Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 *  Driver for AMBA serial ports
   4 *
   5 *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
   6 *
   7 *  Copyright 1999 ARM Limited
   8 *  Copyright (C) 2000 Deep Blue Solutions Ltd.
   9 *  Copyright (C) 2010 ST-Ericsson SA
  10 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  11 * This is a generic driver for ARM AMBA-type serial ports.  They
  12 * have a lot of 16550-like features, but are not register compatible.
  13 * Note that although they do have CTS, DCD and DSR inputs, they do
  14 * not have an RI input, nor do they have DTR or RTS outputs.  If
  15 * required, these have to be supplied via some other means (eg, GPIO)
  16 * and hooked into this driver.
  17 */
  18
 
 
 
 
 
  19#include <linux/module.h>
  20#include <linux/ioport.h>
  21#include <linux/init.h>
  22#include <linux/console.h>
  23#include <linux/platform_device.h>
  24#include <linux/sysrq.h>
  25#include <linux/device.h>
  26#include <linux/tty.h>
  27#include <linux/tty_flip.h>
  28#include <linux/serial_core.h>
  29#include <linux/serial.h>
  30#include <linux/amba/bus.h>
  31#include <linux/amba/serial.h>
  32#include <linux/clk.h>
  33#include <linux/slab.h>
  34#include <linux/dmaengine.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/scatterlist.h>
  37#include <linux/delay.h>
  38#include <linux/types.h>
  39#include <linux/of.h>
 
  40#include <linux/pinctrl/consumer.h>
  41#include <linux/sizes.h>
  42#include <linux/io.h>
  43#include <linux/acpi.h>
  44
  45#define UART_NR			14
  46
  47#define SERIAL_AMBA_MAJOR	204
  48#define SERIAL_AMBA_MINOR	64
  49#define SERIAL_AMBA_NR		UART_NR
  50
  51#define AMBA_ISR_PASS_LIMIT	256
  52
  53#define UART_DR_ERROR		(UART011_DR_OE | UART011_DR_BE | UART011_DR_PE | UART011_DR_FE)
  54#define UART_DUMMY_DR_RX	BIT(16)
  55
  56enum {
  57	REG_DR,
  58	REG_ST_DMAWM,
  59	REG_ST_TIMEOUT,
  60	REG_FR,
  61	REG_LCRH_RX,
  62	REG_LCRH_TX,
  63	REG_IBRD,
  64	REG_FBRD,
  65	REG_CR,
  66	REG_IFLS,
  67	REG_IMSC,
  68	REG_RIS,
  69	REG_MIS,
  70	REG_ICR,
  71	REG_DMACR,
  72	REG_ST_XFCR,
  73	REG_ST_XON1,
  74	REG_ST_XON2,
  75	REG_ST_XOFF1,
  76	REG_ST_XOFF2,
  77	REG_ST_ITCR,
  78	REG_ST_ITIP,
  79	REG_ST_ABCR,
  80	REG_ST_ABIMSC,
  81
  82	/* The size of the array - must be last */
  83	REG_ARRAY_SIZE,
  84};
  85
  86static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
  87	[REG_DR] = UART01x_DR,
  88	[REG_FR] = UART01x_FR,
  89	[REG_LCRH_RX] = UART011_LCRH,
  90	[REG_LCRH_TX] = UART011_LCRH,
  91	[REG_IBRD] = UART011_IBRD,
  92	[REG_FBRD] = UART011_FBRD,
  93	[REG_CR] = UART011_CR,
  94	[REG_IFLS] = UART011_IFLS,
  95	[REG_IMSC] = UART011_IMSC,
  96	[REG_RIS] = UART011_RIS,
  97	[REG_MIS] = UART011_MIS,
  98	[REG_ICR] = UART011_ICR,
  99	[REG_DMACR] = UART011_DMACR,
 100};
 101
 102/* There is by now at least one vendor with differing details, so handle it */
 103struct vendor_data {
 104	const u16		*reg_offset;
 105	unsigned int		ifls;
 106	unsigned int		fr_busy;
 107	unsigned int		fr_dsr;
 108	unsigned int		fr_cts;
 109	unsigned int		fr_ri;
 110	unsigned int		inv_fr;
 111	bool			access_32b;
 112	bool			oversampling;
 113	bool			dma_threshold;
 114	bool			cts_event_workaround;
 115	bool			always_enabled;
 116	bool			fixed_options;
 117
 118	unsigned int (*get_fifosize)(struct amba_device *dev);
 119};
 120
 121static unsigned int get_fifosize_arm(struct amba_device *dev)
 122{
 123	return amba_rev(dev) < 3 ? 16 : 32;
 124}
 125
 126static struct vendor_data vendor_arm = {
 127	.reg_offset		= pl011_std_offsets,
 128	.ifls			= UART011_IFLS_RX4_8 | UART011_IFLS_TX4_8,
 129	.fr_busy		= UART01x_FR_BUSY,
 130	.fr_dsr			= UART01x_FR_DSR,
 131	.fr_cts			= UART01x_FR_CTS,
 132	.fr_ri			= UART011_FR_RI,
 133	.oversampling		= false,
 134	.dma_threshold		= false,
 135	.cts_event_workaround	= false,
 136	.always_enabled		= false,
 137	.fixed_options		= false,
 138	.get_fifosize		= get_fifosize_arm,
 139};
 140
 141static const struct vendor_data vendor_sbsa = {
 142	.reg_offset		= pl011_std_offsets,
 143	.fr_busy		= UART01x_FR_BUSY,
 144	.fr_dsr			= UART01x_FR_DSR,
 145	.fr_cts			= UART01x_FR_CTS,
 146	.fr_ri			= UART011_FR_RI,
 147	.access_32b		= true,
 148	.oversampling		= false,
 149	.dma_threshold		= false,
 150	.cts_event_workaround	= false,
 151	.always_enabled		= true,
 152	.fixed_options		= true,
 153};
 154
 155#ifdef CONFIG_ACPI_SPCR_TABLE
 156static const struct vendor_data vendor_qdt_qdf2400_e44 = {
 157	.reg_offset		= pl011_std_offsets,
 158	.fr_busy		= UART011_FR_TXFE,
 159	.fr_dsr			= UART01x_FR_DSR,
 160	.fr_cts			= UART01x_FR_CTS,
 161	.fr_ri			= UART011_FR_RI,
 162	.inv_fr			= UART011_FR_TXFE,
 163	.access_32b		= true,
 164	.oversampling		= false,
 165	.dma_threshold		= false,
 166	.cts_event_workaround	= false,
 167	.always_enabled		= true,
 168	.fixed_options		= true,
 169};
 170#endif
 171
 172static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
 173	[REG_DR] = UART01x_DR,
 174	[REG_ST_DMAWM] = ST_UART011_DMAWM,
 175	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
 176	[REG_FR] = UART01x_FR,
 177	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
 178	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
 179	[REG_IBRD] = UART011_IBRD,
 180	[REG_FBRD] = UART011_FBRD,
 181	[REG_CR] = UART011_CR,
 182	[REG_IFLS] = UART011_IFLS,
 183	[REG_IMSC] = UART011_IMSC,
 184	[REG_RIS] = UART011_RIS,
 185	[REG_MIS] = UART011_MIS,
 186	[REG_ICR] = UART011_ICR,
 187	[REG_DMACR] = UART011_DMACR,
 188	[REG_ST_XFCR] = ST_UART011_XFCR,
 189	[REG_ST_XON1] = ST_UART011_XON1,
 190	[REG_ST_XON2] = ST_UART011_XON2,
 191	[REG_ST_XOFF1] = ST_UART011_XOFF1,
 192	[REG_ST_XOFF2] = ST_UART011_XOFF2,
 193	[REG_ST_ITCR] = ST_UART011_ITCR,
 194	[REG_ST_ITIP] = ST_UART011_ITIP,
 195	[REG_ST_ABCR] = ST_UART011_ABCR,
 196	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
 197};
 198
 199static unsigned int get_fifosize_st(struct amba_device *dev)
 200{
 201	return 64;
 202}
 203
 204static struct vendor_data vendor_st = {
 205	.reg_offset		= pl011_st_offsets,
 206	.ifls			= UART011_IFLS_RX_HALF | UART011_IFLS_TX_HALF,
 207	.fr_busy		= UART01x_FR_BUSY,
 208	.fr_dsr			= UART01x_FR_DSR,
 209	.fr_cts			= UART01x_FR_CTS,
 210	.fr_ri			= UART011_FR_RI,
 211	.oversampling		= true,
 212	.dma_threshold		= true,
 213	.cts_event_workaround	= true,
 214	.always_enabled		= false,
 215	.fixed_options		= false,
 216	.get_fifosize		= get_fifosize_st,
 217};
 218
 219/* Deals with DMA transactions */
 220
 221struct pl011_dmabuf {
 222	dma_addr_t		dma;
 223	size_t			len;
 224	char			*buf;
 225};
 226
 227struct pl011_dmarx_data {
 228	struct dma_chan		*chan;
 229	struct completion	complete;
 230	bool			use_buf_b;
 231	struct pl011_dmabuf	dbuf_a;
 232	struct pl011_dmabuf	dbuf_b;
 233	dma_cookie_t		cookie;
 234	bool			running;
 235	struct timer_list	timer;
 236	unsigned int last_residue;
 237	unsigned long last_jiffies;
 238	bool auto_poll_rate;
 239	unsigned int poll_rate;
 240	unsigned int poll_timeout;
 241};
 242
 243struct pl011_dmatx_data {
 244	struct dma_chan		*chan;
 245	dma_addr_t		dma;
 246	size_t			len;
 247	char			*buf;
 248	bool			queued;
 249};
 250
 251/*
 252 * We wrap our port structure around the generic uart_port.
 253 */
 254struct uart_amba_port {
 255	struct uart_port	port;
 256	const u16		*reg_offset;
 257	struct clk		*clk;
 258	const struct vendor_data *vendor;
 259	unsigned int		dmacr;		/* dma control reg */
 260	unsigned int		im;		/* interrupt mask */
 261	unsigned int		old_status;
 262	unsigned int		fifosize;	/* vendor-specific */
 263	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
 
 
 
 264	char			type[12];
 265	bool			rs485_tx_started;
 266	unsigned int		rs485_tx_drain_interval; /* usecs */
 267#ifdef CONFIG_DMA_ENGINE
 268	/* DMA stuff */
 269	bool			using_tx_dma;
 270	bool			using_rx_dma;
 271	struct pl011_dmarx_data dmarx;
 272	struct pl011_dmatx_data	dmatx;
 273	bool			dma_probed;
 274#endif
 275};
 276
 277static unsigned int pl011_tx_empty(struct uart_port *port);
 278
 279static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
 280					unsigned int reg)
 281{
 282	return uap->reg_offset[reg];
 283}
 284
 285static unsigned int pl011_read(const struct uart_amba_port *uap,
 286			       unsigned int reg)
 287{
 288	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 289
 290	return (uap->port.iotype == UPIO_MEM32) ?
 291		readl_relaxed(addr) : readw_relaxed(addr);
 292}
 293
 294static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
 295			unsigned int reg)
 296{
 297	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 298
 299	if (uap->port.iotype == UPIO_MEM32)
 300		writel_relaxed(val, addr);
 301	else
 302		writew_relaxed(val, addr);
 303}
 304
 305/*
 306 * Reads up to 256 characters from the FIFO or until it's empty and
 307 * inserts them into the TTY layer. Returns the number of characters
 308 * read from the FIFO.
 309 */
 310static int pl011_fifo_to_tty(struct uart_amba_port *uap)
 311{
 312	unsigned int ch, fifotaken;
 313	int sysrq;
 314	u16 status;
 315	u8 flag;
 316
 317	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
 318		status = pl011_read(uap, REG_FR);
 319		if (status & UART01x_FR_RXFE)
 320			break;
 321
 322		/* Take chars from the FIFO and update status */
 323		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
 
 324		flag = TTY_NORMAL;
 325		uap->port.icount.rx++;
 
 326
 327		if (unlikely(ch & UART_DR_ERROR)) {
 328			if (ch & UART011_DR_BE) {
 329				ch &= ~(UART011_DR_FE | UART011_DR_PE);
 330				uap->port.icount.brk++;
 331				if (uart_handle_break(&uap->port))
 332					continue;
 333			} else if (ch & UART011_DR_PE) {
 334				uap->port.icount.parity++;
 335			} else if (ch & UART011_DR_FE) {
 336				uap->port.icount.frame++;
 337			}
 338			if (ch & UART011_DR_OE)
 339				uap->port.icount.overrun++;
 340
 341			ch &= uap->port.read_status_mask;
 342
 343			if (ch & UART011_DR_BE)
 344				flag = TTY_BREAK;
 345			else if (ch & UART011_DR_PE)
 346				flag = TTY_PARITY;
 347			else if (ch & UART011_DR_FE)
 348				flag = TTY_FRAME;
 349		}
 350
 351		uart_port_unlock(&uap->port);
 352		sysrq = uart_handle_sysrq_char(&uap->port, ch & 255);
 353		uart_port_lock(&uap->port);
 354
 355		if (!sysrq)
 356			uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
 357	}
 358
 359	return fifotaken;
 360}
 361
 
 362/*
 363 * All the DMA operation mode stuff goes inside this ifdef.
 364 * This assumes that you have a generic DMA device interface,
 365 * no custom DMA interfaces are supported.
 366 */
 367#ifdef CONFIG_DMA_ENGINE
 368
 369#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
 370
 371static int pl011_dmabuf_init(struct dma_chan *chan, struct pl011_dmabuf *db,
 372			     enum dma_data_direction dir)
 373{
 374	db->buf = dma_alloc_coherent(chan->device->dev, PL011_DMA_BUFFER_SIZE,
 375				     &db->dma, GFP_KERNEL);
 376	if (!db->buf)
 
 
 377		return -ENOMEM;
 378	db->len = PL011_DMA_BUFFER_SIZE;
 
 
 
 
 379
 380	return 0;
 381}
 382
 383static void pl011_dmabuf_free(struct dma_chan *chan, struct pl011_dmabuf *db,
 384			      enum dma_data_direction dir)
 385{
 386	if (db->buf) {
 387		dma_free_coherent(chan->device->dev,
 388				  PL011_DMA_BUFFER_SIZE, db->buf, db->dma);
 
 389	}
 390}
 391
 392static void pl011_dma_probe(struct uart_amba_port *uap)
 393{
 394	/* DMA is the sole user of the platform data right now */
 395	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
 396	struct device *dev = uap->port.dev;
 397	struct dma_slave_config tx_conf = {
 398		.dst_addr = uap->port.mapbase +
 399				 pl011_reg_to_offset(uap, REG_DR),
 400		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 401		.direction = DMA_MEM_TO_DEV,
 402		.dst_maxburst = uap->fifosize >> 1,
 403		.device_fc = false,
 404	};
 405	struct dma_chan *chan;
 406	dma_cap_mask_t mask;
 407
 408	uap->dma_probed = true;
 409	chan = dma_request_chan(dev, "tx");
 410	if (IS_ERR(chan)) {
 411		if (PTR_ERR(chan) == -EPROBE_DEFER) {
 412			uap->dma_probed = false;
 413			return;
 414		}
 415
 
 416		/* We need platform data */
 417		if (!plat || !plat->dma_filter) {
 418			dev_dbg(uap->port.dev, "no DMA platform data\n");
 419			return;
 420		}
 421
 422		/* Try to acquire a generic DMA engine slave TX channel */
 423		dma_cap_zero(mask);
 424		dma_cap_set(DMA_SLAVE, mask);
 425
 426		chan = dma_request_channel(mask, plat->dma_filter,
 427					   plat->dma_tx_param);
 428		if (!chan) {
 429			dev_err(uap->port.dev, "no TX DMA channel!\n");
 430			return;
 431		}
 432	}
 433
 434	dmaengine_slave_config(chan, &tx_conf);
 435	uap->dmatx.chan = chan;
 436
 437	dev_info(uap->port.dev, "DMA channel TX %s\n",
 438		 dma_chan_name(uap->dmatx.chan));
 439
 440	/* Optionally make use of an RX channel as well */
 441	chan = dma_request_chan(dev, "rx");
 442
 443	if (IS_ERR(chan) && plat && plat->dma_rx_param) {
 444		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
 445
 446		if (!chan) {
 447			dev_err(uap->port.dev, "no RX DMA channel!\n");
 448			return;
 449		}
 450	}
 451
 452	if (!IS_ERR(chan)) {
 453		struct dma_slave_config rx_conf = {
 454			.src_addr = uap->port.mapbase +
 455				pl011_reg_to_offset(uap, REG_DR),
 456			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 457			.direction = DMA_DEV_TO_MEM,
 458			.src_maxburst = uap->fifosize >> 2,
 459			.device_fc = false,
 460		};
 461		struct dma_slave_caps caps;
 462
 463		/*
 464		 * Some DMA controllers provide information on their capabilities.
 465		 * If the controller does, check for suitable residue processing
 466		 * otherwise assime all is well.
 467		 */
 468		if (dma_get_slave_caps(chan, &caps) == 0) {
 469			if (caps.residue_granularity ==
 470					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
 471				dma_release_channel(chan);
 472				dev_info(uap->port.dev,
 473					 "RX DMA disabled - no residue processing\n");
 474				return;
 475			}
 476		}
 477		dmaengine_slave_config(chan, &rx_conf);
 478		uap->dmarx.chan = chan;
 479
 480		uap->dmarx.auto_poll_rate = false;
 481		if (plat && plat->dma_rx_poll_enable) {
 482			/* Set poll rate if specified. */
 483			if (plat->dma_rx_poll_rate) {
 484				uap->dmarx.auto_poll_rate = false;
 485				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
 486			} else {
 487				/*
 488				 * 100 ms defaults to poll rate if not
 489				 * specified. This will be adjusted with
 490				 * the baud rate at set_termios.
 491				 */
 492				uap->dmarx.auto_poll_rate = true;
 493				uap->dmarx.poll_rate =  100;
 494			}
 495			/* 3 secs defaults poll_timeout if not specified. */
 496			if (plat->dma_rx_poll_timeout)
 497				uap->dmarx.poll_timeout =
 498					plat->dma_rx_poll_timeout;
 499			else
 500				uap->dmarx.poll_timeout = 3000;
 501		} else if (!plat && dev->of_node) {
 502			uap->dmarx.auto_poll_rate =
 503					of_property_read_bool(dev->of_node, "auto-poll");
 504			if (uap->dmarx.auto_poll_rate) {
 505				u32 x;
 506
 507				if (of_property_read_u32(dev->of_node, "poll-rate-ms", &x) == 0)
 508					uap->dmarx.poll_rate = x;
 509				else
 510					uap->dmarx.poll_rate = 100;
 511				if (of_property_read_u32(dev->of_node, "poll-timeout-ms", &x) == 0)
 512					uap->dmarx.poll_timeout = x;
 513				else
 514					uap->dmarx.poll_timeout = 3000;
 515			}
 516		}
 517		dev_info(uap->port.dev, "DMA channel RX %s\n",
 518			 dma_chan_name(uap->dmarx.chan));
 519	}
 520}
 521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 522static void pl011_dma_remove(struct uart_amba_port *uap)
 523{
 
 524	if (uap->dmatx.chan)
 525		dma_release_channel(uap->dmatx.chan);
 526	if (uap->dmarx.chan)
 527		dma_release_channel(uap->dmarx.chan);
 528}
 529
 530/* Forward declare these for the refill routine */
 531static int pl011_dma_tx_refill(struct uart_amba_port *uap);
 532static void pl011_start_tx_pio(struct uart_amba_port *uap);
 533
 534/*
 535 * The current DMA TX buffer has been sent.
 536 * Try to queue up another DMA buffer.
 537 */
 538static void pl011_dma_tx_callback(void *data)
 539{
 540	struct uart_amba_port *uap = data;
 541	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 542	unsigned long flags;
 543	u16 dmacr;
 544
 545	uart_port_lock_irqsave(&uap->port, &flags);
 546	if (uap->dmatx.queued)
 547		dma_unmap_single(dmatx->chan->device->dev, dmatx->dma,
 548				 dmatx->len, DMA_TO_DEVICE);
 549
 550	dmacr = uap->dmacr;
 551	uap->dmacr = dmacr & ~UART011_TXDMAE;
 552	pl011_write(uap->dmacr, uap, REG_DMACR);
 553
 554	/*
 555	 * If TX DMA was disabled, it means that we've stopped the DMA for
 556	 * some reason (eg, XOFF received, or we want to send an X-char.)
 557	 *
 558	 * Note: we need to be careful here of a potential race between DMA
 559	 * and the rest of the driver - if the driver disables TX DMA while
 560	 * a TX buffer completing, we must update the tx queued status to
 561	 * get further refills (hence we check dmacr).
 562	 */
 563	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
 564	    uart_circ_empty(&uap->port.state->xmit)) {
 565		uap->dmatx.queued = false;
 566		uart_port_unlock_irqrestore(&uap->port, flags);
 567		return;
 568	}
 569
 570	if (pl011_dma_tx_refill(uap) <= 0)
 571		/*
 572		 * We didn't queue a DMA buffer for some reason, but we
 573		 * have data pending to be sent.  Re-enable the TX IRQ.
 574		 */
 575		pl011_start_tx_pio(uap);
 576
 577	uart_port_unlock_irqrestore(&uap->port, flags);
 
