Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
   3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
   4 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
   5 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
   6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
   7 *
   8 * Permission to use, copy, modify, and distribute this software for any
   9 * purpose with or without fee is hereby granted, provided that the above
  10 * copyright notice and this permission notice appear in all copies.
  11 *
  12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  19 *
  20 */
  21
  22/****************************\
  23  Reset function and helpers
  24\****************************/
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <asm/unaligned.h>
  29
  30#include <linux/pci.h>		/* To determine if a card is pci-e */
  31#include <linux/log2.h>
  32#include <linux/platform_device.h>
  33#include "ath5k.h"
  34#include "reg.h"
  35#include "debug.h"
  36
  37
  38/**
  39 * DOC: Reset function and helpers
  40 *
  41 * Here we implement the main reset routine, used to bring the card
  42 * to a working state and ready to receive. We also handle routines
  43 * that don't fit on other places such as clock, sleep and power control
  44 */
  45
  46
  47/******************\
  48* Helper functions *
  49\******************/
  50
  51/**
  52 * ath5k_hw_register_timeout() - Poll a register for a flag/field change
  53 * @ah: The &struct ath5k_hw
  54 * @reg: The register to read
  55 * @flag: The flag/field to check on the register
  56 * @val: The field value we expect (if we check a field)
  57 * @is_set: Instead of checking if the flag got cleared, check if it got set
  58 *
  59 * Some registers contain flags that indicate that an operation is
  60 * running. We use this function to poll these registers and check
  61 * if these flags get cleared. We also use it to poll a register
  62 * field (containing multiple flags) until it gets a specific value.
  63 *
  64 * Returns -EAGAIN if we exceeded AR5K_TUNE_REGISTER_TIMEOUT * 15us or 0
  65 */
  66int
  67ath5k_hw_register_timeout(struct ath5k_hw *ah, u32 reg, u32 flag, u32 val,
  68			      bool is_set)
  69{
  70	int i;
  71	u32 data;
  72
  73	for (i = AR5K_TUNE_REGISTER_TIMEOUT; i > 0; i--) {
  74		data = ath5k_hw_reg_read(ah, reg);
  75		if (is_set && (data & flag))
  76			break;
  77		else if ((data & flag) == val)
  78			break;
  79		udelay(15);
  80	}
  81
  82	return (i <= 0) ? -EAGAIN : 0;
  83}
  84
  85
  86/*************************\
  87* Clock related functions *
  88\*************************/
  89
  90/**
  91 * ath5k_hw_htoclock() - Translate usec to hw clock units
  92 * @ah: The &struct ath5k_hw
  93 * @usec: value in microseconds
  94 *
  95 * Translate usecs to hw clock units based on the current
  96 * hw clock rate.
  97 *
  98 * Returns number of clock units
  99 */
 100unsigned int
 101ath5k_hw_htoclock(struct ath5k_hw *ah, unsigned int usec)
 102{
 103	struct ath_common *common = ath5k_hw_common(ah);
 104	return usec * common->clockrate;
 105}
 106
 107/**
 108 * ath5k_hw_clocktoh() - Translate hw clock units to usec
 109 * @ah: The &struct ath5k_hw
 110 * @clock: value in hw clock units
 111 *
 112 * Translate hw clock units to usecs based on the current
 113 * hw clock rate.
 114 *
 115 * Returns number of usecs
 116 */
 117unsigned int
 118ath5k_hw_clocktoh(struct ath5k_hw *ah, unsigned int clock)
 119{
 120	struct ath_common *common = ath5k_hw_common(ah);
 121	return clock / common->clockrate;
 122}
 123
 124/**
 125 * ath5k_hw_init_core_clock() - Initialize core clock
 126 * @ah: The &struct ath5k_hw
 127 *
 128 * Initialize core clock parameters (usec, usec32, latencies etc),
 129 * based on current bwmode and chipset properties.
 130 */
 131static void
 132ath5k_hw_init_core_clock(struct ath5k_hw *ah)
 133{
 134	struct ieee80211_channel *channel = ah->ah_current_channel;
 135	struct ath_common *common = ath5k_hw_common(ah);
 136	u32 usec_reg, txlat, rxlat, usec, clock, sclock, txf2txs;
 137
 138	/*
 139	 * Set core clock frequency
 140	 */
 141	switch (channel->hw_value) {
 142	case AR5K_MODE_11A:
 143		clock = 40;
 144		break;
 145	case AR5K_MODE_11B:
 146		clock = 22;
 147		break;
 148	case AR5K_MODE_11G:
 149	default:
 150		clock = 44;
 151		break;
 152	}
 153
 154	/* Use clock multiplier for non-default
 155	 * bwmode */
 156	switch (ah->ah_bwmode) {
 157	case AR5K_BWMODE_40MHZ:
 158		clock *= 2;
 159		break;
 160	case AR5K_BWMODE_10MHZ:
 161		clock /= 2;
 162		break;
 163	case AR5K_BWMODE_5MHZ:
 164		clock /= 4;
 165		break;
 166	default:
 167		break;
 168	}
 169
 170	common->clockrate = clock;
 171
 172	/*
 173	 * Set USEC parameters
 174	 */
 175	/* Set USEC counter on PCU*/
 176	usec = clock - 1;
 177	usec = AR5K_REG_SM(usec, AR5K_USEC_1);
 178
 179	/* Set usec duration on DCU */
 180	if (ah->ah_version != AR5K_AR5210)
 181		AR5K_REG_WRITE_BITS(ah, AR5K_DCU_GBL_IFS_MISC,
 182					AR5K_DCU_GBL_IFS_MISC_USEC_DUR,
 183					clock);
 184
 185	/* Set 32MHz USEC counter */
 186	if ((ah->ah_radio == AR5K_RF5112) ||
 187	    (ah->ah_radio == AR5K_RF2413) ||
 188	    (ah->ah_radio == AR5K_RF5413) ||
 189	    (ah->ah_radio == AR5K_RF2316) ||
 190	    (ah->ah_radio == AR5K_RF2317))
 191		/* Remain on 40MHz clock ? */
 192		sclock = 40 - 1;
 193	else
 194		sclock = 32 - 1;
 195	sclock = AR5K_REG_SM(sclock, AR5K_USEC_32);
 196
 197	/*
 198	 * Set tx/rx latencies
 199	 */
 200	usec_reg = ath5k_hw_reg_read(ah, AR5K_USEC_5211);
 201	txlat = AR5K_REG_MS(usec_reg, AR5K_USEC_TX_LATENCY_5211);
 202	rxlat = AR5K_REG_MS(usec_reg, AR5K_USEC_RX_LATENCY_5211);
 203
 204	/*
 205	 * Set default Tx frame to Tx data start delay
 206	 */
 207	txf2txs = AR5K_INIT_TXF2TXD_START_DEFAULT;
 208
 209	/*
 210	 * 5210 initvals don't include usec settings
 211	 * so we need to use magic values here for
 212	 * tx/rx latencies
 213	 */
 214	if (ah->ah_version == AR5K_AR5210) {
 215		/* same for turbo */
 216		txlat = AR5K_INIT_TX_LATENCY_5210;
 217		rxlat = AR5K_INIT_RX_LATENCY_5210;
 218	}
 219
 220	if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
