Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17#include <linux/mm.h>
18#include <linux/sched.h>
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/pagevec.h>
24#include <linux/init.h>
25#include <linux/export.h>
26#include <linux/mm_inline.h>
27#include <linux/percpu_counter.h>
28#include <linux/memremap.h>
29#include <linux/percpu.h>
30#include <linux/cpu.h>
31#include <linux/notifier.h>
32#include <linux/backing-dev.h>
33#include <linux/memcontrol.h>
34#include <linux/gfp.h>
35#include <linux/uio.h>
36#include <linux/hugetlb.h>
37#include <linux/page_idle.h>
38#include <linux/local_lock.h>
39#include <linux/buffer_head.h>
40
41#include "internal.h"
42
43#define CREATE_TRACE_POINTS
44#include <trace/events/pagemap.h>
45
46/* How many pages do we try to swap or page in/out together? As a power of 2 */
47int page_cluster;
48const int page_cluster_max = 31;
49
50/* Protecting only lru_rotate.fbatch which requires disabling interrupts */
51struct lru_rotate {
52 local_lock_t lock;
53 struct folio_batch fbatch;
54};
55static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
56 .lock = INIT_LOCAL_LOCK(lock),
57};
58
59/*
60 * The following folio batches are grouped together because they are protected
61 * by disabling preemption (and interrupts remain enabled).
62 */
63struct cpu_fbatches {
64 local_lock_t lock;
65 struct folio_batch lru_add;
66 struct folio_batch lru_deactivate_file;
67 struct folio_batch lru_deactivate;
68 struct folio_batch lru_lazyfree;
69#ifdef CONFIG_SMP
70 struct folio_batch activate;
71#endif
72};
73static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
74 .lock = INIT_LOCAL_LOCK(lock),
75};
76
77/*
78 * This path almost never happens for VM activity - pages are normally freed
79 * in batches. But it gets used by networking - and for compound pages.
80 */
81static void __page_cache_release(struct folio *folio)
82{
83 if (folio_test_lru(folio)) {
84 struct lruvec *lruvec;
85 unsigned long flags;
86
87 lruvec = folio_lruvec_lock_irqsave(folio, &flags);
88 lruvec_del_folio(lruvec, folio);
89 __folio_clear_lru_flags(folio);
90 unlock_page_lruvec_irqrestore(lruvec, flags);
91 }
92 /* See comment on folio_test_mlocked in release_pages() */
93 if (unlikely(folio_test_mlocked(folio))) {
94 long nr_pages = folio_nr_pages(folio);
95
96 __folio_clear_mlocked(folio);
97 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
98 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
99 }
100}
101
102static void __folio_put_small(struct folio *folio)
103{
104 __page_cache_release(folio);
105 mem_cgroup_uncharge(folio);
106 free_unref_page(&folio->page, 0);
107}
108
109static void __folio_put_large(struct folio *folio)
110{
111 /*
112 * __page_cache_release() is supposed to be called for thp, not for
113 * hugetlb. This is because hugetlb page does never have PageLRU set
114 * (it's never listed to any LRU lists) and no memcg routines should
115 * be called for hugetlb (it has a separate hugetlb_cgroup.)
116 */
117 if (!folio_test_hugetlb(folio))
118 __page_cache_release(folio);
119 destroy_large_folio(folio);
120}
121
122void __folio_put(struct folio *folio)
123{
124 if (unlikely(folio_is_zone_device(folio)))
125 free_zone_device_page(&folio->page);
126 else if (unlikely(folio_test_large(folio)))
127 __folio_put_large(folio);
128 else
129 __folio_put_small(folio);
130}
131EXPORT_SYMBOL(__folio_put);
132
133/**
134 * put_pages_list() - release a list of pages
135 * @pages: list of pages threaded on page->lru
136 *
137 * Release a list of pages which are strung together on page.lru.
138 */
139void put_pages_list(struct list_head *pages)
140{
141 struct folio *folio, *next;
142
143 list_for_each_entry_safe(folio, next, pages, lru) {
144 if (!folio_put_testzero(folio)) {
145 list_del(&folio->lru);
146 continue;
147 }
148 if (folio_test_large(folio)) {
149 list_del(&folio->lru);
150 __folio_put_large(folio);
151 continue;
152 }
153 /* LRU flag must be clear because it's passed using the lru */
154 }
155
156 free_unref_page_list(pages);
157 INIT_LIST_HEAD(pages);
158}
159EXPORT_SYMBOL(put_pages_list);
160
161typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
162
163static void lru_add_fn(struct lruvec *lruvec, struct folio *folio)
164{
165 int was_unevictable = folio_test_clear_unevictable(folio);
166 long nr_pages = folio_nr_pages(folio);
167
168 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
169
170 /*
171 * Is an smp_mb__after_atomic() still required here, before
172 * folio_evictable() tests the mlocked flag, to rule out the possibility
173 * of stranding an evictable folio on an unevictable LRU? I think
174 * not, because __munlock_folio() only clears the mlocked flag
175 * while the LRU lock is held.
176 *
177 * (That is not true of __page_cache_release(), and not necessarily
178 * true of release_pages(): but those only clear the mlocked flag after
179 * folio_put_testzero() has excluded any other users of the folio.)
180 */
181 if (folio_evictable(folio)) {
182 if (was_unevictable)
183 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
184 } else {
185 folio_clear_active(folio);
186 folio_set_unevictable(folio);
187 /*
188 * folio->mlock_count = !!folio_test_mlocked(folio)?
189 * But that leaves __mlock_folio() in doubt whether another
190 * actor has already counted the mlock or not. Err on the
191 * safe side, underestimate, let page reclaim fix it, rather
192 * than leaving a page on the unevictable LRU indefinitely.
193 */
194 folio->mlock_count = 0;
195 if (!was_unevictable)
196 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
197 }
198
199 lruvec_add_folio(lruvec, folio);
200 trace_mm_lru_insertion(folio);
201}
202
203static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
204{
205 int i;
206 struct lruvec *lruvec = NULL;
207 unsigned long flags = 0;
208
209 for (i = 0; i < folio_batch_count(fbatch); i++) {
210 struct folio *folio = fbatch->folios[i];
211
212 /* block memcg migration while the folio moves between lru */
213 if (move_fn != lru_add_fn && !folio_test_clear_lru(folio))
214 continue;
215
216 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
217 move_fn(lruvec, folio);
218
219 folio_set_lru(folio);
220 }
221
222 if (lruvec)
223 unlock_page_lruvec_irqrestore(lruvec, flags);
224 folios_put(fbatch->folios, folio_batch_count(fbatch));
225 folio_batch_reinit(fbatch);
226}
227
228static void folio_batch_add_and_move(struct folio_batch *fbatch,
229 struct folio *folio, move_fn_t move_fn)
230{
231 if (folio_batch_add(fbatch, folio) && !folio_test_large(folio) &&
232 !lru_cache_disabled())
233 return;
234 folio_batch_move_lru(fbatch, move_fn);
235}
236
237static void lru_move_tail_fn(struct lruvec *lruvec, struct folio *folio)
238{
239 if (!folio_test_unevictable(folio)) {
240 lruvec_del_folio(lruvec, folio);
241 folio_clear_active(folio);
242 lruvec_add_folio_tail(lruvec, folio);
243 __count_vm_events(PGROTATED, folio_nr_pages(folio));
244 }
245}
246
247/*
248 * Writeback is about to end against a folio which has been marked for
249 * immediate reclaim. If it still appears to be reclaimable, move it
250 * to the tail of the inactive list.
251 *
252 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
253 */
254void folio_rotate_reclaimable(struct folio *folio)
255{
256 if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
257 !folio_test_unevictable(folio) && folio_test_lru(folio)) {
258 struct folio_batch *fbatch;
259 unsigned long flags;
260
261 folio_get(folio);
262 local_lock_irqsave(&lru_rotate.lock, flags);
263 fbatch = this_cpu_ptr(&lru_rotate.fbatch);
264 folio_batch_add_and_move(fbatch, folio, lru_move_tail_fn);
265 local_unlock_irqrestore(&lru_rotate.lock, flags);
266 }
267}
268
269void lru_note_cost(struct lruvec *lruvec, bool file,
270 unsigned int nr_io, unsigned int nr_rotated)
271{
272 unsigned long cost;
273
274 /*
275 * Reflect the relative cost of incurring IO and spending CPU
276 * time on rotations. This doesn't attempt to make a precise
277 * comparison, it just says: if reloads are about comparable
278 * between the LRU lists, or rotations are overwhelmingly
279 * different between them, adjust scan balance for CPU work.
