Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
   3	<http://rt2x00.serialmonkey.com>
   4
   5	This program is free software; you can redistribute it and/or modify
   6	it under the terms of the GNU General Public License as published by
   7	the Free Software Foundation; either version 2 of the License, or
   8	(at your option) any later version.
   9
  10	This program is distributed in the hope that it will be useful,
  11	but WITHOUT ANY WARRANTY; without even the implied warranty of
  12	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13	GNU General Public License for more details.
  14
  15	You should have received a copy of the GNU General Public License
  16	along with this program; if not, see <http://www.gnu.org/licenses/>.
  17 */
  18
  19/*
  20	Module: rt2500pci
  21	Abstract: rt2500pci device specific routines.
  22	Supported chipsets: RT2560.
  23 */
  24
  25#include <linux/delay.h>
  26#include <linux/etherdevice.h>
  27#include <linux/kernel.h>
  28#include <linux/module.h>
  29#include <linux/pci.h>
  30#include <linux/eeprom_93cx6.h>
  31#include <linux/slab.h>
  32
  33#include "rt2x00.h"
  34#include "rt2x00mmio.h"
  35#include "rt2x00pci.h"
  36#include "rt2500pci.h"
  37
  38/*
  39 * Register access.
  40 * All access to the CSR registers will go through the methods
  41 * rt2x00mmio_register_read and rt2x00mmio_register_write.
  42 * BBP and RF register require indirect register access,
  43 * and use the CSR registers BBPCSR and RFCSR to achieve this.
  44 * These indirect registers work with busy bits,
  45 * and we will try maximal REGISTER_BUSY_COUNT times to access
  46 * the register while taking a REGISTER_BUSY_DELAY us delay
  47 * between each attampt. When the busy bit is still set at that time,
  48 * the access attempt is considered to have failed,
  49 * and we will print an error.
  50 */
  51#define WAIT_FOR_BBP(__dev, __reg) \
  52	rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
  53#define WAIT_FOR_RF(__dev, __reg) \
  54	rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
  55
  56static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  57				const unsigned int word, const u8 value)
  58{
  59	u32 reg;
  60
  61	mutex_lock(&rt2x00dev->csr_mutex);
  62
  63	/*
  64	 * Wait until the BBP becomes available, afterwards we
  65	 * can safely write the new data into the register.
  66	 */
  67	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  68		reg = 0;
  69		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  70		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  71		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  72		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  73
  74		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
  75	}
  76
  77	mutex_unlock(&rt2x00dev->csr_mutex);
  78}
  79
  80static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  81			       const unsigned int word, u8 *value)
  82{
  83	u32 reg;
  84
  85	mutex_lock(&rt2x00dev->csr_mutex);
  86
  87	/*
  88	 * Wait until the BBP becomes available, afterwards we
  89	 * can safely write the read request into the register.
  90	 * After the data has been written, we wait until hardware
  91	 * returns the correct value, if at any time the register
  92	 * doesn't become available in time, reg will be 0xffffffff
  93	 * which means we return 0xff to the caller.
  94	 */
  95	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  96		reg = 0;
  97		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  98		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  99		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
 100
 101		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
 102
 103		WAIT_FOR_BBP(rt2x00dev, &reg);
 104	}
 105
 106	*value = rt2x00_get_field32(reg, BBPCSR_VALUE);
 107
 108	mutex_unlock(&rt2x00dev->csr_mutex);
 109}
 110
 111static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
 112			       const unsigned int word, const u32 value)
 113{
 114	u32 reg;
 115
 116	mutex_lock(&rt2x00dev->csr_mutex);
 117
 118	/*
 119	 * Wait until the RF becomes available, afterwards we
 120	 * can safely write the new data into the register.
 121	 */
 122	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
 123		reg = 0;
 124		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
 125		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
 126		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
 127		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
 128
 129		rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
 130		rt2x00_rf_write(rt2x00dev, word, value);
 131	}
 132
 133	mutex_unlock(&rt2x00dev->csr_mutex);
 134}
 135
 136static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
 137{
 138	struct rt2x00_dev *rt2x00dev = eeprom->data;
 139	u32 reg;
 140
 141	rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
 142
 143	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
 144	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
 145	eeprom->reg_data_clock =
 146	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
 147	eeprom->reg_chip_select =
 148	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
 149}
 150
 151static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
 152{
 153	struct rt2x00_dev *rt2x00dev = eeprom->data;
 154	u32 reg = 0;
 155
 156	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
 157	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
 158	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
 159			   !!eeprom->reg_data_clock);
 160	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
 161			   !!eeprom->reg_chip_select);
 162
 163	rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
 164}
 165
 166#ifdef CONFIG_RT2X00_LIB_DEBUGFS
 167static const struct rt2x00debug rt2500pci_rt2x00debug = {
 168	.owner	= THIS_MODULE,
 169	.csr	= {
 170		.read		= rt2x00mmio_register_read,
 171		.write		= rt2x00mmio_register_write,
 172		.flags		= RT2X00DEBUGFS_OFFSET,
 173		.word_base	= CSR_REG_BASE,
 174		.word_size	= sizeof(u32),
 175		.word_count	= CSR_REG_SIZE / sizeof(u32),
 176	},
 177	.eeprom	= {
 178		.read		= rt2x00_eeprom_read,
 179		.write		= rt2x00_eeprom_write,
 180		.word_base	= EEPROM_BASE,
 181		.word_size	= sizeof(u16),
 182		.word_count	= EEPROM_SIZE / sizeof(u16),
 183	},
 184	.bbp	= {
 185		.read		= rt2500pci_bbp_read,
 186		.write		= rt2500pci_bbp_write,
 187		.word_base	= BBP_BASE,
 188		.word_size	= sizeof(u8),
 189		.word_count	= BBP_SIZE / sizeof(u8),
 190	},
 191	.rf	= {
 192		.read		= rt2x00_rf_read,
 193		.write		= rt2500pci_rf_write,
 194		.word_base	= RF_BASE,
 195		.word_size	= sizeof(u32),
 196		.word_count	= RF_SIZE / sizeof(u32),
 197	},
 198};
 199#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 200
 201static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 202{
 203	u32 reg;
 204
 205	rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
 206	return rt2x00_get_field32(reg, GPIOCSR_VAL0);
 207}
 208
 209#ifdef CONFIG_RT2X00_LIB_LEDS
 210static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
 211				     enum led_brightness brightness)
 212{
 213	struct rt2x00_led *led =
 214	    container_of(led_cdev, struct rt2x00_led, led_dev);
 215	unsigned int enabled = brightness != LED_OFF;
 216	u32 reg;
 217
 218	rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
 219
 220	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
 221		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
 222	else if (led->type == LED_TYPE_ACTIVITY)
 223		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
 224
 225	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
 226}
 227
 228static int rt2500pci_blink_set(struct led_classdev *led_cdev,
 229			       unsigned long *delay_on,
 230			       unsigned long *delay_off)
 231{
 232	struct rt2x00_led *led =
 233	    container_of(led_cdev, struct rt2x00_led, led_dev);
 234	u32 reg;
 235
 236	rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
 237	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
 238	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
 239	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
 240
 241	return 0;
 242}
 243
 244static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
 245			       struct rt2x00_led *led,
 246			       enum led_type type)
 247{
 248	led->rt2x00dev = rt2x00dev;
 249	led->type = type;
 250	led->led_dev.brightness_set = rt2500pci_brightness_set;
 251	led->led_dev.blink_set = rt2500pci_blink_set;
 252	led->flags = LED_INITIALIZED;
 253}
 254#endif /* CONFIG_RT2X00_LIB_LEDS */
 255
 256/*
 257 * Configuration handlers.
