Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * drivers/rtc/rtc-pl031.c
  4 *
  5 * Real Time Clock interface for ARM AMBA PrimeCell 031 RTC
  6 *
  7 * Author: Deepak Saxena <dsaxena@plexity.net>
  8 *
  9 * Copyright 2006 (c) MontaVista Software, Inc.
 10 *
 11 * Author: Mian Yousaf Kaukab <mian.yousaf.kaukab@stericsson.com>
 12 * Copyright 2010 (c) ST-Ericsson AB
 
 
 
 
 
 13 */
 14#include <linux/module.h>
 15#include <linux/rtc.h>
 16#include <linux/init.h>
 17#include <linux/interrupt.h>
 18#include <linux/amba/bus.h>
 19#include <linux/io.h>
 20#include <linux/bcd.h>
 21#include <linux/delay.h>
 22#include <linux/pm_wakeirq.h>
 23#include <linux/slab.h>
 24
 25/*
 26 * Register definitions
 27 */
 28#define	RTC_DR		0x00	/* Data read register */
 29#define	RTC_MR		0x04	/* Match register */
 30#define	RTC_LR		0x08	/* Data load register */
 31#define	RTC_CR		0x0c	/* Control register */
 32#define	RTC_IMSC	0x10	/* Interrupt mask and set register */
 33#define	RTC_RIS		0x14	/* Raw interrupt status register */
 34#define	RTC_MIS		0x18	/* Masked interrupt status register */
 35#define	RTC_ICR		0x1c	/* Interrupt clear register */
 36/* ST variants have additional timer functionality */
 37#define RTC_TDR		0x20	/* Timer data read register */
 38#define RTC_TLR		0x24	/* Timer data load register */
 39#define RTC_TCR		0x28	/* Timer control register */
 40#define RTC_YDR		0x30	/* Year data read register */
 41#define RTC_YMR		0x34	/* Year match register */
 42#define RTC_YLR		0x38	/* Year data load register */
 43
 44#define RTC_CR_EN	(1 << 0)	/* counter enable bit */
 45#define RTC_CR_CWEN	(1 << 26)	/* Clockwatch enable bit */
 46
 47#define RTC_TCR_EN	(1 << 1) /* Periodic timer enable bit */
 48
 49/* Common bit definitions for Interrupt status and control registers */
 50#define RTC_BIT_AI	(1 << 0) /* Alarm interrupt bit */
 51#define RTC_BIT_PI	(1 << 1) /* Periodic interrupt bit. ST variants only. */
 52
 53/* Common bit definations for ST v2 for reading/writing time */
 54#define RTC_SEC_SHIFT 0
 55#define RTC_SEC_MASK (0x3F << RTC_SEC_SHIFT) /* Second [0-59] */
 56#define RTC_MIN_SHIFT 6
 57#define RTC_MIN_MASK (0x3F << RTC_MIN_SHIFT) /* Minute [0-59] */
 58#define RTC_HOUR_SHIFT 12
 59#define RTC_HOUR_MASK (0x1F << RTC_HOUR_SHIFT) /* Hour [0-23] */
 60#define RTC_WDAY_SHIFT 17
 61#define RTC_WDAY_MASK (0x7 << RTC_WDAY_SHIFT) /* Day of Week [1-7] 1=Sunday */
 62#define RTC_MDAY_SHIFT 20
 63#define RTC_MDAY_MASK (0x1F << RTC_MDAY_SHIFT) /* Day of Month [1-31] */
 64#define RTC_MON_SHIFT 25
 65#define RTC_MON_MASK (0xF << RTC_MON_SHIFT) /* Month [1-12] 1=January */
 66
 67#define RTC_TIMER_FREQ 32768
 68
 69/**
 70 * struct pl031_vendor_data - per-vendor variations
 71 * @ops: the vendor-specific operations used on this silicon version
 72 * @clockwatch: if this is an ST Microelectronics silicon version with a
 73 *	clockwatch function
 74 * @st_weekday: if this is an ST Microelectronics silicon version that need
 75 *	the weekday fix
 76 * @irqflags: special IRQ flags per variant
 77 */
 78struct pl031_vendor_data {
 79	struct rtc_class_ops ops;
 80	bool clockwatch;
 81	bool st_weekday;
 82	unsigned long irqflags;
 83	time64_t range_min;
 84	timeu64_t range_max;
 85};
 86
 87struct pl031_local {
 88	struct pl031_vendor_data *vendor;
 89	struct rtc_device *rtc;
 90	void __iomem *base;
 91};
 92
 93static int pl031_alarm_irq_enable(struct device *dev,
 94	unsigned int enabled)
 95{
 96	struct pl031_local *ldata = dev_get_drvdata(dev);
 97	unsigned long imsc;
 98
 99	/* Clear any pending alarm interrupts. */
100	writel(RTC_BIT_AI, ldata->base + RTC_ICR);
101
102	imsc = readl(ldata->base + RTC_IMSC);
103
104	if (enabled == 1)
105		writel(imsc | RTC_BIT_AI, ldata->base + RTC_IMSC);
106	else
107		writel(imsc & ~RTC_BIT_AI, ldata->base + RTC_IMSC);
108
109	return 0;
110}
111
112/*
113 * Convert Gregorian date to ST v2 RTC format.
114 */
115static int pl031_stv2_tm_to_time(struct device *dev,
116				 struct rtc_time *tm, unsigned long *st_time,
117	unsigned long *bcd_year)
118{
119	int year = tm->tm_year + 1900;
120	int wday = tm->tm_wday;
121
122	/* wday masking is not working in hardware so wday must be valid */
123	if (wday < -1 || wday > 6) {
124		dev_err(dev, "invalid wday value %d\n", tm->tm_wday);
125		return -EINVAL;
126	} else if (wday == -1) {
127		/* wday is not provided, calculate it here */
 
