Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 1999 Eric Youngdale
   4 * Copyright (C) 2014 Christoph Hellwig
   5 *
   6 *  SCSI queueing library.
   7 *      Initial versions: Eric Youngdale (eric@andante.org).
   8 *                        Based upon conversations with large numbers
   9 *                        of people at Linux Expo.
  10 */
  11
  12#include <linux/bio.h>
  13#include <linux/bitops.h>
  14#include <linux/blkdev.h>
  15#include <linux/completion.h>
  16#include <linux/kernel.h>
  17#include <linux/export.h>
 
 
  18#include <linux/init.h>
  19#include <linux/pci.h>
  20#include <linux/delay.h>
  21#include <linux/hardirq.h>
  22#include <linux/scatterlist.h>
  23#include <linux/blk-mq.h>
  24#include <linux/blk-integrity.h>
  25#include <linux/ratelimit.h>
  26#include <asm/unaligned.h>
  27
  28#include <scsi/scsi.h>
  29#include <scsi/scsi_cmnd.h>
  30#include <scsi/scsi_dbg.h>
  31#include <scsi/scsi_device.h>
  32#include <scsi/scsi_driver.h>
  33#include <scsi/scsi_eh.h>
  34#include <scsi/scsi_host.h>
  35#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
  36#include <scsi/scsi_dh.h>
  37
  38#include <trace/events/scsi.h>
  39
  40#include "scsi_debugfs.h"
  41#include "scsi_priv.h"
  42#include "scsi_logging.h"
  43
  44/*
  45 * Size of integrity metadata is usually small, 1 inline sg should
  46 * cover normal cases.
  47 */
  48#ifdef CONFIG_ARCH_NO_SG_CHAIN
  49#define  SCSI_INLINE_PROT_SG_CNT  0
  50#define  SCSI_INLINE_SG_CNT  0
  51#else
  52#define  SCSI_INLINE_PROT_SG_CNT  1
  53#define  SCSI_INLINE_SG_CNT  2
  54#endif
  55
  56static struct kmem_cache *scsi_sense_cache;
  57static DEFINE_MUTEX(scsi_sense_cache_mutex);
  58
  59static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
 
 
 
 
 
  60
  61int scsi_init_sense_cache(struct Scsi_Host *shost)
  62{
  63	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64
  65	mutex_lock(&scsi_sense_cache_mutex);
  66	if (!scsi_sense_cache) {
  67		scsi_sense_cache =
  68			kmem_cache_create_usercopy("scsi_sense_cache",
  69				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
  70				0, SCSI_SENSE_BUFFERSIZE, NULL);
  71		if (!scsi_sense_cache)
  72			ret = -ENOMEM;
  73	}
  74	mutex_unlock(&scsi_sense_cache_mutex);
  75	return ret;
  76}
  77
  78static void
  79scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80{
  81	struct Scsi_Host *host = cmd->device->host;
  82	struct scsi_device *device = cmd->device;
  83	struct scsi_target *starget = scsi_target(device);
 
 
 
 
 
  84
  85	/*
  86	 * Set the appropriate busy bit for the device/host.
  87	 *
  88	 * If the host/device isn't busy, assume that something actually
  89	 * completed, and that we should be able to queue a command now.
  90	 *
  91	 * Note that the prior mid-layer assumption that any host could
  92	 * always queue at least one command is now broken.  The mid-layer
  93	 * will implement a user specifiable stall (see
  94	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
  95	 * if a command is requeued with no other commands outstanding
  96	 * either for the device or for the host.
  97	 */
  98	switch (reason) {
  99	case SCSI_MLQUEUE_HOST_BUSY:
 100		atomic_set(&host->host_blocked, host->max_host_blocked);
 101		break;
 102	case SCSI_MLQUEUE_DEVICE_BUSY:
 103	case SCSI_MLQUEUE_EH_RETRY:
 104		atomic_set(&device->device_blocked,
 105			   device->max_device_blocked);
 106		break;
 107	case SCSI_MLQUEUE_TARGET_BUSY:
 108		atomic_set(&starget->target_blocked,
 109			   starget->max_target_blocked);
 110		break;
 111	}
 112}
 113
 114static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
 115{
 116	struct request *rq = scsi_cmd_to_rq(cmd);
 117
 118	if (rq->rq_flags & RQF_DONTPREP) {
 119		rq->rq_flags &= ~RQF_DONTPREP;
 120		scsi_mq_uninit_cmd(cmd);
 121	} else {
 122		WARN_ON_ONCE(true);
 123	}
 124
 125	blk_mq_requeue_request(rq, false);
 126	if (!scsi_host_in_recovery(cmd->device->host))
 127		blk_mq_delay_kick_requeue_list(rq->q, msecs);
 128}
 129
 130/**
 131 * __scsi_queue_insert - private queue insertion
 132 * @cmd: The SCSI command being requeued
 133 * @reason:  The reason for the requeue
 134 * @unbusy: Whether the queue should be unbusied
 135 *
 136 * This is a private queue insertion.  The public interface
 137 * scsi_queue_insert() always assumes the queue should be unbusied
 138 * because it's always called before the completion.  This function is
 139 * for a requeue after completion, which should only occur in this
 140 * file.
 141 */
 142static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
 143{
 144	struct scsi_device *device = cmd->device;
 145
 146	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 147		"Inserting command %p into mlqueue\n", cmd));
 148
 149	scsi_set_blocked(cmd, reason);
 150
 151	/*
 152	 * Decrement the counters, since these commands are no longer
 153	 * active on the host/device.
 154	 */
 155	if (unbusy)
 156		scsi_device_unbusy(device, cmd);
 157
 158	/*
 159	 * Requeue this command.  It will go before all other commands
 160	 * that are already in the queue. Schedule requeue work under
 161	 * lock such that the kblockd_schedule_work() call happens
 162	 * before blk_mq_destroy_queue() finishes.
 163	 */
 164	cmd->result = 0;
 165
 166	blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
 167			       !scsi_host_in_recovery(cmd->device->host));
 
 168}
 169
 170/**
 171 * scsi_queue_insert - Reinsert a command in the queue.
 172 * @cmd:    command that we are adding to queue.
 173 * @reason: why we are inserting command to queue.
 174 *
 175 * We do this for one of two cases. Either the host is busy and it cannot accept
 176 * any more commands for the time being, or the device returned QUEUE_FULL and
 177 * can accept no more commands.
 
 
 
 178 *
 179 * Context: This could be called either from an interrupt context or a normal
 180 * process context.
 
 
 
 
 181 */
 182void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 183{
 184	__scsi_queue_insert(cmd, reason, true);
 185}
 186
 187/**
 188 * scsi_execute_cmd - insert request and wait for the result
 189 * @sdev:	scsi_device
 190 * @cmd:	scsi command
 191 * @opf:	block layer request cmd_flags
 192 * @buffer:	data buffer
 193 * @bufflen:	len of buffer
 194 * @timeout:	request timeout in HZ
 
 195 * @retries:	number of times to retry request
 196 * @args:	Optional args. See struct definition for field descriptions
 
 197 *
 198 * Returns the scsi_cmnd result field if a command was executed, or a negative
 199 * Linux error code if we didn't get that far.
 200 */
 201int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
 202		     blk_opf_t opf, void *buffer, unsigned int bufflen,
 203		     int timeout, int retries,
 204		     const struct scsi_exec_args *args)
 205{
 206	static const struct scsi_exec_args default_args;
 207	struct request *req;
 208	struct scsi_cmnd *scmd;
 209	int ret;
 210
 211	if (!args)
 212		args = &default_args;
 213	else if (WARN_ON_ONCE(args->sense &&
 214			      args->sense_len != SCSI_SENSE_BUFFERSIZE))
 215		return -EINVAL;
 216
 217	req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
 218	if (IS_ERR(req))
 219		return PTR_ERR(req);
 220
 221	if (bufflen) {
 222		ret = blk_rq_map_kern(sdev->request_queue, req,
 223				      buffer, bufflen, GFP_NOIO);
 224		if (ret)
 225			goto out;
 226	}
 227	scmd = blk_mq_rq_to_pdu(req);
 228	scmd->cmd_len = COMMAND_SIZE(cmd[0]);
 229	memcpy(scmd->cmnd, cmd, scmd->cmd_len);
 230	scmd->allowed = retries;
 231	scmd->flags |= args->scmd_flags;
 232	req->timeout = timeout;
 233	req->rq_flags |= RQF_QUIET;
 
 234
 235	/*
 236	 * head injection *required* here otherwise quiesce won't work
 237	 */
 238	blk_execute_rq(req, true);
 239
 240	/*
 241	 * Some devices (USB mass-storage in particular) may transfer
 242	 * garbage data together with a residue indicating that the data
 243	 * is invalid.  Prevent the garbage from being misinterpreted
 244	 * and prevent security leaks by zeroing out the excess data.
 245	 */
 246	if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
 247		memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
 248
 249	if (args->resid)
 250		*args->resid = scmd->resid_len;
 251	if (args->sense)
 252		memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
 253	if (args->sshdr)
 254		scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
 255				     args->sshdr);
 256
 257	ret = scmd->result;
 258 out:
 259	blk_mq_free_request(req);
 260
 261	return ret;
 262}
 263EXPORT_SYMBOL(scsi_execute_cmd);
 264
 265/*
 266 * Wake up the error handler if necessary. Avoid as follows that the error
 267 * handler is not woken up if host in-flight requests number ==
 268 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
 269 * with an RCU read lock in this function to ensure that this function in
 270 * its entirety either finishes before scsi_eh_scmd_add() increases the
 271 * host_failed counter or that it notices the shost state change made by
 272 * scsi_eh_scmd_add().
 273 */
 274static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
 275{
 276	unsigned long flags;
 277
 278	rcu_read_lock();
 279	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
 280	if (unlikely(scsi_host_in_recovery(shost))) {
 281		unsigned int busy = scsi_host_busy(shost);
 
 
 
 
 
 
 282
 283		spin_lock_irqsave(shost->host_lock, flags);
 284		if (shost->host_failed || shost->host_eh_scheduled)
 285			scsi_eh_wakeup(shost, busy);
 286		spin_unlock_irqrestore(shost->host_lock, flags);
 287	}
 288	rcu_read_unlock();
 289}
 
 290
 291void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
 
 
 
 
 
 
 
 
 
 
 
 292{
 293	struct Scsi_Host *shost = sdev->host;
 294	struct scsi_target *starget = scsi_target(sdev);
 295
 296	scsi_dec_host_busy(shost, cmd);
 297
 298	if (starget->can_queue > 0)
 299		atomic_dec(&starget->target_busy);
 300
 301	sbitmap_put(&sdev->budget_map, cmd->budget_token);
 302	cmd->budget_token = -1;
 303}
 304
 305/*
 306 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
 307 * interrupts disabled.
 308 */
 309static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
 310{
 311	struct scsi_device *current_sdev = data;
 
 
 312
 313	if (sdev != current_sdev)
 314		blk_mq_run_hw_queues(sdev->request_queue, true);
 
 
 
 
 
 
 
 
 315}
 316
 317/*
 318 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 319 * and call blk_run_queue for all the scsi_devices on the target -
 320 * including current_sdev first.
 321 *
 322 * Called with *no* scsi locks held.
 323 */
 324static void scsi_single_lun_run(struct scsi_device *current_sdev)
 325{
 326	struct Scsi_Host *shost = current_sdev->host;
 
 327	struct scsi_target *starget = scsi_target(current_sdev);
 328	unsigned long flags;
 329
 330	spin_lock_irqsave(shost->host_lock, flags);
 331	starget->starget_sdev_user = NULL;
 332	spin_unlock_irqrestore(shost->host_lock, flags);
 333
 334	/*
 335	 * Call blk_run_queue for all LUNs on the target, starting with
 336	 * current_sdev. We race with others (to set starget_sdev_user),
 337	 * but in most cases, we will be first. Ideally, each LU on the
 338	 * target would get some limited time or requests on the target.
 339	 */
 340	blk_mq_run_hw_queues(current_sdev->request_queue,
 341			     shost->queuecommand_may_block);
 342
 343	spin_lock_irqsave(shost->host_lock, flags);
 344	if (!starget->starget_sdev_user)
 345		__starget_for_each_device(starget, current_sdev,
 346					  scsi_kick_sdev_queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 347	spin_unlock_irqrestore(shost->host_lock, flags);
 348}
 349
 350static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 351{
 352	if (scsi_device_busy(sdev) >= sdev->queue_depth)
 353		return true;
 354	if (atomic_read(&sdev->device_blocked) > 0)
 355		return true;
 356	return false;
 357}
 358
 359static inline bool scsi_target_is_busy(struct scsi_target *starget)
 360{
 361	if (starget->can_queue > 0) {
 362		if (atomic_read(&starget->target_busy) >= starget->can_queue)
 363			return true;
 364		if (atomic_read(&starget->target_blocked) > 0)
 365			return true;
 366	}
 367	return false;
 368}
 369
 370static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 371{
 372	if (atomic_read(&shost->host_blocked) > 0)
 373		return true;
 374	if (shost->host_self_blocked)
 375		return true;
 376	return false;
 377}
 378
 379static void scsi_starved_list_run(struct Scsi_Host *shost)
 380{
 381	LIST_HEAD(starved_list);
 382	struct scsi_device *sdev;
 383	unsigned long flags;
 384
 385	spin_lock_irqsave(shost->host_lock, flags);
 386	list_splice_init(&shost->starved_list, &starved_list);
 387
 388	while (!list_empty(&starved_list)) {
 389		struct request_queue *slq;
 390
 391		/*
 392		 * As long as shost is accepting commands and we have
 393		 * starved queues, call blk_run_queue. scsi_request_fn
 394		 * drops the queue_lock and can add us back to the
 395		 * starved_list.
 396		 *
 397		 * host_lock protects the starved_list and starved_entry.
 398		 * scsi_request_fn must get the host_lock before checking
 399		 * or modifying starved_list or starved_entry.
 400		 */
 401		if (scsi_host_is_busy(shost))
 402			break;
 403
 404		sdev = list_entry(starved_list.next,
 405				  struct scsi_device, starved_entry);
 406		list_del_init(&sdev->starved_entry);
 407		if (scsi_target_is_busy(scsi_target(sdev))) {
 408			list_move_tail(&sdev->starved_entry,
 409				       &shost->starved_list);
 410			continue;
 411		}
 412
 413		/*
 414		 * Once we drop the host lock, a racing scsi_remove_device()
 415		 * call may remove the sdev from the starved list and destroy
 416		 * it and the queue.  Mitigate by taking a reference to the
 417		 * queue and never touching the sdev again after we drop the
 418		 * host lock.  Note: if __scsi_remove_device() invokes
 419		 * blk_mq_destroy_queue() before the queue is run from this
 420		 * function then blk_run_queue() will return immediately since
 421		 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
 422		 */
 423		slq = sdev->request_queue;
 424		if (!blk_get_queue(slq))
 425			continue;
 426		spin_unlock_irqrestore(shost->host_lock, flags);
 427
 428		blk_mq_run_hw_queues(slq, false);
 429		blk_put_queue(slq);
 430
 431		spin_lock_irqsave(shost->host_lock, flags);
 432	}
 433	/* put any unprocessed entries back */
 434	list_splice(&starved_list, &shost->starved_list);
 435	spin_unlock_irqrestore(shost->host_lock, flags);
 436}
 437
 438/**
 439 * scsi_run_queue - Select a proper request queue to serve next.
 440 * @q:  last request's queue
 
 441 *
 442 * The previous command was completely finished, start a new one if possible.
 
 
 
 
 
 443 */
 444static void scsi_run_queue(struct request_queue *q)
 445{
 446	struct scsi_device *sdev = q->queuedata;
 447
 448	if (scsi_target(sdev)->single_lun)
 449		scsi_single_lun_run(sdev);
 450	if (!list_empty(&sdev->host->starved_list))
 451		scsi_starved_list_run(sdev->host);
 452
 453	/* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
 454	blk_mq_kick_requeue_list(q);
 455}
 456
 457void scsi_requeue_run_queue(struct work_struct *work)
 458{
 459	struct scsi_device *sdev;
 460	struct request_queue *q;
 461
 462	sdev = container_of(work, struct scsi_device, requeue_work);
 463	q = sdev->request_queue;
 464	scsi_run_queue(q);
 465}
 466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 467void scsi_run_host_queues(struct Scsi_Host *shost)
 468{
 469	struct scsi_device *sdev;
 470
 471	shost_for_each_device(sdev, shost)
 472		scsi_run_queue(sdev->request_queue);
 473}
 474
 475static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 476{
 477	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
 478		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 479
 480		if (drv->uninit_command)
 481			drv->uninit_command(cmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 482	}
 
 
 
 
 
 
 
 
 483}
 484
 485void scsi_free_sgtables(struct scsi_cmnd *cmd)
 486{
 487	if (cmd->sdb.table.nents)
 488		sg_free_table_chained(&cmd->sdb.table,
 489				SCSI_INLINE_SG_CNT);
 490	if (scsi_prot_sg_count(cmd))
 491		sg_free_table_chained(&cmd->prot_sdb->table,
 492				SCSI_INLINE_PROT_SG_CNT);
 
 
 
 
 493}
 494EXPORT_SYMBOL_GPL(scsi_free_sgtables);
 495
 496static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 497{
 498	scsi_free_sgtables(cmd);
 499	scsi_uninit_cmd(cmd);
 
 
 500}
 501
 502static void scsi_run_queue_async(struct scsi_device *sdev)
 503{
 504	if (scsi_host_in_recovery(sdev->host))
 505		return;
 506
 507	if (scsi_target(sdev)->single_lun ||
 508	    !list_empty(&sdev->host->starved_list)) {
 509		kblockd_schedule_work(&sdev->requeue_work);
 510	} else {
 511		/*
 512		 * smp_mb() present in sbitmap_queue_clear() or implied in
 513		 * .end_io is for ordering writing .device_busy in
 514		 * scsi_device_unbusy() and reading sdev->restarts.
 515		 */
 516		int old = atomic_read(&sdev->restarts);
 517
 518		/*
 519		 * ->restarts has to be kept as non-zero if new budget
 520		 *  contention occurs.
 521		 *
 522		 *  No need to run queue when either another re-run
 523		 *  queue wins in updating ->restarts or a new budget
 524		 *  contention occurs.
 525		 */
 526		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
 527			blk_mq_run_hw_queues(sdev->request_queue, true);
 528	}
 529}
 530
 531/* Returns false when no more bytes to process, true if there are more */
 532static bool scsi_end_request(struct request *req, blk_status_t error,
 533		unsigned int bytes)
 534{
 535	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 536	struct scsi_device *sdev = cmd->device;
 537	struct request_queue *q = sdev->request_queue;
 538
 539	if (blk_update_request(req, error, bytes))
 540		return true;
 541
 542	// XXX:
 543	if (blk_queue_add_random(q))
 544		add_disk_randomness(req->q->disk);
 
 
 545
 546	if (!blk_rq_is_passthrough(req)) {
 547		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
 548		cmd->flags &= ~SCMD_INITIALIZED;
 549	}
 550
 551	/*
 552	 * Calling rcu_barrier() is not necessary here because the
 553	 * SCSI error handler guarantees that the function called by
 554	 * call_rcu() has been called before scsi_end_request() is
 555	 * called.
 556	 */
 557	destroy_rcu_head(&cmd->rcu);
 558
 559	/*
 560	 * In the MQ case the command gets freed by __blk_mq_end_request,
 561	 * so we have to do all cleanup that depends on it earlier.
 562	 *
 563	 * We also can't kick the queues from irq context, so we
 564	 * will have to defer it to a workqueue.
 565	 */
 566	scsi_mq_uninit_cmd(cmd);
 567
 568	/*
 569	 * queue is still alive, so grab the ref for preventing it
 570	 * from being cleaned up during running queue.
 571	 */
 572	percpu_ref_get(&q->q_usage_counter);
 573
 574	__blk_mq_end_request(req, error);
 
 
 
 
 
 
 
 
 575
 576	scsi_run_queue_async(sdev);
 
 
 577
 578	percpu_ref_put(&q->q_usage_counter);
 579	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 580}
 
 581
 582/**
 583 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
 
 584 * @result:	scsi error code
 585 *
 586 * Translate a SCSI result code into a blk_status_t value.
 