 258 */
 259static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
 260				    const unsigned int filter_flags)
 261{
 262	u32 reg;
 263
 264	/*
 265	 * Start configuration steps.
 266	 * Note that the version error will always be dropped
 267	 * and broadcast frames will always be accepted since
 268	 * there is no filter for it at this time.
 269	 */
 270	rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
 271	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
 272			   !(filter_flags & FIF_FCSFAIL));
 273	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
 274			   !(filter_flags & FIF_PLCPFAIL));
 275	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
 276			   !(filter_flags & FIF_CONTROL));
 277	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
 278			   !(filter_flags & FIF_PROMISC_IN_BSS));
 279	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
 280			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
 281			   !rt2x00dev->intf_ap_count);
 282	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
 283	rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
 284			   !(filter_flags & FIF_ALLMULTI));
 285	rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
 286	rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
 287}
 288
 289static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
 290				  struct rt2x00_intf *intf,
 291				  struct rt2x00intf_conf *conf,
 292				  const unsigned int flags)
 293{
 294	struct data_queue *queue = rt2x00dev->bcn;
 295	unsigned int bcn_preload;
 296	u32 reg;
 297
 298	if (flags & CONFIG_UPDATE_TYPE) {
 299		/*
 300		 * Enable beacon config
 301		 */
 302		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
 303		rt2x00mmio_register_read(rt2x00dev, BCNCSR1, &reg);
 304		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
 305		rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
 306		rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
 307
 308		/*
 309		 * Enable synchronisation.
 310		 */
 311		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
 312		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
 313		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 314	}
 315
 316	if (flags & CONFIG_UPDATE_MAC)
 317		rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
 318					      conf->mac, sizeof(conf->mac));
 319
 320	if (flags & CONFIG_UPDATE_BSSID)
 321		rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
 322					      conf->bssid, sizeof(conf->bssid));
 323}
 324
 325static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
 326				 struct rt2x00lib_erp *erp,
 327				 u32 changed)
 328{
 329	int preamble_mask;
 330	u32 reg;
 331
 332	/*
 333	 * When short preamble is enabled, we should set bit 0x08
 334	 */
 335	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 336		preamble_mask = erp->short_preamble << 3;
 337
 338		rt2x00mmio_register_read(rt2x00dev, TXCSR1, &reg);
 339		rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
 340		rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
 341		rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
 342		rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
 343		rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
 344
 345		rt2x00mmio_register_read(rt2x00dev, ARCSR2, &reg);
 346		rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
 347		rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
 348		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 349				   GET_DURATION(ACK_SIZE, 10));
 350		rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
 351
 352		rt2x00mmio_register_read(rt2x00dev, ARCSR3, &reg);
 353		rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
 354		rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
 355		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 356				   GET_DURATION(ACK_SIZE, 20));
 357		rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
 358
 359		rt2x00mmio_register_read(rt2x00dev, ARCSR4, &reg);
 360		rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
 361		rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
 362		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 363				   GET_DURATION(ACK_SIZE, 55));
 364		rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
 365
 366		rt2x00mmio_register_read(rt2x00dev, ARCSR5, &reg);
 367		rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
 368		rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
 369		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 370				   GET_DURATION(ACK_SIZE, 110));
 371		rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
 372	}
 373
 374	if (changed & BSS_CHANGED_BASIC_RATES)
 375		rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
 376
 377	if (changed & BSS_CHANGED_ERP_SLOT) {
 378		rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
 379		rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
 380		rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
 381
 382		rt2x00mmio_register_read(rt2x00dev, CSR18, &reg);
 383		rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
 384		rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
 385		rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
 386
 387		rt2x00mmio_register_read(rt2x00dev, CSR19, &reg);
 388		rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
 389		rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
 390		rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
 391	}
 392
 393	if (changed & BSS_CHANGED_BEACON_INT) {
 394		rt2x00mmio_register_read(rt2x00dev, CSR12, &reg);
 395		rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
 396				   erp->beacon_int * 16);
 397		rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
 398				   erp->beacon_int * 16);
 399		rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
 400	}
 401
 402}
 403
 404static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
 405				 struct antenna_setup *ant)
 406{
 407	u32 reg;
 408	u8 r14;
 409	u8 r2;
 410
 411	/*
 412	 * We should never come here because rt2x00lib is supposed
 413	 * to catch this and send us the correct antenna explicitely.
 414	 */
 415	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 416	       ant->tx == ANTENNA_SW_DIVERSITY);
 417
 418	rt2x00mmio_register_read(rt2x00dev, BBPCSR1, &reg);
 419	rt2500pci_bbp_read(rt2x00dev, 14, &r14);
 420	rt2500pci_bbp_read(rt2x00dev, 2, &r2);
 421
 422	/*
 423	 * Configure the TX antenna.
 424	 */
 425	switch (ant->tx) {
 426	case ANTENNA_A:
 427		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
 428		rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
 429		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
 430		break;
 431	case ANTENNA_B:
 432	default:
 433		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
 434		rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
 435		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
 436		break;
 437	}
 438
 439	/*
 440	 * Configure the RX antenna.
 441	 */
 442	switch (ant->rx) {
 443	case ANTENNA_A:
 444		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
 445		break;
 446	case ANTENNA_B:
 447	default:
 448		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
 449		break;
 450	}
 451
 452	/*
 453	 * RT2525E and RT5222 need to flip TX I/Q
 454	 */
 455	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
 456		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
 457		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
 458		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
 459
 460		/*
 461		 * RT2525E does not need RX I/Q Flip.
 462		 */
 463		if (rt2x00_rf(rt2x00dev, RF2525E))
 464			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
 465	} else {
 466		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
 467		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
 468	}
 469
 470	rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg);
 471	rt2500pci_bbp_write(rt2x00dev, 14, r14);
 472	rt2500pci_bbp_write(rt2x00dev, 2, r2);
 473}
 474
 475static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
 476				     struct rf_channel *rf, const int txpower)
 477{
 478	u8 r70;
 479
 480	/*
 481	 * Set TXpower.
 482	 */
 483	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 484
 485	/*
 486	 * Switch on tuning bits.
 487	 * For RT2523 devices we do not need to update the R1 register.
 488	 */
 489	if (!rt2x00_rf(rt2x00dev, RF2523))
 490		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
 491	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
 492
 493	/*
 494	 * For RT2525 we should first set the channel to half band higher.
