Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
Note: File does not exist in v6.8.
   1/* linux/drivers/usb/gadget/s3c-hsudc.c
   2 *
   3 * Copyright (c) 2010 Samsung Electronics Co., Ltd.
   4 *		http://www.samsung.com/
   5 *
   6 * S3C24XX USB 2.0 High-speed USB controller gadget driver
   7 *
   8 * The S3C24XX USB 2.0 high-speed USB controller supports upto 9 endpoints.
   9 * Each endpoint can be configured as either in or out endpoint. Endpoints
  10 * can be configured for Bulk or Interrupt transfer mode.
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15*/
  16
  17#include <linux/kernel.h>
  18#include <linux/module.h>
  19#include <linux/spinlock.h>
  20#include <linux/interrupt.h>
  21#include <linux/platform_device.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/delay.h>
  24#include <linux/io.h>
  25#include <linux/slab.h>
  26#include <linux/clk.h>
  27#include <linux/err.h>
  28#include <linux/usb/ch9.h>
  29#include <linux/usb/gadget.h>
  30#include <linux/usb/otg.h>
  31#include <linux/prefetch.h>
  32#include <linux/platform_data/s3c-hsudc.h>
  33#include <linux/regulator/consumer.h>
  34#include <linux/pm_runtime.h>
  35
  36#include <mach/regs-s3c2443-clock.h>
  37
  38#define S3C_HSUDC_REG(x)	(x)
  39
  40/* Non-Indexed Registers */
  41#define S3C_IR				S3C_HSUDC_REG(0x00) /* Index Register */
  42#define S3C_EIR				S3C_HSUDC_REG(0x04) /* EP Intr Status */
  43#define S3C_EIR_EP0			(1<<0)
  44#define S3C_EIER			S3C_HSUDC_REG(0x08) /* EP Intr Enable */
  45#define S3C_FAR				S3C_HSUDC_REG(0x0c) /* Gadget Address */
  46#define S3C_FNR				S3C_HSUDC_REG(0x10) /* Frame Number */
  47#define S3C_EDR				S3C_HSUDC_REG(0x14) /* EP Direction */
  48#define S3C_TR				S3C_HSUDC_REG(0x18) /* Test Register */
  49#define S3C_SSR				S3C_HSUDC_REG(0x1c) /* System Status */
  50#define S3C_SSR_DTZIEN_EN		(0xff8f)
  51#define S3C_SSR_ERR			(0xff80)
  52#define S3C_SSR_VBUSON			(1 << 8)
  53#define S3C_SSR_HSP			(1 << 4)
  54#define S3C_SSR_SDE			(1 << 3)
  55#define S3C_SSR_RESUME			(1 << 2)
  56#define S3C_SSR_SUSPEND			(1 << 1)
  57#define S3C_SSR_RESET			(1 << 0)
  58#define S3C_SCR				S3C_HSUDC_REG(0x20) /* System Control */
  59#define S3C_SCR_DTZIEN_EN		(1 << 14)
  60#define S3C_SCR_RRD_EN			(1 << 5)
  61#define S3C_SCR_SUS_EN			(1 << 1)
  62#define S3C_SCR_RST_EN			(1 << 0)
  63#define S3C_EP0SR			S3C_HSUDC_REG(0x24) /* EP0 Status */
  64#define S3C_EP0SR_EP0_LWO		(1 << 6)
  65#define S3C_EP0SR_STALL			(1 << 4)
  66#define S3C_EP0SR_TX_SUCCESS		(1 << 1)
  67#define S3C_EP0SR_RX_SUCCESS		(1 << 0)
  68#define S3C_EP0CR			S3C_HSUDC_REG(0x28) /* EP0 Control */
  69#define S3C_BR(_x)			S3C_HSUDC_REG(0x60 + (_x * 4))
  70
  71/* Indexed Registers */
  72#define S3C_ESR				S3C_HSUDC_REG(0x2c) /* EPn Status */
  73#define S3C_ESR_FLUSH			(1 << 6)
  74#define S3C_ESR_STALL			(1 << 5)
  75#define S3C_ESR_LWO			(1 << 4)
  76#define S3C_ESR_PSIF_ONE		(1 << 2)
  77#define S3C_ESR_PSIF_TWO		(2 << 2)
  78#define S3C_ESR_TX_SUCCESS		(1 << 1)
  79#define S3C_ESR_RX_SUCCESS		(1 << 0)
  80#define S3C_ECR				S3C_HSUDC_REG(0x30) /* EPn Control */
  81#define S3C_ECR_DUEN			(1 << 7)
  82#define S3C_ECR_FLUSH			(1 << 6)
  83#define S3C_ECR_STALL			(1 << 1)
  84#define S3C_ECR_IEMS			(1 << 0)
  85#define S3C_BRCR			S3C_HSUDC_REG(0x34) /* Read Count */
  86#define S3C_BWCR			S3C_HSUDC_REG(0x38) /* Write Count */
  87#define S3C_MPR				S3C_HSUDC_REG(0x3c) /* Max Pkt Size */
  88
  89#define WAIT_FOR_SETUP			(0)
  90#define DATA_STATE_XMIT			(1)
  91#define DATA_STATE_RECV			(2)
  92
  93static const char * const s3c_hsudc_supply_names[] = {
  94	"vdda",		/* analog phy supply, 3.3V */
  95	"vddi",		/* digital phy supply, 1.2V */
  96	"vddosc",	/* oscillator supply, 1.8V - 3.3V */
  97};
  98
  99/**
 100 * struct s3c_hsudc_ep - Endpoint representation used by driver.
 101 * @ep: USB gadget layer representation of device endpoint.
 102 * @name: Endpoint name (as required by ep autoconfiguration).
 103 * @dev: Reference to the device controller to which this EP belongs.
 104 * @desc: Endpoint descriptor obtained from the gadget driver.
 105 * @queue: Transfer request queue for the endpoint.
 106 * @stopped: Maintains state of endpoint, set if EP is halted.
 107 * @bEndpointAddress: EP address (including direction bit).
 108 * @fifo: Base address of EP FIFO.
 109 */
 110struct s3c_hsudc_ep {
 111	struct usb_ep ep;
 112	char name[20];
 113	struct s3c_hsudc *dev;
 114	struct list_head queue;
 115	u8 stopped;
 116	u8 wedge;
 117	u8 bEndpointAddress;
 118	void __iomem *fifo;
 119};
 120
 121/**
 122 * struct s3c_hsudc_req - Driver encapsulation of USB gadget transfer request.
 123 * @req: Reference to USB gadget transfer request.
 124 * @queue: Used for inserting this request to the endpoint request queue.
 125 */
 126struct s3c_hsudc_req {
 127	struct usb_request req;
 128	struct list_head queue;
 129};
 130
 131/**
 132 * struct s3c_hsudc - Driver's abstraction of the device controller.
 133 * @gadget: Instance of usb_gadget which is referenced by gadget driver.
 134 * @driver: Reference to currenty active gadget driver.
 135 * @dev: The device reference used by probe function.
 136 * @lock: Lock to synchronize the usage of Endpoints (EP's are indexed).
 137 * @regs: Remapped base address of controller's register space.
 138 * irq: IRQ number used by the controller.
 139 * uclk: Reference to the controller clock.
 140 * ep0state: Current state of EP0.