 
 
 
 
 
 
 587 */
 588static blk_status_t scsi_result_to_blk_status(int result)
 589{
 590	/*
 591	 * Check the scsi-ml byte first in case we converted a host or status
 592	 * byte.
 593	 */
 594	switch (scsi_ml_byte(result)) {
 595	case SCSIML_STAT_OK:
 596		break;
 597	case SCSIML_STAT_RESV_CONFLICT:
 598		return BLK_STS_RESV_CONFLICT;
 599	case SCSIML_STAT_NOSPC:
 600		return BLK_STS_NOSPC;
 601	case SCSIML_STAT_MED_ERROR:
 602		return BLK_STS_MEDIUM;
 603	case SCSIML_STAT_TGT_FAILURE:
 604		return BLK_STS_TARGET;
 605	case SCSIML_STAT_DL_TIMEOUT:
 606		return BLK_STS_DURATION_LIMIT;
 607	}
 608
 609	switch (host_byte(result)) {
 610	case DID_OK:
 611		if (scsi_status_is_good(result))
 612			return BLK_STS_OK;
 613		return BLK_STS_IOERR;
 614	case DID_TRANSPORT_FAILFAST:
 615	case DID_TRANSPORT_MARGINAL:
 616		return BLK_STS_TRANSPORT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 617	default:
 618		return BLK_STS_IOERR;
 
 619	}
 
 
 620}
 621
 622/**
 623 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
 624 * @rq: request to examine
 
 
 
 
 
 
 
 625 *
 626 * Description:
 627 *     A request could be merge of IOs which require different failure
 628 *     handling.  This function determines the number of bytes which
 629 *     can be failed from the beginning of the request without
 630 *     crossing into area which need to be retried further.
 631 *
 632 * Return:
 633 *     The number of bytes to fail.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 634 */
 635static unsigned int scsi_rq_err_bytes(const struct request *rq)
 636{
 637	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
 638	unsigned int bytes = 0;
 639	struct bio *bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 640
 641	if (!(rq->rq_flags & RQF_MIXED_MERGE))
 642		return blk_rq_bytes(rq);
 
 
 
 
 
 
 
 
 
 
 643
 644	/*
 645	 * Currently the only 'mixing' which can happen is between
 646	 * different fastfail types.  We can safely fail portions
 647	 * which have all the failfast bits that the first one has -
 648	 * the ones which are at least as eager to fail as the first
 649	 * one.
 650	 */
 651	for (bio = rq->bio; bio; bio = bio->bi_next) {
 652		if ((bio->bi_opf & ff) != ff)
 653			break;
 654		bytes += bio->bi_iter.bi_size;
 655	}
 656
 657	/* this could lead to infinite loop */
 658	BUG_ON(blk_rq_bytes(rq) && !bytes);
 659	return bytes;
 660}
 
 
 661
 662static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
 663{
 664	struct request *req = scsi_cmd_to_rq(cmd);
 665	unsigned long wait_for;
 666
 667	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
 668		return false;
 
 
 669
 670	wait_for = (cmd->allowed + 1) * req->timeout;
 671	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
 672		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
 673			    wait_for/HZ);
 674		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 675	}
 676	return false;
 677}
 678
 679/*
 680 * When ALUA transition state is returned, reprep the cmd to
 681 * use the ALUA handler's transition timeout. Delay the reprep
 682 * 1 sec to avoid aggressive retries of the target in that
 683 * state.
 684 */
 685#define ALUA_TRANSITION_REPREP_DELAY	1000
 686
 687/* Helper for scsi_io_completion() when special action required. */
 688static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
 689{
 690	struct request *req = scsi_cmd_to_rq(cmd);
 691	int level = 0;
 692	enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
 693	      ACTION_RETRY, ACTION_DELAYED_RETRY} action;
 694	struct scsi_sense_hdr sshdr;
 695	bool sense_valid;
 696	bool sense_current = true;      /* false implies "deferred sense" */
 697	blk_status_t blk_stat;
 698
 699	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 700	if (sense_valid)
 701		sense_current = !scsi_sense_is_deferred(&sshdr);
 702
 703	blk_stat = scsi_result_to_blk_status(result);
 704
 705	if (host_byte(result) == DID_RESET) {
 706		/* Third party bus reset or reset for error recovery
 707		 * reasons.  Just retry the command and see what
 708		 * happens.
 709		 */
 710		action = ACTION_RETRY;
 711	} else if (sense_valid && sense_current) {
 712		switch (sshdr.sense_key) {
 713		case UNIT_ATTENTION:
 714			if (cmd->device->removable) {
 715				/* Detected disc change.  Set a bit
 716				 * and quietly refuse further access.
 717				 */
 718				cmd->device->changed = 1;
 
 719				action = ACTION_FAIL;
 720			} else {
 721				/* Must have been a power glitch, or a
 722				 * bus reset.  Could not have been a
 723				 * media change, so we just retry the
 724				 * command and see what happens.
 725				 */
 726				action = ACTION_RETRY;
 727			}
 728			break;
 729		case ILLEGAL_REQUEST:
 730			/* If we had an ILLEGAL REQUEST returned, then
 731			 * we may have performed an unsupported
 732			 * command.  The only thing this should be
 733			 * would be a ten byte read where only a six
 734			 * byte read was supported.  Also, on a system
 735			 * where READ CAPACITY failed, we may have
 736			 * read past the end of the disk.
 737			 */
 738			if ((cmd->device->use_10_for_rw &&
 739			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 740			    (cmd->cmnd[0] == READ_10 ||
 741			     cmd->cmnd[0] == WRITE_10)) {
 742				/* This will issue a new 6-byte command. */
 743				cmd->device->use_10_for_rw = 0;
 744				action = ACTION_REPREP;
 745			} else if (sshdr.asc == 0x10) /* DIX */ {
 
 746				action = ACTION_FAIL;
 747				blk_stat = BLK_STS_PROTECTION;
 748			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 749			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 750				action = ACTION_FAIL;
 751				blk_stat = BLK_STS_TARGET;
 752			} else
 753				action = ACTION_FAIL;
 754			break;
 755		case ABORTED_COMMAND:
 756			action = ACTION_FAIL;
 757			if (sshdr.asc == 0x10) /* DIF */
 758				blk_stat = BLK_STS_PROTECTION;
 
 
 759			break;
 760		case NOT_READY:
 761			/* If the device is in the process of becoming
 762			 * ready, or has a temporary blockage, retry.
 763			 */
 764			if (sshdr.asc == 0x04) {
 765				switch (sshdr.ascq) {
 766				case 0x01: /* becoming ready */
 767				case 0x04: /* format in progress */
 768				case 0x05: /* rebuild in progress */
 769				case 0x06: /* recalculation in progress */
 770				case 0x07: /* operation in progress */
 771				case 0x08: /* Long write in progress */
 772				case 0x09: /* self test in progress */
 773				case 0x11: /* notify (enable spinup) required */
 774				case 0x14: /* space allocation in progress */
 775				case 0x1a: /* start stop unit in progress */
 776				case 0x1b: /* sanitize in progress */
 777				case 0x1d: /* configuration in progress */
 778				case 0x24: /* depopulation in progress */
 779				case 0x25: /* depopulation restore in progress */
 780					action = ACTION_DELAYED_RETRY;
 781					break;
 782				case 0x0a: /* ALUA state transition */
 783					action = ACTION_DELAYED_REPREP;
 784					break;
 785				default:
 
 786					action = ACTION_FAIL;
 787					break;
 788				}
 789			} else
 
 790				action = ACTION_FAIL;
 
 791			break;
 792		case VOLUME_OVERFLOW:
 793			/* See SSC3rXX or current. */
 794			action = ACTION_FAIL;
 795			break;
 796		case DATA_PROTECT:
 797			action = ACTION_FAIL;
 798			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
 799			    (sshdr.asc == 0x55 &&
 800			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
 801				/* Insufficient zone resources */
 802				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
 803			}
 804			break;
 805		case COMPLETED:
 806			fallthrough;
 807		default:
 
 808			action = ACTION_FAIL;
 809			break;
 810		}
 811	} else
 
 812		action = ACTION_FAIL;
 
 813
 814	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
 
 815		action = ACTION_FAIL;
 
 
 816
 817	switch (action) {
 818	case ACTION_FAIL:
 819		/* Give up and fail the remainder of the request */
 820		if (!(req->rq_flags & RQF_QUIET)) {
 821			static DEFINE_RATELIMIT_STATE(_rs,
 822					DEFAULT_RATELIMIT_INTERVAL,
 823					DEFAULT_RATELIMIT_BURST);
 824
 825			if (unlikely(scsi_logging_level))
 826				level =
 827				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
 828						    SCSI_LOG_MLCOMPLETE_BITS);
 829
 830			/*
 831			 * if logging is enabled the failure will be printed
 832			 * in scsi_log_completion(), so avoid duplicate messages
 833			 */
 834			if (!level && __ratelimit(&_rs)) {
 835				scsi_print_result(cmd, NULL, FAILED);
 836				if (sense_valid)
 837					scsi_print_sense(cmd);
 838				scsi_print_command(cmd);
 839			}
 840		}
 841		if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
 842			return;
 843		fallthrough;
 844	case ACTION_REPREP:
 845		scsi_mq_requeue_cmd(cmd, 0);
 846		break;
 847	case ACTION_DELAYED_REPREP:
 848		scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
 
 
 
 
 849		break;
 850	case ACTION_RETRY:
 851		/* Retry the same command immediately */
 852		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
 853		break;
 854	case ACTION_DELAYED_RETRY:
 855		/* Retry the same command after a delay */
 856		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
 857		break;
 858	}
 859}
 860
 861/*
 862 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
 863 * new result that may suppress further error checking. Also modifies
 864 * *blk_statp in some cases.
 865 */
 866static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
 867					blk_status_t *blk_statp)
 868{
 869	bool sense_valid;
 870	bool sense_current = true;	/* false implies "deferred sense" */
 871	struct request *req = scsi_cmd_to_rq(cmd);
 872	struct scsi_sense_hdr sshdr;
 873
 874	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 875	if (sense_valid)
 876		sense_current = !scsi_sense_is_deferred(&sshdr);
 877
 878	if (blk_rq_is_passthrough(req)) {
 879		if (sense_valid) {
 880			/*
 881			 * SG_IO wants current and deferred errors
 882			 */
 883			cmd->sense_len = min(8 + cmd->sense_buffer[7],
 884					     SCSI_SENSE_BUFFERSIZE);
 885		}
 886		if (sense_current)
 887			*blk_statp = scsi_result_to_blk_status(result);
 888	} else if (blk_rq_bytes(req) == 0 && sense_current) {
 889		/*
 890		 * Flush commands do not transfers any data, and thus cannot use
 891		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 892		 * This sets *blk_statp explicitly for the problem case.
 893		 */
 894		*blk_statp = scsi_result_to_blk_status(result);
 895	}
 896	/*
 897	 * Recovered errors need reporting, but they're always treated as
 898	 * success, so fiddle the result code here.  For passthrough requests
 899	 * we already took a copy of the original into sreq->result which
 900	 * is what gets returned to the user
 901	 */
 902	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 903		bool do_print = true;
 904		/*
 905		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
 906		 * skip print since caller wants ATA registers. Only occurs
 907		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
 908		 */
 909		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 910			do_print = false;
 911		else if (req->rq_flags & RQF_QUIET)
 912			do_print = false;
 913		if (do_print)
 914			scsi_print_sense(cmd);
 915		result = 0;
 916		/* for passthrough, *blk_statp may be set */
 917		*blk_statp = BLK_STS_OK;
 918	}
 919	/*
 920	 * Another corner case: the SCSI status byte is non-zero but 'good'.
 921	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
 922	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
 923	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
 924	 * intermediate statuses (both obsolete in SAM-4) as good.
 925	 */
 926	if ((result & 0xff) && scsi_status_is_good(result)) {
 927		result = 0;
 928		*blk_statp = BLK_STS_OK;
 929	}
 930	return result;
 931}
 932
 933/**
 934 * scsi_io_completion - Completion processing for SCSI commands.
 935 * @cmd:	command that is finished.
 936 * @good_bytes:	number of processed bytes.
 937 *
 938 * We will finish off the specified number of sectors. If we are done, the
 939 * command block will be released and the queue function will be goosed. If we
 940 * are not done then we have to figure out what to do next:
 941 *
 942 *   a) We can call scsi_mq_requeue_cmd().  The request will be
 943 *	unprepared and put back on the queue.  Then a new command will
 944 *	be created for it.  This should be used if we made forward
 945 *	progress, or if we want to switch from READ(10) to READ(6) for
 946 *	example.
 947 *
 948 *   b) We can call scsi_io_completion_action().  The request will be
 949 *	put back on the queue and retried using the same command as
 950 *	before, possibly after a delay.
 951 *
 952 *   c) We can call scsi_end_request() with blk_stat other than
 953 *	BLK_STS_OK, to fail the remainder of the request.
 954 */
 955void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 956{
 957	int result = cmd->result;
 958	struct request *req = scsi_cmd_to_rq(cmd);
 959	blk_status_t blk_stat = BLK_STS_OK;
 960
 961	if (unlikely(result))	/* a nz result may or may not be an error */
 962		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
 963
 964	/*
 965	 * Next deal with any sectors which we were able to correctly
 966	 * handle.
 967	 */
 968	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
 969		"%u sectors total, %d bytes done.\n",
 970		blk_rq_sectors(req), good_bytes));
 971
 972	/*
 973	 * Failed, zero length commands always need to drop down
 974	 * to retry code. Fast path should return in this block.
 975	 */
 976	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
 977		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
 978			return; /* no bytes remaining */
 979	}
 980
 981	/* Kill remainder if no retries. */
 982	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
 983		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
 984			WARN_ONCE(true,
 985			    "Bytes remaining after failed, no-retry command");
 986		return;
 987	}
 988
 989	/*
 990	 * If there had been no error, but we have leftover bytes in the
 991	 * request just queue the command up again.
 992	 */
 993	if (likely(result == 0))
 994		scsi_mq_requeue_cmd(cmd, 0);
 995	else
 996		scsi_io_completion_action(cmd, result);
 997}
 998
 999static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1000		struct request *rq)
1001{
1002	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1003	       !op_is_write(req_op(rq)) &&
1004	       sdev->host->hostt->dma_need_drain(rq);
1005}
1006
1007/**
1008 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1009 * @cmd: SCSI command data structure to initialize.
1010 *
1011 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1012 * for @cmd.
1013 *
1014 * Returns:
1015 * * BLK_STS_OK       - on success
1016 * * BLK_STS_RESOURCE - if the failure is retryable
1017 * * BLK_STS_IOERR    - if the failure is fatal
 
1018 */
1019blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1020{
1021	struct scsi_device *sdev = cmd->device;
1022	struct request *rq = scsi_cmd_to_rq(cmd);
1023	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1024	struct scatterlist *last_sg = NULL;
1025	blk_status_t ret;
1026	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1027	int count;
1028
1029	if (WARN_ON_ONCE(!nr_segs))
1030		return BLK_STS_IOERR;
1031
1032	/*
1033	 * Make sure there is space for the drain.  The driver must adjust
1034	 * max_hw_segments to be prepared for this.
1035	 */
1036	if (need_drain)
1037		nr_segs++;
1038
1039	/*
1040	 * If sg table allocation fails, requeue request later.
1041	 */
1042	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1043			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1044		return BLK_STS_RESOURCE;
1045
1046	/*
1047	 * Next, walk the list, and fill in the addresses and sizes of
1048	 * each segment.
1049	 */
1050	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1051
1052	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1053		unsigned int pad_len =
1054			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1055
1056		last_sg->length += pad_len;
1057		cmd->extra_len += pad_len;
 
 
 
 
 
 
 
 
 
 
1058	}
1059
1060	if (need_drain) {
1061		sg_unmark_end(last_sg);
1062		last_sg = sg_next(last_sg);
1063		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1064		sg_mark_end(last_sg);
1065
1066		cmd->extra_len += sdev->dma_drain_len;
1067		count++;
1068	}
1069
1070	BUG_ON(count > cmd->sdb.table.nents);
1071	cmd->sdb.table.nents = count;
1072	cmd->sdb.length = blk_rq_payload_bytes(rq);
1073
1074	if (blk_integrity_rq(rq)) {
1075		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1076		int ivecs;
1077
1078		if (WARN_ON_ONCE(!prot_sdb)) {
1079			/*
1080			 * This can happen if someone (e.g. multipath)
1081			 * queues a command to a device on an adapter
1082			 * that does not support DIX.
1083			 */
1084			ret = BLK_STS_IOERR;
1085			goto out_free_sgtables;
1086		}
1087
 
1088		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1089
1090		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1091				prot_sdb->table.sgl,
1092				SCSI_INLINE_PROT_SG_CNT)) {
1093			ret = BLK_STS_RESOURCE;
1094			goto out_free_sgtables;
1095		}
1096
1097		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1098						prot_sdb->table.sgl);
1099		BUG_ON(count > ivecs);
1100		BUG_ON(count > queue_max_integrity_segments(rq->q));
1101
1102		cmd->prot_sdb = prot_sdb;
1103		cmd->prot_sdb->table.nents = count;
1104	}
1105
1106	return BLK_STS_OK;
1107out_free_sgtables:
1108	scsi_free_sgtables(cmd);
1109	return ret;
1110}
1111EXPORT_SYMBOL(scsi_alloc_sgtables);
1112
1113/**
1114 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1115 * @rq: Request associated with the SCSI command to be initialized.
1116 *
1117 * This function initializes the members of struct scsi_cmnd that must be
1118 * initialized before request processing starts and that won't be
1119 * reinitialized if a SCSI command is requeued.
1120 */
1121static void scsi_initialize_rq(struct request *rq)
1122{
1123	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1124
1125	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1126	cmd->cmd_len = MAX_COMMAND_SIZE;
1127	cmd->sense_len = 0;
1128	init_rcu_head(&cmd->rcu);
1129	cmd->jiffies_at_alloc = jiffies;
1130	cmd->retries = 0;
1131}
 
1132
1133struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1134				   blk_mq_req_flags_t flags)
1135{
1136	struct request *rq;
1137
1138	rq = blk_mq_alloc_request(q, opf, flags);
1139	if (!IS_ERR(rq))
1140		scsi_initialize_rq(rq);
1141	return rq;
1142}
1143EXPORT_SYMBOL_GPL(scsi_alloc_request);
1144
1145/*
1146 * Only called when the request isn't completed by SCSI, and not freed by
1147 * SCSI
1148 */
1149static void scsi_cleanup_rq(struct request *rq)
1150{
1151	if (rq->rq_flags & RQF_DONTPREP) {
1152		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1153		rq->rq_flags &= ~RQF_DONTPREP;
1154	}
1155}
1156
1157/* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1158void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1159{
1160	struct request *rq = scsi_cmd_to_rq(cmd);
1161
1162	if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1163		cmd->flags |= SCMD_INITIALIZED;
1164		scsi_initialize_rq(rq);
1165	}
1166
1167	cmd->device = dev;
1168	INIT_LIST_HEAD(&cmd->eh_entry);
1169	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1170}
1171
1172static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1173		struct request *req)
1174{
1175	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 
 
 
 
 
 
 
 
1176
1177	/*
1178	 * Passthrough requests may transfer data, in which case they must
1179	 * a bio attached to them.  Or they might contain a SCSI command
1180	 * that does not transfer data, in which case they may optionally
1181	 * submit a request without an attached bio.
1182	 */
1183	if (req->bio) {
1184		blk_status_t ret = scsi_alloc_sgtables(cmd);
1185		if (unlikely(ret != BLK_STS_OK))
 
 
 
 
1186			return ret;
1187	} else {
1188		BUG_ON(blk_rq_bytes(req));
1189
1190		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 
1191	}
1192
 
 
 
 
 
 
 
 
1193	cmd->transfersize = blk_rq_bytes(req);
1194	return BLK_STS_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1195}
 
1196
1197static blk_status_t
1198scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1199{
1200	switch (sdev->sdev_state) {
1201	case SDEV_CREATED:
1202		return BLK_STS_OK;
1203	case SDEV_OFFLINE:
1204	case SDEV_TRANSPORT_OFFLINE:
1205		/*
1206		 * If the device is offline we refuse to process any
1207		 * commands.  The device must be brought online
1208		 * before trying any recovery commands.
1209		 */
1210		if (!sdev->offline_already) {
1211			sdev->offline_already = true;
 
 
 
1212			sdev_printk(KERN_ERR, sdev,
1213				    "rejecting I/O to offline device\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1214		}
1215		return BLK_STS_IOERR;
1216	case SDEV_DEL:
1217		/*
1218		 * If the device is fully deleted, we refuse to
1219		 * process any commands as well.
1220		 */
1221		sdev_printk(KERN_ERR, sdev,
1222			    "rejecting I/O to dead device\n");
1223		return BLK_STS_IOERR;
1224	case SDEV_BLOCK:
1225	case SDEV_CREATED_BLOCK:
1226		return BLK_STS_RESOURCE;
1227	case SDEV_QUIESCE:
 
 
 
 
 
 
 
 
 
1228		/*
1229		 * If the device is blocked we only accept power management
1230		 * commands.
 
1231		 */
1232		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1233			return BLK_STS_RESOURCE;
1234		return BLK_STS_OK;
1235	default:
1236		/*
1237		 * For any other not fully online state we only allow
1238		 * power management commands.
1239		 */
1240		if (req && !(req->rq_flags & RQF_PM))
1241			return BLK_STS_OFFLINE;
1242		return BLK_STS_OK;
1243	}
 
 
1244}
 
 
 
 
 
 
 
 
 
 
 
 
1245
1246/*
1247 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1248 * and return the token else return -1.
 
 
1249 */
1250static inline int scsi_dev_queue_ready(struct request_queue *q,
1251				  struct scsi_device *sdev)
1252{
1253	int token;
1254
1255	token = sbitmap_get(&sdev->budget_map);
1256	if (token < 0)
1257		return -1;
1258
1259	if (!atomic_read(&sdev->device_blocked))
1260		return token;
1261
1262	/*
1263	 * Only unblock if no other commands are pending and
1264	 * if device_blocked has decreased to zero
1265	 */
1266	if (scsi_device_busy(sdev) > 1 ||
1267	    atomic_dec_return(&sdev->device_blocked) > 0) {
1268		sbitmap_put(&sdev->budget_map, token);
1269		return -1;
1270	}
 
 
1271
1272	SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1273			 "unblocking device at zero depth\n"));
1274
1275	return token;
1276}
1277
 
1278/*
1279 * scsi_target_queue_ready: checks if there we can send commands to target
1280 * @sdev: scsi device on starget to check.
 
 
1281 */
1282static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1283					   struct scsi_device *sdev)
1284{
1285	struct scsi_target *starget = scsi_target(sdev);
1286	unsigned int busy;
1287
1288	if (starget->single_lun) {
1289		spin_lock_irq(shost->host_lock);
1290		if (starget->starget_sdev_user &&
1291		    starget->starget_sdev_user != sdev) {
1292			spin_unlock_irq(shost->host_lock);
1293			return 0;
1294		}
1295		starget->starget_sdev_user = sdev;
1296		spin_unlock_irq(shost->host_lock);
1297	}
1298
1299	if (starget->can_queue <= 0)
1300		return 1;
1301
1302	busy = atomic_inc_return(&starget->target_busy) - 1;
1303	if (atomic_read(&starget->target_blocked) > 0) {
1304		if (busy)
1305			goto starved;
1306
1307		/*
1308		 * unblock after target_blocked iterates to zero
1309		 */
1310		if (atomic_dec_return(&starget->target_blocked) > 0)
1311			goto out_dec;
1312
1313		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1314				 "unblocking target at zero depth\n"));
1315	}
1316
1317	if (busy >= starget->can_queue)
1318		goto starved;
 
 
1319
1320	return 1;
1321
1322starved:
1323	spin_lock_irq(shost->host_lock);
1324	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1325	spin_unlock_irq(shost->host_lock);
1326out_dec:
1327	if (starget->can_queue > 0)
1328		atomic_dec(&starget->target_busy);
1329	return 0;
1330}
1331
1332/*
1333 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1334 * return 0. We must end up running the queue again whenever 0 is
1335 * returned, else IO can hang.
 
 
1336 */
1337static inline int scsi_host_queue_ready(struct request_queue *q,
1338				   struct Scsi_Host *shost,
1339				   struct scsi_device *sdev,
1340				   struct scsi_cmnd *cmd)
1341{
1342	if (atomic_read(&shost->host_blocked) > 0) {
1343		if (scsi_host_busy(shost) > 0)
1344			goto starved;
1345
1346		/*
1347		 * unblock after host_blocked iterates to zero
1348		 */
1349		if (atomic_dec_return(&shost->host_blocked) > 0)
1350			goto out_dec;
1351
1352		SCSI_LOG_MLQUEUE(3,
1353			shost_printk(KERN_INFO, shost,
1354				     "unblocking host at zero depth\n"));
 
1355	}
1356
1357	if (shost->host_self_blocked)
1358		goto starved;
1359
1360	/* We're OK to process the command, so we can't be starved */
1361	if (!list_empty(&sdev->starved_entry)) {
1362		spin_lock_irq(shost->host_lock);
1363		if (!list_empty(&sdev->starved_entry))
1364			list_del_init(&sdev->starved_entry);
1365		spin_unlock_irq(shost->host_lock);
1366	}
1367
1368	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
 
 
1369
1370	return 1;
1371
1372starved:
1373	spin_lock_irq(shost->host_lock);
1374	if (list_empty(&sdev->starved_entry))
1375		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1376	spin_unlock_irq(shost->host_lock);
1377out_dec:
1378	scsi_dec_host_busy(shost, cmd);
1379	return 0;
1380}
1381
1382/*
1383 * Busy state exporting function for request stacking drivers.
1384 *
1385 * For efficiency, no lock is taken to check the busy state of
1386 * shost/starget/sdev, since the returned value is not guaranteed and
1387 * may be changed after request stacking drivers call the function,
1388 * regardless of taking lock or not.
1389 *
1390 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1391 * needs to return 'not busy'. Otherwise, request stacking drivers
1392 * may hold requests forever.
1393 */
1394static bool scsi_mq_lld_busy(struct request_queue *q)
1395{
1396	struct scsi_device *sdev = q->queuedata;
1397	struct Scsi_Host *shost;
1398
1399	if (blk_queue_dying(q))
1400		return false;
1401
1402	shost = sdev->host;
1403
1404	/*
1405	 * Ignore host/starget busy state.
1406	 * Since block layer does not have a concept of fairness across
1407	 * multiple queues, congestion of host/starget needs to be handled
1408	 * in SCSI layer.
1409	 */
1410	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1411		return true;
1412
1413	return false;
1414}
1415
1416/*
1417 * Block layer request completion callback. May be called from interrupt
1418 * context.
1419 */
1420static void scsi_complete(struct request *rq)
1421{
1422	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1423	enum scsi_disposition disposition;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1424
1425	INIT_LIST_HEAD(&cmd->eh_entry);
1426
1427	atomic_inc(&cmd->device->iodone_cnt);
1428	if (cmd->result)
1429		atomic_inc(&cmd->device->ioerr_cnt);
1430
1431	disposition = scsi_decide_disposition(cmd);
1432	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
 
 
 
 
1433		disposition = SUCCESS;
1434
 
1435	scsi_log_completion(cmd, disposition);
1436
1437	switch (disposition) {
1438	case SUCCESS:
1439		scsi_finish_command(cmd);
1440		break;
1441	case NEEDS_RETRY:
1442		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1443		break;
1444	case ADD_TO_MLQUEUE:
1445		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1446		break;
1447	default:
1448		scsi_eh_scmd_add(cmd);
1449		break;
1450	}
1451}
1452
1453/**
1454 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1455 * @cmd: command block we are dispatching.
 
