Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/****************************************************************************
   2 *
   3 * Driver for the IFX 6x60 spi modem.
   4 *
   5 * Copyright (C) 2008 Option International
   6 * Copyright (C) 2008 Filip Aben <f.aben@option.com>
   7 *		      Denis Joseph Barrow <d.barow@option.com>
   8 *		      Jan Dumon <j.dumon@option.com>
   9 *
  10 * Copyright (C) 2009, 2010 Intel Corp
  11 * Russ Gorby <russ.gorby@intel.com>
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License version 2 as
  15 * published by the Free Software Foundation.
  16 *
  17 * This program is distributed in the hope that it will be useful,
  18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
  20 * GNU General Public License for more details.
  21 *
  22 * You should have received a copy of the GNU General Public License
  23 * along with this program; if not, write to the Free Software
  24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
  25 * USA
  26 *
  27 * Driver modified by Intel from Option gtm501l_spi.c
  28 *
  29 * Notes
  30 * o	The driver currently assumes a single device only. If you need to
  31 *	change this then look for saved_ifx_dev and add a device lookup
  32 * o	The driver is intended to be big-endian safe but has never been
  33 *	tested that way (no suitable hardware). There are a couple of FIXME
  34 *	notes by areas that may need addressing
  35 * o	Some of the GPIO naming/setup assumptions may need revisiting if
  36 *	you need to use this driver for another platform.
  37 *
  38 *****************************************************************************/
  39#include <linux/dma-mapping.h>
  40#include <linux/module.h>
  41#include <linux/termios.h>
  42#include <linux/tty.h>
  43#include <linux/device.h>
  44#include <linux/spi/spi.h>
  45#include <linux/kfifo.h>
  46#include <linux/tty_flip.h>
  47#include <linux/timer.h>
  48#include <linux/serial.h>
  49#include <linux/interrupt.h>
  50#include <linux/irq.h>
  51#include <linux/rfkill.h>
  52#include <linux/fs.h>
  53#include <linux/ip.h>
  54#include <linux/dmapool.h>
  55#include <linux/gpio.h>
  56#include <linux/sched.h>
  57#include <linux/time.h>
  58#include <linux/wait.h>
  59#include <linux/pm.h>
  60#include <linux/pm_runtime.h>
  61#include <linux/spi/ifx_modem.h>
  62#include <linux/delay.h>
  63#include <linux/reboot.h>
  64
  65#include "ifx6x60.h"
  66
  67#define IFX_SPI_MORE_MASK		0x10
  68#define IFX_SPI_MORE_BIT		4	/* bit position in u8 */
  69#define IFX_SPI_CTS_BIT			6	/* bit position in u8 */
  70#define IFX_SPI_MODE			SPI_MODE_1
  71#define IFX_SPI_TTY_ID			0
  72#define IFX_SPI_TIMEOUT_SEC		2
  73#define IFX_SPI_HEADER_0		(-1)
  74#define IFX_SPI_HEADER_F		(-2)
  75
  76#define PO_POST_DELAY		200
  77#define IFX_MDM_RST_PMU	4
  78
  79/* forward reference */
  80static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
  81static int ifx_modem_reboot_callback(struct notifier_block *nfb,
  82				unsigned long event, void *data);
  83static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev);
  84
  85/* local variables */
  86static int spi_bpw = 16;		/* 8, 16 or 32 bit word length */
  87static struct tty_driver *tty_drv;
  88static struct ifx_spi_device *saved_ifx_dev;
  89static struct lock_class_key ifx_spi_key;
  90
  91static struct notifier_block ifx_modem_reboot_notifier_block = {
  92	.notifier_call = ifx_modem_reboot_callback,
  93};
  94
  95static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev)
  96{
  97	gpio_set_value(IFX_MDM_RST_PMU, 1);
  98	msleep(PO_POST_DELAY);
  99
 100	return 0;
 101}
 102
 103static int ifx_modem_reboot_callback(struct notifier_block *nfb,
 104				 unsigned long event, void *data)
 105{
 106	if (saved_ifx_dev)
 107		ifx_modem_power_off(saved_ifx_dev);
 108	else
 109		pr_warn("no ifx modem active;\n");
 110
 111	return NOTIFY_OK;
 112}
 113
 114/* GPIO/GPE settings */
 115
 116/**
 117 *	mrdy_set_high		-	set MRDY GPIO
 118 *	@ifx: device we are controlling
 119 *
 120 */
 121static inline void mrdy_set_high(struct ifx_spi_device *ifx)
 122{
 123	gpio_set_value(ifx->gpio.mrdy, 1);
 124}
 125
 126/**
 127 *	mrdy_set_low		-	clear MRDY GPIO
 128 *	@ifx: device we are controlling
 129 *
 130 */
 131static inline void mrdy_set_low(struct ifx_spi_device *ifx)
 132{
 133	gpio_set_value(ifx->gpio.mrdy, 0);
 134}
 135
 136/**
 137 *	ifx_spi_power_state_set
 138 *	@ifx_dev: our SPI device
 139 *	@val: bits to set
 140 *
 141 *	Set bit in power status and signal power system if status becomes non-0
 142 */
 143static void
 144ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
 145{
 146	unsigned long flags;
 147
 148	spin_lock_irqsave(&ifx_dev->power_lock, flags);
 149
 150	/*
 151	 * if power status is already non-0, just update, else
 152	 * tell power system
 153	 */
 154	if (!ifx_dev->power_status)
 155		pm_runtime_get(&ifx_dev->spi_dev->dev);
 156	ifx_dev->power_status |= val;
 157
 158	spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
 159}
 160
 161/**
 162 *	ifx_spi_power_state_clear	-	clear power bit
 163 *	@ifx_dev: our SPI device
 164 *	@val: bits to clear
 165 *
 166 *	clear bit in power status and signal power system if status becomes 0
 167 */
 168static void
 169ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
 170{
 171	unsigned long flags;
 172
 173	spin_lock_irqsave(&ifx_dev->power_lock, flags);
 174
 175	if (ifx_dev->power_status) {
 176		ifx_dev->power_status &= ~val;
 177		if (!ifx_dev->power_status)
 178			pm_runtime_put(&ifx_dev->spi_dev->dev);
 179	}
 180
 181	spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
 182}
 183
 184/**
 185 *	swap_buf_8
 186 *	@buf: our buffer
 187 *	@len : number of bytes (not words) in the buffer
 188 *	@end: end of buffer
 189 *