 141 * ep: List of endpoints supported by the controller.
 142 */
 143struct s3c_hsudc {
 144	struct usb_gadget gadget;
 145	struct usb_gadget_driver *driver;
 146	struct device *dev;
 147	struct s3c24xx_hsudc_platdata *pd;
 148	struct usb_phy *transceiver;
 149	struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsudc_supply_names)];
 150	spinlock_t lock;
 151	void __iomem *regs;
 152	int irq;
 153	struct clk *uclk;
 154	int ep0state;
 155	struct s3c_hsudc_ep ep[];
 156};
 157
 158#define ep_maxpacket(_ep)	((_ep)->ep.maxpacket)
 159#define ep_is_in(_ep)		((_ep)->bEndpointAddress & USB_DIR_IN)
 160#define ep_index(_ep)		((_ep)->bEndpointAddress & \
 161					USB_ENDPOINT_NUMBER_MASK)
 162
 163static const char driver_name[] = "s3c-udc";
 164static const char ep0name[] = "ep0-control";
 165
 166static inline struct s3c_hsudc_req *our_req(struct usb_request *req)
 167{
 168	return container_of(req, struct s3c_hsudc_req, req);
 169}
 170
 171static inline struct s3c_hsudc_ep *our_ep(struct usb_ep *ep)
 172{
 173	return container_of(ep, struct s3c_hsudc_ep, ep);
 174}
 175
 176static inline struct s3c_hsudc *to_hsudc(struct usb_gadget *gadget)
 177{
 178	return container_of(gadget, struct s3c_hsudc, gadget);
 179}
 180
 181static inline void set_index(struct s3c_hsudc *hsudc, int ep_addr)
 182{
 183	ep_addr &= USB_ENDPOINT_NUMBER_MASK;
 184	writel(ep_addr, hsudc->regs + S3C_IR);
 185}
 186
 187static inline void __orr32(void __iomem *ptr, u32 val)
 188{
 189	writel(readl(ptr) | val, ptr);
 190}
 191
 192static void s3c_hsudc_init_phy(void)
 193{
 194	u32 cfg;
 195
 196	cfg = readl(S3C2443_PWRCFG) | S3C2443_PWRCFG_USBPHY;
 197	writel(cfg, S3C2443_PWRCFG);
 198
 199	cfg = readl(S3C2443_URSTCON);
 200	cfg |= (S3C2443_URSTCON_FUNCRST | S3C2443_URSTCON_PHYRST);
 201	writel(cfg, S3C2443_URSTCON);
 202	mdelay(1);
 203
 204	cfg = readl(S3C2443_URSTCON);
 205	cfg &= ~(S3C2443_URSTCON_FUNCRST | S3C2443_URSTCON_PHYRST);
 206	writel(cfg, S3C2443_URSTCON);
 207
 208	cfg = readl(S3C2443_PHYCTRL);
 209	cfg &= ~(S3C2443_PHYCTRL_CLKSEL | S3C2443_PHYCTRL_DSPORT);
 210	cfg |= (S3C2443_PHYCTRL_EXTCLK | S3C2443_PHYCTRL_PLLSEL);
 211	writel(cfg, S3C2443_PHYCTRL);
 212
 213	cfg = readl(S3C2443_PHYPWR);
 214	cfg &= ~(S3C2443_PHYPWR_FSUSPEND | S3C2443_PHYPWR_PLL_PWRDN |
 215		S3C2443_PHYPWR_XO_ON | S3C2443_PHYPWR_PLL_REFCLK |
 216		S3C2443_PHYPWR_ANALOG_PD);
 217	cfg |= S3C2443_PHYPWR_COMMON_ON;
 218	writel(cfg, S3C2443_PHYPWR);
 219
 220	cfg = readl(S3C2443_UCLKCON);
 221	cfg |= (S3C2443_UCLKCON_DETECT_VBUS | S3C2443_UCLKCON_FUNC_CLKEN |
 222		S3C2443_UCLKCON_TCLKEN);
 223	writel(cfg, S3C2443_UCLKCON);
 224}
 225
 226static void s3c_hsudc_uninit_phy(void)
 227{
 228	u32 cfg;
 229
 230	cfg = readl(S3C2443_PWRCFG) & ~S3C2443_PWRCFG_USBPHY;
 231	writel(cfg, S3C2443_PWRCFG);
 232
 233	writel(S3C2443_PHYPWR_FSUSPEND, S3C2443_PHYPWR);
 234
 235	cfg = readl(S3C2443_UCLKCON) & ~S3C2443_UCLKCON_FUNC_CLKEN;
 236	writel(cfg, S3C2443_UCLKCON);
 237}
 238
 239/**
 240 * s3c_hsudc_complete_request - Complete a transfer request.
 241 * @hsep: Endpoint to which the request belongs.
 242 * @hsreq: Transfer request to be completed.
 243 * @status: Transfer completion status for the transfer request.
 244 */
 245static void s3c_hsudc_complete_request(struct s3c_hsudc_ep *hsep,
 246				struct s3c_hsudc_req *hsreq, int status)
 247{
 248	unsigned int stopped = hsep->stopped;
 249	struct s3c_hsudc *hsudc = hsep->dev;
 250
 251	list_del_init(&hsreq->queue);
 252	hsreq->req.status = status;
 253
 254	if (!ep_index(hsep)) {
 255		hsudc->ep0state = WAIT_FOR_SETUP;
 256		hsep->bEndpointAddress &= ~USB_DIR_IN;
 257	}
 258
 259	hsep->stopped = 1;
 260	spin_unlock(&hsudc->lock);
 261	if (hsreq->req.complete != NULL)
 262		hsreq->req.complete(&hsep->ep, &hsreq->req);
 263	spin_lock(&hsudc->lock);
 264	hsep->stopped = stopped;
 265}
 266
 267/**
 268 * s3c_hsudc_nuke_ep - Terminate all requests queued for a endpoint.
 269 * @hsep: Endpoint for which queued requests have to be terminated.
 270 * @status: Transfer completion status for the transfer request.
 271 */
 272static void s3c_hsudc_nuke_ep(struct s3c_hsudc_ep *hsep, int status)
 273{
 274	struct s3c_hsudc_req *hsreq;
 275
 276	while (!list_empty(&hsep->queue)) {
 277		hsreq = list_entry(hsep->queue.next,
 278				struct s3c_hsudc_req, queue);
 279		s3c_hsudc_complete_request(hsep, hsreq, status);
 280	}
 281}
 282
 283/**
 284 * s3c_hsudc_stop_activity - Stop activity on all endpoints.
 285 * @hsudc: Device controller for which EP activity is to be stopped.
 286 *
 287 * All the endpoints are stopped and any pending transfer requests if any on
 288 * the endpoint are terminated.
 289 */
 290static void s3c_hsudc_stop_activity(struct s3c_hsudc *hsudc)
 291{
 292	struct s3c_hsudc_ep *hsep;
 293	int epnum;
 294
 295	hsudc->gadget.speed = USB_SPEED_UNKNOWN;
 296
 297	for (epnum = 0; epnum < hsudc->pd->epnum; epnum++) {
 298		hsep = &hsudc->ep[epnum];
 299		hsep->stopped = 1;
 300		s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN);
 301	}
 302}
 303
 304/**
 305 * s3c_hsudc_read_setup_pkt - Read the received setup packet from EP0 fifo.