128		struct rtc_time calc_tm;
129
130		rtc_time64_to_tm(rtc_tm_to_time64(tm), &calc_tm);
 
131		wday = calc_tm.tm_wday;
132	}
133
134	*bcd_year = (bin2bcd(year % 100) | bin2bcd(year / 100) << 8);
135
136	*st_time = ((tm->tm_mon + 1) << RTC_MON_SHIFT)
137			|	(tm->tm_mday << RTC_MDAY_SHIFT)
138			|	((wday + 1) << RTC_WDAY_SHIFT)
139			|	(tm->tm_hour << RTC_HOUR_SHIFT)
140			|	(tm->tm_min << RTC_MIN_SHIFT)
141			|	(tm->tm_sec << RTC_SEC_SHIFT);
142
143	return 0;
144}
145
146/*
147 * Convert ST v2 RTC format to Gregorian date.
148 */
149static int pl031_stv2_time_to_tm(unsigned long st_time, unsigned long bcd_year,
150	struct rtc_time *tm)
151{
152	tm->tm_year = bcd2bin(bcd_year) + (bcd2bin(bcd_year >> 8) * 100);
153	tm->tm_mon  = ((st_time & RTC_MON_MASK) >> RTC_MON_SHIFT) - 1;
154	tm->tm_mday = ((st_time & RTC_MDAY_MASK) >> RTC_MDAY_SHIFT);
155	tm->tm_wday = ((st_time & RTC_WDAY_MASK) >> RTC_WDAY_SHIFT) - 1;
156	tm->tm_hour = ((st_time & RTC_HOUR_MASK) >> RTC_HOUR_SHIFT);
157	tm->tm_min  = ((st_time & RTC_MIN_MASK) >> RTC_MIN_SHIFT);
158	tm->tm_sec  = ((st_time & RTC_SEC_MASK) >> RTC_SEC_SHIFT);
159
160	tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year);
161	tm->tm_year -= 1900;
162
163	return 0;
164}
165
166static int pl031_stv2_read_time(struct device *dev, struct rtc_time *tm)
167{
168	struct pl031_local *ldata = dev_get_drvdata(dev);
169
170	pl031_stv2_time_to_tm(readl(ldata->base + RTC_DR),
171			readl(ldata->base + RTC_YDR), tm);
172
173	return 0;
174}
175
176static int pl031_stv2_set_time(struct device *dev, struct rtc_time *tm)
177{
178	unsigned long time;
179	unsigned long bcd_year;
180	struct pl031_local *ldata = dev_get_drvdata(dev);
181	int ret;
182
183	ret = pl031_stv2_tm_to_time(dev, tm, &time, &bcd_year);
184	if (ret == 0) {
185		writel(bcd_year, ldata->base + RTC_YLR);
186		writel(time, ldata->base + RTC_LR);
187	}
188
189	return ret;
190}
191
192static int pl031_stv2_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
193{
194	struct pl031_local *ldata = dev_get_drvdata(dev);
195	int ret;
196
197	ret = pl031_stv2_time_to_tm(readl(ldata->base + RTC_MR),
198			readl(ldata->base + RTC_YMR), &alarm->time);
199
200	alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
201	alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
202
203	return ret;
204}
205
206static int pl031_stv2_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
207{
208	struct pl031_local *ldata = dev_get_drvdata(dev);
209	unsigned long time;
210	unsigned long bcd_year;
211	int ret;
212
213	ret = pl031_stv2_tm_to_time(dev, &alarm->time,
214				    &time, &bcd_year);
215	if (ret == 0) {
216		writel(bcd_year, ldata->base + RTC_YMR);
217		writel(time, ldata->base + RTC_MR);
 