 190 *	Swap the contents of a buffer into big endian format
 191 */
 192static inline void swap_buf_8(unsigned char *buf, int len, void *end)
 193{
 194	/* don't swap buffer if SPI word width is 8 bits */
 195	return;
 196}
 197
 198/**
 199 *	swap_buf_16
 200 *	@buf: our buffer
 201 *	@len : number of bytes (not words) in the buffer
 202 *	@end: end of buffer
 203 *
 204 *	Swap the contents of a buffer into big endian format
 205 */
 206static inline void swap_buf_16(unsigned char *buf, int len, void *end)
 207{
 208	int n;
 209
 210	u16 *buf_16 = (u16 *)buf;
 211	len = ((len + 1) >> 1);
 212	if ((void *)&buf_16[len] > end) {
 213		pr_err("swap_buf_16: swap exceeds boundary (%p > %p)!",
 214		       &buf_16[len], end);
 215		return;
 216	}
 217	for (n = 0; n < len; n++) {
 218		*buf_16 = cpu_to_be16(*buf_16);
 219		buf_16++;
 220	}
 221}
 222
 223/**
 224 *	swap_buf_32
 225 *	@buf: our buffer
 226 *	@len : number of bytes (not words) in the buffer
 227 *	@end: end of buffer
 228 *
 229 *	Swap the contents of a buffer into big endian format
 230 */
 231static inline void swap_buf_32(unsigned char *buf, int len, void *end)
 232{
 233	int n;
 234
 235	u32 *buf_32 = (u32 *)buf;
 236	len = (len + 3) >> 2;
 237
 238	if ((void *)&buf_32[len] > end) {
 239		pr_err("swap_buf_32: swap exceeds boundary (%p > %p)!\n",
 240		       &buf_32[len], end);
 241		return;
 242	}
 243	for (n = 0; n < len; n++) {
 244		*buf_32 = cpu_to_be32(*buf_32);
 245		buf_32++;
 246	}
 247}
 248
 249/**
 250 *	mrdy_assert		-	assert MRDY line
 251 *	@ifx_dev: our SPI device
 252 *
 253 *	Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
 254 *	now.
 255 *
 256 *	FIXME: Can SRDY even go high as we are running this code ?
 257 */
 258static void mrdy_assert(struct ifx_spi_device *ifx_dev)
 259{
 260	int val = gpio_get_value(ifx_dev->gpio.srdy);
 261	if (!val) {
 262		if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
 263				      &ifx_dev->flags)) {
 264			mod_timer(&ifx_dev->spi_timer,jiffies + IFX_SPI_TIMEOUT_SEC*HZ);
 265
 266		}
 267	}
 268	ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
 269	mrdy_set_high(ifx_dev);
 270}
 271
 272/**
 273 *	ifx_spi_timeout		-	SPI timeout
 274 *	@arg: our SPI device
 275 *
 276 *	The SPI has timed out: hang up the tty. Users will then see a hangup
 277 *	and error events.
 278 */
 279static void ifx_spi_timeout(unsigned long arg)
 280{
 281	struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *)arg;
 282
 283	dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
 284	tty_port_tty_hangup(&ifx_dev->tty_port, false);
 285	mrdy_set_low(ifx_dev);
 286	clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 287}
 288
 289/* char/tty operations */
 290
 291/**
 292 *	ifx_spi_tiocmget	-	get modem lines
 293 *	@tty: our tty device
 294 *	@filp: file handle issuing the request
 295 *
 296 *	Map the signal state into Linux modem flags and report the value
 297 *	in Linux terms
 298 */
 299static int ifx_spi_tiocmget(struct tty_struct *tty)
 300{
 301	unsigned int value;
 302	struct ifx_spi_device *ifx_dev = tty->driver_data;
 303
 304	value =
 305	(test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
 306	(test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
 307	(test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
 308	(test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
 309	(test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
 310	(test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
 311	return value;
 312}
 313
 314/**
 315 *	ifx_spi_tiocmset	-	set modem bits
 316 *	@tty: the tty structure
 317 *	@set: bits to set
 318 *	@clear: bits to clear
 319 *
 320 *	The IFX6x60 only supports DTR and RTS. Set them accordingly
 321 *	and flag that an update to the modem is needed.
 322 *
 323 *	FIXME: do we need to kick the tranfers when we do this ?
 324 */
 325static int ifx_spi_tiocmset(struct tty_struct *tty,
 326			    unsigned int set, unsigned int clear)
 327{
 328	struct ifx_spi_device *ifx_dev = tty->driver_data;
 329
 330	if (set & TIOCM_RTS)
 331		set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
 332	if (set & TIOCM_DTR)
 333		set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
 334	if (clear & TIOCM_RTS)
 335		clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
 336	if (clear & TIOCM_DTR)
 337		clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
 338
 339	set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
 340	return 0;
 341}
 342
 343/**
 344 *	ifx_spi_open	-	called on tty open
 345 *	@tty: our tty device
 346 *	@filp: file handle being associated with the tty
 347 *
 348 *	Open the tty interface. We let the tty_port layer do all the work
 349 *	for us.
 350 *
 351 *	FIXME: Remove single device assumption and saved_ifx_dev
 352 */
 353static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
 354{
 355	return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
 356}
 357
 358/**
 359 *	ifx_spi_close	-	called when our tty closes
 360 *	@tty: the tty being closed
 361 *	@filp: the file handle being closed
 362 *
 363 *	Perform the close of the tty. We use the tty_port layer to do all
 364 *	our hard work.
 365 */
 366static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
 367{
 368	struct ifx_spi_device *ifx_dev = tty->driver_data;
 369	tty_port_close(&ifx_dev->tty_port, tty, filp);
 370	/* FIXME: should we do an ifx_spi_reset here ? */
 371}
 372
 373/**
 374 *	ifx_decode_spi_header	-	decode received header
 375 *	@buffer: the received data
 376 *	@length: decoded length
 377 *	@more: decoded more flag
 378 *	@received_cts: status of cts we received
 379 *
 380 *	Note how received_cts is handled -- if header is all F it is left
 381 *	the same as it was, if header is all 0 it is set to 0 otherwise it is
 382 *	taken from the incoming header.