 221		/* 5311 has different tx/rx latency masks
 222		 * from 5211, since we deal 5311 the same
 223		 * as 5211 when setting initvals, shift
 224		 * values here to their proper locations
 225		 *
 226		 * Note: Initvals indicate tx/rx/ latencies
 227		 * are the same for turbo mode */
 228		txlat = AR5K_REG_SM(txlat, AR5K_USEC_TX_LATENCY_5210);
 229		rxlat = AR5K_REG_SM(rxlat, AR5K_USEC_RX_LATENCY_5210);
 230	} else
 231	switch (ah->ah_bwmode) {
 232	case AR5K_BWMODE_10MHZ:
 233		txlat = AR5K_REG_SM(txlat * 2,
 234				AR5K_USEC_TX_LATENCY_5211);
 235		rxlat = AR5K_REG_SM(AR5K_INIT_RX_LAT_MAX,
 236				AR5K_USEC_RX_LATENCY_5211);
 237		txf2txs = AR5K_INIT_TXF2TXD_START_DELAY_10MHZ;
 238		break;
 239	case AR5K_BWMODE_5MHZ:
 240		txlat = AR5K_REG_SM(txlat * 4,
 241				AR5K_USEC_TX_LATENCY_5211);
 242		rxlat = AR5K_REG_SM(AR5K_INIT_RX_LAT_MAX,
 243				AR5K_USEC_RX_LATENCY_5211);
 244		txf2txs = AR5K_INIT_TXF2TXD_START_DELAY_5MHZ;
 245		break;
 246	case AR5K_BWMODE_40MHZ:
 247		txlat = AR5K_INIT_TX_LAT_MIN;
 248		rxlat = AR5K_REG_SM(rxlat / 2,
 249				AR5K_USEC_RX_LATENCY_5211);
 250		txf2txs = AR5K_INIT_TXF2TXD_START_DEFAULT;
 251		break;
 252	default:
 253		break;
 254	}
 255
 256	usec_reg = (usec | sclock | txlat | rxlat);
 257	ath5k_hw_reg_write(ah, usec_reg, AR5K_USEC);
 258
 259	/* On 5112 set tx frame to tx data start delay */
 260	if (ah->ah_radio == AR5K_RF5112) {
 261		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL2,
 262					AR5K_PHY_RF_CTL2_TXF2TXD_START,
 263					txf2txs);
 264	}
 265}
 266
 267/**
 268 * ath5k_hw_set_sleep_clock() - Setup sleep clock operation
 269 * @ah: The &struct ath5k_hw
 270 * @enable: Enable sleep clock operation (false to disable)
 271 *
 272 * If there is an external 32KHz crystal available, use it
 273 * as ref. clock instead of 32/40MHz clock and baseband clocks
 274 * to save power during sleep or restore normal 32/40MHz
 275 * operation.
 276 *
 277 * NOTE: When operating on 32KHz certain PHY registers (27 - 31,
 278 * 123 - 127) require delay on access.
 279 */
 280static void
 281ath5k_hw_set_sleep_clock(struct ath5k_hw *ah, bool enable)
 282{
 283	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 284	u32 scal, spending, sclock;
 285
 286	/* Only set 32KHz settings if we have an external
 287	 * 32KHz crystal present */
 288	if ((AR5K_EEPROM_HAS32KHZCRYSTAL(ee->ee_misc1) ||
 289	AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(ee->ee_misc1)) &&
 290	enable) {
 291
 292		/* 1 usec/cycle */
 293		AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, 1);
 294		/* Set up tsf increment on each cycle */
 295		AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 61);
 296
 297		/* Set baseband sleep control registers
 298		 * and sleep control rate */
 299		ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
 300
 301		if ((ah->ah_radio == AR5K_RF5112) ||
 302		(ah->ah_radio == AR5K_RF5413) ||
 303		(ah->ah_radio == AR5K_RF2316) ||
 304		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
 305			spending = 0x14;
 306		else
 307			spending = 0x18;
 308		ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
 309
 310		if ((ah->ah_radio == AR5K_RF5112) ||
 311		(ah->ah_radio == AR5K_RF5413) ||
 312		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
 313			ath5k_hw_reg_write(ah, 0x26, AR5K_PHY_SLMT);
 314			ath5k_hw_reg_write(ah, 0x0d, AR5K_PHY_SCAL);
 315			ath5k_hw_reg_write(ah, 0x07, AR5K_PHY_SCLOCK);
 316			ath5k_hw_reg_write(ah, 0x3f, AR5K_PHY_SDELAY);
 317			AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
 318				AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x02);
 319		} else {
 320			ath5k_hw_reg_write(ah, 0x0a, AR5K_PHY_SLMT);
 321			ath5k_hw_reg_write(ah, 0x0c, AR5K_PHY_SCAL);
 322			ath5k_hw_reg_write(ah, 0x03, AR5K_PHY_SCLOCK);
 323			ath5k_hw_reg_write(ah, 0x20, AR5K_PHY_SDELAY);
 324			AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
 325				AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x03);
 326		}
 327
 328		/* Enable sleep clock operation */
 329		AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG,
 330				AR5K_PCICFG_SLEEP_CLOCK_EN);
 331
 332	} else {
 333
 334		/* Disable sleep clock operation and
 335		 * restore default parameters */
 336		AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
 337				AR5K_PCICFG_SLEEP_CLOCK_EN);
 338
 339		AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
 340				AR5K_PCICFG_SLEEP_CLOCK_RATE, 0);
 341
 342		/* Set DAC/ADC delays */
 343		ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
 344		ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
 345
 346		if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
 347			scal = AR5K_PHY_SCAL_32MHZ_2417;
 348		else if (ee->ee_is_hb63)
 349			scal = AR5K_PHY_SCAL_32MHZ_HB63;
 350		else
 351			scal = AR5K_PHY_SCAL_32MHZ;
 352		ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
 353
 354		ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
 355		ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
 356
 357		if ((ah->ah_radio == AR5K_RF5112) ||
 358		(ah->ah_radio == AR5K_RF5413) ||
 359		(ah->ah_radio == AR5K_RF2316) ||
 360		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
 361			spending = 0x14;
 362		else
 363			spending = 0x18;
 364		ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
 365
 366		/* Set up tsf increment on each cycle */
 367		AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 1);
 368
 369		if ((ah->ah_radio == AR5K_RF5112) ||
 370			(ah->ah_radio == AR5K_RF5413) ||
 371			(ah->ah_radio == AR5K_RF2316) ||
 372			(ah->ah_radio == AR5K_RF2317))
 373			sclock = 40 - 1;
 374		else
 375			sclock = 32 - 1;
 376		AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, sclock);
 377	}
 378}
 379
 380
 381/*********************\
 382* Reset/Sleep control *
 383\*********************/
 384
 385/**
 386 * ath5k_hw_nic_reset() - Reset the various chipset units
 387 * @ah: The &struct ath5k_hw
 388 * @val: Mask to indicate what units to reset
 389 *
 390 * To reset the various chipset units we need to write
 391 * the mask to AR5K_RESET_CTL and poll the register until
 392 * all flags are cleared.