 495	 */
 496	if (rt2x00_rf(rt2x00dev, RF2525)) {
 497		static const u32 vals[] = {
 498			0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
 499			0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
 500			0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
 501			0x00080d2e, 0x00080d3a
 502		};
 503
 504		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
 505		rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
 506		rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
 507		if (rf->rf4)
 508			rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
 509	}
 510
 511	rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
 512	rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
 513	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
 514	if (rf->rf4)
 515		rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
 516
 517	/*
 518	 * Channel 14 requires the Japan filter bit to be set.
 519	 */
 520	r70 = 0x46;
 521	rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
 522	rt2500pci_bbp_write(rt2x00dev, 70, r70);
 523
 524	msleep(1);
 525
 526	/*
 527	 * Switch off tuning bits.
 528	 * For RT2523 devices we do not need to update the R1 register.
 529	 */
 530	if (!rt2x00_rf(rt2x00dev, RF2523)) {
 531		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
 532		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
 533	}
 534
 535	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
 536	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
 537
 538	/*
 539	 * Clear false CRC during channel switch.
 540	 */
 541	rt2x00mmio_register_read(rt2x00dev, CNT0, &rf->rf1);
 542}
 543
 544static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
 545				     const int txpower)
 546{
 547	u32 rf3;
 548
 549	rt2x00_rf_read(rt2x00dev, 3, &rf3);
 550	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 551	rt2500pci_rf_write(rt2x00dev, 3, rf3);
 552}
 553
 554static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
 555					 struct rt2x00lib_conf *libconf)
 556{
 557	u32 reg;
 558
 559	rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
 560	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
 561			   libconf->conf->long_frame_max_tx_count);
 562	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
 563			   libconf->conf->short_frame_max_tx_count);
 564	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
 565}
 566
 567static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
 568				struct rt2x00lib_conf *libconf)
 569{
 570	enum dev_state state =
 571	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
 572		STATE_SLEEP : STATE_AWAKE;
 573	u32 reg;
 574
 575	if (state == STATE_SLEEP) {
 576		rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
 577		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
 578				   (rt2x00dev->beacon_int - 20) * 16);
 579		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
 580				   libconf->conf->listen_interval - 1);
 581
 582		/* We must first disable autowake before it can be enabled */
 583		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
 584		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
 585
 586		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
 587		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
 588	} else {
 589		rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
 590		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
 591		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
 592	}
 593
 594	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
 595}
 596
 597static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
 598			     struct rt2x00lib_conf *libconf,
 599			     const unsigned int flags)
 600{
 601	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 602		rt2500pci_config_channel(rt2x00dev, &libconf->rf,
 603					 libconf->conf->power_level);
 604	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
 605	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
 606		rt2500pci_config_txpower(rt2x00dev,
 607					 libconf->conf->power_level);
 608	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
 609		rt2500pci_config_retry_limit(rt2x00dev, libconf);
 610	if (flags & IEEE80211_CONF_CHANGE_PS)
 611		rt2500pci_config_ps(rt2x00dev, libconf);
 612}
 613
 614/*
 615 * Link tuning
 616 */
 617static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
 618				 struct link_qual *qual)
 619{
 620	u32 reg;
 621
 622	/*
 623	 * Update FCS error count from register.
 624	 */
 625	rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
 626	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
 627
 628	/*
 629	 * Update False CCA count from register.
 630	 */
 631	rt2x00mmio_register_read(rt2x00dev, CNT3, &reg);
 632	qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
 633}
 634
 635static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
 636				     struct link_qual *qual, u8 vgc_level)
 637{
 638	if (qual->vgc_level_reg != vgc_level) {
 639		rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
 640		qual->vgc_level = vgc_level;
 641		qual->vgc_level_reg = vgc_level;
 642	}
 643}
 644
 645static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
 646				  struct link_qual *qual)
 647{
 648	rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
 649}
 650
 651static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
 652				 struct link_qual *qual, const u32 count)
 653{
 654	/*
 655	 * To prevent collisions with MAC ASIC on chipsets
 656	 * up to version C the link tuning should halt after 20
 657	 * seconds while being associated.
 658	 */
 659	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
 660	    rt2x00dev->intf_associated && count > 20)
 661		return;
 662
 663	/*
 664	 * Chipset versions C and lower should directly continue
 665	 * to the dynamic CCA tuning. Chipset version D and higher
 666	 * should go straight to dynamic CCA tuning when they
 667	 * are not associated.
 668	 */
 669	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
 670	    !rt2x00dev->intf_associated)
 671		goto dynamic_cca_tune;
 672
 673	/*
 674	 * A too low RSSI will cause too much false CCA which will
 675	 * then corrupt the R17 tuning. To remidy this the tuning should
 676	 * be stopped (While making sure the R17 value will not exceed limits)
 677	 */
 678	if (qual->rssi < -80 && count > 20) {
 679		if (qual->vgc_level_reg >= 0x41)
 680			rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
 681		return;
 682	}
 683
 684	/*
 685	 * Special big-R17 for short distance
 686	 */
 687	if (qual->rssi >= -58) {
 688		rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
 689		return;
 690	}
 691
 692	/*
 693	 * Special mid-R17 for middle distance
 694	 */
 695	if (qual->rssi >= -74) {
 696		rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
 697		return;
 698	}
 699
 700	/*
 701	 * Leave short or middle distance condition, restore r17
 702	 * to the dynamic tuning range.
 703	 */
 704	if (qual->vgc_level_reg >= 0x41) {
 705		rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
 706		return;
 707	}
 708
 709dynamic_cca_tune:
 710
 711	/*
 712	 * R17 is inside the dynamic tuning range,
 713	 * start tuning the link based on the false cca counter.
 714	 */
 715	if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
 716		rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
 717	else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
 718		rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
 719}
 720
 721/*
 722 * Queue handlers.
 723 */
 724static void rt2500pci_start_queue(struct data_queue *queue)
 725{
 726	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 727	u32 reg;
 728
 729	switch (queue->qid) {
 730	case QID_RX:
 731		rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
 732		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
 733		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
 734		break;
 735	case QID_BEACON:
 736		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
 737		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
 738		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
 739		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
 740		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 741		break;
 742	default:
 743		break;
 744	}
 745}
 746
 747static void rt2500pci_kick_queue(struct data_queue *queue)
 748{
 749	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 750	u32 reg;
 751
 752	switch (queue->qid) {
 753	case QID_AC_VO:
 754		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
 755		rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
 756		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
 757		break;
 758	case QID_AC_VI:
 759		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
 760		rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
 761		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
 762		break;
 763	case QID_ATIM:
 764		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
 765		rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
 766		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
 767		break;
 768	default:
 769		break;
 770	}
 771}
 772
 773static void rt2500pci_stop_queue(struct data_queue *queue)
 774{
 775	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 776	u32 reg;
 777
 778	switch (queue->qid) {
 779	case QID_AC_VO:
 780	case QID_AC_VI:
 781	case QID_ATIM:
 782		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
 783		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
 784		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
 785		break;
 786	case QID_RX:
 787		rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
 788		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
 789		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
 790		break;
 791	case QID_BEACON:
 792		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
 793		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
 794		rt2x00_set_field32(&reg, CSR14_TBCN, 0);
 795		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
 796		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 797
 798		/*
 799		 * Wait for possibly running tbtt tasklets.