 383 *
 384 *	FIXME: endianness
 385 */
 386static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
 387			unsigned char *more, unsigned char *received_cts)
 388{
 389	u16 h1;
 390	u16 h2;
 391	u16 *in_buffer = (u16 *)buffer;
 392
 393	h1 = *in_buffer;
 394	h2 = *(in_buffer+1);
 395
 396	if (h1 == 0 && h2 == 0) {
 397		*received_cts = 0;
 398		return IFX_SPI_HEADER_0;
 399	} else if (h1 == 0xffff && h2 == 0xffff) {
 400		/* spi_slave_cts remains as it was */
 401		return IFX_SPI_HEADER_F;
 402	}
 403
 404	*length = h1 & 0xfff;	/* upper bits of byte are flags */
 405	*more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
 406	*received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
 407	return 0;
 408}
 409
 410/**
 411 *	ifx_setup_spi_header	-	set header fields
 412 *	@txbuffer: pointer to start of SPI buffer
 413 *	@tx_count: bytes
 414 *	@more: indicate if more to follow
 415 *
 416 *	Format up an SPI header for a transfer
 417 *
 418 *	FIXME: endianness?
 419 */
 420static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
 421					unsigned char more)
 422{
 423	*(u16 *)(txbuffer) = tx_count;
 424	*(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
 425	txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
 426}
 427
 428/**
 429 *	ifx_spi_prepare_tx_buffer	-	prepare transmit frame
 430 *	@ifx_dev: our SPI device
 431 *
 432 *	The transmit buffr needs a header and various other bits of
 433 *	information followed by as much data as we can pull from the FIFO
 434 *	and transfer. This function formats up a suitable buffer in the
 435 *	ifx_dev->tx_buffer
 436 *
 437 *	FIXME: performance - should we wake the tty when the queue is half
 438 *			     empty ?
 439 */
 440static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
 441{
 442	int temp_count;
 443	int queue_length;
 444	int tx_count;
 445	unsigned char *tx_buffer;
 446
 447	tx_buffer = ifx_dev->tx_buffer;
 448
 449	/* make room for required SPI header */
 450	tx_buffer += IFX_SPI_HEADER_OVERHEAD;
 451	tx_count = IFX_SPI_HEADER_OVERHEAD;
 452
 453	/* clear to signal no more data if this turns out to be the
 454	 * last buffer sent in a sequence */
 455	ifx_dev->spi_more = 0;
 456
 457	/* if modem cts is set, just send empty buffer */
 458	if (!ifx_dev->spi_slave_cts) {
 459		/* see if there's tx data */
 460		queue_length = kfifo_len(&ifx_dev->tx_fifo);
 461		if (queue_length != 0) {
 462			/* data to mux -- see if there's room for it */
 463			temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
 464			temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
 465					tx_buffer, temp_count,
 466					&ifx_dev->fifo_lock);
 467
 468			/* update buffer pointer and data count in message */
 469			tx_buffer += temp_count;
 470			tx_count += temp_count;
 471			if (temp_count == queue_length)
 472				/* poke port to get more data */
 473				tty_port_tty_wakeup(&ifx_dev->tty_port);
 474			else /* more data in port, use next SPI message */
 475				ifx_dev->spi_more = 1;
 476		}
 477	}
 478	/* have data and info for header -- set up SPI header in buffer */
 479	/* spi header needs payload size, not entire buffer size */
 480	ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
 481					tx_count-IFX_SPI_HEADER_OVERHEAD,
 482					ifx_dev->spi_more);
 483	/* swap actual data in the buffer */
 484	ifx_dev->swap_buf((ifx_dev->tx_buffer), tx_count,
 485		&ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
 486	return tx_count;
 487}
 488
 489/**
 490 *	ifx_spi_write		-	line discipline write
 491 *	@tty: our tty device
 492 *	@buf: pointer to buffer to write (kernel space)
 493 *	@count: size of buffer
 494 *
 495 *	Write the characters we have been given into the FIFO. If the device
 496 *	is not active then activate it, when the SRDY line is asserted back
 497 *	this will commence I/O
 498 */
 499static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
 500			 int count)
 501{
 502	struct ifx_spi_device *ifx_dev = tty->driver_data;
 503	unsigned char *tmp_buf = (unsigned char *)buf;
 504	unsigned long flags;
 505	bool is_fifo_empty;
 506	int tx_count;
 507
 508	spin_lock_irqsave(&ifx_dev->fifo_lock, flags);
 509	is_fifo_empty = kfifo_is_empty(&ifx_dev->tx_fifo);
 510	tx_count = kfifo_in(&ifx_dev->tx_fifo, tmp_buf, count);
 511	spin_unlock_irqrestore(&ifx_dev->fifo_lock, flags);
 512	if (is_fifo_empty)
 513		mrdy_assert(ifx_dev);
 514
 515	return tx_count;
 516}
 517
 518/**
 519 *	ifx_spi_chars_in_buffer	-	line discipline helper
 520 *	@tty: our tty device
 521 *
 522 *	Report how much data we can accept before we drop bytes. As we use
 523 *	a simple FIFO this is nice and easy.
 524 */
 525static int ifx_spi_write_room(struct tty_struct *tty)
 526{
 527	struct ifx_spi_device *ifx_dev = tty->driver_data;
 528	return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
 529}
 530
 531/**
 532 *	ifx_spi_chars_in_buffer	-	line discipline helper
 533 *	@tty: our tty device
 534 *
 535 *	Report how many characters we have buffered. In our case this is the
 536 *	number of bytes sitting in our transmit FIFO.
 537 */
 538static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
 539{
 540	struct ifx_spi_device *ifx_dev = tty->driver_data;
 541	return kfifo_len(&ifx_dev->tx_fifo);
 542}
 543
 544/**
 545 *	ifx_port_hangup
 546 *	@port: our tty port
 547 *
 548 *	tty port hang up. Called when tty_hangup processing is invoked either
 549 *	by loss of carrier, or by software (eg vhangup). Serialized against
 550 *	activate/shutdown by the tty layer.
 551 */
 552static void ifx_spi_hangup(struct tty_struct *tty)
 553{
 554	struct ifx_spi_device *ifx_dev = tty->driver_data;
 555	tty_port_hangup(&ifx_dev->tty_port);
 556}
 557
 558/**
 559 *	ifx_port_activate
 560 *	@port: our tty port
 561 *
 562 *	tty port activate method - called for first open. Serialized
 563 *	with hangup and shutdown by the tty layer.