 578}
 579
 580/*
 581 * Try to refill the TX DMA buffer.
 582 * Locking: called with port lock held and IRQs disabled.
 583 * Returns:
 584 *   1 if we queued up a TX DMA buffer.
 585 *   0 if we didn't want to handle this by DMA
 586 *  <0 on error
 587 */
 588static int pl011_dma_tx_refill(struct uart_amba_port *uap)
 589{
 590	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 591	struct dma_chan *chan = dmatx->chan;
 592	struct dma_device *dma_dev = chan->device;
 593	struct dma_async_tx_descriptor *desc;
 594	struct circ_buf *xmit = &uap->port.state->xmit;
 595	unsigned int count;
 596
 597	/*
 598	 * Try to avoid the overhead involved in using DMA if the
 599	 * transaction fits in the first half of the FIFO, by using
 600	 * the standard interrupt handling.  This ensures that we
 601	 * issue a uart_write_wakeup() at the appropriate time.
 602	 */
 603	count = uart_circ_chars_pending(xmit);
 604	if (count < (uap->fifosize >> 1)) {
 605		uap->dmatx.queued = false;
 606		return 0;
 607	}
 608
 609	/*
 610	 * Bodge: don't send the last character by DMA, as this
 611	 * will prevent XON from notifying us to restart DMA.
 612	 */
 613	count -= 1;
 614
 615	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
 616	if (count > PL011_DMA_BUFFER_SIZE)
 617		count = PL011_DMA_BUFFER_SIZE;
 618
 619	if (xmit->tail < xmit->head) {
 620		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
 621	} else {
 622		size_t first = UART_XMIT_SIZE - xmit->tail;
 623		size_t second;
 624
 625		if (first > count)
 626			first = count;
 627		second = count - first;
 628
 629		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
 630		if (second)
 631			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
 632	}
 633
 634	dmatx->len = count;
 635	dmatx->dma = dma_map_single(dma_dev->dev, dmatx->buf, count,
 636				    DMA_TO_DEVICE);
 637	if (dmatx->dma == DMA_MAPPING_ERROR) {
 638		uap->dmatx.queued = false;
 639		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
 640		return -EBUSY;
 641	}
 642
 643	desc = dmaengine_prep_slave_single(chan, dmatx->dma, dmatx->len, DMA_MEM_TO_DEV,
 644					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 645	if (!desc) {
 646		dma_unmap_single(dma_dev->dev, dmatx->dma, dmatx->len, DMA_TO_DEVICE);
 647		uap->dmatx.queued = false;
 648		/*
 649		 * If DMA cannot be used right now, we complete this
 650		 * transaction via IRQ and let the TTY layer retry.
 651		 */
 652		dev_dbg(uap->port.dev, "TX DMA busy\n");
 653		return -EBUSY;
 654	}
 655
 656	/* Some data to go along to the callback */
 657	desc->callback = pl011_dma_tx_callback;
 658	desc->callback_param = uap;
 659
 660	/* All errors should happen at prepare time */
 661	dmaengine_submit(desc);
 662
 663	/* Fire the DMA transaction */
 664	dma_dev->device_issue_pending(chan);
 665
 666	uap->dmacr |= UART011_TXDMAE;
 667	pl011_write(uap->dmacr, uap, REG_DMACR);
 668	uap->dmatx.queued = true;
 669
 670	/*
 671	 * Now we know that DMA will fire, so advance the ring buffer
 672	 * with the stuff we just dispatched.
 673	 */
 674	uart_xmit_advance(&uap->port, count);
 
 675
 676	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 677		uart_write_wakeup(&uap->port);
 678
 679	return 1;
 680}
 681
 682/*
 683 * We received a transmit interrupt without a pending X-char but with
 684 * pending characters.
 685 * Locking: called with port lock held and IRQs disabled.
 686 * Returns:
 687 *   false if we want to use PIO to transmit
 688 *   true if we queued a DMA buffer
 689 */
 690static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
 691{
 692	if (!uap->using_tx_dma)
 693		return false;
 694
 695	/*
 696	 * If we already have a TX buffer queued, but received a
 697	 * TX interrupt, it will be because we've just sent an X-char.
 698	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
 699	 */
 700	if (uap->dmatx.queued) {
 701		uap->dmacr |= UART011_TXDMAE;
 702		pl011_write(uap->dmacr, uap, REG_DMACR);
 703		uap->im &= ~UART011_TXIM;
 704		pl011_write(uap->im, uap, REG_IMSC);
 705		return true;
 706	}
 707
 708	/*
 709	 * We don't have a TX buffer queued, so try to queue one.
 710	 * If we successfully queued a buffer, mask the TX IRQ.
 711	 */
 712	if (pl011_dma_tx_refill(uap) > 0) {
 713		uap->im &= ~UART011_TXIM;
 714		pl011_write(uap->im, uap, REG_IMSC);
 715		return true;
 716	}
 717	return false;
 718}
 719
 720/*
 721 * Stop the DMA transmit (eg, due to received XOFF).
 722 * Locking: called with port lock held and IRQs disabled.
 723 */
 724static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
 725{
 726	if (uap->dmatx.queued) {
 727		uap->dmacr &= ~UART011_TXDMAE;
 728		pl011_write(uap->dmacr, uap, REG_DMACR);
 729	}
 730}
 731
 732/*
 733 * Try to start a DMA transmit, or in the case of an XON/OFF
 734 * character queued for send, try to get that character out ASAP.
 735 * Locking: called with port lock held and IRQs disabled.
 736 * Returns:
 737 *   false if we want the TX IRQ to be enabled
 738 *   true if we have a buffer queued
 739 */
 740static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
 741{
 742	u16 dmacr;
 743
 744	if (!uap->using_tx_dma)
 745		return false;
 746
 747	if (!uap->port.x_char) {
 748		/* no X-char, try to push chars out in DMA mode */
 749		bool ret = true;
 750
 751		if (!uap->dmatx.queued) {
 752			if (pl011_dma_tx_refill(uap) > 0) {
 753				uap->im &= ~UART011_TXIM;
 754				pl011_write(uap->im, uap, REG_IMSC);
 755			} else {
 
 756				ret = false;
 757			}
 
 758		} else if (!(uap->dmacr & UART011_TXDMAE)) {
 759			uap->dmacr |= UART011_TXDMAE;
 760			pl011_write(uap->dmacr, uap, REG_DMACR);
 
 761		}
 762		return ret;
 763	}
 764
 765	/*
 766	 * We have an X-char to send.  Disable DMA to prevent it loading
 767	 * the TX fifo, and then see if we can stuff it into the FIFO.
 768	 */
 769	dmacr = uap->dmacr;
 770	uap->dmacr &= ~UART011_TXDMAE;
 771	pl011_write(uap->dmacr, uap, REG_DMACR);
 772
 773	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
 774		/*
 775		 * No space in the FIFO, so enable the transmit interrupt
 776		 * so we know when there is space.  Note that once we've
 777		 * loaded the character, we should just re-enable DMA.
 778		 */
 779		return false;
 780	}
 781
 782	pl011_write(uap->port.x_char, uap, REG_DR);
 783	uap->port.icount.tx++;
 784	uap->port.x_char = 0;
 785
 786	/* Success - restore the DMA state */
 787	uap->dmacr = dmacr;
 788	pl011_write(dmacr, uap, REG_DMACR);
 789
 790	return true;
 791}
 792
 793/*
 794 * Flush the transmit buffer.
 795 * Locking: called with port lock held and IRQs disabled.
 796 */
 797static void pl011_dma_flush_buffer(struct uart_port *port)
 798__releases(&uap->port.lock)
 799__acquires(&uap->port.lock)
 800{
 801	struct uart_amba_port *uap =
 802	    container_of(port, struct uart_amba_port, port);
 803
 804	if (!uap->using_tx_dma)
 805		return;
 806
 807	dmaengine_terminate_async(uap->dmatx.chan);
 808
 
 
 809	if (uap->dmatx.queued) {
 810		dma_unmap_single(uap->dmatx.chan->device->dev, uap->dmatx.dma,
 811				 uap->dmatx.len, DMA_TO_DEVICE);
 812		uap->dmatx.queued = false;
 813		uap->dmacr &= ~UART011_TXDMAE;
 814		pl011_write(uap->dmacr, uap, REG_DMACR);
 815	}
 816}
 817
 818static void pl011_dma_rx_callback(void *data);
 819
 820static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
 821{
 822	struct dma_chan *rxchan = uap->dmarx.chan;
 823	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 824	struct dma_async_tx_descriptor *desc;
 825	struct pl011_dmabuf *dbuf;
 826
 827	if (!rxchan)
 828		return -EIO;
 829
 830	/* Start the RX DMA job */
 831	dbuf = uap->dmarx.use_buf_b ?
 832		&uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
 833	desc = dmaengine_prep_slave_single(rxchan, dbuf->dma, dbuf->len,
 834					   DMA_DEV_TO_MEM,
 835					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 836	/*
 837	 * If the DMA engine is busy and cannot prepare a
 838	 * channel, no big deal, the driver will fall back
 839	 * to interrupt mode as a result of this error code.
 840	 */
 841	if (!desc) {
 842		uap->dmarx.running = false;
 843		dmaengine_terminate_all(rxchan);
 844		return -EBUSY;
 845	}
 846
 847	/* Some data to go along to the callback */
 848	desc->callback = pl011_dma_rx_callback;
 849	desc->callback_param = uap;
 850	dmarx->cookie = dmaengine_submit(desc);
 851	dma_async_issue_pending(rxchan);
 852
 853	uap->dmacr |= UART011_RXDMAE;
 854	pl011_write(uap->dmacr, uap, REG_DMACR);
 855	uap->dmarx.running = true;
 856
 857	uap->im &= ~UART011_RXIM;
 858	pl011_write(uap->im, uap, REG_IMSC);
 859
 860	return 0;
 861}
 862
 863/*
 864 * This is called when either the DMA job is complete, or
 865 * the FIFO timeout interrupt occurred. This must be called
 866 * with the port spinlock uap->port.lock held.
 867 */
 868static void pl011_dma_rx_chars(struct uart_amba_port *uap,
 869			       u32 pending, bool use_buf_b,
 870			       bool readfifo)
 871{
 872	struct tty_port *port = &uap->port.state->port;
 873	struct pl011_dmabuf *dbuf = use_buf_b ?
 874		&uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
 875	int dma_count = 0;
 876	u32 fifotaken = 0; /* only used for vdbg() */
 877
 878	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 879	int dmataken = 0;
 880
 881	if (uap->dmarx.poll_rate) {
 882		/* The data can be taken by polling */
 883		dmataken = dbuf->len - dmarx->last_residue;
 884		/* Recalculate the pending size */
 885		if (pending >= dmataken)
 886			pending -= dmataken;
 887	}
 888
 889	/* Pick the remain data from the DMA */
 890	if (pending) {
 
 891		/*
 892		 * First take all chars in the DMA pipe, then look in the FIFO.
 893		 * Note that tty_insert_flip_buf() tries to take as many chars
 894		 * as it can.
 895		 */
 896		dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken, pending);
 
 897
 898		uap->port.icount.rx += dma_count;
 899		if (dma_count < pending)
 900			dev_warn(uap->port.dev,
 901				 "couldn't insert all characters (TTY is full?)\n");
 902	}
 903
 904	/* Reset the last_residue for Rx DMA poll */
 905	if (uap->dmarx.poll_rate)
 906		dmarx->last_residue = dbuf->len;
 907
 908	/*
 909	 * Only continue with trying to read the FIFO if all DMA chars have
 910	 * been taken first.
 911	 */
 912	if (dma_count == pending && readfifo) {
 913		/* Clear any error flags */
 914		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
 915			    UART011_FEIS, uap, REG_ICR);
 916
 917		/*
 918		 * If we read all the DMA'd characters, and we had an
 919		 * incomplete buffer, that could be due to an rx error, or
 920		 * maybe we just timed out. Read any pending chars and check
 921		 * the error status.
 922		 *
 923		 * Error conditions will only occur in the FIFO, these will
 924		 * trigger an immediate interrupt and stop the DMA job, so we
 925		 * will always find the error in the FIFO, never in the DMA
 926		 * buffer.
 927		 */
 928		fifotaken = pl011_fifo_to_tty(uap);
 929	}
 930
 
 931	dev_vdbg(uap->port.dev,
 932		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
 933		 dma_count, fifotaken);
 934	tty_flip_buffer_push(port);
 
 935}
 936
 937static void pl011_dma_rx_irq(struct uart_amba_port *uap)
 938{
 939	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 940	struct dma_chan *rxchan = dmarx->chan;
 941	struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
 942		&dmarx->dbuf_b : &dmarx->dbuf_a;
 943	size_t pending;
 944	struct dma_tx_state state;
 945	enum dma_status dmastat;
 946
 947	/*
 948	 * Pause the transfer so we can trust the current counter,
 949	 * do this before we pause the PL011 block, else we may
 950	 * overflow the FIFO.
 951	 */
 952	if (dmaengine_pause(rxchan))
 953		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 954	dmastat = rxchan->device->device_tx_status(rxchan,
 955						   dmarx->cookie, &state);
 956	if (dmastat != DMA_PAUSED)
 957		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 958
 959	/* Disable RX DMA - incoming data will wait in the FIFO */
 960	uap->dmacr &= ~UART011_RXDMAE;
 961	pl011_write(uap->dmacr, uap, REG_DMACR);
 962	uap->dmarx.running = false;
 963
 964	pending = dbuf->len - state.residue;
 965	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 966	/* Then we terminate the transfer - we now know our residue */
 967	dmaengine_terminate_all(rxchan);
 968
 969	/*
 970	 * This will take the chars we have so far and insert
 971	 * into the framework.
 972	 */
 973	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
 974
 975	/* Switch buffer & re-trigger DMA job */
 976	dmarx->use_buf_b = !dmarx->use_buf_b;
 977	if (pl011_dma_rx_trigger_dma(uap)) {
 978		dev_dbg(uap->port.dev,
 979			"could not retrigger RX DMA job fall back to interrupt mode\n");
 980		uap->im |= UART011_RXIM;
 981		pl011_write(uap->im, uap, REG_IMSC);
 982	}
 983}
 984
 985static void pl011_dma_rx_callback(void *data)
 986{
 987	struct uart_amba_port *uap = data;
 988	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 989	struct dma_chan *rxchan = dmarx->chan;
 990	bool lastbuf = dmarx->use_buf_b;
 991	struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
 992		&dmarx->dbuf_b : &dmarx->dbuf_a;
 993	size_t pending;
 994	struct dma_tx_state state;
 995	int ret;
 996
 997	/*
 998	 * This completion interrupt occurs typically when the
 999	 * RX buffer is totally stuffed but no timeout has yet
1000	 * occurred. When that happens, we just want the RX
1001	 * routine to flush out the secondary DMA buffer while
1002	 * we immediately trigger the next DMA job.
1003	 */
1004	uart_port_lock_irq(&uap->port);
1005	/*
1006	 * Rx data can be taken by the UART interrupts during
1007	 * the DMA irq handler. So we check the residue here.
1008	 */
1009	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1010	pending = dbuf->len - state.residue;
1011	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1012	/* Then we terminate the transfer - we now know our residue */
1013	dmaengine_terminate_all(rxchan);
1014
1015	uap->dmarx.running = false;
1016	dmarx->use_buf_b = !lastbuf;
1017	ret = pl011_dma_rx_trigger_dma(uap);
1018
1019	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1020	uart_port_unlock_irq(&uap->port);
1021	/*
1022	 * Do this check after we picked the DMA chars so we don't
1023	 * get some IRQ immediately from RX.
1024	 */
1025	if (ret) {
1026		dev_dbg(uap->port.dev,
1027			"could not retrigger RX DMA job fall back to interrupt mode\n");
1028		uap->im |= UART011_RXIM;
1029		pl011_write(uap->im, uap, REG_IMSC);
1030	}
1031}
1032
1033/*
1034 * Stop accepting received characters, when we're shutting down or
1035 * suspending this port.
1036 * Locking: called with port lock held and IRQs disabled.
1037 */
1038static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1039{
1040	if (!uap->using_rx_dma)
1041		return;
1042
1043	/* FIXME.  Just disable the DMA enable */
1044	uap->dmacr &= ~UART011_RXDMAE;
1045	pl011_write(uap->dmacr, uap, REG_DMACR);
1046}
1047
1048/*
1049 * Timer handler for Rx DMA polling.
1050 * Every polling, It checks the residue in the dma buffer and transfer
1051 * data to the tty. Also, last_residue is updated for the next polling.
1052 */
1053static void pl011_dma_rx_poll(struct timer_list *t)
1054{
1055	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1056	struct tty_port *port = &uap->port.state->port;
1057	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1058	struct dma_chan *rxchan = uap->dmarx.chan;
1059	unsigned long flags;
1060	unsigned int dmataken = 0;
1061	unsigned int size = 0;
1062	struct pl011_dmabuf *dbuf;
1063	int dma_count;
1064	struct dma_tx_state state;
1065
1066	dbuf = dmarx->use_buf_b ? &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
1067	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1068	if (likely(state.residue < dmarx->last_residue)) {
1069		dmataken = dbuf->len - dmarx->last_residue;
1070		size = dmarx->last_residue - state.residue;
1071		dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken,
1072						   size);
1073		if (dma_count == size)
1074			dmarx->last_residue =  state.residue;
1075		dmarx->last_jiffies = jiffies;
1076	}
1077	tty_flip_buffer_push(port);
1078
1079	/*
1080	 * If no data is received in poll_timeout, the driver will fall back
1081	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1082	 */
1083	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1084			> uap->dmarx.poll_timeout) {
1085		uart_port_lock_irqsave(&uap->port, &flags);
 
1086		pl011_dma_rx_stop(uap);
1087		uap->im |= UART011_RXIM;
1088		pl011_write(uap->im, uap, REG_IMSC);
1089		uart_port_unlock_irqrestore(&uap->port, flags);
1090
1091		uap->dmarx.running = false;
1092		dmaengine_terminate_all(rxchan);
1093		del_timer(&uap->dmarx.timer);
1094	} else {
1095		mod_timer(&uap->dmarx.timer,
1096			  jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1097	}
1098}
1099
1100static void pl011_dma_startup(struct uart_amba_port *uap)
1101{
1102	int ret;
1103
1104	if (!uap->dma_probed)
1105		pl011_dma_probe(uap);
1106
1107	if (!uap->dmatx.chan)
1108		return;
1109
1110	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1111	if (!uap->dmatx.buf) {
 
1112		uap->port.fifosize = uap->fifosize;
1113		return;
1114	}
1115
1116	uap->dmatx.len = PL011_DMA_BUFFER_SIZE;
1117
1118	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1119	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1120	uap->using_tx_dma = true;
1121
1122	if (!uap->dmarx.chan)
1123		goto skip_rx;
1124
1125	/* Allocate and map DMA RX buffers */
1126	ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1127				DMA_FROM_DEVICE);
1128	if (ret) {
1129		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1130			"RX buffer A", ret);
1131		goto skip_rx;
1132	}
1133
1134	ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_b,
1135				DMA_FROM_DEVICE);
1136	if (ret) {
1137		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1138			"RX buffer B", ret);
1139		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1140				  DMA_FROM_DEVICE);
1141		goto skip_rx;
1142	}
1143
1144	uap->using_rx_dma = true;
1145
1146skip_rx:
1147	/* Turn on DMA error (RX/TX will be enabled on demand) */
1148	uap->dmacr |= UART011_DMAONERR;
1149	pl011_write(uap->dmacr, uap, REG_DMACR);
1150
1151	/*
1152	 * ST Micro variants has some specific dma burst threshold
1153	 * compensation. Set this to 16 bytes, so burst will only
1154	 * be issued above/below 16 bytes.
1155	 */
1156	if (uap->vendor->dma_threshold)
1157		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1158			    uap, REG_ST_DMAWM);
1159
1160	if (uap->using_rx_dma) {
1161		if (pl011_dma_rx_trigger_dma(uap))
1162			dev_dbg(uap->port.dev,
1163				"could not trigger initial RX DMA job, fall back to interrupt mode\n");
1164		if (uap->dmarx.poll_rate) {
1165			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
 
 
1166			mod_timer(&uap->dmarx.timer,
1167				  jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
 
1168			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1169			uap->dmarx.last_jiffies = jiffies;
1170		}
1171	}
1172}
1173
1174static void pl011_dma_shutdown(struct uart_amba_port *uap)
1175{
1176	if (!(uap->using_tx_dma || uap->using_rx_dma))
1177		return;
1178
1179	/* Disable RX and TX DMA */
1180	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1181		cpu_relax();
1182
1183	uart_port_lock_irq(&uap->port);
1184	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1185	pl011_write(uap->dmacr, uap, REG_DMACR);
1186	uart_port_unlock_irq(&uap->port);
1187
1188	if (uap->using_tx_dma) {
1189		/* In theory, this should already be done by pl011_dma_flush_buffer */
1190		dmaengine_terminate_all(uap->dmatx.chan);
1191		if (uap->dmatx.queued) {
1192			dma_unmap_single(uap->dmatx.chan->device->dev,
1193					 uap->dmatx.dma, uap->dmatx.len,
1194					 DMA_TO_DEVICE);
1195			uap->dmatx.queued = false;
1196		}
1197
1198		kfree(uap->dmatx.buf);
1199		uap->using_tx_dma = false;
1200	}
1201
1202	if (uap->using_rx_dma) {
1203		dmaengine_terminate_all(uap->dmarx.chan);
1204		/* Clean up the RX DMA */
1205		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a, DMA_FROM_DEVICE);
1206		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_b, DMA_FROM_DEVICE);
1207		if (uap->dmarx.poll_rate)
1208			del_timer_sync(&uap->dmarx.timer);
1209		uap->using_rx_dma = false;
1210	}
1211}
1212
1213static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1214{
1215	return uap->using_rx_dma;
1216}
1217
1218static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1219{
1220	return uap->using_rx_dma && uap->dmarx.running;
1221}
1222
1223#else
1224/* Blank functions if the DMA engine is not available */
 