 
 
218
219		pl031_alarm_irq_enable(dev, alarm->enabled);
 
220	}
221
222	return ret;
223}
224
225static irqreturn_t pl031_interrupt(int irq, void *dev_id)
226{
227	struct pl031_local *ldata = dev_id;
228	unsigned long rtcmis;
229	unsigned long events = 0;
230
231	rtcmis = readl(ldata->base + RTC_MIS);
232	if (rtcmis & RTC_BIT_AI) {
233		writel(RTC_BIT_AI, ldata->base + RTC_ICR);
234		events |= (RTC_AF | RTC_IRQF);
235		rtc_update_irq(ldata->rtc, 1, events);
236
237		return IRQ_HANDLED;
238	}
239
240	return IRQ_NONE;
241}
242
243static int pl031_read_time(struct device *dev, struct rtc_time *tm)
244{
245	struct pl031_local *ldata = dev_get_drvdata(dev);
246
247	rtc_time64_to_tm(readl(ldata->base + RTC_DR), tm);
248
249	return 0;
250}
251
252static int pl031_set_time(struct device *dev, struct rtc_time *tm)
253{
 
254	struct pl031_local *ldata = dev_get_drvdata(dev);
 
255
256	writel(rtc_tm_to_time64(tm), ldata->base + RTC_LR);
257
258	return 0;
 
 
 
259}
260
261static int pl031_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
262{
263	struct pl031_local *ldata = dev_get_drvdata(dev);
264
265	rtc_time64_to_tm(readl(ldata->base + RTC_MR), &alarm->time);
266
267	alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
268	alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
269
270	return 0;
271}
272
273static int pl031_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
274{
275	struct pl031_local *ldata = dev_get_drvdata(dev);
 
 
276
277	writel(rtc_tm_to_time64(&alarm->time), ldata->base + RTC_MR);
278	pl031_alarm_irq_enable(dev, alarm->enabled);
 
 
 
 
 
 
 
279
280	return 0;
281}
282
283static void pl031_remove(struct amba_device *adev)
284{
285	struct pl031_local *ldata = dev_get_drvdata(&adev->dev);
286
287	dev_pm_clear_wake_irq(&adev->dev);
288	device_init_wakeup(&adev->dev, false);
289	if (adev->irq[0])
290		free_irq(adev->irq[0], ldata);
291	amba_release_regions(adev);
 
 
292}
293
294static int pl031_probe(struct amba_device *adev, const struct amba_id *id)
295{
296	int ret;
297	struct pl031_local *ldata;
298	struct pl031_vendor_data *vendor = id->data;
299	struct rtc_class_ops *ops;
300	unsigned long time, data;
301
302	ret = amba_request_regions(adev, NULL);
303	if (ret)
304		goto err_req;
305
306	ldata = devm_kzalloc(&adev->dev, sizeof(struct pl031_local),
307			     GFP_KERNEL);
308	ops = devm_kmemdup(&adev->dev, &vendor->ops, sizeof(vendor->ops),
309			   GFP_KERNEL);
310	if (!ldata || !ops) {
311		ret = -ENOMEM;
312		goto out;
313	}
314
315	ldata->vendor = vendor;
316	ldata->base = devm_ioremap(&adev->dev, adev->res.start,
317				   resource_size(&adev->res));
 
318	if (!ldata->base) {
319		ret = -ENOMEM;
320		goto out;
321	}
322
323	amba_set_drvdata(adev, ldata);
324
325	dev_dbg(&adev->dev, "designer ID = 0x%02x\n", amba_manf(adev));
326	dev_dbg(&adev->dev, "revision = 0x%01x\n", amba_rev(adev));
327
328	data = readl(ldata->base + RTC_CR);
329	/* Enable the clockwatch on ST Variants */
330	if (vendor->clockwatch)
331		data |= RTC_CR_CWEN;
332	else
333		data |= RTC_CR_EN;
334	writel(data, ldata->base + RTC_CR);
335
336	/*
337	 * On ST PL031 variants, the RTC reset value does not provide correct
338	 * weekday for 2000-01-01. Correct the erroneous sunday to saturday.
339	 */
340	if (vendor->st_weekday) {
341		if (readl(ldata->base + RTC_YDR) == 0x2000) {
342			time = readl(ldata->base + RTC_DR);
343			if ((time &
344			     (RTC_MON_MASK | RTC_MDAY_MASK | RTC_WDAY_MASK))
345			    == 0x02120000) {
346				time = time | (0x7 << RTC_WDAY_SHIFT);
347				writel(0x2000, ldata->base + RTC_YLR);
348				writel(time, ldata->base + RTC_LR);
349			}
350		}
351	}
352
353	device_init_wakeup(&adev->dev, true);
354	ldata->rtc = devm_rtc_allocate_device(&adev->dev);
 