 306 * @hsudc: Device controller from which setup packet is to be read.
 307 * @buf: The buffer into which the setup packet is read.
 308 *
 309 * The setup packet received in the EP0 fifo is read and stored into a
 310 * given buffer address.
 311 */
 312
 313static void s3c_hsudc_read_setup_pkt(struct s3c_hsudc *hsudc, u16 *buf)
 314{
 315	int count;
 316
 317	count = readl(hsudc->regs + S3C_BRCR);
 318	while (count--)
 319		*buf++ = (u16)readl(hsudc->regs + S3C_BR(0));
 320
 321	writel(S3C_EP0SR_RX_SUCCESS, hsudc->regs + S3C_EP0SR);
 322}
 323
 324/**
 325 * s3c_hsudc_write_fifo - Write next chunk of transfer data to EP fifo.
 326 * @hsep: Endpoint to which the data is to be written.
 327 * @hsreq: Transfer request from which the next chunk of data is written.
 328 *
 329 * Write the next chunk of data from a transfer request to the endpoint FIFO.
 330 * If the transfer request completes, 1 is returned, otherwise 0 is returned.
 331 */
 332static int s3c_hsudc_write_fifo(struct s3c_hsudc_ep *hsep,
 333				struct s3c_hsudc_req *hsreq)
 334{
 335	u16 *buf;
 336	u32 max = ep_maxpacket(hsep);
 337	u32 count, length;
 338	bool is_last;
 339	void __iomem *fifo = hsep->fifo;
 340
 341	buf = hsreq->req.buf + hsreq->req.actual;
 342	prefetch(buf);
 343
 344	length = hsreq->req.length - hsreq->req.actual;
 345	length = min(length, max);
 346	hsreq->req.actual += length;
 347
 348	writel(length, hsep->dev->regs + S3C_BWCR);
 349	for (count = 0; count < length; count += 2)
 350		writel(*buf++, fifo);
 351
 352	if (count != max) {
 353		is_last = true;
 354	} else {
 355		if (hsreq->req.length != hsreq->req.actual || hsreq->req.zero)
 356			is_last = false;
 357		else
 358			is_last = true;
 359	}
 360
 361	if (is_last) {
 362		s3c_hsudc_complete_request(hsep, hsreq, 0);
 363		return 1;
 364	}
 365
 366	return 0;
 367}
 368
 369/**
 370 * s3c_hsudc_read_fifo - Read the next chunk of data from EP fifo.
 371 * @hsep: Endpoint from which the data is to be read.
 372 * @hsreq: Transfer request to which the next chunk of data read is written.
 373 *
 374 * Read the next chunk of data from the endpoint FIFO and a write it to the
 375 * transfer request buffer. If the transfer request completes, 1 is returned,
 376 * otherwise 0 is returned.
 377 */
 378static int s3c_hsudc_read_fifo(struct s3c_hsudc_ep *hsep,
 379				struct s3c_hsudc_req *hsreq)
 380{
 381	struct s3c_hsudc *hsudc = hsep->dev;
 382	u32 csr, offset;
 383	u16 *buf, word;
 384	u32 buflen, rcnt, rlen;
 385	void __iomem *fifo = hsep->fifo;
 386	u32 is_short = 0;
 387
 388	offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR;
 389	csr = readl(hsudc->regs + offset);
 390	if (!(csr & S3C_ESR_RX_SUCCESS))
 391		return -EINVAL;
 392
 393	buf = hsreq->req.buf + hsreq->req.actual;
 394	prefetchw(buf);
 395	buflen = hsreq->req.length - hsreq->req.actual;
 396
 397	rcnt = readl(hsudc->regs + S3C_BRCR);
 398	rlen = (csr & S3C_ESR_LWO) ? (rcnt * 2 - 1) : (rcnt * 2);
 399
 400	hsreq->req.actual += min(rlen, buflen);
 401	is_short = (rlen < hsep->ep.maxpacket);
 402
 403	while (rcnt-- != 0) {
 404		word = (u16)readl(fifo);
 405		if (buflen) {
 406			*buf++ = word;
 407			buflen--;
 408		} else {
 409			hsreq->req.status = -EOVERFLOW;
 410		}
 411	}
 412
 413	writel(S3C_ESR_RX_SUCCESS, hsudc->regs + offset);
 414
 415	if (is_short || hsreq->req.actual == hsreq->req.length) {
 416		s3c_hsudc_complete_request(hsep, hsreq, 0);
 417		return 1;
 418	}
 419
 420	return 0;
 421}
 422
 423/**
 424 * s3c_hsudc_epin_intr - Handle in-endpoint interrupt.
 425 * @hsudc - Device controller for which the interrupt is to be handled.
 426 * @ep_idx - Endpoint number on which an interrupt is pending.
 427 *
 428 * Handles interrupt for a in-endpoint. The interrupts that are handled are
 429 * stall and data transmit complete interrupt.
 430 */
 431static void s3c_hsudc_epin_intr(struct s3c_hsudc *hsudc, u32 ep_idx)
 432{
 433	struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx];
 434	struct s3c_hsudc_req *hsreq;
 435	u32 csr;
 436
 437	csr = readl(hsudc->regs + S3C_ESR);
 438	if (csr & S3C_ESR_STALL) {
 439		writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR);
 440		return;
 441	}
 442
 443	if (csr & S3C_ESR_TX_SUCCESS) {
 444		writel(S3C_ESR_TX_SUCCESS, hsudc->regs + S3C_ESR);
 445		if (list_empty(&hsep->queue))
 446			return;
 447
 448		hsreq = list_entry(hsep->queue.next,
 449				struct s3c_hsudc_req, queue);
 450		if ((s3c_hsudc_write_fifo(hsep, hsreq) == 0) &&
 451				(csr & S3C_ESR_PSIF_TWO))
 452			s3c_hsudc_write_fifo(hsep, hsreq);
 453	}
 454}
 455
 456/**
 457 * s3c_hsudc_epout_intr - Handle out-endpoint interrupt.
 458 * @hsudc - Device controller for which the interrupt is to be handled.
 459 * @ep_idx - Endpoint number on which an interrupt is pending.
 460 *
 461 * Handles interrupt for a out-endpoint. The interrupts that are handled are
 462 * stall, flush and data ready interrupt.
 463 */
 464static void s3c_hsudc_epout_intr(struct s3c_hsudc *hsudc, u32 ep_idx)
 465{
 466	struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx];
 467	struct s3c_hsudc_req *hsreq;
 468	u32 csr;
 469
 470	csr = readl(hsudc->regs + S3C_ESR);
 471	if (csr & S3C_ESR_STALL) {
 472		writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR);
 473		return;
 474	}
 475
 476	if (csr & S3C_ESR_FLUSH) {
 477		__orr32(hsudc->regs + S3C_ECR, S3C_ECR_FLUSH);
 478		return;
 479	}
 480
 481	if (csr & S3C_ESR_RX_SUCCESS) {
 482		if (list_empty(&hsep->queue))
 483			return;
 484
 485		hsreq = list_entry(hsep->queue.next,
 486				struct s3c_hsudc_req, queue);
 487		if (((s3c_hsudc_read_fifo(hsep, hsreq)) == 0) &&
 488				(csr & S3C_ESR_PSIF_TWO))
 489			s3c_hsudc_read_fifo(hsep, hsreq);
 490	}
 491}
 492
 493/** s3c_hsudc_set_halt - Set or clear a endpoint halt.
