Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/******************************************************************************
   2 *
   3 * Copyright(c) 2009-2012  Realtek Corporation.
   4 *
   5 * Tmis program is free software; you can redistribute it and/or modify it
   6 * under the terms of version 2 of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * Tmis program is distributed in the hope that it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * You should have received a copy of the GNU General Public License along with
  15 * tmis program; if not, write to the Free Software Foundation, Inc.,
  16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17 *
  18 * Tme full GNU General Public License is included in this distribution in the
  19 * file called LICENSE.
  20 *
  21 * Contact Information:
  22 * wlanfae <wlanfae@realtek.com>
  23 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24 * Hsinchu 300, Taiwan.
  25 *
  26 * Larry Finger <Larry.Finger@lwfinger.net>
  27 *
  28 *****************************************************************************/
  29
  30#include <linux/export.h>
  31#include "wifi.h"
  32#include "efuse.h"
  33
  34static const u8 MAX_PGPKT_SIZE = 9;
  35static const u8 PGPKT_DATA_SIZE = 8;
  36static const int EFUSE_MAX_SIZE = 512;
  37
  38static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
  39	{0, 0, 0, 2},
  40	{0, 1, 0, 2},
  41	{0, 2, 0, 2},
  42	{1, 0, 0, 1},
  43	{1, 0, 1, 1},
  44	{1, 1, 0, 1},
  45	{1, 1, 1, 3},
  46	{1, 3, 0, 17},
  47	{3, 3, 1, 48},
  48	{10, 0, 0, 6},
  49	{10, 3, 0, 1},
  50	{10, 3, 1, 1},
  51	{11, 0, 0, 28}
  52};
  53
  54static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
  55				    u8 *value);
  56static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
  57				    u16 *value);
  58static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
  59				    u32 *value);
  60static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
  61				     u8 value);
  62static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
  63				     u16 value);
  64static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
  65				     u32 value);
  66static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr,
  67					u8 *data);
  68static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
  69					u8 data);
  70static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
  71static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
  72					u8 *data);
  73static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
  74				 u8 word_en, u8 *data);
  75static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
  76					u8 *targetdata);
  77static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
  78				       u16 efuse_addr, u8 word_en, u8 *data);
  79static void efuse_power_switch(struct ieee80211_hw *hw, u8 write,
  80					u8 pwrstate);
  81static u16 efuse_get_current_size(struct ieee80211_hw *hw);
  82static u8 efuse_calculate_word_cnts(u8 word_en);
  83
  84void efuse_initialize(struct ieee80211_hw *hw)
  85{
  86	struct rtl_priv *rtlpriv = rtl_priv(hw);
  87	u8 bytetemp;
  88	u8 temp;
  89
  90	bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
  91	temp = bytetemp | 0x20;
  92	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
  93
  94	bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
  95	temp = bytetemp & 0xFE;
  96	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
  97
  98	bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
  99	temp = bytetemp | 0x80;
 100	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
 101
 102	rtl_write_byte(rtlpriv, 0x2F8, 0x3);
 103
 104	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
 105
 106}
 107
 108u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
 109{
 110	struct rtl_priv *rtlpriv = rtl_priv(hw);
 111	u8 data;
 112	u8 bytetemp;
 113	u8 temp;
 114	u32 k = 0;
 115	const u32 efuse_len =
 116		rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
 117
 118	if (address < efuse_len) {
 119		temp = address & 0xFF;
 120		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
 121			       temp);
 122		bytetemp = rtl_read_byte(rtlpriv,
 123					 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
 124		temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
 125		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
 126			       temp);
 127
 128		bytetemp = rtl_read_byte(rtlpriv,
 129					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
 130		temp = bytetemp & 0x7F;
 131		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
 132			       temp);
 133
 134		bytetemp = rtl_read_byte(rtlpriv,
 135					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
 136		while (!(bytetemp & 0x80)) {
 137			bytetemp = rtl_read_byte(rtlpriv,
 138						 rtlpriv->cfg->
 139						 maps[EFUSE_CTRL] + 3);
 140			k++;