280 */
281 cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
282
283 do {
284 unsigned long lrusize;
285
286 /*
287 * Hold lruvec->lru_lock is safe here, since
288 * 1) The pinned lruvec in reclaim, or
289 * 2) From a pre-LRU page during refault (which also holds the
290 * rcu lock, so would be safe even if the page was on the LRU
291 * and could move simultaneously to a new lruvec).
292 */
293 spin_lock_irq(&lruvec->lru_lock);
294 /* Record cost event */
295 if (file)
296 lruvec->file_cost += cost;
297 else
298 lruvec->anon_cost += cost;
299
300 /*
301 * Decay previous events
302 *
303 * Because workloads change over time (and to avoid
304 * overflow) we keep these statistics as a floating
305 * average, which ends up weighing recent refaults
306 * more than old ones.
307 */
308 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
309 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
310 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
311 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
312
313 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
314 lruvec->file_cost /= 2;
315 lruvec->anon_cost /= 2;
316 }
317 spin_unlock_irq(&lruvec->lru_lock);
318 } while ((lruvec = parent_lruvec(lruvec)));
319}
320
321void lru_note_cost_refault(struct folio *folio)
322{
323 lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
324 folio_nr_pages(folio), 0);
325}
326
327static void folio_activate_fn(struct lruvec *lruvec, struct folio *folio)
328{
329 if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
330 long nr_pages = folio_nr_pages(folio);
331
332 lruvec_del_folio(lruvec, folio);
333 folio_set_active(folio);
334 lruvec_add_folio(lruvec, folio);
335 trace_mm_lru_activate(folio);
336
337 __count_vm_events(PGACTIVATE, nr_pages);
338 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
339 nr_pages);
340 }
341}
342
343#ifdef CONFIG_SMP
344static void folio_activate_drain(int cpu)
345{
346 struct folio_batch *fbatch = &per_cpu(cpu_fbatches.activate, cpu);
347
348 if (folio_batch_count(fbatch))
349 folio_batch_move_lru(fbatch, folio_activate_fn);
350}
351
352void folio_activate(struct folio *folio)
353{
354 if (folio_test_lru(folio) && !folio_test_active(folio) &&
355 !folio_test_unevictable(folio)) {
356 struct folio_batch *fbatch;
357
358 folio_get(folio);
359 local_lock(&cpu_fbatches.lock);
360 fbatch = this_cpu_ptr(&cpu_fbatches.activate);
361 folio_batch_add_and_move(fbatch, folio, folio_activate_fn);
362 local_unlock(&cpu_fbatches.lock);
363 }
364}
365
366#else
367static inline void folio_activate_drain(int cpu)
368{
369}
370
371void folio_activate(struct folio *folio)
372{
373 struct lruvec *lruvec;
374
375 if (folio_test_clear_lru(folio)) {
376 lruvec = folio_lruvec_lock_irq(folio);
377 folio_activate_fn(lruvec, folio);
378 unlock_page_lruvec_irq(lruvec);
379 folio_set_lru(folio);
380 }
381}
382#endif
383
384static void __lru_cache_activate_folio(struct folio *folio)
385{
386 struct folio_batch *fbatch;
387 int i;
388
389 local_lock(&cpu_fbatches.lock);
390 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
391
392 /*
393 * Search backwards on the optimistic assumption that the folio being
394 * activated has just been added to this batch. Note that only
395 * the local batch is examined as a !LRU folio could be in the
396 * process of being released, reclaimed, migrated or on a remote
397 * batch that is currently being drained. Furthermore, marking
398 * a remote batch's folio active potentially hits a race where
399 * a folio is marked active just after it is added to the inactive
400 * list causing accounting errors and BUG_ON checks to trigger.
401 */
402 for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
403 struct folio *batch_folio = fbatch->folios[i];
404
405 if (batch_folio == folio) {
406 folio_set_active(folio);
407 break;
408 }
409 }
410
411 local_unlock(&cpu_fbatches.lock);
412}
413
414#ifdef CONFIG_LRU_GEN
415static void folio_inc_refs(struct folio *folio)
416{
417 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
418
419 if (folio_test_unevictable(folio))
420 return;
421
422 if (!folio_test_referenced(folio)) {
423 folio_set_referenced(folio);
424 return;
425 }
426
427 if (!folio_test_workingset(folio)) {
428 folio_set_workingset(folio);
429 return;
430 }
431
432 /* see the comment on MAX_NR_TIERS */
433 do {
434 new_flags = old_flags & LRU_REFS_MASK;
435 if (new_flags == LRU_REFS_MASK)
436 break;
437
438 new_flags += BIT(LRU_REFS_PGOFF);
439 new_flags |= old_flags & ~LRU_REFS_MASK;
440 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
441}
442#else
443static void folio_inc_refs(struct folio *folio)
444{
445}
446#endif /* CONFIG_LRU_GEN */
447
448/*
449 * Mark a page as having seen activity.
450 *
451 * inactive,unreferenced -> inactive,referenced
452 * inactive,referenced -> active,unreferenced
453 * active,unreferenced -> active,referenced
454 *
455 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
456 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
457 */
458void folio_mark_accessed(struct folio *folio)
459{
460 if (lru_gen_enabled()) {
461 folio_inc_refs(folio);
462 return;
463 }
464
465 if (!folio_test_referenced(folio)) {
466 folio_set_referenced(folio);
467 } else if (folio_test_unevictable(folio)) {
468 /*
469 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
470 * this list is never rotated or maintained, so marking an
471 * unevictable page accessed has no effect.
472 */
473 } else if (!folio_test_active(folio)) {
474 /*
475 * If the folio is on the LRU, queue it for activation via
476 * cpu_fbatches.activate. Otherwise, assume the folio is in a
477 * folio_batch, mark it active and it'll be moved to the active
478 * LRU on the next drain.
479 */
480 if (folio_test_lru(folio))
481 folio_activate(folio);
482 else
483 __lru_cache_activate_folio(folio);
484 folio_clear_referenced(folio);
485 workingset_activation(folio);
486 }
487 if (folio_test_idle(folio))
488 folio_clear_idle(folio);
489}
490EXPORT_SYMBOL(folio_mark_accessed);
491
492/**
493 * folio_add_lru - Add a folio to an LRU list.
494 * @folio: The folio to be added to the LRU.
495 *
496 * Queue the folio for addition to the LRU. The decision on whether
497 * to add the page to the [in]active [file|anon] list is deferred until the
498 * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
499 * have the folio added to the active list using folio_mark_accessed().
500 */
501void folio_add_lru(struct folio *folio)
502{
503 struct folio_batch *fbatch;
504
505 VM_BUG_ON_FOLIO(folio_test_active(folio) &&
506 folio_test_unevictable(folio), folio);
507 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
508
509 /* see the comment in lru_gen_add_folio() */
510 if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
511 lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
512 folio_set_active(folio);
513
514 folio_get(folio);
515 local_lock(&cpu_fbatches.lock);
516 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
517 folio_batch_add_and_move(fbatch, folio, lru_add_fn);
518 local_unlock(&cpu_fbatches.lock);
519}
520EXPORT_SYMBOL(folio_add_lru);
521
522/**
523 * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
524 * @folio: The folio to be added to the LRU.
525 * @vma: VMA in which the folio is mapped.
526 *
527 * If the VMA is mlocked, @folio is added to the unevictable list.
528 * Otherwise, it is treated the same way as folio_add_lru().
529 */
530void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
531{
532 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
533
534 if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
535 mlock_new_folio(folio);
536 else
537 folio_add_lru(folio);
538}
539
540/*
541 * If the folio cannot be invalidated, it is moved to the
542 * inactive list to speed up its reclaim. It is moved to the
543 * head of the list, rather than the tail, to give the flusher
544 * threads some time to write it out, as this is much more
545 * effective than the single-page writeout from reclaim.
546 *
547 * If the folio isn't mapped and dirty/writeback, the folio
548 * could be reclaimed asap using the reclaim flag.
549 *
550 * 1. active, mapped folio -> none
551 * 2. active, dirty/writeback folio -> inactive, head, reclaim
552 * 3. inactive, mapped folio -> none
553 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
554 * 5. inactive, clean -> inactive, tail
555 * 6. Others -> none
556 *
557 * In 4, it moves to the head of the inactive list so the folio is
558 * written out by flusher threads as this is much more efficient
559 * than the single-page writeout from reclaim.