1456 *
1457 * Return: nonzero return request was rejected and device's queue needs to be
1458 * plugged.
 
 
 
1459 */
1460static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1461{
1462	struct Scsi_Host *host = cmd->device->host;
1463	int rtn = 0;
1464
1465	atomic_inc(&cmd->device->iorequest_cnt);
1466
1467	/* check if the device is still usable */
1468	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1469		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1470		 * returns an immediate error upwards, and signals
1471		 * that the device is no longer present */
1472		cmd->result = DID_NO_CONNECT << 16;
1473		goto done;
1474	}
1475
1476	/* Check to see if the scsi lld made this device blocked. */
1477	if (unlikely(scsi_device_blocked(cmd->device))) {
1478		/*
1479		 * in blocked state, the command is just put back on
1480		 * the device queue.  The suspend state has already
1481		 * blocked the queue so future requests should not
1482		 * occur until the device transitions out of the
1483		 * suspend state.
1484		 */
1485		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1486			"queuecommand : device blocked\n"));
1487		atomic_dec(&cmd->device->iorequest_cnt);
1488		return SCSI_MLQUEUE_DEVICE_BUSY;
1489	}
1490
1491	/* Store the LUN value in cmnd, if needed. */
1492	if (cmd->device->lun_in_cdb)
1493		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1494			       (cmd->device->lun << 5 & 0xe0);
1495
1496	scsi_log_send(cmd);
1497
1498	/*
1499	 * Before we queue this command, check if the command
1500	 * length exceeds what the host adapter can handle.
1501	 */
1502	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1503		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1504			       "queuecommand : command too long. "
1505			       "cdb_size=%d host->max_cmd_len=%d\n",
1506			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1507		cmd->result = (DID_ABORT << 16);
1508		goto done;
1509	}
1510
1511	if (unlikely(host->shost_state == SHOST_DEL)) {
1512		cmd->result = (DID_NO_CONNECT << 16);
1513		goto done;
1514
1515	}
1516
1517	trace_scsi_dispatch_cmd_start(cmd);
1518	rtn = host->hostt->queuecommand(host, cmd);
1519	if (rtn) {
1520		atomic_dec(&cmd->device->iorequest_cnt);
1521		trace_scsi_dispatch_cmd_error(cmd, rtn);
1522		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1523		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1524			rtn = SCSI_MLQUEUE_HOST_BUSY;
1525
1526		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1527			"queuecommand : request rejected\n"));
1528	}
1529
1530	return rtn;
1531 done:
1532	scsi_done(cmd);
1533	return 0;
1534}
1535
1536/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1537static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1538{
1539	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1540		sizeof(struct scatterlist);
1541}
1542
1543static blk_status_t scsi_prepare_cmd(struct request *req)
1544{
1545	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1546	struct scsi_device *sdev = req->q->queuedata;
1547	struct Scsi_Host *shost = sdev->host;
1548	bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1549	struct scatterlist *sg;
1550
1551	scsi_init_command(sdev, cmd);
1552
1553	cmd->eh_eflags = 0;
1554	cmd->prot_type = 0;
1555	cmd->prot_flags = 0;
1556	cmd->submitter = 0;
1557	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1558	cmd->underflow = 0;
1559	cmd->transfersize = 0;
1560	cmd->host_scribble = NULL;
1561	cmd->result = 0;
1562	cmd->extra_len = 0;
1563	cmd->state = 0;
1564	if (in_flight)
1565		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1566
1567	/*
1568	 * Only clear the driver-private command data if the LLD does not supply
1569	 * a function to initialize that data.
1570	 */
1571	if (!shost->hostt->init_cmd_priv)
1572		memset(cmd + 1, 0, shost->hostt->cmd_size);
 
 
 
 
 
 
 
 
 
1573
1574	cmd->prot_op = SCSI_PROT_NORMAL;
1575	if (blk_rq_bytes(req))
1576		cmd->sc_data_direction = rq_dma_dir(req);
1577	else
1578		cmd->sc_data_direction = DMA_NONE;
 
1579
1580	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1581	cmd->sdb.table.sgl = sg;
1582
1583	if (scsi_host_get_prot(shost)) {
1584		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1585
1586		cmd->prot_sdb->table.sgl =
1587			(struct scatterlist *)(cmd->prot_sdb + 1);
1588	}
 
 
 
 
 
 
 
 
 
 
 
1589
1590	/*
1591	 * Special handling for passthrough commands, which don't go to the ULP
1592	 * at all:
1593	 */
1594	if (blk_rq_is_passthrough(req))
1595		return scsi_setup_scsi_cmnd(sdev, req);
1596
1597	if (sdev->handler && sdev->handler->prep_fn) {
1598		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1599
1600		if (ret != BLK_STS_OK)
1601			return ret;
1602	}
1603
1604	/* Usually overridden by the ULP */
1605	cmd->allowed = 0;
1606	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1607	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1608}
1609
1610static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1611{
1612	struct request *req = scsi_cmd_to_rq(cmd);
 
 
1613
1614	switch (cmd->submitter) {
1615	case SUBMITTED_BY_BLOCK_LAYER:
1616		break;
1617	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1618		return scsi_eh_done(cmd);
1619	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1620		return;
1621	}
1622
1623	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1624		return;
1625	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1626		return;
1627	trace_scsi_dispatch_cmd_done(cmd);
1628
1629	if (complete_directly)
1630		blk_mq_complete_request_direct(req, scsi_complete);
1631	else
1632		blk_mq_complete_request(req);
1633}
1634
1635void scsi_done(struct scsi_cmnd *cmd)
1636{
1637	scsi_done_internal(cmd, false);
1638}
1639EXPORT_SYMBOL(scsi_done);
1640
1641void scsi_done_direct(struct scsi_cmnd *cmd)
1642{
1643	scsi_done_internal(cmd, true);
1644}
1645EXPORT_SYMBOL(scsi_done_direct);
1646
1647static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1648{
1649	struct scsi_device *sdev = q->queuedata;
1650
1651	sbitmap_put(&sdev->budget_map, budget_token);
1652}
1653
1654/*
1655 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1656 * not change behaviour from the previous unplug mechanism, experimentation
1657 * may prove this needs changing.
1658 */
1659#define SCSI_QUEUE_DELAY 3
1660
1661static int scsi_mq_get_budget(struct request_queue *q)
1662{
1663	struct scsi_device *sdev = q->queuedata;
1664	int token = scsi_dev_queue_ready(q, sdev);
1665
1666	if (token >= 0)
1667		return token;
1668
1669	atomic_inc(&sdev->restarts);
1670
1671	/*
1672	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1673	 * .restarts must be incremented before .device_busy is read because the
1674	 * code in scsi_run_queue_async() depends on the order of these operations.
1675	 */
1676	smp_mb__after_atomic();
1677
1678	/*
1679	 * If all in-flight requests originated from this LUN are completed
1680	 * before reading .device_busy, sdev->device_busy will be observed as
1681	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1682	 * soon. Otherwise, completion of one of these requests will observe
1683	 * the .restarts flag, and the request queue will be run for handling
1684	 * this request, see scsi_end_request().
1685	 */
1686	if (unlikely(scsi_device_busy(sdev) == 0 &&
1687				!scsi_device_blocked(sdev)))
1688		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1689	return -1;
1690}
1691
1692static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1693{
1694	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1695
1696	cmd->budget_token = token;
1697}
1698
1699static int scsi_mq_get_rq_budget_token(struct request *req)
1700{
1701	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1702
1703	return cmd->budget_token;
1704}
1705
1706static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1707			 const struct blk_mq_queue_data *bd)
1708{
1709	struct request *req = bd->rq;
1710	struct request_queue *q = req->q;
1711	struct scsi_device *sdev = q->queuedata;
1712	struct Scsi_Host *shost = sdev->host;
1713	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1714	blk_status_t ret;
1715	int reason;
1716
1717	WARN_ON_ONCE(cmd->budget_token < 0);
1718
 
 
1719	/*
1720	 * If the device is not in running state we will reject some or all
1721	 * commands.
1722	 */
1723	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1724		ret = scsi_device_state_check(sdev, req);
1725		if (ret != BLK_STS_OK)
1726			goto out_put_budget;
1727	}
1728
1729	ret = BLK_STS_RESOURCE;
1730	if (!scsi_target_queue_ready(shost, sdev))
1731		goto out_put_budget;
1732	if (unlikely(scsi_host_in_recovery(shost))) {
1733		if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1734			ret = BLK_STS_OFFLINE;
1735		goto out_dec_target_busy;
1736	}
1737	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1738		goto out_dec_target_busy;
1739
1740	if (!(req->rq_flags & RQF_DONTPREP)) {
1741		ret = scsi_prepare_cmd(req);
1742		if (ret != BLK_STS_OK)
1743			goto out_dec_host_busy;
1744		req->rq_flags |= RQF_DONTPREP;
1745	} else {
1746		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1747	}
1748
1749	cmd->flags &= SCMD_PRESERVED_FLAGS;
1750	if (sdev->simple_tags)
1751		cmd->flags |= SCMD_TAGGED;
1752	if (bd->last)
1753		cmd->flags |= SCMD_LAST;
1754
1755	scsi_set_resid(cmd, 0);
1756	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1757	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1758
1759	blk_mq_start_request(req);
1760	reason = scsi_dispatch_cmd(cmd);
1761	if (reason) {
1762		scsi_set_blocked(cmd, reason);
1763		ret = BLK_STS_RESOURCE;
1764		goto out_dec_host_busy;
1765	}
1766
1767	return BLK_STS_OK;
1768
1769out_dec_host_busy:
1770	scsi_dec_host_busy(shost, cmd);
1771out_dec_target_busy:
1772	if (scsi_target(sdev)->can_queue > 0)
1773		atomic_dec(&scsi_target(sdev)->target_busy);
1774out_put_budget:
1775	scsi_mq_put_budget(q, cmd->budget_token);
1776	cmd->budget_token = -1;
1777	switch (ret) {
1778	case BLK_STS_OK:
1779		break;
1780	case BLK_STS_RESOURCE:
1781	case BLK_STS_ZONE_RESOURCE:
1782		if (scsi_device_blocked(sdev))
1783			ret = BLK_STS_DEV_RESOURCE;
1784		break;
1785	case BLK_STS_AGAIN:
1786		cmd->result = DID_BUS_BUSY << 16;
1787		if (req->rq_flags & RQF_DONTPREP)
1788			scsi_mq_uninit_cmd(cmd);
1789		break;
1790	default:
1791		if (unlikely(!scsi_device_online(sdev)))
1792			cmd->result = DID_NO_CONNECT << 16;
1793		else
1794			cmd->result = DID_ERROR << 16;
1795		/*
1796		 * Make sure to release all allocated resources when
1797		 * we hit an error, as we will never see this command
1798		 * again.
1799		 */
1800		if (req->rq_flags & RQF_DONTPREP)
1801			scsi_mq_uninit_cmd(cmd);
1802		scsi_run_queue_async(sdev);
1803		break;
1804	}
1805	return ret;
1806}
 
1807
1808static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1809				unsigned int hctx_idx, unsigned int numa_node)
1810{
1811	struct Scsi_Host *shost = set->driver_data;
1812	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1813	struct scatterlist *sg;
1814	int ret = 0;
1815
1816	cmd->sense_buffer =
1817		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1818	if (!cmd->sense_buffer)
1819		return -ENOMEM;
1820
1821	if (scsi_host_get_prot(shost)) {
1822		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1823			shost->hostt->cmd_size;
1824		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1825	}
1826
1827	if (shost->hostt->init_cmd_priv) {
1828		ret = shost->hostt->init_cmd_priv(shost, cmd);
1829		if (ret < 0)
1830			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1831	}
1832
1833	return ret;
1834}
1835
1836static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1837				 unsigned int hctx_idx)
1838{
1839	struct Scsi_Host *shost = set->driver_data;
1840	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1841
1842	if (shost->hostt->exit_cmd_priv)
1843		shost->hostt->exit_cmd_priv(shost, cmd);
1844	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1845}
1846
1847
1848static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1849{
1850	struct Scsi_Host *shost = hctx->driver_data;
1851
1852	if (shost->hostt->mq_poll)
1853		return shost->hostt->mq_poll(shost, hctx->queue_num);
1854
1855	return 0;
1856}
1857
1858static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1859			  unsigned int hctx_idx)
1860{
1861	struct Scsi_Host *shost = data;
1862
1863	hctx->driver_data = shost;
1864	return 0;
1865}
1866
1867static void scsi_map_queues(struct blk_mq_tag_set *set)
1868{
1869	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1870
1871	if (shost->hostt->map_queues)
1872		return shost->hostt->map_queues(shost);
1873	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1874}
1875
1876void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1877{
 
1878	struct device *dev = shost->dma_dev;
1879
 
 
 
 
1880	/*
1881	 * this limit is imposed by hardware restrictions
1882	 */
1883	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1884					SG_MAX_SEGMENTS));
1885
1886	if (scsi_host_prot_dma(shost)) {
1887		shost->sg_prot_tablesize =
1888			min_not_zero(shost->sg_prot_tablesize,
1889				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1890		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1891		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1892	}
1893
1894	blk_queue_max_hw_sectors(q, shost->max_sectors);
 
1895	blk_queue_segment_boundary(q, shost->dma_boundary);
1896	dma_set_seg_boundary(dev, shost->dma_boundary);
1897
1898	blk_queue_max_segment_size(q, shost->max_segment_size);
1899	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1900	dma_set_max_seg_size(dev, queue_max_segment_size(q));
 
1901
1902	/*
1903	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1904	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1905	 * which is set by the platform.
1906	 *
1907	 * Devices that require a bigger alignment can increase it later.
1908	 */
1909	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1910}
1911EXPORT_SYMBOL_GPL(__scsi_init_queue);
1912
1913static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1914	.get_budget	= scsi_mq_get_budget,
1915	.put_budget	= scsi_mq_put_budget,
1916	.queue_rq	= scsi_queue_rq,
1917	.complete	= scsi_complete,
1918	.timeout	= scsi_timeout,
1919#ifdef CONFIG_BLK_DEBUG_FS
1920	.show_rq	= scsi_show_rq,
1921#endif
1922	.init_request	= scsi_mq_init_request,
1923	.exit_request	= scsi_mq_exit_request,
1924	.cleanup_rq	= scsi_cleanup_rq,
1925	.busy		= scsi_mq_lld_busy,
1926	.map_queues	= scsi_map_queues,
1927	.init_hctx	= scsi_init_hctx,
1928	.poll		= scsi_mq_poll,
1929	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1930	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1931};
1932
1933
1934static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1935{
1936	struct Scsi_Host *shost = hctx->driver_data;
1937
1938	shost->hostt->commit_rqs(shost, hctx->queue_num);
1939}
 
1940
1941static const struct blk_mq_ops scsi_mq_ops = {
1942	.get_budget	= scsi_mq_get_budget,
1943	.put_budget	= scsi_mq_put_budget,
1944	.queue_rq	= scsi_queue_rq,
1945	.commit_rqs	= scsi_commit_rqs,
1946	.complete	= scsi_complete,
1947	.timeout	= scsi_timeout,
1948#ifdef CONFIG_BLK_DEBUG_FS
1949	.show_rq	= scsi_show_rq,
1950#endif
1951	.init_request	= scsi_mq_init_request,
1952	.exit_request	= scsi_mq_exit_request,
1953	.cleanup_rq	= scsi_cleanup_rq,
1954	.busy		= scsi_mq_lld_busy,
1955	.map_queues	= scsi_map_queues,
1956	.init_hctx	= scsi_init_hctx,
1957	.poll		= scsi_mq_poll,
1958	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1959	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1960};
1961
1962int scsi_mq_setup_tags(struct Scsi_Host *shost)
1963{
1964	unsigned int cmd_size, sgl_size;
1965	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1966
1967	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1968				scsi_mq_inline_sgl_size(shost));
1969	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1970	if (scsi_host_get_prot(shost))
1971		cmd_size += sizeof(struct scsi_data_buffer) +
1972			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1973
1974	memset(tag_set, 0, sizeof(*tag_set));
1975	if (shost->hostt->commit_rqs)
1976		tag_set->ops = &scsi_mq_ops;
1977	else
1978		tag_set->ops = &scsi_mq_ops_no_commit;
1979	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1980	tag_set->nr_maps = shost->nr_maps ? : 1;
1981	tag_set->queue_depth = shost->can_queue;
1982	tag_set->cmd_size = cmd_size;
1983	tag_set->numa_node = dev_to_node(shost->dma_dev);
1984	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1985	tag_set->flags |=
1986		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1987	if (shost->queuecommand_may_block)
1988		tag_set->flags |= BLK_MQ_F_BLOCKING;
1989	tag_set->driver_data = shost;
1990	if (shost->host_tagset)
1991		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1992
1993	return blk_mq_alloc_tag_set(tag_set);
1994}
1995
1996void scsi_mq_free_tags(struct kref *kref)
1997{
1998	struct Scsi_Host *shost = container_of(kref, typeof(*shost),
1999					       tagset_refcnt);
2000
2001	blk_mq_free_tag_set(&shost->tag_set);
2002	complete(&shost->tagset_freed);
 
 
 
2003}
2004
2005/**
2006 * scsi_device_from_queue - return sdev associated with a request_queue
2007 * @q: The request queue to return the sdev from
2008 *
2009 * Return the sdev associated with a request queue or NULL if the
2010 * request_queue does not reference a SCSI device.
2011 */
2012struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2013{
2014	struct scsi_device *sdev = NULL;
2015
2016	if (q->mq_ops == &scsi_mq_ops_no_commit ||
2017	    q->mq_ops == &scsi_mq_ops)
2018		sdev = q->queuedata;
2019	if (!sdev || !get_device(&sdev->sdev_gendev))
2020		sdev = NULL;
2021
2022	return sdev;
2023}
2024/*
2025 * pktcdvd should have been integrated into the SCSI layers, but for historical
2026 * reasons like the old IDE driver it isn't.  This export allows it to safely
2027 * probe if a given device is a SCSI one and only attach to that.
2028 */
2029#ifdef CONFIG_CDROM_PKTCDVD_MODULE
2030EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2031#endif
2032
2033/**
2034 * scsi_block_requests - Utility function used by low-level drivers to prevent
2035 * further commands from being queued to the device.
2036 * @shost:  host in question
2037 *
2038 * There is no timer nor any other means by which the requests get unblocked
2039 * other than the low-level driver calling scsi_unblock_requests().
 
 
 
 
 
2040 */
2041void scsi_block_requests(struct Scsi_Host *shost)
2042{
2043	shost->host_self_blocked = 1;
2044}
2045EXPORT_SYMBOL(scsi_block_requests);
2046
2047/**
2048 * scsi_unblock_requests - Utility function used by low-level drivers to allow
2049 * further commands to be queued to the device.
2050 * @shost:  host in question
2051 *
2052 * There is no timer nor any other means by which the requests get unblocked
2053 * other than the low-level driver calling scsi_unblock_requests(). This is done
2054 * as an API function so that changes to the internals of the scsi mid-layer
2055 * won't require wholesale changes to drivers that use this feature.
 
 
 
 
 
 
 
 
 
 
2056 */
2057void scsi_unblock_requests(struct Scsi_Host *shost)
2058{
2059	shost->host_self_blocked = 0;
2060	scsi_run_host_queues(shost);
2061}
2062EXPORT_SYMBOL(scsi_unblock_requests);
2063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2064void scsi_exit_queue(void)
2065{
2066	kmem_cache_destroy(scsi_sense_cache);
 
 
 
 
 
 
 
 
2067}
2068
2069/**
2070 *	scsi_mode_select - issue a mode select
2071 *	@sdev:	SCSI device to be queried
2072 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2073 *	@sp:	Save page bit (0 == don't save, 1 == save)
 
2074 *	@buffer: request buffer (may not be smaller than eight bytes)
2075 *	@len:	length of request buffer.
2076 *	@timeout: command timeout
2077 *	@retries: number of retries before failing
2078 *	@data: returns a structure abstracting the mode header data
2079 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2080 *		must be SCSI_SENSE_BUFFERSIZE big.
2081 *
2082 *	Returns zero if successful; negative error number or scsi
2083 *	status on error
2084 *
2085 */
2086int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2087		     unsigned char *buffer, int len, int timeout, int retries,
2088		     struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
 
2089{
2090	unsigned char cmd[10];
2091	unsigned char *real_buffer;
2092	const struct scsi_exec_args exec_args = {
2093		.sshdr = sshdr,
2094	};
2095	int ret;
2096
2097	memset(cmd, 0, sizeof(cmd));
2098	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2099
2100	/*
2101	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2102	 * and the mode select header cannot fit within the maximumm 255 bytes
2103	 * of the MODE SELECT(6) command.
2104	 */
2105	if (sdev->use_10_for_ms ||
2106	    len + 4 > 255 ||
2107	    data->block_descriptor_length > 255) {
2108		if (len > 65535 - 8)
2109			return -EINVAL;
2110		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2111		if (!real_buffer)
2112			return -ENOMEM;
2113		memcpy(real_buffer + 8, buffer, len);
2114		len += 8;
2115		real_buffer[0] = 0;
2116		real_buffer[1] = 0;
2117		real_buffer[2] = data->medium_type;
2118		real_buffer[3] = data->device_specific;
2119		real_buffer[4] = data->longlba ? 0x01 : 0;
2120		real_buffer[5] = 0;
2121		put_unaligned_be16(data->block_descriptor_length,
2122				   &real_buffer[6]);
2123
2124		cmd[0] = MODE_SELECT_10;
2125		put_unaligned_be16(len, &cmd[7]);
 
2126	} else {
2127		if (data->longlba)
 
2128			return -EINVAL;
2129
2130		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2131		if (!real_buffer)
2132			return -ENOMEM;
2133		memcpy(real_buffer + 4, buffer, len);
2134		len += 4;
2135		real_buffer[0] = 0;
2136		real_buffer[1] = data->medium_type;
2137		real_buffer[2] = data->device_specific;
2138		real_buffer[3] = data->block_descriptor_length;
 
2139
2140		cmd[0] = MODE_SELECT;
2141		cmd[4] = len;
2142	}
2143
2144	ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2145			       timeout, retries, &exec_args);
2146	kfree(real_buffer);
2147	return ret;
2148}
2149EXPORT_SYMBOL_GPL(scsi_mode_select);
2150
2151/**
2152 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2153 *	@sdev:	SCSI device to be queried
2154 *	@dbd:	set to prevent mode sense from returning block descriptors
2155 *	@modepage: mode page being requested
2156 *	@subpage: sub-page of the mode page being requested
2157 *	@buffer: request buffer (may not be smaller than eight bytes)
2158 *	@len:	length of request buffer.
2159 *	@timeout: command timeout
2160 *	@retries: number of retries before failing
2161 *	@data: returns a structure abstracting the mode header data
2162 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2163 *		must be SCSI_SENSE_BUFFERSIZE big.
2164 *
2165 *	Returns zero if successful, or a negative error number on failure
 
 
2166 */
2167int
2168scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2169		  unsigned char *buffer, int len, int timeout, int retries,
2170		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2171{
2172	unsigned char cmd[12];
2173	int use_10_for_ms;
2174	int header_length;
2175	int result, retry_count = retries;
2176	struct scsi_sense_hdr my_sshdr;
2177	const struct scsi_exec_args exec_args = {
2178		/* caller might not be interested in sense, but we need it */
2179		.sshdr = sshdr ? : &my_sshdr,
2180	};
2181
2182	memset(data, 0, sizeof(*data));
2183	memset(&cmd[0], 0, 12);
2184
2185	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2186	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2187	cmd[2] = modepage;
2188	cmd[3] = subpage;
2189
2190	sshdr = exec_args.sshdr;
 
 
2191
2192 retry:
2193	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2194
2195	if (use_10_for_ms) {
2196		if (len < 8 || len > 65535)
2197			return -EINVAL;
2198
2199		cmd[0] = MODE_SENSE_10;
2200		put_unaligned_be16(len, &cmd[7]);
2201		header_length = 8;
2202	} else {
2203		if (len < 4)
2204			return -EINVAL;
2205
2206		cmd[0] = MODE_SENSE;
2207		cmd[4] = len;
2208		header_length = 4;
2209	}
2210
2211	memset(buffer, 0, len);
2212
2213	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2214				  timeout, retries, &exec_args);
2215	if (result < 0)
2216		return result;
2217
2218	/* This code looks awful: what it's doing is making sure an
2219	 * ILLEGAL REQUEST sense return identifies the actual command
2220	 * byte as the problem.  MODE_SENSE commands can return
2221	 * ILLEGAL REQUEST if the code page isn't supported */
2222
2223	if (!scsi_status_is_good(result)) {
 
2224		if (scsi_sense_valid(sshdr)) {
2225			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2226			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2227				/*
2228				 * Invalid command operation code: retry using
2229				 * MODE SENSE(6) if this was a MODE SENSE(10)
2230				 * request, except if the request mode page is
2231				 * too large for MODE SENSE single byte
2232				 * allocation length field.
2233				 */
2234				if (use_10_for_ms) {
2235					if (len > 255)
2236						return -EIO;
2237					sdev->use_10_for_ms = 0;
2238					goto retry;
2239				}
2240			}
2241			if (scsi_status_is_check_condition(result) &&
2242			    sshdr->sense_key == UNIT_ATTENTION &&
2243			    retry_count) {
2244				retry_count--;
2245				goto retry;
2246			}
2247		}
2248		return -EIO;
2249	}
2250	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2251		     (modepage == 6 || modepage == 8))) {
2252		/* Initio breakage? */
2253		header_length = 0;
2254		data->length = 13;
2255		data->medium_type = 0;
2256		data->device_specific = 0;
2257		data->longlba = 0;
2258		data->block_descriptor_length = 0;
2259	} else if (use_10_for_ms) {
2260		data->length = get_unaligned_be16(&buffer[0]) + 2;
2261		data->medium_type = buffer[2];
2262		data->device_specific = buffer[3];
2263		data->longlba = buffer[4] & 0x01;
2264		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2265	} else {
2266		data->length = buffer[0] + 1;
2267		data->medium_type = buffer[1];
2268		data->device_specific = buffer[2];
2269		data->block_descriptor_length = buffer[3];
 
 
 
 
 
2270	}
2271	data->header_length = header_length;
2272
2273	return 0;
2274}
2275EXPORT_SYMBOL(scsi_mode_sense);
2276
2277/**
2278 *	scsi_test_unit_ready - test if unit is ready
2279 *	@sdev:	scsi device to change the state of.
2280 *	@timeout: command timeout
2281 *	@retries: number of retries before failing
2282 *	@sshdr: outpout pointer for decoded sense information.
 