 141			if (k == 1000) {
 142				k = 0;
 143				break;
 144			}
 145		}
 146		data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
 147		return data;
 148	} else
 149		return 0xFF;
 150
 151}
 152EXPORT_SYMBOL(efuse_read_1byte);
 153
 154void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
 155{
 156	struct rtl_priv *rtlpriv = rtl_priv(hw);
 157	u8 bytetemp;
 158	u8 temp;
 159	u32 k = 0;
 160	const u32 efuse_len =
 161		rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
 162
 163	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n",
 164		 address, value);
 165
 166	if (address < efuse_len) {
 167		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
 168
 169		temp = address & 0xFF;
 170		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
 171			       temp);
 172		bytetemp = rtl_read_byte(rtlpriv,
 173					 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
 174
 175		temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
 176		rtl_write_byte(rtlpriv,
 177			       rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
 178
 179		bytetemp = rtl_read_byte(rtlpriv,
 180					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
 181		temp = bytetemp | 0x80;
 182		rtl_write_byte(rtlpriv,
 183			       rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
 184
 185		bytetemp = rtl_read_byte(rtlpriv,
 186					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
 187
 188		while (bytetemp & 0x80) {
 189			bytetemp = rtl_read_byte(rtlpriv,
 190						 rtlpriv->cfg->
 191						 maps[EFUSE_CTRL] + 3);
 192			k++;
 193			if (k == 100) {
 194				k = 0;
 195				break;
 196			}
 197		}
 198	}
 199
 200}
 201
 202void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
 203{
 204	struct rtl_priv *rtlpriv = rtl_priv(hw);
 205	u32 value32;
 206	u8 readbyte;
 207	u16 retry;
 208
 209	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
 210		       (_offset & 0xff));
 211	readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
 212	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
 213		       ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
 214
 215	readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
 216	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
 217		       (readbyte & 0x7f));
 218
 219	retry = 0;
 220	value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
 221	while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
 222		value32 = rtl_read_dword(rtlpriv,
 223					 rtlpriv->cfg->maps[EFUSE_CTRL]);
 224		retry++;
 225	}
 226
 227	udelay(50);
 228	value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
 229
 230	*pbuf = (u8) (value32 & 0xff);
 231}
 232EXPORT_SYMBOL_GPL(read_efuse_byte);
 233
 234void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
 235{
 236	struct rtl_priv *rtlpriv = rtl_priv(hw);
 237	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
 238	u8 *efuse_tbl;
 239	u8 rtemp8[1];
 240	u16 efuse_addr = 0;
 241	u8 offset, wren;
 242	u8 u1temp = 0;
 243	u16 i;
 244	u16 j;
 245	const u16 efuse_max_section =
 246		rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
 247	const u32 efuse_len =
 248		rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
 249	u16 **efuse_word;
 250	u16 efuse_utilized = 0;
 251	u8 efuse_usage;
 252
 253	if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
 254		RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
 255			 "read_efuse(): Invalid offset(%#x) with read bytes(%#x)!!\n",
 256			 _offset, _size_byte);
 257		return;
 258	}
 259
 260	/* allocate memory for efuse_tbl and efuse_word */
 261	efuse_tbl = kmalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] *
 262			    sizeof(u8), GFP_ATOMIC);
 263	if (!efuse_tbl)
 264		return;
 265	efuse_word = kzalloc(EFUSE_MAX_WORD_UNIT * sizeof(u16 *), GFP_ATOMIC);
 266	if (!efuse_word)
 267		goto out;
 268	for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
 269		efuse_word[i] = kmalloc(efuse_max_section * sizeof(u16),
 270					GFP_ATOMIC);
 271		if (!efuse_word[i])
 272			goto done;
 273	}
 274
 275	for (i = 0; i < efuse_max_section; i++)
 276		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
 277			efuse_word[j][i] = 0xFFFF;
 278
 279	read_efuse_byte(hw, efuse_addr, rtemp8);
 280	if (*rtemp8 != 0xFF) {
 281		efuse_utilized++;
 282		RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
 283			"Addr=%d\n", efuse_addr);
 284		efuse_addr++;
 285	}
 286
 287	while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
 288		/*  Check PG header for section num.  */
 289		if ((*rtemp8 & 0x1F) == 0x0F) {/* extended header */
 290			u1temp = ((*rtemp8 & 0xE0) >> 5);
 291			read_efuse_byte(hw, efuse_addr, rtemp8);
 292
 293			if ((*rtemp8 & 0x0F) == 0x0F) {
 294				efuse_addr++;
 295				read_efuse_byte(hw, efuse_addr, rtemp8);
 296
 297				if (*rtemp8 != 0xFF &&
 298				    (efuse_addr < efuse_len)) {
 299					efuse_addr++;