 800		 */
 801		tasklet_kill(&rt2x00dev->tbtt_tasklet);
 802		break;
 803	default:
 804		break;
 805	}
 806}
 807
 808/*
 809 * Initialization functions.
 810 */
 811static bool rt2500pci_get_entry_state(struct queue_entry *entry)
 812{
 813	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
 814	u32 word;
 815
 816	if (entry->queue->qid == QID_RX) {
 817		rt2x00_desc_read(entry_priv->desc, 0, &word);
 818
 819		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
 820	} else {
 821		rt2x00_desc_read(entry_priv->desc, 0, &word);
 822
 823		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
 824		        rt2x00_get_field32(word, TXD_W0_VALID));
 825	}
 826}
 827
 828static void rt2500pci_clear_entry(struct queue_entry *entry)
 829{
 830	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
 831	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 832	u32 word;
 833
 834	if (entry->queue->qid == QID_RX) {
 835		rt2x00_desc_read(entry_priv->desc, 1, &word);
 836		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
 837		rt2x00_desc_write(entry_priv->desc, 1, word);
 838
 839		rt2x00_desc_read(entry_priv->desc, 0, &word);
 840		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
 841		rt2x00_desc_write(entry_priv->desc, 0, word);
 842	} else {
 843		rt2x00_desc_read(entry_priv->desc, 0, &word);
 844		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
 845		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
 846		rt2x00_desc_write(entry_priv->desc, 0, word);
 847	}
 848}
 849
 850static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
 851{
 852	struct queue_entry_priv_mmio *entry_priv;
 853	u32 reg;
 854
 855	/*
 856	 * Initialize registers.
 857	 */
 858	rt2x00mmio_register_read(rt2x00dev, TXCSR2, &reg);
 859	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
 860	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
 861	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
 862	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
 863	rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
 864
 865	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
 866	rt2x00mmio_register_read(rt2x00dev, TXCSR3, &reg);
 867	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
 868			   entry_priv->desc_dma);
 869	rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
 870
 871	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
 872	rt2x00mmio_register_read(rt2x00dev, TXCSR5, &reg);
 873	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
 874			   entry_priv->desc_dma);
 875	rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
 876
 877	entry_priv = rt2x00dev->atim->entries[0].priv_data;
 878	rt2x00mmio_register_read(rt2x00dev, TXCSR4, &reg);
 879	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
 880			   entry_priv->desc_dma);
 881	rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
 882
 883	entry_priv = rt2x00dev->bcn->entries[0].priv_data;
 884	rt2x00mmio_register_read(rt2x00dev, TXCSR6, &reg);
 885	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
 886			   entry_priv->desc_dma);
 887	rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
 888
 889	rt2x00mmio_register_read(rt2x00dev, RXCSR1, &reg);
 890	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
 891	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
 892	rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
 893
 894	entry_priv = rt2x00dev->rx->entries[0].priv_data;
 895	rt2x00mmio_register_read(rt2x00dev, RXCSR2, &reg);
 896	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
 897			   entry_priv->desc_dma);
 898	rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
 899
 900	return 0;
 901}
 902
 903static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
 904{
 905	u32 reg;
 906
 907	rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
 908	rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
 909	rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002);
 910	rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
 911
 912	rt2x00mmio_register_read(rt2x00dev, TIMECSR, &reg);
 913	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
 914	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
 915	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
 916	rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
 917
 918	rt2x00mmio_register_read(rt2x00dev, CSR9, &reg);
 919	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
 920			   rt2x00dev->rx->data_size / 128);
 921	rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
 922
 923	/*
 924	 * Always use CWmin and CWmax set in descriptor.
 925	 */
 926	rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
 927	rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
 928	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
 929
 930	rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
 931	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
 932	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
 933	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
 934	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
 935	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
 936	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
 937	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
 938	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
 939	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 940
 941	rt2x00mmio_register_write(rt2x00dev, CNT3, 0);
 942
 943	rt2x00mmio_register_read(rt2x00dev, TXCSR8, &reg);
 944	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
 945	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
 946	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
 947	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
 948	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
 949	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
 950	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
 951	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
 952	rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg);
 953
 954	rt2x00mmio_register_read(rt2x00dev, ARTCSR0, &reg);
 955	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
 956	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
 957	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
 958	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
 959	rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg);
 960
 961	rt2x00mmio_register_read(rt2x00dev, ARTCSR1, &reg);
 962	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
 963	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
 964	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
 965	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
 966	rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg);
 967
 968	rt2x00mmio_register_read(rt2x00dev, ARTCSR2, &reg);
 969	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
 970	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
 971	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
 972	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
 973	rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg);
 974
 975	rt2x00mmio_register_read(rt2x00dev, RXCSR3, &reg);
 976	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
 977	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
 978	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
 979	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
 980	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
 981	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
 982	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
 983	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
 984	rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
 985
 986	rt2x00mmio_register_read(rt2x00dev, PCICSR, &reg);
 987	rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
 988	rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
 989	rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
 990	rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
 991	rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
 992	rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
 993	rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
 994	rt2x00mmio_register_write(rt2x00dev, PCICSR, reg);
 995
 996	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
 997
 998	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
 999	rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0);
1000
1001	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1002		return -EBUSY;
1003
1004	rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223);
1005	rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
1006
1007	rt2x00mmio_register_read(rt2x00dev, MACCSR2, &reg);
1008	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
1009	rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
1010
1011	rt2x00mmio_register_read(rt2x00dev, RALINKCSR, &reg);
1012	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
1013	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
1014	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
1015	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
1016	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
1017	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
1018	rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
1019
1020	rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200);
1021
1022	rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
1023
1024	rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
1025	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
1026	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
1027	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
1028	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1029
1030	rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
1031	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
1032	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
1033	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1034
1035	/*
1036	 * We must clear the FCS and FIFO error count.
1037	 * These registers are cleared on read,
1038	 * so we may pass a useless variable to store the value.
1039	 */
1040	rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
1041	rt2x00mmio_register_read(rt2x00dev, CNT4, &reg);
1042
1043	return 0;
1044}
1045
1046static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1047{
1048	unsigned int i;
1049	u8 value;
1050
1051	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1052		rt2500pci_bbp_read(rt2x00dev, 0, &value);
1053		if ((value != 0xff) && (value != 0x00))
1054			return 0;
1055		udelay(REGISTER_BUSY_DELAY);
1056	}
1057
1058	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1059	return -EACCES;
1060}
1061
1062static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1063{
1064	unsigned int i;
1065	u16 eeprom;
1066	u8 reg_id;
1067	u8 value;
1068
1069	if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
1070		return -EACCES;
1071
1072	rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
1073	rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
1074	rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
1075	rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
1076	rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
1077	rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
1078	rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
1079	rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
1080	rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
1081	rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
1082	rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1083	rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1084	rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1085	rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1086	rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1087	rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1088	rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1089	rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1090	rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1091	rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1092	rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1093	rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1094	rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1095	rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1096	rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1097	rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1098	rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1099	rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1100	rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1101	rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1102
1103	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1104		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1105
1106		if (eeprom != 0xffff && eeprom != 0x0000) {
1107			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1108			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1109			rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1110		}
1111	}
1112
1113	return 0;
1114}
1115
1116/*
1117 * Device state switch handlers.