560 */
561static void lru_deactivate_file_fn(struct lruvec *lruvec, struct folio *folio)
562{
563 bool active = folio_test_active(folio);
564 long nr_pages = folio_nr_pages(folio);
565
566 if (folio_test_unevictable(folio))
567 return;
568
569 /* Some processes are using the folio */
570 if (folio_mapped(folio))
571 return;
572
573 lruvec_del_folio(lruvec, folio);
574 folio_clear_active(folio);
575 folio_clear_referenced(folio);
576
577 if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
578 /*
579 * Setting the reclaim flag could race with
580 * folio_end_writeback() and confuse readahead. But the
581 * race window is _really_ small and it's not a critical
582 * problem.
583 */
584 lruvec_add_folio(lruvec, folio);
585 folio_set_reclaim(folio);
586 } else {
587 /*
588 * The folio's writeback ended while it was in the batch.
589 * We move that folio to the tail of the inactive list.
590 */
591 lruvec_add_folio_tail(lruvec, folio);
592 __count_vm_events(PGROTATED, nr_pages);
593 }
594
595 if (active) {
596 __count_vm_events(PGDEACTIVATE, nr_pages);
597 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
598 nr_pages);
599 }
600}
601
602static void lru_deactivate_fn(struct lruvec *lruvec, struct folio *folio)
603{
604 if (!folio_test_unevictable(folio) && (folio_test_active(folio) || lru_gen_enabled())) {
605 long nr_pages = folio_nr_pages(folio);
606
607 lruvec_del_folio(lruvec, folio);
608 folio_clear_active(folio);
609 folio_clear_referenced(folio);
610 lruvec_add_folio(lruvec, folio);
611
612 __count_vm_events(PGDEACTIVATE, nr_pages);
613 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
614 nr_pages);
615 }
616}
617
618static void lru_lazyfree_fn(struct lruvec *lruvec, struct folio *folio)
619{
620 if (folio_test_anon(folio) && folio_test_swapbacked(folio) &&
621 !folio_test_swapcache(folio) && !folio_test_unevictable(folio)) {
622 long nr_pages = folio_nr_pages(folio);
623
624 lruvec_del_folio(lruvec, folio);
625 folio_clear_active(folio);
626 folio_clear_referenced(folio);
627 /*
628 * Lazyfree folios are clean anonymous folios. They have
629 * the swapbacked flag cleared, to distinguish them from normal
630 * anonymous folios
631 */
632 folio_clear_swapbacked(folio);
633 lruvec_add_folio(lruvec, folio);
634
635 __count_vm_events(PGLAZYFREE, nr_pages);
636 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
637 nr_pages);
638 }
639}
640
641/*
642 * Drain pages out of the cpu's folio_batch.
643 * Either "cpu" is the current CPU, and preemption has already been
644 * disabled; or "cpu" is being hot-unplugged, and is already dead.
645 */
646void lru_add_drain_cpu(int cpu)
647{
648 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
649 struct folio_batch *fbatch = &fbatches->lru_add;
650
651 if (folio_batch_count(fbatch))
652 folio_batch_move_lru(fbatch, lru_add_fn);
653
654 fbatch = &per_cpu(lru_rotate.fbatch, cpu);
655 /* Disabling interrupts below acts as a compiler barrier. */
656 if (data_race(folio_batch_count(fbatch))) {
657 unsigned long flags;
658
659 /* No harm done if a racing interrupt already did this */
660 local_lock_irqsave(&lru_rotate.lock, flags);
661 folio_batch_move_lru(fbatch, lru_move_tail_fn);
662 local_unlock_irqrestore(&lru_rotate.lock, flags);
663 }
664
665 fbatch = &fbatches->lru_deactivate_file;
666 if (folio_batch_count(fbatch))
667 folio_batch_move_lru(fbatch, lru_deactivate_file_fn);
668
669 fbatch = &fbatches->lru_deactivate;
670 if (folio_batch_count(fbatch))
671 folio_batch_move_lru(fbatch, lru_deactivate_fn);
672
673 fbatch = &fbatches->lru_lazyfree;
674 if (folio_batch_count(fbatch))
675 folio_batch_move_lru(fbatch, lru_lazyfree_fn);
676
677 folio_activate_drain(cpu);
678}
679
680/**
681 * deactivate_file_folio() - Deactivate a file folio.
682 * @folio: Folio to deactivate.
683 *
684 * This function hints to the VM that @folio is a good reclaim candidate,
685 * for example if its invalidation fails due to the folio being dirty
686 * or under writeback.
687 *
688 * Context: Caller holds a reference on the folio.
689 */
690void deactivate_file_folio(struct folio *folio)
691{
692 struct folio_batch *fbatch;
693
694 /* Deactivating an unevictable folio will not accelerate reclaim */
695 if (folio_test_unevictable(folio))
696 return;
697
698 folio_get(folio);
699 local_lock(&cpu_fbatches.lock);
700 fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate_file);
701 folio_batch_add_and_move(fbatch, folio, lru_deactivate_file_fn);
702 local_unlock(&cpu_fbatches.lock);
703}
704
705/*
706 * folio_deactivate - deactivate a folio
707 * @folio: folio to deactivate
708 *
709 * folio_deactivate() moves @folio to the inactive list if @folio was on the
710 * active list and was not unevictable. This is done to accelerate the
711 * reclaim of @folio.
712 */
713void folio_deactivate(struct folio *folio)
714{
715 if (folio_test_lru(folio) && !folio_test_unevictable(folio) &&
716 (folio_test_active(folio) || lru_gen_enabled())) {
717 struct folio_batch *fbatch;
718
719 folio_get(folio);
720 local_lock(&cpu_fbatches.lock);
721 fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate);
722 folio_batch_add_and_move(fbatch, folio, lru_deactivate_fn);
723 local_unlock(&cpu_fbatches.lock);
724 }
725}
726
727/**
728 * folio_mark_lazyfree - make an anon folio lazyfree
729 * @folio: folio to deactivate
730 *
731 * folio_mark_lazyfree() moves @folio to the inactive file list.
732 * This is done to accelerate the reclaim of @folio.
733 */
734void folio_mark_lazyfree(struct folio *folio)
735{
736 if (folio_test_lru(folio) && folio_test_anon(folio) &&
737 folio_test_swapbacked(folio) && !folio_test_swapcache(folio) &&
738 !folio_test_unevictable(folio)) {
739 struct folio_batch *fbatch;
740
741 folio_get(folio);
742 local_lock(&cpu_fbatches.lock);
743 fbatch = this_cpu_ptr(&cpu_fbatches.lru_lazyfree);
744 folio_batch_add_and_move(fbatch, folio, lru_lazyfree_fn);
745 local_unlock(&cpu_fbatches.lock);
746 }
747}
748
749void lru_add_drain(void)
750{
751 local_lock(&cpu_fbatches.lock);
752 lru_add_drain_cpu(smp_processor_id());
753 local_unlock(&cpu_fbatches.lock);
754 mlock_drain_local();
755}
756
757/*
758 * It's called from per-cpu workqueue context in SMP case so
759 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
760 * the same cpu. It shouldn't be a problem in !SMP case since
761 * the core is only one and the locks will disable preemption.
762 */
763static void lru_add_and_bh_lrus_drain(void)
764{
765 local_lock(&cpu_fbatches.lock);
766 lru_add_drain_cpu(smp_processor_id());
767 local_unlock(&cpu_fbatches.lock);
768 invalidate_bh_lrus_cpu();
769 mlock_drain_local();
770}
771
772void lru_add_drain_cpu_zone(struct zone *zone)
773{
774 local_lock(&cpu_fbatches.lock);
775 lru_add_drain_cpu(smp_processor_id());
776 drain_local_pages(zone);
777 local_unlock(&cpu_fbatches.lock);
778 mlock_drain_local();
779}
780
781#ifdef CONFIG_SMP
782
783static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
784
785static void lru_add_drain_per_cpu(struct work_struct *dummy)
786{
787 lru_add_and_bh_lrus_drain();
788}
789
790static bool cpu_needs_drain(unsigned int cpu)
791{
792 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
793
794 /* Check these in order of likelihood that they're not zero */
795 return folio_batch_count(&fbatches->lru_add) ||
796 data_race(folio_batch_count(&per_cpu(lru_rotate.fbatch, cpu))) ||
797 folio_batch_count(&fbatches->lru_deactivate_file) ||
798 folio_batch_count(&fbatches->lru_deactivate) ||
799 folio_batch_count(&fbatches->lru_lazyfree) ||
800 folio_batch_count(&fbatches->activate) ||
801 need_mlock_drain(cpu) ||
802 has_bh_in_lru(cpu, NULL);
803}
804
805/*
806 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
807 * kworkers being shut down before our page_alloc_cpu_dead callback is
808 * executed on the offlined cpu.