 494 * @_ep: Endpoint on which halt has to be set or cleared.
 495 * @value: 1 for setting halt on endpoint, 0 to clear halt.
 496 *
 497 * Set or clear endpoint halt. If halt is set, the endpoint is stopped.
 498 * If halt is cleared, for in-endpoints, if there are any pending
 499 * transfer requests, transfers are started.
 500 */
 501static int s3c_hsudc_set_halt(struct usb_ep *_ep, int value)
 502{
 503	struct s3c_hsudc_ep *hsep = our_ep(_ep);
 504	struct s3c_hsudc *hsudc = hsep->dev;
 505	struct s3c_hsudc_req *hsreq;
 506	unsigned long irqflags;
 507	u32 ecr;
 508	u32 offset;
 509
 510	if (value && ep_is_in(hsep) && !list_empty(&hsep->queue))
 511		return -EAGAIN;
 512
 513	spin_lock_irqsave(&hsudc->lock, irqflags);
 514	set_index(hsudc, ep_index(hsep));
 515	offset = (ep_index(hsep)) ? S3C_ECR : S3C_EP0CR;
 516	ecr = readl(hsudc->regs + offset);
 517
 518	if (value) {
 519		ecr |= S3C_ECR_STALL;
 520		if (ep_index(hsep))
 521			ecr |= S3C_ECR_FLUSH;
 522		hsep->stopped = 1;
 523	} else {
 524		ecr &= ~S3C_ECR_STALL;
 525		hsep->stopped = hsep->wedge = 0;
 526	}
 527	writel(ecr, hsudc->regs + offset);
 528
 529	if (ep_is_in(hsep) && !list_empty(&hsep->queue) && !value) {
 530		hsreq = list_entry(hsep->queue.next,
 531			struct s3c_hsudc_req, queue);
 532		if (hsreq)
 533			s3c_hsudc_write_fifo(hsep, hsreq);
 534	}
 535
 536	spin_unlock_irqrestore(&hsudc->lock, irqflags);
 537	return 0;
 538}
 539
 540/** s3c_hsudc_set_wedge - Sets the halt feature with the clear requests ignored
 541 * @_ep: Endpoint on which wedge has to be set.
 542 *
 543 * Sets the halt feature with the clear requests ignored.
 544 */
 545static int s3c_hsudc_set_wedge(struct usb_ep *_ep)
 546{
 547	struct s3c_hsudc_ep *hsep = our_ep(_ep);
 548
 549	if (!hsep)
 550		return -EINVAL;
 551
 552	hsep->wedge = 1;
 553	return usb_ep_set_halt(_ep);
 554}
 555
 556/** s3c_hsudc_handle_reqfeat - Handle set feature or clear feature requests.
 557 * @_ep: Device controller on which the set/clear feature needs to be handled.
 558 * @ctrl: Control request as received on the endpoint 0.
 559 *
 560 * Handle set feature or clear feature control requests on the control endpoint.
 561 */
 562static int s3c_hsudc_handle_reqfeat(struct s3c_hsudc *hsudc,
 563					struct usb_ctrlrequest *ctrl)
 564{
 565	struct s3c_hsudc_ep *hsep;
 566	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
 567	u8 ep_num = ctrl->wIndex & USB_ENDPOINT_NUMBER_MASK;
 568
 569	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
 570		hsep = &hsudc->ep[ep_num];
 571		switch (le16_to_cpu(ctrl->wValue)) {
 572		case USB_ENDPOINT_HALT:
 573			if (set || (!set && !hsep->wedge))
 574				s3c_hsudc_set_halt(&hsep->ep, set);
 575			return 0;
 576		}
 577	}
 578
 579	return -ENOENT;
 580}
 581
 582/**
 583 * s3c_hsudc_process_req_status - Handle get status control request.
 584 * @hsudc: Device controller on which get status request has be handled.
 585 * @ctrl: Control request as received on the endpoint 0.
 586 *
 587 * Handle get status control request received on control endpoint.
 588 */
 589static void s3c_hsudc_process_req_status(struct s3c_hsudc *hsudc,
 590					struct usb_ctrlrequest *ctrl)
 591{
 592	struct s3c_hsudc_ep *hsep0 = &hsudc->ep[0];
 593	struct s3c_hsudc_req hsreq;
 594	struct s3c_hsudc_ep *hsep;
 595	__le16 reply;
 596	u8 epnum;
 597
 598	switch (ctrl->bRequestType & USB_RECIP_MASK) {
 599	case USB_RECIP_DEVICE:
 600		reply = cpu_to_le16(0);
 601		break;
 602
 603	case USB_RECIP_INTERFACE:
 604		reply = cpu_to_le16(0);
 605		break;
 606
 607	case USB_RECIP_ENDPOINT:
 608		epnum = le16_to_cpu(ctrl->wIndex) & USB_ENDPOINT_NUMBER_MASK;
 609		hsep = &hsudc->ep[epnum];
 610		reply = cpu_to_le16(hsep->stopped ? 1 : 0);
 611		break;
 612	}
 613
 614	INIT_LIST_HEAD(&hsreq.queue);
 615	hsreq.req.length = 2;
 616	hsreq.req.buf = &reply;
 617	hsreq.req.actual = 0;
 618	hsreq.req.complete = NULL;
 619	s3c_hsudc_write_fifo(hsep0, &hsreq);
 620}
 621
 622/**
 623 * s3c_hsudc_process_setup - Process control request received on endpoint 0.
 624 * @hsudc: Device controller on which control request has been received.
 625 *
 626 * Read the control request received on endpoint 0, decode it and handle
 627 * the request.
 628 */
 629static void s3c_hsudc_process_setup(struct s3c_hsudc *hsudc)
 630{
 631	struct s3c_hsudc_ep *hsep = &hsudc->ep[0];
 632	struct usb_ctrlrequest ctrl = {0};
 633	int ret;
 634
 635	s3c_hsudc_nuke_ep(hsep, -EPROTO);
 636	s3c_hsudc_read_setup_pkt(hsudc, (u16 *)&ctrl);
 637
 638	if (ctrl.bRequestType & USB_DIR_IN) {
 639		hsep->bEndpointAddress |= USB_DIR_IN;
 640		hsudc->ep0state = DATA_STATE_XMIT;
 641	} else {
 642		hsep->bEndpointAddress &= ~USB_DIR_IN;
 643		hsudc->ep0state = DATA_STATE_RECV;
 644	}
 645
 646	switch (ctrl.bRequest) {
 647	case USB_REQ_SET_ADDRESS:
 648		if (ctrl.bRequestType != (USB_TYPE_STANDARD | USB_RECIP_DEVICE))
 649			break;
 650		hsudc->ep0state = WAIT_FOR_SETUP;
 651		return;
 652
 653	case USB_REQ_GET_STATUS:
 654		if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD)
 655			break;
 656		s3c_hsudc_process_req_status(hsudc, &ctrl);
 657		return;
 658
 659	case USB_REQ_SET_FEATURE:
 660	case USB_REQ_CLEAR_FEATURE:
 661		if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD)
 662			break;
 663		s3c_hsudc_handle_reqfeat(hsudc, &ctrl);
 664		hsudc->ep0state = WAIT_FOR_SETUP;
 665		return;
 666	}
 667
 668	if (hsudc->driver) {
 669		spin_unlock(&hsudc->lock);
 670		ret = hsudc->driver->setup(&hsudc->gadget, &ctrl);
 671		spin_lock(&hsudc->lock);
 672
 673		if (ctrl.bRequest == USB_REQ_SET_CONFIGURATION) {
 674			hsep->bEndpointAddress &= ~USB_DIR_IN;
 675			hsudc->ep0state = WAIT_FOR_SETUP;
 676		}
 677
 678		if (ret < 0) {
 679			dev_err(hsudc->dev, "setup failed, returned %d\n",
 680						ret);
 681			s3c_hsudc_set_halt(&hsep->ep, 1);
 682			hsudc->ep0state = WAIT_FOR_SETUP;
 683			hsep->bEndpointAddress &= ~USB_DIR_IN;
 684		}
 685	}
 686}
 687
 688/** s3c_hsudc_handle_ep0_intr - Handle endpoint 0 interrupt.