 
2283 *
2284 *	Returns zero if unsuccessful or an error if TUR failed.  For
2285 *	removable media, UNIT_ATTENTION sets ->changed flag.
2286 **/
2287int
2288scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2289		     struct scsi_sense_hdr *sshdr)
2290{
2291	char cmd[] = {
2292		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2293	};
2294	const struct scsi_exec_args exec_args = {
2295		.sshdr = sshdr,
2296	};
2297	int result;
2298
 
 
 
 
 
2299	/* try to eat the UNIT_ATTENTION if there are enough retries */
2300	do {
2301		result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2302					  timeout, 1, &exec_args);
2303		if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) &&
2304		    sshdr->sense_key == UNIT_ATTENTION)
2305			sdev->changed = 1;
2306	} while (result > 0 && scsi_sense_valid(sshdr) &&
2307		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2308
 
 
2309	return result;
2310}
2311EXPORT_SYMBOL(scsi_test_unit_ready);
2312
2313/**
2314 *	scsi_device_set_state - Take the given device through the device state model.
2315 *	@sdev:	scsi device to change the state of.
2316 *	@state:	state to change to.
2317 *
2318 *	Returns zero if successful or an error if the requested
2319 *	transition is illegal.
2320 */
2321int
2322scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2323{
2324	enum scsi_device_state oldstate = sdev->sdev_state;
2325
2326	if (state == oldstate)
2327		return 0;
2328
2329	switch (state) {
2330	case SDEV_CREATED:
2331		switch (oldstate) {
2332		case SDEV_CREATED_BLOCK:
2333			break;
2334		default:
2335			goto illegal;
2336		}
2337		break;
2338
2339	case SDEV_RUNNING:
2340		switch (oldstate) {
2341		case SDEV_CREATED:
2342		case SDEV_OFFLINE:
2343		case SDEV_TRANSPORT_OFFLINE:
2344		case SDEV_QUIESCE:
2345		case SDEV_BLOCK:
2346			break;
2347		default:
2348			goto illegal;
2349		}
2350		break;
2351
2352	case SDEV_QUIESCE:
2353		switch (oldstate) {
2354		case SDEV_RUNNING:
2355		case SDEV_OFFLINE:
2356		case SDEV_TRANSPORT_OFFLINE:
2357			break;
2358		default:
2359			goto illegal;
2360		}
2361		break;
2362
2363	case SDEV_OFFLINE:
2364	case SDEV_TRANSPORT_OFFLINE:
2365		switch (oldstate) {
2366		case SDEV_CREATED:
2367		case SDEV_RUNNING:
2368		case SDEV_QUIESCE:
2369		case SDEV_BLOCK:
2370			break;
2371		default:
2372			goto illegal;
2373		}
2374		break;
2375
2376	case SDEV_BLOCK:
2377		switch (oldstate) {
2378		case SDEV_RUNNING:
2379		case SDEV_CREATED_BLOCK:
2380		case SDEV_QUIESCE:
2381		case SDEV_OFFLINE:
2382			break;
2383		default:
2384			goto illegal;
2385		}
2386		break;
2387
2388	case SDEV_CREATED_BLOCK:
2389		switch (oldstate) {
2390		case SDEV_CREATED:
2391			break;
2392		default:
2393			goto illegal;
2394		}
2395		break;
2396
2397	case SDEV_CANCEL:
2398		switch (oldstate) {
2399		case SDEV_CREATED:
2400		case SDEV_RUNNING:
2401		case SDEV_QUIESCE:
2402		case SDEV_OFFLINE:
2403		case SDEV_TRANSPORT_OFFLINE:
 
2404			break;
2405		default:
2406			goto illegal;
2407		}
2408		break;
2409
2410	case SDEV_DEL:
2411		switch (oldstate) {
2412		case SDEV_CREATED:
2413		case SDEV_RUNNING:
2414		case SDEV_OFFLINE:
2415		case SDEV_TRANSPORT_OFFLINE:
2416		case SDEV_CANCEL:
2417		case SDEV_BLOCK:
2418		case SDEV_CREATED_BLOCK:
2419			break;
2420		default:
2421			goto illegal;
2422		}
2423		break;
2424
2425	}
2426	sdev->offline_already = false;
2427	sdev->sdev_state = state;
2428	return 0;
2429
2430 illegal:
2431	SCSI_LOG_ERROR_RECOVERY(1,
2432				sdev_printk(KERN_ERR, sdev,
2433					    "Illegal state transition %s->%s",
2434					    scsi_device_state_name(oldstate),
2435					    scsi_device_state_name(state))
2436				);
2437	return -EINVAL;
2438}
2439EXPORT_SYMBOL(scsi_device_set_state);
2440
2441/**
2442 *	scsi_evt_emit - emit a single SCSI device uevent
2443 *	@sdev: associated SCSI device
2444 *	@evt: event to emit
2445 *
2446 *	Send a single uevent (scsi_event) to the associated scsi_device.
2447 */
2448static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2449{
2450	int idx = 0;
2451	char *envp[3];
2452
2453	switch (evt->evt_type) {
2454	case SDEV_EVT_MEDIA_CHANGE:
2455		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2456		break;
2457	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2458		scsi_rescan_device(sdev);
2459		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2460		break;
2461	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2462		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2463		break;
2464	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2465	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2466		break;
2467	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2468		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2469		break;
2470	case SDEV_EVT_LUN_CHANGE_REPORTED:
2471		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2472		break;
2473	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2474		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2475		break;
2476	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2477		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2478		break;
2479	default:
2480		/* do nothing */
2481		break;
2482	}
2483
2484	envp[idx++] = NULL;
2485
2486	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2487}
2488
2489/**
2490 *	scsi_evt_thread - send a uevent for each scsi event
2491 *	@work: work struct for scsi_device
2492 *
2493 *	Dispatch queued events to their associated scsi_device kobjects
2494 *	as uevents.
2495 */
2496void scsi_evt_thread(struct work_struct *work)
2497{
2498	struct scsi_device *sdev;
2499	enum scsi_device_event evt_type;
2500	LIST_HEAD(event_list);
2501
2502	sdev = container_of(work, struct scsi_device, event_work);
2503
2504	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2505		if (test_and_clear_bit(evt_type, sdev->pending_events))
2506			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2507
2508	while (1) {
2509		struct scsi_event *evt;
2510		struct list_head *this, *tmp;
2511		unsigned long flags;
2512
2513		spin_lock_irqsave(&sdev->list_lock, flags);
2514		list_splice_init(&sdev->event_list, &event_list);
2515		spin_unlock_irqrestore(&sdev->list_lock, flags);
2516
2517		if (list_empty(&event_list))
2518			break;
2519
2520		list_for_each_safe(this, tmp, &event_list) {
2521			evt = list_entry(this, struct scsi_event, node);
2522			list_del(&evt->node);
2523			scsi_evt_emit(sdev, evt);
2524			kfree(evt);
2525		}
2526	}
2527}
2528
2529/**
2530 * 	sdev_evt_send - send asserted event to uevent thread
2531 *	@sdev: scsi_device event occurred on
2532 *	@evt: event to send
2533 *
2534 *	Assert scsi device event asynchronously.
2535 */
2536void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2537{
2538	unsigned long flags;
2539
2540#if 0
2541	/* FIXME: currently this check eliminates all media change events
2542	 * for polled devices.  Need to update to discriminate between AN
2543	 * and polled events */
2544	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2545		kfree(evt);
2546		return;
2547	}
2548#endif
2549
2550	spin_lock_irqsave(&sdev->list_lock, flags);
2551	list_add_tail(&evt->node, &sdev->event_list);
2552	schedule_work(&sdev->event_work);
2553	spin_unlock_irqrestore(&sdev->list_lock, flags);
2554}
2555EXPORT_SYMBOL_GPL(sdev_evt_send);
2556
2557/**
2558 * 	sdev_evt_alloc - allocate a new scsi event
2559 *	@evt_type: type of event to allocate
2560 *	@gfpflags: GFP flags for allocation
2561 *
2562 *	Allocates and returns a new scsi_event.
2563 */
2564struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2565				  gfp_t gfpflags)
2566{
2567	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2568	if (!evt)
2569		return NULL;
2570
2571	evt->evt_type = evt_type;
2572	INIT_LIST_HEAD(&evt->node);
2573
2574	/* evt_type-specific initialization, if any */
2575	switch (evt_type) {
2576	case SDEV_EVT_MEDIA_CHANGE:
2577	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2578	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2579	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2580	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2581	case SDEV_EVT_LUN_CHANGE_REPORTED:
2582	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2583	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2584	default:
2585		/* do nothing */
2586		break;
2587	}
2588
2589	return evt;
2590}
2591EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2592
2593/**
2594 * 	sdev_evt_send_simple - send asserted event to uevent thread
2595 *	@sdev: scsi_device event occurred on
2596 *	@evt_type: type of event to send
2597 *	@gfpflags: GFP flags for allocation
2598 *
2599 *	Assert scsi device event asynchronously, given an event type.
2600 */
2601void sdev_evt_send_simple(struct scsi_device *sdev,
2602			  enum scsi_device_event evt_type, gfp_t gfpflags)
2603{
2604	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2605	if (!evt) {
2606		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2607			    evt_type);
2608		return;
2609	}
2610
2611	sdev_evt_send(sdev, evt);
2612}
2613EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2614
2615/**
2616 *	scsi_device_quiesce - Block all commands except power management.
2617 *	@sdev:	scsi device to quiesce.
2618 *
2619 *	This works by trying to transition to the SDEV_QUIESCE state
2620 *	(which must be a legal transition).  When the device is in this
2621 *	state, only power management requests will be accepted, all others will
2622 *	be deferred.
 
 
2623 *
2624 *	Must be called with user context, may sleep.
2625 *
2626 *	Returns zero if unsuccessful or an error if not.
2627 */
2628int
2629scsi_device_quiesce(struct scsi_device *sdev)
2630{
2631	struct request_queue *q = sdev->request_queue;
2632	int err;
2633
2634	/*
2635	 * It is allowed to call scsi_device_quiesce() multiple times from
2636	 * the same context but concurrent scsi_device_quiesce() calls are
2637	 * not allowed.
2638	 */
2639	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2640
2641	if (sdev->quiesced_by == current)
2642		return 0;
2643
2644	blk_set_pm_only(q);
2645
2646	blk_mq_freeze_queue(q);
2647	/*
2648	 * Ensure that the effect of blk_set_pm_only() will be visible
2649	 * for percpu_ref_tryget() callers that occur after the queue
2650	 * unfreeze even if the queue was already frozen before this function
2651	 * was called. See also https://lwn.net/Articles/573497/.
2652	 */
2653	synchronize_rcu();
2654	blk_mq_unfreeze_queue(q);
2655
2656	mutex_lock(&sdev->state_mutex);
2657	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2658	if (err == 0)
2659		sdev->quiesced_by = current;
2660	else
2661		blk_clear_pm_only(q);
2662	mutex_unlock(&sdev->state_mutex);
2663
2664	return err;
2665}
2666EXPORT_SYMBOL(scsi_device_quiesce);
2667
2668/**
2669 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2670 *	@sdev:	scsi device to resume.
2671 *
2672 *	Moves the device from quiesced back to running and restarts the
2673 *	queues.
2674 *
2675 *	Must be called with user context, may sleep.
2676 */
2677void scsi_device_resume(struct scsi_device *sdev)
2678{
2679	/* check if the device state was mutated prior to resume, and if
2680	 * so assume the state is being managed elsewhere (for example
2681	 * device deleted during suspend)
2682	 */
2683	mutex_lock(&sdev->state_mutex);
2684	if (sdev->sdev_state == SDEV_QUIESCE)
2685		scsi_device_set_state(sdev, SDEV_RUNNING);
2686	if (sdev->quiesced_by) {
2687		sdev->quiesced_by = NULL;
2688		blk_clear_pm_only(sdev->request_queue);
2689	}
2690	mutex_unlock(&sdev->state_mutex);
2691}
2692EXPORT_SYMBOL(scsi_device_resume);
2693
2694static void
2695device_quiesce_fn(struct scsi_device *sdev, void *data)
2696{
2697	scsi_device_quiesce(sdev);
2698}
2699
2700void
2701scsi_target_quiesce(struct scsi_target *starget)
2702{
2703	starget_for_each_device(starget, NULL, device_quiesce_fn);
2704}
2705EXPORT_SYMBOL(scsi_target_quiesce);
2706
2707static void
2708device_resume_fn(struct scsi_device *sdev, void *data)
2709{
2710	scsi_device_resume(sdev);
2711}
2712
2713void
2714scsi_target_resume(struct scsi_target *starget)
2715{
2716	starget_for_each_device(starget, NULL, device_resume_fn);
2717}
2718EXPORT_SYMBOL(scsi_target_resume);
2719
2720static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2721{
2722	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2723		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2724
2725	return 0;
2726}
2727
2728void scsi_start_queue(struct scsi_device *sdev)
2729{
2730	if (cmpxchg(&sdev->queue_stopped, 1, 0))
2731		blk_mq_unquiesce_queue(sdev->request_queue);
2732}
2733
2734static void scsi_stop_queue(struct scsi_device *sdev)
2735{
2736	/*
2737	 * The atomic variable of ->queue_stopped covers that
2738	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2739	 *
2740	 * The caller needs to wait until quiesce is done.
2741	 */
2742	if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2743		blk_mq_quiesce_queue_nowait(sdev->request_queue);
2744}
2745
2746/**
2747 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2748 * @sdev: device to block
2749 *
2750 * Pause SCSI command processing on the specified device. Does not sleep.
 
 
2751 *
2752 * Returns zero if successful or a negative error code upon failure.
2753 *
2754 * Notes:
2755 * This routine transitions the device to the SDEV_BLOCK state (which must be
2756 * a legal transition). When the device is in this state, command processing
2757 * is paused until the device leaves the SDEV_BLOCK state. See also
2758 * scsi_internal_device_unblock_nowait().
2759 */
2760int scsi_internal_device_block_nowait(struct scsi_device *sdev)
 
2761{
2762	int ret = __scsi_internal_device_block_nowait(sdev);
 
 
2763
2764	/*
 
 
 
 
 
 
 
 
2765	 * The device has transitioned to SDEV_BLOCK.  Stop the
2766	 * block layer from calling the midlayer with this device's
2767	 * request queue.
2768	 */
2769	if (!ret)
2770		scsi_stop_queue(sdev);
2771	return ret;
2772}
2773EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2774
2775/**
2776 * scsi_device_block - try to transition to the SDEV_BLOCK state
2777 * @sdev: device to block
2778 * @data: dummy argument, ignored
2779 *
2780 * Pause SCSI command processing on the specified device. Callers must wait
2781 * until all ongoing scsi_queue_rq() calls have finished after this function
2782 * returns.
2783 *
2784 * Note:
2785 * This routine transitions the device to the SDEV_BLOCK state (which must be
2786 * a legal transition). When the device is in this state, command processing
2787 * is paused until the device leaves the SDEV_BLOCK state. See also
2788 * scsi_internal_device_unblock().
2789 */
2790static void scsi_device_block(struct scsi_device *sdev, void *data)
2791{
2792	int err;
2793	enum scsi_device_state state;
2794
2795	mutex_lock(&sdev->state_mutex);
2796	err = __scsi_internal_device_block_nowait(sdev);
2797	state = sdev->sdev_state;
2798	if (err == 0)
2799		/*
2800		 * scsi_stop_queue() must be called with the state_mutex
2801		 * held. Otherwise a simultaneous scsi_start_queue() call
2802		 * might unquiesce the queue before we quiesce it.
2803		 */
2804		scsi_stop_queue(sdev);
2805
2806	mutex_unlock(&sdev->state_mutex);
2807
2808	WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2809		  __func__, dev_name(&sdev->sdev_gendev), state);
2810}
2811
 
2812/**
2813 * scsi_internal_device_unblock_nowait - resume a device after a block request
2814 * @sdev:	device to resume
2815 * @new_state:	state to set the device to after unblocking
2816 *
2817 * Restart the device queue for a previously suspended SCSI device. Does not
2818 * sleep.
2819 *
2820 * Returns zero if successful or a negative error code upon failure.
2821 *
2822 * Notes:
2823 * This routine transitions the device to the SDEV_RUNNING state or to one of
2824 * the offline states (which must be a legal transition) allowing the midlayer
2825 * to goose the queue for this device.
 
 
 
 
2826 */
2827int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2828					enum scsi_device_state new_state)
 
2829{
2830	switch (new_state) {
2831	case SDEV_RUNNING:
2832	case SDEV_TRANSPORT_OFFLINE:
2833		break;
2834	default:
2835		return -EINVAL;
2836	}
2837
2838	/*
2839	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2840	 * offlined states and goose the device queue if successful.
2841	 */
2842	switch (sdev->sdev_state) {
2843	case SDEV_BLOCK:
2844	case SDEV_TRANSPORT_OFFLINE:
2845		sdev->sdev_state = new_state;
2846		break;
2847	case SDEV_CREATED_BLOCK:
2848		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2849		    new_state == SDEV_OFFLINE)
2850			sdev->sdev_state = new_state;
2851		else
2852			sdev->sdev_state = SDEV_CREATED;
2853		break;
2854	case SDEV_CANCEL:
2855	case SDEV_OFFLINE:
2856		break;
2857	default:
2858		return -EINVAL;
2859	}
2860	scsi_start_queue(sdev);
 
 
2861
2862	return 0;
2863}
2864EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2865
2866/**
2867 * scsi_internal_device_unblock - resume a device after a block request
2868 * @sdev:	device to resume
2869 * @new_state:	state to set the device to after unblocking
2870 *
2871 * Restart the device queue for a previously suspended SCSI device. May sleep.
2872 *
2873 * Returns zero if successful or a negative error code upon failure.
2874 *
2875 * Notes:
2876 * This routine transitions the device to the SDEV_RUNNING state or to one of
2877 * the offline states (which must be a legal transition) allowing the midlayer
2878 * to goose the queue for this device.
2879 */
2880static int scsi_internal_device_unblock(struct scsi_device *sdev,
2881					enum scsi_device_state new_state)
2882{
2883	int ret;
2884
2885	mutex_lock(&sdev->state_mutex);
2886	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2887	mutex_unlock(&sdev->state_mutex);
2888
2889	return ret;
2890}
2891
2892static int
2893target_block(struct device *dev, void *data)
2894{
2895	if (scsi_is_target_device(dev))
2896		starget_for_each_device(to_scsi_target(dev), NULL,
2897					scsi_device_block);
2898	return 0;
2899}
2900
2901/**
2902 * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
2903 * @dev: a parent device of one or more scsi_target devices
2904 * @shost: the Scsi_Host to which this device belongs
2905 *
2906 * Iterate over all children of @dev, which should be scsi_target devices,
2907 * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
2908 * ongoing scsi_queue_rq() calls to finish. May sleep.
2909 *
2910 * Note:
2911 * @dev must not itself be a scsi_target device.
2912 */
2913void
2914scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
2915{
2916	WARN_ON_ONCE(scsi_is_target_device(dev));
2917	device_for_each_child(dev, NULL, target_block);
2918	blk_mq_wait_quiesce_done(&shost->tag_set);
 