 393 *
 394 * Returns 0 if we are O.K. or -EAGAIN (from athk5_hw_register_timeout)
 395 */
 396static int
 397ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
 398{
 399	int ret;
 400	u32 mask = val ? val : ~0U;
 401
 402	/* Read-and-clear RX Descriptor Pointer*/
 403	ath5k_hw_reg_read(ah, AR5K_RXDP);
 404
 405	/*
 406	 * Reset the device and wait until success
 407	 */
 408	ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
 409
 410	/* Wait at least 128 PCI clocks */
 411	usleep_range(15, 20);
 412
 413	if (ah->ah_version == AR5K_AR5210) {
 414		val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
 415			| AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
 416		mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
 417			| AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
 418	} else {
 419		val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
 420		mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
 421	}
 422
 423	ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
 424
 425	/*
 426	 * Reset configuration register (for hw byte-swap). Note that this
 427	 * is only set for big endian. We do the necessary magic in
 428	 * AR5K_INIT_CFG.
 429	 */
 430	if ((val & AR5K_RESET_CTL_PCU) == 0)
 431		ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
 432
 433	return ret;
 434}
 435
 436/**
 437 * ath5k_hw_wisoc_reset() -  Reset AHB chipset
 438 * @ah: The &struct ath5k_hw
 439 * @flags: Mask to indicate what units to reset
 440 *
 441 * Same as ath5k_hw_nic_reset but for AHB based devices
 442 *
 443 * Returns 0 if we are O.K. or -EAGAIN (from athk5_hw_register_timeout)
 444 */
 445static int
 446ath5k_hw_wisoc_reset(struct ath5k_hw *ah, u32 flags)
 447{
 448	u32 mask = flags ? flags : ~0U;
 449	u32 __iomem *reg;
 450	u32 regval;
 451	u32 val = 0;
 452
 453	/* ah->ah_mac_srev is not available at this point yet */
 454	if (ah->devid >= AR5K_SREV_AR2315_R6) {
 455		reg = (u32 __iomem *) AR5K_AR2315_RESET;
 456		if (mask & AR5K_RESET_CTL_PCU)
 457			val |= AR5K_AR2315_RESET_WMAC;
 458		if (mask & AR5K_RESET_CTL_BASEBAND)
 459			val |= AR5K_AR2315_RESET_BB_WARM;
 460	} else {
 461		reg = (u32 __iomem *) AR5K_AR5312_RESET;
 462		if (to_platform_device(ah->dev)->id == 0) {
 463			if (mask & AR5K_RESET_CTL_PCU)
 464				val |= AR5K_AR5312_RESET_WMAC0;
 465			if (mask & AR5K_RESET_CTL_BASEBAND)
 466				val |= AR5K_AR5312_RESET_BB0_COLD |
 467				       AR5K_AR5312_RESET_BB0_WARM;
 468		} else {
 469			if (mask & AR5K_RESET_CTL_PCU)
 470				val |= AR5K_AR5312_RESET_WMAC1;
 471			if (mask & AR5K_RESET_CTL_BASEBAND)
 472				val |= AR5K_AR5312_RESET_BB1_COLD |
 473				       AR5K_AR5312_RESET_BB1_WARM;
 474		}
 475	}
 476
 477	/* Put BB/MAC into reset */
 478	regval = ioread32(reg);
 479	iowrite32(regval | val, reg);
 480	regval = ioread32(reg);
 481	udelay(100);	/* NB: should be atomic */
 482
 483	/* Bring BB/MAC out of reset */
 484	iowrite32(regval & ~val, reg);
 485	regval = ioread32(reg);
 486
 487	/*
 488	 * Reset configuration register (for hw byte-swap). Note that this
 489	 * is only set for big endian. We do the necessary magic in
 490	 * AR5K_INIT_CFG.
 491	 */
 492	if ((flags & AR5K_RESET_CTL_PCU) == 0)
 493		ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
 494
 495	return 0;
 496}
 497
 498/**
 499 * ath5k_hw_set_power_mode() - Set power mode
 500 * @ah: The &struct ath5k_hw
 501 * @mode: One of enum ath5k_power_mode
 502 * @set_chip: Set to true to write sleep control register
 503 * @sleep_duration: How much time the device is allowed to sleep
 504 * when sleep logic is enabled (in 128 microsecond increments).
 505 *
 506 * This function is used to configure sleep policy and allowed
 507 * sleep modes. For more information check out the sleep control
 508 * register on reg.h and STA_ID1.
 509 *
 510 * Returns 0 on success, -EIO if chip didn't wake up or -EINVAL if an invalid
 511 * mode is requested.
 512 */
 513static int
 514ath5k_hw_set_power_mode(struct ath5k_hw *ah, enum ath5k_power_mode mode,
 515			      bool set_chip, u16 sleep_duration)
 516{
 517	unsigned int i;
 518	u32 staid, data;
 519
 520	staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
 521
 522	switch (mode) {
 523	case AR5K_PM_AUTO:
 524		staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
 525		fallthrough;
 526	case AR5K_PM_NETWORK_SLEEP:
 527		if (set_chip)
 528			ath5k_hw_reg_write(ah,
 529				AR5K_SLEEP_CTL_SLE_ALLOW |
 530				sleep_duration,
 531				AR5K_SLEEP_CTL);
 532
 533		staid |= AR5K_STA_ID1_PWR_SV;
 534		break;
 535
 536	case AR5K_PM_FULL_SLEEP:
 537		if (set_chip)
 538			ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
 539				AR5K_SLEEP_CTL);
 540
 541		staid |= AR5K_STA_ID1_PWR_SV;
 542		break;
 543
 544	case AR5K_PM_AWAKE:
 545
 546		staid &= ~AR5K_STA_ID1_PWR_SV;
 547
 548		if (!set_chip)
 549			goto commit;
 550
 551		data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL);
 552
 553		/* If card is down we 'll get 0xffff... so we
 554		 * need to clean this up before we write the register
 555		 */
 556		if (data & 0xffc00000)
 557			data = 0;
 558		else
 559			/* Preserve sleep duration etc */
 560			data = data & ~AR5K_SLEEP_CTL_SLE;
 561
 562		ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
 563							AR5K_SLEEP_CTL);
 564		usleep_range(15, 20);
 565
 566		for (i = 200; i > 0; i--) {
 567			/* Check if the chip did wake up */
 568			if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
 569					AR5K_PCICFG_SPWR_DN) == 0)
 570				break;
 571
 572			/* Wait a bit and retry */
 573			usleep_range(50, 75);
 574			ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
 575							AR5K_SLEEP_CTL);
 576		}
 577
 578		/* Fail if the chip didn't wake up */
 579		if (i == 0)
 580			return -EIO;
 581
 582		break;
 583
 584	default:
 585		return -EINVAL;
 586	}
 587
 588commit:
 589	ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
 590
 591	return 0;
 592}
 593
 594/**
 595 * ath5k_hw_on_hold() - Put device on hold
 596 * @ah: The &struct ath5k_hw
 597 *
 598 * Put MAC and Baseband on warm reset and keep that state
 599 * (don't clean sleep control register). After this MAC
 600 * and Baseband are disabled and a full reset is needed
 601 * to come back. This way we save as much power as possible
 602 * without putting the card on full sleep.