 564 */
 565static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
 566{
 567	struct ifx_spi_device *ifx_dev =
 568		container_of(port, struct ifx_spi_device, tty_port);
 569
 570	/* clear any old data; can't do this in 'close' */
 571	kfifo_reset(&ifx_dev->tx_fifo);
 572
 573	/* clear any flag which may be set in port shutdown procedure */
 574	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
 575	clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
 576
 577	/* put port data into this tty */
 578	tty->driver_data = ifx_dev;
 579
 580	/* allows flip string push from int context */
 581	port->low_latency = 1;
 582
 583	/* set flag to allows data transfer */
 584	set_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
 585
 586	return 0;
 587}
 588
 589/**
 590 *	ifx_port_shutdown
 591 *	@port: our tty port
 592 *
 593 *	tty port shutdown method - called for last port close. Serialized
 594 *	with hangup and activate by the tty layer.
 595 */
 596static void ifx_port_shutdown(struct tty_port *port)
 597{
 598	struct ifx_spi_device *ifx_dev =
 599		container_of(port, struct ifx_spi_device, tty_port);
 600
 601	clear_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
 602	mrdy_set_low(ifx_dev);
 603	del_timer(&ifx_dev->spi_timer);
 604	clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 605	tasklet_kill(&ifx_dev->io_work_tasklet);
 606}
 607
 608static const struct tty_port_operations ifx_tty_port_ops = {
 609	.activate = ifx_port_activate,
 610	.shutdown = ifx_port_shutdown,
 611};
 612
 613static const struct tty_operations ifx_spi_serial_ops = {
 614	.open = ifx_spi_open,
 615	.close = ifx_spi_close,
 616	.write = ifx_spi_write,
 617	.hangup = ifx_spi_hangup,
 618	.write_room = ifx_spi_write_room,
 619	.chars_in_buffer = ifx_spi_chars_in_buffer,
 620	.tiocmget = ifx_spi_tiocmget,
 621	.tiocmset = ifx_spi_tiocmset,
 622};
 623
 624/**
 625 *	ifx_spi_insert_fip_string	-	queue received data
 626 *	@ifx_ser: our SPI device
 627 *	@chars: buffer we have received
 628 *	@size: number of chars reeived
 629 *
 630 *	Queue bytes to the tty assuming the tty side is currently open. If
 631 *	not the discard the data.
 632 */
 633static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
 634				    unsigned char *chars, size_t size)
 635{
 636	tty_insert_flip_string(&ifx_dev->tty_port, chars, size);
 637	tty_flip_buffer_push(&ifx_dev->tty_port);
 638}
 639
 640/**
 641 *	ifx_spi_complete	-	SPI transfer completed
 642 *	@ctx: our SPI device
 643 *
 644 *	An SPI transfer has completed. Process any received data and kick off
 645 *	any further transmits we can commence.
 646 */
 647static void ifx_spi_complete(void *ctx)
 648{
 649	struct ifx_spi_device *ifx_dev = ctx;
 650	int length;
 651	int actual_length;
 652	unsigned char more;
 653	unsigned char cts;
 654	int local_write_pending = 0;
 655	int queue_length;
 656	int srdy;
 657	int decode_result;
 658
 659	mrdy_set_low(ifx_dev);
 660
 661	if (!ifx_dev->spi_msg.status) {
 662		/* check header validity, get comm flags */
 663		ifx_dev->swap_buf(ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
 664			&ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
 665		decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
 666				&length, &more, &cts);
 667		if (decode_result == IFX_SPI_HEADER_0) {
 668			dev_dbg(&ifx_dev->spi_dev->dev,
 669				"ignore input: invalid header 0");
 670			ifx_dev->spi_slave_cts = 0;
 671			goto complete_exit;
 672		} else if (decode_result == IFX_SPI_HEADER_F) {
 673			dev_dbg(&ifx_dev->spi_dev->dev,
 674				"ignore input: invalid header F");
 675			goto complete_exit;
 676		}
 677
 678		ifx_dev->spi_slave_cts = cts;
 679
 680		actual_length = min((unsigned int)length,
 681					ifx_dev->spi_msg.actual_length);
 682		ifx_dev->swap_buf(
 683			(ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
 684			 actual_length,
 685			 &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
 686		ifx_spi_insert_flip_string(
 687			ifx_dev,
 688			ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
 689			(size_t)actual_length);
 690	} else {
 691		dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
 692		       ifx_dev->spi_msg.status);
 693	}
 694
 695complete_exit:
 696	if (ifx_dev->write_pending) {
 697		ifx_dev->write_pending = 0;
 698		local_write_pending = 1;
 699	}
 700
 701	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
 702
 703	queue_length = kfifo_len(&ifx_dev->tx_fifo);
 704	srdy = gpio_get_value(ifx_dev->gpio.srdy);
 705	if (!srdy)
 706		ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
 707
 708	/* schedule output if there is more to do */
 709	if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
 710		tasklet_schedule(&ifx_dev->io_work_tasklet);
 711	else {
 712		if (more || ifx_dev->spi_more || queue_length > 0 ||
 713			local_write_pending) {
 714			if (ifx_dev->spi_slave_cts) {
 715				if (more)
 716					mrdy_assert(ifx_dev);
 717			} else
 718				mrdy_assert(ifx_dev);
 719		} else {
 720			/*
 721			 * poke line discipline driver if any for more data
 722			 * may or may not get more data to write
 723			 * for now, say not busy
 724			 */
 725			ifx_spi_power_state_clear(ifx_dev,
 726						  IFX_SPI_POWER_DATA_PENDING);
 727			tty_port_tty_wakeup(&ifx_dev->tty_port);
 728		}
 729	}
 730}
 731
 732/**
 733 *	ifx_spio_io		-	I/O tasklet
 734 *	@data: our SPI device
 735 *
 736 *	Queue data for transmission if possible and then kick off the
 737 *	transfer.