809 * Calling this function with cpu hotplug locks held can actually lead
810 * to obscure indirect dependencies via WQ context.
811 */
812static inline void __lru_add_drain_all(bool force_all_cpus)
813{
814 /*
815 * lru_drain_gen - Global pages generation number
816 *
817 * (A) Definition: global lru_drain_gen = x implies that all generations
818 * 0 < n <= x are already *scheduled* for draining.
819 *
820 * This is an optimization for the highly-contended use case where a
821 * user space workload keeps constantly generating a flow of pages for
822 * each CPU.
823 */
824 static unsigned int lru_drain_gen;
825 static struct cpumask has_work;
826 static DEFINE_MUTEX(lock);
827 unsigned cpu, this_gen;
828
829 /*
830 * Make sure nobody triggers this path before mm_percpu_wq is fully
831 * initialized.
832 */
833 if (WARN_ON(!mm_percpu_wq))
834 return;
835
836 /*
837 * Guarantee folio_batch counter stores visible by this CPU
838 * are visible to other CPUs before loading the current drain
839 * generation.
840 */
841 smp_mb();
842
843 /*
844 * (B) Locally cache global LRU draining generation number
845 *
846 * The read barrier ensures that the counter is loaded before the mutex
847 * is taken. It pairs with smp_mb() inside the mutex critical section
848 * at (D).
849 */
850 this_gen = smp_load_acquire(&lru_drain_gen);
851
852 mutex_lock(&lock);
853
854 /*
855 * (C) Exit the draining operation if a newer generation, from another
856 * lru_add_drain_all(), was already scheduled for draining. Check (A).
857 */
858 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
859 goto done;
860
861 /*
862 * (D) Increment global generation number
863 *
864 * Pairs with smp_load_acquire() at (B), outside of the critical
865 * section. Use a full memory barrier to guarantee that the
866 * new global drain generation number is stored before loading
867 * folio_batch counters.
868 *
869 * This pairing must be done here, before the for_each_online_cpu loop
870 * below which drains the page vectors.
871 *
872 * Let x, y, and z represent some system CPU numbers, where x < y < z.
873 * Assume CPU #z is in the middle of the for_each_online_cpu loop
874 * below and has already reached CPU #y's per-cpu data. CPU #x comes
875 * along, adds some pages to its per-cpu vectors, then calls
876 * lru_add_drain_all().
877 *
878 * If the paired barrier is done at any later step, e.g. after the
879 * loop, CPU #x will just exit at (C) and miss flushing out all of its
880 * added pages.
881 */
882 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
883 smp_mb();
884
885 cpumask_clear(&has_work);
886 for_each_online_cpu(cpu) {
887 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
888
889 if (cpu_needs_drain(cpu)) {
890 INIT_WORK(work, lru_add_drain_per_cpu);
891 queue_work_on(cpu, mm_percpu_wq, work);
892 __cpumask_set_cpu(cpu, &has_work);
893 }
894 }
895
896 for_each_cpu(cpu, &has_work)
897 flush_work(&per_cpu(lru_add_drain_work, cpu));
898
899done:
900 mutex_unlock(&lock);
901}
902
903void lru_add_drain_all(void)
904{
905 __lru_add_drain_all(false);
906}
907#else
908void lru_add_drain_all(void)
909{
910 lru_add_drain();
911}
912#endif /* CONFIG_SMP */
913
914atomic_t lru_disable_count = ATOMIC_INIT(0);
915
916/*
917 * lru_cache_disable() needs to be called before we start compiling
918 * a list of pages to be migrated using isolate_lru_page().
919 * It drains pages on LRU cache and then disable on all cpus until
920 * lru_cache_enable is called.
921 *
922 * Must be paired with a call to lru_cache_enable().
923 */
924void lru_cache_disable(void)
925{
926 atomic_inc(&lru_disable_count);
927 /*
928 * Readers of lru_disable_count are protected by either disabling
929 * preemption or rcu_read_lock:
930 *
931 * preempt_disable, local_irq_disable [bh_lru_lock()]
932 * rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT]
933 * preempt_disable [local_lock !CONFIG_PREEMPT_RT]
934 *
935 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
936 * preempt_disable() regions of code. So any CPU which sees
937 * lru_disable_count = 0 will have exited the critical
938 * section when synchronize_rcu() returns.
939 */
940 synchronize_rcu_expedited();
941#ifdef CONFIG_SMP
942 __lru_add_drain_all(true);
943#else
944 lru_add_and_bh_lrus_drain();
945#endif
946}
947
948/**
949 * release_pages - batched put_page()
950 * @arg: array of pages to release
951 * @nr: number of pages
952 *
953 * Decrement the reference count on all the pages in @arg. If it
954 * fell to zero, remove the page from the LRU and free it.
955 *
956 * Note that the argument can be an array of pages, encoded pages,
957 * or folio pointers. We ignore any encoded bits, and turn any of
958 * them into just a folio that gets free'd.
959 */
960void release_pages(release_pages_arg arg, int nr)
961{
962 int i;
963 struct encoded_page **encoded = arg.encoded_pages;
964 LIST_HEAD(pages_to_free);
965 struct lruvec *lruvec = NULL;
966 unsigned long flags = 0;
967 unsigned int lock_batch;
968
969 for (i = 0; i < nr; i++) {
970 struct folio *folio;
971
972 /* Turn any of the argument types into a folio */
973 folio = page_folio(encoded_page_ptr(encoded[i]));
974
975 /*
976 * Make sure the IRQ-safe lock-holding time does not get
977 * excessive with a continuous string of pages from the
978 * same lruvec. The lock is held only if lruvec != NULL.
979 */
980 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
981 unlock_page_lruvec_irqrestore(lruvec, flags);
982 lruvec = NULL;
983 }
984
985 if (is_huge_zero_page(&folio->page))
986 continue;
987
988 if (folio_is_zone_device(folio)) {
989 if (lruvec) {
990 unlock_page_lruvec_irqrestore(lruvec, flags);
991 lruvec = NULL;
992 }
993 if (put_devmap_managed_page(&folio->page))
994 continue;
995 if (folio_put_testzero(folio))
996 free_zone_device_page(&folio->page);
997 continue;
998 }
999
1000 if (!folio_put_testzero(folio))
1001 continue;
1002
1003 if (folio_test_large(folio)) {
1004 if (lruvec) {
1005 unlock_page_lruvec_irqrestore(lruvec, flags);
1006 lruvec = NULL;
1007 }
1008 __folio_put_large(folio);
1009 continue;
1010 }
1011
1012 if (folio_test_lru(folio)) {
1013 struct lruvec *prev_lruvec = lruvec;
1014
1015 lruvec = folio_lruvec_relock_irqsave(folio, lruvec,
1016 &flags);
1017 if (prev_lruvec != lruvec)
1018 lock_batch = 0;
1019
1020 lruvec_del_folio(lruvec, folio);
1021 __folio_clear_lru_flags(folio);
1022 }
1023
1024 /*
1025 * In rare cases, when truncation or holepunching raced with
1026 * munlock after VM_LOCKED was cleared, Mlocked may still be
1027 * found set here. This does not indicate a problem, unless
1028 * "unevictable_pgs_cleared" appears worryingly large.
1029 */
1030 if (unlikely(folio_test_mlocked(folio))) {
1031 __folio_clear_mlocked(folio);
1032 zone_stat_sub_folio(folio, NR_MLOCK);
1033 count_vm_event(UNEVICTABLE_PGCLEARED);
1034 }
1035
1036 list_add(&folio->lru, &pages_to_free);
1037 }
1038 if (lruvec)
1039 unlock_page_lruvec_irqrestore(lruvec, flags);
1040
1041 mem_cgroup_uncharge_list(&pages_to_free);
1042 free_unref_page_list(&pages_to_free);
1043}
1044EXPORT_SYMBOL(release_pages);
1045
1046/*
1047 * The folios which we're about to release may be in the deferred lru-addition
1048 * queues. That would prevent them from really being freed right now. That's
1049 * OK from a correctness point of view but is inefficient - those folios may be
1050 * cache-warm and we want to give them back to the page allocator ASAP.