1118 */
1119static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1120				 enum dev_state state)
1121{
1122	int mask = (state == STATE_RADIO_IRQ_OFF);
1123	u32 reg;
1124	unsigned long flags;
1125
1126	/*
1127	 * When interrupts are being enabled, the interrupt registers
1128	 * should clear the register to assure a clean state.
1129	 */
1130	if (state == STATE_RADIO_IRQ_ON) {
1131		rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
1132		rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1133	}
1134
1135	/*
1136	 * Only toggle the interrupts bits we are going to use.
1137	 * Non-checked interrupt bits are disabled by default.
1138	 */
1139	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1140
1141	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1142	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1143	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1144	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1145	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1146	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1147	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1148
1149	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1150
1151	if (state == STATE_RADIO_IRQ_OFF) {
1152		/*
1153		 * Ensure that all tasklets are finished.
1154		 */
1155		tasklet_kill(&rt2x00dev->txstatus_tasklet);
1156		tasklet_kill(&rt2x00dev->rxdone_tasklet);
1157		tasklet_kill(&rt2x00dev->tbtt_tasklet);
1158	}
1159}
1160
1161static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1162{
1163	/*
1164	 * Initialize all registers.
1165	 */
1166	if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1167		     rt2500pci_init_registers(rt2x00dev) ||
1168		     rt2500pci_init_bbp(rt2x00dev)))
1169		return -EIO;
1170
1171	return 0;
1172}
1173
1174static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1175{
1176	/*
1177	 * Disable power
1178	 */
1179	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
1180}
1181
1182static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1183			       enum dev_state state)
1184{
1185	u32 reg, reg2;
1186	unsigned int i;
1187	char put_to_sleep;
1188	char bbp_state;
1189	char rf_state;
1190
1191	put_to_sleep = (state != STATE_AWAKE);
1192
1193	rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg);
1194	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1195	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1196	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1197	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1198	rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1199
1200	/*
1201	 * Device is not guaranteed to be in the requested state yet.
1202	 * We must wait until the register indicates that the
1203	 * device has entered the correct state.
1204	 */
1205	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1206		rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg2);
1207		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1208		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1209		if (bbp_state == state && rf_state == state)
1210			return 0;
1211		rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1212		msleep(10);
1213	}
1214
1215	return -EBUSY;
1216}
1217
1218static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1219				      enum dev_state state)
1220{
1221	int retval = 0;
1222
1223	switch (state) {
1224	case STATE_RADIO_ON:
1225		retval = rt2500pci_enable_radio(rt2x00dev);
1226		break;
1227	case STATE_RADIO_OFF:
1228		rt2500pci_disable_radio(rt2x00dev);
1229		break;
1230	case STATE_RADIO_IRQ_ON:
1231	case STATE_RADIO_IRQ_OFF:
1232		rt2500pci_toggle_irq(rt2x00dev, state);
1233		break;
1234	case STATE_DEEP_SLEEP:
1235	case STATE_SLEEP:
1236	case STATE_STANDBY:
1237	case STATE_AWAKE:
1238		retval = rt2500pci_set_state(rt2x00dev, state);
1239		break;
1240	default:
1241		retval = -ENOTSUPP;
1242		break;
1243	}
1244
1245	if (unlikely(retval))
1246		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1247			   state, retval);
1248
1249	return retval;
1250}
1251
1252/*
1253 * TX descriptor initialization
1254 */
1255static void rt2500pci_write_tx_desc(struct queue_entry *entry,
1256				    struct txentry_desc *txdesc)
1257{
1258	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1259	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1260	__le32 *txd = entry_priv->desc;
1261	u32 word;
1262
1263	/*
1264	 * Start writing the descriptor words.
1265	 */
1266	rt2x00_desc_read(txd, 1, &word);
1267	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1268	rt2x00_desc_write(txd, 1, word);
1269
1270	rt2x00_desc_read(txd, 2, &word);
1271	rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1272	rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
1273	rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
1274	rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
1275	rt2x00_desc_write(txd, 2, word);
1276
1277	rt2x00_desc_read(txd, 3, &word);
1278	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1279	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1280	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
1281			   txdesc->u.plcp.length_low);
1282	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
1283			   txdesc->u.plcp.length_high);
1284	rt2x00_desc_write(txd, 3, word);
1285
1286	rt2x00_desc_read(txd, 10, &word);
1287	rt2x00_set_field32(&word, TXD_W10_RTS,
1288			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1289	rt2x00_desc_write(txd, 10, word);
1290
1291	/*
1292	 * Writing TXD word 0 must the last to prevent a race condition with
1293	 * the device, whereby the device may take hold of the TXD before we
1294	 * finished updating it.
1295	 */
1296	rt2x00_desc_read(txd, 0, &word);
1297	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1298	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1299	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1300			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1301	rt2x00_set_field32(&word, TXD_W0_ACK,
1302			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1303	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1304			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1305	rt2x00_set_field32(&word, TXD_W0_OFDM,
1306			   (txdesc->rate_mode == RATE_MODE_OFDM));
1307	rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1308	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1309	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1310			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1311	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1312	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1313	rt2x00_desc_write(txd, 0, word);
1314
1315	/*
1316	 * Register descriptor details in skb frame descriptor.
1317	 */
1318	skbdesc->desc = txd;
1319	skbdesc->desc_len = TXD_DESC_SIZE;
1320}
1321
1322/*
1323 * TX data initialization
1324 */
1325static void rt2500pci_write_beacon(struct queue_entry *entry,
1326				   struct txentry_desc *txdesc)
1327{
1328	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1329	u32 reg;
1330
1331	/*
1332	 * Disable beaconing while we are reloading the beacon data,
1333	 * otherwise we might be sending out invalid data.
1334	 */
1335	rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
1336	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1337	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1338
1339	if (rt2x00queue_map_txskb(entry)) {
1340		rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
1341		goto out;
1342	}
1343
1344	/*
1345	 * Write the TX descriptor for the beacon.
1346	 */
1347	rt2500pci_write_tx_desc(entry, txdesc);
1348
1349	/*
1350	 * Dump beacon to userspace through debugfs.
1351	 */
1352	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1353out:
1354	/*
1355	 * Enable beaconing again.