 738 */
 739static void ifx_spi_io(unsigned long data)
 740{
 741	int retval;
 742	struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data;
 743
 744	if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags) &&
 745		test_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags)) {
 746		if (ifx_dev->gpio.unack_srdy_int_nb > 0)
 747			ifx_dev->gpio.unack_srdy_int_nb--;
 748
 749		ifx_spi_prepare_tx_buffer(ifx_dev);
 750
 751		spi_message_init(&ifx_dev->spi_msg);
 752		INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
 753
 754		ifx_dev->spi_msg.context = ifx_dev;
 755		ifx_dev->spi_msg.complete = ifx_spi_complete;
 756
 757		/* set up our spi transfer */
 758		/* note len is BYTES, not transfers */
 759		ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
 760		ifx_dev->spi_xfer.cs_change = 0;
 761		ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
 762		/* ifx_dev->spi_xfer.speed_hz = 390625; */
 763		ifx_dev->spi_xfer.bits_per_word =
 764			ifx_dev->spi_dev->bits_per_word;
 765
 766		ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
 767		ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
 768
 769		/*
 770		 * setup dma pointers
 771		 */
 772		if (ifx_dev->use_dma) {
 773			ifx_dev->spi_msg.is_dma_mapped = 1;
 774			ifx_dev->tx_dma = ifx_dev->tx_bus;
 775			ifx_dev->rx_dma = ifx_dev->rx_bus;
 776			ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
 777			ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
 778		} else {
 779			ifx_dev->spi_msg.is_dma_mapped = 0;
 780			ifx_dev->tx_dma = (dma_addr_t)0;
 781			ifx_dev->rx_dma = (dma_addr_t)0;
 782			ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
 783			ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
 784		}
 785
 786		spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
 787
 788		/* Assert MRDY. This may have already been done by the write
 789		 * routine.
 790		 */
 791		mrdy_assert(ifx_dev);
 792
 793		retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
 794		if (retval) {
 795			clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
 796				  &ifx_dev->flags);
 797			tasklet_schedule(&ifx_dev->io_work_tasklet);
 798			return;
 799		}
 800	} else
 801		ifx_dev->write_pending = 1;
 802}
 803
 804/**
 805 *	ifx_spi_free_port	-	free up the tty side
 806 *	@ifx_dev: IFX device going away
 807 *
 808 *	Unregister and free up a port when the device goes away
 809 */
 810static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
 811{
 812	if (ifx_dev->tty_dev)
 813		tty_unregister_device(tty_drv, ifx_dev->minor);
 814	tty_port_destroy(&ifx_dev->tty_port);
 815	kfifo_free(&ifx_dev->tx_fifo);
 816}
 817
 818/**
 819 *	ifx_spi_create_port	-	create a new port
 820 *	@ifx_dev: our spi device
 821 *
 822 *	Allocate and initialise the tty port that goes with this interface
 823 *	and add it to the tty layer so that it can be opened.
 824 */
 825static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
 826{
 827	int ret = 0;
 828	struct tty_port *pport = &ifx_dev->tty_port;
 829
 830	spin_lock_init(&ifx_dev->fifo_lock);
 831	lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
 832		&ifx_spi_key, 0);
 833
 834	if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
 835		ret = -ENOMEM;
 836		goto error_ret;
 837	}
 838
 839	tty_port_init(pport);
 840	pport->ops = &ifx_tty_port_ops;
 841	ifx_dev->minor = IFX_SPI_TTY_ID;
 842	ifx_dev->tty_dev = tty_port_register_device(pport, tty_drv,
 843			ifx_dev->minor, &ifx_dev->spi_dev->dev);
 844	if (IS_ERR(ifx_dev->tty_dev)) {
 845		dev_dbg(&ifx_dev->spi_dev->dev,
 846			"%s: registering tty device failed", __func__);
 847		ret = PTR_ERR(ifx_dev->tty_dev);
 848		goto error_port;
 849	}
 850	return 0;
 851
 852error_port:
 853	tty_port_destroy(pport);
 854error_ret:
 855	ifx_spi_free_port(ifx_dev);
 856	return ret;
 857}
 858
 859/**
 860 *	ifx_spi_handle_srdy		-	handle SRDY
 861 *	@ifx_dev: device asserting SRDY
 862 *
 863 *	Check our device state and see what we need to kick off when SRDY
 864 *	is asserted. This usually means killing the timer and firing off the
 865 *	I/O processing.
 866 */
 867static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
 868{
 869	if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
 870		del_timer(&ifx_dev->spi_timer);
 871		clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 872	}
 873
 874	ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
 875
 876	if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
 877		tasklet_schedule(&ifx_dev->io_work_tasklet);
 878	else
 879		set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
 880}
 881
 882/**
 883 *	ifx_spi_srdy_interrupt	-	SRDY asserted
 884 *	@irq: our IRQ number
 885 *	@dev: our ifx device
 886 *
 887 *	The modem asserted SRDY. Handle the srdy event
 888 */
 889static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
 890{
 891	struct ifx_spi_device *ifx_dev = dev;
 892	ifx_dev->gpio.unack_srdy_int_nb++;
 893	ifx_spi_handle_srdy(ifx_dev);
 894	return IRQ_HANDLED;
 895}
 896
 897/**
 898 *	ifx_spi_reset_interrupt	-	Modem has changed reset state
 899 *	@irq: interrupt number
 900 *	@dev: our device pointer
 901 *
 902 *	The modem has either entered or left reset state. Check the GPIO
 903 *	line to see which.