1051 *
1052 * So __folio_batch_release() will drain those queues here.
1053 * folio_batch_move_lru() calls folios_put() directly to avoid
1054 * mutual recursion.
1055 */
1056void __folio_batch_release(struct folio_batch *fbatch)
1057{
1058 if (!fbatch->percpu_pvec_drained) {
1059 lru_add_drain();
1060 fbatch->percpu_pvec_drained = true;
1061 }
1062 release_pages(fbatch->folios, folio_batch_count(fbatch));
1063 folio_batch_reinit(fbatch);
1064}
1065EXPORT_SYMBOL(__folio_batch_release);
1066
1067/**
1068 * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1069 * @fbatch: The batch to prune
1070 *
1071 * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1072 * entries. This function prunes all the non-folio entries from @fbatch
1073 * without leaving holes, so that it can be passed on to folio-only batch
1074 * operations.
1075 */
1076void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1077{
1078 unsigned int i, j;
1079
1080 for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1081 struct folio *folio = fbatch->folios[i];
1082 if (!xa_is_value(folio))
1083 fbatch->folios[j++] = folio;
1084 }
1085 fbatch->nr = j;
1086}
1087
1088/*
1089 * Perform any setup for the swap system
1090 */
1091void __init swap_setup(void)
1092{
1093 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1094
1095 /* Use a smaller cluster for small-memory machines */
1096 if (megs < 16)
1097 page_cluster = 2;
1098 else
1099 page_cluster = 3;
1100 /*
1101 * Right now other parts of the system means that we
1102 * _really_ don't want to cluster much more
1103 */
1104}
1/*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16#include <linux/mm.h>
17#include <linux/sched.h>
18#include <linux/kernel_stat.h>
19#include <linux/swap.h>
20#include <linux/mman.h>
21#include <linux/pagemap.h>
22#include <linux/pagevec.h>
23#include <linux/init.h>
24#include <linux/export.h>
25#include <linux/mm_inline.h>
26#include <linux/percpu_counter.h>
27#include <linux/percpu.h>
28#include <linux/cpu.h>
29#include <linux/notifier.h>
30#include <linux/backing-dev.h>
31#include <linux/memcontrol.h>
32#include <linux/gfp.h>
33#include <linux/uio.h>
34
35#include "internal.h"
36
37#define CREATE_TRACE_POINTS
38#include <trace/events/pagemap.h>
39
40/* How many pages do we try to swap or page in/out together? */
41int page_cluster;
42
43static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
44static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
45static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
46
47/*
48 * This path almost never happens for VM activity - pages are normally
49 * freed via pagevecs. But it gets used by networking.
50 */
51static void __page_cache_release(struct page *page)
52{
53 if (PageLRU(page)) {
54 struct zone *zone = page_zone(page);
55 struct lruvec *lruvec;
56 unsigned long flags;
57
58 spin_lock_irqsave(&zone->lru_lock, flags);
59 lruvec = mem_cgroup_page_lruvec(page, zone);
60 VM_BUG_ON_PAGE(!PageLRU(page), page);
61 __ClearPageLRU(page);
62 del_page_from_lru_list(page, lruvec, page_off_lru(page));
63 spin_unlock_irqrestore(&zone->lru_lock, flags);
64 }
65}
66
67static void __put_single_page(struct page *page)
68{
69 __page_cache_release(page);
70 free_hot_cold_page(page, 0);
71}
72
73static void __put_compound_page(struct page *page)
74{
75 compound_page_dtor *dtor;
76
77 __page_cache_release(page);
78 dtor = get_compound_page_dtor(page);
79 (*dtor)(page);
80}
81
82static void put_compound_page(struct page *page)
83{
84 struct page *page_head;
85
86 if (likely(!PageTail(page))) {
87 if (put_page_testzero(page)) {
88 /*
89 * By the time all refcounts have been released
90 * split_huge_page cannot run anymore from under us.
91 */
92 if (PageHead(page))
93 __put_compound_page(page);
94 else
95 __put_single_page(page);
96 }
97 return;
98 }
99
100 /* __split_huge_page_refcount can run under us */
101 page_head = compound_head(page);
102
103 /*
104 * THP can not break up slab pages so avoid taking
105 * compound_lock() and skip the tail page refcounting (in
106 * _mapcount) too. Slab performs non-atomic bit ops on
107 * page->flags for better performance. In particular
108 * slab_unlock() in slub used to be a hot path. It is still
109 * hot on arches that do not support
110 * this_cpu_cmpxchg_double().
111 *
112 * If "page" is part of a slab or hugetlbfs page it cannot be
113 * splitted and the head page cannot change from under us. And
114 * if "page" is part of a THP page under splitting, if the
115 * head page pointed by the THP tail isn't a THP head anymore,
116 * we'll find PageTail clear after smp_rmb() and we'll treat
117 * it as a single page.
118 */
119 if (!__compound_tail_refcounted(page_head)) {
120 /*
121 * If "page" is a THP tail, we must read the tail page
122 * flags after the head page flags. The
123 * split_huge_page side enforces write memory barriers
124 * between clearing PageTail and before the head page
125 * can be freed and reallocated.
126 */
127 smp_rmb();
128 if (likely(PageTail(page))) {
129 /*
130 * __split_huge_page_refcount cannot race
131 * here.
132 */
133 VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
134 VM_BUG_ON_PAGE(page_mapcount(page) != 0, page);
135 if (put_page_testzero(page_head)) {
136 /*
137 * If this is the tail of a slab
138 * compound page, the tail pin must
139 * not be the last reference held on
140 * the page, because the PG_slab
141 * cannot be cleared before all tail
142 * pins (which skips the _mapcount
143 * tail refcounting) have been
144 * released. For hugetlbfs the tail
145 * pin may be the last reference on
146 * the page instead, because
147 * PageHeadHuge will not go away until
148 * the compound page enters the buddy
149 * allocator.
150 */
151 VM_BUG_ON_PAGE(PageSlab(page_head), page_head);
152 __put_compound_page(page_head);
153 }
154 return;
155 } else
156 /*
157 * __split_huge_page_refcount run before us,
158 * "page" was a THP tail. The split page_head
159 * has been freed and reallocated as slab or
160 * hugetlbfs page of smaller order (only
161 * possible if reallocated as slab on x86).
162 */
163 goto out_put_single;
164 }
165
166 if (likely(page != page_head && get_page_unless_zero(page_head))) {
167 unsigned long flags;
168
169 /*
170 * page_head wasn't a dangling pointer but it may not
171 * be a head page anymore by the time we obtain the
172 * lock. That is ok as long as it can't be freed from
173 * under us.
174 */
175 flags = compound_lock_irqsave(page_head);
176 if (unlikely(!PageTail(page))) {
177 /* __split_huge_page_refcount run before us */
178 compound_unlock_irqrestore(page_head, flags);
179 if (put_page_testzero(page_head)) {
180 /*
181 * The head page may have been freed
182 * and reallocated as a compound page
183 * of smaller order and then freed
184 * again. All we know is that it
185 * cannot have become: a THP page, a
186 * compound page of higher order, a
187 * tail page. That is because we
188 * still hold the refcount of the
189 * split THP tail and page_head was
190 * the THP head before the split.
191 */
192 if (PageHead(page_head))
193 __put_compound_page(page_head);
194 else
195 __put_single_page(page_head);
196 }
197out_put_single:
198 if (put_page_testzero(page))
199 __put_single_page(page);
200 return;
201 }
202 VM_BUG_ON_PAGE(page_head != page->first_page, page);
203 /*
204 * We can release the refcount taken by
205 * get_page_unless_zero() now that
206 * __split_huge_page_refcount() is blocked on the
207 * compound_lock.
208 */
209 if (put_page_testzero(page_head))
210 VM_BUG_ON_PAGE(1, page_head);
211 /* __split_huge_page_refcount will wait now */
212 VM_BUG_ON_PAGE(page_mapcount(page) <= 0, page);
213 atomic_dec(&page->_mapcount);
214 VM_BUG_ON_PAGE(atomic_read(&page_head->_count) <= 0, page_head);
215 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
216 compound_unlock_irqrestore(page_head, flags);
217
218 if (put_page_testzero(page_head)) {
219 if (PageHead(page_head))
220 __put_compound_page(page_head);
221 else
222 __put_single_page(page_head);
223 }
224 } else {
225 /* page_head is a dangling pointer */
226 VM_BUG_ON_PAGE(PageTail(page), page);
227 goto out_put_single;
228 }
229}
230
231void put_page(struct page *page)
232{
233 if (unlikely(PageCompound(page)))
234 put_compound_page(page);
235 else if (put_page_testzero(page))
236 __put_single_page(page);
237}
238EXPORT_SYMBOL(put_page);
239
240/*
241 * This function is exported but must not be called by anything other
242 * than get_page(). It implements the slow path of get_page().