1356	 */
1357	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1358	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1359}
1360
1361/*
1362 * RX control handlers
1363 */
1364static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1365				  struct rxdone_entry_desc *rxdesc)
1366{
1367	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1368	u32 word0;
1369	u32 word2;
1370
1371	rt2x00_desc_read(entry_priv->desc, 0, &word0);
1372	rt2x00_desc_read(entry_priv->desc, 2, &word2);
1373
1374	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1375		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1376	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1377		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1378
1379	/*
1380	 * Obtain the status about this packet.
1381	 * When frame was received with an OFDM bitrate,
1382	 * the signal is the PLCP value. If it was received with
1383	 * a CCK bitrate the signal is the rate in 100kbit/s.
1384	 */
1385	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1386	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1387	    entry->queue->rt2x00dev->rssi_offset;
1388	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1389
1390	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1391		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1392	else
1393		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1394	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1395		rxdesc->dev_flags |= RXDONE_MY_BSS;
1396}
1397
1398/*
1399 * Interrupt functions.
1400 */
1401static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1402			     const enum data_queue_qid queue_idx)
1403{
1404	struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1405	struct queue_entry_priv_mmio *entry_priv;
1406	struct queue_entry *entry;
1407	struct txdone_entry_desc txdesc;
1408	u32 word;
1409
1410	while (!rt2x00queue_empty(queue)) {
1411		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1412		entry_priv = entry->priv_data;
1413		rt2x00_desc_read(entry_priv->desc, 0, &word);
1414
1415		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1416		    !rt2x00_get_field32(word, TXD_W0_VALID))
1417			break;
1418
1419		/*
1420		 * Obtain the status about this packet.
1421		 */
1422		txdesc.flags = 0;
1423		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1424		case 0: /* Success */
1425		case 1: /* Success with retry */
1426			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
1427			break;
1428		case 2: /* Failure, excessive retries */
1429			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1430			/* Don't break, this is a failed frame! */
1431		default: /* Failure */
1432			__set_bit(TXDONE_FAILURE, &txdesc.flags);
1433		}
1434		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1435
1436		rt2x00lib_txdone(entry, &txdesc);
1437	}
1438}
1439
1440static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1441					      struct rt2x00_field32 irq_field)
1442{
1443	u32 reg;
1444
1445	/*
1446	 * Enable a single interrupt. The interrupt mask register
1447	 * access needs locking.
1448	 */
1449	spin_lock_irq(&rt2x00dev->irqmask_lock);
1450
1451	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1452	rt2x00_set_field32(&reg, irq_field, 0);
1453	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1454
1455	spin_unlock_irq(&rt2x00dev->irqmask_lock);
1456}
1457
1458static void rt2500pci_txstatus_tasklet(unsigned long data)
1459{
1460	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1461	u32 reg;
1462
1463	/*
1464	 * Handle all tx queues.
1465	 */
1466	rt2500pci_txdone(rt2x00dev, QID_ATIM);
1467	rt2500pci_txdone(rt2x00dev, QID_AC_VO);
1468	rt2500pci_txdone(rt2x00dev, QID_AC_VI);
1469
1470	/*
1471	 * Enable all TXDONE interrupts again.
1472	 */
1473	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1474		spin_lock_irq(&rt2x00dev->irqmask_lock);
1475
1476		rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1477		rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1478		rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1479		rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1480		rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1481
1482		spin_unlock_irq(&rt2x00dev->irqmask_lock);
1483	}
1484}
1485
1486static void rt2500pci_tbtt_tasklet(unsigned long data)
1487{
1488	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1489	rt2x00lib_beacondone(rt2x00dev);
1490	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1491		rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1492}
1493
1494static void rt2500pci_rxdone_tasklet(unsigned long data)
1495{
1496	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1497	if (rt2x00mmio_rxdone(rt2x00dev))
1498		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1499	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1500		rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1501}
1502
1503static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1504{
1505	struct rt2x00_dev *rt2x00dev = dev_instance;
1506	u32 reg, mask;
1507
1508	/*
1509	 * Get the interrupt sources & saved to local variable.
1510	 * Write register value back to clear pending interrupts.
1511	 */
1512	rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
1513	rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1514
1515	if (!reg)
1516		return IRQ_NONE;
1517
1518	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1519		return IRQ_HANDLED;
1520
1521	mask = reg;
1522
1523	/*
1524	 * Schedule tasklets for interrupt handling.
1525	 */
1526	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1527		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1528
1529	if (rt2x00_get_field32(reg, CSR7_RXDONE))
1530		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1531
1532	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1533	    rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1534	    rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1535		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1536		/*
1537		 * Mask out all txdone interrupts.
1538		 */
1539		rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1540		rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1541		rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1542	}
1543
1544	/*
1545	 * Disable all interrupts for which a tasklet was scheduled right now,
1546	 * the tasklet will reenable the appropriate interrupts.
1547	 */
1548	spin_lock(&rt2x00dev->irqmask_lock);
1549
1550	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1551	reg |= mask;
1552	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1553
1554	spin_unlock(&rt2x00dev->irqmask_lock);
1555
1556	return IRQ_HANDLED;
1557}
1558
1559/*
1560 * Device probe functions.
1561 */
1562static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1563{
1564	struct eeprom_93cx6 eeprom;
1565	u32 reg;
1566	u16 word;
1567	u8 *mac;
1568
1569	rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
1570
1571	eeprom.data = rt2x00dev;
1572	eeprom.register_read = rt2500pci_eepromregister_read;
1573	eeprom.register_write = rt2500pci_eepromregister_write;
1574	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1575	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1576	eeprom.reg_data_in = 0;
1577	eeprom.reg_data_out = 0;
1578	eeprom.reg_data_clock = 0;
1579	eeprom.reg_chip_select = 0;
1580
1581	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1582			       EEPROM_SIZE / sizeof(u16));
1583
1584	/*
1585	 * Start validation of the data that has been read.
1586	 */
1587	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1588	if (!is_valid_ether_addr(mac)) {
1589		eth_random_addr(mac);
1590		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1591	}
1592
1593	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1594	if (word == 0xffff) {
1595		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1596		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1597				   ANTENNA_SW_DIVERSITY);
1598		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1599				   ANTENNA_SW_DIVERSITY);
1600		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1601				   LED_MODE_DEFAULT);
1602		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1603		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1604		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1605		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1606		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1607	}
1608
1609	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1610	if (word == 0xffff) {
1611		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1612		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1613		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1614		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1615		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1616	}
1617
1618	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1619	if (word == 0xffff) {
1620		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1621				   DEFAULT_RSSI_OFFSET);
1622		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1623		rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1624				  word);
1625	}
1626
1627	return 0;
1628}
1629
1630static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1631{
1632	u32 reg;
1633	u16 value;
1634	u16 eeprom;
1635
1636	/*
1637	 * Read EEPROM word for configuration.
1638	 */
1639	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1640
1641	/*
1642	 * Identify RF chipset.