 603 *
 604 * Returns 0 on success or -EIO on error
 605 */
 606int
 607ath5k_hw_on_hold(struct ath5k_hw *ah)
 608{
 609	struct pci_dev *pdev = ah->pdev;
 610	u32 bus_flags;
 611	int ret;
 612
 613	if (ath5k_get_bus_type(ah) == ATH_AHB)
 614		return 0;
 615
 616	/* Make sure device is awake */
 617	ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0);
 618	if (ret) {
 619		ATH5K_ERR(ah, "failed to wakeup the MAC Chip\n");
 620		return ret;
 621	}
 622
 623	/*
 624	 * Put chipset on warm reset...
 625	 *
 626	 * Note: putting PCI core on warm reset on PCI-E cards
 627	 * results card to hang and always return 0xffff... so
 628	 * we ignore that flag for PCI-E cards. On PCI cards
 629	 * this flag gets cleared after 64 PCI clocks.
 630	 */
 631	bus_flags = (pdev && pci_is_pcie(pdev)) ? 0 : AR5K_RESET_CTL_PCI;
 632
 633	if (ah->ah_version == AR5K_AR5210) {
 634		ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
 635			AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
 636			AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
 637		usleep_range(2000, 2500);
 638	} else {
 639		ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
 640			AR5K_RESET_CTL_BASEBAND | bus_flags);
 641	}
 642
 643	if (ret) {
 644		ATH5K_ERR(ah, "failed to put device on warm reset\n");
 645		return -EIO;
 646	}
 647
 648	/* ...wakeup again!*/
 649	ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0);
 650	if (ret) {
 651		ATH5K_ERR(ah, "failed to put device on hold\n");
 652		return ret;
 653	}
 654
 655	return ret;
 656}
 657
 658/**
 659 * ath5k_hw_nic_wakeup() - Force card out of sleep
 660 * @ah: The &struct ath5k_hw
 661 * @channel: The &struct ieee80211_channel
 662 *
 663 * Bring up MAC + PHY Chips and program PLL
 664 * NOTE: Channel is NULL for the initial wakeup.
 665 *
 666 * Returns 0 on success, -EIO on hw failure or -EINVAL for false channel infos
 667 */
 668int
 669ath5k_hw_nic_wakeup(struct ath5k_hw *ah, struct ieee80211_channel *channel)
 670{
 671	struct pci_dev *pdev = ah->pdev;
 672	u32 turbo, mode, clock, bus_flags;
 673	int ret;
 674
 675	turbo = 0;
 676	mode = 0;
 677	clock = 0;
 678
 679	if ((ath5k_get_bus_type(ah) != ATH_AHB) || channel) {
 680		/* Wakeup the device */
 681		ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0);
 682		if (ret) {
 683			ATH5K_ERR(ah, "failed to wakeup the MAC Chip\n");
 684			return ret;
 685		}
 686	}
 687
 688	/*
 689	 * Put chipset on warm reset...
 690	 *
 691	 * Note: putting PCI core on warm reset on PCI-E cards
 692	 * results card to hang and always return 0xffff... so
 693	 * we ignore that flag for PCI-E cards. On PCI cards
 694	 * this flag gets cleared after 64 PCI clocks.
 695	 */
 696	bus_flags = (pdev && pci_is_pcie(pdev)) ? 0 : AR5K_RESET_CTL_PCI;
 697
 698	if (ah->ah_version == AR5K_AR5210) {
 699		ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
 700			AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
 701			AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
 702		usleep_range(2000, 2500);
 703	} else {
 704		if (ath5k_get_bus_type(ah) == ATH_AHB)
 705			ret = ath5k_hw_wisoc_reset(ah, AR5K_RESET_CTL_PCU |
 706				AR5K_RESET_CTL_BASEBAND);
 707		else
 708			ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
 709				AR5K_RESET_CTL_BASEBAND | bus_flags);
 710	}
 711
 712	if (ret) {
 713		ATH5K_ERR(ah, "failed to reset the MAC Chip\n");
 714		return -EIO;
 715	}
 716
 717	/* ...wakeup again!...*/
 718	ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0);
 719	if (ret) {
 720		ATH5K_ERR(ah, "failed to resume the MAC Chip\n");
 721		return ret;
 722	}
 723
 724	/* ...reset configuration register on Wisoc ...
 725	 * ...clear reset control register and pull device out of
 726	 * warm reset on others */
 727	if (ath5k_get_bus_type(ah) == ATH_AHB)
 728		ret = ath5k_hw_wisoc_reset(ah, 0);
 729	else
 730		ret = ath5k_hw_nic_reset(ah, 0);
 731
 732	if (ret) {
 733		ATH5K_ERR(ah, "failed to warm reset the MAC Chip\n");
 734		return -EIO;
 735	}
 736
 737	/* On initialization skip PLL programming since we don't have
 738	 * a channel / mode set yet */
 739	if (!channel)
 740		return 0;
 741
 742	if (ah->ah_version != AR5K_AR5210) {
 743		/*
 744		 * Get channel mode flags
 745		 */
 746
 747		if (ah->ah_radio >= AR5K_RF5112) {
 748			mode = AR5K_PHY_MODE_RAD_RF5112;
 749			clock = AR5K_PHY_PLL_RF5112;
 750		} else {
 751			mode = AR5K_PHY_MODE_RAD_RF5111;	/*Zero*/
 752			clock = AR5K_PHY_PLL_RF5111;		/*Zero*/
 753		}
 754
 755		if (channel->band == NL80211_BAND_2GHZ) {
 756			mode |= AR5K_PHY_MODE_FREQ_2GHZ;
 757			clock |= AR5K_PHY_PLL_44MHZ;
 758
 759			if (channel->hw_value == AR5K_MODE_11B) {
 760				mode |= AR5K_PHY_MODE_MOD_CCK;
 761			} else {
 762				/* XXX Dynamic OFDM/CCK is not supported by the
 763				 * AR5211 so we set MOD_OFDM for plain g (no
 764				 * CCK headers) operation. We need to test
 765				 * this, 5211 might support ofdm-only g after
 766				 * all, there are also initial register values
 767				 * in the code for g mode (see initvals.c).
 768				 */
 769				if (ah->ah_version == AR5K_AR5211)
 770					mode |= AR5K_PHY_MODE_MOD_OFDM;
 771				else
 772					mode |= AR5K_PHY_MODE_MOD_DYN;
 773			}
 774		} else if (channel->band == NL80211_BAND_5GHZ) {
 775			mode |= (AR5K_PHY_MODE_FREQ_5GHZ |
 776				 AR5K_PHY_MODE_MOD_OFDM);
 777
 778			/* Different PLL setting for 5413 */
 779			if (ah->ah_radio == AR5K_RF5413)
 780				clock = AR5K_PHY_PLL_40MHZ_5413;
 781			else
 782				clock |= AR5K_PHY_PLL_40MHZ;
 783		} else {
 784			ATH5K_ERR(ah, "invalid radio frequency mode\n");
 785			return -EINVAL;
 786		}
 787
 788		/*XXX: Can bwmode be used with dynamic mode ?
 789		 * (I don't think it supports 44MHz) */
 790		/* On 2425 initvals TURBO_SHORT is not present */
 791		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) {
 792			turbo = AR5K_PHY_TURBO_MODE;
 793			if (ah->ah_radio != AR5K_RF2425)
 794				turbo |= AR5K_PHY_TURBO_SHORT;
 795		} else if (ah->ah_bwmode != AR5K_BWMODE_DEFAULT) {
 796			if (ah->ah_radio == AR5K_RF5413) {
 797				mode |= (ah->ah_bwmode == AR5K_BWMODE_10MHZ) ?