243 */
244bool __get_page_tail(struct page *page)
245{
246 /*
247 * This takes care of get_page() if run on a tail page
248 * returned by one of the get_user_pages/follow_page variants.
249 * get_user_pages/follow_page itself doesn't need the compound
250 * lock because it runs __get_page_tail_foll() under the
251 * proper PT lock that already serializes against
252 * split_huge_page().
253 */
254 unsigned long flags;
255 bool got;
256 struct page *page_head = compound_head(page);
257
258 /* Ref to put_compound_page() comment. */
259 if (!__compound_tail_refcounted(page_head)) {
260 smp_rmb();
261 if (likely(PageTail(page))) {
262 /*
263 * This is a hugetlbfs page or a slab
264 * page. __split_huge_page_refcount
265 * cannot race here.
266 */
267 VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
268 __get_page_tail_foll(page, true);
269 return true;
270 } else {
271 /*
272 * __split_huge_page_refcount run
273 * before us, "page" was a THP
274 * tail. The split page_head has been
275 * freed and reallocated as slab or
276 * hugetlbfs page of smaller order
277 * (only possible if reallocated as
278 * slab on x86).
279 */
280 return false;
281 }
282 }
283
284 got = false;
285 if (likely(page != page_head && get_page_unless_zero(page_head))) {
286 /*
287 * page_head wasn't a dangling pointer but it
288 * may not be a head page anymore by the time
289 * we obtain the lock. That is ok as long as it
290 * can't be freed from under us.
291 */
292 flags = compound_lock_irqsave(page_head);
293 /* here __split_huge_page_refcount won't run anymore */
294 if (likely(PageTail(page))) {
295 __get_page_tail_foll(page, false);
296 got = true;
297 }
298 compound_unlock_irqrestore(page_head, flags);
299 if (unlikely(!got))
300 put_page(page_head);
301 }
302 return got;
303}
304EXPORT_SYMBOL(__get_page_tail);
305
306/**
307 * put_pages_list() - release a list of pages
308 * @pages: list of pages threaded on page->lru
309 *
310 * Release a list of pages which are strung together on page.lru. Currently
311 * used by read_cache_pages() and related error recovery code.
312 */
313void put_pages_list(struct list_head *pages)
314{
315 while (!list_empty(pages)) {
316 struct page *victim;
317
318 victim = list_entry(pages->prev, struct page, lru);
319 list_del(&victim->lru);
320 page_cache_release(victim);
321 }
322}
323EXPORT_SYMBOL(put_pages_list);
324
325/*
326 * get_kernel_pages() - pin kernel pages in memory
327 * @kiov: An array of struct kvec structures
328 * @nr_segs: number of segments to pin
329 * @write: pinning for read/write, currently ignored
330 * @pages: array that receives pointers to the pages pinned.
331 * Should be at least nr_segs long.
332 *
333 * Returns number of pages pinned. This may be fewer than the number
334 * requested. If nr_pages is 0 or negative, returns 0. If no pages
335 * were pinned, returns -errno. Each page returned must be released
336 * with a put_page() call when it is finished with.
337 */
338int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
339 struct page **pages)
340{
341 int seg;
342
343 for (seg = 0; seg < nr_segs; seg++) {
344 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
345 return seg;
346
347 pages[seg] = kmap_to_page(kiov[seg].iov_base);
348 page_cache_get(pages[seg]);
349 }
350
351 return seg;
352}
353EXPORT_SYMBOL_GPL(get_kernel_pages);
354
355/*
356 * get_kernel_page() - pin a kernel page in memory
357 * @start: starting kernel address
358 * @write: pinning for read/write, currently ignored
359 * @pages: array that receives pointer to the page pinned.
360 * Must be at least nr_segs long.
361 *
362 * Returns 1 if page is pinned. If the page was not pinned, returns
363 * -errno. The page returned must be released with a put_page() call
364 * when it is finished with.
365 */
366int get_kernel_page(unsigned long start, int write, struct page **pages)
367{
368 const struct kvec kiov = {
369 .iov_base = (void *)start,
370 .iov_len = PAGE_SIZE
371 };
372
373 return get_kernel_pages(&kiov, 1, write, pages);
374}
375EXPORT_SYMBOL_GPL(get_kernel_page);
376
377static void pagevec_lru_move_fn(struct pagevec *pvec,
378 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
379 void *arg)
380{
381 int i;
382 struct zone *zone = NULL;
383 struct lruvec *lruvec;
384 unsigned long flags = 0;
385
386 for (i = 0; i < pagevec_count(pvec); i++) {
387 struct page *page = pvec->pages[i];
388 struct zone *pagezone = page_zone(page);
389
390 if (pagezone != zone) {
391 if (zone)
392 spin_unlock_irqrestore(&zone->lru_lock, flags);
393 zone = pagezone;
394 spin_lock_irqsave(&zone->lru_lock, flags);
395 }
396
397 lruvec = mem_cgroup_page_lruvec(page, zone);
398 (*move_fn)(page, lruvec, arg);
399 }
400 if (zone)
401 spin_unlock_irqrestore(&zone->lru_lock, flags);
402 release_pages(pvec->pages, pvec->nr, pvec->cold);
403 pagevec_reinit(pvec);
404}
405
406static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
407 void *arg)
408{
409 int *pgmoved = arg;
410
411 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
412 enum lru_list lru = page_lru_base_type(page);
413 list_move_tail(&page->lru, &lruvec->lists[lru]);
414 (*pgmoved)++;
415 }
416}
417
418/*
419 * pagevec_move_tail() must be called with IRQ disabled.
420 * Otherwise this may cause nasty races.
421 */
422static void pagevec_move_tail(struct pagevec *pvec)
423{
424 int pgmoved = 0;
425
426 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
427 __count_vm_events(PGROTATED, pgmoved);
428}
429
430/*
431 * Writeback is about to end against a page which has been marked for immediate
432 * reclaim. If it still appears to be reclaimable, move it to the tail of the
433 * inactive list.
434 */
435void rotate_reclaimable_page(struct page *page)
436{
437 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
438 !PageUnevictable(page) && PageLRU(page)) {
439 struct pagevec *pvec;
440 unsigned long flags;
441
442 page_cache_get(page);
443 local_irq_save(flags);
444 pvec = &__get_cpu_var(lru_rotate_pvecs);
445 if (!pagevec_add(pvec, page))
446 pagevec_move_tail(pvec);
447 local_irq_restore(flags);
448 }
449}
450
451static void update_page_reclaim_stat(struct lruvec *lruvec,
452 int file, int rotated)
453{
454 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
455
456 reclaim_stat->recent_scanned[file]++;
457 if (rotated)
458 reclaim_stat->recent_rotated[file]++;
459}
460
461static void __activate_page(struct page *page, struct lruvec *lruvec,
462 void *arg)
463{
464 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
465 int file = page_is_file_cache(page);
466 int lru = page_lru_base_type(page);
467
468 del_page_from_lru_list(page, lruvec, lru);
469 SetPageActive(page);
470 lru += LRU_ACTIVE;
471 add_page_to_lru_list(page, lruvec, lru);
472 trace_mm_lru_activate(page, page_to_pfn(page));
473
474 __count_vm_event(PGACTIVATE);
475 update_page_reclaim_stat(lruvec, file, 1);
476 }
477}
478
479#ifdef CONFIG_SMP
480static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
481
482static void activate_page_drain(int cpu)
483{
484 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
485
486 if (pagevec_count(pvec))
487 pagevec_lru_move_fn(pvec, __activate_page, NULL);
488}
489
490static bool need_activate_page_drain(int cpu)
491{
492 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
493}
494
495void activate_page(struct page *page)
496{
497 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
498 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
499
500 page_cache_get(page);
501 if (!pagevec_add(pvec, page))
502 pagevec_lru_move_fn(pvec, __activate_page, NULL);
503 put_cpu_var(activate_page_pvecs);
504 }
505}
506
507#else
508static inline void activate_page_drain(int cpu)
509{
510}
511
512static bool need_activate_page_drain(int cpu)
513{
514 return false;
515}
516
517void activate_page(struct page *page)
518{
519 struct zone *zone = page_zone(page);
520
521 spin_lock_irq(&zone->lru_lock);
522 __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
523 spin_unlock_irq(&zone->lru_lock);
524}
525#endif
526
527static void __lru_cache_activate_page(struct page *page)
528{
529 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
530 int i;
531
532 /*
533 * Search backwards on the optimistic assumption that the page being
534 * activated has just been added to this pagevec. Note that only
535 * the local pagevec is examined as a !PageLRU page could be in the
536 * process of being released, reclaimed, migrated or on a remote
537 * pagevec that is currently being drained. Furthermore, marking
538 * a remote pagevec's page PageActive potentially hits a race where
539 * a page is marked PageActive just after it is added to the inactive
540 * list causing accounting errors and BUG_ON checks to trigger.