 
 
 
1225static inline void pl011_dma_remove(struct uart_amba_port *uap)
1226{
1227}
1228
1229static inline void pl011_dma_startup(struct uart_amba_port *uap)
1230{
1231}
1232
1233static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1234{
1235}
1236
1237static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1238{
1239	return false;
1240}
1241
1242static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1243{
1244}
1245
1246static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1247{
1248	return false;
1249}
1250
1251static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1252{
1253}
1254
1255static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1256{
1257}
1258
1259static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1260{
1261	return -EIO;
1262}
1263
1264static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1265{
1266	return false;
1267}
1268
1269static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1270{
1271	return false;
1272}
1273
1274#define pl011_dma_flush_buffer	NULL
1275#endif
1276
1277static void pl011_rs485_tx_stop(struct uart_amba_port *uap)
1278{
1279	/*
1280	 * To be on the safe side only time out after twice as many iterations
1281	 * as fifo size.
1282	 */
1283	const int MAX_TX_DRAIN_ITERS = uap->port.fifosize * 2;
1284	struct uart_port *port = &uap->port;
1285	int i = 0;
1286	u32 cr;
1287
1288	/* Wait until hardware tx queue is empty */
1289	while (!pl011_tx_empty(port)) {
1290		if (i > MAX_TX_DRAIN_ITERS) {
1291			dev_warn(port->dev,
1292				 "timeout while draining hardware tx queue\n");
1293			break;
1294		}
1295
1296		udelay(uap->rs485_tx_drain_interval);
1297		i++;
1298	}
1299
1300	if (port->rs485.delay_rts_after_send)
1301		mdelay(port->rs485.delay_rts_after_send);
1302
1303	cr = pl011_read(uap, REG_CR);
1304
1305	if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1306		cr &= ~UART011_CR_RTS;
1307	else
1308		cr |= UART011_CR_RTS;
1309
1310	/* Disable the transmitter and reenable the transceiver */
1311	cr &= ~UART011_CR_TXE;
1312	cr |= UART011_CR_RXE;
1313	pl011_write(cr, uap, REG_CR);
1314
1315	uap->rs485_tx_started = false;
1316}
1317
1318static void pl011_stop_tx(struct uart_port *port)
1319{
1320	struct uart_amba_port *uap =
1321	    container_of(port, struct uart_amba_port, port);
1322
1323	uap->im &= ~UART011_TXIM;
1324	pl011_write(uap->im, uap, REG_IMSC);
1325	pl011_dma_tx_stop(uap);
1326
1327	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1328		pl011_rs485_tx_stop(uap);
1329}
1330
1331static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1332
1333/* Start TX with programmed I/O only (no DMA) */
1334static void pl011_start_tx_pio(struct uart_amba_port *uap)
1335{
1336	if (pl011_tx_chars(uap, false)) {
1337		uap->im |= UART011_TXIM;
1338		pl011_write(uap->im, uap, REG_IMSC);
1339	}
1340}
1341
1342static void pl011_rs485_tx_start(struct uart_amba_port *uap)
1343{
1344	struct uart_port *port = &uap->port;
1345	u32 cr;
1346
1347	/* Enable transmitter */
1348	cr = pl011_read(uap, REG_CR);
1349	cr |= UART011_CR_TXE;
1350
1351	/* Disable receiver if half-duplex */
1352	if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
1353		cr &= ~UART011_CR_RXE;
1354
1355	if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
1356		cr &= ~UART011_CR_RTS;
1357	else
1358		cr |= UART011_CR_RTS;
1359
1360	pl011_write(cr, uap, REG_CR);
1361
1362	if (port->rs485.delay_rts_before_send)
1363		mdelay(port->rs485.delay_rts_before_send);
1364
1365	uap->rs485_tx_started = true;
1366}
1367
1368static void pl011_start_tx(struct uart_port *port)
1369{
1370	struct uart_amba_port *uap =
1371	    container_of(port, struct uart_amba_port, port);
1372
1373	if ((uap->port.rs485.flags & SER_RS485_ENABLED) &&
1374	    !uap->rs485_tx_started)
1375		pl011_rs485_tx_start(uap);
1376
1377	if (!pl011_dma_tx_start(uap))
1378		pl011_start_tx_pio(uap);
 
 
1379}
1380
1381static void pl011_stop_rx(struct uart_port *port)
1382{
1383	struct uart_amba_port *uap =
1384	    container_of(port, struct uart_amba_port, port);
1385
1386	uap->im &= ~(UART011_RXIM | UART011_RTIM | UART011_FEIM |
1387		     UART011_PEIM | UART011_BEIM | UART011_OEIM);
1388	pl011_write(uap->im, uap, REG_IMSC);
1389
1390	pl011_dma_rx_stop(uap);
1391}
1392
1393static void pl011_throttle_rx(struct uart_port *port)
1394{
1395	unsigned long flags;
1396
1397	uart_port_lock_irqsave(port, &flags);
1398	pl011_stop_rx(port);
1399	uart_port_unlock_irqrestore(port, flags);
1400}
1401
1402static void pl011_enable_ms(struct uart_port *port)
1403{
1404	struct uart_amba_port *uap =
1405	    container_of(port, struct uart_amba_port, port);
1406
1407	uap->im |= UART011_RIMIM | UART011_CTSMIM | UART011_DCDMIM | UART011_DSRMIM;
1408	pl011_write(uap->im, uap, REG_IMSC);
1409}
1410
1411static void pl011_rx_chars(struct uart_amba_port *uap)
1412__releases(&uap->port.lock)
1413__acquires(&uap->port.lock)
1414{
1415	pl011_fifo_to_tty(uap);
1416
1417	uart_port_unlock(&uap->port);
1418	tty_flip_buffer_push(&uap->port.state->port);
1419	/*
1420	 * If we were temporarily out of DMA mode for a while,
1421	 * attempt to switch back to DMA mode again.
1422	 */
1423	if (pl011_dma_rx_available(uap)) {
1424		if (pl011_dma_rx_trigger_dma(uap)) {
1425			dev_dbg(uap->port.dev,
1426				"could not trigger RX DMA job fall back to interrupt mode again\n");
1427			uap->im |= UART011_RXIM;
1428			pl011_write(uap->im, uap, REG_IMSC);
1429		} else {
1430#ifdef CONFIG_DMA_ENGINE
1431			/* Start Rx DMA poll */
1432			if (uap->dmarx.poll_rate) {
1433				uap->dmarx.last_jiffies = jiffies;
1434				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1435				mod_timer(&uap->dmarx.timer,
1436					  jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
 
1437			}
1438#endif
1439		}
1440	}
1441	uart_port_lock(&uap->port);
1442}
1443
1444static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1445			  bool from_irq)
1446{
1447	if (unlikely(!from_irq) &&
1448	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1449		return false; /* unable to transmit character */
1450
1451	pl011_write(c, uap, REG_DR);
1452	uap->port.icount.tx++;
1453
1454	return true;
1455}
1456
1457/* Returns true if tx interrupts have to be (kept) enabled  */
1458static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1459{
1460	struct circ_buf *xmit = &uap->port.state->xmit;
1461	int count = uap->fifosize >> 1;
1462
1463	if (uap->port.x_char) {
1464		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1465			return true;
1466		uap->port.x_char = 0;
1467		--count;
1468	}
1469	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1470		pl011_stop_tx(&uap->port);
1471		return false;
1472	}
1473
1474	/* If we are using DMA mode, try to send some characters. */
1475	if (pl011_dma_tx_irq(uap))
1476		return true;
1477
 
1478	do {
1479		if (likely(from_irq) && count-- == 0)
1480			break;
1481
1482		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1483			break;
1484
1485		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1486	} while (!uart_circ_empty(xmit));
 
 
 
1487
1488	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1489		uart_write_wakeup(&uap->port);
1490
1491	if (uart_circ_empty(xmit)) {
1492		pl011_stop_tx(&uap->port);
1493		return false;
1494	}
1495	return true;
1496}
1497
1498static void pl011_modem_status(struct uart_amba_port *uap)
1499{
1500	unsigned int status, delta;
1501
1502	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1503
1504	delta = status ^ uap->old_status;
1505	uap->old_status = status;
1506
1507	if (!delta)
1508		return;
1509
1510	if (delta & UART01x_FR_DCD)
1511		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1512
1513	if (delta & uap->vendor->fr_dsr)
1514		uap->port.icount.dsr++;
1515
1516	if (delta & uap->vendor->fr_cts)
1517		uart_handle_cts_change(&uap->port,
1518				       status & uap->vendor->fr_cts);
1519
1520	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1521}
1522
1523static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1524{
1525	if (!uap->vendor->cts_event_workaround)
1526		return;
1527
1528	/* workaround to make sure that all bits are unlocked.. */
1529	pl011_write(0x00, uap, REG_ICR);
1530
1531	/*
1532	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1533	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1534	 * so add 2 dummy reads
1535	 */
1536	pl011_read(uap, REG_ICR);
1537	pl011_read(uap, REG_ICR);
1538}
1539
1540static irqreturn_t pl011_int(int irq, void *dev_id)
1541{
1542	struct uart_amba_port *uap = dev_id;
1543	unsigned long flags;
1544	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1545	int handled = 0;
 
1546
1547	uart_port_lock_irqsave(&uap->port, &flags);
1548	status = pl011_read(uap, REG_RIS) & uap->im;
1549	if (status) {
1550		do {
1551			check_apply_cts_event_workaround(uap);
 
 
 
 
 
 
 
 
 
 
 
1552
1553			pl011_write(status & ~(UART011_TXIS | UART011_RTIS | UART011_RXIS),
1554				    uap, REG_ICR);
 
1555
1556			if (status & (UART011_RTIS | UART011_RXIS)) {
1557				if (pl011_dma_rx_running(uap))
1558					pl011_dma_rx_irq(uap);
1559				else
1560					pl011_rx_chars(uap);
1561			}
1562			if (status & (UART011_DSRMIS | UART011_DCDMIS |
1563				      UART011_CTSMIS | UART011_RIMIS))
1564				pl011_modem_status(uap);
1565			if (status & UART011_TXIS)
1566				pl011_tx_chars(uap, true);
1567
1568			if (pass_counter-- == 0)
1569				break;
1570
1571			status = pl011_read(uap, REG_RIS) & uap->im;
1572		} while (status != 0);
1573		handled = 1;
1574	}
1575
1576	uart_port_unlock_irqrestore(&uap->port, flags);
1577
1578	return IRQ_RETVAL(handled);
1579}
1580
1581static unsigned int pl011_tx_empty(struct uart_port *port)
1582{
1583	struct uart_amba_port *uap =
1584	    container_of(port, struct uart_amba_port, port);
1585
1586	/* Allow feature register bits to be inverted to work around errata */
1587	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1588
1589	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1590							0 : TIOCSER_TEMT;
1591}
1592
1593static void pl011_maybe_set_bit(bool cond, unsigned int *ptr, unsigned int mask)
1594{
1595	if (cond)
1596		*ptr |= mask;
1597}
1598
1599static unsigned int pl011_get_mctrl(struct uart_port *port)
1600{
1601	struct uart_amba_port *uap =
1602	    container_of(port, struct uart_amba_port, port);
1603	unsigned int result = 0;
1604	unsigned int status = pl011_read(uap, REG_FR);
1605
1606	pl011_maybe_set_bit(status & UART01x_FR_DCD, &result, TIOCM_CAR);
1607	pl011_maybe_set_bit(status & uap->vendor->fr_dsr, &result, TIOCM_DSR);
1608	pl011_maybe_set_bit(status & uap->vendor->fr_cts, &result, TIOCM_CTS);
1609	pl011_maybe_set_bit(status & uap->vendor->fr_ri, &result, TIOCM_RNG);
1610
 
 
 
 
 
 
 
 
 
1611	return result;
1612}
1613
1614static void pl011_assign_bit(bool cond, unsigned int *ptr, unsigned int mask)
1615{
1616	if (cond)
1617		*ptr |= mask;
1618	else
1619		*ptr &= ~mask;
1620}
1621
1622static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1623{
1624	struct uart_amba_port *uap =
1625	    container_of(port, struct uart_amba_port, port);
1626	unsigned int cr;
1627
1628	cr = pl011_read(uap, REG_CR);
1629
1630	pl011_assign_bit(mctrl & TIOCM_RTS, &cr, UART011_CR_RTS);
1631	pl011_assign_bit(mctrl & TIOCM_DTR, &cr, UART011_CR_DTR);
1632	pl011_assign_bit(mctrl & TIOCM_OUT1, &cr, UART011_CR_OUT1);
1633	pl011_assign_bit(mctrl & TIOCM_OUT2, &cr, UART011_CR_OUT2);
1634	pl011_assign_bit(mctrl & TIOCM_LOOP, &cr, UART011_CR_LBE);
 
 
 
 
 
 
1635
1636	if (port->status & UPSTAT_AUTORTS) {
1637		/* We need to disable auto-RTS if we want to turn RTS off */
1638		pl011_assign_bit(mctrl & TIOCM_RTS, &cr, UART011_CR_RTSEN);
1639	}
 
1640
1641	pl011_write(cr, uap, REG_CR);
1642}
1643
1644static void pl011_break_ctl(struct uart_port *port, int break_state)
1645{
1646	struct uart_amba_port *uap =
1647	    container_of(port, struct uart_amba_port, port);
1648	unsigned long flags;
1649	unsigned int lcr_h;
1650
1651	uart_port_lock_irqsave(&uap->port, &flags);
1652	lcr_h = pl011_read(uap, REG_LCRH_TX);
1653	if (break_state == -1)
1654		lcr_h |= UART01x_LCRH_BRK;
1655	else
1656		lcr_h &= ~UART01x_LCRH_BRK;
1657	pl011_write(lcr_h, uap, REG_LCRH_TX);
1658	uart_port_unlock_irqrestore(&uap->port, flags);
1659}
1660
1661#ifdef CONFIG_CONSOLE_POLL
1662
1663static void pl011_quiesce_irqs(struct uart_port *port)
1664{
1665	struct uart_amba_port *uap =
1666	    container_of(port, struct uart_amba_port, port);
1667
1668	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1669	/*
1670	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1671	 * we simply mask it. start_tx() will unmask it.
1672	 *
1673	 * Note we can race with start_tx(), and if the race happens, the
1674	 * polling user might get another interrupt just after we clear it.
1675	 * But it should be OK and can happen even w/o the race, e.g.
1676	 * controller immediately got some new data and raised the IRQ.
1677	 *
1678	 * And whoever uses polling routines assumes that it manages the device
1679	 * (including tx queue), so we're also fine with start_tx()'s caller
1680	 * side.
1681	 */
1682	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1683		    REG_IMSC);
1684}
1685
1686static int pl011_get_poll_char(struct uart_port *port)
1687{
1688	struct uart_amba_port *uap =
1689	    container_of(port, struct uart_amba_port, port);
1690	unsigned int status;
1691
1692	/*
1693	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1694	 * debugger.
1695	 */
1696	pl011_quiesce_irqs(port);
1697
1698	status = pl011_read(uap, REG_FR);
1699	if (status & UART01x_FR_RXFE)
1700		return NO_POLL_CHAR;
1701
1702	return pl011_read(uap, REG_DR);
1703}
1704
1705static void pl011_put_poll_char(struct uart_port *port, unsigned char ch)
 
1706{
1707	struct uart_amba_port *uap =
1708	    container_of(port, struct uart_amba_port, port);
1709
1710	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1711		cpu_relax();
1712
1713	pl011_write(ch, uap, REG_DR);
1714}
1715
1716#endif /* CONFIG_CONSOLE_POLL */
1717
1718static int pl011_hwinit(struct uart_port *port)
1719{
1720	struct uart_amba_port *uap =
1721	    container_of(port, struct uart_amba_port, port);
1722	int retval;
1723
1724	/* Optionaly enable pins to be muxed in and configured */
1725	pinctrl_pm_select_default_state(port->dev);
1726
1727	/*
1728	 * Try to enable the clock producer.
1729	 */
1730	retval = clk_prepare_enable(uap->clk);
1731	if (retval)
1732		return retval;
1733
1734	uap->port.uartclk = clk_get_rate(uap->clk);
1735
1736	/* Clear pending error and receive interrupts */
1737	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1738		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1739		    uap, REG_ICR);
1740
1741	/*
1742	 * Save interrupts enable mask, and enable RX interrupts in case if
1743	 * the interrupt is used for NMI entry.
1744	 */
1745	uap->im = pl011_read(uap, REG_IMSC);
1746	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1747
1748	if (dev_get_platdata(uap->port.dev)) {
1749		struct amba_pl011_data *plat;
1750
1751		plat = dev_get_platdata(uap->port.dev);
1752		if (plat->init)
1753			plat->init();
1754	}
1755	return 0;
1756}
1757
1758static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1759{
1760	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1761	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1762}
1763
1764static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1765{
1766	pl011_write(lcr_h, uap, REG_LCRH_RX);
1767	if (pl011_split_lcrh(uap)) {
1768		int i;
1769		/*
1770		 * Wait 10 PCLKs before writing LCRH_TX register,
1771		 * to get this delay write read only register 10 times
1772		 */
1773		for (i = 0; i < 10; ++i)
1774			pl011_write(0xff, uap, REG_MIS);
1775		pl011_write(lcr_h, uap, REG_LCRH_TX);
1776	}
1777}
1778
1779static int pl011_allocate_irq(struct uart_amba_port *uap)
1780{
1781	pl011_write(uap->im, uap, REG_IMSC);
1782
1783	return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1784}
1785
1786/*
1787 * Enable interrupts, only timeouts when using DMA
1788 * if initial RX DMA job failed, start in interrupt mode
1789 * as well.
1790 */
1791static void pl011_enable_interrupts(struct uart_amba_port *uap)
1792{
1793	unsigned long flags;
1794	unsigned int i;
1795
1796	uart_port_lock_irqsave(&uap->port, &flags);
1797
1798	/* Clear out any spuriously appearing RX interrupts */
1799	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1800
1801	/*
1802	 * RXIS is asserted only when the RX FIFO transitions from below
1803	 * to above the trigger threshold.  If the RX FIFO is already
1804	 * full to the threshold this can't happen and RXIS will now be
1805	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1806	 */
1807	for (i = 0; i < uap->fifosize * 2; ++i) {
1808		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1809			break;
1810
1811		pl011_read(uap, REG_DR);
1812	}
1813
1814	uap->im = UART011_RTIM;
1815	if (!pl011_dma_rx_running(uap))
1816		uap->im |= UART011_RXIM;
1817	pl011_write(uap->im, uap, REG_IMSC);
1818	uart_port_unlock_irqrestore(&uap->port, flags);
1819}
1820
1821static void pl011_unthrottle_rx(struct uart_port *port)
1822{
1823	struct uart_amba_port *uap = container_of(port, struct uart_amba_port, port);
1824	unsigned long flags;
1825
1826	uart_port_lock_irqsave(&uap->port, &flags);
1827
1828	uap->im = UART011_RTIM;
1829	if (!pl011_dma_rx_running(uap))
1830		uap->im |= UART011_RXIM;
1831
1832	pl011_write(uap->im, uap, REG_IMSC);
1833
1834	uart_port_unlock_irqrestore(&uap->port, flags);
1835}
1836
1837static int pl011_startup(struct uart_port *port)
1838{
1839	struct uart_amba_port *uap =
1840	    container_of(port, struct uart_amba_port, port);
1841	unsigned int cr;
1842	int retval;
1843
1844	retval = pl011_hwinit(port);
1845	if (retval)
1846		goto clk_dis;
1847
1848	retval = pl011_allocate_irq(uap);
 
 
 
 
 
1849	if (retval)
1850		goto clk_dis;
1851
1852	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1853
1854	uart_port_lock_irq(&uap->port);
1855
1856	cr = pl011_read(uap, REG_CR);
1857	cr &= UART011_CR_RTS | UART011_CR_DTR;
1858	cr |= UART01x_CR_UARTEN | UART011_CR_RXE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1859
1860	if (!(port->rs485.flags & SER_RS485_ENABLED))
1861		cr |= UART011_CR_TXE;
 
1862
1863	pl011_write(cr, uap, REG_CR);
 
 
 
1864
1865	uart_port_unlock_irq(&uap->port);
1866
1867	/*
1868	 * initialise the old status of the modem signals
1869	 */
1870	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1871
1872	/* Startup DMA */
1873	pl011_dma_startup(uap);
1874
1875	pl011_enable_interrupts(uap);
 
 
 
 
 
 
 
 
 
 
 
 
 
1876
1877	return 0;
1878
1879 clk_dis:
1880	clk_disable_unprepare(uap->clk);
1881	return retval;
1882}
1883
1884static int sbsa_uart_startup(struct uart_port *port)
 