 798					AR5K_PHY_MODE_HALF_RATE :
 799					AR5K_PHY_MODE_QUARTER_RATE;
 800			} else if (ah->ah_version == AR5K_AR5212) {
 801				clock |= (ah->ah_bwmode == AR5K_BWMODE_10MHZ) ?
 802					AR5K_PHY_PLL_HALF_RATE :
 803					AR5K_PHY_PLL_QUARTER_RATE;
 804			}
 805		}
 806
 807	} else { /* Reset the device */
 808
 809		/* ...enable Atheros turbo mode if requested */
 810		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
 811			ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
 812					AR5K_PHY_TURBO);
 813	}
 814
 815	if (ah->ah_version != AR5K_AR5210) {
 816
 817		/* ...update PLL if needed */
 818		if (ath5k_hw_reg_read(ah, AR5K_PHY_PLL) != clock) {
 819			ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
 820			usleep_range(300, 350);
 821		}
 822
 823		/* ...set the PHY operating mode */
 824		ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
 825		ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
 826	}
 827
 828	return 0;
 829}
 830
 831
 832/**************************************\
 833* Post-initvals register modifications *
 834\**************************************/
 835
 836/**
 837 * ath5k_hw_tweak_initval_settings() - Tweak initial settings
 838 * @ah: The &struct ath5k_hw
 839 * @channel: The &struct ieee80211_channel
 840 *
 841 * Some settings are not handled on initvals, e.g. bwmode
 842 * settings, some phy settings, workarounds etc that in general
 843 * don't fit anywhere else or are too small to introduce a separate
 844 * function for each one. So we have this function to handle
 845 * them all during reset and complete card's initialization.
 846 */
 847static void
 848ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah,
 849				struct ieee80211_channel *channel)
 850{
 851	if (ah->ah_version == AR5K_AR5212 &&
 852	    ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
 853
 854		/* Setup ADC control */
 855		ath5k_hw_reg_write(ah,
 856				(AR5K_REG_SM(2,
 857				AR5K_PHY_ADC_CTL_INBUFGAIN_OFF) |
 858				AR5K_REG_SM(2,
 859				AR5K_PHY_ADC_CTL_INBUFGAIN_ON) |
 860				AR5K_PHY_ADC_CTL_PWD_DAC_OFF |
 861				AR5K_PHY_ADC_CTL_PWD_ADC_OFF),
 862				AR5K_PHY_ADC_CTL);
 863
 864
 865
 866		/* Disable barker RSSI threshold */
 867		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
 868				AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR);
 869
 870		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
 871			AR5K_PHY_DAG_CCK_CTL_RSSI_THR, 2);
 872
 873		/* Set the mute mask */
 874		ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK);
 875	}
 876
 877	/* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */
 878	if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212B)
 879		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BLUETOOTH);
 880
 881	/* Enable DCU double buffering */
 882	if (ah->ah_phy_revision > AR5K_SREV_PHY_5212B)
 883		AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
 884				AR5K_TXCFG_DCU_DBL_BUF_DIS);
 885
 886	/* Set fast ADC */
 887	if ((ah->ah_radio == AR5K_RF5413) ||
 888		(ah->ah_radio == AR5K_RF2317) ||
 889		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
 890		u32 fast_adc = true;
 891
 892		if (channel->center_freq == 2462 ||
 893		channel->center_freq == 2467)
 894			fast_adc = 0;
 895
 896		/* Only update if needed */
 897		if (ath5k_hw_reg_read(ah, AR5K_PHY_FAST_ADC) != fast_adc)
 898				ath5k_hw_reg_write(ah, fast_adc,
 899						AR5K_PHY_FAST_ADC);
 900	}
 901
 902	/* Fix for first revision of the RF5112 RF chipset */
 903	if (ah->ah_radio == AR5K_RF5112 &&
 904			ah->ah_radio_5ghz_revision <
 905			AR5K_SREV_RAD_5112A) {
 906		u32 data;
 907		ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
 908				AR5K_PHY_CCKTXCTL);
 909		if (channel->band == NL80211_BAND_5GHZ)
 910			data = 0xffb81020;
 911		else
 912			data = 0xffb80d20;
 913		ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
 914	}
 915
 916	if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
 917		/* Clear QCU/DCU clock gating register */
 918		ath5k_hw_reg_write(ah, 0, AR5K_QCUDCU_CLKGT);
 919		/* Set DAC/ADC delays */
 920		ath5k_hw_reg_write(ah, AR5K_PHY_SCAL_32MHZ_5311,
 921						AR5K_PHY_SCAL);
 922		/* Enable PCU FIFO corruption ECO */
 923		AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211,
 924					AR5K_DIAG_SW_ECO_ENABLE);
 925	}
 926
 927	if (ah->ah_bwmode) {
 928		/* Increase PHY switch and AGC settling time
 929		 * on turbo mode (ath5k_hw_commit_eeprom_settings
 930		 * will override settling time if available) */
 931		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) {
 932
 933			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
 934						AR5K_PHY_SETTLING_AGC,
 935						AR5K_AGC_SETTLING_TURBO);
 936
 937			/* XXX: Initvals indicate we only increase
 938			 * switch time on AR5212, 5211 and 5210
 939			 * only change agc time (bug?) */
 940			if (ah->ah_version == AR5K_AR5212)
 941				AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
 942						AR5K_PHY_SETTLING_SWITCH,
 943						AR5K_SWITCH_SETTLING_TURBO);
 944
 945			if (ah->ah_version == AR5K_AR5210) {
 946				/* Set Frame Control Register */
 947				ath5k_hw_reg_write(ah,
 948					(AR5K_PHY_FRAME_CTL_INI |
 949					AR5K_PHY_TURBO_MODE |
 950					AR5K_PHY_TURBO_SHORT | 0x2020),
 951					AR5K_PHY_FRAME_CTL_5210);
 952			}
 953		/* On 5413 PHY force window length for half/quarter rate*/
 954		} else if ((ah->ah_mac_srev >= AR5K_SREV_AR5424) &&
 955		(ah->ah_mac_srev <= AR5K_SREV_AR5414)) {
 956			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL_5211,
 957						AR5K_PHY_FRAME_CTL_WIN_LEN,
 958						3);
 959		}
 960	} else if (ah->ah_version == AR5K_AR5210) {
 961		/* Set Frame Control Register for normal operation */
 962		ath5k_hw_reg_write(ah, (AR5K_PHY_FRAME_CTL_INI | 0x1020),
 963						AR5K_PHY_FRAME_CTL_5210);
 964	}
 965}
 966
 967/**
 968 * ath5k_hw_commit_eeprom_settings() - Commit settings from EEPROM
 969 * @ah: The &struct ath5k_hw
 970 * @channel: The &struct ieee80211_channel
 971 *
 972 * Use settings stored on EEPROM to properly initialize the card
 973 * based on various infos and per-mode calibration data.