355	if (IS_ERR(ldata->rtc)) {
356		ret = PTR_ERR(ldata->rtc);
357		goto out;
358	}
359
360	if (!adev->irq[0])
361		clear_bit(RTC_FEATURE_ALARM, ldata->rtc->features);
362
363	ldata->rtc->ops = ops;
364	ldata->rtc->range_min = vendor->range_min;
365	ldata->rtc->range_max = vendor->range_max;
366
367	ret = devm_rtc_register_device(ldata->rtc);
368	if (ret)
369		goto out;
370
371	if (adev->irq[0]) {
372		ret = request_irq(adev->irq[0], pl031_interrupt,
373				  vendor->irqflags, "rtc-pl031", ldata);
374		if (ret)
375			goto out;
376		dev_pm_set_wake_irq(&adev->dev, adev->irq[0]);
377	}
 
378	return 0;
379
 
 
 
 
 
 
380out:
381	amba_release_regions(adev);
382err_req:
383
384	return ret;
385}
386
387/* Operations for the original ARM version */
388static struct pl031_vendor_data arm_pl031 = {
389	.ops = {
390		.read_time = pl031_read_time,
391		.set_time = pl031_set_time,
392		.read_alarm = pl031_read_alarm,
393		.set_alarm = pl031_set_alarm,
394		.alarm_irq_enable = pl031_alarm_irq_enable,
395	},
396	.range_max = U32_MAX,
397};
398
399/* The First ST derivative */
400static struct pl031_vendor_data stv1_pl031 = {
401	.ops = {
402		.read_time = pl031_read_time,
403		.set_time = pl031_set_time,
404		.read_alarm = pl031_read_alarm,
405		.set_alarm = pl031_set_alarm,
406		.alarm_irq_enable = pl031_alarm_irq_enable,
407	},
408	.clockwatch = true,
409	.st_weekday = true,
410	.range_max = U32_MAX,
411};
412
413/* And the second ST derivative */
414static struct pl031_vendor_data stv2_pl031 = {
415	.ops = {
416		.read_time = pl031_stv2_read_time,
417		.set_time = pl031_stv2_set_time,
418		.read_alarm = pl031_stv2_read_alarm,
419		.set_alarm = pl031_stv2_set_alarm,
420		.alarm_irq_enable = pl031_alarm_irq_enable,
421	},
422	.clockwatch = true,
423	.st_weekday = true,
424	/*
425	 * This variant shares the IRQ with another block and must not
426	 * suspend that IRQ line.
427	 * TODO check if it shares with IRQF_NO_SUSPEND user, else we can
428	 * remove IRQF_COND_SUSPEND
429	 */
430	.irqflags = IRQF_SHARED | IRQF_COND_SUSPEND,
431	.range_min = RTC_TIMESTAMP_BEGIN_0000,
432	.range_max = RTC_TIMESTAMP_END_9999,
433};
434
435static const struct amba_id pl031_ids[] = {
436	{
437		.id = 0x00041031,
438		.mask = 0x000fffff,
439		.data = &arm_pl031,
440	},
441	/* ST Micro variants */
442	{
443		.id = 0x00180031,
444		.mask = 0x00ffffff,
445		.data = &stv1_pl031,
446	},
447	{
448		.id = 0x00280031,
449		.mask = 0x00ffffff,
450		.data = &stv2_pl031,
451	},
452	{0, 0},
453};
454
455MODULE_DEVICE_TABLE(amba, pl031_ids);
456
457static struct amba_driver pl031_driver = {
458	.drv = {
459		.name = "rtc-pl031",
460	},
461	.id_table = pl031_ids,
462	.probe = pl031_probe,
463	.remove = pl031_remove,
464};
465
466module_amba_driver(pl031_driver);
467
468MODULE_AUTHOR("Deepak Saxena <dsaxena@plexity.net>");
469MODULE_DESCRIPTION("ARM AMBA PL031 RTC Driver");
470MODULE_LICENSE("GPL");
v3.15
 