 300				}
 301				continue;
 302			} else {
 303				offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
 304				wren = (*rtemp8 & 0x0F);
 305				efuse_addr++;
 306			}
 307		} else {
 308			offset = ((*rtemp8 >> 4) & 0x0f);
 309			wren = (*rtemp8 & 0x0f);
 310		}
 311
 312		if (offset < efuse_max_section) {
 313			RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
 314				"offset-%d Worden=%x\n", offset, wren);
 315
 316			for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
 317				if (!(wren & 0x01)) {
 318					RTPRINT(rtlpriv, FEEPROM,
 319						EFUSE_READ_ALL,
 320						"Addr=%d\n", efuse_addr);
 321
 322					read_efuse_byte(hw, efuse_addr, rtemp8);
 323					efuse_addr++;
 324					efuse_utilized++;
 325					efuse_word[i][offset] =
 326							 (*rtemp8 & 0xff);
 327
 328					if (efuse_addr >= efuse_len)
 329						break;
 330
 331					RTPRINT(rtlpriv, FEEPROM,
 332						EFUSE_READ_ALL,
 333						"Addr=%d\n", efuse_addr);
 334
 335					read_efuse_byte(hw, efuse_addr, rtemp8);
 336					efuse_addr++;
 337					efuse_utilized++;
 338					efuse_word[i][offset] |=
 339					    (((u16)*rtemp8 << 8) & 0xff00);
 340
 341					if (efuse_addr >= efuse_len)
 342						break;
 343				}
 344
 345				wren >>= 1;
 346			}
 347		}
 348
 349		RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
 350			"Addr=%d\n", efuse_addr);
 351		read_efuse_byte(hw, efuse_addr, rtemp8);
 352		if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
 353			efuse_utilized++;
 354			efuse_addr++;
 355		}
 356	}
 357
 358	for (i = 0; i < efuse_max_section; i++) {
 359		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
 360			efuse_tbl[(i * 8) + (j * 2)] =
 361			    (efuse_word[j][i] & 0xff);
 362			efuse_tbl[(i * 8) + ((j * 2) + 1)] =
 363			    ((efuse_word[j][i] >> 8) & 0xff);
 364		}
 365	}
 366
 367	for (i = 0; i < _size_byte; i++)
 368		pbuf[i] = efuse_tbl[_offset + i];
 369
 370	rtlefuse->efuse_usedbytes = efuse_utilized;
 371	efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len);
 372	rtlefuse->efuse_usedpercentage = efuse_usage;
 373	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
 374				      (u8 *)&efuse_utilized);
 375	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
 376				      &efuse_usage);
 377done:
 378	for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
 379		kfree(efuse_word[i]);
 380	kfree(efuse_word);
 381out:
 382	kfree(efuse_tbl);
 383}
 384
 385bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
 386{
 387	struct rtl_priv *rtlpriv = rtl_priv(hw);
 388	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
 389	u8 section_idx, i, Base;
 390	u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
 391	bool wordchanged, result = true;
 392
 393	for (section_idx = 0; section_idx < 16; section_idx++) {
 394		Base = section_idx * 8;
 395		wordchanged = false;
 396
 397		for (i = 0; i < 8; i = i + 2) {
 398			if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
 399			     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
 400			    (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
 401			     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
 402								   1])) {
 403				words_need++;
 404				wordchanged = true;
 405			}
 406		}
 407
 408		if (wordchanged)
 409			hdr_num++;
 410	}
 411
 412	totalbytes = hdr_num + words_need * 2;
 413	efuse_used = rtlefuse->efuse_usedbytes;
 414
 415	if ((totalbytes + efuse_used) >=
 416	    (EFUSE_MAX_SIZE -
 417	     rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))
 418		result = false;
 419
 420	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
 421		 "efuse_shadow_update_chk(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
 422		 totalbytes, hdr_num, words_need, efuse_used);
 423
 424	return result;
 425}
 426
 427void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
 428		       u16 offset, u32 *value)
 429{
 430	if (type == 1)
 431		efuse_shadow_read_1byte(hw, offset, (u8 *) value);
 432	else if (type == 2)
 433		efuse_shadow_read_2byte(hw, offset, (u16 *) value);
 434	else if (type == 4)
 435		efuse_shadow_read_4byte(hw, offset, value);
 436
 437}
 438
 439void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
 440				u32 value)
 441{
 442	if (type == 1)
 443		efuse_shadow_write_1byte(hw, offset, (u8) value);
 444	else if (type == 2)
 445		efuse_shadow_write_2byte(hw, offset, (u16) value);
 446	else if (type == 4)
 447		efuse_shadow_write_4byte(hw, offset, value);
 448
 449}
 450
 451bool efuse_shadow_update(struct ieee80211_hw *hw)
 452{
 453	struct rtl_priv *rtlpriv = rtl_priv(hw);
 454	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
 455	u16 i, offset, base;
 456	u8 word_en = 0x0F;
 457	u8 first_pg = false;
 458
 459	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "--->\n");
 460
 461	if (!efuse_shadow_update_chk(hw)) {
 462		efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