1643	 */
1644	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1645	rt2x00mmio_register_read(rt2x00dev, CSR0, &reg);
1646	rt2x00_set_chip(rt2x00dev, RT2560, value,
1647			rt2x00_get_field32(reg, CSR0_REVISION));
1648
1649	if (!rt2x00_rf(rt2x00dev, RF2522) &&
1650	    !rt2x00_rf(rt2x00dev, RF2523) &&
1651	    !rt2x00_rf(rt2x00dev, RF2524) &&
1652	    !rt2x00_rf(rt2x00dev, RF2525) &&
1653	    !rt2x00_rf(rt2x00dev, RF2525E) &&
1654	    !rt2x00_rf(rt2x00dev, RF5222)) {
1655		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1656		return -ENODEV;
1657	}
1658
1659	/*
1660	 * Identify default antenna configuration.
1661	 */
1662	rt2x00dev->default_ant.tx =
1663	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1664	rt2x00dev->default_ant.rx =
1665	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1666
1667	/*
1668	 * Store led mode, for correct led behaviour.
1669	 */
1670#ifdef CONFIG_RT2X00_LIB_LEDS
1671	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1672
1673	rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1674	if (value == LED_MODE_TXRX_ACTIVITY ||
1675	    value == LED_MODE_DEFAULT ||
1676	    value == LED_MODE_ASUS)
1677		rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1678				   LED_TYPE_ACTIVITY);
1679#endif /* CONFIG_RT2X00_LIB_LEDS */
1680
1681	/*
1682	 * Detect if this device has an hardware controlled radio.
1683	 */
1684	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1685		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1686
1687	/*
1688	 * Check if the BBP tuning should be enabled.
1689	 */
1690	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1691	if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1692		__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1693
1694	/*
1695	 * Read the RSSI <-> dBm offset information.
1696	 */
1697	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1698	rt2x00dev->rssi_offset =
1699	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1700
1701	return 0;
1702}
1703
1704/*
1705 * RF value list for RF2522
1706 * Supports: 2.4 GHz
1707 */
1708static const struct rf_channel rf_vals_bg_2522[] = {
1709	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1710	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1711	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1712	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1713	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1714	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1715	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1716	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1717	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1718	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1719	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1720	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1721	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1722	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1723};
1724
1725/*
1726 * RF value list for RF2523
1727 * Supports: 2.4 GHz
1728 */
1729static const struct rf_channel rf_vals_bg_2523[] = {
1730	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1731	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1732	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1733	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1734	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1735	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1736	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1737	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1738	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1739	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1740	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1741	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1742	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1743	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1744};
1745
1746/*
1747 * RF value list for RF2524
1748 * Supports: 2.4 GHz
1749 */
1750static const struct rf_channel rf_vals_bg_2524[] = {
1751	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1752	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1753	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1754	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1755	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1756	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1757	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1758	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1759	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1760	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1761	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1762	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1763	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1764	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1765};
1766
1767/*
1768 * RF value list for RF2525
1769 * Supports: 2.4 GHz
1770 */
1771static const struct rf_channel rf_vals_bg_2525[] = {
1772	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1773	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1774	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1775	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1776	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1777	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1778	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1779	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1780	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1781	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1782	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1783	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1784	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1785	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1786};
1787
1788/*
1789 * RF value list for RF2525e
1790 * Supports: 2.4 GHz
1791 */
1792static const struct rf_channel rf_vals_bg_2525e[] = {
1793	{ 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1794	{ 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1795	{ 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1796	{ 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1797	{ 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1798	{ 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1799	{ 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1800	{ 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1801	{ 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1802	{ 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1803	{ 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1804	{ 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1805	{ 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1806	{ 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1807};
1808
1809/*
1810 * RF value list for RF5222
1811 * Supports: 2.4 GHz & 5.2 GHz
1812 */
1813static const struct rf_channel rf_vals_5222[] = {
1814	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1815	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1816	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1817	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1818	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1819	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1820	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1821	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1822	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1823	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1824	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1825	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1826	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1827	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1828
1829	/* 802.11 UNI / HyperLan 2 */
1830	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1831	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1832	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1833	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1834	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1835	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1836	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1837	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1838
1839	/* 802.11 HyperLan 2 */
1840	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1841	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1842	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1843	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1844	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1845	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1846	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1847	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1848	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1849	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1850
1851	/* 802.11 UNII */
1852	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1853	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1854	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1855	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1856	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1857};
1858
1859static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1860{
1861	struct hw_mode_spec *spec = &rt2x00dev->spec;
1862	struct channel_info *info;
1863	char *tx_power;
1864	unsigned int i;
1865
1866	/*
1867	 * Initialize all hw fields.
1868	 */
1869	rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1870			       IEEE80211_HW_SIGNAL_DBM |
1871			       IEEE80211_HW_SUPPORTS_PS |
1872			       IEEE80211_HW_PS_NULLFUNC_STACK;
1873
1874	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1875	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1876				rt2x00_eeprom_addr(rt2x00dev,
1877						   EEPROM_MAC_ADDR_0));
1878
1879	/*
1880	 * Disable powersaving as default.
1881	 */
1882	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1883
1884	/*
1885	 * Initialize hw_mode information.
1886	 */
1887	spec->supported_bands = SUPPORT_BAND_2GHZ;
1888	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1889
1890	if (rt2x00_rf(rt2x00dev, RF2522)) {
1891		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1892		spec->channels = rf_vals_bg_2522;
1893	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
1894		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1895		spec->channels = rf_vals_bg_2523;
1896	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
1897		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1898		spec->channels = rf_vals_bg_2524;
1899	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
1900		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1901		spec->channels = rf_vals_bg_2525;
1902	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1903		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1904		spec->channels = rf_vals_bg_2525e;
1905	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
1906		spec->supported_bands |= SUPPORT_BAND_5GHZ;
1907		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1908		spec->channels = rf_vals_5222;
1909	}
1910
1911	/*
1912	 * Create channel information array
1913	 */
1914	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1915	if (!info)
1916		return -ENOMEM;
1917
1918	spec->channels_info = info;
1919
1920	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1921	for (i = 0; i < 14; i++) {
1922		info[i].max_power = MAX_TXPOWER;
1923		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1924	}
1925
1926	if (spec->num_channels > 14) {
1927		for (i = 14; i < spec->num_channels; i++) {
1928			info[i].max_power = MAX_TXPOWER;
1929			info[i].default_power1 = DEFAULT_TXPOWER;
1930		}
1931	}
1932
1933	return 0;
1934}
1935
1936static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1937{
1938	int retval;
1939	u32 reg;
1940
1941	/*
1942	 * Allocate eeprom data.
1943	 */
1944	retval = rt2500pci_validate_eeprom(rt2x00dev);
1945	if (retval)
1946		return retval;
1947
1948	retval = rt2500pci_init_eeprom(rt2x00dev);
1949	if (retval)
1950		return retval;
1951
1952	/*
1953	 * Enable rfkill polling by setting GPIO direction of the
1954	 * rfkill switch GPIO pin correctly.
1955	 */
1956	rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
1957	rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
1958	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
1959
1960	/*
1961	 * Initialize hw specifications.