1885{
1886	struct uart_amba_port *uap =
1887		container_of(port, struct uart_amba_port, port);
1888	int retval;
1889
1890	retval = pl011_hwinit(port);
1891	if (retval)
1892		return retval;
1893
1894	retval = pl011_allocate_irq(uap);
1895	if (retval)
1896		return retval;
1897
1898	/* The SBSA UART does not support any modem status lines. */
1899	uap->old_status = 0;
1900
1901	pl011_enable_interrupts(uap);
1902
1903	return 0;
1904}
1905
1906static void pl011_shutdown_channel(struct uart_amba_port *uap, unsigned int lcrh)
1907{
1908	unsigned long val;
1909
1910	val = pl011_read(uap, lcrh);
1911	val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1912	pl011_write(val, uap, lcrh);
1913}
1914
1915/*
1916 * disable the port. It should not disable RTS and DTR.
1917 * Also RTS and DTR state should be preserved to restore
1918 * it during startup().
1919 */
1920static void pl011_disable_uart(struct uart_amba_port *uap)
1921{
 
1922	unsigned int cr;
1923
1924	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1925	uart_port_lock_irq(&uap->port);
1926	cr = pl011_read(uap, REG_CR);
1927	cr &= UART011_CR_RTS | UART011_CR_DTR;
1928	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1929	pl011_write(cr, uap, REG_CR);
1930	uart_port_unlock_irq(&uap->port);
1931
1932	/*
1933	 * disable break condition and fifos
1934	 */
1935	pl011_shutdown_channel(uap, REG_LCRH_RX);
1936	if (pl011_split_lcrh(uap))
1937		pl011_shutdown_channel(uap, REG_LCRH_TX);
1938}
1939
1940static void pl011_disable_interrupts(struct uart_amba_port *uap)
1941{
1942	uart_port_lock_irq(&uap->port);
1943
1944	/* mask all interrupts and clear all pending ones */
1945	uap->im = 0;
1946	pl011_write(uap->im, uap, REG_IMSC);
1947	pl011_write(0xffff, uap, REG_ICR);
1948
1949	uart_port_unlock_irq(&uap->port);
1950}
1951
1952static void pl011_shutdown(struct uart_port *port)
1953{
1954	struct uart_amba_port *uap =
1955		container_of(port, struct uart_amba_port, port);
1956
1957	pl011_disable_interrupts(uap);
1958
1959	pl011_dma_shutdown(uap);
1960
1961	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1962		pl011_rs485_tx_stop(uap);
1963
1964	free_irq(uap->port.irq, uap);
1965
1966	pl011_disable_uart(uap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1967
1968	/*
1969	 * Shut down the clock producer
1970	 */
1971	clk_disable_unprepare(uap->clk);
1972	/* Optionally let pins go into sleep states */
1973	pinctrl_pm_select_sleep_state(port->dev);
1974
1975	if (dev_get_platdata(uap->port.dev)) {
1976		struct amba_pl011_data *plat;
1977
1978		plat = dev_get_platdata(uap->port.dev);
1979		if (plat->exit)
1980			plat->exit();
1981	}
1982
1983	if (uap->port.ops->flush_buffer)
1984		uap->port.ops->flush_buffer(port);
1985}
1986
1987static void sbsa_uart_shutdown(struct uart_port *port)
1988{
1989	struct uart_amba_port *uap =
1990		container_of(port, struct uart_amba_port, port);
1991
1992	pl011_disable_interrupts(uap);
1993
1994	free_irq(uap->port.irq, uap);
1995
1996	if (uap->port.ops->flush_buffer)
1997		uap->port.ops->flush_buffer(port);
1998}
1999
2000static void
2001pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
2002{
2003	port->read_status_mask = UART011_DR_OE | 255;
2004	if (termios->c_iflag & INPCK)
2005		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
2006	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
2007		port->read_status_mask |= UART011_DR_BE;
2008
2009	/*
2010	 * Characters to ignore
2011	 */
2012	port->ignore_status_mask = 0;
2013	if (termios->c_iflag & IGNPAR)
2014		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
2015	if (termios->c_iflag & IGNBRK) {
2016		port->ignore_status_mask |= UART011_DR_BE;
2017		/*
2018		 * If we're ignoring parity and break indicators,
2019		 * ignore overruns too (for real raw support).
2020		 */
2021		if (termios->c_iflag & IGNPAR)
2022			port->ignore_status_mask |= UART011_DR_OE;
2023	}
2024
2025	/*
2026	 * Ignore all characters if CREAD is not set.
2027	 */
2028	if ((termios->c_cflag & CREAD) == 0)
2029		port->ignore_status_mask |= UART_DUMMY_DR_RX;
2030}
2031
2032static void
2033pl011_set_termios(struct uart_port *port, struct ktermios *termios,
2034		  const struct ktermios *old)
2035{
2036	struct uart_amba_port *uap =
2037	    container_of(port, struct uart_amba_port, port);
2038	unsigned int lcr_h, old_cr;
2039	unsigned long flags;
2040	unsigned int baud, quot, clkdiv;
2041	unsigned int bits;
2042
2043	if (uap->vendor->oversampling)
2044		clkdiv = 8;
2045	else
2046		clkdiv = 16;
2047
2048	/*
2049	 * Ask the core to calculate the divisor for us.
2050	 */
2051	baud = uart_get_baud_rate(port, termios, old, 0,
2052				  port->uartclk / clkdiv);
2053#ifdef CONFIG_DMA_ENGINE
2054	/*
2055	 * Adjust RX DMA polling rate with baud rate if not specified.
2056	 */
2057	if (uap->dmarx.auto_poll_rate)
2058		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
2059#endif
2060
2061	if (baud > port->uartclk / 16)
2062		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
2063	else
2064		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
2065
2066	switch (termios->c_cflag & CSIZE) {
2067	case CS5:
2068		lcr_h = UART01x_LCRH_WLEN_5;
2069		break;
2070	case CS6:
2071		lcr_h = UART01x_LCRH_WLEN_6;
2072		break;
2073	case CS7:
2074		lcr_h = UART01x_LCRH_WLEN_7;
2075		break;
2076	default: // CS8
2077		lcr_h = UART01x_LCRH_WLEN_8;
2078		break;
2079	}
2080	if (termios->c_cflag & CSTOPB)
2081		lcr_h |= UART01x_LCRH_STP2;
2082	if (termios->c_cflag & PARENB) {
2083		lcr_h |= UART01x_LCRH_PEN;
2084		if (!(termios->c_cflag & PARODD))
2085			lcr_h |= UART01x_LCRH_EPS;
2086		if (termios->c_cflag & CMSPAR)
2087			lcr_h |= UART011_LCRH_SPS;
2088	}
2089	if (uap->fifosize > 1)
2090		lcr_h |= UART01x_LCRH_FEN;
2091
2092	bits = tty_get_frame_size(termios->c_cflag);
2093
2094	uart_port_lock_irqsave(port, &flags);
2095
2096	/*
2097	 * Update the per-port timeout.
2098	 */
2099	uart_update_timeout(port, termios->c_cflag, baud);
2100
 
 
 
 
 
 
2101	/*
2102	 * Calculate the approximated time it takes to transmit one character
2103	 * with the given baud rate. We use this as the poll interval when we
2104	 * wait for the tx queue to empty.
2105	 */
2106	uap->rs485_tx_drain_interval = DIV_ROUND_UP(bits * 1000 * 1000, baud);
 
 
 
 
 
 
 
 
 
 
 
2107
2108	pl011_setup_status_masks(port, termios);
 
 
 
 
2109
2110	if (UART_ENABLE_MS(port, termios->c_cflag))
2111		pl011_enable_ms(port);
2112
2113	if (port->rs485.flags & SER_RS485_ENABLED)
2114		termios->c_cflag &= ~CRTSCTS;
2115
2116	old_cr = pl011_read(uap, REG_CR);
2117
2118	if (termios->c_cflag & CRTSCTS) {
2119		if (old_cr & UART011_CR_RTS)
2120			old_cr |= UART011_CR_RTSEN;
2121
2122		old_cr |= UART011_CR_CTSEN;
2123		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2124	} else {
2125		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2126		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2127	}
2128
2129	if (uap->vendor->oversampling) {
2130		if (baud > port->uartclk / 16)
2131			old_cr |= ST_UART011_CR_OVSFACT;
2132		else
2133			old_cr &= ~ST_UART011_CR_OVSFACT;
2134	}
2135
2136	/*
2137	 * Workaround for the ST Micro oversampling variants to
2138	 * increase the bitrate slightly, by lowering the divisor,
2139	 * to avoid delayed sampling of start bit at high speeds,
2140	 * else we see data corruption.
2141	 */
2142	if (uap->vendor->oversampling) {
2143		if (baud >= 3000000 && baud < 3250000 && quot > 1)
2144			quot -= 1;
2145		else if (baud > 3250000 && quot > 2)
2146			quot -= 2;
2147	}
2148	/* Set baud rate */
2149	pl011_write(quot & 0x3f, uap, REG_FBRD);
2150	pl011_write(quot >> 6, uap, REG_IBRD);
2151
2152	/*
2153	 * ----------v----------v----------v----------v-----
2154	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2155	 * REG_FBRD & REG_IBRD.
2156	 * ----------^----------^----------^----------^-----
2157	 */
2158	pl011_write_lcr_h(uap, lcr_h);
 
2159
2160	/*
2161	 * Receive was disabled by pl011_disable_uart during shutdown.
2162	 * Need to reenable receive if you need to use a tty_driver
2163	 * returns from tty_find_polling_driver() after a port shutdown.
2164	 */
2165	old_cr |= UART011_CR_RXE;
2166	pl011_write(old_cr, uap, REG_CR);
2167
2168	uart_port_unlock_irqrestore(port, flags);
2169}
2170
2171static void
2172sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2173		      const struct ktermios *old)
2174{
2175	struct uart_amba_port *uap =
2176	    container_of(port, struct uart_amba_port, port);
2177	unsigned long flags;
2178
2179	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2180
2181	/* The SBSA UART only supports 8n1 without hardware flow control. */
2182	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2183	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2184	termios->c_cflag |= CS8 | CLOCAL;
2185
2186	uart_port_lock_irqsave(port, &flags);
2187	uart_update_timeout(port, CS8, uap->fixed_baud);
2188	pl011_setup_status_masks(port, termios);
2189	uart_port_unlock_irqrestore(port, flags);
2190}
2191
2192static const char *pl011_type(struct uart_port *port)
 
 
 
2193{
2194	struct uart_amba_port *uap =
2195	    container_of(port, struct uart_amba_port, port);
2196	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2197}
2198
2199/*
2200 * Configure/autoconfigure the port.
2201 */
2202static void pl011_config_port(struct uart_port *port, int flags)
2203{
2204	if (flags & UART_CONFIG_TYPE)
2205		port->type = PORT_AMBA;
 
 
2206}
2207
2208/*
2209 * verify the new serial_struct (for TIOCSSERIAL).
2210 */
2211static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2212{
2213	int ret = 0;
2214
2215	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2216		ret = -EINVAL;
2217	if (ser->irq < 0 || ser->irq >= nr_irqs)
2218		ret = -EINVAL;
2219	if (ser->baud_base < 9600)
2220		ret = -EINVAL;
2221	if (port->mapbase != (unsigned long)ser->iomem_base)
2222		ret = -EINVAL;
2223	return ret;
2224}
2225
2226static int pl011_rs485_config(struct uart_port *port, struct ktermios *termios,
2227			      struct serial_rs485 *rs485)
2228{
2229	struct uart_amba_port *uap =
2230		container_of(port, struct uart_amba_port, port);
2231
2232	if (port->rs485.flags & SER_RS485_ENABLED)
2233		pl011_rs485_tx_stop(uap);
2234
2235	/* Make sure auto RTS is disabled */
2236	if (rs485->flags & SER_RS485_ENABLED) {
2237		u32 cr = pl011_read(uap, REG_CR);
2238
2239		cr &= ~UART011_CR_RTSEN;
2240		pl011_write(cr, uap, REG_CR);
2241		port->status &= ~UPSTAT_AUTORTS;
2242	}
2243
2244	return 0;
2245}
2246
2247static const struct uart_ops amba_pl011_pops = {
2248	.tx_empty	= pl011_tx_empty,
2249	.set_mctrl	= pl011_set_mctrl,
2250	.get_mctrl	= pl011_get_mctrl,
2251	.stop_tx	= pl011_stop_tx,
2252	.start_tx	= pl011_start_tx,
2253	.stop_rx	= pl011_stop_rx,
2254	.throttle	= pl011_throttle_rx,
2255	.unthrottle	= pl011_unthrottle_rx,
2256	.enable_ms	= pl011_enable_ms,
2257	.break_ctl	= pl011_break_ctl,
2258	.startup	= pl011_startup,
2259	.shutdown	= pl011_shutdown,
2260	.flush_buffer	= pl011_dma_flush_buffer,
2261	.set_termios	= pl011_set_termios,
2262	.type		= pl011_type,
2263	.config_port	= pl011_config_port,
2264	.verify_port	= pl011_verify_port,
2265#ifdef CONFIG_CONSOLE_POLL
2266	.poll_init     = pl011_hwinit,
2267	.poll_get_char = pl011_get_poll_char,
2268	.poll_put_char = pl011_put_poll_char,
2269#endif
2270};
2271
2272static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2273{
2274}
2275
2276static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2277{
2278	return 0;
2279}
2280
2281static const struct uart_ops sbsa_uart_pops = {
2282	.tx_empty	= pl011_tx_empty,
2283	.set_mctrl	= sbsa_uart_set_mctrl,
2284	.get_mctrl	= sbsa_uart_get_mctrl,
2285	.stop_tx	= pl011_stop_tx,
2286	.start_tx	= pl011_start_tx,
2287	.stop_rx	= pl011_stop_rx,
2288	.startup	= sbsa_uart_startup,
2289	.shutdown	= sbsa_uart_shutdown,
2290	.set_termios	= sbsa_uart_set_termios,
2291	.type		= pl011_type,
2292	.config_port	= pl011_config_port,
2293	.verify_port	= pl011_verify_port,
2294#ifdef CONFIG_CONSOLE_POLL
2295	.poll_init     = pl011_hwinit,
2296	.poll_get_char = pl011_get_poll_char,
2297	.poll_put_char = pl011_put_poll_char,
2298#endif
2299};
2300
2301static struct uart_amba_port *amba_ports[UART_NR];
2302
2303#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2304
2305static void pl011_console_putchar(struct uart_port *port, unsigned char ch)
2306{
2307	struct uart_amba_port *uap =
2308	    container_of(port, struct uart_amba_port, port);
2309
2310	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2311		cpu_relax();
2312	pl011_write(ch, uap, REG_DR);
2313}
2314
2315static void
2316pl011_console_write(struct console *co, const char *s, unsigned int count)
2317{
2318	struct uart_amba_port *uap = amba_ports[co->index];
2319	unsigned int old_cr = 0, new_cr;
2320	unsigned long flags;
2321	int locked = 1;
2322
2323	clk_enable(uap->clk);
2324
2325	local_irq_save(flags);
2326	if (uap->port.sysrq)
2327		locked = 0;
2328	else if (oops_in_progress)
2329		locked = uart_port_trylock(&uap->port);
2330	else
2331		uart_port_lock(&uap->port);
2332
2333	/*
2334	 *	First save the CR then disable the interrupts
2335	 */
2336	if (!uap->vendor->always_enabled) {
2337		old_cr = pl011_read(uap, REG_CR);
2338		new_cr = old_cr & ~UART011_CR_CTSEN;
2339		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2340		pl011_write(new_cr, uap, REG_CR);
2341	}
2342
2343	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2344
2345	/*
2346	 *	Finally, wait for transmitter to become empty and restore the
2347	 *	TCR. Allow feature register bits to be inverted to work around
2348	 *	errata.
2349	 */
2350	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2351						& uap->vendor->fr_busy)
2352		cpu_relax();
2353	if (!uap->vendor->always_enabled)
2354		pl011_write(old_cr, uap, REG_CR);
2355
2356	if (locked)
2357		uart_port_unlock(&uap->port);
2358	local_irq_restore(flags);
2359
2360	clk_disable(uap->clk);
2361}
2362
2363static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2364				      int *parity, int *bits)
2365{
2366	unsigned int lcr_h, ibrd, fbrd;
2367
2368	if (!(pl011_read(uap, REG_CR) & UART01x_CR_UARTEN))
2369		return;
2370
2371	lcr_h = pl011_read(uap, REG_LCRH_TX);
 
 
 
 
 
 
 
2372
2373	*parity = 'n';
2374	if (lcr_h & UART01x_LCRH_PEN) {
2375		if (lcr_h & UART01x_LCRH_EPS)
2376			*parity = 'e';
2377		else
2378			*parity = 'o';
2379	}
2380
2381	if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2382		*bits = 7;
2383	else
2384		*bits = 8;
2385
2386	ibrd = pl011_read(uap, REG_IBRD);
2387	fbrd = pl011_read(uap, REG_FBRD);
2388
2389	*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2390
2391	if (uap->vendor->oversampling &&
2392	    (pl011_read(uap, REG_CR) & ST_UART011_CR_OVSFACT))
2393		*baud *= 2;
 
2394}
2395
2396static int pl011_console_setup(struct console *co, char *options)
2397{
2398	struct uart_amba_port *uap;
2399	int baud = 38400;
2400	int bits = 8;
2401	int parity = 'n';
2402	int flow = 'n';
2403	int ret;
2404
2405	/*
2406	 * Check whether an invalid uart number has been specified, and
2407	 * if so, search for the first available port that does have
2408	 * console support.
2409	 */
2410	if (co->index >= UART_NR)
2411		co->index = 0;
2412	uap = amba_ports[co->index];
2413	if (!uap)
2414		return -ENODEV;
2415
2416	/* Allow pins to be muxed in and configured */
2417	pinctrl_pm_select_default_state(uap->port.dev);
2418
2419	ret = clk_prepare(uap->clk);
2420	if (ret)
2421		return ret;
2422
2423	if (dev_get_platdata(uap->port.dev)) {
2424		struct amba_pl011_data *plat;
2425
2426		plat = dev_get_platdata(uap->port.dev);
2427		if (plat->init)
2428			plat->init();
2429	}
2430
2431	uap->port.uartclk = clk_get_rate(uap->clk);
2432
2433	if (uap->vendor->fixed_options) {
2434		baud = uap->fixed_baud;
2435	} else {
2436		if (options)
2437			uart_parse_options(options,
2438					   &baud, &parity, &bits, &flow);
2439		else
2440			pl011_console_get_options(uap, &baud, &parity, &bits);
2441	}
2442
2443	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2444}
2445
2446/**
2447 *	pl011_console_match - non-standard console matching
2448 *	@co:	  registering console
2449 *	@name:	  name from console command line
2450 *	@idx:	  index from console command line
2451 *	@options: ptr to option string from console command line
2452 *
2453 *	Only attempts to match console command lines of the form:
2454 *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2455 *	    console=pl011,0x<addr>[,<options>]
2456 *	This form is used to register an initial earlycon boot console and
2457 *	replace it with the amba_console at pl011 driver init.
2458 *
2459 *	Performs console setup for a match (as required by interface)
2460 *	If no <options> are specified, then assume the h/w is already setup.
2461 *
2462 *	Returns 0 if console matches; otherwise non-zero to use default matching
2463 */
2464static int pl011_console_match(struct console *co, char *name, int idx,
2465			       char *options)
2466{
2467	unsigned char iotype;
2468	resource_size_t addr;
2469	int i;
2470
2471	/*
2472	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2473	 * have a distinct console name, so make sure we check for that.
2474	 * The actual implementation of the erratum occurs in the probe
2475	 * function.
2476	 */
2477	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2478		return -ENODEV;
2479
2480	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2481		return -ENODEV;
2482
2483	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2484		return -ENODEV;
2485
2486	/* try to match the port specified on the command line */
2487	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2488		struct uart_port *port;
2489
2490		if (!amba_ports[i])
2491			continue;
2492
2493		port = &amba_ports[i]->port;
2494
2495		if (port->mapbase != addr)
2496			continue;
2497
2498		co->index = i;
2499		port->cons = co;
2500		return pl011_console_setup(co, options);
2501	}
2502
2503	return -ENODEV;
2504}
2505
2506static struct uart_driver amba_reg;
2507static struct console amba_console = {
2508	.name		= "ttyAMA",
2509	.write		= pl011_console_write,
2510	.device		= uart_console_device,
2511	.setup		= pl011_console_setup,
2512	.match		= pl011_console_match,
2513	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2514	.index		= -1,
2515	.data		= &amba_reg,
2516};
2517
2518#define AMBA_CONSOLE	(&amba_console)
2519
2520static void qdf2400_e44_putc(struct uart_port *port, unsigned char c)
2521{
2522	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2523		cpu_relax();
2524	writel(c, port->membase + UART01x_DR);
2525	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2526		cpu_relax();
2527}
2528
2529static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned int n)
2530{
2531	struct earlycon_device *dev = con->data;
2532
2533	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2534}
2535
2536static void pl011_putc(struct uart_port *port, unsigned char c)
2537{
2538	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2539		cpu_relax();
2540	if (port->iotype == UPIO_MEM32)
2541		writel(c, port->membase + UART01x_DR);
2542	else
2543		writeb(c, port->membase + UART01x_DR);
2544	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2545		cpu_relax();
2546}
2547
2548static void pl011_early_write(struct console *con, const char *s, unsigned int n)
2549{
2550	struct earlycon_device *dev = con->data;
2551
2552	uart_console_write(&dev->port, s, n, pl011_putc);
2553}
2554
2555#ifdef CONFIG_CONSOLE_POLL
2556static int pl011_getc(struct uart_port *port)
2557{
2558	if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2559		return NO_POLL_CHAR;
2560
2561	if (port->iotype == UPIO_MEM32)
2562		return readl(port->membase + UART01x_DR);
2563	else
2564		return readb(port->membase + UART01x_DR);
2565}
2566
2567static int pl011_early_read(struct console *con, char *s, unsigned int n)
2568{
2569	struct earlycon_device *dev = con->data;
2570	int ch, num_read = 0;
2571
2572	while (num_read < n) {
2573		ch = pl011_getc(&dev->port);
2574		if (ch == NO_POLL_CHAR)
2575			break;
2576
2577		s[num_read++] = ch;
2578	}
2579
2580	return num_read;
2581}
2582#else
2583#define pl011_early_read NULL
2584#endif
2585
2586/*
2587 * On non-ACPI systems, earlycon is enabled by specifying
2588 * "earlycon=pl011,<address>" on the kernel command line.
2589 *
2590 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2591 * by specifying only "earlycon" on the command line.  Because it requires
2592 * SPCR, the console starts after ACPI is parsed, which is later than a
2593 * traditional early console.
2594 *
2595 * To get the traditional early console that starts before ACPI is parsed,
2596 * specify the full "earlycon=pl011,<address>" option.
2597 */
2598static int __init pl011_early_console_setup(struct earlycon_device *device,
2599					    const char *opt)
2600{
2601	if (!device->port.membase)
2602		return -ENODEV;
2603
2604	device->con->write = pl011_early_write;
2605	device->con->read = pl011_early_read;
2606
2607	return 0;
2608}
2609
2610OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2611
2612OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2613
2614/*
2615 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2616 * Erratum 44, traditional earlycon can be enabled by specifying
2617 * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2618 *
2619 * Alternatively, you can just specify "earlycon", and the early console
2620 * will be enabled with the information from the SPCR table.  In this
2621 * case, the SPCR code will detect the need for the E44 work-around,
2622 * and set the console name to "qdf2400_e44".
2623 */
2624static int __init
2625qdf2400_e44_early_console_setup(struct earlycon_device *device,
2626				const char *opt)
2627{
2628	if (!device->port.membase)
2629		return -ENODEV;
2630
2631	device->con->write = qdf2400_e44_early_write;
2632	return 0;
2633}
2634
2635EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2636
2637#else
2638#define AMBA_CONSOLE	NULL
2639#endif
2640
2641static struct uart_driver amba_reg = {
2642	.owner			= THIS_MODULE,
2643	.driver_name		= "ttyAMA",
2644	.dev_name		= "ttyAMA",
2645	.major			= SERIAL_AMBA_MAJOR,
2646	.minor			= SERIAL_AMBA_MINOR,
2647	.nr			= UART_NR,
2648	.cons			= AMBA_CONSOLE,
2649};
2650
2651static int pl011_probe_dt_alias(int index, struct device *dev)
2652{
2653	struct device_node *np;
2654	static bool seen_dev_with_alias;
2655	static bool seen_dev_without_alias;
2656	int ret = index;
2657
2658	if (!IS_ENABLED(CONFIG_OF))
2659		return ret;
2660
2661	np = dev->of_node;
2662	if (!np)
2663		return ret;
2664
2665	ret = of_alias_get_id(np, "serial");
2666	if (ret < 0) {
2667		seen_dev_without_alias = true;
2668		ret = index;
2669	} else {
2670		seen_dev_with_alias = true;
2671		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret]) {
2672			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2673			ret = index;
2674		}
2675	}
2676
2677	if (seen_dev_with_alias && seen_dev_without_alias)
2678		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2679
2680	return ret;
2681}
2682
2683/* unregisters the driver also if no more ports are left */
2684static void pl011_unregister_port(struct uart_amba_port *uap)
2685{
2686	int i;
2687	bool busy = false;
2688
2689	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2690		if (amba_ports[i] == uap)
2691			amba_ports[i] = NULL;
2692		else if (amba_ports[i])
2693			busy = true;
2694	}
2695	pl011_dma_remove(uap);
2696	if (!busy)
2697		uart_unregister_driver(&amba_reg);
2698}
2699
2700static int pl011_find_free_port(void)
2701{
2702	int i;
 