 463		memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
 464		       &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
 465		       rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
 466
 467		RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
 468			 "<---efuse out of capacity!!\n");
 469		return false;
 470	}
 471	efuse_power_switch(hw, true, true);
 472
 473	for (offset = 0; offset < 16; offset++) {
 474
 475		word_en = 0x0F;
 476		base = offset * 8;
 477
 478		for (i = 0; i < 8; i++) {
 479			if (first_pg) {
 480
 481				word_en &= ~(BIT(i / 2));
 482
 483				rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
 484				    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
 485			} else {
 486
 487				if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
 488				    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
 489					word_en &= ~(BIT(i / 2));
 490
 491					rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
 492					    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
 493				}
 494			}
 495		}
 496
 497		if (word_en != 0x0F) {
 498			u8 tmpdata[8];
 499			memcpy(tmpdata,
 500			       &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
 501			       8);
 502			RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
 503				      "U-efuse", tmpdata, 8);
 504
 505			if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
 506						   tmpdata)) {
 507				RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
 508					 "PG section(%#x) fail!!\n", offset);
 509				break;
 510			}
 511		}
 512
 513	}
 514
 515	efuse_power_switch(hw, true, false);
 516	efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
 517
 518	memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
 519	       &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
 520	       rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
 521
 522	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "<---\n");
 523	return true;
 524}
 525
 526void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
 527{
 528	struct rtl_priv *rtlpriv = rtl_priv(hw);
 529	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
 530
 531	if (rtlefuse->autoload_failflag)
 532		memset(&rtlefuse->efuse_map[EFUSE_INIT_MAP][0], 0xFF,
 533			rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
 534	else
 535		efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
 536
 537	memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
 538	       &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
 539	       rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
 540
 541}
 542EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
 543
 544void efuse_force_write_vendor_Id(struct ieee80211_hw *hw)
 545{
 546	u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
 547
 548	efuse_power_switch(hw, true, true);
 549
 550	efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
 551
 552	efuse_power_switch(hw, true, false);
 553
 554}
 555
 556void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
 557{
 558}
 559
 560static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
 561				    u16 offset, u8 *value)
 562{
 563	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
 564	*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
 565}
 566
 567static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
 568				    u16 offset, u16 *value)
 569{
 570	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
 571
 572	*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
 573	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
 574
 575}
 576
 577static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
 578				    u16 offset, u32 *value)
 579{
 580	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
 581
 582	*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
 583	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
 584	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
 585	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
 586}
 587
 588static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
 589				     u16 offset, u8 value)
 590{
 591	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
 592
 593	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
 594}
 595
 596static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
 597				     u16 offset, u16 value)
 598{
 599	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
 600
 601	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
 602	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
 603
 604}
 605
 606static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
 607				     u16 offset, u32 value)
 608{
 609	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
 610
 611	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
 612	    (u8) (value & 0x000000FF);