1962	 */
1963	retval = rt2500pci_probe_hw_mode(rt2x00dev);
1964	if (retval)
1965		return retval;
1966
1967	/*
1968	 * This device requires the atim queue and DMA-mapped skbs.
1969	 */
1970	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1971	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1972	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1973
1974	/*
1975	 * Set the rssi offset.
1976	 */
1977	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1978
1979	return 0;
1980}
1981
1982/*
1983 * IEEE80211 stack callback functions.
1984 */
1985static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
1986			     struct ieee80211_vif *vif)
1987{
1988	struct rt2x00_dev *rt2x00dev = hw->priv;
1989	u64 tsf;
1990	u32 reg;
1991
1992	rt2x00mmio_register_read(rt2x00dev, CSR17, &reg);
1993	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1994	rt2x00mmio_register_read(rt2x00dev, CSR16, &reg);
1995	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1996
1997	return tsf;
1998}
1999
2000static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
2001{
2002	struct rt2x00_dev *rt2x00dev = hw->priv;
2003	u32 reg;
2004
2005	rt2x00mmio_register_read(rt2x00dev, CSR15, &reg);
2006	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
2007}
2008
2009static const struct ieee80211_ops rt2500pci_mac80211_ops = {
2010	.tx			= rt2x00mac_tx,
2011	.start			= rt2x00mac_start,
2012	.stop			= rt2x00mac_stop,
2013	.add_interface		= rt2x00mac_add_interface,
2014	.remove_interface	= rt2x00mac_remove_interface,
2015	.config			= rt2x00mac_config,
2016	.configure_filter	= rt2x00mac_configure_filter,
2017	.sw_scan_start		= rt2x00mac_sw_scan_start,
2018	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
2019	.get_stats		= rt2x00mac_get_stats,
2020	.bss_info_changed	= rt2x00mac_bss_info_changed,
2021	.conf_tx		= rt2x00mac_conf_tx,
2022	.get_tsf		= rt2500pci_get_tsf,
2023	.tx_last_beacon		= rt2500pci_tx_last_beacon,
2024	.rfkill_poll		= rt2x00mac_rfkill_poll,
2025	.flush			= rt2x00mac_flush,
2026	.set_antenna		= rt2x00mac_set_antenna,
2027	.get_antenna		= rt2x00mac_get_antenna,
2028	.get_ringparam		= rt2x00mac_get_ringparam,
2029	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
2030};
2031
2032static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
2033	.irq_handler		= rt2500pci_interrupt,
2034	.txstatus_tasklet	= rt2500pci_txstatus_tasklet,
2035	.tbtt_tasklet		= rt2500pci_tbtt_tasklet,
2036	.rxdone_tasklet		= rt2500pci_rxdone_tasklet,
2037	.probe_hw		= rt2500pci_probe_hw,
2038	.initialize		= rt2x00mmio_initialize,
2039	.uninitialize		= rt2x00mmio_uninitialize,
2040	.get_entry_state	= rt2500pci_get_entry_state,
2041	.clear_entry		= rt2500pci_clear_entry,
2042	.set_device_state	= rt2500pci_set_device_state,
2043	.rfkill_poll		= rt2500pci_rfkill_poll,
2044	.link_stats		= rt2500pci_link_stats,
2045	.reset_tuner		= rt2500pci_reset_tuner,
2046	.link_tuner		= rt2500pci_link_tuner,
2047	.start_queue		= rt2500pci_start_queue,
2048	.kick_queue		= rt2500pci_kick_queue,
2049	.stop_queue		= rt2500pci_stop_queue,
2050	.flush_queue		= rt2x00mmio_flush_queue,
2051	.write_tx_desc		= rt2500pci_write_tx_desc,
2052	.write_beacon		= rt2500pci_write_beacon,
2053	.fill_rxdone		= rt2500pci_fill_rxdone,
2054	.config_filter		= rt2500pci_config_filter,
2055	.config_intf		= rt2500pci_config_intf,
2056	.config_erp		= rt2500pci_config_erp,
2057	.config_ant		= rt2500pci_config_ant,
2058	.config			= rt2500pci_config,
2059};
2060
2061static void rt2500pci_queue_init(struct data_queue *queue)
2062{
2063	switch (queue->qid) {
2064	case QID_RX:
2065		queue->limit = 32;
2066		queue->data_size = DATA_FRAME_SIZE;
2067		queue->desc_size = RXD_DESC_SIZE;
2068		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2069		break;
2070
2071	case QID_AC_VO:
2072	case QID_AC_VI:
2073	case QID_AC_BE:
2074	case QID_AC_BK:
2075		queue->limit = 32;
2076		queue->data_size = DATA_FRAME_SIZE;
2077		queue->desc_size = TXD_DESC_SIZE;
2078		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2079		break;
2080
2081	case QID_BEACON:
2082		queue->limit = 1;
2083		queue->data_size = MGMT_FRAME_SIZE;
2084		queue->desc_size = TXD_DESC_SIZE;
2085		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2086		break;
2087
2088	case QID_ATIM:
2089		queue->limit = 8;
2090		queue->data_size = DATA_FRAME_SIZE;
2091		queue->desc_size = TXD_DESC_SIZE;
2092		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2093		break;
2094
2095	default:
2096		BUG();
2097		break;
2098	}
2099}
2100
2101static const struct rt2x00_ops rt2500pci_ops = {
2102	.name			= KBUILD_MODNAME,
2103	.max_ap_intf		= 1,
2104	.eeprom_size		= EEPROM_SIZE,
2105	.rf_size		= RF_SIZE,
2106	.tx_queues		= NUM_TX_QUEUES,
2107	.queue_init		= rt2500pci_queue_init,
2108	.lib			= &rt2500pci_rt2x00_ops,
2109	.hw			= &rt2500pci_mac80211_ops,
2110#ifdef CONFIG_RT2X00_LIB_DEBUGFS
2111	.debugfs		= &rt2500pci_rt2x00debug,
2112#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2113};
2114
2115/*
2116 * RT2500pci module information.
2117 */
2118static DEFINE_PCI_DEVICE_TABLE(rt2500pci_device_table) = {
2119	{ PCI_DEVICE(0x1814, 0x0201) },
2120	{ 0, }
2121};
2122
2123MODULE_AUTHOR(DRV_PROJECT);
2124MODULE_VERSION(DRV_VERSION);
2125MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
2126MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
2127MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
2128MODULE_LICENSE("GPL");
2129
2130static int rt2500pci_probe(struct pci_dev *pci_dev,
2131			   const struct pci_device_id *id)
2132{
2133	return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
2134}
2135
2136static struct pci_driver rt2500pci_driver = {
2137	.name		= KBUILD_MODNAME,
2138	.id_table	= rt2500pci_device_table,
2139	.probe		= rt2500pci_probe,
2140	.remove		= rt2x00pci_remove,
2141	.suspend	= rt2x00pci_suspend,
2142	.resume		= rt2x00pci_resume,
2143};
2144
2145module_pci_driver(rt2500pci_driver);