  1/*
  2 * drivers/rtc/rtc-pl031.c
  3 *
  4 * Real Time Clock interface for ARM AMBA PrimeCell 031 RTC
  5 *
  6 * Author: Deepak Saxena <dsaxena@plexity.net>
  7 *
  8 * Copyright 2006 (c) MontaVista Software, Inc.
  9 *
 10 * Author: Mian Yousaf Kaukab <mian.yousaf.kaukab@stericsson.com>
 11 * Copyright 2010 (c) ST-Ericsson AB
 12 *
 13 * This program is free software; you can redistribute it and/or
 14 * modify it under the terms of the GNU General Public License
 15 * as published by the Free Software Foundation; either version
 16 * 2 of the License, or (at your option) any later version.
 17 */
 18#include <linux/module.h>
 19#include <linux/rtc.h>
 20#include <linux/init.h>
 21#include <linux/interrupt.h>
 22#include <linux/amba/bus.h>
 23#include <linux/io.h>
 24#include <linux/bcd.h>
 25#include <linux/delay.h>
 
 26#include <linux/slab.h>
 27
 28/*
 29 * Register definitions
 30 */
 31#define	RTC_DR		0x00	/* Data read register */
 32#define	RTC_MR		0x04	/* Match register */
 33#define	RTC_LR		0x08	/* Data load register */
 34#define	RTC_CR		0x0c	/* Control register */
 35#define	RTC_IMSC	0x10	/* Interrupt mask and set register */
 36#define	RTC_RIS		0x14	/* Raw interrupt status register */
 37#define	RTC_MIS		0x18	/* Masked interrupt status register */
 38#define	RTC_ICR		0x1c	/* Interrupt clear register */
 39/* ST variants have additional timer functionality */
 40#define RTC_TDR		0x20	/* Timer data read register */
 41#define RTC_TLR		0x24	/* Timer data load register */
 42#define RTC_TCR		0x28	/* Timer control register */
 43#define RTC_YDR		0x30	/* Year data read register */
 44#define RTC_YMR		0x34	/* Year match register */
 45#define RTC_YLR		0x38	/* Year data load register */
 46
 47#define RTC_CR_EN	(1 << 0)	/* counter enable bit */
 48#define RTC_CR_CWEN	(1 << 26)	/* Clockwatch enable bit */
 49
 50#define RTC_TCR_EN	(1 << 1) /* Periodic timer enable bit */
 51
 52/* Common bit definitions for Interrupt status and control registers */
 53#define RTC_BIT_AI	(1 << 0) /* Alarm interrupt bit */
 54#define RTC_BIT_PI	(1 << 1) /* Periodic interrupt bit. ST variants only. */
 55
 56/* Common bit definations for ST v2 for reading/writing time */
 57#define RTC_SEC_SHIFT 0
 58#define RTC_SEC_MASK (0x3F << RTC_SEC_SHIFT) /* Second [0-59] */
 59#define RTC_MIN_SHIFT 6
 60#define RTC_MIN_MASK (0x3F << RTC_MIN_SHIFT) /* Minute [0-59] */
 61#define RTC_HOUR_SHIFT 12
 62#define RTC_HOUR_MASK (0x1F << RTC_HOUR_SHIFT) /* Hour [0-23] */
 63#define RTC_WDAY_SHIFT 17
 64#define RTC_WDAY_MASK (0x7 << RTC_WDAY_SHIFT) /* Day of Week [1-7] 1=Sunday */
 65#define RTC_MDAY_SHIFT 20
 66#define RTC_MDAY_MASK (0x1F << RTC_MDAY_SHIFT) /* Day of Month [1-31] */
 67#define RTC_MON_SHIFT 25
 68#define RTC_MON_MASK (0xF << RTC_MON_SHIFT) /* Month [1-12] 1=January */
 69
 70#define RTC_TIMER_FREQ 32768
 71
 72/**
 73 * struct pl031_vendor_data - per-vendor variations
 74 * @ops: the vendor-specific operations used on this silicon version
 75 * @clockwatch: if this is an ST Microelectronics silicon version with a
 76 *	clockwatch function
 77 * @st_weekday: if this is an ST Microelectronics silicon version that need
 78 *	the weekday fix
 79 * @irqflags: special IRQ flags per variant
 80 */
 81struct pl031_vendor_data {
 82	struct rtc_class_ops ops;
 83	bool clockwatch;
 84	bool st_weekday;
 85	unsigned long irqflags;
 