541 */
542 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
543 struct page *pagevec_page = pvec->pages[i];
544
545 if (pagevec_page == page) {
546 SetPageActive(page);
547 break;
548 }
549 }
550
551 put_cpu_var(lru_add_pvec);
552}
553
554/*
555 * Mark a page as having seen activity.
556 *
557 * inactive,unreferenced -> inactive,referenced
558 * inactive,referenced -> active,unreferenced
559 * active,unreferenced -> active,referenced
560 */
561void mark_page_accessed(struct page *page)
562{
563 if (!PageActive(page) && !PageUnevictable(page) &&
564 PageReferenced(page)) {
565
566 /*
567 * If the page is on the LRU, queue it for activation via
568 * activate_page_pvecs. Otherwise, assume the page is on a
569 * pagevec, mark it active and it'll be moved to the active
570 * LRU on the next drain.
571 */
572 if (PageLRU(page))
573 activate_page(page);
574 else
575 __lru_cache_activate_page(page);
576 ClearPageReferenced(page);
577 if (page_is_file_cache(page))
578 workingset_activation(page);
579 } else if (!PageReferenced(page)) {
580 SetPageReferenced(page);
581 }
582}
583EXPORT_SYMBOL(mark_page_accessed);
584
585/*
586 * Queue the page for addition to the LRU via pagevec. The decision on whether
587 * to add the page to the [in]active [file|anon] list is deferred until the
588 * pagevec is drained. This gives a chance for the caller of __lru_cache_add()
589 * have the page added to the active list using mark_page_accessed().
590 */
591void __lru_cache_add(struct page *page)
592{
593 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
594
595 page_cache_get(page);
596 if (!pagevec_space(pvec))
597 __pagevec_lru_add(pvec);
598 pagevec_add(pvec, page);
599 put_cpu_var(lru_add_pvec);
600}
601EXPORT_SYMBOL(__lru_cache_add);
602
603/**
604 * lru_cache_add - add a page to a page list
605 * @page: the page to be added to the LRU.
606 */
607void lru_cache_add(struct page *page)
608{
609 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
610 VM_BUG_ON_PAGE(PageLRU(page), page);
611 __lru_cache_add(page);
612}
613
614/**
615 * add_page_to_unevictable_list - add a page to the unevictable list
616 * @page: the page to be added to the unevictable list
617 *
618 * Add page directly to its zone's unevictable list. To avoid races with
619 * tasks that might be making the page evictable, through eg. munlock,
620 * munmap or exit, while it's not on the lru, we want to add the page
621 * while it's locked or otherwise "invisible" to other tasks. This is
622 * difficult to do when using the pagevec cache, so bypass that.
623 */
624void add_page_to_unevictable_list(struct page *page)
625{
626 struct zone *zone = page_zone(page);
627 struct lruvec *lruvec;
628
629 spin_lock_irq(&zone->lru_lock);
630 lruvec = mem_cgroup_page_lruvec(page, zone);
631 ClearPageActive(page);
632 SetPageUnevictable(page);
633 SetPageLRU(page);
634 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
635 spin_unlock_irq(&zone->lru_lock);
636}
637
638/*
639 * If the page can not be invalidated, it is moved to the
640 * inactive list to speed up its reclaim. It is moved to the
641 * head of the list, rather than the tail, to give the flusher
642 * threads some time to write it out, as this is much more
643 * effective than the single-page writeout from reclaim.
644 *
645 * If the page isn't page_mapped and dirty/writeback, the page
646 * could reclaim asap using PG_reclaim.
647 *
648 * 1. active, mapped page -> none
649 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
650 * 3. inactive, mapped page -> none
651 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
652 * 5. inactive, clean -> inactive, tail
653 * 6. Others -> none
654 *
655 * In 4, why it moves inactive's head, the VM expects the page would
656 * be write it out by flusher threads as this is much more effective
657 * than the single-page writeout from reclaim.
658 */
659static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
660 void *arg)
661{
662 int lru, file;
663 bool active;
664
665 if (!PageLRU(page))
666 return;
667
668 if (PageUnevictable(page))
669 return;
670
671 /* Some processes are using the page */
672 if (page_mapped(page))
673 return;
674
675 active = PageActive(page);
676 file = page_is_file_cache(page);
677 lru = page_lru_base_type(page);
678
679 del_page_from_lru_list(page, lruvec, lru + active);
680 ClearPageActive(page);
681 ClearPageReferenced(page);
682 add_page_to_lru_list(page, lruvec, lru);
683
684 if (PageWriteback(page) || PageDirty(page)) {
685 /*
686 * PG_reclaim could be raced with end_page_writeback
687 * It can make readahead confusing. But race window
688 * is _really_ small and it's non-critical problem.
689 */
690 SetPageReclaim(page);
691 } else {
692 /*
693 * The page's writeback ends up during pagevec
694 * We moves tha page into tail of inactive.
695 */
696 list_move_tail(&page->lru, &lruvec->lists[lru]);
697 __count_vm_event(PGROTATED);
698 }
699
700 if (active)
701 __count_vm_event(PGDEACTIVATE);
702 update_page_reclaim_stat(lruvec, file, 0);
703}
704
705/*
706 * Drain pages out of the cpu's pagevecs.
707 * Either "cpu" is the current CPU, and preemption has already been
708 * disabled; or "cpu" is being hot-unplugged, and is already dead.
709 */
710void lru_add_drain_cpu(int cpu)
711{
712 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
713
714 if (pagevec_count(pvec))
715 __pagevec_lru_add(pvec);
716
717 pvec = &per_cpu(lru_rotate_pvecs, cpu);
718 if (pagevec_count(pvec)) {
719 unsigned long flags;
720
721 /* No harm done if a racing interrupt already did this */
722 local_irq_save(flags);
723 pagevec_move_tail(pvec);
724 local_irq_restore(flags);
725 }
726
727 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
728 if (pagevec_count(pvec))
729 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
730
731 activate_page_drain(cpu);
732}
733
734/**
735 * deactivate_page - forcefully deactivate a page
736 * @page: page to deactivate
737 *
738 * This function hints the VM that @page is a good reclaim candidate,
739 * for example if its invalidation fails due to the page being dirty
740 * or under writeback.
741 */
742void deactivate_page(struct page *page)
743{
744 /*
745 * In a workload with many unevictable page such as mprotect, unevictable
746 * page deactivation for accelerating reclaim is pointless.
747 */
748 if (PageUnevictable(page))
749 return;
750
751 if (likely(get_page_unless_zero(page))) {
752 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
753
754 if (!pagevec_add(pvec, page))
755 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
756 put_cpu_var(lru_deactivate_pvecs);
757 }
758}
759
760void lru_add_drain(void)
761{
762 lru_add_drain_cpu(get_cpu());
763 put_cpu();
764}
765
766static void lru_add_drain_per_cpu(struct work_struct *dummy)
767{
768 lru_add_drain();
769}
770
771static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
772
773void lru_add_drain_all(void)
774{
775 static DEFINE_MUTEX(lock);
776 static struct cpumask has_work;
777 int cpu;
778
779 mutex_lock(&lock);
780 get_online_cpus();
781 cpumask_clear(&has_work);
782
783 for_each_online_cpu(cpu) {
784 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
785
786 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
787 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
788 pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
789 need_activate_page_drain(cpu)) {
790 INIT_WORK(work, lru_add_drain_per_cpu);
791 schedule_work_on(cpu, work);
792 cpumask_set_cpu(cpu, &has_work);
793 }
794 }
795
796 for_each_cpu(cpu, &has_work)
797 flush_work(&per_cpu(lru_add_drain_work, cpu));
798
799 put_online_cpus();
800 mutex_unlock(&lock);
801}
802
803/*
804 * Batched page_cache_release(). Decrement the reference count on all the
805 * passed pages. If it fell to zero then remove the page from the LRU and
806 * free it.