 613	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
 614	    (u8) ((value >> 8) & 0x0000FF);
 615	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
 616	    (u8) ((value >> 16) & 0x00FF);
 617	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
 618	    (u8) ((value >> 24) & 0xFF);
 619
 620}
 621
 622static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
 623{
 624	struct rtl_priv *rtlpriv = rtl_priv(hw);
 625	u8 tmpidx = 0;
 626	int result;
 627
 628	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
 629		       (u8) (addr & 0xff));
 630	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
 631		       ((u8) ((addr >> 8) & 0x03)) |
 632		       (rtl_read_byte(rtlpriv,
 633				      rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
 634			0xFC));
 635
 636	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
 637
 638	while (!(0x80 & rtl_read_byte(rtlpriv,
 639				      rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
 640	       && (tmpidx < 100)) {
 641		tmpidx++;
 642	}
 643
 644	if (tmpidx < 100) {
 645		*data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
 646		result = true;
 647	} else {
 648		*data = 0xff;
 649		result = false;
 650	}
 651	return result;
 652}
 653
 654static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
 655{
 656	struct rtl_priv *rtlpriv = rtl_priv(hw);
 657	u8 tmpidx = 0;
 658
 659	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr = %x Data=%x\n",
 660		 addr, data);
 661
 662	rtl_write_byte(rtlpriv,
 663		       rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
 664	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
 665		       (rtl_read_byte(rtlpriv,
 666			 rtlpriv->cfg->maps[EFUSE_CTRL] +
 667			 2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
 668
 669	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
 670	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
 671
 672	while ((0x80 & rtl_read_byte(rtlpriv,
 673				     rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
 674	       && (tmpidx < 100)) {
 675		tmpidx++;
 676	}
 677
 678	if (tmpidx < 100)
 679		return true;
 680
 681	return false;
 682}
 683
 684static void efuse_read_all_map(struct ieee80211_hw *hw, u8 * efuse)
 685{
 686	struct rtl_priv *rtlpriv = rtl_priv(hw);
 687	efuse_power_switch(hw, false, true);
 688	read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
 689	efuse_power_switch(hw, false, false);
 690}
 691
 692static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
 693				u8 efuse_data, u8 offset, u8 *tmpdata,
 694				u8 *readstate)
 695{
 696	bool dataempty = true;
 697	u8 hoffset;
 698	u8 tmpidx;
 699	u8 hworden;
 700	u8 word_cnts;
 701
 702	hoffset = (efuse_data >> 4) & 0x0F;
 703	hworden = efuse_data & 0x0F;
 704	word_cnts = efuse_calculate_word_cnts(hworden);
 705
 706	if (hoffset == offset) {
 707		for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
 708			if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
 709			    &efuse_data)) {
 710				tmpdata[tmpidx] = efuse_data;
 711				if (efuse_data != 0xff)
 712					dataempty = true;
 713			}
 714		}
 715
 716		if (dataempty) {
 717			*readstate = PG_STATE_DATA;
 718		} else {
 719			*efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
 720			*readstate = PG_STATE_HEADER;
 721		}
 722
 723	} else {
 724		*efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
 725		*readstate = PG_STATE_HEADER;
 726	}
 727}
 728
 729static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
 730{
 731	u8 readstate = PG_STATE_HEADER;
 732	bool continual = true;
 733	u8 efuse_data, word_cnts = 0;
 734	u16 efuse_addr = 0;
 735	u8 tmpdata[8];
 736
 737	if (data == NULL)
 738		return false;
 739	if (offset > 15)
 740		return false;
 741
 742	memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
 743	memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
 744
 745	while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
 746		if (readstate & PG_STATE_HEADER) {
 747			if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
 748			    && (efuse_data != 0xFF))
 749				efuse_read_data_case1(hw, &efuse_addr,
 750						      efuse_data,
 751						      offset, tmpdata,
 752						      &readstate);
 753			else
 754				continual = false;
 755		} else if (readstate & PG_STATE_DATA) {
 756			efuse_word_enable_data_read(0, tmpdata, data);
 757			efuse_addr = efuse_addr + (word_cnts * 2) + 1;
 758			readstate = PG_STATE_HEADER;
 759		}
 760
 761	}
 762
 763	if ((data[0] == 0xff) && (data[1] == 0xff) &&
 764	    (data[2] == 0xff) && (data[3] == 0xff) &&
 765	    (data[4] == 0xff) && (data[5] == 0xff) &&
 766	    (data[6] == 0xff) && (data[7] == 0xff))
 767		return false;
 768	else
 769		return true;
 770
 771}
 772
 773static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
 774			u8 efuse_data, u8 offset, int *continual,
 775			u8 *write_state, struct pgpkt_struct *target_pkt,