 
 86};
 87
 88struct pl031_local {
 89	struct pl031_vendor_data *vendor;
 90	struct rtc_device *rtc;
 91	void __iomem *base;
 92};
 93
 94static int pl031_alarm_irq_enable(struct device *dev,
 95	unsigned int enabled)
 96{
 97	struct pl031_local *ldata = dev_get_drvdata(dev);
 98	unsigned long imsc;
 99
100	/* Clear any pending alarm interrupts. */
101	writel(RTC_BIT_AI, ldata->base + RTC_ICR);
102
103	imsc = readl(ldata->base + RTC_IMSC);
104
105	if (enabled == 1)
106		writel(imsc | RTC_BIT_AI, ldata->base + RTC_IMSC);
107	else
108		writel(imsc & ~RTC_BIT_AI, ldata->base + RTC_IMSC);
109
110	return 0;
111}
112
113/*
114 * Convert Gregorian date to ST v2 RTC format.
115 */
116static int pl031_stv2_tm_to_time(struct device *dev,
117				 struct rtc_time *tm, unsigned long *st_time,
118	unsigned long *bcd_year)
119{
120	int year = tm->tm_year + 1900;
121	int wday = tm->tm_wday;
122
123	/* wday masking is not working in hardware so wday must be valid */
124	if (wday < -1 || wday > 6) {
125		dev_err(dev, "invalid wday value %d\n", tm->tm_wday);
126		return -EINVAL;
127	} else if (wday == -1) {
128		/* wday is not provided, calculate it here */
129		unsigned long time;
130		struct rtc_time calc_tm;
131
132		rtc_tm_to_time(tm, &time);
133		rtc_time_to_tm(time, &calc_tm);
134		wday = calc_tm.tm_wday;
135	}
136
137	*bcd_year = (bin2bcd(year % 100) | bin2bcd(year / 100) << 8);
138
139	*st_time = ((tm->tm_mon + 1) << RTC_MON_SHIFT)
140			|	(tm->tm_mday << RTC_MDAY_SHIFT)
141			|	((wday + 1) << RTC_WDAY_SHIFT)
142			|	(tm->tm_hour << RTC_HOUR_SHIFT)
143			|	(tm->tm_min << RTC_MIN_SHIFT)
144			|	(tm->tm_sec << RTC_SEC_SHIFT);
145
146	return 0;
147}
148
149/*
150 * Convert ST v2 RTC format to Gregorian date.
151 */
152static int pl031_stv2_time_to_tm(unsigned long st_time, unsigned long bcd_year,
153	struct rtc_time *tm)
154{
155	tm->tm_year = bcd2bin(bcd_year) + (bcd2bin(bcd_year >> 8) * 100);
156	tm->tm_mon  = ((st_time & RTC_MON_MASK) >> RTC_MON_SHIFT) - 1;
157	tm->tm_mday = ((st_time & RTC_MDAY_MASK) >> RTC_MDAY_SHIFT);
158	tm->tm_wday = ((st_time & RTC_WDAY_MASK) >> RTC_WDAY_SHIFT) - 1;
159	tm->tm_hour = ((st_time & RTC_HOUR_MASK) >> RTC_HOUR_SHIFT);
160	tm->tm_min  = ((st_time & RTC_MIN_MASK) >> RTC_MIN_SHIFT);
161	tm->tm_sec  = ((st_time & RTC_SEC_MASK) >> RTC_SEC_SHIFT);
162
163	tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year);
164	tm->tm_year -= 1900;
165
166	return 0;
167}
168
169static int pl031_stv2_read_time(struct device *dev, struct rtc_time *tm)
170{
171	struct pl031_local *ldata = dev_get_drvdata(dev);
172
173	pl031_stv2_time_to_tm(readl(ldata->base + RTC_DR),
174			readl(ldata->base + RTC_YDR), tm);
175
176	return 0;
177}
178
179static int pl031_stv2_set_time(struct device *dev, struct rtc_time *tm)
180{
181	unsigned long time;
182	unsigned long bcd_year;
183	struct pl031_local *ldata = dev_get_drvdata(dev);
184	int ret;
185
186	ret = pl031_stv2_tm_to_time(dev, tm, &time, &bcd_year);
187	if (ret == 0) {
188		writel(bcd_year, ldata->base + RTC_YLR);
189		writel(time, ldata->base + RTC_LR);
190	}
191
192	return ret;
193}
194
195static int pl031_stv2_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
196{
197	struct pl031_local *ldata = dev_get_drvdata(dev);
198	int ret;
199
200	ret = pl031_stv2_time_to_tm(readl(ldata->base + RTC_MR),
201			readl(ldata->base + RTC_YMR), &alarm->time);