 
 
2703
2704	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2705		if (!amba_ports[i])
2706			return i;
2707
2708	return -EBUSY;
2709}
2710
2711static int pl011_get_rs485_mode(struct uart_amba_port *uap)
2712{
2713	struct uart_port *port = &uap->port;
2714	int ret;
2715
2716	ret = uart_get_rs485_mode(port);
2717	if (ret)
2718		return ret;
2719
2720	return 0;
2721}
 
 
2722
2723static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2724			    struct resource *mmiobase, int index)
2725{
2726	void __iomem *base;
2727	int ret;
 
2728
2729	base = devm_ioremap_resource(dev, mmiobase);
2730	if (IS_ERR(base))
2731		return PTR_ERR(base);
 
 
 
 
 
2732
2733	index = pl011_probe_dt_alias(index, dev);
 
 
 
 
2734
2735	uap->port.dev = dev;
2736	uap->port.mapbase = mmiobase->start;
 
 
 
 
 
2737	uap->port.membase = base;
 
 
2738	uap->port.fifosize = uap->fifosize;
2739	uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2740	uap->port.flags = UPF_BOOT_AUTOCONF;
2741	uap->port.line = index;
2742
2743	ret = pl011_get_rs485_mode(uap);
2744	if (ret)
2745		return ret;
2746
2747	amba_ports[index] = uap;
 
 
2748
2749	return 0;
2750}
2751
2752static int pl011_register_port(struct uart_amba_port *uap)
2753{
2754	int ret, i;
2755
2756	/* Ensure interrupts from this UART are masked and cleared */
2757	pl011_write(0, uap, REG_IMSC);
2758	pl011_write(0xffff, uap, REG_ICR);
2759
2760	if (!amba_reg.state) {
2761		ret = uart_register_driver(&amba_reg);
2762		if (ret < 0) {
2763			dev_err(uap->port.dev,
2764				"Failed to register AMBA-PL011 driver\n");
2765			for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2766				if (amba_ports[i] == uap)
2767					amba_ports[i] = NULL;
2768			return ret;
2769		}
2770	}
2771
2772	ret = uart_add_one_port(&amba_reg, &uap->port);
2773	if (ret)
2774		pl011_unregister_port(uap);
2775
2776	return ret;
2777}
2778
2779static const struct serial_rs485 pl011_rs485_supported = {
2780	.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2781		 SER_RS485_RX_DURING_TX,
2782	.delay_rts_before_send = 1,
2783	.delay_rts_after_send = 1,
2784};
2785
2786static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2787{
2788	struct uart_amba_port *uap;
2789	struct vendor_data *vendor = id->data;
2790	int portnr, ret;
2791	u32 val;
2792
2793	portnr = pl011_find_free_port();
2794	if (portnr < 0)
2795		return portnr;
2796
2797	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2798			   GFP_KERNEL);
2799	if (!uap)
2800		return -ENOMEM;
2801
2802	uap->clk = devm_clk_get(&dev->dev, NULL);
2803	if (IS_ERR(uap->clk))
2804		return PTR_ERR(uap->clk);
2805
2806	uap->reg_offset = vendor->reg_offset;
2807	uap->vendor = vendor;
2808	uap->fifosize = vendor->get_fifosize(dev);
2809	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2810	uap->port.irq = dev->irq[0];
2811	uap->port.ops = &amba_pl011_pops;
2812	uap->port.rs485_config = pl011_rs485_config;
2813	uap->port.rs485_supported = pl011_rs485_supported;
2814	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2815
2816	if (device_property_read_u32(&dev->dev, "reg-io-width", &val) == 0) {
2817		switch (val) {
2818		case 1:
2819			uap->port.iotype = UPIO_MEM;
2820			break;
2821		case 4:
2822			uap->port.iotype = UPIO_MEM32;
2823			break;
2824		default:
2825			dev_warn(&dev->dev, "unsupported reg-io-width (%d)\n",
2826				 val);
2827			return -EINVAL;
2828		}
2829	}
2830
2831	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2832	if (ret)
2833		return ret;
2834
2835	amba_set_drvdata(dev, uap);
2836
2837	return pl011_register_port(uap);
2838}
2839
2840static void pl011_remove(struct amba_device *dev)
2841{
2842	struct uart_amba_port *uap = amba_get_drvdata(dev);
 
 
2843
2844	uart_remove_one_port(&amba_reg, &uap->port);
2845	pl011_unregister_port(uap);
 
 
 
 
 
 
 
 
 
 
2846}
2847
2848#ifdef CONFIG_PM_SLEEP
2849static int pl011_suspend(struct device *dev)
2850{
2851	struct uart_amba_port *uap = dev_get_drvdata(dev);
2852
2853	if (!uap)
2854		return -EINVAL;
2855
2856	return uart_suspend_port(&amba_reg, &uap->port);
2857}
2858
2859static int pl011_resume(struct device *dev)
2860{
2861	struct uart_amba_port *uap = dev_get_drvdata(dev);
2862
2863	if (!uap)
2864		return -EINVAL;
2865
2866	return uart_resume_port(&amba_reg, &uap->port);
2867}
2868#endif
2869
2870static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2871
2872#ifdef CONFIG_ACPI_SPCR_TABLE
2873static void qpdf2400_erratum44_workaround(struct device *dev,
2874					  struct uart_amba_port *uap)
2875{
2876	if (!qdf2400_e44_present)
2877		return;
2878
2879	dev_info(dev, "working around QDF2400 SoC erratum 44\n");
2880	uap->vendor = &vendor_qdt_qdf2400_e44;
2881}
2882#else
2883static void qpdf2400_erratum44_workaround(struct device *dev,
2884					  struct uart_amba_port *uap)
2885{ /* empty */ }
2886#endif
2887
2888static int sbsa_uart_probe(struct platform_device *pdev)
2889{
2890	struct uart_amba_port *uap;
2891	struct resource *r;
2892	int portnr, ret;
2893	int baudrate;
2894
2895	/*
2896	 * Check the mandatory baud rate parameter in the DT node early
2897	 * so that we can easily exit with the error.
2898	 */
2899	if (pdev->dev.of_node) {
2900		struct device_node *np = pdev->dev.of_node;
2901
2902		ret = of_property_read_u32(np, "current-speed", &baudrate);
2903		if (ret)
2904			return ret;
2905	} else {
2906		baudrate = 115200;
2907	}
2908
2909	portnr = pl011_find_free_port();
2910	if (portnr < 0)
2911		return portnr;
2912
2913	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2914			   GFP_KERNEL);
2915	if (!uap)
2916		return -ENOMEM;
2917
2918	ret = platform_get_irq(pdev, 0);
2919	if (ret < 0)
2920		return ret;
2921	uap->port.irq	= ret;
2922
2923	uap->vendor = &vendor_sbsa;
2924	qpdf2400_erratum44_workaround(&pdev->dev, uap);
2925
2926	uap->reg_offset	= uap->vendor->reg_offset;
2927	uap->fifosize	= 32;
2928	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2929	uap->port.ops	= &sbsa_uart_pops;
2930	uap->fixed_baud = baudrate;
2931
2932	snprintf(uap->type, sizeof(uap->type), "SBSA");
2933
2934	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2935
2936	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2937	if (ret)
2938		return ret;
2939
2940	platform_set_drvdata(pdev, uap);
2941
2942	return pl011_register_port(uap);
2943}
2944
2945static void sbsa_uart_remove(struct platform_device *pdev)
2946{
2947	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2948
2949	uart_remove_one_port(&amba_reg, &uap->port);
2950	pl011_unregister_port(uap);
2951}
2952
2953static const struct of_device_id sbsa_uart_of_match[] = {
2954	{ .compatible = "arm,sbsa-uart", },
2955	{},
2956};
2957MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2958
2959static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = {
2960	{ "ARMH0011", 0 },
2961	{ "ARMHB000", 0 },
2962	{},
2963};
2964MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2965
2966static struct platform_driver arm_sbsa_uart_platform_driver = {
2967	.probe		= sbsa_uart_probe,
2968	.remove_new	= sbsa_uart_remove,
2969	.driver	= {
2970		.name	= "sbsa-uart",
2971		.pm	= &pl011_dev_pm_ops,
2972		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2973		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2974		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2975	},
2976};
2977
2978static const struct amba_id pl011_ids[] = {
2979	{
2980		.id	= 0x00041011,
2981		.mask	= 0x000fffff,
2982		.data	= &vendor_arm,
2983	},
2984	{
2985		.id	= 0x00380802,
2986		.mask	= 0x00ffffff,
2987		.data	= &vendor_st,
2988	},
2989	{ 0, 0 },
2990};
2991
2992MODULE_DEVICE_TABLE(amba, pl011_ids);
2993
2994static struct amba_driver pl011_driver = {
2995	.drv = {
2996		.name	= "uart-pl011",
2997		.pm	= &pl011_dev_pm_ops,
2998		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2999	},
3000	.id_table	= pl011_ids,
3001	.probe		= pl011_probe,
3002	.remove		= pl011_remove,
3003};
3004
3005static int __init pl011_init(void)
3006{
3007	pr_info("Serial: AMBA PL011 UART driver\n");
3008
3009	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
3010		pr_warn("could not register SBSA UART platform driver\n");
3011	return amba_driver_register(&pl011_driver);
3012}
3013
3014static void __exit pl011_exit(void)
3015{
3016	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
3017	amba_driver_unregister(&pl011_driver);
3018}
3019
3020/*
3021 * While this can be a module, if builtin it's most likely the console
3022 * So let's leave module_exit but move module_init to an earlier place
3023 */
3024arch_initcall(pl011_init);
3025module_exit(pl011_exit);
3026
3027MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
3028MODULE_DESCRIPTION("ARM AMBA serial port driver");
3029MODULE_LICENSE("GPL");
v3.15
 
   1/*
   2 *  Driver for AMBA serial ports
   3 *
   4 *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
   5 *
   6 *  Copyright 1999 ARM Limited
   7 *  Copyright (C) 2000 Deep Blue Solutions Ltd.
   8 *  Copyright (C) 2010 ST-Ericsson SA
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or
  13 * (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23 *
  24 * This is a generic driver for ARM AMBA-type serial ports.  They
  25 * have a lot of 16550-like features, but are not register compatible.
  26 * Note that although they do have CTS, DCD and DSR inputs, they do
  27 * not have an RI input, nor do they have DTR or RTS outputs.  If
  28 * required, these have to be supplied via some other means (eg, GPIO)
  29 * and hooked into this driver.
  30 */
  31
  32
  33#if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  34#define SUPPORT_SYSRQ
  35#endif
  36
  37#include <linux/module.h>
  38#include <linux/ioport.h>
  39#include <linux/init.h>
  40#include <linux/console.h>
 
  41#include <linux/sysrq.h>
  42#include <linux/device.h>
  43#include <linux/tty.h>
  44#include <linux/tty_flip.h>
  45#include <linux/serial_core.h>
  46#include <linux/serial.h>
  47#include <linux/amba/bus.h>
  48#include <linux/amba/serial.h>
  49#include <linux/clk.h>
  50#include <linux/slab.h>
  51#include <linux/dmaengine.h>
  52#include <linux/dma-mapping.h>
  53#include <linux/scatterlist.h>
  54#include <linux/delay.h>
  55#include <linux/types.h>
  56#include <linux/of.h>
  57#include <linux/of_device.h>
  58#include <linux/pinctrl/consumer.h>
  59#include <linux/sizes.h>
  60#include <linux/io.h>
 
  61
  62#define UART_NR			14
  63
  64#define SERIAL_AMBA_MAJOR	204
  65#define SERIAL_AMBA_MINOR	64
  66#define SERIAL_AMBA_NR		UART_NR
  67
  68#define AMBA_ISR_PASS_LIMIT	256
  69
  70#define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
  71#define UART_DUMMY_DR_RX	(1 << 16)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  72
  73/* There is by now at least one vendor with differing details, so handle it */
  74struct vendor_data {
 
  75	unsigned int		ifls;
  76	unsigned int		lcrh_tx;
  77	unsigned int		lcrh_rx;
 
 
 
 
  78	bool			oversampling;
  79	bool			dma_threshold;
  80	bool			cts_event_workaround;
 
 
  81
  82	unsigned int (*get_fifosize)(struct amba_device *dev);
  83};
  84
  85static unsigned int get_fifosize_arm(struct amba_device *dev)
  86{
  87	return amba_rev(dev) < 3 ? 16 : 32;
  88}
  89
  90static struct vendor_data vendor_arm = {
  91	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
  92	.lcrh_tx		= UART011_LCRH,
  93	.lcrh_rx		= UART011_LCRH,
 
 
 
  94	.oversampling		= false,
  95	.dma_threshold		= false,
  96	.cts_event_workaround	= false,
 
 
  97	.get_fifosize		= get_fifosize_arm,
  98};
  99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 100static unsigned int get_fifosize_st(struct amba_device *dev)
 101{
 102	return 64;
 103}
 104
 105static struct vendor_data vendor_st = {
 106	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
 107	.lcrh_tx		= ST_UART011_LCRH_TX,
 108	.lcrh_rx		= ST_UART011_LCRH_RX,
 
 
 
 109	.oversampling		= true,
 110	.dma_threshold		= true,
 111	.cts_event_workaround	= true,
 
 
 112	.get_fifosize		= get_fifosize_st,
 113};
 114
 115/* Deals with DMA transactions */
 116
 117struct pl011_sgbuf {
 118	struct scatterlist sg;
 119	char *buf;
 
 120};
 121
 122struct pl011_dmarx_data {
 123	struct dma_chan		*chan;
 124	struct completion	complete;
 125	bool			use_buf_b;
 126	struct pl011_sgbuf	sgbuf_a;
 127	struct pl011_sgbuf	sgbuf_b;
 128	dma_cookie_t		cookie;
 129	bool			running;
 130	struct timer_list	timer;
 131	unsigned int last_residue;
 132	unsigned long last_jiffies;
 133	bool auto_poll_rate;
 134	unsigned int poll_rate;
 135	unsigned int poll_timeout;
 136};
 137
 138struct pl011_dmatx_data {
 139	struct dma_chan		*chan;
 140	struct scatterlist	sg;
 
 141	char			*buf;
 142	bool			queued;
 143};
 144
 145/*
 146 * We wrap our port structure around the generic uart_port.
 147 */
 148struct uart_amba_port {
 149	struct uart_port	port;
 
 150	struct clk		*clk;
 151	const struct vendor_data *vendor;
 152	unsigned int		dmacr;		/* dma control reg */
 153	unsigned int		im;		/* interrupt mask */
 154	unsigned int		old_status;
 155	unsigned int		fifosize;	/* vendor-specific */
 156	unsigned int		lcrh_tx;	/* vendor-specific */
 157	unsigned int		lcrh_rx;	/* vendor-specific */
 158	unsigned int		old_cr;		/* state during shutdown */
 159	bool			autorts;
 160	char			type[12];
 
 
 161#ifdef CONFIG_DMA_ENGINE
 162	/* DMA stuff */
 163	bool			using_tx_dma;
 164	bool			using_rx_dma;
 165	struct pl011_dmarx_data dmarx;
 166	struct pl011_dmatx_data	dmatx;
 
 167#endif
 168};
 169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 170/*
 171 * Reads up to 256 characters from the FIFO or until it's empty and
 172 * inserts them into the TTY layer. Returns the number of characters
 173 * read from the FIFO.
 174 */
 175static int pl011_fifo_to_tty(struct uart_amba_port *uap)
 176{
 177	u16 status, ch;
 178	unsigned int flag, max_count = 256;
 179	int fifotaken = 0;
 
 180
 181	while (max_count--) {
 182		status = readw(uap->port.membase + UART01x_FR);
 183		if (status & UART01x_FR_RXFE)
 184			break;
 185
 186		/* Take chars from the FIFO and update status */
 187		ch = readw(uap->port.membase + UART01x_DR) |
 188			UART_DUMMY_DR_RX;
 189		flag = TTY_NORMAL;
 190		uap->port.icount.rx++;
 191		fifotaken++;
 192
 193		if (unlikely(ch & UART_DR_ERROR)) {
 194			if (ch & UART011_DR_BE) {
 195				ch &= ~(UART011_DR_FE | UART011_DR_PE);
 196				uap->port.icount.brk++;
 197				if (uart_handle_break(&uap->port))
 198					continue;
 199			} else if (ch & UART011_DR_PE)
 200				uap->port.icount.parity++;
 201			else if (ch & UART011_DR_FE)
 202				uap->port.icount.frame++;
 
 203			if (ch & UART011_DR_OE)
 204				uap->port.icount.overrun++;
 205
 206			ch &= uap->port.read_status_mask;
 207
 208			if (ch & UART011_DR_BE)
 209				flag = TTY_BREAK;
 210			else if (ch & UART011_DR_PE)
 211				flag = TTY_PARITY;
 212			else if (ch & UART011_DR_FE)
 213				flag = TTY_FRAME;
 214		}
 215
 216		if (uart_handle_sysrq_char(&uap->port, ch & 255))
 217			continue;
 