 
2919}
2920EXPORT_SYMBOL_GPL(scsi_block_targets);
2921
2922static void
2923device_unblock(struct scsi_device *sdev, void *data)
2924{
2925	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2926}
2927
2928static int
2929target_unblock(struct device *dev, void *data)
2930{
2931	if (scsi_is_target_device(dev))
2932		starget_for_each_device(to_scsi_target(dev), data,
2933					device_unblock);
2934	return 0;
2935}
2936
2937void
2938scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2939{
2940	if (scsi_is_target_device(dev))
2941		starget_for_each_device(to_scsi_target(dev), &new_state,
2942					device_unblock);
2943	else
2944		device_for_each_child(dev, &new_state, target_unblock);
2945}
2946EXPORT_SYMBOL_GPL(scsi_target_unblock);
2947
2948/**
2949 * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
2950 * @shost: device to block
2951 *
2952 * Pause SCSI command processing for all logical units associated with the SCSI
2953 * host and wait until pending scsi_queue_rq() calls have finished.
2954 *
2955 * Returns zero if successful or a negative error code upon failure.
2956 */
2957int
2958scsi_host_block(struct Scsi_Host *shost)
2959{
2960	struct scsi_device *sdev;
2961	int ret;
2962
2963	/*
2964	 * Call scsi_internal_device_block_nowait so we can avoid
2965	 * calling synchronize_rcu() for each LUN.
2966	 */
2967	shost_for_each_device(sdev, shost) {
2968		mutex_lock(&sdev->state_mutex);
2969		ret = scsi_internal_device_block_nowait(sdev);
2970		mutex_unlock(&sdev->state_mutex);
2971		if (ret) {
2972			scsi_device_put(sdev);
2973			return ret;
2974		}
2975	}
2976
2977	/* Wait for ongoing scsi_queue_rq() calls to finish. */
2978	blk_mq_wait_quiesce_done(&shost->tag_set);
2979
2980	return 0;
2981}
2982EXPORT_SYMBOL_GPL(scsi_host_block);
2983
2984int
2985scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2986{
2987	struct scsi_device *sdev;
2988	int ret = 0;
2989
2990	shost_for_each_device(sdev, shost) {
2991		ret = scsi_internal_device_unblock(sdev, new_state);
2992		if (ret) {
2993			scsi_device_put(sdev);
2994			break;
2995		}
2996	}
2997	return ret;
2998}
2999EXPORT_SYMBOL_GPL(scsi_host_unblock);
3000
3001/**
3002 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3003 * @sgl:	scatter-gather list
3004 * @sg_count:	number of segments in sg
3005 * @offset:	offset in bytes into sg, on return offset into the mapped area
3006 * @len:	bytes to map, on return number of bytes mapped
3007 *
3008 * Returns virtual address of the start of the mapped page
3009 */
3010void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3011			  size_t *offset, size_t *len)
3012{
3013	int i;
3014	size_t sg_len = 0, len_complete = 0;
3015	struct scatterlist *sg;
3016	struct page *page;
3017
3018	WARN_ON(!irqs_disabled());
3019
3020	for_each_sg(sgl, sg, sg_count, i) {
3021		len_complete = sg_len; /* Complete sg-entries */
3022		sg_len += sg->length;
3023		if (sg_len > *offset)
3024			break;
3025	}
3026
3027	if (unlikely(i == sg_count)) {
3028		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3029			"elements %d\n",
3030		       __func__, sg_len, *offset, sg_count);
3031		WARN_ON(1);
3032		return NULL;
3033	}
3034
3035	/* Offset starting from the beginning of first page in this sg-entry */
3036	*offset = *offset - len_complete + sg->offset;
3037
3038	/* Assumption: contiguous pages can be accessed as "page + i" */
3039	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3040	*offset &= ~PAGE_MASK;
3041
3042	/* Bytes in this sg-entry from *offset to the end of the page */
3043	sg_len = PAGE_SIZE - *offset;
3044	if (*len > sg_len)
3045		*len = sg_len;
3046
3047	return kmap_atomic(page);
3048}
3049EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3050
3051/**
3052 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3053 * @virt:	virtual address to be unmapped
3054 */
3055void scsi_kunmap_atomic_sg(void *virt)
3056{
3057	kunmap_atomic(virt);
3058}
3059EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3060
3061void sdev_disable_disk_events(struct scsi_device *sdev)
3062{
3063	atomic_inc(&sdev->disk_events_disable_depth);
3064}
3065EXPORT_SYMBOL(sdev_disable_disk_events);
3066
3067void sdev_enable_disk_events(struct scsi_device *sdev)
3068{
3069	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3070		return;
3071	atomic_dec(&sdev->disk_events_disable_depth);
3072}
3073EXPORT_SYMBOL(sdev_enable_disk_events);
3074
3075static unsigned char designator_prio(const unsigned char *d)
3076{
3077	if (d[1] & 0x30)
3078		/* not associated with LUN */
3079		return 0;
3080
3081	if (d[3] == 0)
3082		/* invalid length */
3083		return 0;
3084
3085	/*
3086	 * Order of preference for lun descriptor:
3087	 * - SCSI name string
3088	 * - NAA IEEE Registered Extended
3089	 * - EUI-64 based 16-byte
3090	 * - EUI-64 based 12-byte
3091	 * - NAA IEEE Registered
3092	 * - NAA IEEE Extended
3093	 * - EUI-64 based 8-byte
3094	 * - SCSI name string (truncated)
3095	 * - T10 Vendor ID
3096	 * as longer descriptors reduce the likelyhood
3097	 * of identification clashes.
3098	 */
3099
3100	switch (d[1] & 0xf) {
3101	case 8:
3102		/* SCSI name string, variable-length UTF-8 */
3103		return 9;
3104	case 3:
3105		switch (d[4] >> 4) {
3106		case 6:
3107			/* NAA registered extended */
3108			return 8;
3109		case 5:
3110			/* NAA registered */
3111			return 5;
3112		case 4:
3113			/* NAA extended */
3114			return 4;
3115		case 3:
3116			/* NAA locally assigned */
3117			return 1;
3118		default:
3119			break;
3120		}
3121		break;
3122	case 2:
3123		switch (d[3]) {
3124		case 16:
3125			/* EUI64-based, 16 byte */
3126			return 7;
3127		case 12:
3128			/* EUI64-based, 12 byte */
3129			return 6;
3130		case 8:
3131			/* EUI64-based, 8 byte */
3132			return 3;
3133		default:
3134			break;
3135		}
3136		break;
3137	case 1:
3138		/* T10 vendor ID */
3139		return 1;
3140	default:
3141		break;
3142	}
3143
3144	return 0;
3145}
3146
3147/**
3148 * scsi_vpd_lun_id - return a unique device identification
3149 * @sdev: SCSI device
3150 * @id:   buffer for the identification
3151 * @id_len:  length of the buffer
3152 *
3153 * Copies a unique device identification into @id based
3154 * on the information in the VPD page 0x83 of the device.
3155 * The string will be formatted as a SCSI name string.
3156 *
3157 * Returns the length of the identification or error on failure.
3158 * If the identifier is longer than the supplied buffer the actual
3159 * identifier length is returned and the buffer is not zero-padded.
3160 */
3161int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3162{
3163	u8 cur_id_prio = 0;
3164	u8 cur_id_size = 0;
3165	const unsigned char *d, *cur_id_str;
3166	const struct scsi_vpd *vpd_pg83;
3167	int id_size = -EINVAL;
3168
3169	rcu_read_lock();
3170	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3171	if (!vpd_pg83) {
3172		rcu_read_unlock();
3173		return -ENXIO;
3174	}
3175
3176	/* The id string must be at least 20 bytes + terminating NULL byte */
3177	if (id_len < 21) {
3178		rcu_read_unlock();
3179		return -EINVAL;
3180	}
3181
3182	memset(id, 0, id_len);
3183	for (d = vpd_pg83->data + 4;
3184	     d < vpd_pg83->data + vpd_pg83->len;
3185	     d += d[3] + 4) {
3186		u8 prio = designator_prio(d);
3187
3188		if (prio == 0 || cur_id_prio > prio)
3189			continue;
3190
3191		switch (d[1] & 0xf) {
3192		case 0x1:
3193			/* T10 Vendor ID */
3194			if (cur_id_size > d[3])
3195				break;
3196			cur_id_prio = prio;
3197			cur_id_size = d[3];
3198			if (cur_id_size + 4 > id_len)
3199				cur_id_size = id_len - 4;
3200			cur_id_str = d + 4;
3201			id_size = snprintf(id, id_len, "t10.%*pE",
3202					   cur_id_size, cur_id_str);
3203			break;
3204		case 0x2:
3205			/* EUI-64 */
3206			cur_id_prio = prio;
3207			cur_id_size = d[3];
3208			cur_id_str = d + 4;
3209			switch (cur_id_size) {
3210			case 8:
3211				id_size = snprintf(id, id_len,
3212						   "eui.%8phN",
3213						   cur_id_str);
3214				break;
3215			case 12:
3216				id_size = snprintf(id, id_len,
3217						   "eui.%12phN",
3218						   cur_id_str);
3219				break;
3220			case 16:
3221				id_size = snprintf(id, id_len,
3222						   "eui.%16phN",
3223						   cur_id_str);
3224				break;
3225			default:
3226				break;
3227			}
3228			break;
3229		case 0x3:
3230			/* NAA */
3231			cur_id_prio = prio;
3232			cur_id_size = d[3];
3233			cur_id_str = d + 4;
3234			switch (cur_id_size) {
3235			case 8:
3236				id_size = snprintf(id, id_len,
3237						   "naa.%8phN",
3238						   cur_id_str);
3239				break;
3240			case 16:
3241				id_size = snprintf(id, id_len,
3242						   "naa.%16phN",
3243						   cur_id_str);
3244				break;
3245			default:
3246				break;
3247			}
3248			break;
3249		case 0x8:
3250			/* SCSI name string */
3251			if (cur_id_size > d[3])
3252				break;
3253			/* Prefer others for truncated descriptor */
3254			if (d[3] > id_len) {
3255				prio = 2;
3256				if (cur_id_prio > prio)
3257					break;
3258			}
3259			cur_id_prio = prio;
3260			cur_id_size = id_size = d[3];
3261			cur_id_str = d + 4;
3262			if (cur_id_size >= id_len)
3263				cur_id_size = id_len - 1;
3264			memcpy(id, cur_id_str, cur_id_size);
3265			break;
3266		default:
3267			break;
3268		}
3269	}
3270	rcu_read_unlock();
3271
3272	return id_size;
3273}
3274EXPORT_SYMBOL(scsi_vpd_lun_id);
3275
3276/*
3277 * scsi_vpd_tpg_id - return a target port group identifier
3278 * @sdev: SCSI device
3279 *
3280 * Returns the Target Port Group identifier from the information
3281 * froom VPD page 0x83 of the device.
3282 *
3283 * Returns the identifier or error on failure.
3284 */
3285int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3286{
3287	const unsigned char *d;
3288	const struct scsi_vpd *vpd_pg83;
3289	int group_id = -EAGAIN, rel_port = -1;
3290
3291	rcu_read_lock();
3292	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3293	if (!vpd_pg83) {
3294		rcu_read_unlock();
3295		return -ENXIO;
3296	}
3297
3298	d = vpd_pg83->data + 4;
3299	while (d < vpd_pg83->data + vpd_pg83->len) {
3300		switch (d[1] & 0xf) {
3301		case 0x4:
3302			/* Relative target port */
3303			rel_port = get_unaligned_be16(&d[6]);
3304			break;
3305		case 0x5:
3306			/* Target port group */
3307			group_id = get_unaligned_be16(&d[6]);
3308			break;
3309		default:
3310			break;
3311		}
3312		d += d[3] + 4;
3313	}
3314	rcu_read_unlock();
3315
3316	if (group_id >= 0 && rel_id && rel_port != -1)
3317		*rel_id = rel_port;
3318
3319	return group_id;
3320}
3321EXPORT_SYMBOL(scsi_vpd_tpg_id);
3322
3323/**
3324 * scsi_build_sense - build sense data for a command
3325 * @scmd:	scsi command for which the sense should be formatted
3326 * @desc:	Sense format (non-zero == descriptor format,
3327 *              0 == fixed format)
3328 * @key:	Sense key
3329 * @asc:	Additional sense code
3330 * @ascq:	Additional sense code qualifier
3331 *
3332 **/
3333void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3334{
3335	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3336	scmd->result = SAM_STAT_CHECK_CONDITION;
3337}
3338EXPORT_SYMBOL_GPL(scsi_build_sense);
v3.15
 
   1/*
   2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
 
   3 *
   4 *  SCSI queueing library.
   5 *      Initial versions: Eric Youngdale (eric@andante.org).
   6 *                        Based upon conversations with large numbers
   7 *                        of people at Linux Expo.
   8 */
   9
  10#include <linux/bio.h>
  11#include <linux/bitops.h>
  12#include <linux/blkdev.h>
  13#include <linux/completion.h>
  14#include <linux/kernel.h>
  15#include <linux/export.h>
  16#include <linux/mempool.h>
  17#include <linux/slab.h>
  18#include <linux/init.h>
  19#include <linux/pci.h>
  20#include <linux/delay.h>
  21#include <linux/hardirq.h>
  22#include <linux/scatterlist.h>
 
 
 
 
  23
  24#include <scsi/scsi.h>
  25#include <scsi/scsi_cmnd.h>
  26#include <scsi/scsi_dbg.h>
  27#include <scsi/scsi_device.h>
  28#include <scsi/scsi_driver.h>
  29#include <scsi/scsi_eh.h>
  30#include <scsi/scsi_host.h>
 
 
  31
 
 
 
  32#include "scsi_priv.h"
  33#include "scsi_logging.h"
  34
 
 
 
 
 
 
 
 
 
 
 
  35
  36#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
  37#define SG_MEMPOOL_SIZE		2
  38
  39struct scsi_host_sg_pool {
  40	size_t		size;
  41	char		*name;
  42	struct kmem_cache	*slab;
  43	mempool_t	*pool;
  44};
  45
  46#define SP(x) { x, "sgpool-" __stringify(x) }
  47#if (SCSI_MAX_SG_SEGMENTS < 32)
  48#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
  49#endif
  50static struct scsi_host_sg_pool scsi_sg_pools[] = {
  51	SP(8),
  52	SP(16),
  53#if (SCSI_MAX_SG_SEGMENTS > 32)
  54	SP(32),
  55#if (SCSI_MAX_SG_SEGMENTS > 64)
  56	SP(64),
  57#if (SCSI_MAX_SG_SEGMENTS > 128)
  58	SP(128),
  59#if (SCSI_MAX_SG_SEGMENTS > 256)
  60#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
  61#endif
  62#endif
  63#endif
  64#endif
  65	SP(SCSI_MAX_SG_SEGMENTS)
  66};
  67#undef SP
  68
  69struct kmem_cache *scsi_sdb_cache;
 
 
 
 
 
 
 
 
 
 
 
  70
  71/*
  72 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
  73 * not change behaviour from the previous unplug mechanism, experimentation
  74 * may prove this needs changing.
  75 */
  76#define SCSI_QUEUE_DELAY	3
  77
  78/**
  79 * __scsi_queue_insert - private queue insertion
  80 * @cmd: The SCSI command being requeued
  81 * @reason:  The reason for the requeue
  82 * @unbusy: Whether the queue should be unbusied
  83 *
  84 * This is a private queue insertion.  The public interface
  85 * scsi_queue_insert() always assumes the queue should be unbusied
  86 * because it's always called before the completion.  This function is
  87 * for a requeue after completion, which should only occur in this
  88 * file.
  89 */
  90static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
  91{
  92	struct Scsi_Host *host = cmd->device->host;
  93	struct scsi_device *device = cmd->device;
  94	struct scsi_target *starget = scsi_target(device);
  95	struct request_queue *q = device->request_queue;
  96	unsigned long flags;
  97
  98	SCSI_LOG_MLQUEUE(1,
  99		 printk("Inserting command %p into mlqueue\n", cmd));
 100
 101	/*
 102	 * Set the appropriate busy bit for the device/host.
 103	 *
 104	 * If the host/device isn't busy, assume that something actually
 105	 * completed, and that we should be able to queue a command now.
 106	 *
 107	 * Note that the prior mid-layer assumption that any host could
 108	 * always queue at least one command is now broken.  The mid-layer
 109	 * will implement a user specifiable stall (see
 110	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
 111	 * if a command is requeued with no other commands outstanding
 112	 * either for the device or for the host.
 113	 */
 114	switch (reason) {
 115	case SCSI_MLQUEUE_HOST_BUSY:
 116		host->host_blocked = host->max_host_blocked;
 117		break;
 118	case SCSI_MLQUEUE_DEVICE_BUSY:
 119	case SCSI_MLQUEUE_EH_RETRY:
 120		device->device_blocked = device->max_device_blocked;
 
 121		break;
 122	case SCSI_MLQUEUE_TARGET_BUSY:
 123		starget->target_blocked = starget->max_target_blocked;
 
 124		break;
 125	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126
 127	/*
 128	 * Decrement the counters, since these commands are no longer
 129	 * active on the host/device.
 130	 */
 131	if (unbusy)
 132		scsi_device_unbusy(device);
 133
 134	/*
 135	 * Requeue this command.  It will go before all other commands
 136	 * that are already in the queue. Schedule requeue work under
 137	 * lock such that the kblockd_schedule_work() call happens
 138	 * before blk_cleanup_queue() finishes.
 139	 */
 140	cmd->result = 0;
 141	spin_lock_irqsave(q->queue_lock, flags);
 142	blk_requeue_request(q, cmd->request);
 143	kblockd_schedule_work(q, &device->requeue_work);
 144	spin_unlock_irqrestore(q->queue_lock, flags);
 145}
 146
 147/*
 148 * Function:    scsi_queue_insert()
 149 *
 150 * Purpose:     Insert a command in the midlevel queue.
 151 *
 152 * Arguments:   cmd    - command that we are adding to queue.
 153 *              reason - why we are inserting command to queue.
 154 *
 155 * Lock status: Assumed that lock is not held upon entry.
 156 *
 157 * Returns:     Nothing.
 158 *
 159 * Notes:       We do this for one of two cases.  Either the host is busy
 160 *              and it cannot accept any more commands for the time being,
 161 *              or the device returned QUEUE_FULL and can accept no more
 162 *              commands.
 163 * Notes:       This could be called either from an interrupt context or a
 164 *              normal process context.
 165 */
 166void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 167{
 168	__scsi_queue_insert(cmd, reason, 1);
 169}
 
 170/**
 171 * scsi_execute - insert request and wait for the result
 172 * @sdev:	scsi device
 173 * @cmd:	scsi command
 174 * @data_direction: data direction
 175 * @buffer:	data buffer
 176 * @bufflen:	len of buffer
 177 * @sense:	optional sense buffer
 178 * @timeout:	request timeout in seconds
 179 * @retries:	number of times to retry request
 180 * @flags:	or into request flags;
 181 * @resid:	optional residual length
 182 *
 183 * returns the req->errors value which is the scsi_cmnd result
 184 * field.
 185 */
 186int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 187		 int data_direction, void *buffer, unsigned bufflen,
 188		 unsigned char *sense, int timeout, int retries, u64 flags,
 189		 int *resid)
 190{
 
 191	struct request *req;
 192	int write = (data_direction == DMA_TO_DEVICE);
 193	int ret = DRIVER_ERROR << 24;
 
 
 
 
 
 
 194
 195	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
 196	if (!req)
 197		return ret;
 198
 199	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
 200					buffer, bufflen, __GFP_WAIT))
 201		goto out;
 202
 203	req->cmd_len = COMMAND_SIZE(cmd[0]);
 204	memcpy(req->cmd, cmd, req->cmd_len);
 205	req->sense = sense;
 206	req->sense_len = 0;
 207	req->retries = retries;
 
 
 208	req->timeout = timeout;
 209	req->cmd_type = REQ_TYPE_BLOCK_PC;
 210	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
 211
 212	/*
 213	 * head injection *required* here otherwise quiesce won't work
 214	 */
 215	blk_execute_rq(req->q, NULL, req, 1);
 216
 217	/*
 218	 * Some devices (USB mass-storage in particular) may transfer
 219	 * garbage data together with a residue indicating that the data
 220	 * is invalid.  Prevent the garbage from being misinterpreted
 221	 * and prevent security leaks by zeroing out the excess data.
 222	 */
 223	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
 224		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
 225
 226	if (resid)
 227		*resid = req->resid_len;
 228	ret = req->errors;
 
 
 
 
 
 
 229 out:
 230	blk_put_request(req);
 231
 232	return ret;
 233}
 234EXPORT_SYMBOL(scsi_execute);
 235
 236int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
 237		     int data_direction, void *buffer, unsigned bufflen,
 238		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
 239		     int *resid, u64 flags)
 
 
 
 
 
 
 240{
 241	char *sense = NULL;
 242	int result;
 243	
 244	if (sshdr) {
 245		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
 246		if (!sense)
 247			return DRIVER_ERROR << 24;
 248	}
 249	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
 250			      sense, timeout, retries, flags, resid);
 251	if (sshdr)
 252		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
 253
 254	kfree(sense);
 255	return result;
 
 
 
 
 256}
 257EXPORT_SYMBOL(scsi_execute_req_flags);
 258
 259/*
 260 * Function:    scsi_init_cmd_errh()
 261 *
 262 * Purpose:     Initialize cmd fields related to error handling.
 263 *
 264 * Arguments:   cmd	- command that is ready to be queued.
 265 *
 266 * Notes:       This function has the job of initializing a number of
 267 *              fields related to error handling.   Typically this will
 268 *              be called once for each command, as required.
 269 */
 270static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
 271{
 272	cmd->serial_number = 0;
 273	scsi_set_resid(cmd, 0);
 274	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
 275	if (cmd->cmd_len == 0)
 276		cmd->cmd_len = scsi_command_size(cmd->cmnd);
 
 
 
 
 
 277}
 278
 279void scsi_device_unbusy(struct scsi_device *sdev)
 
 
 
 
 280{
 281	struct Scsi_Host *shost = sdev->host;
 282	struct scsi_target *starget = scsi_target(sdev);
 283	unsigned long flags;
 284
 285	spin_lock_irqsave(shost->host_lock, flags);
 286	shost->host_busy--;
 287	starget->target_busy--;
 288	if (unlikely(scsi_host_in_recovery(shost) &&
 289		     (shost->host_failed || shost->host_eh_scheduled)))
 290		scsi_eh_wakeup(shost);
 291	spin_unlock(shost->host_lock);
 292	spin_lock(sdev->request_queue->queue_lock);
 293	sdev->device_busy--;
 294	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
 295}
 296
 297/*
 298 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 299 * and call blk_run_queue for all the scsi_devices on the target -
 300 * including current_sdev first.
 301 *
 302 * Called with *no* scsi locks held.
 303 */
 304static void scsi_single_lun_run(struct scsi_device *current_sdev)
 305{
 306	struct Scsi_Host *shost = current_sdev->host;
 307	struct scsi_device *sdev, *tmp;
 308	struct scsi_target *starget = scsi_target(current_sdev);
 309	unsigned long flags;
 310
 311	spin_lock_irqsave(shost->host_lock, flags);
 312	starget->starget_sdev_user = NULL;
 313	spin_unlock_irqrestore(shost->host_lock, flags);
 314
 315	/*
 316	 * Call blk_run_queue for all LUNs on the target, starting with
 317	 * current_sdev. We race with others (to set starget_sdev_user),
 318	 * but in most cases, we will be first. Ideally, each LU on the
 319	 * target would get some limited time or requests on the target.
 320	 */
 321	blk_run_queue(current_sdev->request_queue);
 
 322
 323	spin_lock_irqsave(shost->host_lock, flags);
 324	if (starget->starget_sdev_user)
 325		goto out;
 326	list_for_each_entry_safe(sdev, tmp, &starget->devices,
 327			same_target_siblings) {
 328		if (sdev == current_sdev)
 329			continue;
 330		if (scsi_device_get(sdev))
 331			continue;
 332
 333		spin_unlock_irqrestore(shost->host_lock, flags);
 334		blk_run_queue(sdev->request_queue);
 335		spin_lock_irqsave(shost->host_lock, flags);
 336	
 337		scsi_device_put(sdev);
 338	}
 339 out:
 340	spin_unlock_irqrestore(shost->host_lock, flags);
 341}
 342
 343static inline int scsi_device_is_busy(struct scsi_device *sdev)
 344{
 345	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
 346		return 1;
 347
 348	return 0;
 
 349}
 350
 351static inline int scsi_target_is_busy(struct scsi_target *starget)
 352{
 353	return ((starget->can_queue > 0 &&
 354		 starget->target_busy >= starget->can_queue) ||
 355		 starget->target_blocked);
 
 
 