202
203	alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
204	alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
205
206	return ret;
207}
208
209static int pl031_stv2_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
210{
211	struct pl031_local *ldata = dev_get_drvdata(dev);
212	unsigned long time;
213	unsigned long bcd_year;
214	int ret;
215
216	/* At the moment, we can only deal with non-wildcarded alarm times. */
217	ret = rtc_valid_tm(&alarm->time);
218	if (ret == 0) {
219		ret = pl031_stv2_tm_to_time(dev, &alarm->time,
220					    &time, &bcd_year);
221		if (ret == 0) {
222			writel(bcd_year, ldata->base + RTC_YMR);
223			writel(time, ldata->base + RTC_MR);
224
225			pl031_alarm_irq_enable(dev, alarm->enabled);
226		}
227	}
228
229	return ret;
230}
231
232static irqreturn_t pl031_interrupt(int irq, void *dev_id)
233{
234	struct pl031_local *ldata = dev_id;
235	unsigned long rtcmis;
236	unsigned long events = 0;
237
238	rtcmis = readl(ldata->base + RTC_MIS);
239	if (rtcmis & RTC_BIT_AI) {
240		writel(RTC_BIT_AI, ldata->base + RTC_ICR);
241		events |= (RTC_AF | RTC_IRQF);
242		rtc_update_irq(ldata->rtc, 1, events);
243
244		return IRQ_HANDLED;
245	}
246
247	return IRQ_NONE;
248}
249
250static int pl031_read_time(struct device *dev, struct rtc_time *tm)
251{
252	struct pl031_local *ldata = dev_get_drvdata(dev);
253
254	rtc_time_to_tm(readl(ldata->base + RTC_DR), tm);
255
256	return 0;
257}
258
259static int pl031_set_time(struct device *dev, struct rtc_time *tm)
260{
261	unsigned long time;
262	struct pl031_local *ldata = dev_get_drvdata(dev);
263	int ret;
264
265	ret = rtc_tm_to_time(tm, &time);
266
267	if (ret == 0)
268		writel(time, ldata->base + RTC_LR);
269
270	return ret;
271}
272
273static int pl031_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
274{
275	struct pl031_local *ldata = dev_get_drvdata(dev);
276
277	rtc_time_to_tm(readl(ldata->base + RTC_MR), &alarm->time);
278
279	alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
280	alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
281
282	return 0;
283}
284
285static int pl031_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
286{
287	struct pl031_local *ldata = dev_get_drvdata(dev);
288	unsigned long time;
289	int ret;
290
291	/* At the moment, we can only deal with non-wildcarded alarm times. */
292	ret = rtc_valid_tm(&alarm->time);
293	if (ret == 0) {
294		ret = rtc_tm_to_time(&alarm->time, &time);
295		if (ret == 0) {
296			writel(time, ldata->base + RTC_MR);
297			pl031_alarm_irq_enable(dev, alarm->enabled);
298		}
299	}
300
301	return ret;
302}
303
304static int pl031_remove(struct amba_device *adev)
305{
306	struct pl031_local *ldata = dev_get_drvdata(&adev->dev);
307
308	free_irq(adev->irq[0], ldata);
309	rtc_device_unregister(ldata->rtc);
310	iounmap(ldata->base);
311	kfree(ldata);
312	amba_release_regions(adev);
313
314	return 0;
315}
316
317static int pl031_probe(struct amba_device *adev, const struct amba_id *id)
318{
319	int ret;
320	struct pl031_local *ldata;
321	struct pl031_vendor_data *vendor = id->data;
322	struct rtc_class_ops *ops = &vendor->ops;
323	unsigned long time, data;
324
325	ret = amba_request_regions(adev, NULL);
326	if (ret)
327		goto err_req;
328
329	ldata = kzalloc(sizeof(struct pl031_local), GFP_KERNEL);
330	if (!ldata) {
 