 776			int *repeat_times, int *result, u8 word_en)
 777{
 778	struct rtl_priv *rtlpriv = rtl_priv(hw);
 779	struct pgpkt_struct tmp_pkt;
 780	bool dataempty = true;
 781	u8 originaldata[8 * sizeof(u8)];
 782	u8 badworden = 0x0F;
 783	u8 match_word_en, tmp_word_en;
 784	u8 tmpindex;
 785	u8 tmp_header = efuse_data;
 786	u8 tmp_word_cnts;
 787
 788	tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
 789	tmp_pkt.word_en = tmp_header & 0x0F;
 790	tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
 791
 792	if (tmp_pkt.offset != target_pkt->offset) {
 793		*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
 794		*write_state = PG_STATE_HEADER;
 795	} else {
 796		for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
 797			u16 address = *efuse_addr + 1 + tmpindex;
 798			if (efuse_one_byte_read(hw, address,
 799			     &efuse_data) && (efuse_data != 0xFF))
 800				dataempty = false;
 801		}
 802
 803		if (!dataempty) {
 804			*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
 805			*write_state = PG_STATE_HEADER;
 806		} else {
 807			match_word_en = 0x0F;
 808			if (!((target_pkt->word_en & BIT(0)) |
 809			     (tmp_pkt.word_en & BIT(0))))
 810				match_word_en &= (~BIT(0));
 811
 812			if (!((target_pkt->word_en & BIT(1)) |
 813			     (tmp_pkt.word_en & BIT(1))))
 814				match_word_en &= (~BIT(1));
 815
 816			if (!((target_pkt->word_en & BIT(2)) |
 817			     (tmp_pkt.word_en & BIT(2))))
 818				match_word_en &= (~BIT(2));
 819
 820			if (!((target_pkt->word_en & BIT(3)) |
 821			     (tmp_pkt.word_en & BIT(3))))
 822				match_word_en &= (~BIT(3));
 823
 824			if ((match_word_en & 0x0F) != 0x0F) {
 825				badworden = efuse_word_enable_data_write(
 826							    hw, *efuse_addr + 1,
 827							    tmp_pkt.word_en,
 828							    target_pkt->data);
 829
 830				if (0x0F != (badworden & 0x0F)) {
 831					u8 reorg_offset = offset;
 832					u8 reorg_worden = badworden;
 833					efuse_pg_packet_write(hw, reorg_offset,
 834							       reorg_worden,
 835							       originaldata);
 836				}
 837
 838				tmp_word_en = 0x0F;
 839				if ((target_pkt->word_en & BIT(0)) ^
 840				    (match_word_en & BIT(0)))
 841					tmp_word_en &= (~BIT(0));
 842
 843				if ((target_pkt->word_en & BIT(1)) ^
 844				    (match_word_en & BIT(1)))
 845					tmp_word_en &= (~BIT(1));
 846
 847				if ((target_pkt->word_en & BIT(2)) ^
 848				     (match_word_en & BIT(2)))
 849					tmp_word_en &= (~BIT(2));
 850
 851				if ((target_pkt->word_en & BIT(3)) ^
 852				     (match_word_en & BIT(3)))
 853					tmp_word_en &= (~BIT(3));
 854
 855				if ((tmp_word_en & 0x0F) != 0x0F) {
 856					*efuse_addr = efuse_get_current_size(hw);
 857					target_pkt->offset = offset;
 858					target_pkt->word_en = tmp_word_en;
 859				} else {
 860					*continual = false;
 861				}
 862				*write_state = PG_STATE_HEADER;
 863				*repeat_times += 1;
 864				if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
 865					*continual = false;
 866					*result = false;
 867				}
 868			} else {
 869				*efuse_addr += (2 * tmp_word_cnts) + 1;
 870				target_pkt->offset = offset;
 871				target_pkt->word_en = word_en;
 872				*write_state = PG_STATE_HEADER;
 873			}
 874		}
 875	}
 876	RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,  "efuse PG_STATE_HEADER-1\n");
 877}
 878
 879static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
 880				   int *continual, u8 *write_state,
 881				   struct pgpkt_struct target_pkt,
 882				   int *repeat_times, int *result)
 883{
 884	struct rtl_priv *rtlpriv = rtl_priv(hw);
 885	struct pgpkt_struct tmp_pkt;
 886	u8 pg_header;
 887	u8 tmp_header;
 888	u8 originaldata[8 * sizeof(u8)];
 889	u8 tmp_word_cnts;
 890	u8 badworden = 0x0F;
 891
 892	pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
 893	efuse_one_byte_write(hw, *efuse_addr, pg_header);
 894	efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
 895
 896	if (tmp_header == pg_header) {
 897		*write_state = PG_STATE_DATA;
 898	} else if (tmp_header == 0xFF) {
 899		*write_state = PG_STATE_HEADER;
 900		*repeat_times += 1;
 901		if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
 902			*continual = false;
 903			*result = false;
 904		}
 905	} else {
 906		tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
 907		tmp_pkt.word_en = tmp_header & 0x0F;
 908
 909		tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
 910
 911		memset(originaldata, 0xff, 8 * sizeof(u8));
 912
 913		if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
 914			badworden = efuse_word_enable_data_write(hw,
 915				    *efuse_addr + 1, tmp_pkt.word_en,
 916				    originaldata);
 917
 918			if (0x0F != (badworden & 0x0F)) {
 919				u8 reorg_offset = tmp_pkt.offset;
 920				u8 reorg_worden = badworden;
 921				efuse_pg_packet_write(hw, reorg_offset,
 922						      reorg_worden,
 923						      originaldata);