 
 356}
 357
 358static inline int scsi_host_is_busy(struct Scsi_Host *shost)
 359{
 360	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
 361	    shost->host_blocked || shost->host_self_blocked)
 362		return 1;
 363
 364	return 0;
 365}
 366
 367static void scsi_starved_list_run(struct Scsi_Host *shost)
 368{
 369	LIST_HEAD(starved_list);
 370	struct scsi_device *sdev;
 371	unsigned long flags;
 372
 373	spin_lock_irqsave(shost->host_lock, flags);
 374	list_splice_init(&shost->starved_list, &starved_list);
 375
 376	while (!list_empty(&starved_list)) {
 377		struct request_queue *slq;
 378
 379		/*
 380		 * As long as shost is accepting commands and we have
 381		 * starved queues, call blk_run_queue. scsi_request_fn
 382		 * drops the queue_lock and can add us back to the
 383		 * starved_list.
 384		 *
 385		 * host_lock protects the starved_list and starved_entry.
 386		 * scsi_request_fn must get the host_lock before checking
 387		 * or modifying starved_list or starved_entry.
 388		 */
 389		if (scsi_host_is_busy(shost))
 390			break;
 391
 392		sdev = list_entry(starved_list.next,
 393				  struct scsi_device, starved_entry);
 394		list_del_init(&sdev->starved_entry);
 395		if (scsi_target_is_busy(scsi_target(sdev))) {
 396			list_move_tail(&sdev->starved_entry,
 397				       &shost->starved_list);
 398			continue;
 399		}
 400
 401		/*
 402		 * Once we drop the host lock, a racing scsi_remove_device()
 403		 * call may remove the sdev from the starved list and destroy
 404		 * it and the queue.  Mitigate by taking a reference to the
 405		 * queue and never touching the sdev again after we drop the
 406		 * host lock.  Note: if __scsi_remove_device() invokes
 407		 * blk_cleanup_queue() before the queue is run from this
 408		 * function then blk_run_queue() will return immediately since
 409		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
 410		 */
 411		slq = sdev->request_queue;
 412		if (!blk_get_queue(slq))
 413			continue;
 414		spin_unlock_irqrestore(shost->host_lock, flags);
 415
 416		blk_run_queue(slq);
 417		blk_put_queue(slq);
 418
 419		spin_lock_irqsave(shost->host_lock, flags);
 420	}
 421	/* put any unprocessed entries back */
 422	list_splice(&starved_list, &shost->starved_list);
 423	spin_unlock_irqrestore(shost->host_lock, flags);
 424}
 425
 426/*
 427 * Function:   scsi_run_queue()
 428 *
 429 * Purpose:    Select a proper request queue to serve next
 430 *
 431 * Arguments:  q       - last request's queue
 432 *
 433 * Returns:     Nothing
 434 *
 435 * Notes:      The previous command was completely finished, start
 436 *             a new one if possible.
 437 */
 438static void scsi_run_queue(struct request_queue *q)
 439{
 440	struct scsi_device *sdev = q->queuedata;
 441
 442	if (scsi_target(sdev)->single_lun)
 443		scsi_single_lun_run(sdev);
 444	if (!list_empty(&sdev->host->starved_list))
 445		scsi_starved_list_run(sdev->host);
 446
 447	blk_run_queue(q);
 
 448}
 449
 450void scsi_requeue_run_queue(struct work_struct *work)
 451{
 452	struct scsi_device *sdev;
 453	struct request_queue *q;
 454
 455	sdev = container_of(work, struct scsi_device, requeue_work);
 456	q = sdev->request_queue;
 457	scsi_run_queue(q);
 458}
 459
 460/*
 461 * Function:	scsi_requeue_command()
 462 *
 463 * Purpose:	Handle post-processing of completed commands.
 464 *
 465 * Arguments:	q	- queue to operate on
 466 *		cmd	- command that may need to be requeued.
 467 *
 468 * Returns:	Nothing
 469 *
 470 * Notes:	After command completion, there may be blocks left
 471 *		over which weren't finished by the previous command
 472 *		this can be for a number of reasons - the main one is
 473 *		I/O errors in the middle of the request, in which case
 474 *		we need to request the blocks that come after the bad
 475 *		sector.
 476 * Notes:	Upon return, cmd is a stale pointer.
 477 */
 478static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
 479{
 480	struct scsi_device *sdev = cmd->device;
 481	struct request *req = cmd->request;
 482	unsigned long flags;
 483
 484	spin_lock_irqsave(q->queue_lock, flags);
 485	blk_unprep_request(req);
 486	req->special = NULL;
 487	scsi_put_command(cmd);
 488	blk_requeue_request(q, req);
 489	spin_unlock_irqrestore(q->queue_lock, flags);
 490
 491	scsi_run_queue(q);
 492
 493	put_device(&sdev->sdev_gendev);
 494}
 495
 496void scsi_next_command(struct scsi_cmnd *cmd)
 497{
 498	struct scsi_device *sdev = cmd->device;
 499	struct request_queue *q = sdev->request_queue;
 500
 501	scsi_put_command(cmd);
 502	scsi_run_queue(q);
 503
 504	put_device(&sdev->sdev_gendev);
 505}
 506
 507void scsi_run_host_queues(struct Scsi_Host *shost)
 508{
 509	struct scsi_device *sdev;
 510
 511	shost_for_each_device(sdev, shost)
 512		scsi_run_queue(sdev->request_queue);
 513}
 514
 515static void __scsi_release_buffers(struct scsi_cmnd *, int);
 516
 517/*
 518 * Function:    scsi_end_request()
 519 *
 520 * Purpose:     Post-processing of completed commands (usually invoked at end
 521 *		of upper level post-processing and scsi_io_completion).
 522 *
 523 * Arguments:   cmd	 - command that is complete.
 524 *              error    - 0 if I/O indicates success, < 0 for I/O error.
 525 *              bytes    - number of bytes of completed I/O
 526 *		requeue  - indicates whether we should requeue leftovers.
 527 *
 528 * Lock status: Assumed that lock is not held upon entry.
 529 *
 530 * Returns:     cmd if requeue required, NULL otherwise.
 531 *
 532 * Notes:       This is called for block device requests in order to
 533 *              mark some number of sectors as complete.
 534 * 
 535 *		We are guaranteeing that the request queue will be goosed
 536 *		at some point during this call.
 537 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
 538 */
 539static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
 540					  int bytes, int requeue)
 541{
 542	struct request_queue *q = cmd->device->request_queue;
 543	struct request *req = cmd->request;
 544
 545	/*
 546	 * If there are blocks left over at the end, set up the command
 547	 * to queue the remainder of them.
 548	 */
 549	if (blk_end_request(req, error, bytes)) {
 550		/* kill remainder if no retrys */
 551		if (error && scsi_noretry_cmd(cmd))
 552			blk_end_request_all(req, error);
 553		else {
 554			if (requeue) {
 555				/*
 556				 * Bleah.  Leftovers again.  Stick the
 557				 * leftovers in the front of the
 558				 * queue, and goose the queue again.
 559				 */
 560				scsi_release_buffers(cmd);
 561				scsi_requeue_command(q, cmd);
 562				cmd = NULL;
 563			}
 564			return cmd;
 565		}
 566	}
 567
 568	/*
 569	 * This will goose the queue request function at the end, so we don't
 570	 * need to worry about launching another command.
 571	 */
 572	__scsi_release_buffers(cmd, 0);
 573	scsi_next_command(cmd);
 574	return NULL;
 575}
 576
 577static inline unsigned int scsi_sgtable_index(unsigned short nents)
 578{
 579	unsigned int index;
 580
 581	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
 582
 583	if (nents <= 8)
 584		index = 0;
 585	else
 586		index = get_count_order(nents) - 3;
 587
 588	return index;
 589}
 
 590
 591static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
 592{
 593	struct scsi_host_sg_pool *sgp;
 594
 595	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
 596	mempool_free(sgl, sgp->pool);
 597}
 598
 599static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
 600{
 601	struct scsi_host_sg_pool *sgp;
 
 
 
 
 
 
 
 
 
 
 
 
 602
 603	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
 604	return mempool_alloc(sgp->pool, gfp_mask);
 
 
 
 
 
 
 
 
 
 605}
 606
 607static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
 608			      gfp_t gfp_mask)
 
 609{
 610	int ret;
 
 
 611
 612	BUG_ON(!nents);
 
 613
 614	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
 615			       gfp_mask, scsi_sg_alloc);
 616	if (unlikely(ret))
 617		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
 618				scsi_sg_free);
 619
 620	return ret;
 621}
 
 
 622
 623static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
 624{
 625	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
 626}
 
 
 
 627
 628static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
 629{
 
 
 
 
 
 
 630
 631	if (cmd->sdb.table.nents)
 632		scsi_free_sgtable(&cmd->sdb);
 
 
 
 633
 634	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 635
 636	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
 637		struct scsi_data_buffer *bidi_sdb =
 638			cmd->request->next_rq->special;
 639		scsi_free_sgtable(bidi_sdb);
 640		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
 641		cmd->request->next_rq->special = NULL;
 642	}
 643
 644	if (scsi_prot_sg_count(cmd))
 645		scsi_free_sgtable(cmd->prot_sdb);
 646}
 647
 648/*
 649 * Function:    scsi_release_buffers()
 650 *
 651 * Purpose:     Completion processing for block device I/O requests.
 652 *
 653 * Arguments:   cmd	- command that we are bailing.
 654 *
 655 * Lock status: Assumed that no lock is held upon entry.
 656 *
 657 * Returns:     Nothing
 658 *
 659 * Notes:       In the event that an upper level driver rejects a
 660 *		command, we must release resources allocated during
 661 *		the __init_io() function.  Primarily this would involve
 662 *		the scatter-gather table, and potentially any bounce
 663 *		buffers.
 664 */
 665void scsi_release_buffers(struct scsi_cmnd *cmd)
 666{
 667	__scsi_release_buffers(cmd, 1);
 668}
 669EXPORT_SYMBOL(scsi_release_buffers);
 670
 671/**
 672 * __scsi_error_from_host_byte - translate SCSI error code into errno
 673 * @cmd:	SCSI command (unused)
 674 * @result:	scsi error code
 675 *
 676 * Translate SCSI error code into standard UNIX errno.
 677 * Return values:
 678 * -ENOLINK	temporary transport failure
 679 * -EREMOTEIO	permanent target failure, do not retry
 680 * -EBADE	permanent nexus failure, retry on other path
 681 * -ENOSPC	No write space available
 682 * -ENODATA	Medium error
 683 * -EIO		unspecified I/O error
 684 */
 685static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
 686{
 687	int error = 0;
 688
 689	switch(host_byte(result)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 690	case DID_TRANSPORT_FAILFAST:
 691		error = -ENOLINK;
 692		break;
 693	case DID_TARGET_FAILURE:
 694		set_host_byte(cmd, DID_OK);
 695		error = -EREMOTEIO;
 696		break;
 697	case DID_NEXUS_FAILURE:
 698		set_host_byte(cmd, DID_OK);
 699		error = -EBADE;
 700		break;
 701	case DID_ALLOC_FAILURE:
 702		set_host_byte(cmd, DID_OK);
 703		error = -ENOSPC;
 704		break;
 705	case DID_MEDIUM_ERROR:
 706		set_host_byte(cmd, DID_OK);
 707		error = -ENODATA;
 708		break;
 709	default:
 710		error = -EIO;
 711		break;
 712	}
 713
 714	return error;
 715}
 716
 717/*
 718 * Function:    scsi_io_completion()
 719 *
 720 * Purpose:     Completion processing for block device I/O requests.
 721 *
 722 * Arguments:   cmd   - command that is finished.
 723 *
 724 * Lock status: Assumed that no lock is held upon entry.
 725 *
 726 * Returns:     Nothing
 727 *
 728 * Notes:       This function is matched in terms of capabilities to
 729 *              the function that created the scatter-gather list.
 730 *              In other words, if there are no bounce buffers
 731 *              (the normal case for most drivers), we don't need
 732 *              the logic to deal with cleaning up afterwards.
 733 *
 734 *		We must call scsi_end_request().  This will finish off
 735 *		the specified number of sectors.  If we are done, the
 736 *		command block will be released and the queue function
 737 *		will be goosed.  If we are not done then we have to
 738 *		figure out what to do next:
 739 *
 740 *		a) We can call scsi_requeue_command().  The request
 741 *		   will be unprepared and put back on the queue.  Then
 742 *		   a new command will be created for it.  This should
 743 *		   be used if we made forward progress, or if we want
 744 *		   to switch from READ(10) to READ(6) for example.
 745 *
 746 *		b) We can call scsi_queue_insert().  The request will
 747 *		   be put back on the queue and retried using the same
 748 *		   command as before, possibly after a delay.
 749 *
 750 *		c) We can call blk_end_request() with -EIO to fail
 751 *		   the remainder of the request.
 752 */
 753void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 754{
 755	int result = cmd->result;
 756	struct request_queue *q = cmd->device->request_queue;
 757	struct request *req = cmd->request;
 758	int error = 0;
 759	struct scsi_sense_hdr sshdr;
 760	int sense_valid = 0;
 761	int sense_deferred = 0;
 762	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
 763	      ACTION_DELAYED_RETRY} action;
 764	char *description = NULL;
 765	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
 766
 767	if (result) {
 768		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 769		if (sense_valid)
 770			sense_deferred = scsi_sense_is_deferred(&sshdr);
 771	}
 772
 773	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
 774		if (result) {
 775			if (sense_valid && req->sense) {
 776				/*
 777				 * SG_IO wants current and deferred errors
 778				 */
 779				int len = 8 + cmd->sense_buffer[7];
 780
 781				if (len > SCSI_SENSE_BUFFERSIZE)
 782					len = SCSI_SENSE_BUFFERSIZE;
 783				memcpy(req->sense, cmd->sense_buffer,  len);
 784				req->sense_len = len;
 785			}
 786			if (!sense_deferred)
 787				error = __scsi_error_from_host_byte(cmd, result);
 788		}
 789		/*
 790		 * __scsi_error_from_host_byte may have reset the host_byte
 791		 */
 792		req->errors = cmd->result;
 793
 794		req->resid_len = scsi_get_resid(cmd);
 
 
 
 
 
 
 
 
 
 
 
 795
 796		if (scsi_bidi_cmnd(cmd)) {
 797			/*
 798			 * Bidi commands Must be complete as a whole,
 799			 * both sides at once.
 800			 */
 801			req->next_rq->resid_len = scsi_in(cmd)->resid;
 802
 803			scsi_release_buffers(cmd);
 804			blk_end_request_all(req, 0);
 
 
 805
 806			scsi_next_command(cmd);
 807			return;
 808		}
 809	}
 810
 811	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
 812	BUG_ON(blk_bidi_rq(req));
 813
 814	/*
 815	 * Next deal with any sectors which we were able to correctly
 816	 * handle.
 817	 */
 818	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
 819				      "%d bytes done.\n",
 820				      blk_rq_sectors(req), good_bytes));
 821
 822	/*
 823	 * Recovered errors need reporting, but they're always treated
 824	 * as success, so fiddle the result code here.  For BLOCK_PC
 825	 * we already took a copy of the original into rq->errors which
 826	 * is what gets returned to the user
 827	 */
 828	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 829		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
 830		 * print since caller wants ATA registers. Only occurs on
 831		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
 832		 */
 833		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 834			;
 835		else if (!(req->cmd_flags & REQ_QUIET))
 836			scsi_print_sense("", cmd);
 837		result = 0;
 838		/* BLOCK_PC may have set error */
 839		error = 0;
 840	}
 
 
 841
 842	/*
 843	 * A number of bytes were successfully read.  If there
 844	 * are leftovers and there is some kind of error
 845	 * (result != 0), retry the rest.
 846	 */
 847	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
 848		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 849
 850	error = __scsi_error_from_host_byte(cmd, result);
 851
 852	if (host_byte(result) == DID_RESET) {
 853		/* Third party bus reset or reset for error recovery
 854		 * reasons.  Just retry the command and see what
 855		 * happens.
 856		 */
 857		action = ACTION_RETRY;
 858	} else if (sense_valid && !sense_deferred) {
 859		switch (sshdr.sense_key) {
 860		case UNIT_ATTENTION:
 861			if (cmd->device->removable) {
 862				/* Detected disc change.  Set a bit
 863				 * and quietly refuse further access.
 864				 */
 865				cmd->device->changed = 1;
 866				description = "Media Changed";
 867				action = ACTION_FAIL;
 868			} else {
 869				/* Must have been a power glitch, or a
 870				 * bus reset.  Could not have been a
 871				 * media change, so we just retry the
 872				 * command and see what happens.
 873				 */
 874				action = ACTION_RETRY;
 875			}
 876			break;
 877		case ILLEGAL_REQUEST:
 878			/* If we had an ILLEGAL REQUEST returned, then
 879			 * we may have performed an unsupported
 880			 * command.  The only thing this should be
 881			 * would be a ten byte read where only a six
 882			 * byte read was supported.  Also, on a system
 883			 * where READ CAPACITY failed, we may have
 884			 * read past the end of the disk.
 885			 */
 886			if ((cmd->device->use_10_for_rw &&
 887			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 888			    (cmd->cmnd[0] == READ_10 ||
 889			     cmd->cmnd[0] == WRITE_10)) {
 890				/* This will issue a new 6-byte command. */
 891				cmd->device->use_10_for_rw = 0;
 892				action = ACTION_REPREP;
 893			} else if (sshdr.asc == 0x10) /* DIX */ {
 894				description = "Host Data Integrity Failure";
 895				action = ACTION_FAIL;
 896				error = -EILSEQ;
 897			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 898			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 899				switch (cmd->cmnd[0]) {
 900				case UNMAP:
 901					description = "Discard failure";
 902					break;
 903				case WRITE_SAME:
 904				case WRITE_SAME_16:
 905					if (cmd->cmnd[1] & 0x8)
 906						description = "Discard failure";
 907					else
 908						description =
 909							"Write same failure";
 910					break;
 911				default:
 912					description = "Invalid command failure";
 913					break;
 914				}
 915				action = ACTION_FAIL;
 916				error = -EREMOTEIO;
 917			} else
 918				action = ACTION_FAIL;
 919			break;
 920		case ABORTED_COMMAND:
 921			action = ACTION_FAIL;
 922			if (sshdr.asc == 0x10) { /* DIF */
 923				description = "Target Data Integrity Failure";
 924				error = -EILSEQ;
 925			}
 926			break;
 927		case NOT_READY:
 928			/* If the device is in the process of becoming
 929			 * ready, or has a temporary blockage, retry.
 930			 */
 931			if (sshdr.asc == 0x04) {
 932				switch (sshdr.ascq) {
 933				case 0x01: /* becoming ready */
 934				case 0x04: /* format in progress */
 935				case 0x05: /* rebuild in progress */
 936				case 0x06: /* recalculation in progress */
 937				case 0x07: /* operation in progress */
 938				case 0x08: /* Long write in progress */
 939				case 0x09: /* self test in progress */
 
 940				case 0x14: /* space allocation in progress */
 
 
 
 
 
 941					action = ACTION_DELAYED_RETRY;
 942					break;
 
 
 
 943				default:
 944					description = "Device not ready";
 945					action = ACTION_FAIL;
 946					break;
 947				}
 948			} else {
 949				description = "Device not ready";
 950				action = ACTION_FAIL;
 951			}
 952			break;
 953		case VOLUME_OVERFLOW:
 954			/* See SSC3rXX or current. */
 955			action = ACTION_FAIL;
 956			break;
 
 
 
 
 
 
 
 
 
 
 
 957		default:
 958			description = "Unhandled sense code";
 959			action = ACTION_FAIL;
 960			break;
 961		}
 962	} else {
 963		description = "Unhandled error code";
 964		action = ACTION_FAIL;
 965	}
 966
 967	if (action != ACTION_FAIL &&
 968	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
 969		action = ACTION_FAIL;
 970		description = "Command timed out";
 971	}
 972
 973	switch (action) {
 974	case ACTION_FAIL:
 975		/* Give up and fail the remainder of the request */
 976		scsi_release_buffers(cmd);
 977		if (!(req->cmd_flags & REQ_QUIET)) {
 978			if (description)
 979				scmd_printk(KERN_INFO, cmd, "%s\n",
 980					    description);
 981			scsi_print_result(cmd);
 982			if (driver_byte(result) & DRIVER_SENSE)
 983				scsi_print_sense("", cmd);
 984			scsi_print_command(cmd);
 
 
 
 
 
 
 
 
 
 
 
 985		}
 986		if (blk_end_request_err(req, error))
 987			scsi_requeue_command(q, cmd);
 988		else
 989			scsi_next_command(cmd);
 
 990		break;
 991	case ACTION_REPREP:
 992		/* Unprep the request and put it back at the head of the queue.
 993		 * A new command will be prepared and issued.
 994		 */
 995		scsi_release_buffers(cmd);
 996		scsi_requeue_command(q, cmd);
 997		break;
 998	case ACTION_RETRY:
 999		/* Retry the same command immediately */
1000		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1001		break;
1002	case ACTION_DELAYED_RETRY:
1003		/* Retry the same command after a delay */
1004		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1005		break;
1006	}
1007}
1008
1009static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1010			     gfp_t gfp_mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011{
1012	int count;
 
 
 
 
 
 
 
 
 
 
 
 
 
1013
1014	/*
1015	 * If sg table allocation fails, requeue request later.
 
1016	 */
1017	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1018					gfp_mask))) {
1019		return BLKPREP_DEFER;
1020	}
1021
1022	req->buffer = NULL;
 
 
 
 
 
 
1023
1024	/* 
1025	 * Next, walk the list, and fill in the addresses and sizes of
1026	 * each segment.
1027	 */
1028	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1029	BUG_ON(count > sdb->table.nents);
1030	sdb->table.nents = count;
1031	sdb->length = blk_rq_bytes(req);
1032	return BLKPREP_OK;
 
 
 
 
 
 
 
1033}
1034
1035/*
1036 * Function:    scsi_init_io()
 
1037 *
1038 * Purpose:     SCSI I/O initialize function.
 