 218
 219		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
 
 220	}
 221
 222	return fifotaken;
 223}
 224
 225
 226/*
 227 * All the DMA operation mode stuff goes inside this ifdef.
 228 * This assumes that you have a generic DMA device interface,
 229 * no custom DMA interfaces are supported.
 230 */
 231#ifdef CONFIG_DMA_ENGINE
 232
 233#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
 234
 235static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
 236	enum dma_data_direction dir)
 237{
 238	dma_addr_t dma_addr;
 239
 240	sg->buf = dma_alloc_coherent(chan->device->dev,
 241		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
 242	if (!sg->buf)
 243		return -ENOMEM;
 244
 245	sg_init_table(&sg->sg, 1);
 246	sg_set_page(&sg->sg, phys_to_page(dma_addr),
 247		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
 248	sg_dma_address(&sg->sg) = dma_addr;
 249
 250	return 0;
 251}
 252
 253static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
 254	enum dma_data_direction dir)
 255{
 256	if (sg->buf) {
 257		dma_free_coherent(chan->device->dev,
 258			PL011_DMA_BUFFER_SIZE, sg->buf,
 259			sg_dma_address(&sg->sg));
 260	}
 261}
 262
 263static void pl011_dma_probe_initcall(struct device *dev, struct uart_amba_port *uap)
 264{
 265	/* DMA is the sole user of the platform data right now */
 266	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
 
 267	struct dma_slave_config tx_conf = {
 268		.dst_addr = uap->port.mapbase + UART01x_DR,
 
 269		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 270		.direction = DMA_MEM_TO_DEV,
 271		.dst_maxburst = uap->fifosize >> 1,
 272		.device_fc = false,
 273	};
 274	struct dma_chan *chan;
 275	dma_cap_mask_t mask;
 276
 277	chan = dma_request_slave_channel(dev, "tx");
 
 
 
 
 
 
 278
 279	if (!chan) {
 280		/* We need platform data */
 281		if (!plat || !plat->dma_filter) {
 282			dev_info(uap->port.dev, "no DMA platform data\n");
 283			return;
 284		}
 285
 286		/* Try to acquire a generic DMA engine slave TX channel */
 287		dma_cap_zero(mask);
 288		dma_cap_set(DMA_SLAVE, mask);
 289
 290		chan = dma_request_channel(mask, plat->dma_filter,
 291						plat->dma_tx_param);
 292		if (!chan) {
 293			dev_err(uap->port.dev, "no TX DMA channel!\n");
 294			return;
 295		}
 296	}
 297
 298	dmaengine_slave_config(chan, &tx_conf);
 299	uap->dmatx.chan = chan;
 300
 301	dev_info(uap->port.dev, "DMA channel TX %s\n",
 302		 dma_chan_name(uap->dmatx.chan));
 303
 304	/* Optionally make use of an RX channel as well */
 305	chan = dma_request_slave_channel(dev, "rx");
 306	
 307	if (!chan && plat->dma_rx_param) {
 308		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
 309
 310		if (!chan) {
 311			dev_err(uap->port.dev, "no RX DMA channel!\n");
 312			return;
 313		}
 314	}
 315
 316	if (chan) {
 317		struct dma_slave_config rx_conf = {
 318			.src_addr = uap->port.mapbase + UART01x_DR,
 
 319			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 320			.direction = DMA_DEV_TO_MEM,
 321			.src_maxburst = uap->fifosize >> 2,
 322			.device_fc = false,
 323		};
 
 324
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 325		dmaengine_slave_config(chan, &rx_conf);
 326		uap->dmarx.chan = chan;
 327
 
 328		if (plat && plat->dma_rx_poll_enable) {
 329			/* Set poll rate if specified. */
 330			if (plat->dma_rx_poll_rate) {
 331				uap->dmarx.auto_poll_rate = false;
 332				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
 333			} else {
 334				/*
 335				 * 100 ms defaults to poll rate if not
 336				 * specified. This will be adjusted with
 337				 * the baud rate at set_termios.
 338				 */
 339				uap->dmarx.auto_poll_rate = true;
 340				uap->dmarx.poll_rate =  100;
 341			}
 342			/* 3 secs defaults poll_timeout if not specified. */
 343			if (plat->dma_rx_poll_timeout)
 344				uap->dmarx.poll_timeout =
 345					plat->dma_rx_poll_timeout;
 346			else
 347				uap->dmarx.poll_timeout = 3000;
 348		} else
 349			uap->dmarx.auto_poll_rate = false;
 
 
 
 350
 
 
 
 
 
 
 
 
 
 
 351		dev_info(uap->port.dev, "DMA channel RX %s\n",
 352			 dma_chan_name(uap->dmarx.chan));
 353	}
 354}
 355
 356#ifndef MODULE
 357/*
 358 * Stack up the UARTs and let the above initcall be done at device
 359 * initcall time, because the serial driver is called as an arch
 360 * initcall, and at this time the DMA subsystem is not yet registered.
 361 * At this point the driver will switch over to using DMA where desired.
 362 */
 363struct dma_uap {
 364	struct list_head node;
 365	struct uart_amba_port *uap;
 366	struct device *dev;
 367};
 368
 369static LIST_HEAD(pl011_dma_uarts);
 370
 371static int __init pl011_dma_initcall(void)
 372{
 373	struct list_head *node, *tmp;
 374
 375	list_for_each_safe(node, tmp, &pl011_dma_uarts) {
 376		struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
 377		pl011_dma_probe_initcall(dmau->dev, dmau->uap);
 378		list_del(node);
 379		kfree(dmau);
 380	}
 381	return 0;
 382}
 383
 384device_initcall(pl011_dma_initcall);
 385
 386static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
 387{
 388	struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
 389	if (dmau) {
 390		dmau->uap = uap;
 391		dmau->dev = dev;
 392		list_add_tail(&dmau->node, &pl011_dma_uarts);
 393	}
 394}
 395#else
 396static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
 397{
 398	pl011_dma_probe_initcall(dev, uap);
 399}
 400#endif
 401
 402static void pl011_dma_remove(struct uart_amba_port *uap)
 403{
 404	/* TODO: remove the initcall if it has not yet executed */
 405	if (uap->dmatx.chan)
 406		dma_release_channel(uap->dmatx.chan);
 407	if (uap->dmarx.chan)
 408		dma_release_channel(uap->dmarx.chan);
 409}
 410
 411/* Forward declare this for the refill routine */
 412static int pl011_dma_tx_refill(struct uart_amba_port *uap);
 
 413
 414/*
 415 * The current DMA TX buffer has been sent.
 416 * Try to queue up another DMA buffer.
 417 */
 418static void pl011_dma_tx_callback(void *data)
 419{
 420	struct uart_amba_port *uap = data;
 421	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 422	unsigned long flags;
 423	u16 dmacr;
 424
 425	spin_lock_irqsave(&uap->port.lock, flags);
 426	if (uap->dmatx.queued)
 427		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
 428			     DMA_TO_DEVICE);
 429
 430	dmacr = uap->dmacr;
 431	uap->dmacr = dmacr & ~UART011_TXDMAE;
 432	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 433
 434	/*
 435	 * If TX DMA was disabled, it means that we've stopped the DMA for
 436	 * some reason (eg, XOFF received, or we want to send an X-char.)
 437	 *
 438	 * Note: we need to be careful here of a potential race between DMA
 439	 * and the rest of the driver - if the driver disables TX DMA while
 440	 * a TX buffer completing, we must update the tx queued status to
 441	 * get further refills (hence we check dmacr).
 442	 */
 443	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
 444	    uart_circ_empty(&uap->port.state->xmit)) {
 445		uap->dmatx.queued = false;
 446		spin_unlock_irqrestore(&uap->port.lock, flags);
 447		return;
 448	}
 449
 450	if (pl011_dma_tx_refill(uap) <= 0) {
 451		/*
 452		 * We didn't queue a DMA buffer for some reason, but we
 453		 * have data pending to be sent.  Re-enable the TX IRQ.
 454		 */
 455		uap->im |= UART011_TXIM;
 456		writew(uap->im, uap->port.membase + UART011_IMSC);
 457	}
 458	spin_unlock_irqrestore(&uap->port.lock, flags);
 459}
 460
 461/*
 462 * Try to refill the TX DMA buffer.
 463 * Locking: called with port lock held and IRQs disabled.
 464 * Returns:
 465 *   1 if we queued up a TX DMA buffer.
 466 *   0 if we didn't want to handle this by DMA
 467 *  <0 on error
 468 */
 469static int pl011_dma_tx_refill(struct uart_amba_port *uap)
 470{
 471	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 472	struct dma_chan *chan = dmatx->chan;
 473	struct dma_device *dma_dev = chan->device;
 474	struct dma_async_tx_descriptor *desc;
 475	struct circ_buf *xmit = &uap->port.state->xmit;
 476	unsigned int count;
 477
 478	/*
 479	 * Try to avoid the overhead involved in using DMA if the
 480	 * transaction fits in the first half of the FIFO, by using
 481	 * the standard interrupt handling.  This ensures that we
 482	 * issue a uart_write_wakeup() at the appropriate time.
 483	 */
 484	count = uart_circ_chars_pending(xmit);
 485	if (count < (uap->fifosize >> 1)) {
 486		uap->dmatx.queued = false;
 487		return 0;
 488	}
 489
 490	/*
 491	 * Bodge: don't send the last character by DMA, as this
 492	 * will prevent XON from notifying us to restart DMA.
 493	 */
 494	count -= 1;
 495
 496	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
 497	if (count > PL011_DMA_BUFFER_SIZE)
 498		count = PL011_DMA_BUFFER_SIZE;
 499
 500	if (xmit->tail < xmit->head)
 501		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
 502	else {
 503		size_t first = UART_XMIT_SIZE - xmit->tail;
 504		size_t second = xmit->head;
 
 
 
 
 505
 506		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
 507		if (second)
 508			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
 509	}
 510
 511	dmatx->sg.length = count;
 512
 513	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
 
 514		uap->dmatx.queued = false;
 515		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
 516		return -EBUSY;
 517	}
 518
 519	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
 520					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 521	if (!desc) {
 522		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
 523		uap->dmatx.queued = false;
 524		/*
 525		 * If DMA cannot be used right now, we complete this
 526		 * transaction via IRQ and let the TTY layer retry.
 527		 */
 528		dev_dbg(uap->port.dev, "TX DMA busy\n");
 529		return -EBUSY;
 530	}
 531
 532	/* Some data to go along to the callback */
 533	desc->callback = pl011_dma_tx_callback;
 534	desc->callback_param = uap;
 535
 536	/* All errors should happen at prepare time */
 537	dmaengine_submit(desc);
 538
 539	/* Fire the DMA transaction */
 540	dma_dev->device_issue_pending(chan);
 541
 542	uap->dmacr |= UART011_TXDMAE;
 543	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 544	uap->dmatx.queued = true;
 545
 546	/*
 547	 * Now we know that DMA will fire, so advance the ring buffer
 548	 * with the stuff we just dispatched.
 549	 */
 550	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
 551	uap->port.icount.tx += count;
 552
 553	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 554		uart_write_wakeup(&uap->port);
 555
 556	return 1;
 557}
 558
 559/*
 560 * We received a transmit interrupt without a pending X-char but with
 561 * pending characters.
 562 * Locking: called with port lock held and IRQs disabled.
 563 * Returns:
 564 *   false if we want to use PIO to transmit
 565 *   true if we queued a DMA buffer
 566 */
 567static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
 568{
 569	if (!uap->using_tx_dma)
 570		return false;
 571
 572	/*
 573	 * If we already have a TX buffer queued, but received a
 574	 * TX interrupt, it will be because we've just sent an X-char.
 575	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
 576	 */
 577	if (uap->dmatx.queued) {
 578		uap->dmacr |= UART011_TXDMAE;
 579		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 580		uap->im &= ~UART011_TXIM;
 581		writew(uap->im, uap->port.membase + UART011_IMSC);
 582		return true;
 583	}
 584
 585	/*
 586	 * We don't have a TX buffer queued, so try to queue one.
 587	 * If we successfully queued a buffer, mask the TX IRQ.
 588	 */
 589	if (pl011_dma_tx_refill(uap) > 0) {
 590		uap->im &= ~UART011_TXIM;
 591		writew(uap->im, uap->port.membase + UART011_IMSC);
 592		return true;
 593	}
 594	return false;
 595}
 596
 597/*
 598 * Stop the DMA transmit (eg, due to received XOFF).
 599 * Locking: called with port lock held and IRQs disabled.
 600 */
 601static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
 602{
 603	if (uap->dmatx.queued) {
 604		uap->dmacr &= ~UART011_TXDMAE;
 605		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 606	}
 607}
 608
 609/*
 610 * Try to start a DMA transmit, or in the case of an XON/OFF
 611 * character queued for send, try to get that character out ASAP.
 612 * Locking: called with port lock held and IRQs disabled.
 613 * Returns:
 614 *   false if we want the TX IRQ to be enabled
 615 *   true if we have a buffer queued
 616 */
 617static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
 618{
 619	u16 dmacr;
 620
 621	if (!uap->using_tx_dma)
 622		return false;
 623
 624	if (!uap->port.x_char) {
 625		/* no X-char, try to push chars out in DMA mode */
 626		bool ret = true;
 627
 628		if (!uap->dmatx.queued) {
 629			if (pl011_dma_tx_refill(uap) > 0) {
 630				uap->im &= ~UART011_TXIM;
 631				ret = true;
 632			} else {
 633				uap->im |= UART011_TXIM;
 634				ret = false;
 635			}
 636			writew(uap->im, uap->port.membase + UART011_IMSC);
 637		} else if (!(uap->dmacr & UART011_TXDMAE)) {
 638			uap->dmacr |= UART011_TXDMAE;
 639			writew(uap->dmacr,
 640				       uap->port.membase + UART011_DMACR);
 641		}
 642		return ret;
 643	}
 644
 645	/*
 646	 * We have an X-char to send.  Disable DMA to prevent it loading
 647	 * the TX fifo, and then see if we can stuff it into the FIFO.
 648	 */
 649	dmacr = uap->dmacr;
 650	uap->dmacr &= ~UART011_TXDMAE;
 651	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 652
 653	if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
 654		/*
 655		 * No space in the FIFO, so enable the transmit interrupt
 656		 * so we know when there is space.  Note that once we've
 657		 * loaded the character, we should just re-enable DMA.
 658		 */
 659		return false;
 660	}
 661
 662	writew(uap->port.x_char, uap->port.membase + UART01x_DR);
 663	uap->port.icount.tx++;
 664	uap->port.x_char = 0;
 665
 666	/* Success - restore the DMA state */
 667	uap->dmacr = dmacr;
 668	writew(dmacr, uap->port.membase + UART011_DMACR);
 669
 670	return true;
 671}
 672
 673/*
 674 * Flush the transmit buffer.
 675 * Locking: called with port lock held and IRQs disabled.
 676 */
 677static void pl011_dma_flush_buffer(struct uart_port *port)
 678__releases(&uap->port.lock)
 679__acquires(&uap->port.lock)
 680{
 681	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
 682
 683	if (!uap->using_tx_dma)
 684		return;
 685
 686	/* Avoid deadlock with the DMA engine callback */
 687	spin_unlock(&uap->port.lock);
 688	dmaengine_terminate_all(uap->dmatx.chan);
 689	spin_lock(&uap->port.lock);
 690	if (uap->dmatx.queued) {
 691		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
 692			     DMA_TO_DEVICE);
 693		uap->dmatx.queued = false;
 694		uap->dmacr &= ~UART011_TXDMAE;
 695		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 696	}
 697}
 698
 699static void pl011_dma_rx_callback(void *data);
 700
 701static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
 702{
 703	struct dma_chan *rxchan = uap->dmarx.chan;
 704	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 705	struct dma_async_tx_descriptor *desc;
 706	struct pl011_sgbuf *sgbuf;
 707
 708	if (!rxchan)
 709		return -EIO;
 710
 711	/* Start the RX DMA job */
 712	sgbuf = uap->dmarx.use_buf_b ?
 713		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 714	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
 715					DMA_DEV_TO_MEM,
 716					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 717	/*
 718	 * If the DMA engine is busy and cannot prepare a
 719	 * channel, no big deal, the driver will fall back
 720	 * to interrupt mode as a result of this error code.
 721	 */
 722	if (!desc) {
 723		uap->dmarx.running = false;
 724		dmaengine_terminate_all(rxchan);
 725		return -EBUSY;
 726	}
 727
 728	/* Some data to go along to the callback */
 729	desc->callback = pl011_dma_rx_callback;
 730	desc->callback_param = uap;
 731	dmarx->cookie = dmaengine_submit(desc);
 732	dma_async_issue_pending(rxchan);
 733
 734	uap->dmacr |= UART011_RXDMAE;
 735	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 736	uap->dmarx.running = true;
 737
 738	uap->im &= ~UART011_RXIM;
 739	writew(uap->im, uap->port.membase + UART011_IMSC);
 740
 741	return 0;
 742}
 743
 744/*
 745 * This is called when either the DMA job is complete, or
 746 * the FIFO timeout interrupt occurred. This must be called
 747 * with the port spinlock uap->port.lock held.
 748 */
 749static void pl011_dma_rx_chars(struct uart_amba_port *uap,
 750			       u32 pending, bool use_buf_b,
 751			       bool readfifo)
 752{
 753	struct tty_port *port = &uap->port.state->port;
 754	struct pl011_sgbuf *sgbuf = use_buf_b ?
 755		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 756	int dma_count = 0;
 757	u32 fifotaken = 0; /* only used for vdbg() */
 758
 759	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 760	int dmataken = 0;
 761
 762	if (uap->dmarx.poll_rate) {
 763		/* The data can be taken by polling */
 764		dmataken = sgbuf->sg.length - dmarx->last_residue;
 765		/* Recalculate the pending size */
 766		if (pending >= dmataken)
 767			pending -= dmataken;
 768	}
 769
 770	/* Pick the remain data from the DMA */
 771	if (pending) {
 772
 773		/*
 774		 * First take all chars in the DMA pipe, then look in the FIFO.
 775		 * Note that tty_insert_flip_buf() tries to take as many chars
 776		 * as it can.
 777		 */
 778		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
 779				pending);
 780
 781		uap->port.icount.rx += dma_count;
 782		if (dma_count < pending)
 783			dev_warn(uap->port.dev,
 784				 "couldn't insert all characters (TTY is full?)\n");
 785	}
 786
 787	/* Reset the last_residue for Rx DMA poll */
 788	if (uap->dmarx.poll_rate)
 789		dmarx->last_residue = sgbuf->sg.length;
 790
 791	/*
 792	 * Only continue with trying to read the FIFO if all DMA chars have
 793	 * been taken first.
 794	 */
 795	if (dma_count == pending && readfifo) {
 796		/* Clear any error flags */
 797		writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
 798		       uap->port.membase + UART011_ICR);
 799
 800		/*
 801		 * If we read all the DMA'd characters, and we had an
 802		 * incomplete buffer, that could be due to an rx error, or
 803		 * maybe we just timed out. Read any pending chars and check
 804		 * the error status.
 805		 *
 806		 * Error conditions will only occur in the FIFO, these will
 807		 * trigger an immediate interrupt and stop the DMA job, so we
 808		 * will always find the error in the FIFO, never in the DMA
 809		 * buffer.
 810		 */
 811		fifotaken = pl011_fifo_to_tty(uap);
 812	}
 813
 814	spin_unlock(&uap->port.lock);
 815	dev_vdbg(uap->port.dev,
 816		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
 817		 dma_count, fifotaken);
 818	tty_flip_buffer_push(port);
 819	spin_lock(&uap->port.lock);
 820}
 821
 822static void pl011_dma_rx_irq(struct uart_amba_port *uap)
 823{
 824	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 825	struct dma_chan *rxchan = dmarx->chan;
 826	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
 827		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
 828	size_t pending;
 829	struct dma_tx_state state;
 830	enum dma_status dmastat;
 831
 832	/*
 833	 * Pause the transfer so we can trust the current counter,
 834	 * do this before we pause the PL011 block, else we may
 835	 * overflow the FIFO.
 836	 */
 837	if (dmaengine_pause(rxchan))
 838		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 839	dmastat = rxchan->device->device_tx_status(rxchan,
 840						   dmarx->cookie, &state);
 841	if (dmastat != DMA_PAUSED)
 842		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 843
 844	/* Disable RX DMA - incoming data will wait in the FIFO */
 845	uap->dmacr &= ~UART011_RXDMAE;
 846	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 847	uap->dmarx.running = false;
 848
 849	pending = sgbuf->sg.length - state.residue;
 850	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 851	/* Then we terminate the transfer - we now know our residue */
 852	dmaengine_terminate_all(rxchan);
 853
 854	/*
 855	 * This will take the chars we have so far and insert
 856	 * into the framework.
 857	 */
 858	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
 859
 860	/* Switch buffer & re-trigger DMA job */
 861	dmarx->use_buf_b = !dmarx->use_buf_b;
 862	if (pl011_dma_rx_trigger_dma(uap)) {
 863		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 864			"fall back to interrupt mode\n");
 865		uap->im |= UART011_RXIM;
 866		writew(uap->im, uap->port.membase + UART011_IMSC);
 867	}
 868}
 869
 870static void pl011_dma_rx_callback(void *data)
 871{
 872	struct uart_amba_port *uap = data;
 873	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 874	struct dma_chan *rxchan = dmarx->chan;
 875	bool lastbuf = dmarx->use_buf_b;
 876	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
 877		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
 878	size_t pending;
 879	struct dma_tx_state state;
 880	int ret;
 881
 882	/*
 883	 * This completion interrupt occurs typically when the
 884	 * RX buffer is totally stuffed but no timeout has yet
 885	 * occurred. When that happens, we just want the RX
 886	 * routine to flush out the secondary DMA buffer while
 887	 * we immediately trigger the next DMA job.
 888	 */
 889	spin_lock_irq(&uap->port.lock);
 890	/*
 891	 * Rx data can be taken by the UART interrupts during
 892	 * the DMA irq handler. So we check the residue here.
 893	 */
 894	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
 895	pending = sgbuf->sg.length - state.residue;
 896	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 897	/* Then we terminate the transfer - we now know our residue */
 898	dmaengine_terminate_all(rxchan);
 899
 900	uap->dmarx.running = false;
 901	dmarx->use_buf_b = !lastbuf;
 902	ret = pl011_dma_rx_trigger_dma(uap);
 903
 904	pl011_dma_rx_chars(uap, pending, lastbuf, false);
 905	spin_unlock_irq(&uap->port.lock);
 906	/*
 907	 * Do this check after we picked the DMA chars so we don't
 908	 * get some IRQ immediately from RX.
 909	 */
 910	if (ret) {
 911		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 912			"fall back to interrupt mode\n");
 913		uap->im |= UART011_RXIM;
 914		writew(uap->im, uap->port.membase + UART011_IMSC);
 915	}
 916}
 917
 918/*
 919 * Stop accepting received characters, when we're shutting down or
 920 * suspending this port.
 921 * Locking: called with port lock held and IRQs disabled.
 922 */
 923static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
 924{
 