 689 * @hsudc: Device controller on which endpoint 0 interrupt has occured.
 690 *
 691 * Handle endpoint 0 interrupt when it occurs. EP0 interrupt could occur
 692 * when a stall handshake is sent to host or data is sent/received on
 693 * endpoint 0.
 694 */
 695static void s3c_hsudc_handle_ep0_intr(struct s3c_hsudc *hsudc)
 696{
 697	struct s3c_hsudc_ep *hsep = &hsudc->ep[0];
 698	struct s3c_hsudc_req *hsreq;
 699	u32 csr = readl(hsudc->regs + S3C_EP0SR);
 700	u32 ecr;
 701
 702	if (csr & S3C_EP0SR_STALL) {
 703		ecr = readl(hsudc->regs + S3C_EP0CR);
 704		ecr &= ~(S3C_ECR_STALL | S3C_ECR_FLUSH);
 705		writel(ecr, hsudc->regs + S3C_EP0CR);
 706
 707		writel(S3C_EP0SR_STALL, hsudc->regs + S3C_EP0SR);
 708		hsep->stopped = 0;
 709
 710		s3c_hsudc_nuke_ep(hsep, -ECONNABORTED);
 711		hsudc->ep0state = WAIT_FOR_SETUP;
 712		hsep->bEndpointAddress &= ~USB_DIR_IN;
 713		return;
 714	}
 715
 716	if (csr & S3C_EP0SR_TX_SUCCESS) {
 717		writel(S3C_EP0SR_TX_SUCCESS, hsudc->regs + S3C_EP0SR);
 718		if (ep_is_in(hsep)) {
 719			if (list_empty(&hsep->queue))
 720				return;
 721
 722			hsreq = list_entry(hsep->queue.next,
 723					struct s3c_hsudc_req, queue);
 724			s3c_hsudc_write_fifo(hsep, hsreq);
 725		}
 726	}
 727
 728	if (csr & S3C_EP0SR_RX_SUCCESS) {
 729		if (hsudc->ep0state == WAIT_FOR_SETUP)
 730			s3c_hsudc_process_setup(hsudc);
 731		else {
 732			if (!ep_is_in(hsep)) {
 733				if (list_empty(&hsep->queue))
 734					return;
 735				hsreq = list_entry(hsep->queue.next,
 736					struct s3c_hsudc_req, queue);
 737				s3c_hsudc_read_fifo(hsep, hsreq);
 738			}
 739		}
 740	}
 741}
 742
 743/**
 744 * s3c_hsudc_ep_enable - Enable a endpoint.
 745 * @_ep: The endpoint to be enabled.
 746 * @desc: Endpoint descriptor.
 747 *
 748 * Enables a endpoint when called from the gadget driver. Endpoint stall if
 749 * any is cleared, transfer type is configured and endpoint interrupt is
 750 * enabled.
 751 */
 752static int s3c_hsudc_ep_enable(struct usb_ep *_ep,
 753				const struct usb_endpoint_descriptor *desc)
 754{
 755	struct s3c_hsudc_ep *hsep;
 756	struct s3c_hsudc *hsudc;
 757	unsigned long flags;
 758	u32 ecr = 0;
 759
 760	hsep = our_ep(_ep);
 761	if (!_ep || !desc || _ep->name == ep0name
 762		|| desc->bDescriptorType != USB_DT_ENDPOINT
 763		|| hsep->bEndpointAddress != desc->bEndpointAddress
 764		|| ep_maxpacket(hsep) < usb_endpoint_maxp(desc))
 765		return -EINVAL;
 766
 767	if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK
 768		&& usb_endpoint_maxp(desc) != ep_maxpacket(hsep))
 769		|| !desc->wMaxPacketSize)
 770		return -ERANGE;
 771
 772	hsudc = hsep->dev;
 773	if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN)
 774		return -ESHUTDOWN;
 775
 776	spin_lock_irqsave(&hsudc->lock, flags);
 777
 778	set_index(hsudc, hsep->bEndpointAddress);
 779	ecr |= ((usb_endpoint_xfer_int(desc)) ? S3C_ECR_IEMS : S3C_ECR_DUEN);
 780	writel(ecr, hsudc->regs + S3C_ECR);
 781
 782	hsep->stopped = hsep->wedge = 0;
 783	hsep->ep.desc = desc;
 784	hsep->ep.maxpacket = usb_endpoint_maxp(desc);
 785
 786	s3c_hsudc_set_halt(_ep, 0);
 787	__set_bit(ep_index(hsep), hsudc->regs + S3C_EIER);
 788
 789	spin_unlock_irqrestore(&hsudc->lock, flags);
 790	return 0;
 791}
 792
 793/**
 794 * s3c_hsudc_ep_disable - Disable a endpoint.
 795 * @_ep: The endpoint to be disabled.
 796 * @desc: Endpoint descriptor.
 797 *
 798 * Disables a endpoint when called from the gadget driver.
 799 */
 800static int s3c_hsudc_ep_disable(struct usb_ep *_ep)
 801{
 802	struct s3c_hsudc_ep *hsep = our_ep(_ep);
 803	struct s3c_hsudc *hsudc = hsep->dev;
 804	unsigned long flags;
 805
 806	if (!_ep || !hsep->ep.desc)
 807		return -EINVAL;
 808
 809	spin_lock_irqsave(&hsudc->lock, flags);
 810
 811	set_index(hsudc, hsep->bEndpointAddress);
 812	__clear_bit(ep_index(hsep), hsudc->regs + S3C_EIER);
 813
 814	s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN);
 815
 816	hsep->ep.desc = NULL;
 817	hsep->stopped = 1;
 818
 819	spin_unlock_irqrestore(&hsudc->lock, flags);
 820	return 0;
 821}
 822
 823/**
 824 * s3c_hsudc_alloc_request - Allocate a new request.
 825 * @_ep: Endpoint for which request is allocated (not used).
 826 * @gfp_flags: Flags used for the allocation.
 827 *
 828 * Allocates a single transfer request structure when called from gadget driver.