 974 */
 975static void
 976ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah,
 977		struct ieee80211_channel *channel)
 978{
 979	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 980	s16 cck_ofdm_pwr_delta;
 981	u8 ee_mode;
 982
 983	/* TODO: Add support for AR5210 EEPROM */
 984	if (ah->ah_version == AR5K_AR5210)
 985		return;
 986
 987	ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
 988
 989	/* Adjust power delta for channel 14 */
 990	if (channel->center_freq == 2484)
 991		cck_ofdm_pwr_delta =
 992			((ee->ee_cck_ofdm_power_delta -
 993			ee->ee_scaled_cck_delta) * 2) / 10;
 994	else
 995		cck_ofdm_pwr_delta =
 996			(ee->ee_cck_ofdm_power_delta * 2) / 10;
 997
 998	/* Set CCK to OFDM power delta on tx power
 999	 * adjustment register */
1000	if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
1001		if (channel->hw_value == AR5K_MODE_11G)
1002			ath5k_hw_reg_write(ah,
1003			AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1),
1004				AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) |
1005			AR5K_REG_SM((cck_ofdm_pwr_delta * -1),
1006				AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX),
1007				AR5K_PHY_TX_PWR_ADJ);
1008		else
1009			ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ);
1010	} else {
1011		/* For older revs we scale power on sw during tx power
1012		 * setup */
1013		ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta;
1014		ah->ah_txpower.txp_cck_ofdm_gainf_delta =
1015						ee->ee_cck_ofdm_gain_delta;
1016	}
1017
1018	/* XXX: necessary here? is called from ath5k_hw_set_antenna_mode()
1019	 * too */
1020	ath5k_hw_set_antenna_switch(ah, ee_mode);
1021
1022	/* Noise floor threshold */
1023	ath5k_hw_reg_write(ah,
1024		AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
1025		AR5K_PHY_NFTHRES);
1026
1027	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
1028	(ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0)) {
1029		/* Switch settling time (Turbo) */
1030		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
1031				AR5K_PHY_SETTLING_SWITCH,
1032				ee->ee_switch_settling_turbo[ee_mode]);
1033
1034		/* Tx/Rx attenuation (Turbo) */
1035		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
1036				AR5K_PHY_GAIN_TXRX_ATTEN,
1037				ee->ee_atn_tx_rx_turbo[ee_mode]);
1038
1039		/* ADC/PGA desired size (Turbo) */
1040		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
1041				AR5K_PHY_DESIRED_SIZE_ADC,
1042				ee->ee_adc_desired_size_turbo[ee_mode]);
1043
1044		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
1045				AR5K_PHY_DESIRED_SIZE_PGA,
1046				ee->ee_pga_desired_size_turbo[ee_mode]);
1047
1048		/* Tx/Rx margin (Turbo) */
1049		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
1050				AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
1051				ee->ee_margin_tx_rx_turbo[ee_mode]);
1052
1053	} else {
1054		/* Switch settling time */
1055		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
1056				AR5K_PHY_SETTLING_SWITCH,
1057				ee->ee_switch_settling[ee_mode]);
1058
1059		/* Tx/Rx attenuation */
1060		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
1061				AR5K_PHY_GAIN_TXRX_ATTEN,
1062				ee->ee_atn_tx_rx[ee_mode]);
1063
1064		/* ADC/PGA desired size */
1065		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
1066				AR5K_PHY_DESIRED_SIZE_ADC,
1067				ee->ee_adc_desired_size[ee_mode]);
1068
1069		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
1070				AR5K_PHY_DESIRED_SIZE_PGA,
1071				ee->ee_pga_desired_size[ee_mode]);
1072
1073		/* Tx/Rx margin */
1074		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
1075			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
1076				AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
1077				ee->ee_margin_tx_rx[ee_mode]);
1078	}
1079
1080	/* XPA delays */
1081	ath5k_hw_reg_write(ah,
1082		(ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
1083		(ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
1084		(ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
1085		(ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4);
1086
1087	/* XLNA delay */
1088	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL3,
1089			AR5K_PHY_RF_CTL3_TXE2XLNA_ON,
1090			ee->ee_tx_end2xlna_enable[ee_mode]);
1091
1092	/* Thresh64 (ANI) */
1093	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_NF,
1094			AR5K_PHY_NF_THRESH62,
1095			ee->ee_thr_62[ee_mode]);
1096
1097	/* False detect backoff for channels
1098	 * that have spur noise. Write the new
1099	 * cyclic power RSSI threshold. */
1100	if (ath5k_hw_chan_has_spur_noise(ah, channel))
1101		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
1102				AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
1103				AR5K_INIT_CYCRSSI_THR1 +
1104				ee->ee_false_detect[ee_mode]);
1105	else
1106		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
1107				AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
1108				AR5K_INIT_CYCRSSI_THR1);
1109
1110	/* I/Q correction (set enable bit last to match HAL sources) */
1111	/* TODO: Per channel i/q infos ? */
1112	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
1113		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF,
1114			    ee->ee_i_cal[ee_mode]);
1115		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF,
1116			    ee->ee_q_cal[ee_mode]);
1117		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1118	}
1119
1120	/* Heavy clipping -disable for now */
1121	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_1)
1122		ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE);
1123}
1124
1125
1126/*********************\
1127* Main reset function *
1128\*********************/
1129
1130/**
1131 * ath5k_hw_reset() - The main reset function
1132 * @ah: The &struct ath5k_hw
1133 * @op_mode: One of enum nl80211_iftype
1134 * @channel: The &struct ieee80211_channel
1135 * @fast: Enable fast channel switching
1136 * @skip_pcu: Skip pcu initialization
1137 *
1138 * This is the function we call each time we want to (re)initialize the
1139 * card and pass new settings to hw. We also call it when hw runs into
1140 * trouble to make it come back to a working state.
1141 *
1142 * Returns 0 on success, -EINVAL on false op_mode or channel infos, or -EIO
1143 * on failure.
1144 */
1145int
1146ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
1147		struct ieee80211_channel *channel, bool fast, bool skip_pcu)
1148{
1149	u32 s_seq[10], s_led[3], tsf_up, tsf_lo;
1150	u8 mode;
1151	int i, ret;
1152
1153	tsf_up = 0;
1154	tsf_lo = 0;
1155	mode = 0;
1156
1157	/*
1158	 * Sanity check for fast flag
1159	 * Fast channel change only available
1160	 * on AR2413/AR5413.
1161	 */
1162	if (fast && (ah->ah_radio != AR5K_RF2413) &&
1163	(ah->ah_radio != AR5K_RF5413))
1164		fast = false;
1165
1166	/* Disable sleep clock operation
1167	 * to avoid register access delay on certain
1168	 * PHY registers */
1169	if (ah->ah_version == AR5K_AR5212)
1170		ath5k_hw_set_sleep_clock(ah, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1171
1172	mode = channel->hw_value;
1173	switch (mode) {
1174	case AR5K_MODE_11A:
1175		break;
1176	case AR5K_MODE_11G:
1177		if (ah->ah_version <= AR5K_AR5211) {
1178			ATH5K_ERR(ah,
1179				"G mode not available on 5210/5211");
1180			return -EINVAL;
1181		}
1182		break;
1183	case AR5K_MODE_11B:
1184		if (ah->ah_version < AR5K_AR5211) {
1185			ATH5K_ERR(ah,
1186				"B mode not available on 5210");
1187			return -EINVAL;
1188		}
1189		break;
1190	default:
1191		ATH5K_ERR(ah,
1192			"invalid channel: %d\n", channel->center_freq);
1193		return -EINVAL;
1194	}
1195
1196	/*
1197	 * If driver requested fast channel change and DMA has stopped
1198	 * go on. If it fails continue with a normal reset.