1039 *
1040 * Arguments:   cmd   - Command descriptor we wish to initialize
1041 *
1042 * Returns:     0 on success
1043 *		BLKPREP_DEFER if the failure is retryable
1044 *		BLKPREP_KILL if the failure is fatal
1045 */
1046int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1047{
1048	struct scsi_device *sdev = cmd->device;
1049	struct request *rq = cmd->request;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1050
1051	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1052	if (error)
1053		goto err_exit;
1054
1055	if (blk_bidi_rq(rq)) {
1056		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1057			scsi_sdb_cache, GFP_ATOMIC);
1058		if (!bidi_sdb) {
1059			error = BLKPREP_DEFER;
1060			goto err_exit;
1061		}
1062
1063		rq->next_rq->special = bidi_sdb;
1064		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1065		if (error)
1066			goto err_exit;
1067	}
1068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1069	if (blk_integrity_rq(rq)) {
1070		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1071		int ivecs, count;
 
 
 
 
 
 
 
 
 
 
1072
1073		BUG_ON(prot_sdb == NULL);
1074		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1075
1076		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1077			error = BLKPREP_DEFER;
1078			goto err_exit;
 
 
1079		}
1080
1081		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1082						prot_sdb->table.sgl);
1083		BUG_ON(unlikely(count > ivecs));
1084		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1085
1086		cmd->prot_sdb = prot_sdb;
1087		cmd->prot_sdb->table.nents = count;
1088	}
1089
1090	return BLKPREP_OK ;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1091
1092err_exit:
1093	scsi_release_buffers(cmd);
1094	cmd->request->special = NULL;
1095	scsi_put_command(cmd);
1096	put_device(&sdev->sdev_gendev);
1097	return error;
1098}
1099EXPORT_SYMBOL(scsi_init_io);
1100
1101static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1102		struct request *req)
1103{
1104	struct scsi_cmnd *cmd;
1105
1106	if (!req->special) {
1107		/* Bail if we can't get a reference to the device */
1108		if (!get_device(&sdev->sdev_gendev))
1109			return NULL;
1110
1111		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1112		if (unlikely(!cmd)) {
1113			put_device(&sdev->sdev_gendev);
1114			return NULL;
1115		}
1116		req->special = cmd;
1117	} else {
1118		cmd = req->special;
 
 
 
1119	}
 
1120
1121	/* pull a tag out of the request if we have one */
1122	cmd->tag = req->tag;
1123	cmd->request = req;
 
1124
1125	cmd->cmnd = req->cmd;
1126	cmd->prot_op = SCSI_PROT_NORMAL;
 
 
1127
1128	return cmd;
 
 
1129}
1130
1131int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
 
1132{
1133	struct scsi_cmnd *cmd;
1134	int ret = scsi_prep_state_check(sdev, req);
1135
1136	if (ret != BLKPREP_OK)
1137		return ret;
1138
1139	cmd = scsi_get_cmd_from_req(sdev, req);
1140	if (unlikely(!cmd))
1141		return BLKPREP_DEFER;
1142
1143	/*
1144	 * BLOCK_PC requests may transfer data, in which case they must
1145	 * a bio attached to them.  Or they might contain a SCSI command
1146	 * that does not transfer data, in which case they may optionally
1147	 * submit a request without an attached bio.
1148	 */
1149	if (req->bio) {
1150		int ret;
1151
1152		BUG_ON(!req->nr_phys_segments);
1153
1154		ret = scsi_init_io(cmd, GFP_ATOMIC);
1155		if (unlikely(ret))
1156			return ret;
1157	} else {
1158		BUG_ON(blk_rq_bytes(req));
1159
1160		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1161		req->buffer = NULL;
1162	}
1163
1164	cmd->cmd_len = req->cmd_len;
1165	if (!blk_rq_bytes(req))
1166		cmd->sc_data_direction = DMA_NONE;
1167	else if (rq_data_dir(req) == WRITE)
1168		cmd->sc_data_direction = DMA_TO_DEVICE;
1169	else
1170		cmd->sc_data_direction = DMA_FROM_DEVICE;
1171	
1172	cmd->transfersize = blk_rq_bytes(req);
1173	cmd->allowed = req->retries;
1174	return BLKPREP_OK;
1175}
1176EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1177
1178/*
1179 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1180 * from filesystems that still need to be translated to SCSI CDBs from
1181 * the ULD.
1182 */
1183int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1184{
1185	struct scsi_cmnd *cmd;
1186	int ret = scsi_prep_state_check(sdev, req);
1187
1188	if (ret != BLKPREP_OK)
1189		return ret;
1190
1191	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1192			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1193		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1194		if (ret != BLKPREP_OK)
1195			return ret;
1196	}
1197
1198	/*
1199	 * Filesystem requests must transfer data.
1200	 */
1201	BUG_ON(!req->nr_phys_segments);
1202
1203	cmd = scsi_get_cmd_from_req(sdev, req);
1204	if (unlikely(!cmd))
1205		return BLKPREP_DEFER;
1206
1207	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1208	return scsi_init_io(cmd, GFP_ATOMIC);
1209}
1210EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1211
1212int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
 
1213{
1214	int ret = BLKPREP_OK;
1215
1216	/*
1217	 * If the device is not in running state we will reject some
1218	 * or all commands.
1219	 */
1220	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1221		switch (sdev->sdev_state) {
1222		case SDEV_OFFLINE:
1223		case SDEV_TRANSPORT_OFFLINE:
1224			/*
1225			 * If the device is offline we refuse to process any
1226			 * commands.  The device must be brought online
1227			 * before trying any recovery commands.
1228			 */
1229			sdev_printk(KERN_ERR, sdev,
1230				    "rejecting I/O to offline device\n");
1231			ret = BLKPREP_KILL;
1232			break;
1233		case SDEV_DEL:
1234			/*
1235			 * If the device is fully deleted, we refuse to
1236			 * process any commands as well.
1237			 */
1238			sdev_printk(KERN_ERR, sdev,
1239				    "rejecting I/O to dead device\n");
1240			ret = BLKPREP_KILL;
1241			break;
1242		case SDEV_QUIESCE:
1243		case SDEV_BLOCK:
1244		case SDEV_CREATED_BLOCK:
1245			/*
1246			 * If the devices is blocked we defer normal commands.
1247			 */
1248			if (!(req->cmd_flags & REQ_PREEMPT))
1249				ret = BLKPREP_DEFER;
1250			break;
1251		default:
1252			/*
1253			 * For any other not fully online state we only allow
1254			 * special commands.  In particular any user initiated
1255			 * command is not allowed.
1256			 */
1257			if (!(req->cmd_flags & REQ_PREEMPT))
1258				ret = BLKPREP_KILL;
1259			break;
1260		}
1261	}
1262	return ret;
1263}
1264EXPORT_SYMBOL(scsi_prep_state_check);
1265
1266int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1267{
1268	struct scsi_device *sdev = q->queuedata;
1269
1270	switch (ret) {
1271	case BLKPREP_KILL:
1272		req->errors = DID_NO_CONNECT << 16;
1273		/* release the command and kill it */
1274		if (req->special) {
1275			struct scsi_cmnd *cmd = req->special;
1276			scsi_release_buffers(cmd);
1277			scsi_put_command(cmd);
1278			put_device(&sdev->sdev_gendev);
1279			req->special = NULL;
1280		}
1281		break;
1282	case BLKPREP_DEFER:
1283		/*
1284		 * If we defer, the blk_peek_request() returns NULL, but the
1285		 * queue must be restarted, so we schedule a callback to happen
1286		 * shortly.
1287		 */
1288		if (sdev->device_busy == 0)
1289			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1290		break;
1291	default:
1292		req->cmd_flags |= REQ_DONTPREP;
 
 
 
 
 
 
1293	}
1294
1295	return ret;
1296}
1297EXPORT_SYMBOL(scsi_prep_return);
1298
1299int scsi_prep_fn(struct request_queue *q, struct request *req)
1300{
1301	struct scsi_device *sdev = q->queuedata;
1302	int ret = BLKPREP_KILL;
1303
1304	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1305		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1306	return scsi_prep_return(q, req, ret);
1307}
1308EXPORT_SYMBOL(scsi_prep_fn);
1309
1310/*
1311 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1312 * return 0.
1313 *
1314 * Called with the queue_lock held.
1315 */
1316static inline int scsi_dev_queue_ready(struct request_queue *q,
1317				  struct scsi_device *sdev)
1318{
1319	if (sdev->device_busy == 0 && sdev->device_blocked) {
1320		/*
1321		 * unblock after device_blocked iterates to zero
1322		 */
1323		if (--sdev->device_blocked == 0) {
1324			SCSI_LOG_MLQUEUE(3,
1325				   sdev_printk(KERN_INFO, sdev,
1326				   "unblocking device at zero depth\n"));
1327		} else {
1328			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1329			return 0;
1330		}
 
 
 
 
 
1331	}
1332	if (scsi_device_is_busy(sdev))
1333		return 0;
1334
1335	return 1;
 
 
 
1336}
1337
1338
1339/*
1340 * scsi_target_queue_ready: checks if there we can send commands to target
1341 * @sdev: scsi device on starget to check.
1342 *
1343 * Called with the host lock held.
1344 */
1345static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1346					   struct scsi_device *sdev)
1347{
1348	struct scsi_target *starget = scsi_target(sdev);
 
1349
1350	if (starget->single_lun) {
 
1351		if (starget->starget_sdev_user &&
1352		    starget->starget_sdev_user != sdev)
 
1353			return 0;
 
1354		starget->starget_sdev_user = sdev;
 
1355	}
1356
1357	if (starget->target_busy == 0 && starget->target_blocked) {
 
 
 
 
 
 
 
1358		/*
1359		 * unblock after target_blocked iterates to zero
1360		 */
1361		if (--starget->target_blocked == 0) {
1362			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1363					 "unblocking target at zero depth\n"));
1364		} else
1365			return 0;
1366	}
1367
1368	if (scsi_target_is_busy(starget)) {
1369		list_move_tail(&sdev->starved_entry, &shost->starved_list);
1370		return 0;
1371	}
1372
1373	return 1;
 
 
 
 
 
 
 
 
 
1374}
1375
1376/*
1377 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1378 * return 0. We must end up running the queue again whenever 0 is
1379 * returned, else IO can hang.
1380 *
1381 * Called with host_lock held.
1382 */
1383static inline int scsi_host_queue_ready(struct request_queue *q,
1384				   struct Scsi_Host *shost,
1385				   struct scsi_device *sdev)
 
1386{
1387	if (scsi_host_in_recovery(shost))
1388		return 0;
1389	if (shost->host_busy == 0 && shost->host_blocked) {
 
1390		/*
1391		 * unblock after host_blocked iterates to zero
1392		 */
1393		if (--shost->host_blocked == 0) {
1394			SCSI_LOG_MLQUEUE(3,
1395				printk("scsi%d unblocking host at zero depth\n",
1396					shost->host_no));
1397		} else {
1398			return 0;
1399		}
1400	}
1401	if (scsi_host_is_busy(shost)) {
1402		if (list_empty(&sdev->starved_entry))
1403			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1404		return 0;
 
 
 
 
 
 
1405	}
1406
1407	/* We're OK to process the command, so we can't be starved */
1408	if (!list_empty(&sdev->starved_entry))
1409		list_del_init(&sdev->starved_entry);
1410
1411	return 1;
 
 
 
 
 
 
 
 
 
1412}
1413
1414/*
1415 * Busy state exporting function for request stacking drivers.
1416 *
1417 * For efficiency, no lock is taken to check the busy state of
1418 * shost/starget/sdev, since the returned value is not guaranteed and
1419 * may be changed after request stacking drivers call the function,
1420 * regardless of taking lock or not.
1421 *
1422 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1423 * needs to return 'not busy'. Otherwise, request stacking drivers
1424 * may hold requests forever.
1425 */
1426static int scsi_lld_busy(struct request_queue *q)
1427{
1428	struct scsi_device *sdev = q->queuedata;
1429	struct Scsi_Host *shost;
1430
1431	if (blk_queue_dying(q))
1432		return 0;
1433
1434	shost = sdev->host;
1435
1436	/*
1437	 * Ignore host/starget busy state.
1438	 * Since block layer does not have a concept of fairness across
1439	 * multiple queues, congestion of host/starget needs to be handled
1440	 * in SCSI layer.
1441	 */
1442	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1443		return 1;
1444
1445	return 0;
1446}
1447
1448/*
1449 * Kill a request for a dead device
 
1450 */
1451static void scsi_kill_request(struct request *req, struct request_queue *q)
1452{
1453	struct scsi_cmnd *cmd = req->special;
1454	struct scsi_device *sdev;
1455	struct scsi_target *starget;
1456	struct Scsi_Host *shost;
1457
1458	blk_start_request(req);
1459
1460	scmd_printk(KERN_INFO, cmd, "killing request\n");
1461
1462	sdev = cmd->device;
1463	starget = scsi_target(sdev);
1464	shost = sdev->host;
1465	scsi_init_cmd_errh(cmd);
1466	cmd->result = DID_NO_CONNECT << 16;
1467	atomic_inc(&cmd->device->iorequest_cnt);
1468
1469	/*
1470	 * SCSI request completion path will do scsi_device_unbusy(),
1471	 * bump busy counts.  To bump the counters, we need to dance
1472	 * with the locks as normal issue path does.
1473	 */
1474	sdev->device_busy++;
1475	spin_unlock(sdev->request_queue->queue_lock);
1476	spin_lock(shost->host_lock);
1477	shost->host_busy++;
1478	starget->target_busy++;
1479	spin_unlock(shost->host_lock);
1480	spin_lock(sdev->request_queue->queue_lock);
1481
1482	blk_complete_request(req);
1483}
1484
1485static void scsi_softirq_done(struct request *rq)
1486{
1487	struct scsi_cmnd *cmd = rq->special;
1488	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1489	int disposition;
1490
1491	INIT_LIST_HEAD(&cmd->eh_entry);
1492
1493	atomic_inc(&cmd->device->iodone_cnt);
1494	if (cmd->result)
1495		atomic_inc(&cmd->device->ioerr_cnt);
1496
1497	disposition = scsi_decide_disposition(cmd);
1498	if (disposition != SUCCESS &&
1499	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1500		sdev_printk(KERN_ERR, cmd->device,
1501			    "timing out command, waited %lus\n",
1502			    wait_for/HZ);
1503		disposition = SUCCESS;
1504	}
1505			
1506	scsi_log_completion(cmd, disposition);
1507
1508	switch (disposition) {
1509		case SUCCESS:
1510			scsi_finish_command(cmd);
1511			break;
1512		case NEEDS_RETRY:
1513			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1514			break;
1515		case ADD_TO_MLQUEUE:
1516			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1517			break;
1518		default:
1519			if (!scsi_eh_scmd_add(cmd, 0))
1520				scsi_finish_command(cmd);
1521	}
1522}
1523
1524/*
1525 * Function:    scsi_request_fn()
1526 *
1527 * Purpose:     Main strategy routine for SCSI.
1528 *
1529 * Arguments:   q       - Pointer to actual queue.
1530 *
1531 * Returns:     Nothing
1532 *
1533 * Lock status: IO request lock assumed to be held when called.
1534 */
1535static void scsi_request_fn(struct request_queue *q)
1536	__releases(q->queue_lock)
1537	__acquires(q->queue_lock)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1538{
1539	struct scsi_device *sdev = q->queuedata;
1540	struct Scsi_Host *shost;
1541	struct scsi_cmnd *cmd;
1542	struct request *req;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1543
1544	/*
1545	 * To start with, we keep looping until the queue is empty, or until
1546	 * the host is no longer able to accept any more requests.
1547	 */
1548	shost = sdev->host;
1549	for (;;) {
1550		int rtn;
1551		/*
1552		 * get next queueable request.  We do this early to make sure
1553		 * that the request is fully prepared even if we cannot 
1554		 * accept it.
1555		 */
1556		req = blk_peek_request(q);
1557		if (!req || !scsi_dev_queue_ready(q, sdev))
1558			break;
1559
1560		if (unlikely(!scsi_device_online(sdev))) {
1561			sdev_printk(KERN_ERR, sdev,
1562				    "rejecting I/O to offline device\n");
1563			scsi_kill_request(req, q);
1564			continue;
1565		}
1566
 
 
1567
1568		/*
1569		 * Remove the request from the request list.
1570		 */
1571		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1572			blk_start_request(req);
1573		sdev->device_busy++;
1574
1575		spin_unlock(q->queue_lock);
1576		cmd = req->special;
1577		if (unlikely(cmd == NULL)) {
1578			printk(KERN_CRIT "impossible request in %s.\n"
1579					 "please mail a stack trace to "
1580					 "linux-scsi@vger.kernel.org\n",
1581					 __func__);
1582			blk_dump_rq_flags(req, "foo");
1583			BUG();
1584		}
1585		spin_lock(shost->host_lock);
1586
1587		/*
1588		 * We hit this when the driver is using a host wide
1589		 * tag map. For device level tag maps the queue_depth check
1590		 * in the device ready fn would prevent us from trying
1591		 * to allocate a tag. Since the map is a shared host resource
1592		 * we add the dev to the starved list so it eventually gets
1593		 * a run when a tag is freed.
1594		 */
1595		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1596			if (list_empty(&sdev->starved_entry))
1597				list_add_tail(&sdev->starved_entry,
1598					      &shost->starved_list);
1599			goto not_ready;
1600		}
1601
1602		if (!scsi_target_queue_ready(shost, sdev))
1603			goto not_ready;
 
 
 
 
1604
1605		if (!scsi_host_queue_ready(q, shost, sdev))
1606			goto not_ready;
1607
1608		scsi_target(sdev)->target_busy++;
1609		shost->host_busy++;
 
1610
1611		/*
1612		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1613		 *		take the lock again.
1614		 */
1615		spin_unlock_irq(shost->host_lock);
1616
1617		/*
1618		 * Finally, initialize any error handling parameters, and set up
1619		 * the timers for timeouts.
1620		 */
1621		scsi_init_cmd_errh(cmd);
1622
1623		/*
1624		 * Dispatch the command to the low-level driver.
1625		 */
1626		rtn = scsi_dispatch_cmd(cmd);
1627		spin_lock_irq(q->queue_lock);
1628		if (rtn)
1629			goto out_delay;
1630	}
1631
1632	return;
 
 
 
 
 
 
 
 
 
 
1633
1634 not_ready:
1635	spin_unlock_irq(shost->host_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1636
1637	/*
1638	 * lock q, handle tag, requeue req, and decrement device_busy. We
1639	 * must return with queue_lock held.
1640	 *
1641	 * Decrementing device_busy without checking it is OK, as all such
1642	 * cases (host limits or settings) should run the queue at some
1643	 * later time.
1644	 */
1645	spin_lock_irq(q->queue_lock);
1646	blk_requeue_request(q, req);
1647	sdev->device_busy--;
1648out_delay:
1649	if (sdev->device_busy == 0)
1650		blk_delay_queue(q, SCSI_QUEUE_DELAY);
 
 
 
 
 
1651}
1652
1653u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1654{
1655	struct device *host_dev;
1656	u64 bounce_limit = 0xffffffff;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1657
1658	if (shost->unchecked_isa_dma)
1659		return BLK_BOUNCE_ISA;
1660	/*
1661	 * Platforms with virtual-DMA translation
1662	 * hardware have no practical limit.
1663	 */
1664	if (!PCI_DMA_BUS_IS_PHYS)
1665		return BLK_BOUNCE_ANY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1666
1667	host_dev = scsi_get_device(shost);
1668	if (host_dev && host_dev->dma_mask)
1669		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
 
 
1670
1671	return bounce_limit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1672}
1673EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1674
1675struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1676					 request_fn_proc *request_fn)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1677{
1678	struct request_queue *q;
1679	struct device *dev = shost->dma_dev;
1680
1681	q = blk_init_queue(request_fn, NULL);
1682	if (!q)
1683		return NULL;
1684
1685	/*
1686	 * this limit is imposed by hardware restrictions
1687	 */
1688	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1689					SCSI_MAX_SG_CHAIN_SEGMENTS));
1690
1691	if (scsi_host_prot_dma(shost)) {
1692		shost->sg_prot_tablesize =
1693			min_not_zero(shost->sg_prot_tablesize,
1694				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1695		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1696		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1697	}
1698
1699	blk_queue_max_hw_sectors(q, shost->max_sectors);
1700	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1701	blk_queue_segment_boundary(q, shost->dma_boundary);
1702	dma_set_seg_boundary(dev, shost->dma_boundary);
1703
1704	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1705
1706	if (!shost->use_clustering)
1707		q->limits.cluster = 0;
1708
1709	/*
1710	 * set a reasonable default alignment on word boundaries: the
1711	 * host and device may alter it using
1712	 * blk_queue_update_dma_alignment() later.
 
 
1713	 */
1714	blk_queue_dma_alignment(q, 0x03);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1715
1716	return q;
 
 
 
 
 
1717}
1718EXPORT_SYMBOL(__scsi_alloc_queue);
1719
1720struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1721{
1722	struct request_queue *q;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1723
1724	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1725	if (!q)
1726		return NULL;
 
1727
1728	blk_queue_prep_rq(q, scsi_prep_fn);
1729	blk_queue_softirq_done(q, scsi_softirq_done);
1730	blk_queue_rq_timed_out(q, scsi_times_out);
1731	blk_queue_lld_busy(q, scsi_lld_busy);
1732	return q;
1733}
1734
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1735/*
1736 * Function:    scsi_block_requests()
1737 *
1738 * Purpose:     Utility function used by low-level drivers to prevent further
1739 *		commands from being queued to the device.
1740 *
1741 * Arguments:   shost       - Host in question
 
 
 
 
 
 
1742 *
1743 * Returns:     Nothing
1744 *
1745 * Lock status: No locks are assumed held.
1746 *
1747 * Notes:       There is no timer nor any other means by which the requests
1748 *		get unblocked other than the low-level driver calling
1749 *		scsi_unblock_requests().
1750 */
1751void scsi_block_requests(struct Scsi_Host *shost)
1752{
1753	shost->host_self_blocked = 1;
1754}
1755EXPORT_SYMBOL(scsi_block_requests);
1756
1757/*
1758 * Function:    scsi_unblock_requests()
1759 *
1760 * Purpose:     Utility function used by low-level drivers to allow further
1761 *		commands from being queued to the device.
1762 *
1763 * Arguments:   shost       - Host in question
1764 *
1765 * Returns:     Nothing
1766 *
1767 * Lock status: No locks are assumed held.
1768 *
1769 * Notes:       There is no timer nor any other means by which the requests
1770 *		get unblocked other than the low-level driver calling
1771 *		scsi_unblock_requests().
1772 *
1773 *		This is done as an API function so that changes to the
1774 *		internals of the scsi mid-layer won't require wholesale
1775 *		changes to drivers that use this feature.
1776 */
1777void scsi_unblock_requests(struct Scsi_Host *shost)
1778{
1779	shost->host_self_blocked = 0;
1780	scsi_run_host_queues(shost);
1781}
1782EXPORT_SYMBOL(scsi_unblock_requests);
1783
1784int __init scsi_init_queue(void)
1785{
1786	int i;
1787
1788	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1789					   sizeof(struct scsi_data_buffer),
1790					   0, 0, NULL);
1791	if (!scsi_sdb_cache) {
1792		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1793		return -ENOMEM;
1794	}
1795
1796	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1797		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1798		int size = sgp->size * sizeof(struct scatterlist);
1799
1800		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1801				SLAB_HWCACHE_ALIGN, NULL);
1802		if (!sgp->slab) {
1803			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1804					sgp->name);
1805			goto cleanup_sdb;
1806		}
1807
1808		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1809						     sgp->slab);
1810		if (!sgp->pool) {
1811			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1812					sgp->name);
1813			goto cleanup_sdb;
1814		}
1815	}
1816
1817	return 0;
1818
1819cleanup_sdb:
1820	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1821		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1822		if (sgp->pool)
1823			mempool_destroy(sgp->pool);
1824		if (sgp->slab)
1825			kmem_cache_destroy(sgp->slab);
1826	}
1827	kmem_cache_destroy(scsi_sdb_cache);
1828
1829	return -ENOMEM;
1830}
1831
1832void scsi_exit_queue(void)
1833{
1834	int i;
1835
1836	kmem_cache_destroy(scsi_sdb_cache);
1837
1838	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1839		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1840		mempool_destroy(sgp->pool);
1841		kmem_cache_destroy(sgp->slab);
1842	}
1843}
1844
1845/**
1846 *	scsi_mode_select - issue a mode select
1847 *	@sdev:	SCSI device to be queried
1848 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1849 *	@sp:	Save page bit (0 == don't save, 1 == save)
1850 *	@modepage: mode page being requested
1851 *	@buffer: request buffer (may not be smaller than eight bytes)
1852 *	@len:	length of request buffer.
1853 *	@timeout: command timeout
1854 *	@retries: number of retries before failing
1855 *	@data: returns a structure abstracting the mode header data
1856 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1857 *		must be SCSI_SENSE_BUFFERSIZE big.
1858 *
1859 *	Returns zero if successful; negative error number or scsi
1860 *	status on error
1861 *
1862 */
1863int
1864scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1865		 unsigned char *buffer, int len, int timeout, int retries,
1866		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1867{
1868	unsigned char cmd[10];
1869	unsigned char *real_buffer;
 
 
 
1870	int ret;
1871
1872	memset(cmd, 0, sizeof(cmd));
1873	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1874
1875	if (sdev->use_10_for_ms) {
1876		if (len > 65535)
 
 
 
 
 
 
 