 924				*efuse_addr = efuse_get_current_size(hw);
 925			} else {
 926				*efuse_addr = *efuse_addr + (tmp_word_cnts * 2)
 927					      + 1;
 928			}
 929		} else {
 930			*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
 931		}
 932
 933		*write_state = PG_STATE_HEADER;
 934		*repeat_times += 1;
 935		if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
 936			*continual = false;
 937			*result = false;
 938		}
 939
 940		RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
 941			"efuse PG_STATE_HEADER-2\n");
 942	}
 943}
 944
 945static int efuse_pg_packet_write(struct ieee80211_hw *hw,
 946				 u8 offset, u8 word_en, u8 *data)
 947{
 948	struct rtl_priv *rtlpriv = rtl_priv(hw);
 949	struct pgpkt_struct target_pkt;
 950	u8 write_state = PG_STATE_HEADER;
 951	int continual = true, result = true;
 952	u16 efuse_addr = 0;
 953	u8 efuse_data;
 954	u8 target_word_cnts = 0;
 955	u8 badworden = 0x0F;
 956	static int repeat_times;
 957
 958	if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE -
 959	    rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
 960		RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
 961			"efuse_pg_packet_write error\n");
 962		return false;
 963	}
 964
 965	target_pkt.offset = offset;
 966	target_pkt.word_en = word_en;
 967
 968	memset(target_pkt.data, 0xFF, 8 * sizeof(u8));
 969
 970	efuse_word_enable_data_read(word_en, data, target_pkt.data);
 971	target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
 972
 973	RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,  "efuse Power ON\n");
 974
 975	while (continual && (efuse_addr < (EFUSE_MAX_SIZE -
 976	       rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) {
 977
 978		if (write_state == PG_STATE_HEADER) {
 979			badworden = 0x0F;
 980			RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
 981				"efuse PG_STATE_HEADER\n");
 982
 983			if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
 984			    (efuse_data != 0xFF))
 985				efuse_write_data_case1(hw, &efuse_addr,
 986						       efuse_data, offset,
 987						       &continual,
 988						       &write_state, &target_pkt,
 989						       &repeat_times, &result,
 990						       word_en);
 991			else
 992				efuse_write_data_case2(hw, &efuse_addr,
 993						       &continual,
 994						       &write_state,
 995						       target_pkt,
 996						       &repeat_times,
 997						       &result);
 998
 999		} else if (write_state == PG_STATE_DATA) {
1000			RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1001				"efuse PG_STATE_DATA\n");
1002			badworden =
1003			    efuse_word_enable_data_write(hw, efuse_addr + 1,
1004							 target_pkt.word_en,
1005							 target_pkt.data);
1006
1007			if ((badworden & 0x0F) == 0x0F) {
1008				continual = false;
1009			} else {
1010				efuse_addr += (2 * target_word_cnts) + 1;
1011
1012				target_pkt.offset = offset;
1013				target_pkt.word_en = badworden;
1014				target_word_cnts =
1015				    efuse_calculate_word_cnts(target_pkt.
1016							      word_en);
1017				write_state = PG_STATE_HEADER;
1018				repeat_times++;
1019				if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
1020					continual = false;
1021					result = false;
1022				}
1023				RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1024					"efuse PG_STATE_HEADER-3\n");
1025			}
1026		}
1027	}
1028
1029	if (efuse_addr >= (EFUSE_MAX_SIZE -
1030	    rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
1031		RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1032			 "efuse_addr(%#x) Out of size!!\n", efuse_addr);
1033	}
1034
1035	return true;
1036}
1037
1038static void efuse_word_enable_data_read(u8 word_en,
1039					u8 *sourdata, u8 *targetdata)
1040{
1041	if (!(word_en & BIT(0))) {
1042		targetdata[0] = sourdata[0];
1043		targetdata[1] = sourdata[1];
1044	}
1045
1046	if (!(word_en & BIT(1))) {
1047		targetdata[2] = sourdata[2];
1048		targetdata[3] = sourdata[3];
1049	}
1050
1051	if (!(word_en & BIT(2))) {
1052		targetdata[4] = sourdata[4];
1053		targetdata[5] = sourdata[5];
1054	}
1055
1056	if (!(word_en & BIT(3))) {
1057		targetdata[6] = sourdata[6];
1058		targetdata[7] = sourdata[7];
1059	}
1060}
1061
1062static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
1063				       u16 efuse_addr, u8 word_en, u8 *data)
1064{
1065	struct rtl_priv *rtlpriv = rtl_priv(hw);
1066	u16 tmpaddr;
1067	u16 start_addr = efuse_addr;
1068	u8 badworden = 0x0F;
1069	u8 tmpdata[8];
1070
1071	memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
1072	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "word_en = %x efuse_addr=%x\n",
1073		 word_en, efuse_addr);
1074
1075	if (!(word_en & BIT(0))) {
1076		tmpaddr = start_addr;
1077		efuse_one_byte_write(hw, start_addr++, data[0]);
1078		efuse_one_byte_write(hw, start_addr++, data[1]);
1079
1080		efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