1199	 */
1200	if (fast) {
1201		ret = ath5k_hw_phy_init(ah, channel, mode, true);
1202		if (ret) {
1203			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1204				"fast chan change failed, falling back to normal reset\n");
1205			/* Non fatal, can happen eg.
1206			 * on mode change */
1207			ret = 0;
1208		} else {
1209			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1210				"fast chan change successful\n");
1211			return 0;
1212		}
1213	}
1214
1215	/*
1216	 * Save some registers before a reset
1217	 */
1218	if (ah->ah_version != AR5K_AR5210) {
1219		/*
1220		 * Save frame sequence count
1221		 * For revs. after Oahu, only save
1222		 * seq num for DCU 0 (Global seq num)
1223		 */
1224		if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
1225
1226			for (i = 0; i < 10; i++)
1227				s_seq[i] = ath5k_hw_reg_read(ah,
1228					AR5K_QUEUE_DCU_SEQNUM(i));
1229
1230		} else {
1231			s_seq[0] = ath5k_hw_reg_read(ah,
1232					AR5K_QUEUE_DCU_SEQNUM(0));
1233		}
1234
1235		/* TSF accelerates on AR5211 during reset
1236		 * As a workaround save it here and restore
1237		 * it later so that it's back in time after
1238		 * reset. This way it'll get re-synced on the
1239		 * next beacon without breaking ad-hoc.
1240		 *
1241		 * On AR5212 TSF is almost preserved across a
1242		 * reset so it stays back in time anyway and
1243		 * we don't have to save/restore it.
1244		 *
1245		 * XXX: Since this breaks power saving we have
1246		 * to disable power saving until we receive the
1247		 * next beacon, so we can resync beacon timers */
1248		if (ah->ah_version == AR5K_AR5211) {
1249			tsf_up = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
1250			tsf_lo = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
1251		}
1252	}
1253
1254
1255	/*GPIOs*/
1256	s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) &
1257					AR5K_PCICFG_LEDSTATE;
1258	s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
1259	s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
1260
1261
1262	/*
1263	 * Since we are going to write rf buffer
1264	 * check if we have any pending gain_F
1265	 * optimization settings
1266	 */
1267	if (ah->ah_version == AR5K_AR5212 &&
1268	(ah->ah_radio <= AR5K_RF5112)) {
1269		if (!fast && ah->ah_rf_banks != NULL)
1270				ath5k_hw_gainf_calibrate(ah);
1271	}
1272
1273	/* Wakeup the device */
1274	ret = ath5k_hw_nic_wakeup(ah, channel);
1275	if (ret)
1276		return ret;
1277
1278	/* PHY access enable */
1279	if (ah->ah_mac_srev >= AR5K_SREV_AR5211)
1280		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1281	else
1282		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ | 0x40,
1283							AR5K_PHY(0));
1284
1285	/* Write initial settings */
1286	ret = ath5k_hw_write_initvals(ah, mode, skip_pcu);
1287	if (ret)
1288		return ret;
1289
1290	/* Initialize core clock settings */
1291	ath5k_hw_init_core_clock(ah);
1292
1293	/*
1294	 * Tweak initval settings for revised
1295	 * chipsets and add some more config
1296	 * bits
1297	 */
1298	ath5k_hw_tweak_initval_settings(ah, channel);
1299
1300	/* Commit values from EEPROM */
1301	ath5k_hw_commit_eeprom_settings(ah, channel);
1302
1303
1304	/*
1305	 * Restore saved values
1306	 */
1307
1308	/* Seqnum, TSF */
1309	if (ah->ah_version != AR5K_AR5210) {
1310		if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
1311			for (i = 0; i < 10; i++)
1312				ath5k_hw_reg_write(ah, s_seq[i],
1313					AR5K_QUEUE_DCU_SEQNUM(i));
1314		} else {
1315			ath5k_hw_reg_write(ah, s_seq[0],
1316				AR5K_QUEUE_DCU_SEQNUM(0));
1317		}
1318
1319		if (ah->ah_version == AR5K_AR5211) {
1320			ath5k_hw_reg_write(ah, tsf_up, AR5K_TSF_U32);
1321			ath5k_hw_reg_write(ah, tsf_lo, AR5K_TSF_L32);
1322		}
1323	}
1324
1325	/* Ledstate */
1326	AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
1327
1328	/* Gpio settings */
1329	ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
1330	ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
1331
1332	/*
1333	 * Initialize PCU
1334	 */
1335	ath5k_hw_pcu_init(ah, op_mode);
1336
1337	/*
1338	 * Initialize PHY
1339	 */
1340	ret = ath5k_hw_phy_init(ah, channel, mode, false);
1341	if (ret) {
1342		ATH5K_ERR(ah,
1343			"failed to initialize PHY (%i) !\n", ret);
1344		return ret;
1345	}
1346
1347	/*
1348	 * Configure QCUs/DCUs
1349	 */
1350	ret = ath5k_hw_init_queues(ah);
1351	if (ret)
1352		return ret;
1353
1354
1355	/*
1356	 * Initialize DMA/Interrupts
1357	 */
1358	ath5k_hw_dma_init(ah);
1359
1360
1361	/*
1362	 * Enable 32KHz clock function for AR5212+ chips
1363	 * Set clocks to 32KHz operation and use an
1364	 * external 32KHz crystal when sleeping if one
1365	 * exists.
1366	 * Disabled by default because it is also disabled in
1367	 * other drivers and it is known to cause stability
1368	 * issues on some devices
1369	 */
1370	if (ah->ah_use_32khz_clock && ah->ah_version == AR5K_AR5212 &&
1371	    op_mode != NL80211_IFTYPE_AP)
1372		ath5k_hw_set_sleep_clock(ah, true);
1373
1374	/*
1375	 * Disable beacons and reset the TSF
1376	 */
1377	AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE);
1378	ath5k_hw_reset_tsf(ah);
1379	return 0;
1380}
v3.15
   1/*
   2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
   3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
   4 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
   5 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
   6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
   7 *
   8 * Permission to use, copy, modify, and distribute this software for any
   9 * purpose with or without fee is hereby granted, provided that the above
  10 * copyright notice and this permission notice appear in all copies.
  11 *
  12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  19 *
  20 */
  21
  22/****************************\
  23  Reset function and helpers
  24\****************************/
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <asm/unaligned.h>
  29
  30#include <linux/pci.h>		/* To determine if a card is pci-e */
  31#include <linux/log2.h>
  32#include <linux/platform_device.h>
  33#include "ath5k.h"
  34#include "reg.h"
  35#include "debug.h"
  36
  37
  38/**
  39 * DOC: Reset function and helpers
  40 *
  41 * Here we implement the main reset routine, used to bring the card
  42 * to a working state and ready to receive. We also handle routines
  43 * that don't fit on other places such as clock, sleep and power control
  44 */
  45
  46
  47/******************\
  48* Helper functions *
  49\******************/
  50
  51/**
  52 * ath5k_hw_register_timeout() - Poll a register for a flag/field change
  53 * @ah: The &struct ath5k_hw
  54 * @reg: The register to read
  55 * @flag: The flag/field to check on the register
  56 * @val: The field value we expect (if we check a field)
  57 * @is_set: Instead of checking if the flag got cleared, check if it got set
  58 *
  59 * Some registers contain flags that indicate that an operation is
  60 * running. We use this function to poll these registers and check
  61 * if these flags get cleared. We also use it to poll a register
  62 * field (containing multiple flags) until it gets a specific value.