1877			return -EINVAL;
1878		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1879		if (!real_buffer)
1880			return -ENOMEM;
1881		memcpy(real_buffer + 8, buffer, len);
1882		len += 8;
1883		real_buffer[0] = 0;
1884		real_buffer[1] = 0;
1885		real_buffer[2] = data->medium_type;
1886		real_buffer[3] = data->device_specific;
1887		real_buffer[4] = data->longlba ? 0x01 : 0;
1888		real_buffer[5] = 0;
1889		real_buffer[6] = data->block_descriptor_length >> 8;
1890		real_buffer[7] = data->block_descriptor_length;
1891
1892		cmd[0] = MODE_SELECT_10;
1893		cmd[7] = len >> 8;
1894		cmd[8] = len;
1895	} else {
1896		if (len > 255 || data->block_descriptor_length > 255 ||
1897		    data->longlba)
1898			return -EINVAL;
1899
1900		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1901		if (!real_buffer)
1902			return -ENOMEM;
1903		memcpy(real_buffer + 4, buffer, len);
1904		len += 4;
1905		real_buffer[0] = 0;
1906		real_buffer[1] = data->medium_type;
1907		real_buffer[2] = data->device_specific;
1908		real_buffer[3] = data->block_descriptor_length;
1909		
1910
1911		cmd[0] = MODE_SELECT;
1912		cmd[4] = len;
1913	}
1914
1915	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1916			       sshdr, timeout, retries, NULL);
1917	kfree(real_buffer);
1918	return ret;
1919}
1920EXPORT_SYMBOL_GPL(scsi_mode_select);
1921
1922/**
1923 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1924 *	@sdev:	SCSI device to be queried
1925 *	@dbd:	set if mode sense will allow block descriptors to be returned
1926 *	@modepage: mode page being requested
 
1927 *	@buffer: request buffer (may not be smaller than eight bytes)
1928 *	@len:	length of request buffer.
1929 *	@timeout: command timeout
1930 *	@retries: number of retries before failing
1931 *	@data: returns a structure abstracting the mode header data
1932 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1933 *		must be SCSI_SENSE_BUFFERSIZE big.
1934 *
1935 *	Returns zero if unsuccessful, or the header offset (either 4
1936 *	or 8 depending on whether a six or ten byte command was
1937 *	issued) if successful.
1938 */
1939int
1940scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1941		  unsigned char *buffer, int len, int timeout, int retries,
1942		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1943{
1944	unsigned char cmd[12];
1945	int use_10_for_ms;
1946	int header_length;
1947	int result;
1948	struct scsi_sense_hdr my_sshdr;
 
 
 
 
1949
1950	memset(data, 0, sizeof(*data));
1951	memset(&cmd[0], 0, 12);
 
 
1952	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1953	cmd[2] = modepage;
 
1954
1955	/* caller might not be interested in sense, but we need it */
1956	if (!sshdr)
1957		sshdr = &my_sshdr;
1958
1959 retry:
1960	use_10_for_ms = sdev->use_10_for_ms;
1961
1962	if (use_10_for_ms) {
1963		if (len < 8)
1964			len = 8;
1965
1966		cmd[0] = MODE_SENSE_10;
1967		cmd[8] = len;
1968		header_length = 8;
1969	} else {
1970		if (len < 4)
1971			len = 4;
1972
1973		cmd[0] = MODE_SENSE;
1974		cmd[4] = len;
1975		header_length = 4;
1976	}
1977
1978	memset(buffer, 0, len);
1979
1980	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1981				  sshdr, timeout, retries, NULL);
 
 
1982
1983	/* This code looks awful: what it's doing is making sure an
1984	 * ILLEGAL REQUEST sense return identifies the actual command
1985	 * byte as the problem.  MODE_SENSE commands can return
1986	 * ILLEGAL REQUEST if the code page isn't supported */
1987
1988	if (use_10_for_ms && !scsi_status_is_good(result) &&
1989	    (driver_byte(result) & DRIVER_SENSE)) {
1990		if (scsi_sense_valid(sshdr)) {
1991			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1992			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1993				/* 
1994				 * Invalid command operation code
 
 
 
 
1995				 */
1996				sdev->use_10_for_ms = 0;
 
 
 
 
 
 
 
 
 
 
1997				goto retry;
1998			}
1999		}
 
2000	}
2001
2002	if(scsi_status_is_good(result)) {
2003		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2004			     (modepage == 6 || modepage == 8))) {
2005			/* Initio breakage? */
2006			header_length = 0;
2007			data->length = 13;
2008			data->medium_type = 0;
2009			data->device_specific = 0;
2010			data->longlba = 0;
2011			data->block_descriptor_length = 0;
2012		} else if(use_10_for_ms) {
2013			data->length = buffer[0]*256 + buffer[1] + 2;
2014			data->medium_type = buffer[2];
2015			data->device_specific = buffer[3];
2016			data->longlba = buffer[4] & 0x01;
2017			data->block_descriptor_length = buffer[6]*256
2018				+ buffer[7];
2019		} else {
2020			data->length = buffer[0] + 1;
2021			data->medium_type = buffer[1];
2022			data->device_specific = buffer[2];
2023			data->block_descriptor_length = buffer[3];
2024		}
2025		data->header_length = header_length;
2026	}
 
2027
2028	return result;
2029}
2030EXPORT_SYMBOL(scsi_mode_sense);
2031
2032/**
2033 *	scsi_test_unit_ready - test if unit is ready
2034 *	@sdev:	scsi device to change the state of.
2035 *	@timeout: command timeout
2036 *	@retries: number of retries before failing
2037 *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2038 *		returning sense. Make sure that this is cleared before passing
2039 *		in.
2040 *
2041 *	Returns zero if unsuccessful or an error if TUR failed.  For
2042 *	removable media, UNIT_ATTENTION sets ->changed flag.
2043 **/
2044int
2045scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2046		     struct scsi_sense_hdr *sshdr_external)
2047{
2048	char cmd[] = {
2049		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2050	};
2051	struct scsi_sense_hdr *sshdr;
 
 
2052	int result;
2053
2054	if (!sshdr_external)
2055		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2056	else
2057		sshdr = sshdr_external;
2058
2059	/* try to eat the UNIT_ATTENTION if there are enough retries */
2060	do {
2061		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2062					  timeout, retries, NULL);
2063		if (sdev->removable && scsi_sense_valid(sshdr) &&
2064		    sshdr->sense_key == UNIT_ATTENTION)
2065			sdev->changed = 1;
2066	} while (scsi_sense_valid(sshdr) &&
2067		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2068
2069	if (!sshdr_external)
2070		kfree(sshdr);
2071	return result;
2072}
2073EXPORT_SYMBOL(scsi_test_unit_ready);
2074
2075/**
2076 *	scsi_device_set_state - Take the given device through the device state model.
2077 *	@sdev:	scsi device to change the state of.
2078 *	@state:	state to change to.
2079 *
2080 *	Returns zero if unsuccessful or an error if the requested 
2081 *	transition is illegal.
2082 */
2083int
2084scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2085{
2086	enum scsi_device_state oldstate = sdev->sdev_state;
2087
2088	if (state == oldstate)
2089		return 0;
2090
2091	switch (state) {
2092	case SDEV_CREATED:
2093		switch (oldstate) {
2094		case SDEV_CREATED_BLOCK:
2095			break;
2096		default:
2097			goto illegal;
2098		}
2099		break;
2100			
2101	case SDEV_RUNNING:
2102		switch (oldstate) {
2103		case SDEV_CREATED:
2104		case SDEV_OFFLINE:
2105		case SDEV_TRANSPORT_OFFLINE:
2106		case SDEV_QUIESCE:
2107		case SDEV_BLOCK:
2108			break;
2109		default:
2110			goto illegal;
2111		}
2112		break;
2113
2114	case SDEV_QUIESCE:
2115		switch (oldstate) {
2116		case SDEV_RUNNING:
2117		case SDEV_OFFLINE:
2118		case SDEV_TRANSPORT_OFFLINE:
2119			break;
2120		default:
2121			goto illegal;
2122		}
2123		break;
2124
2125	case SDEV_OFFLINE:
2126	case SDEV_TRANSPORT_OFFLINE:
2127		switch (oldstate) {
2128		case SDEV_CREATED:
2129		case SDEV_RUNNING:
2130		case SDEV_QUIESCE:
2131		case SDEV_BLOCK:
2132			break;
2133		default:
2134			goto illegal;
2135		}
2136		break;
2137
2138	case SDEV_BLOCK:
2139		switch (oldstate) {
2140		case SDEV_RUNNING:
2141		case SDEV_CREATED_BLOCK:
 
 
2142			break;
2143		default:
2144			goto illegal;
2145		}
2146		break;
2147
2148	case SDEV_CREATED_BLOCK:
2149		switch (oldstate) {
2150		case SDEV_CREATED:
2151			break;
2152		default:
2153			goto illegal;
2154		}
2155		break;
2156
2157	case SDEV_CANCEL:
2158		switch (oldstate) {
2159		case SDEV_CREATED:
2160		case SDEV_RUNNING:
2161		case SDEV_QUIESCE:
2162		case SDEV_OFFLINE:
2163		case SDEV_TRANSPORT_OFFLINE:
2164		case SDEV_BLOCK:
2165			break;
2166		default:
2167			goto illegal;
2168		}
2169		break;
2170
2171	case SDEV_DEL:
2172		switch (oldstate) {
2173		case SDEV_CREATED:
2174		case SDEV_RUNNING:
2175		case SDEV_OFFLINE:
2176		case SDEV_TRANSPORT_OFFLINE:
2177		case SDEV_CANCEL:
 
2178		case SDEV_CREATED_BLOCK:
2179			break;
2180		default:
2181			goto illegal;
2182		}
2183		break;
2184
2185	}
 
2186	sdev->sdev_state = state;
2187	return 0;
2188
2189 illegal:
2190	SCSI_LOG_ERROR_RECOVERY(1, 
2191				sdev_printk(KERN_ERR, sdev,
2192					    "Illegal state transition %s->%s\n",
2193					    scsi_device_state_name(oldstate),
2194					    scsi_device_state_name(state))
2195				);
2196	return -EINVAL;
2197}
2198EXPORT_SYMBOL(scsi_device_set_state);
2199
2200/**
2201 * 	sdev_evt_emit - emit a single SCSI device uevent
2202 *	@sdev: associated SCSI device
2203 *	@evt: event to emit
2204 *
2205 *	Send a single uevent (scsi_event) to the associated scsi_device.
2206 */
2207static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2208{
2209	int idx = 0;
2210	char *envp[3];
2211
2212	switch (evt->evt_type) {
2213	case SDEV_EVT_MEDIA_CHANGE:
2214		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2215		break;
2216	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
 
2217		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2218		break;
2219	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2220		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2221		break;
2222	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2223	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2224		break;
2225	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2226		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2227		break;
2228	case SDEV_EVT_LUN_CHANGE_REPORTED:
2229		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2230		break;
 
 
 
 
 
 
2231	default:
2232		/* do nothing */
2233		break;
2234	}
2235
2236	envp[idx++] = NULL;
2237
2238	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2239}
2240
2241/**
2242 * 	sdev_evt_thread - send a uevent for each scsi event
2243 *	@work: work struct for scsi_device
2244 *
2245 *	Dispatch queued events to their associated scsi_device kobjects
2246 *	as uevents.
2247 */
2248void scsi_evt_thread(struct work_struct *work)
2249{
2250	struct scsi_device *sdev;
2251	enum scsi_device_event evt_type;
2252	LIST_HEAD(event_list);
2253
2254	sdev = container_of(work, struct scsi_device, event_work);
2255
2256	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2257		if (test_and_clear_bit(evt_type, sdev->pending_events))
2258			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2259
2260	while (1) {
2261		struct scsi_event *evt;
2262		struct list_head *this, *tmp;
2263		unsigned long flags;
2264
2265		spin_lock_irqsave(&sdev->list_lock, flags);
2266		list_splice_init(&sdev->event_list, &event_list);
2267		spin_unlock_irqrestore(&sdev->list_lock, flags);
2268
2269		if (list_empty(&event_list))
2270			break;
2271
2272		list_for_each_safe(this, tmp, &event_list) {
2273			evt = list_entry(this, struct scsi_event, node);
2274			list_del(&evt->node);
2275			scsi_evt_emit(sdev, evt);
2276			kfree(evt);
2277		}
2278	}
2279}
2280
2281/**
2282 * 	sdev_evt_send - send asserted event to uevent thread
2283 *	@sdev: scsi_device event occurred on
2284 *	@evt: event to send
2285 *
2286 *	Assert scsi device event asynchronously.
2287 */
2288void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2289{
2290	unsigned long flags;
2291
2292#if 0
2293	/* FIXME: currently this check eliminates all media change events
2294	 * for polled devices.  Need to update to discriminate between AN
2295	 * and polled events */
2296	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2297		kfree(evt);
2298		return;
2299	}
2300#endif
2301
2302	spin_lock_irqsave(&sdev->list_lock, flags);
2303	list_add_tail(&evt->node, &sdev->event_list);
2304	schedule_work(&sdev->event_work);
2305	spin_unlock_irqrestore(&sdev->list_lock, flags);
2306}
2307EXPORT_SYMBOL_GPL(sdev_evt_send);
2308
2309/**
2310 * 	sdev_evt_alloc - allocate a new scsi event
2311 *	@evt_type: type of event to allocate
2312 *	@gfpflags: GFP flags for allocation
2313 *
2314 *	Allocates and returns a new scsi_event.
2315 */
2316struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2317				  gfp_t gfpflags)
2318{
2319	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2320	if (!evt)
2321		return NULL;
2322
2323	evt->evt_type = evt_type;
2324	INIT_LIST_HEAD(&evt->node);
2325
2326	/* evt_type-specific initialization, if any */
2327	switch (evt_type) {
2328	case SDEV_EVT_MEDIA_CHANGE:
2329	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2330	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2331	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2332	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2333	case SDEV_EVT_LUN_CHANGE_REPORTED:
 
 
2334	default:
2335		/* do nothing */
2336		break;
2337	}
2338
2339	return evt;
2340}
2341EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2342
2343/**
2344 * 	sdev_evt_send_simple - send asserted event to uevent thread
2345 *	@sdev: scsi_device event occurred on
2346 *	@evt_type: type of event to send
2347 *	@gfpflags: GFP flags for allocation
2348 *
2349 *	Assert scsi device event asynchronously, given an event type.
2350 */
2351void sdev_evt_send_simple(struct scsi_device *sdev,
2352			  enum scsi_device_event evt_type, gfp_t gfpflags)
2353{
2354	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2355	if (!evt) {
2356		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2357			    evt_type);
2358		return;
2359	}
2360
2361	sdev_evt_send(sdev, evt);
2362}
2363EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2364
2365/**
2366 *	scsi_device_quiesce - Block user issued commands.
2367 *	@sdev:	scsi device to quiesce.
2368 *
2369 *	This works by trying to transition to the SDEV_QUIESCE state
2370 *	(which must be a legal transition).  When the device is in this
2371 *	state, only special requests will be accepted, all others will
2372 *	be deferred.  Since special requests may also be requeued requests,
2373 *	a successful return doesn't guarantee the device will be 
2374 *	totally quiescent.
2375 *
2376 *	Must be called with user context, may sleep.
2377 *
2378 *	Returns zero if unsuccessful or an error if not.
2379 */
2380int
2381scsi_device_quiesce(struct scsi_device *sdev)
2382{
2383	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2384	if (err)
2385		return err;
2386
2387	scsi_run_queue(sdev->request_queue);
2388	while (sdev->device_busy) {
2389		msleep_interruptible(200);
2390		scsi_run_queue(sdev->request_queue);
2391	}
2392	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2393}
2394EXPORT_SYMBOL(scsi_device_quiesce);
2395
2396/**
2397 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2398 *	@sdev:	scsi device to resume.
2399 *
2400 *	Moves the device from quiesced back to running and restarts the
2401 *	queues.
2402 *
2403 *	Must be called with user context, may sleep.
2404 */
2405void scsi_device_resume(struct scsi_device *sdev)
2406{
2407	/* check if the device state was mutated prior to resume, and if
2408	 * so assume the state is being managed elsewhere (for example
2409	 * device deleted during suspend)
2410	 */
2411	if (sdev->sdev_state != SDEV_QUIESCE ||
2412	    scsi_device_set_state(sdev, SDEV_RUNNING))
2413		return;
2414	scsi_run_queue(sdev->request_queue);
 
 
 
 
2415}
2416EXPORT_SYMBOL(scsi_device_resume);
2417
2418static void
2419device_quiesce_fn(struct scsi_device *sdev, void *data)
2420{
2421	scsi_device_quiesce(sdev);
2422}
2423
2424void
2425scsi_target_quiesce(struct scsi_target *starget)
2426{
2427	starget_for_each_device(starget, NULL, device_quiesce_fn);
2428}
2429EXPORT_SYMBOL(scsi_target_quiesce);
2430
2431static void
2432device_resume_fn(struct scsi_device *sdev, void *data)
2433{
2434	scsi_device_resume(sdev);
2435}
2436
2437void
2438scsi_target_resume(struct scsi_target *starget)
2439{
2440	starget_for_each_device(starget, NULL, device_resume_fn);
2441}
2442EXPORT_SYMBOL(scsi_target_resume);
2443
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2444/**
2445 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2446 * @sdev:	device to block
2447 *
2448 * Block request made by scsi lld's to temporarily stop all
2449 * scsi commands on the specified device.  Called from interrupt
2450 * or normal process context.
2451 *
2452 * Returns zero if successful or error if not
2453 *
2454 * Notes:       
2455 *	This routine transitions the device to the SDEV_BLOCK state
2456 *	(which must be a legal transition).  When the device is in this
2457 *	state, all commands are deferred until the scsi lld reenables
2458 *	the device with scsi_device_unblock or device_block_tmo fires.
2459 */
2460int
2461scsi_internal_device_block(struct scsi_device *sdev)
2462{
2463	struct request_queue *q = sdev->request_queue;
2464	unsigned long flags;
2465	int err = 0;
2466
2467	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2468	if (err) {
2469		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2470
2471		if (err)
2472			return err;
2473	}
2474
2475	/* 
2476	 * The device has transitioned to SDEV_BLOCK.  Stop the
2477	 * block layer from calling the midlayer with this device's
2478	 * request queue. 
2479	 */
2480	spin_lock_irqsave(q->queue_lock, flags);
2481	blk_stop_queue(q);
2482	spin_unlock_irqrestore(q->queue_lock, flags);
 
 
2483
2484	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2485}
2486EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2487 
2488/**
2489 * scsi_internal_device_unblock - resume a device after a block request
2490 * @sdev:	device to resume
2491 * @new_state:	state to set devices to after unblocking
 
 
 
2492 *
2493 * Called by scsi lld's or the midlayer to restart the device queue
2494 * for the previously suspended scsi device.  Called from interrupt or
2495 * normal process context.
2496 *
2497 * Returns zero if successful or error if not.
2498 *
2499 * Notes:       
2500 *	This routine transitions the device to the SDEV_RUNNING state
2501 *	or to one of the offline states (which must be a legal transition)
2502 *	allowing the midlayer to goose the queue for this device.
2503 */
2504int
2505scsi_internal_device_unblock(struct scsi_device *sdev,
2506			     enum scsi_device_state new_state)
2507{
2508	struct request_queue *q = sdev->request_queue; 
2509	unsigned long flags;
 
 
 
 
 
2510
2511	/*
2512	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2513	 * offlined states and goose the device queue if successful.
2514	 */
2515	if ((sdev->sdev_state == SDEV_BLOCK) ||
2516	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
 
2517		sdev->sdev_state = new_state;
2518	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
 
2519		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2520		    new_state == SDEV_OFFLINE)
2521			sdev->sdev_state = new_state;
2522		else
2523			sdev->sdev_state = SDEV_CREATED;
2524	} else if (sdev->sdev_state != SDEV_CANCEL &&
2525		 sdev->sdev_state != SDEV_OFFLINE)
 
 
 
2526		return -EINVAL;
2527
2528	spin_lock_irqsave(q->queue_lock, flags);
2529	blk_start_queue(q);
2530	spin_unlock_irqrestore(q->queue_lock, flags);
2531
2532	return 0;
2533}
2534EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2535
2536static void
2537device_block(struct scsi_device *sdev, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2538{
2539	scsi_internal_device_block(sdev);
 
 
 
 
 
 
2540}
2541
2542static int
2543target_block(struct device *dev, void *data)
2544{
2545	if (scsi_is_target_device(dev))
2546		starget_for_each_device(to_scsi_target(dev), NULL,
2547					device_block);
2548	return 0;
2549}
2550
 
 
 
 
 
 
 
 
 
 
 
 
2551void
2552scsi_target_block(struct device *dev)
2553{
2554	if (scsi_is_target_device(dev))
2555		starget_for_each_device(to_scsi_target(dev), NULL,
2556					device_block);
2557	else
2558		device_for_each_child(dev, NULL, target_block);
2559}
2560EXPORT_SYMBOL_GPL(scsi_target_block);
2561
2562static void
2563device_unblock(struct scsi_device *sdev, void *data)
2564{
2565	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2566}
2567
2568static int
2569target_unblock(struct device *dev, void *data)
2570{
2571	if (scsi_is_target_device(dev))
2572		starget_for_each_device(to_scsi_target(dev), data,
2573					device_unblock);
2574	return 0;
2575}
2576
2577void
2578scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2579{
2580	if (scsi_is_target_device(dev))
2581		starget_for_each_device(to_scsi_target(dev), &new_state,
2582					device_unblock);
2583	else
2584		device_for_each_child(dev, &new_state, target_unblock);
2585}
2586EXPORT_SYMBOL_GPL(scsi_target_unblock);
2587
2588/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2589 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2590 * @sgl:	scatter-gather list
2591 * @sg_count:	number of segments in sg
2592 * @offset:	offset in bytes into sg, on return offset into the mapped area
2593 * @len:	bytes to map, on return number of bytes mapped
2594 *
2595 * Returns virtual address of the start of the mapped page
2596 */
2597void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2598			  size_t *offset, size_t *len)
2599{
2600	int i;
2601	size_t sg_len = 0, len_complete = 0;
2602	struct scatterlist *sg;
2603	struct page *page;
2604
2605	WARN_ON(!irqs_disabled());
2606
2607	for_each_sg(sgl, sg, sg_count, i) {
2608		len_complete = sg_len; /* Complete sg-entries */
2609		sg_len += sg->length;
2610		if (sg_len > *offset)
2611			break;
2612	}
2613
2614	if (unlikely(i == sg_count)) {
2615		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2616			"elements %d\n",
2617		       __func__, sg_len, *offset, sg_count);
2618		WARN_ON(1);
2619		return NULL;
2620	}
2621
2622	/* Offset starting from the beginning of first page in this sg-entry */
2623	*offset = *offset - len_complete + sg->offset;
2624
2625	/* Assumption: contiguous pages can be accessed as "page + i" */
2626	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2627	*offset &= ~PAGE_MASK;
2628
2629	/* Bytes in this sg-entry from *offset to the end of the page */
2630	sg_len = PAGE_SIZE - *offset;
2631	if (*len > sg_len)
2632		*len = sg_len;
2633
2634	return kmap_atomic(page);
2635}
2636EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2637
2638/**
2639 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2640 * @virt:	virtual address to be unmapped
2641 */
2642void scsi_kunmap_atomic_sg(void *virt)
2643{
2644	kunmap_atomic(virt);
2645}
2646EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2647
2648void sdev_disable_disk_events(struct scsi_device *sdev)
2649{
2650	atomic_inc(&sdev->disk_events_disable_depth);
2651}
2652EXPORT_SYMBOL(sdev_disable_disk_events);
2653
2654void sdev_enable_disk_events(struct scsi_device *sdev)
2655{
2656	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2657		return;
2658	atomic_dec(&sdev->disk_events_disable_depth);
2659}
2660EXPORT_SYMBOL(sdev_enable_disk_events);