
1480 * is cleared, interrupts are cleared, the counter is reset to max - N.
1481 * A kernel timer is used to periodically call the routine spu_evnt_swap()
1482 * to switch to the next physical SPU in the node to profile in round robbin
1483 * order.  This way data is collected for all SPUs on the node. It does mean
1484 * that we need to use a relatively small value of N to ensure enough samples
1485 * on each SPU are collected each SPU is being profiled 1/8 of the time.
1486 * It may also be necessary to use a longer sample collection period.
1487 */
1488static void cell_handle_interrupt_spu(struct pt_regs *regs,
1489				      struct op_counter_config *ctr)
1490{
1491	u32 cpu, cpu_tmp;
1492	u64 trace_entry;
1493	u32 interrupt_mask;
1494	u64 trace_buffer[2];
1495	u64 last_trace_buffer;
1496	u32 sample;
1497	u32 trace_addr;
1498	unsigned long sample_array_lock_flags;
1499	int spu_num;
1500	unsigned long flags;
1501
1502	/* Make sure spu event interrupt handler and spu event swap
1503	 * don't access the counters simultaneously.
1504	 */
1505	cpu = smp_processor_id();
1506	spin_lock_irqsave(&cntr_lock, flags);
1507
1508	cpu_tmp = cpu;
1509	cbe_disable_pm(cpu);
1510
1511	interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1512
1513	sample = 0xABCDEF;
1514	trace_entry = 0xfedcba;
1515	last_trace_buffer = 0xdeadbeaf;
1516
1517	if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1518		/* disable writes to trace buff */
1519		cbe_write_pm(cpu, pm_interval, 0);
1520
1521		/* only have one perf cntr being used, cntr 0 */
1522		if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0))
1523		    && ctr[0].enabled)
1524			/* The SPU PC values will be read
1525			 * from the trace buffer, reset counter
1526			 */
1527
1528			cbe_write_ctr(cpu, 0, reset_value[0]);
1529
1530		trace_addr = cbe_read_pm(cpu, trace_address);
1531
1532		while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
1533			/* There is data in the trace buffer to process
1534			 * Read the buffer until you get to the last
1535			 * entry.  This is the value we want.
1536			 */
1537
1538			cbe_read_trace_buffer(cpu, trace_buffer);
1539			trace_addr = cbe_read_pm(cpu, trace_address);
1540		}
1541
1542		/* SPU Address 16 bit count format for 128 bit
1543		 * HW trace buffer is used for the SPU PC storage
1544		 *    HDR bits          0:15
1545		 *    SPU Addr 0 bits   16:31
1546		 *    SPU Addr 1 bits   32:47
1547		 *    unused bits       48:127
1548		 *
1549		 * HDR: bit4 = 1 SPU Address 0 valid
1550		 * HDR: bit5 = 1 SPU Address 1 valid
1551		 *  - unfortunately, the valid bits don't seem to work
1552		 *
1553		 * Note trace_buffer[0] holds bits 0:63 of the HW
1554		 * trace buffer, trace_buffer[1] holds bits 64:127
1555		 */
1556
1557		trace_entry = trace_buffer[0]
1558			& 0x00000000FFFF0000;
1559
1560		/* only top 16 of the 18 bit SPU PC address
1561		 * is stored in trace buffer, hence shift right
1562		 * by 16 -2 bits */
1563		sample = trace_entry >> 14;
1564		last_trace_buffer = trace_buffer[0];
1565
1566		spu_num = spu_evnt_phys_spu_indx
1567			+ (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE);
1568
1569		/* make sure only one process at a time is calling
1570		 * spu_sync_buffer()
1571		 */
1572		spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
1573				  sample_array_lock_flags);
1574		spu_sync_buffer(spu_num, &sample, 1);
1575		spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
1576				       sample_array_lock_flags);
1577
1578		smp_wmb();    /* insure spu event buffer updates are written
1579			       * don't want events intermingled... */
1580
1581		/* The counters were frozen by the interrupt.
1582		 * Reenable the interrupt and restart the counters.
1583		 */
1584		cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1585		cbe_enable_pm_interrupts(cpu, hdw_thread,
1586					 virt_cntr_inter_mask);
1587
1588		/* clear the trace buffer, re-enable writes to trace buff */
1589		cbe_write_pm(cpu, trace_address, 0);
1590		cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1591
1592		/* The writes to the various performance counters only writes
1593		 * to a latch.  The new values (interrupt setting bits, reset
1594		 * counter value etc.) are not copied to the actual registers
1595		 * until the performance monitor is enabled.  In order to get
1596		 * this to work as desired, the performance monitor needs to
1597		 * be disabled while writing to the latches.  This is a
1598		 * HW design issue.