 904 *
 905 *	FIXME: review locking on MR_INPROGRESS versus
 906 *	parallel unsolicited reset/solicited reset
 907 */
 908static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
 909{
 910	struct ifx_spi_device *ifx_dev = dev;
 911	int val = gpio_get_value(ifx_dev->gpio.reset_out);
 912	int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
 913
 914	if (val == 0) {
 915		/* entered reset */
 916		set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
 917		if (!solreset) {
 918			/* unsolicited reset  */
 919			tty_port_tty_hangup(&ifx_dev->tty_port, false);
 920		}
 921	} else {
 922		/* exited reset */
 923		clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
 924		if (solreset) {
 925			set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
 926			wake_up(&ifx_dev->mdm_reset_wait);
 927		}
 928	}
 929	return IRQ_HANDLED;
 930}
 931
 932/**
 933 *	ifx_spi_free_device - free device
 934 *	@ifx_dev: device to free
 935 *
 936 *	Free the IFX device
 937 */
 938static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
 939{
 940	ifx_spi_free_port(ifx_dev);
 941	dma_free_coherent(&ifx_dev->spi_dev->dev,
 942				IFX_SPI_TRANSFER_SIZE,
 943				ifx_dev->tx_buffer,
 944				ifx_dev->tx_bus);
 945	dma_free_coherent(&ifx_dev->spi_dev->dev,
 946				IFX_SPI_TRANSFER_SIZE,
 947				ifx_dev->rx_buffer,
 948				ifx_dev->rx_bus);
 949}
 950
 951/**
 952 *	ifx_spi_reset	-	reset modem
 953 *	@ifx_dev: modem to reset
 954 *
 955 *	Perform a reset on the modem
 956 */
 957static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
 958{
 959	int ret;
 960	/*
 961	 * set up modem power, reset
 962	 *
 963	 * delays are required on some platforms for the modem
 964	 * to reset properly
 965	 */
 966	set_bit(MR_START, &ifx_dev->mdm_reset_state);
 967	gpio_set_value(ifx_dev->gpio.po, 0);
 968	gpio_set_value(ifx_dev->gpio.reset, 0);
 969	msleep(25);
 970	gpio_set_value(ifx_dev->gpio.reset, 1);
 971	msleep(1);
 972	gpio_set_value(ifx_dev->gpio.po, 1);
 973	msleep(1);
 974	gpio_set_value(ifx_dev->gpio.po, 0);
 975	ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
 976				 test_bit(MR_COMPLETE,
 977					  &ifx_dev->mdm_reset_state),
 978				 IFX_RESET_TIMEOUT);
 979	if (!ret)
 980		dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
 981			 ifx_dev->mdm_reset_state);
 982
 983	ifx_dev->mdm_reset_state = 0;
 984	return ret;
 985}
 986
 987/**
 988 *	ifx_spi_spi_probe	-	probe callback
 989 *	@spi: our possible matching SPI device
 990 *
 991 *	Probe for a 6x60 modem on SPI bus. Perform any needed device and
 992 *	GPIO setup.
 993 *
 994 *	FIXME:
 995 *	-	Support for multiple devices
 996 *	-	Split out MID specific GPIO handling eventually
 997 */
 998
 999static int ifx_spi_spi_probe(struct spi_device *spi)
1000{
1001	int ret;
1002	int srdy;
1003	struct ifx_modem_platform_data *pl_data;
1004	struct ifx_spi_device *ifx_dev;
1005
1006	if (saved_ifx_dev) {
1007		dev_dbg(&spi->dev, "ignoring subsequent detection");
1008		return -ENODEV;
1009	}
1010
1011	pl_data = dev_get_platdata(&spi->dev);
1012	if (!pl_data) {
1013		dev_err(&spi->dev, "missing platform data!");
1014		return -ENODEV;
1015	}
1016
1017	/* initialize structure to hold our device variables */
1018	ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
1019	if (!ifx_dev) {
1020		dev_err(&spi->dev, "spi device allocation failed");
1021		return -ENOMEM;
1022	}
1023	saved_ifx_dev = ifx_dev;
1024	ifx_dev->spi_dev = spi;
1025	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
1026	spin_lock_init(&ifx_dev->write_lock);
1027	spin_lock_init(&ifx_dev->power_lock);
1028	ifx_dev->power_status = 0;
1029	init_timer(&ifx_dev->spi_timer);
1030	ifx_dev->spi_timer.function = ifx_spi_timeout;
1031	ifx_dev->spi_timer.data = (unsigned long)ifx_dev;
1032	ifx_dev->modem = pl_data->modem_type;
1033	ifx_dev->use_dma = pl_data->use_dma;
1034	ifx_dev->max_hz = pl_data->max_hz;
1035	/* initialize spi mode, etc */
1036	spi->max_speed_hz = ifx_dev->max_hz;
1037	spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
1038	spi->bits_per_word = spi_bpw;
1039	ret = spi_setup(spi);
1040	if (ret) {
1041		dev_err(&spi->dev, "SPI setup wasn't successful %d", ret);
1042		return -ENODEV;
1043	}
1044
1045	/* init swap_buf function according to word width configuration */
1046	if (spi->bits_per_word == 32)
1047		ifx_dev->swap_buf = swap_buf_32;
1048	else if (spi->bits_per_word == 16)
1049		ifx_dev->swap_buf = swap_buf_16;
1050	else
1051		ifx_dev->swap_buf = swap_buf_8;
1052
1053	/* ensure SPI protocol flags are initialized to enable transfer */
1054	ifx_dev->spi_more = 0;
1055	ifx_dev->spi_slave_cts = 0;
1056
1057	/*initialize transfer and dma buffers */
1058	ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1059				IFX_SPI_TRANSFER_SIZE,
1060				&ifx_dev->tx_bus,
1061				GFP_KERNEL);
1062	if (!ifx_dev->tx_buffer) {
1063		dev_err(&spi->dev, "DMA-TX buffer allocation failed");
1064		ret = -ENOMEM;
1065		goto error_ret;
1066	}
1067	ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1068				IFX_SPI_TRANSFER_SIZE,
1069				&ifx_dev->rx_bus,
1070				GFP_KERNEL);
1071	if (!ifx_dev->rx_buffer) {
1072		dev_err(&spi->dev, "DMA-RX buffer allocation failed");
1073		ret = -ENOMEM;
1074		goto error_ret;
1075	}
1076
1077	/* initialize waitq for modem reset */
1078	init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1079
1080	spi_set_drvdata(spi, ifx_dev);
1081	tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io,
1082						(unsigned long)ifx_dev);
1083
1084	set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1085
1086	/* create our tty port */
1087	ret = ifx_spi_create_port(ifx_dev);
1088	if (ret != 0) {
1089		dev_err(&spi->dev, "create default tty port failed");
1090		goto error_ret;
1091	}
1092
1093	ifx_dev->gpio.reset = pl_data->rst_pmu;