 
 
331		ret = -ENOMEM;
332		goto out;
333	}
 
334	ldata->vendor = vendor;
335
336	ldata->base = ioremap(adev->res.start, resource_size(&adev->res));
337
338	if (!ldata->base) {
339		ret = -ENOMEM;
340		goto out_no_remap;
341	}
342
343	amba_set_drvdata(adev, ldata);
344
345	dev_dbg(&adev->dev, "designer ID = 0x%02x\n", amba_manf(adev));
346	dev_dbg(&adev->dev, "revision = 0x%01x\n", amba_rev(adev));
347
348	data = readl(ldata->base + RTC_CR);
349	/* Enable the clockwatch on ST Variants */
350	if (vendor->clockwatch)
351		data |= RTC_CR_CWEN;
352	else
353		data |= RTC_CR_EN;
354	writel(data, ldata->base + RTC_CR);
355
356	/*
357	 * On ST PL031 variants, the RTC reset value does not provide correct
358	 * weekday for 2000-01-01. Correct the erroneous sunday to saturday.
359	 */
360	if (vendor->st_weekday) {
361		if (readl(ldata->base + RTC_YDR) == 0x2000) {
362			time = readl(ldata->base + RTC_DR);
363			if ((time &
364			     (RTC_MON_MASK | RTC_MDAY_MASK | RTC_WDAY_MASK))
365			    == 0x02120000) {
366				time = time | (0x7 << RTC_WDAY_SHIFT);
367				writel(0x2000, ldata->base + RTC_YLR);
368				writel(time, ldata->base + RTC_LR);
369			}
370		}
371	}
372
373	device_init_wakeup(&adev->dev, 1);
374	ldata->rtc = rtc_device_register("pl031", &adev->dev, ops,
375					THIS_MODULE);
376	if (IS_ERR(ldata->rtc)) {
377		ret = PTR_ERR(ldata->rtc);
378		goto out_no_rtc;
379	}
380
381	if (request_irq(adev->irq[0], pl031_interrupt,
382			vendor->irqflags, "rtc-pl031", ldata)) {
383		ret = -EIO;
384		goto out_no_irq;
 
 
 
 
 
 
 
 
 
 
 
 
 
385	}
386
387	return 0;
388
389out_no_irq:
390	rtc_device_unregister(ldata->rtc);
391out_no_rtc:
392	iounmap(ldata->base);
393out_no_remap:
394	kfree(ldata);
395out:
396	amba_release_regions(adev);
397err_req:
398
399	return ret;
400}
401
402/* Operations for the original ARM version */
403static struct pl031_vendor_data arm_pl031 = {
404	.ops = {
405		.read_time = pl031_read_time,
406		.set_time = pl031_set_time,
407		.read_alarm = pl031_read_alarm,
408		.set_alarm = pl031_set_alarm,
409		.alarm_irq_enable = pl031_alarm_irq_enable,
410	},
411	.irqflags = IRQF_NO_SUSPEND,
412};
413
414/* The First ST derivative */
415static struct pl031_vendor_data stv1_pl031 = {
416	.ops = {
417		.read_time = pl031_read_time,
418		.set_time = pl031_set_time,
419		.read_alarm = pl031_read_alarm,
420		.set_alarm = pl031_set_alarm,
421		.alarm_irq_enable = pl031_alarm_irq_enable,
422	},
423	.clockwatch = true,
424	.st_weekday = true,
425	.irqflags = IRQF_NO_SUSPEND,
426};
427
428/* And the second ST derivative */
429static struct pl031_vendor_data stv2_pl031 = {
430	.ops = {
431		.read_time = pl031_stv2_read_time,
432		.set_time = pl031_stv2_set_time,
433		.read_alarm = pl031_stv2_read_alarm,
434		.set_alarm = pl031_stv2_set_alarm,
435		.alarm_irq_enable = pl031_alarm_irq_enable,
436	},
437	.clockwatch = true,
438	.st_weekday = true,
439	/*
440	 * This variant shares the IRQ with another block and must not
441	 * suspend that IRQ line.
 
 
442	 */
443	.irqflags = IRQF_SHARED | IRQF_NO_SUSPEND,
 
 
444};
445
446static struct amba_id pl031_ids[] = {
447	{
448		.id = 0x00041031,
449		.mask = 0x000fffff,
450		.data = &arm_pl031,
451	},
452	/* ST Micro variants */
453	{
454		.id = 0x00180031,
455		.mask = 0x00ffffff,
456		.data = &stv1_pl031,
457	},
458	{
459		.id = 0x00280031,
460		.mask = 0x00ffffff,
461		.data = &stv2_pl031,
462	},
463	{0, 0},
464};
465
466MODULE_DEVICE_TABLE(amba, pl031_ids);
467
468static struct amba_driver pl031_driver = {
469	.drv = {
470		.name = "rtc-pl031",
471	},
472	.id_table = pl031_ids,
473	.probe = pl031_probe,
474	.remove = pl031_remove,
475};
476
477module_amba_driver(pl031_driver);
478
479MODULE_AUTHOR("Deepak Saxena <dsaxena@plexity.net");
480MODULE_DESCRIPTION("ARM AMBA PL031 RTC Driver");
481MODULE_LICENSE("GPL");