1081		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
1082		if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1083			badworden &= (~BIT(0));
1084	}
1085
1086	if (!(word_en & BIT(1))) {
1087		tmpaddr = start_addr;
1088		efuse_one_byte_write(hw, start_addr++, data[2]);
1089		efuse_one_byte_write(hw, start_addr++, data[3]);
1090
1091		efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
1092		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
1093		if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1094			badworden &= (~BIT(1));
1095	}
1096
1097	if (!(word_en & BIT(2))) {
1098		tmpaddr = start_addr;
1099		efuse_one_byte_write(hw, start_addr++, data[4]);
1100		efuse_one_byte_write(hw, start_addr++, data[5]);
1101
1102		efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
1103		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
1104		if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1105			badworden &= (~BIT(2));
1106	}
1107
1108	if (!(word_en & BIT(3))) {
1109		tmpaddr = start_addr;
1110		efuse_one_byte_write(hw, start_addr++, data[6]);
1111		efuse_one_byte_write(hw, start_addr++, data[7]);
1112
1113		efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
1114		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
1115		if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
1116			badworden &= (~BIT(3));
1117	}
1118
1119	return badworden;
1120}
1121
1122static void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
1123{
1124	struct rtl_priv *rtlpriv = rtl_priv(hw);
1125	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1126	u8 tempval;
1127	u16 tmpV16;
1128
1129	if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) {
1130		if (rtlhal->hw_type == HARDWARE_TYPE_RTL8188EE)
1131			rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_ACCESS],
1132				       0x69);
1133
1134		tmpV16 = rtl_read_word(rtlpriv,
1135				       rtlpriv->cfg->maps[SYS_ISO_CTRL]);
1136		if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
1137			tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
1138			rtl_write_word(rtlpriv,
1139				       rtlpriv->cfg->maps[SYS_ISO_CTRL],
1140				       tmpV16);
1141		}
1142
1143		tmpV16 = rtl_read_word(rtlpriv,
1144				       rtlpriv->cfg->maps[SYS_FUNC_EN]);
1145		if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
1146			tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
1147			rtl_write_word(rtlpriv,
1148				       rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16);
1149		}
1150
1151		tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
1152		if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
1153		    (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
1154			tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
1155				   rtlpriv->cfg->maps[EFUSE_ANA8M]);
1156			rtl_write_word(rtlpriv,
1157				       rtlpriv->cfg->maps[SYS_CLK], tmpV16);
1158		}
1159	}
1160
1161	if (pwrstate) {
1162		if (write) {
1163			tempval = rtl_read_byte(rtlpriv,
1164						rtlpriv->cfg->maps[EFUSE_TEST] +
1165						3);
1166
1167			if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
1168				tempval &= 0x0F;
1169				tempval |= (VOLTAGE_V25 << 4);
1170			}
1171
1172			rtl_write_byte(rtlpriv,
1173				       rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1174				       (tempval | 0x80));
1175		}
1176
1177		if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1178			rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1179						0x03);
1180		}
1181
1182	} else {
1183		if (rtlhal->hw_type == HARDWARE_TYPE_RTL8188EE)
1184			rtl_write_byte(rtlpriv,
1185				       rtlpriv->cfg->maps[EFUSE_ACCESS], 0);
1186
1187		if (write) {
1188			tempval = rtl_read_byte(rtlpriv,
1189						rtlpriv->cfg->maps[EFUSE_TEST] +
1190						3);
1191			rtl_write_byte(rtlpriv,
1192				       rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1193				       (tempval & 0x7F));
1194		}
1195
1196		if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1197			rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1198						0x02);
1199		}
1200
1201	}
1202
1203}
1204
1205static u16 efuse_get_current_size(struct ieee80211_hw *hw)
1206{
1207	u16 efuse_addr = 0;
1208	u8 hworden;
1209	u8 efuse_data, word_cnts;
1210
1211	while (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
1212	       efuse_addr < EFUSE_MAX_SIZE) {
1213		if (efuse_data == 0xFF)
1214			break;
1215
1216		hworden = efuse_data & 0x0F;
1217		word_cnts = efuse_calculate_word_cnts(hworden);
1218		efuse_addr = efuse_addr + (word_cnts * 2) + 1;
1219	}
1220
1221	return efuse_addr;
1222}
1223
1224static u8 efuse_calculate_word_cnts(u8 word_en)
1225{
1226	u8 word_cnts = 0;
1227	if (!(word_en & BIT(0)))
1228		word_cnts++;
1229	if (!(word_en & BIT(1)))
1230		word_cnts++;
1231	if (!(word_en & BIT(2)))
1232		word_cnts++;
1233	if (!(word_en & BIT(3)))
1234		word_cnts++;
1235	return word_cnts;
1236}
1237