1599		 */
1600		write_pm_cntrl(cpu);
1601		cbe_enable_pm(cpu);
1602	}
1603	spin_unlock_irqrestore(&cntr_lock, flags);
1604}
1605
1606static void cell_handle_interrupt_ppu(struct pt_regs *regs,
1607				      struct op_counter_config *ctr)
1608{
1609	u32 cpu;
1610	u64 pc;
1611	int is_kernel;
1612	unsigned long flags = 0;
1613	u32 interrupt_mask;
1614	int i;
1615
1616	cpu = smp_processor_id();
1617
1618	/*
1619	 * Need to make sure the interrupt handler and the virt counter
1620	 * routine are not running at the same time. See the
1621	 * cell_virtual_cntr() routine for additional comments.
1622	 */
1623	spin_lock_irqsave(&cntr_lock, flags);
1624
1625	/*
1626	 * Need to disable and reenable the performance counters
1627	 * to get the desired behavior from the hardware.  This
1628	 * is hardware specific.
1629	 */
1630
1631	cbe_disable_pm(cpu);
1632
1633	interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1634
1635	/*
1636	 * If the interrupt mask has been cleared, then the virt cntr
1637	 * has cleared the interrupt.  When the thread that generated
1638	 * the interrupt is restored, the data count will be restored to
1639	 * 0xffffff0 to cause the interrupt to be regenerated.
1640	 */
1641
1642	if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1643		pc = regs->nip;
1644		is_kernel = is_kernel_addr(pc);
1645
1646		for (i = 0; i < num_counters; ++i) {
1647			if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i))
1648			    && ctr[i].enabled) {
1649				oprofile_add_ext_sample(pc, regs, i, is_kernel);
1650				cbe_write_ctr(cpu, i, reset_value[i]);
1651			}
1652		}
1653
1654		/*
1655		 * The counters were frozen by the interrupt.
1656		 * Reenable the interrupt and restart the counters.
1657		 * If there was a race between the interrupt handler and
1658		 * the virtual counter routine.	 The virtual counter
1659		 * routine may have cleared the interrupts.  Hence must
1660		 * use the virt_cntr_inter_mask to re-enable the interrupts.
1661		 */
1662		cbe_enable_pm_interrupts(cpu, hdw_thread,
1663					 virt_cntr_inter_mask);
1664
1665		/*
1666		 * The writes to the various performance counters only writes
1667		 * to a latch.	The new values (interrupt setting bits, reset
1668		 * counter value etc.) are not copied to the actual registers
1669		 * until the performance monitor is enabled.  In order to get
1670		 * this to work as desired, the performance monitor needs to
1671		 * be disabled while writing to the latches.  This is a
1672		 * HW design issue.
1673		 */
1674		cbe_enable_pm(cpu);
1675	}
1676	spin_unlock_irqrestore(&cntr_lock, flags);
1677}
1678
1679static void cell_handle_interrupt(struct pt_regs *regs,
1680				  struct op_counter_config *ctr)
1681{
1682	if (profiling_mode == PPU_PROFILING)
1683		cell_handle_interrupt_ppu(regs, ctr);
1684	else
1685		cell_handle_interrupt_spu(regs, ctr);
1686}
1687
1688/*
1689 * This function is called from the generic OProfile
1690 * driver.  When profiling PPUs, we need to do the
1691 * generic sync start; otherwise, do spu_sync_start.
1692 */
1693static int cell_sync_start(void)
1694{
1695	if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1696	    (profiling_mode == SPU_PROFILING_EVENTS))
1697		return spu_sync_start();
1698	else
1699		return DO_GENERIC_SYNC;
1700}
1701
1702static int cell_sync_stop(void)
1703{
1704	if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1705	    (profiling_mode == SPU_PROFILING_EVENTS))
1706		return spu_sync_stop();
1707	else
1708		return 1;
1709}
1710
1711struct op_powerpc_model op_model_cell = {
1712	.reg_setup = cell_reg_setup,
1713	.cpu_setup = cell_cpu_setup,
1714	.global_start = cell_global_start,
1715	.global_stop = cell_global_stop,
1716	.sync_start = cell_sync_start,
1717	.sync_stop = cell_sync_stop,
1718	.handle_interrupt = cell_handle_interrupt,
1719};