 
 
 925	/* FIXME.  Just disable the DMA enable */
 926	uap->dmacr &= ~UART011_RXDMAE;
 927	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 928}
 929
 930/*
 931 * Timer handler for Rx DMA polling.
 932 * Every polling, It checks the residue in the dma buffer and transfer
 933 * data to the tty. Also, last_residue is updated for the next polling.
 934 */
 935static void pl011_dma_rx_poll(unsigned long args)
 936{
 937	struct uart_amba_port *uap = (struct uart_amba_port *)args;
 938	struct tty_port *port = &uap->port.state->port;
 939	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 940	struct dma_chan *rxchan = uap->dmarx.chan;
 941	unsigned long flags = 0;
 942	unsigned int dmataken = 0;
 943	unsigned int size = 0;
 944	struct pl011_sgbuf *sgbuf;
 945	int dma_count;
 946	struct dma_tx_state state;
 947
 948	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 949	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
 950	if (likely(state.residue < dmarx->last_residue)) {
 951		dmataken = sgbuf->sg.length - dmarx->last_residue;
 952		size = dmarx->last_residue - state.residue;
 953		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
 954				size);
 955		if (dma_count == size)
 956			dmarx->last_residue =  state.residue;
 957		dmarx->last_jiffies = jiffies;
 958	}
 959	tty_flip_buffer_push(port);
 960
 961	/*
 962	 * If no data is received in poll_timeout, the driver will fall back
 963	 * to interrupt mode. We will retrigger DMA at the first interrupt.
 964	 */
 965	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
 966			> uap->dmarx.poll_timeout) {
 967
 968		spin_lock_irqsave(&uap->port.lock, flags);
 969		pl011_dma_rx_stop(uap);
 970		uap->im |= UART011_RXIM;
 971		writew(uap->im, uap->port.membase + UART011_IMSC);
 972		spin_unlock_irqrestore(&uap->port.lock, flags);
 973
 974		uap->dmarx.running = false;
 975		dmaengine_terminate_all(rxchan);
 976		del_timer(&uap->dmarx.timer);
 977	} else {
 978		mod_timer(&uap->dmarx.timer,
 979			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
 980	}
 981}
 982
 983static void pl011_dma_startup(struct uart_amba_port *uap)
 984{
 985	int ret;
 986
 
 
 
 987	if (!uap->dmatx.chan)
 988		return;
 989
 990	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
 991	if (!uap->dmatx.buf) {
 992		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
 993		uap->port.fifosize = uap->fifosize;
 994		return;
 995	}
 996
 997	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
 998
 999	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1000	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1001	uap->using_tx_dma = true;
1002
1003	if (!uap->dmarx.chan)
1004		goto skip_rx;
1005
1006	/* Allocate and map DMA RX buffers */
1007	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1008			       DMA_FROM_DEVICE);
1009	if (ret) {
1010		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1011			"RX buffer A", ret);
1012		goto skip_rx;
1013	}
1014
1015	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1016			       DMA_FROM_DEVICE);
1017	if (ret) {
1018		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1019			"RX buffer B", ret);
1020		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1021				 DMA_FROM_DEVICE);
1022		goto skip_rx;
1023	}
1024
1025	uap->using_rx_dma = true;
1026
1027skip_rx:
1028	/* Turn on DMA error (RX/TX will be enabled on demand) */
1029	uap->dmacr |= UART011_DMAONERR;
1030	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
1031
1032	/*
1033	 * ST Micro variants has some specific dma burst threshold
1034	 * compensation. Set this to 16 bytes, so burst will only
1035	 * be issued above/below 16 bytes.
1036	 */
1037	if (uap->vendor->dma_threshold)
1038		writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1039			       uap->port.membase + ST_UART011_DMAWM);
1040
1041	if (uap->using_rx_dma) {
1042		if (pl011_dma_rx_trigger_dma(uap))
1043			dev_dbg(uap->port.dev, "could not trigger initial "
1044				"RX DMA job, fall back to interrupt mode\n");
1045		if (uap->dmarx.poll_rate) {
1046			init_timer(&(uap->dmarx.timer));
1047			uap->dmarx.timer.function = pl011_dma_rx_poll;
1048			uap->dmarx.timer.data = (unsigned long)uap;
1049			mod_timer(&uap->dmarx.timer,
1050				jiffies +
1051				msecs_to_jiffies(uap->dmarx.poll_rate));
1052			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1053			uap->dmarx.last_jiffies = jiffies;
1054		}
1055	}
1056}
1057
1058static void pl011_dma_shutdown(struct uart_amba_port *uap)
1059{
1060	if (!(uap->using_tx_dma || uap->using_rx_dma))
1061		return;
1062
1063	/* Disable RX and TX DMA */
1064	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1065		barrier();
1066
1067	spin_lock_irq(&uap->port.lock);
1068	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1069	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
1070	spin_unlock_irq(&uap->port.lock);
1071
1072	if (uap->using_tx_dma) {
1073		/* In theory, this should already be done by pl011_dma_flush_buffer */
1074		dmaengine_terminate_all(uap->dmatx.chan);
1075		if (uap->dmatx.queued) {
1076			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1077				     DMA_TO_DEVICE);
 
1078			uap->dmatx.queued = false;
1079		}
1080
1081		kfree(uap->dmatx.buf);
1082		uap->using_tx_dma = false;
1083	}
1084
1085	if (uap->using_rx_dma) {
1086		dmaengine_terminate_all(uap->dmarx.chan);
1087		/* Clean up the RX DMA */
1088		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1089		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1090		if (uap->dmarx.poll_rate)
1091			del_timer_sync(&uap->dmarx.timer);
1092		uap->using_rx_dma = false;
1093	}
1094}
1095
1096static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1097{
1098	return uap->using_rx_dma;
1099}
1100
1101static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1102{
1103	return uap->using_rx_dma && uap->dmarx.running;
1104}
1105
1106#else
1107/* Blank functions if the DMA engine is not available */
1108static inline void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
1109{
1110}
1111
1112static inline void pl011_dma_remove(struct uart_amba_port *uap)
1113{
1114}
1115
1116static inline void pl011_dma_startup(struct uart_amba_port *uap)
1117{
1118}
1119
1120static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1121{
1122}
1123
1124static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1125{
1126	return false;
1127}
1128
1129static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1130{
1131}
1132
1133static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1134{
1135	return false;
1136}
1137
1138static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1139{
1140}
1141
1142static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1143{
1144}
1145
1146static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1147{
1148	return -EIO;
1149}
1150
1151static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1152{
1153	return false;
1154}
1155
1156static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1157{
1158	return false;
1159}
1160
1161#define pl011_dma_flush_buffer	NULL
1162#endif
1163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1164static void pl011_stop_tx(struct uart_port *port)
1165{
1166	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1167
1168	uap->im &= ~UART011_TXIM;
1169	writew(uap->im, uap->port.membase + UART011_IMSC);
1170	pl011_dma_tx_stop(uap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1171}
1172
1173static void pl011_start_tx(struct uart_port *port)
1174{
1175	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
 
 
 
 
1176
1177	if (!pl011_dma_tx_start(uap)) {
1178		uap->im |= UART011_TXIM;
1179		writew(uap->im, uap->port.membase + UART011_IMSC);
1180	}
1181}
1182
1183static void pl011_stop_rx(struct uart_port *port)
1184{
1185	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1186
1187	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1188		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1189	writew(uap->im, uap->port.membase + UART011_IMSC);
1190
1191	pl011_dma_rx_stop(uap);
1192}
1193
 
 
 
 
 
 
 
 
 
1194static void pl011_enable_ms(struct uart_port *port)
1195{
1196	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1197
1198	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1199	writew(uap->im, uap->port.membase + UART011_IMSC);
1200}
1201
1202static void pl011_rx_chars(struct uart_amba_port *uap)
1203__releases(&uap->port.lock)
1204__acquires(&uap->port.lock)
1205{
1206	pl011_fifo_to_tty(uap);
1207
1208	spin_unlock(&uap->port.lock);
1209	tty_flip_buffer_push(&uap->port.state->port);
1210	/*
1211	 * If we were temporarily out of DMA mode for a while,
1212	 * attempt to switch back to DMA mode again.
1213	 */
1214	if (pl011_dma_rx_available(uap)) {
1215		if (pl011_dma_rx_trigger_dma(uap)) {
1216			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1217				"fall back to interrupt mode again\n");
1218			uap->im |= UART011_RXIM;
1219			writew(uap->im, uap->port.membase + UART011_IMSC);
1220		} else {
1221#ifdef CONFIG_DMA_ENGINE
1222			/* Start Rx DMA poll */
1223			if (uap->dmarx.poll_rate) {
1224				uap->dmarx.last_jiffies = jiffies;
1225				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1226				mod_timer(&uap->dmarx.timer,
1227					jiffies +
1228					msecs_to_jiffies(uap->dmarx.poll_rate));
1229			}
1230#endif
1231		}
1232	}
1233	spin_lock(&uap->port.lock);
1234}
1235
1236static void pl011_tx_chars(struct uart_amba_port *uap)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237{
1238	struct circ_buf *xmit = &uap->port.state->xmit;
1239	int count;
1240
1241	if (uap->port.x_char) {
1242		writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1243		uap->port.icount.tx++;
1244		uap->port.x_char = 0;
1245		return;
1246	}
1247	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1248		pl011_stop_tx(&uap->port);
1249		return;
1250	}
1251
1252	/* If we are using DMA mode, try to send some characters. */
1253	if (pl011_dma_tx_irq(uap))
1254		return;
1255
1256	count = uap->fifosize >> 1;
1257	do {
1258		writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
 
 
 
 
 
1259		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1260		uap->port.icount.tx++;
1261		if (uart_circ_empty(xmit))
1262			break;
1263	} while (--count > 0);
1264
1265	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1266		uart_write_wakeup(&uap->port);
1267
1268	if (uart_circ_empty(xmit))
1269		pl011_stop_tx(&uap->port);
 
 
 
1270}
1271
1272static void pl011_modem_status(struct uart_amba_port *uap)
1273{
1274	unsigned int status, delta;
1275
1276	status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1277
1278	delta = status ^ uap->old_status;
1279	uap->old_status = status;
1280
1281	if (!delta)
1282		return;
1283
1284	if (delta & UART01x_FR_DCD)
1285		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1286
1287	if (delta & UART01x_FR_DSR)
1288		uap->port.icount.dsr++;
1289
1290	if (delta & UART01x_FR_CTS)
1291		uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
 
1292
1293	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1294}
1295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1296static irqreturn_t pl011_int(int irq, void *dev_id)
1297{
1298	struct uart_amba_port *uap = dev_id;
1299	unsigned long flags;
1300	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1301	int handled = 0;
1302	unsigned int dummy_read;
1303
1304	spin_lock_irqsave(&uap->port.lock, flags);
1305	status = readw(uap->port.membase + UART011_MIS);
1306	if (status) {
1307		do {
1308			if (uap->vendor->cts_event_workaround) {
1309				/* workaround to make sure that all bits are unlocked.. */
1310				writew(0x00, uap->port.membase + UART011_ICR);
1311
1312				/*
1313				 * WA: introduce 26ns(1 uart clk) delay before W1C;
1314				 * single apb access will incur 2 pclk(133.12Mhz) delay,
1315				 * so add 2 dummy reads
1316				 */
1317				dummy_read = readw(uap->port.membase + UART011_ICR);
1318				dummy_read = readw(uap->port.membase + UART011_ICR);
1319			}
1320
1321			writew(status & ~(UART011_TXIS|UART011_RTIS|
1322					  UART011_RXIS),
1323			       uap->port.membase + UART011_ICR);
1324
1325			if (status & (UART011_RTIS|UART011_RXIS)) {
1326				if (pl011_dma_rx_running(uap))
1327					pl011_dma_rx_irq(uap);
1328				else
1329					pl011_rx_chars(uap);
1330			}
1331			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1332				      UART011_CTSMIS|UART011_RIMIS))
1333				pl011_modem_status(uap);
1334			if (status & UART011_TXIS)
1335				pl011_tx_chars(uap);
1336
1337			if (pass_counter-- == 0)
1338				break;
1339
1340			status = readw(uap->port.membase + UART011_MIS);
1341		} while (status != 0);
1342		handled = 1;
1343	}
1344
1345	spin_unlock_irqrestore(&uap->port.lock, flags);
1346
1347	return IRQ_RETVAL(handled);
1348}
1349
1350static unsigned int pl011_tx_empty(struct uart_port *port)
1351{
1352	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1353	unsigned int status = readw(uap->port.membase + UART01x_FR);
1354	return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
 
 
 
 
 
 
 
 
 
 
 
1355}
1356
1357static unsigned int pl011_get_mctrl(struct uart_port *port)
1358{
1359	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1360	unsigned int result = 0;
1361	unsigned int status = readw(uap->port.membase + UART01x_FR);
 
 
 
 
 
1362
1363#define TIOCMBIT(uartbit, tiocmbit)	\
1364	if (status & uartbit)		\
1365		result |= tiocmbit
1366
1367	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1368	TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1369	TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1370	TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1371#undef TIOCMBIT
1372	return result;
1373}
1374
 
 
 
 
 
 
 
 
1375static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1376{
1377	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1378	unsigned int cr;
1379
1380	cr = readw(uap->port.membase + UART011_CR);
1381
1382#define	TIOCMBIT(tiocmbit, uartbit)		\
1383	if (mctrl & tiocmbit)		\
1384		cr |= uartbit;		\
1385	else				\
1386		cr &= ~uartbit
1387
1388	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1389	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1390	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1391	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1392	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1393
1394	if (uap->autorts) {
1395		/* We need to disable auto-RTS if we want to turn RTS off */
1396		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1397	}
1398#undef TIOCMBIT
1399
1400	writew(cr, uap->port.membase + UART011_CR);
1401}
1402
1403static void pl011_break_ctl(struct uart_port *port, int break_state)
1404{
1405	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1406	unsigned long flags;
1407	unsigned int lcr_h;
1408
1409	spin_lock_irqsave(&uap->port.lock, flags);
1410	lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1411	if (break_state == -1)
1412		lcr_h |= UART01x_LCRH_BRK;
1413	else
1414		lcr_h &= ~UART01x_LCRH_BRK;
1415	writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1416	spin_unlock_irqrestore(&uap->port.lock, flags);
1417}
1418
1419#ifdef CONFIG_CONSOLE_POLL
1420
1421static void pl011_quiesce_irqs(struct uart_port *port)
1422{
1423	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1424	unsigned char __iomem *regs = uap->port.membase;
1425
1426	writew(readw(regs + UART011_MIS), regs + UART011_ICR);
1427	/*
1428	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1429	 * we simply mask it. start_tx() will unmask it.
1430	 *
1431	 * Note we can race with start_tx(), and if the race happens, the
1432	 * polling user might get another interrupt just after we clear it.
1433	 * But it should be OK and can happen even w/o the race, e.g.
1434	 * controller immediately got some new data and raised the IRQ.
1435	 *
1436	 * And whoever uses polling routines assumes that it manages the device
1437	 * (including tx queue), so we're also fine with start_tx()'s caller
1438	 * side.
1439	 */
1440	writew(readw(regs + UART011_IMSC) & ~UART011_TXIM, regs + UART011_IMSC);
 
1441}
1442
1443static int pl011_get_poll_char(struct uart_port *port)
1444{
1445	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1446	unsigned int status;
1447
1448	/*
1449	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1450	 * debugger.
1451	 */
1452	pl011_quiesce_irqs(port);
1453
1454	status = readw(uap->port.membase + UART01x_FR);
1455	if (status & UART01x_FR_RXFE)
1456		return NO_POLL_CHAR;
1457
1458	return readw(uap->port.membase + UART01x_DR);
1459}
1460
1461static void pl011_put_poll_char(struct uart_port *port,
1462			 unsigned char ch)
1463{
1464	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1465
1466	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1467		barrier();
1468
1469	writew(ch, uap->port.membase + UART01x_DR);
1470}
1471
1472#endif /* CONFIG_CONSOLE_POLL */
1473
1474static int pl011_hwinit(struct uart_port *port)
1475{
1476	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1477	int retval;
1478
1479	/* Optionaly enable pins to be muxed in and configured */
1480	pinctrl_pm_select_default_state(port->dev);
1481
1482	/*
1483	 * Try to enable the clock producer.
1484	 */
1485	retval = clk_prepare_enable(uap->clk);
1486	if (retval)
1487		goto out;
1488
1489	uap->port.uartclk = clk_get_rate(uap->clk);
1490
1491	/* Clear pending error and receive interrupts */
1492	writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS |
1493	       UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR);
 
1494
1495	/*
1496	 * Save interrupts enable mask, and enable RX interrupts in case if
1497	 * the interrupt is used for NMI entry.
1498	 */
1499	uap->im = readw(uap->port.membase + UART011_IMSC);
1500	writew(UART011_RTIM | UART011_RXIM, uap->port.membase + UART011_IMSC);
1501
1502	if (dev_get_platdata(uap->port.dev)) {
1503		struct amba_pl011_data *plat;
1504
1505		plat = dev_get_platdata(uap->port.dev);
1506		if (plat->init)
1507			plat->init();
1508	}
1509	return 0;
1510 out:
1511	return retval;
 
 
 
 
1512}
1513
1514static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1515{
1516	writew(lcr_h, uap->port.membase + uap->lcrh_rx);
1517	if (uap->lcrh_rx != uap->lcrh_tx) {
1518		int i;
1519		/*
1520		 * Wait 10 PCLKs before writing LCRH_TX register,
1521		 * to get this delay write read only register 10 times
1522		 */
1523		for (i = 0; i < 10; ++i)
1524			writew(0xff, uap->port.membase + UART011_MIS);
1525		writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1526	}
1527}
1528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1529static int pl011_startup(struct uart_port *port)
1530{
1531	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1532	unsigned int cr, lcr_h, fbrd, ibrd;
 
1533	int retval;
1534
1535	retval = pl011_hwinit(port);
1536	if (retval)
1537		goto clk_dis;
1538
1539	writew(uap->im, uap->port.membase + UART011_IMSC);
1540
1541	/*
1542	 * Allocate the IRQ
1543	 */
1544	retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1545	if (retval)
1546		goto clk_dis;
1547
1548	writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
 
 
1549
1550	/*
1551	 * Provoke TX FIFO interrupt into asserting. Taking care to preserve
1552	 * baud rate and data format specified by FBRD, IBRD and LCRH as the
1553	 * UART may already be in use as a console.
1554	 */
1555	spin_lock_irq(&uap->port.lock);
1556
1557	fbrd = readw(uap->port.membase + UART011_FBRD);
1558	ibrd = readw(uap->port.membase + UART011_IBRD);
1559	lcr_h = readw(uap->port.membase + uap->lcrh_rx);
1560
1561	cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
1562	writew(cr, uap->port.membase + UART011_CR);
1563	writew(0, uap->port.membase + UART011_FBRD);
1564	writew(1, uap->port.membase + UART011_IBRD);
1565	pl011_write_lcr_h(uap, 0);
1566	writew(0, uap->port.membase + UART01x_DR);
1567	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1568		barrier();
1569
1570	writew(fbrd, uap->port.membase + UART011_FBRD);
1571	writew(ibrd, uap->port.membase + UART011_IBRD);
1572	pl011_write_lcr_h(uap, lcr_h);
1573
1574	/* restore RTS and DTR */
1575	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1576	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1577	writew(cr, uap->port.membase + UART011_CR);
1578
1579	spin_unlock_irq(&uap->port.lock);
1580
1581	/*
1582	 * initialise the old status of the modem signals
1583	 */
1584	uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1585
1586	/* Startup DMA */
1587	pl011_dma_startup(uap);
1588
1589	/*
1590	 * Finally, enable interrupts, only timeouts when using DMA
1591	 * if initial RX DMA job failed, start in interrupt mode
1592	 * as well.
1593	 */
1594	spin_lock_irq(&uap->port.lock);
1595	/* Clear out any spuriously appearing RX interrupts */
1596	 writew(UART011_RTIS | UART011_RXIS,
1597		uap->port.membase + UART011_ICR);
1598	uap->im = UART011_RTIM;
1599	if (!pl011_dma_rx_running(uap))
1600		uap->im |= UART011_RXIM;
1601	writew(uap->im, uap->port.membase + UART011_IMSC);
1602	spin_unlock_irq(&uap->port.lock);
1603
1604	return 0;
1605
1606 clk_dis:
1607	clk_disable_unprepare(uap->clk);
1608	return retval;
1609}
1610
1611static void pl011_shutdown_channel(struct uart_amba_port *uap,
1612					unsigned int lcrh)
1613{
1614      unsigned long val;
 