1094	ifx_dev->gpio.po = pl_data->pwr_on;
1095	ifx_dev->gpio.mrdy = pl_data->mrdy;
1096	ifx_dev->gpio.srdy = pl_data->srdy;
1097	ifx_dev->gpio.reset_out = pl_data->rst_out;
1098
1099	dev_info(&spi->dev, "gpios %d, %d, %d, %d, %d",
1100		 ifx_dev->gpio.reset, ifx_dev->gpio.po, ifx_dev->gpio.mrdy,
1101		 ifx_dev->gpio.srdy, ifx_dev->gpio.reset_out);
1102
1103	/* Configure gpios */
1104	ret = gpio_request(ifx_dev->gpio.reset, "ifxModem");
1105	if (ret < 0) {
1106		dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET)",
1107			ifx_dev->gpio.reset);
1108		goto error_ret;
1109	}
1110	ret += gpio_direction_output(ifx_dev->gpio.reset, 0);
1111	ret += gpio_export(ifx_dev->gpio.reset, 1);
1112	if (ret) {
1113		dev_err(&spi->dev, "Unable to configure GPIO%d (RESET)",
1114			ifx_dev->gpio.reset);
1115		ret = -EBUSY;
1116		goto error_ret2;
1117	}
1118
1119	ret = gpio_request(ifx_dev->gpio.po, "ifxModem");
1120	ret += gpio_direction_output(ifx_dev->gpio.po, 0);
1121	ret += gpio_export(ifx_dev->gpio.po, 1);
1122	if (ret) {
1123		dev_err(&spi->dev, "Unable to configure GPIO%d (ON)",
1124			ifx_dev->gpio.po);
1125		ret = -EBUSY;
1126		goto error_ret3;
1127	}
1128
1129	ret = gpio_request(ifx_dev->gpio.mrdy, "ifxModem");
1130	if (ret < 0) {
1131		dev_err(&spi->dev, "Unable to allocate GPIO%d (MRDY)",
1132			ifx_dev->gpio.mrdy);
1133		goto error_ret3;
1134	}
1135	ret += gpio_export(ifx_dev->gpio.mrdy, 1);
1136	ret += gpio_direction_output(ifx_dev->gpio.mrdy, 0);
1137	if (ret) {
1138		dev_err(&spi->dev, "Unable to configure GPIO%d (MRDY)",
1139			ifx_dev->gpio.mrdy);
1140		ret = -EBUSY;
1141		goto error_ret4;
1142	}
1143
1144	ret = gpio_request(ifx_dev->gpio.srdy, "ifxModem");
1145	if (ret < 0) {
1146		dev_err(&spi->dev, "Unable to allocate GPIO%d (SRDY)",
1147			ifx_dev->gpio.srdy);
1148		ret = -EBUSY;
1149		goto error_ret4;
1150	}
1151	ret += gpio_export(ifx_dev->gpio.srdy, 1);
1152	ret += gpio_direction_input(ifx_dev->gpio.srdy);
1153	if (ret) {
1154		dev_err(&spi->dev, "Unable to configure GPIO%d (SRDY)",
1155			ifx_dev->gpio.srdy);
1156		ret = -EBUSY;
1157		goto error_ret5;
1158	}
1159
1160	ret = gpio_request(ifx_dev->gpio.reset_out, "ifxModem");
1161	if (ret < 0) {
1162		dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET_OUT)",
1163			ifx_dev->gpio.reset_out);
1164		goto error_ret5;
1165	}
1166	ret += gpio_export(ifx_dev->gpio.reset_out, 1);
1167	ret += gpio_direction_input(ifx_dev->gpio.reset_out);
1168	if (ret) {
1169		dev_err(&spi->dev, "Unable to configure GPIO%d (RESET_OUT)",
1170			ifx_dev->gpio.reset_out);
1171		ret = -EBUSY;
1172		goto error_ret6;
1173	}
1174
1175	ret = request_irq(gpio_to_irq(ifx_dev->gpio.reset_out),
1176			  ifx_spi_reset_interrupt,
1177			  IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1178		(void *)ifx_dev);
1179	if (ret) {
1180		dev_err(&spi->dev, "Unable to get irq %x\n",
1181			gpio_to_irq(ifx_dev->gpio.reset_out));
1182		goto error_ret6;
1183	}
1184
1185	ret = ifx_spi_reset(ifx_dev);
1186
1187	ret = request_irq(gpio_to_irq(ifx_dev->gpio.srdy),
1188			  ifx_spi_srdy_interrupt,
1189			  IRQF_TRIGGER_RISING, DRVNAME,
1190			  (void *)ifx_dev);
1191	if (ret) {
1192		dev_err(&spi->dev, "Unable to get irq %x",
1193			gpio_to_irq(ifx_dev->gpio.srdy));
1194		goto error_ret7;
1195	}
1196
1197	/* set pm runtime power state and register with power system */
1198	pm_runtime_set_active(&spi->dev);
1199	pm_runtime_enable(&spi->dev);
1200
1201	/* handle case that modem is already signaling SRDY */
1202	/* no outgoing tty open at this point, this just satisfies the
1203	 * modem's read and should reset communication properly
1204	 */
1205	srdy = gpio_get_value(ifx_dev->gpio.srdy);
1206
1207	if (srdy) {
1208		mrdy_assert(ifx_dev);
1209		ifx_spi_handle_srdy(ifx_dev);
1210	} else
1211		mrdy_set_low(ifx_dev);
1212	return 0;
1213
1214error_ret7:
1215	free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1216error_ret6:
1217	gpio_free(ifx_dev->gpio.srdy);
1218error_ret5:
1219	gpio_free(ifx_dev->gpio.mrdy);
1220error_ret4:
1221	gpio_free(ifx_dev->gpio.reset);
1222error_ret3:
1223	gpio_free(ifx_dev->gpio.po);
1224error_ret2:
1225	gpio_free(ifx_dev->gpio.reset_out);
1226error_ret:
1227	ifx_spi_free_device(ifx_dev);
1228	saved_ifx_dev = NULL;
1229	return ret;
1230}
1231
1232/**
1233 *	ifx_spi_spi_remove	-	SPI device was removed
1234 *	@spi: SPI device
1235 *
1236 *	FIXME: We should be shutting the device down here not in
1237 *	the module unload path.
1238 */
1239
1240static int ifx_spi_spi_remove(struct spi_device *spi)
1241{
1242	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1243	/* stop activity */
1244	tasklet_kill(&ifx_dev->io_work_tasklet);
1245	/* free irq */
1246	free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1247	free_irq(gpio_to_irq(ifx_dev->gpio.srdy), (void *)ifx_dev);
1248
1249	gpio_free(ifx_dev->gpio.srdy);
1250	gpio_free(ifx_dev->gpio.mrdy);
1251	gpio_free(ifx_dev->gpio.reset);
1252	gpio_free(ifx_dev->gpio.po);
1253	gpio_free(ifx_dev->gpio.reset_out);
1254
1255	/* free allocations */
1256	ifx_spi_free_device(ifx_dev);
1257
1258	saved_ifx_dev = NULL;
1259	return 0;
1260}
1261
1262/**
1263 *	ifx_spi_spi_shutdown	-	called on SPI shutdown
1264 *	@spi: SPI device
1265 *
1266 *	No action needs to be taken here
1267 */
1268
1269static void ifx_spi_spi_shutdown(struct spi_device *spi)
1270{
1271	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1272
1273	ifx_modem_power_off(ifx_dev);
1274}
1275
1276/*
1277 * various suspends and resumes have nothing to do
1278 * no hardware to save state for
1279 */
1280
1281/**
1282 *	ifx_spi_pm_suspend	-	suspend modem on system suspend
1283 *	@dev: device being suspended
1284 *
1285 *	Suspend the modem. No action needed on Intel MID platforms, may
1286 *	need extending for other systems.