 829 */
 830static struct usb_request *s3c_hsudc_alloc_request(struct usb_ep *_ep,
 831						gfp_t gfp_flags)
 832{
 833	struct s3c_hsudc_req *hsreq;
 834
 835	hsreq = kzalloc(sizeof(*hsreq), gfp_flags);
 836	if (!hsreq)
 837		return NULL;
 838
 839	INIT_LIST_HEAD(&hsreq->queue);
 840	return &hsreq->req;
 841}
 842
 843/**
 844 * s3c_hsudc_free_request - Deallocate a request.
 845 * @ep: Endpoint for which request is deallocated (not used).
 846 * @_req: Request to be deallocated.
 847 *
 848 * Allocates a single transfer request structure when called from gadget driver.
 849 */
 850static void s3c_hsudc_free_request(struct usb_ep *ep, struct usb_request *_req)
 851{
 852	struct s3c_hsudc_req *hsreq;
 853
 854	hsreq = our_req(_req);
 855	WARN_ON(!list_empty(&hsreq->queue));
 856	kfree(hsreq);
 857}
 858
 859/**
 860 * s3c_hsudc_queue - Queue a transfer request for the endpoint.
 861 * @_ep: Endpoint for which the request is queued.
 862 * @_req: Request to be queued.
 863 * @gfp_flags: Not used.
 864 *
 865 * Start or enqueue a request for a endpoint when called from gadget driver.
 866 */
 867static int s3c_hsudc_queue(struct usb_ep *_ep, struct usb_request *_req,
 868			gfp_t gfp_flags)
 869{
 870	struct s3c_hsudc_req *hsreq;
 871	struct s3c_hsudc_ep *hsep;
 872	struct s3c_hsudc *hsudc;
 873	unsigned long flags;
 874	u32 offset;
 875	u32 csr;
 876
 877	hsreq = our_req(_req);
 878	if ((!_req || !_req->complete || !_req->buf ||
 879		!list_empty(&hsreq->queue)))
 880		return -EINVAL;
 881
 882	hsep = our_ep(_ep);
 883	hsudc = hsep->dev;
 884	if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN)
 885		return -ESHUTDOWN;
 886
 887	spin_lock_irqsave(&hsudc->lock, flags);
 888	set_index(hsudc, hsep->bEndpointAddress);
 889
 890	_req->status = -EINPROGRESS;
 891	_req->actual = 0;
 892
 893	if (!ep_index(hsep) && _req->length == 0) {
 894		hsudc->ep0state = WAIT_FOR_SETUP;
 895		s3c_hsudc_complete_request(hsep, hsreq, 0);
 896		spin_unlock_irqrestore(&hsudc->lock, flags);
 897		return 0;
 898	}
 899
 900	if (list_empty(&hsep->queue) && !hsep->stopped) {
 901		offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR;
 902		if (ep_is_in(hsep)) {
 903			csr = readl(hsudc->regs + offset);
 904			if (!(csr & S3C_ESR_TX_SUCCESS) &&
 905				(s3c_hsudc_write_fifo(hsep, hsreq) == 1))
 906				hsreq = NULL;
 907		} else {
 908			csr = readl(hsudc->regs + offset);
 909			if ((csr & S3C_ESR_RX_SUCCESS)
 910				   && (s3c_hsudc_read_fifo(hsep, hsreq) == 1))
 911				hsreq = NULL;
 912		}
 913	}
 914
 915	if (hsreq)
 916		list_add_tail(&hsreq->queue, &hsep->queue);
 917
 918	spin_unlock_irqrestore(&hsudc->lock, flags);
 919	return 0;
 920}
 921
 922/**
 923 * s3c_hsudc_dequeue - Dequeue a transfer request from an endpoint.
 924 * @_ep: Endpoint from which the request is dequeued.
 925 * @_req: Request to be dequeued.
 926 *
 927 * Dequeue a request from a endpoint when called from gadget driver.
 928 */
 929static int s3c_hsudc_dequeue(struct usb_ep *_ep, struct usb_request *_req)
 930{
 931	struct s3c_hsudc_ep *hsep = our_ep(_ep);
 932	struct s3c_hsudc *hsudc = hsep->dev;
 933	struct s3c_hsudc_req *hsreq;
 934	unsigned long flags;
 935
 936	hsep = our_ep(_ep);
 937	if (!_ep || hsep->ep.name == ep0name)
 938		return -EINVAL;
 939
 940	spin_lock_irqsave(&hsudc->lock, flags);
 941
 942	list_for_each_entry(hsreq, &hsep->queue, queue) {
 943		if (&hsreq->req == _req)
 944			break;
 945	}
 946	if (&hsreq->req != _req) {
 947		spin_unlock_irqrestore(&hsudc->lock, flags);
 948		return -EINVAL;
 949	}
 950
 951	set_index(hsudc, hsep->bEndpointAddress);
 952	s3c_hsudc_complete_request(hsep, hsreq, -ECONNRESET);
 953
 954	spin_unlock_irqrestore(&hsudc->lock, flags);
 955	return 0;
 956}
 957
 958static struct usb_ep_ops s3c_hsudc_ep_ops = {
 959	.enable = s3c_hsudc_ep_enable,
 960	.disable = s3c_hsudc_ep_disable,
 961	.alloc_request = s3c_hsudc_alloc_request,
 962	.free_request = s3c_hsudc_free_request,
 963	.queue = s3c_hsudc_queue,
 964	.dequeue = s3c_hsudc_dequeue,
 965	.set_halt = s3c_hsudc_set_halt,
 966	.set_wedge = s3c_hsudc_set_wedge,
 967};
 968
 969/**
 970 * s3c_hsudc_initep - Initialize a endpoint to default state.
 971 * @hsudc - Reference to the device controller.
 972 * @hsep - Endpoint to be initialized.
 973 * @epnum - Address to be assigned to the endpoint.
 974 *
 975 * Initialize a endpoint with default configuration.
 976 */
 977static void s3c_hsudc_initep(struct s3c_hsudc *hsudc,
 978				struct s3c_hsudc_ep *hsep, int epnum)
 979{
 980	char *dir;
 981
 982	if ((epnum % 2) == 0) {
 983		dir = "out";
 984	} else {
 985		dir = "in";
 986		hsep->bEndpointAddress = USB_DIR_IN;
 987	}
 988
 989	hsep->bEndpointAddress |= epnum;
 990	if (epnum)
 991		snprintf(hsep->name, sizeof(hsep->name), "ep%d%s", epnum, dir);
 992	else
 993		snprintf(hsep->name, sizeof(hsep->name), "%s", ep0name);
 994
 995	INIT_LIST_HEAD(&hsep->queue);
 996	INIT_LIST_HEAD(&hsep->ep.ep_list);
 997	if (epnum)
 998		list_add_tail(&hsep->ep.ep_list, &hsudc->gadget.ep_list);
 999
1000	hsep->dev = hsudc;
1001	hsep->ep.name = hsep->name;
1002	usb_ep_set_maxpacket_limit(&hsep->ep, epnum ? 512 : 64);
1003	hsep->ep.ops = &s3c_hsudc_ep_ops;
1004	hsep->fifo = hsudc->regs + S3C_BR(epnum);
1005	hsep->ep.desc = NULL;
1006	hsep->stopped = 0;
1007	hsep->wedge = 0;
1008
1009	set_index(hsudc, epnum);
1010	writel(hsep->ep.maxpacket, hsudc->regs + S3C_MPR);
1011}
1012
1013/**
1014 * s3c_hsudc_setup_ep - Configure all endpoints to default state.