 
1615
1616      val = readw(uap->port.membase + lcrh);
1617      val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1618      writew(val, uap->port.membase + lcrh);
 
 
 
 
 
 
 
 
 
 
 
1619}
1620
1621static void pl011_shutdown(struct uart_port *port)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1622{
1623	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1624	unsigned int cr;
1625
 
 
 
 
 
 
 
 
1626	/*
1627	 * disable all interrupts
1628	 */
1629	spin_lock_irq(&uap->port.lock);
 
 
 
 
 
 
 
 
 
1630	uap->im = 0;
1631	writew(uap->im, uap->port.membase + UART011_IMSC);
1632	writew(0xffff, uap->port.membase + UART011_ICR);
1633	spin_unlock_irq(&uap->port.lock);
 
 
 
 
 
 
 
 
 
1634
1635	pl011_dma_shutdown(uap);
1636
1637	/*
1638	 * Free the interrupt
1639	 */
1640	free_irq(uap->port.irq, uap);
1641
1642	/*
1643	 * disable the port
1644	 * disable the port. It should not disable RTS and DTR.
1645	 * Also RTS and DTR state should be preserved to restore
1646	 * it during startup().
1647	 */
1648	uap->autorts = false;
1649	spin_lock_irq(&uap->port.lock);
1650	cr = readw(uap->port.membase + UART011_CR);
1651	uap->old_cr = cr;
1652	cr &= UART011_CR_RTS | UART011_CR_DTR;
1653	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1654	writew(cr, uap->port.membase + UART011_CR);
1655	spin_unlock_irq(&uap->port.lock);
1656
1657	/*
1658	 * disable break condition and fifos
1659	 */
1660	pl011_shutdown_channel(uap, uap->lcrh_rx);
1661	if (uap->lcrh_rx != uap->lcrh_tx)
1662		pl011_shutdown_channel(uap, uap->lcrh_tx);
1663
1664	/*
1665	 * Shut down the clock producer
1666	 */
1667	clk_disable_unprepare(uap->clk);
1668	/* Optionally let pins go into sleep states */
1669	pinctrl_pm_select_sleep_state(port->dev);
1670
1671	if (dev_get_platdata(uap->port.dev)) {
1672		struct amba_pl011_data *plat;
1673
1674		plat = dev_get_platdata(uap->port.dev);
1675		if (plat->exit)
1676			plat->exit();
1677	}
1678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1679}
1680
1681static void
1682pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1683		     struct ktermios *old)
1684{
1685	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1686	unsigned int lcr_h, old_cr;
1687	unsigned long flags;
1688	unsigned int baud, quot, clkdiv;
 
1689
1690	if (uap->vendor->oversampling)
1691		clkdiv = 8;
1692	else
1693		clkdiv = 16;
1694
1695	/*
1696	 * Ask the core to calculate the divisor for us.
1697	 */
1698	baud = uart_get_baud_rate(port, termios, old, 0,
1699				  port->uartclk / clkdiv);
1700#ifdef CONFIG_DMA_ENGINE
1701	/*
1702	 * Adjust RX DMA polling rate with baud rate if not specified.
1703	 */
1704	if (uap->dmarx.auto_poll_rate)
1705		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1706#endif
1707
1708	if (baud > port->uartclk/16)
1709		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1710	else
1711		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1712
1713	switch (termios->c_cflag & CSIZE) {
1714	case CS5:
1715		lcr_h = UART01x_LCRH_WLEN_5;
1716		break;
1717	case CS6:
1718		lcr_h = UART01x_LCRH_WLEN_6;
1719		break;
1720	case CS7:
1721		lcr_h = UART01x_LCRH_WLEN_7;
1722		break;
1723	default: // CS8
1724		lcr_h = UART01x_LCRH_WLEN_8;
1725		break;
1726	}
1727	if (termios->c_cflag & CSTOPB)
1728		lcr_h |= UART01x_LCRH_STP2;
1729	if (termios->c_cflag & PARENB) {
1730		lcr_h |= UART01x_LCRH_PEN;
1731		if (!(termios->c_cflag & PARODD))
1732			lcr_h |= UART01x_LCRH_EPS;
 
 
1733	}
1734	if (uap->fifosize > 1)
1735		lcr_h |= UART01x_LCRH_FEN;
1736
1737	spin_lock_irqsave(&port->lock, flags);
 
 
1738
1739	/*
1740	 * Update the per-port timeout.
1741	 */
1742	uart_update_timeout(port, termios->c_cflag, baud);
1743
1744	port->read_status_mask = UART011_DR_OE | 255;
1745	if (termios->c_iflag & INPCK)
1746		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1747	if (termios->c_iflag & (BRKINT | PARMRK))
1748		port->read_status_mask |= UART011_DR_BE;
1749
1750	/*
1751	 * Characters to ignore
 
 
1752	 */
1753	port->ignore_status_mask = 0;
1754	if (termios->c_iflag & IGNPAR)
1755		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1756	if (termios->c_iflag & IGNBRK) {
1757		port->ignore_status_mask |= UART011_DR_BE;
1758		/*
1759		 * If we're ignoring parity and break indicators,
1760		 * ignore overruns too (for real raw support).
1761		 */
1762		if (termios->c_iflag & IGNPAR)
1763			port->ignore_status_mask |= UART011_DR_OE;
1764	}
1765
1766	/*
1767	 * Ignore all characters if CREAD is not set.
1768	 */
1769	if ((termios->c_cflag & CREAD) == 0)
1770		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1771
1772	if (UART_ENABLE_MS(port, termios->c_cflag))
1773		pl011_enable_ms(port);
1774
1775	/* first, disable everything */
1776	old_cr = readw(port->membase + UART011_CR);
1777	writew(0, port->membase + UART011_CR);
 
1778
1779	if (termios->c_cflag & CRTSCTS) {
1780		if (old_cr & UART011_CR_RTS)
1781			old_cr |= UART011_CR_RTSEN;
1782
1783		old_cr |= UART011_CR_CTSEN;
1784		uap->autorts = true;
1785	} else {
1786		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1787		uap->autorts = false;
1788	}
1789
1790	if (uap->vendor->oversampling) {
1791		if (baud > port->uartclk / 16)
1792			old_cr |= ST_UART011_CR_OVSFACT;
1793		else
1794			old_cr &= ~ST_UART011_CR_OVSFACT;
1795	}
1796
1797	/*
1798	 * Workaround for the ST Micro oversampling variants to
1799	 * increase the bitrate slightly, by lowering the divisor,
1800	 * to avoid delayed sampling of start bit at high speeds,
1801	 * else we see data corruption.
1802	 */
1803	if (uap->vendor->oversampling) {
1804		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
1805			quot -= 1;
1806		else if ((baud > 3250000) && (quot > 2))
1807			quot -= 2;
1808	}
1809	/* Set baud rate */
1810	writew(quot & 0x3f, port->membase + UART011_FBRD);
1811	writew(quot >> 6, port->membase + UART011_IBRD);
1812
1813	/*
1814	 * ----------v----------v----------v----------v-----
1815	 * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER
1816	 * UART011_FBRD & UART011_IBRD.
1817	 * ----------^----------^----------^----------^-----
1818	 */
1819	pl011_write_lcr_h(uap, lcr_h);
1820	writew(old_cr, port->membase + UART011_CR);
1821
1822	spin_unlock_irqrestore(&port->lock, flags);
 
 
 
 
 
 
 
 
1823}
1824
1825static const char *pl011_type(struct uart_port *port)
 
 
1826{
1827	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1828	return uap->port.type == PORT_AMBA ? uap->type : NULL;
1829}
 
 
1830
1831/*
1832 * Release the memory region(s) being used by 'port'
1833 */
1834static void pl011_release_port(struct uart_port *port)
1835{
1836	release_mem_region(port->mapbase, SZ_4K);
 
 
 
1837}
1838
1839/*
1840 * Request the memory region(s) being used by 'port'
1841 */
1842static int pl011_request_port(struct uart_port *port)
1843{
1844	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1845			!= NULL ? 0 : -EBUSY;
 
1846}
1847
1848/*
1849 * Configure/autoconfigure the port.
1850 */
1851static void pl011_config_port(struct uart_port *port, int flags)
1852{
1853	if (flags & UART_CONFIG_TYPE) {
1854		port->type = PORT_AMBA;
1855		pl011_request_port(port);
1856	}
1857}
1858
1859/*
1860 * verify the new serial_struct (for TIOCSSERIAL).
1861 */
1862static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
1863{
1864	int ret = 0;
 
1865	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1866		ret = -EINVAL;
1867	if (ser->irq < 0 || ser->irq >= nr_irqs)
1868		ret = -EINVAL;
1869	if (ser->baud_base < 9600)
1870		ret = -EINVAL;
 
 
1871	return ret;
1872}
1873
1874static struct uart_ops amba_pl011_pops = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1875	.tx_empty	= pl011_tx_empty,
1876	.set_mctrl	= pl011_set_mctrl,
1877	.get_mctrl	= pl011_get_mctrl,
1878	.stop_tx	= pl011_stop_tx,
1879	.start_tx	= pl011_start_tx,
1880	.stop_rx	= pl011_stop_rx,
 
 
1881	.enable_ms	= pl011_enable_ms,
1882	.break_ctl	= pl011_break_ctl,
1883	.startup	= pl011_startup,
1884	.shutdown	= pl011_shutdown,
1885	.flush_buffer	= pl011_dma_flush_buffer,
1886	.set_termios	= pl011_set_termios,
1887	.type		= pl011_type,
1888	.release_port	= pl011_release_port,
1889	.request_port	= pl011_request_port,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1890	.config_port	= pl011_config_port,
1891	.verify_port	= pl011_verify_port,
1892#ifdef CONFIG_CONSOLE_POLL
1893	.poll_init     = pl011_hwinit,
1894	.poll_get_char = pl011_get_poll_char,
1895	.poll_put_char = pl011_put_poll_char,
1896#endif
1897};
1898
1899static struct uart_amba_port *amba_ports[UART_NR];
1900
1901#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1902
1903static void pl011_console_putchar(struct uart_port *port, int ch)
1904{
1905	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1906
1907	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1908		barrier();
1909	writew(ch, uap->port.membase + UART01x_DR);
1910}
1911
1912static void
1913pl011_console_write(struct console *co, const char *s, unsigned int count)
1914{
1915	struct uart_amba_port *uap = amba_ports[co->index];
1916	unsigned int status, old_cr, new_cr;
1917	unsigned long flags;
1918	int locked = 1;
1919
1920	clk_enable(uap->clk);
1921
1922	local_irq_save(flags);
1923	if (uap->port.sysrq)
1924		locked = 0;
1925	else if (oops_in_progress)
1926		locked = spin_trylock(&uap->port.lock);
1927	else
1928		spin_lock(&uap->port.lock);
1929
1930	/*
1931	 *	First save the CR then disable the interrupts
1932	 */
1933	old_cr = readw(uap->port.membase + UART011_CR);
1934	new_cr = old_cr & ~UART011_CR_CTSEN;
1935	new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1936	writew(new_cr, uap->port.membase + UART011_CR);
 
 
1937
1938	uart_console_write(&uap->port, s, count, pl011_console_putchar);
1939
1940	/*
1941	 *	Finally, wait for transmitter to become empty
1942	 *	and restore the TCR
1943	 */
1944	do {
1945		status = readw(uap->port.membase + UART01x_FR);
1946	} while (status & UART01x_FR_BUSY);
1947	writew(old_cr, uap->port.membase + UART011_CR);
 
 
1948
1949	if (locked)
1950		spin_unlock(&uap->port.lock);
1951	local_irq_restore(flags);
1952
1953	clk_disable(uap->clk);
1954}
1955
1956static void __init
1957pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1958			     int *parity, int *bits)
1959{
1960	if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1961		unsigned int lcr_h, ibrd, fbrd;
1962
1963		lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1964
1965		*parity = 'n';
1966		if (lcr_h & UART01x_LCRH_PEN) {
1967			if (lcr_h & UART01x_LCRH_EPS)
1968				*parity = 'e';
1969			else
1970				*parity = 'o';
1971		}
1972
1973		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1974			*bits = 7;
 
 
1975		else
1976			*bits = 8;
 
1977
1978		ibrd = readw(uap->port.membase + UART011_IBRD);
1979		fbrd = readw(uap->port.membase + UART011_FBRD);
 
 
1980
1981		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
 
1982
1983		if (uap->vendor->oversampling) {
1984			if (readw(uap->port.membase + UART011_CR)
1985				  & ST_UART011_CR_OVSFACT)
1986				*baud *= 2;
1987		}
1988	}
1989}
1990
1991static int __init pl011_console_setup(struct console *co, char *options)
1992{
1993	struct uart_amba_port *uap;
1994	int baud = 38400;
1995	int bits = 8;
1996	int parity = 'n';
1997	int flow = 'n';
1998	int ret;
1999
2000	/*
2001	 * Check whether an invalid uart number has been specified, and
2002	 * if so, search for the first available port that does have
2003	 * console support.
2004	 */
2005	if (co->index >= UART_NR)
2006		co->index = 0;
2007	uap = amba_ports[co->index];
2008	if (!uap)
2009		return -ENODEV;
2010
2011	/* Allow pins to be muxed in and configured */
2012	pinctrl_pm_select_default_state(uap->port.dev);
2013
2014	ret = clk_prepare(uap->clk);
2015	if (ret)
2016		return ret;
2017
2018	if (dev_get_platdata(uap->port.dev)) {
2019		struct amba_pl011_data *plat;
2020
2021		plat = dev_get_platdata(uap->port.dev);
2022		if (plat->init)
2023			plat->init();
2024	}
2025
2026	uap->port.uartclk = clk_get_rate(uap->clk);
2027
2028	if (options)
2029		uart_parse_options(options, &baud, &parity, &bits, &flow);
2030	else
2031		pl011_console_get_options(uap, &baud, &parity, &bits);
 
 
 
 
 
2032
2033	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2034}
2035
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2036static struct uart_driver amba_reg;
2037static struct console amba_console = {
2038	.name		= "ttyAMA",
2039	.write		= pl011_console_write,
2040	.device		= uart_console_device,
2041	.setup		= pl011_console_setup,
2042	.flags		= CON_PRINTBUFFER,
 
2043	.index		= -1,
2044	.data		= &amba_reg,
2045};
2046
2047#define AMBA_CONSOLE	(&amba_console)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2048#else
2049#define AMBA_CONSOLE	NULL
2050#endif
2051
2052static struct uart_driver amba_reg = {
2053	.owner			= THIS_MODULE,
2054	.driver_name		= "ttyAMA",
2055	.dev_name		= "ttyAMA",
2056	.major			= SERIAL_AMBA_MAJOR,
2057	.minor			= SERIAL_AMBA_MINOR,
2058	.nr			= UART_NR,
2059	.cons			= AMBA_CONSOLE,
2060};
2061
2062static int pl011_probe_dt_alias(int index, struct device *dev)
2063{
2064	struct device_node *np;
2065	static bool seen_dev_with_alias = false;
2066	static bool seen_dev_without_alias = false;
2067	int ret = index;
2068
2069	if (!IS_ENABLED(CONFIG_OF))
2070		return ret;
2071
2072	np = dev->of_node;
2073	if (!np)
2074		return ret;
2075
2076	ret = of_alias_get_id(np, "serial");
2077	if (IS_ERR_VALUE(ret)) {
2078		seen_dev_without_alias = true;
2079		ret = index;
2080	} else {
2081		seen_dev_with_alias = true;
2082		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2083			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2084			ret = index;
2085		}
2086	}
2087
2088	if (seen_dev_with_alias && seen_dev_without_alias)
2089		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2090
2091	return ret;
2092}
2093
2094static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2095{
2096	struct uart_amba_port *uap;
2097	struct vendor_data *vendor = id->data;
2098	void __iomem *base;
2099	int i, ret;
2100
2101	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2102		if (amba_ports[i] == NULL)
2103			break;
 
 
 
 
 
 
 
 
 
 
 
 
2104
2105	if (i == ARRAY_SIZE(amba_ports)) {
2106		ret = -EBUSY;
2107		goto out;
2108	}
2109
2110	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2111			   GFP_KERNEL);
2112	if (uap == NULL) {
2113		ret = -ENOMEM;
2114		goto out;
2115	}
2116
2117	i = pl011_probe_dt_alias(i, &dev->dev);
2118
2119	base = devm_ioremap(&dev->dev, dev->res.start,
2120			    resource_size(&dev->res));
2121	if (!base) {
2122		ret = -ENOMEM;
2123		goto out;
2124	}
2125
2126	uap->clk = devm_clk_get(&dev->dev, NULL);
2127	if (IS_ERR(uap->clk)) {
2128		ret = PTR_ERR(uap->clk);
2129		goto out;
2130	}
2131
2132	uap->vendor = vendor;
2133	uap->lcrh_rx = vendor->lcrh_rx;
2134	uap->lcrh_tx = vendor->lcrh_tx;
2135	uap->old_cr = 0;
2136	uap->fifosize = vendor->get_fifosize(dev);
2137	uap->port.dev = &dev->dev;
2138	uap->port.mapbase = dev->res.start;
2139	uap->port.membase = base;
2140	uap->port.iotype = UPIO_MEM;
2141	uap->port.irq = dev->irq[0];
2142	uap->port.fifosize = uap->fifosize;
2143	uap->port.ops = &amba_pl011_pops;
2144	uap->port.flags = UPF_BOOT_AUTOCONF;
2145	uap->port.line = i;
2146	pl011_dma_probe(&dev->dev, uap);
 
 
 
2147
2148	/* Ensure interrupts from this UART are masked and cleared */
2149	writew(0, uap->port.membase + UART011_IMSC);
2150	writew(0xffff, uap->port.membase + UART011_ICR);
2151
2152	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
 
2153
2154	amba_ports[i] = uap;
 
 
2155
2156	amba_set_drvdata(dev, uap);
 
 
2157
2158	if (!amba_reg.state) {
2159		ret = uart_register_driver(&amba_reg);
2160		if (ret < 0) {
2161			pr_err("Failed to register AMBA-PL011 driver\n");
 
 
 
 
2162			return ret;
2163		}
2164	}
2165
2166	ret = uart_add_one_port(&amba_reg, &uap->port);
2167	if (ret) {
2168		amba_ports[i] = NULL;
2169		uart_unregister_driver(&amba_reg);
2170		pl011_dma_remove(uap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2171	}
2172 out:
2173	return ret;
 
 
 
 
 
 
2174}
2175
2176static int pl011_remove(struct amba_device *dev)
2177{
2178	struct uart_amba_port *uap = amba_get_drvdata(dev);
2179	bool busy = false;
2180	int i;
2181
2182	uart_remove_one_port(&amba_reg, &uap->port);
2183
2184	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2185		if (amba_ports[i] == uap)
2186			amba_ports[i] = NULL;
2187		else if (amba_ports[i])
2188			busy = true;
2189
2190	pl011_dma_remove(uap);
2191	if (!busy)
2192		uart_unregister_driver(&amba_reg);
2193	return 0;
2194}
2195
2196#ifdef CONFIG_PM_SLEEP
2197static int pl011_suspend(struct device *dev)
2198{
2199	struct uart_amba_port *uap = dev_get_drvdata(dev);
2200
2201	if (!uap)
2202		return -EINVAL;
2203
2204	return uart_suspend_port(&amba_reg, &uap->port);
2205}
2206
2207static int pl011_resume(struct device *dev)
2208{
2209	struct uart_amba_port *uap = dev_get_drvdata(dev);
2210
2211	if (!uap)
2212		return -EINVAL;
2213
2214	return uart_resume_port(&amba_reg, &uap->port);
2215}
2216#endif
2217
2218static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2219
2220static struct amba_id pl011_ids[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2221	{
2222		.id	= 0x00041011,
2223		.mask	= 0x000fffff,
2224		.data	= &vendor_arm,
2225	},
2226	{
2227		.id	= 0x00380802,
2228		.mask	= 0x00ffffff,
2229		.data	= &vendor_st,
2230	},
2231	{ 0, 0 },
2232};
2233
2234MODULE_DEVICE_TABLE(amba, pl011_ids);
2235
2236static struct amba_driver pl011_driver = {
2237	.drv = {
2238		.name	= "uart-pl011",
2239		.pm	= &pl011_dev_pm_ops,
 
2240	},
2241	.id_table	= pl011_ids,
2242	.probe		= pl011_probe,
2243	.remove		= pl011_remove,
2244};
2245
2246static int __init pl011_init(void)
2247{
2248	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2249
 
 
2250	return amba_driver_register(&pl011_driver);
2251}
2252
2253static void __exit pl011_exit(void)
2254{
 
2255	amba_driver_unregister(&pl011_driver);
2256}
2257
2258/*
2259 * While this can be a module, if builtin it's most likely the console
2260 * So let's leave module_exit but move module_init to an earlier place
2261 */
2262arch_initcall(pl011_init);
2263module_exit(pl011_exit);
2264
2265MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2266MODULE_DESCRIPTION("ARM AMBA serial port driver");
2267MODULE_LICENSE("GPL");