1287 */
1288static int ifx_spi_pm_suspend(struct device *dev)
1289{
1290	return 0;
1291}
1292
1293/**
1294 *	ifx_spi_pm_resume	-	resume modem on system resume
1295 *	@dev: device being suspended
1296 *
1297 *	Allow the modem to resume. No action needed.
1298 *
1299 *	FIXME: do we need to reset anything here ?
1300 */
1301static int ifx_spi_pm_resume(struct device *dev)
1302{
1303	return 0;
1304}
1305
1306/**
1307 *	ifx_spi_pm_runtime_resume	-	suspend modem
1308 *	@dev: device being suspended
1309 *
1310 *	Allow the modem to resume. No action needed.
1311 */
1312static int ifx_spi_pm_runtime_resume(struct device *dev)
1313{
1314	return 0;
1315}
1316
1317/**
1318 *	ifx_spi_pm_runtime_suspend	-	suspend modem
1319 *	@dev: device being suspended
1320 *
1321 *	Allow the modem to suspend and thus suspend to continue up the
1322 *	device tree.
1323 */
1324static int ifx_spi_pm_runtime_suspend(struct device *dev)
1325{
1326	return 0;
1327}
1328
1329/**
1330 *	ifx_spi_pm_runtime_idle		-	check if modem idle
1331 *	@dev: our device
1332 *
1333 *	Check conditions and queue runtime suspend if idle.
1334 */
1335static int ifx_spi_pm_runtime_idle(struct device *dev)
1336{
1337	struct spi_device *spi = to_spi_device(dev);
1338	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1339
1340	if (!ifx_dev->power_status)
1341		pm_runtime_suspend(dev);
1342
1343	return 0;
1344}
1345
1346static const struct dev_pm_ops ifx_spi_pm = {
1347	.resume = ifx_spi_pm_resume,
1348	.suspend = ifx_spi_pm_suspend,
1349	.runtime_resume = ifx_spi_pm_runtime_resume,
1350	.runtime_suspend = ifx_spi_pm_runtime_suspend,
1351	.runtime_idle = ifx_spi_pm_runtime_idle
1352};
1353
1354static const struct spi_device_id ifx_id_table[] = {
1355	{"ifx6160", 0},
1356	{"ifx6260", 0},
1357	{ }
1358};
1359MODULE_DEVICE_TABLE(spi, ifx_id_table);
1360
1361/* spi operations */
1362static struct spi_driver ifx_spi_driver = {
1363	.driver = {
1364		.name = DRVNAME,
1365		.pm = &ifx_spi_pm,
1366		.owner = THIS_MODULE},
1367	.probe = ifx_spi_spi_probe,
1368	.shutdown = ifx_spi_spi_shutdown,
1369	.remove = ifx_spi_spi_remove,
1370	.id_table = ifx_id_table
1371};
1372
1373/**
1374 *	ifx_spi_exit	-	module exit
1375 *
1376 *	Unload the module.
1377 */
1378
1379static void __exit ifx_spi_exit(void)
1380{
1381	/* unregister */
1382	tty_unregister_driver(tty_drv);
1383	put_tty_driver(tty_drv);
1384	spi_unregister_driver((void *)&ifx_spi_driver);
1385	unregister_reboot_notifier(&ifx_modem_reboot_notifier_block);
1386}
1387
1388/**
1389 *	ifx_spi_init		-	module entry point
1390 *
1391 *	Initialise the SPI and tty interfaces for the IFX SPI driver
1392 *	We need to initialize upper-edge spi driver after the tty
1393 *	driver because otherwise the spi probe will race
1394 */
1395
1396static int __init ifx_spi_init(void)
1397{
1398	int result;
1399
1400	tty_drv = alloc_tty_driver(1);
1401	if (!tty_drv) {
1402		pr_err("%s: alloc_tty_driver failed", DRVNAME);
1403		return -ENOMEM;
1404	}
1405
1406	tty_drv->driver_name = DRVNAME;
1407	tty_drv->name = TTYNAME;
1408	tty_drv->minor_start = IFX_SPI_TTY_ID;
1409	tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1410	tty_drv->subtype = SERIAL_TYPE_NORMAL;
1411	tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1412	tty_drv->init_termios = tty_std_termios;
1413
1414	tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1415
1416	result = tty_register_driver(tty_drv);
1417	if (result) {
1418		pr_err("%s: tty_register_driver failed(%d)",
1419			DRVNAME, result);
1420		goto err_free_tty;
1421	}
1422
1423	result = spi_register_driver((void *)&ifx_spi_driver);
1424	if (result) {
1425		pr_err("%s: spi_register_driver failed(%d)",
1426			DRVNAME, result);
1427		goto err_unreg_tty;
1428	}
1429
1430	result = register_reboot_notifier(&ifx_modem_reboot_notifier_block);
1431	if (result) {
1432		pr_err("%s: register ifx modem reboot notifier failed(%d)",
1433			DRVNAME, result);
1434		goto err_unreg_spi;
1435	}
1436
1437	return 0;
1438err_unreg_spi:
1439	spi_unregister_driver((void *)&ifx_spi_driver);
1440err_unreg_tty:
1441	tty_unregister_driver(tty_drv);
1442err_free_tty:
1443	put_tty_driver(tty_drv);
1444
1445	return result;
1446}
1447
1448module_init(ifx_spi_init);
1449module_exit(ifx_spi_exit);
1450
1451MODULE_AUTHOR("Intel");
1452MODULE_DESCRIPTION("IFX6x60 spi driver");
1453MODULE_LICENSE("GPL");
1454MODULE_INFO(Version, "0.1-IFX6x60");