1015 * @hsudc: Reference to device controller.
1016 *
1017 * Configures all endpoints to default state.
1018 */
1019static void s3c_hsudc_setup_ep(struct s3c_hsudc *hsudc)
1020{
1021	int epnum;
1022
1023	hsudc->ep0state = WAIT_FOR_SETUP;
1024	INIT_LIST_HEAD(&hsudc->gadget.ep_list);
1025	for (epnum = 0; epnum < hsudc->pd->epnum; epnum++)
1026		s3c_hsudc_initep(hsudc, &hsudc->ep[epnum], epnum);
1027}
1028
1029/**
1030 * s3c_hsudc_reconfig - Reconfigure the device controller to default state.
1031 * @hsudc: Reference to device controller.
1032 *
1033 * Reconfigures the device controller registers to a default state.
1034 */
1035static void s3c_hsudc_reconfig(struct s3c_hsudc *hsudc)
1036{
1037	writel(0xAA, hsudc->regs + S3C_EDR);
1038	writel(1, hsudc->regs + S3C_EIER);
1039	writel(0, hsudc->regs + S3C_TR);
1040	writel(S3C_SCR_DTZIEN_EN | S3C_SCR_RRD_EN | S3C_SCR_SUS_EN |
1041			S3C_SCR_RST_EN, hsudc->regs + S3C_SCR);
1042	writel(0, hsudc->regs + S3C_EP0CR);
1043
1044	s3c_hsudc_setup_ep(hsudc);
1045}
1046
1047/**
1048 * s3c_hsudc_irq - Interrupt handler for device controller.
1049 * @irq: Not used.
1050 * @_dev: Reference to the device controller.
1051 *
1052 * Interrupt handler for the device controller. This handler handles controller
1053 * interrupts and endpoint interrupts.
1054 */
1055static irqreturn_t s3c_hsudc_irq(int irq, void *_dev)
1056{
1057	struct s3c_hsudc *hsudc = _dev;
1058	struct s3c_hsudc_ep *hsep;
1059	u32 ep_intr;
1060	u32 sys_status;
1061	u32 ep_idx;
1062
1063	spin_lock(&hsudc->lock);
1064
1065	sys_status = readl(hsudc->regs + S3C_SSR);
1066	ep_intr = readl(hsudc->regs + S3C_EIR) & 0x3FF;
1067
1068	if (!ep_intr && !(sys_status & S3C_SSR_DTZIEN_EN)) {
1069		spin_unlock(&hsudc->lock);
1070		return IRQ_HANDLED;
1071	}
1072
1073	if (sys_status) {
1074		if (sys_status & S3C_SSR_VBUSON)
1075			writel(S3C_SSR_VBUSON, hsudc->regs + S3C_SSR);
1076
1077		if (sys_status & S3C_SSR_ERR)
1078			writel(S3C_SSR_ERR, hsudc->regs + S3C_SSR);
1079
1080		if (sys_status & S3C_SSR_SDE) {
1081			writel(S3C_SSR_SDE, hsudc->regs + S3C_SSR);
1082			hsudc->gadget.speed = (sys_status & S3C_SSR_HSP) ?
1083				USB_SPEED_HIGH : USB_SPEED_FULL;
1084		}
1085
1086		if (sys_status & S3C_SSR_SUSPEND) {
1087			writel(S3C_SSR_SUSPEND, hsudc->regs + S3C_SSR);
1088			if (hsudc->gadget.speed != USB_SPEED_UNKNOWN
1089				&& hsudc->driver && hsudc->driver->suspend)
1090				hsudc->driver->suspend(&hsudc->gadget);
1091		}
1092
1093		if (sys_status & S3C_SSR_RESUME) {
1094			writel(S3C_SSR_RESUME, hsudc->regs + S3C_SSR);
1095			if (hsudc->gadget.speed != USB_SPEED_UNKNOWN
1096				&& hsudc->driver && hsudc->driver->resume)
1097				hsudc->driver->resume(&hsudc->gadget);
1098		}
1099
1100		if (sys_status & S3C_SSR_RESET) {
1101			writel(S3C_SSR_RESET, hsudc->regs + S3C_SSR);
1102			for (ep_idx = 0; ep_idx < hsudc->pd->epnum; ep_idx++) {
1103				hsep = &hsudc->ep[ep_idx];
1104				hsep->stopped = 1;
1105				s3c_hsudc_nuke_ep(hsep, -ECONNRESET);
1106			}
1107			s3c_hsudc_reconfig(hsudc);
1108			hsudc->ep0state = WAIT_FOR_SETUP;
1109		}
1110	}
1111
1112	if (ep_intr & S3C_EIR_EP0) {
1113		writel(S3C_EIR_EP0, hsudc->regs + S3C_EIR);
1114		set_index(hsudc, 0);
1115		s3c_hsudc_handle_ep0_intr(hsudc);
1116	}
1117
1118	ep_intr >>= 1;
1119	ep_idx = 1;
1120	while (ep_intr) {
1121		if (ep_intr & 1)  {
1122			hsep = &hsudc->ep[ep_idx];
1123			set_index(hsudc, ep_idx);
1124			writel(1 << ep_idx, hsudc->regs + S3C_EIR);
1125			if (ep_is_in(hsep))
1126				s3c_hsudc_epin_intr(hsudc, ep_idx);
1127			else
1128				s3c_hsudc_epout_intr(hsudc, ep_idx);
1129		}
1130		ep_intr >>= 1;
1131		ep_idx++;
1132	}
1133
1134	spin_unlock(&hsudc->lock);
1135	return IRQ_HANDLED;
1136}
1137
1138static int s3c_hsudc_start(struct usb_gadget *gadget,
1139		struct usb_gadget_driver *driver)
1140{
1141	struct s3c_hsudc *hsudc = to_hsudc(gadget);
1142	int ret;
1143
1144	if (!driver
1145		|| driver->max_speed < USB_SPEED_FULL
1146		|| !driver->setup)
1147		return -EINVAL;
1148
1149	if (!hsudc)
1150		return -ENODEV;
1151
1152	if (hsudc->driver)
1153		return -EBUSY;
1154
1155	hsudc->driver = driver;
1156
1157	ret = regulator_bulk_enable(ARRAY_SIZE(hsudc->supplies),
1158				    hsudc->supplies);
1159	if (ret != 0) {
1160		dev_err(hsudc->dev, "failed to enable supplies: %d\n", ret);
1161		goto err_supplies;
1162	}
1163
1164	/* connect to bus through transceiver */
1165	if (!IS_ERR_OR_NULL(hsudc->transceiver)) {
1166		ret = otg_set_peripheral(hsudc->transceiver->otg,
1167					&hsudc->gadget);
1168		if (ret) {
1169			dev_err(hsudc->dev, "%s: can't bind to transceiver\n",
1170					hsudc->gadget.name);
1171			goto err_otg;
1172		}
1173	}
1174
1175	enable_irq(hsudc->irq);
1176	dev_info(hsudc->dev, "bound driver %s\n", driver->driver.name);
1177
1178	s3c_hsudc_reconfig(hsudc);
1179
1180	pm_runtime_get_sync(hsudc->dev);
1181
1182	s3c_hsudc_init_phy();
1183	if (hsudc->pd->gpio_init)
1184		hsudc->pd->gpio_init();
1185
1186	return 0;
1187err_otg:
1188	regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies);