807 *
808 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
809 * for the remainder of the operation.
810 *
811 * The locking in this function is against shrink_inactive_list(): we recheck
812 * the page count inside the lock to see whether shrink_inactive_list()
813 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
814 * will free it.
815 */
816void release_pages(struct page **pages, int nr, int cold)
817{
818 int i;
819 LIST_HEAD(pages_to_free);
820 struct zone *zone = NULL;
821 struct lruvec *lruvec;
822 unsigned long uninitialized_var(flags);
823
824 for (i = 0; i < nr; i++) {
825 struct page *page = pages[i];
826
827 if (unlikely(PageCompound(page))) {
828 if (zone) {
829 spin_unlock_irqrestore(&zone->lru_lock, flags);
830 zone = NULL;
831 }
832 put_compound_page(page);
833 continue;
834 }
835
836 if (!put_page_testzero(page))
837 continue;
838
839 if (PageLRU(page)) {
840 struct zone *pagezone = page_zone(page);
841
842 if (pagezone != zone) {
843 if (zone)
844 spin_unlock_irqrestore(&zone->lru_lock,
845 flags);
846 zone = pagezone;
847 spin_lock_irqsave(&zone->lru_lock, flags);
848 }
849
850 lruvec = mem_cgroup_page_lruvec(page, zone);
851 VM_BUG_ON_PAGE(!PageLRU(page), page);
852 __ClearPageLRU(page);
853 del_page_from_lru_list(page, lruvec, page_off_lru(page));
854 }
855
856 /* Clear Active bit in case of parallel mark_page_accessed */
857 ClearPageActive(page);
858
859 list_add(&page->lru, &pages_to_free);
860 }
861 if (zone)
862 spin_unlock_irqrestore(&zone->lru_lock, flags);
863
864 free_hot_cold_page_list(&pages_to_free, cold);
865}
866EXPORT_SYMBOL(release_pages);
867
868/*
869 * The pages which we're about to release may be in the deferred lru-addition
870 * queues. That would prevent them from really being freed right now. That's
871 * OK from a correctness point of view but is inefficient - those pages may be
872 * cache-warm and we want to give them back to the page allocator ASAP.
873 *
874 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
875 * and __pagevec_lru_add_active() call release_pages() directly to avoid
876 * mutual recursion.
877 */
878void __pagevec_release(struct pagevec *pvec)
879{
880 lru_add_drain();
881 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
882 pagevec_reinit(pvec);
883}
884EXPORT_SYMBOL(__pagevec_release);
885
886#ifdef CONFIG_TRANSPARENT_HUGEPAGE
887/* used by __split_huge_page_refcount() */
888void lru_add_page_tail(struct page *page, struct page *page_tail,
889 struct lruvec *lruvec, struct list_head *list)
890{
891 const int file = 0;
892
893 VM_BUG_ON_PAGE(!PageHead(page), page);
894 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
895 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
896 VM_BUG_ON(NR_CPUS != 1 &&
897 !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
898
899 if (!list)
900 SetPageLRU(page_tail);
901
902 if (likely(PageLRU(page)))
903 list_add_tail(&page_tail->lru, &page->lru);
904 else if (list) {
905 /* page reclaim is reclaiming a huge page */
906 get_page(page_tail);
907 list_add_tail(&page_tail->lru, list);
908 } else {
909 struct list_head *list_head;
910 /*
911 * Head page has not yet been counted, as an hpage,
912 * so we must account for each subpage individually.
913 *
914 * Use the standard add function to put page_tail on the list,
915 * but then correct its position so they all end up in order.
916 */
917 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
918 list_head = page_tail->lru.prev;
919 list_move_tail(&page_tail->lru, list_head);
920 }
921
922 if (!PageUnevictable(page))
923 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
924}
925#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
926
927static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
928 void *arg)
929{
930 int file = page_is_file_cache(page);
931 int active = PageActive(page);
932 enum lru_list lru = page_lru(page);
933
934 VM_BUG_ON_PAGE(PageLRU(page), page);
935
936 SetPageLRU(page);
937 add_page_to_lru_list(page, lruvec, lru);
938 update_page_reclaim_stat(lruvec, file, active);
939 trace_mm_lru_insertion(page, page_to_pfn(page), lru, trace_pagemap_flags(page));
940}
941
942/*
943 * Add the passed pages to the LRU, then drop the caller's refcount
944 * on them. Reinitialises the caller's pagevec.
945 */
946void __pagevec_lru_add(struct pagevec *pvec)
947{
948 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
949}
950EXPORT_SYMBOL(__pagevec_lru_add);
951
952/**
953 * pagevec_lookup_entries - gang pagecache lookup
954 * @pvec: Where the resulting entries are placed
955 * @mapping: The address_space to search
956 * @start: The starting entry index
957 * @nr_entries: The maximum number of entries
958 * @indices: The cache indices corresponding to the entries in @pvec
959 *
960 * pagevec_lookup_entries() will search for and return a group of up
961 * to @nr_entries pages and shadow entries in the mapping. All
962 * entries are placed in @pvec. pagevec_lookup_entries() takes a
963 * reference against actual pages in @pvec.
964 *
965 * The search returns a group of mapping-contiguous entries with
966 * ascending indexes. There may be holes in the indices due to
967 * not-present entries.
968 *
969 * pagevec_lookup_entries() returns the number of entries which were
970 * found.
971 */
972unsigned pagevec_lookup_entries(struct pagevec *pvec,
973 struct address_space *mapping,
974 pgoff_t start, unsigned nr_pages,
975 pgoff_t *indices)
976{
977 pvec->nr = find_get_entries(mapping, start, nr_pages,
978 pvec->pages, indices);
979 return pagevec_count(pvec);
980}
981
982/**
983 * pagevec_remove_exceptionals - pagevec exceptionals pruning
984 * @pvec: The pagevec to prune
985 *
986 * pagevec_lookup_entries() fills both pages and exceptional radix
987 * tree entries into the pagevec. This function prunes all
988 * exceptionals from @pvec without leaving holes, so that it can be
989 * passed on to page-only pagevec operations.
990 */
991void pagevec_remove_exceptionals(struct pagevec *pvec)
992{
993 int i, j;
994
995 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
996 struct page *page = pvec->pages[i];
997 if (!radix_tree_exceptional_entry(page))
998 pvec->pages[j++] = page;
999 }
1000 pvec->nr = j;
1001}
1002
1003/**
1004 * pagevec_lookup - gang pagecache lookup
1005 * @pvec: Where the resulting pages are placed
1006 * @mapping: The address_space to search
1007 * @start: The starting page index
1008 * @nr_pages: The maximum number of pages
1009 *
1010 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
1011 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
1012 * reference against the pages in @pvec.
1013 *
1014 * The search returns a group of mapping-contiguous pages with ascending
1015 * indexes. There may be holes in the indices due to not-present pages.
1016 *
1017 * pagevec_lookup() returns the number of pages which were found.
1018 */
1019unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
1020 pgoff_t start, unsigned nr_pages)
1021{
1022 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
1023 return pagevec_count(pvec);
1024}
1025EXPORT_SYMBOL(pagevec_lookup);
1026
1027unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
1028 pgoff_t *index, int tag, unsigned nr_pages)
1029{
1030 pvec->nr = find_get_pages_tag(mapping, index, tag,
1031 nr_pages, pvec->pages);
1032 return pagevec_count(pvec);
1033}
1034EXPORT_SYMBOL(pagevec_lookup_tag);
1035
1036/*
1037 * Perform any setup for the swap system
1038 */
1039void __init swap_setup(void)
1040{
1041 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
1042#ifdef CONFIG_SWAP
1043 int i;
1044
1045 if (bdi_init(swapper_spaces[0].backing_dev_info))
1046 panic("Failed to init swap bdi");
1047 for (i = 0; i < MAX_SWAPFILES; i++) {
1048 spin_lock_init(&swapper_spaces[i].tree_lock);
1049 INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
1050 }
1051#endif
1052
1053 /* Use a smaller cluster for small-memory machines */
1054 if (megs < 16)
1055 page_cluster = 2;
1056 else
1057 page_cluster = 3;
1058 /*
1059 * Right now other parts of the system means that we
1060 * _really_ don't want to cluster much more
1061 */
1062}