1189err_supplies:
1190	hsudc->driver = NULL;
1191	return ret;
1192}
1193
1194static int s3c_hsudc_stop(struct usb_gadget *gadget,
1195		struct usb_gadget_driver *driver)
1196{
1197	struct s3c_hsudc *hsudc = to_hsudc(gadget);
1198	unsigned long flags;
1199
1200	if (!hsudc)
1201		return -ENODEV;
1202
1203	if (!driver || driver != hsudc->driver)
1204		return -EINVAL;
1205
1206	spin_lock_irqsave(&hsudc->lock, flags);
1207	hsudc->driver = NULL;
1208	hsudc->gadget.speed = USB_SPEED_UNKNOWN;
1209	s3c_hsudc_uninit_phy();
1210
1211	pm_runtime_put(hsudc->dev);
1212
1213	if (hsudc->pd->gpio_uninit)
1214		hsudc->pd->gpio_uninit();
1215	s3c_hsudc_stop_activity(hsudc);
1216	spin_unlock_irqrestore(&hsudc->lock, flags);
1217
1218	if (!IS_ERR_OR_NULL(hsudc->transceiver))
1219		(void) otg_set_peripheral(hsudc->transceiver->otg, NULL);
1220
1221	disable_irq(hsudc->irq);
1222
1223	regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies);
1224
1225	dev_info(hsudc->dev, "unregistered gadget driver '%s'\n",
1226			driver->driver.name);
1227	return 0;
1228}
1229
1230static inline u32 s3c_hsudc_read_frameno(struct s3c_hsudc *hsudc)
1231{
1232	return readl(hsudc->regs + S3C_FNR) & 0x3FF;
1233}
1234
1235static int s3c_hsudc_gadget_getframe(struct usb_gadget *gadget)
1236{
1237	return s3c_hsudc_read_frameno(to_hsudc(gadget));
1238}
1239
1240static int s3c_hsudc_vbus_draw(struct usb_gadget *gadget, unsigned mA)
1241{
1242	struct s3c_hsudc *hsudc = to_hsudc(gadget);
1243
1244	if (!hsudc)
1245		return -ENODEV;
1246
1247	if (!IS_ERR_OR_NULL(hsudc->transceiver))
1248		return usb_phy_set_power(hsudc->transceiver, mA);
1249
1250	return -EOPNOTSUPP;
1251}
1252
1253static const struct usb_gadget_ops s3c_hsudc_gadget_ops = {
1254	.get_frame	= s3c_hsudc_gadget_getframe,
1255	.udc_start	= s3c_hsudc_start,
1256	.udc_stop	= s3c_hsudc_stop,
1257	.vbus_draw	= s3c_hsudc_vbus_draw,
1258};
1259
1260static int s3c_hsudc_probe(struct platform_device *pdev)
1261{
1262	struct device *dev = &pdev->dev;
1263	struct resource *res;
1264	struct s3c_hsudc *hsudc;
1265	struct s3c24xx_hsudc_platdata *pd = dev_get_platdata(&pdev->dev);
1266	int ret, i;
1267
1268	hsudc = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsudc) +
1269			sizeof(struct s3c_hsudc_ep) * pd->epnum,
1270			GFP_KERNEL);
1271	if (!hsudc) {
1272		dev_err(dev, "cannot allocate memory\n");
1273		return -ENOMEM;
1274	}
1275
1276	platform_set_drvdata(pdev, dev);
1277	hsudc->dev = dev;
1278	hsudc->pd = dev_get_platdata(&pdev->dev);
1279
1280	hsudc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2);
1281
1282	for (i = 0; i < ARRAY_SIZE(hsudc->supplies); i++)
1283		hsudc->supplies[i].supply = s3c_hsudc_supply_names[i];
1284
1285	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsudc->supplies),
1286				 hsudc->supplies);
1287	if (ret != 0) {
1288		dev_err(dev, "failed to request supplies: %d\n", ret);
1289		goto err_supplies;
1290	}
1291
1292	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1293
1294	hsudc->regs = devm_ioremap_resource(&pdev->dev, res);
1295	if (IS_ERR(hsudc->regs)) {
1296		ret = PTR_ERR(hsudc->regs);
1297		goto err_res;
1298	}
1299
1300	spin_lock_init(&hsudc->lock);
1301
1302	hsudc->gadget.max_speed = USB_SPEED_HIGH;
1303	hsudc->gadget.ops = &s3c_hsudc_gadget_ops;
1304	hsudc->gadget.name = dev_name(dev);
1305	hsudc->gadget.ep0 = &hsudc->ep[0].ep;
1306	hsudc->gadget.is_otg = 0;
1307	hsudc->gadget.is_a_peripheral = 0;
1308	hsudc->gadget.speed = USB_SPEED_UNKNOWN;
1309
1310	s3c_hsudc_setup_ep(hsudc);
1311
1312	ret = platform_get_irq(pdev, 0);
1313	if (ret < 0) {
1314		dev_err(dev, "unable to obtain IRQ number\n");
1315		goto err_res;
1316	}
1317	hsudc->irq = ret;
1318
1319	ret = devm_request_irq(&pdev->dev, hsudc->irq, s3c_hsudc_irq, 0,
1320				driver_name, hsudc);
1321	if (ret < 0) {
1322		dev_err(dev, "irq request failed\n");
1323		goto err_res;
1324	}
1325
1326	hsudc->uclk = devm_clk_get(&pdev->dev, "usb-device");
1327	if (IS_ERR(hsudc->uclk)) {
1328		dev_err(dev, "failed to find usb-device clock source\n");
1329		ret = PTR_ERR(hsudc->uclk);
1330		goto err_res;
1331	}
1332	clk_enable(hsudc->uclk);
1333
1334	local_irq_disable();
1335
1336	disable_irq(hsudc->irq);
1337	local_irq_enable();
1338
1339	ret = usb_add_gadget_udc(&pdev->dev, &hsudc->gadget);
1340	if (ret)
1341		goto err_add_udc;
1342
1343	pm_runtime_enable(dev);
1344
1345	return 0;
1346err_add_udc:
1347	clk_disable(hsudc->uclk);
1348err_res:
1349	if (!IS_ERR_OR_NULL(hsudc->transceiver))
1350		usb_put_phy(hsudc->transceiver);
1351
1352err_supplies:
1353	return ret;
1354}
1355
1356static struct platform_driver s3c_hsudc_driver = {
1357	.driver		= {
1358		.owner	= THIS_MODULE,
1359		.name	= "s3c-hsudc",
1360	},
1361	.probe		= s3c_hsudc_probe,
1362};
1363
1364module_platform_driver(s3c_hsudc_driver);
1365
1366MODULE_DESCRIPTION("Samsung S3C24XX USB high-speed controller driver");
1367MODULE_AUTHOR("Thomas Abraham <thomas.ab@samsung.com>");
1368MODULE_LICENSE("GPL");
1369MODULE_ALIAS("platform:s3c-hsudc");