  63 *
  64 * Returns -EAGAIN if we exceeded AR5K_TUNE_REGISTER_TIMEOUT * 15us or 0
  65 */
  66int
  67ath5k_hw_register_timeout(struct ath5k_hw *ah, u32 reg, u32 flag, u32 val,
  68			      bool is_set)
  69{
  70	int i;
  71	u32 data;
  72
  73	for (i = AR5K_TUNE_REGISTER_TIMEOUT; i > 0; i--) {
  74		data = ath5k_hw_reg_read(ah, reg);
  75		if (is_set && (data & flag))
  76			break;
  77		else if ((data & flag) == val)
  78			break;
  79		udelay(15);
  80	}
  81
  82	return (i <= 0) ? -EAGAIN : 0;
  83}
  84
  85
  86/*************************\
  87* Clock related functions *
  88\*************************/
  89
  90/**
  91 * ath5k_hw_htoclock() - Translate usec to hw clock units
  92 * @ah: The &struct ath5k_hw
  93 * @usec: value in microseconds
  94 *
  95 * Translate usecs to hw clock units based on the current
  96 * hw clock rate.
  97 *
  98 * Returns number of clock units
  99 */
 100unsigned int
 101ath5k_hw_htoclock(struct ath5k_hw *ah, unsigned int usec)
 102{
 103	struct ath_common *common = ath5k_hw_common(ah);
 104	return usec * common->clockrate;
 105}
 106
 107/**
 108 * ath5k_hw_clocktoh() - Translate hw clock units to usec
 109 * @ah: The &struct ath5k_hw
 110 * @clock: value in hw clock units
 111 *
 112 * Translate hw clock units to usecs based on the current
 113 * hw clock rate.
 114 *
 115 * Returns number of usecs
 116 */
 117unsigned int
 118ath5k_hw_clocktoh(struct ath5k_hw *ah, unsigned int clock)
 119{
 120	struct ath_common *common = ath5k_hw_common(ah);
 121	return clock / common->clockrate;
 122}
 123
 124/**
 125 * ath5k_hw_init_core_clock() - Initialize core clock
 126 * @ah: The &struct ath5k_hw
 127 *
 128 * Initialize core clock parameters (usec, usec32, latencies etc),
 129 * based on current bwmode and chipset properties.
 130 */
 131static void
 132ath5k_hw_init_core_clock(struct ath5k_hw *ah)
 133{
 134	struct ieee80211_channel *channel = ah->ah_current_channel;
 135	struct ath_common *common = ath5k_hw_common(ah);
 136	u32 usec_reg, txlat, rxlat, usec, clock, sclock, txf2txs;
 137
 138	/*
 139	 * Set core clock frequency
 140	 */
 141	switch (channel->hw_value) {
 142	case AR5K_MODE_11A:
 143		clock = 40;
 144		break;
 145	case AR5K_MODE_11B:
 146		clock = 22;
 147		break;
 148	case AR5K_MODE_11G:
 149	default:
 150		clock = 44;
 151		break;
 152	}
 153
 154	/* Use clock multiplier for non-default
 155	 * bwmode */
 156	switch (ah->ah_bwmode) {
 157	case AR5K_BWMODE_40MHZ:
 158		clock *= 2;
 159		break;
 160	case AR5K_BWMODE_10MHZ:
 161		clock /= 2;
 162		break;
 163	case AR5K_BWMODE_5MHZ:
 164		clock /= 4;
 165		break;
 166	default:
 167		break;
 168	}
 169
 170	common->clockrate = clock;
 171
 172	/*
 173	 * Set USEC parameters
 174	 */
 175	/* Set USEC counter on PCU*/
 176	usec = clock - 1;
 177	usec = AR5K_REG_SM(usec, AR5K_USEC_1);
 178
 179	/* Set usec duration on DCU */
 180	if (ah->ah_version != AR5K_AR5210)
 181		AR5K_REG_WRITE_BITS(ah, AR5K_DCU_GBL_IFS_MISC,
 182					AR5K_DCU_GBL_IFS_MISC_USEC_DUR,
 183					clock);
 184
 185	/* Set 32MHz USEC counter */
 186	if ((ah->ah_radio == AR5K_RF5112) ||
 187	    (ah->ah_radio == AR5K_RF2413) ||
 188	    (ah->ah_radio == AR5K_RF5413) ||
 189	    (ah->ah_radio == AR5K_RF2316) ||
 190	    (ah->ah_radio == AR5K_RF2317))
 191		/* Remain on 40MHz clock ? */
 192		sclock = 40 - 1;
 193	else
 194		sclock = 32 - 1;
 195	sclock = AR5K_REG_SM(sclock, AR5K_USEC_32);
 196
 197	/*
 198	 * Set tx/rx latencies
 199	 */
 200	usec_reg = ath5k_hw_reg_read(ah, AR5K_USEC_5211);
 201	txlat = AR5K_REG_MS(usec_reg, AR5K_USEC_TX_LATENCY_5211);
 202	rxlat = AR5K_REG_MS(usec_reg, AR5K_USEC_RX_LATENCY_5211);
 203
 204	/*
 205	 * Set default Tx frame to Tx data start delay
 206	 */
 207	txf2txs = AR5K_INIT_TXF2TXD_START_DEFAULT;
 208
 209	/*
 210	 * 5210 initvals don't include usec settings
 211	 * so we need to use magic values here for
 212	 * tx/rx latencies
 213	 */
 214	if (ah->ah_version == AR5K_AR5210) {
 215		/* same for turbo */
 216		txlat = AR5K_INIT_TX_LATENCY_5210;
 217		rxlat = AR5K_INIT_RX_LATENCY_5210;
 218	}
 219
 220	if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
 221		/* 5311 has different tx/rx latency masks
 222		 * from 5211, since we deal 5311 the same
 223		 * as 5211 when setting initvals, shift
 224		 * values here to their proper locations
 225		 *
 226		 * Note: Initvals indicate tx/rx/ latencies
 227		 * are the same for turbo mode */
 228		txlat = AR5K_REG_SM(txlat, AR5K_USEC_TX_LATENCY_5210);
 229		rxlat = AR5K_REG_SM(rxlat, AR5K_USEC_RX_LATENCY_5210);
 230	} else
 231	switch (ah->ah_bwmode) {
 232	case AR5K_BWMODE_10MHZ:
 233		txlat = AR5K_REG_SM(txlat * 2,
 234				AR5K_USEC_TX_LATENCY_5211);
 235		rxlat = AR5K_REG_SM(AR5K_INIT_RX_LAT_MAX,
 236				AR5K_USEC_RX_LATENCY_5211);
 237		txf2txs = AR5K_INIT_TXF2TXD_START_DELAY_10MHZ;
 238		break;
 239	case AR5K_BWMODE_5MHZ:
 240		txlat = AR5K_REG_SM(txlat * 4,
 241				AR5K_USEC_TX_LATENCY_5211);
 242		rxlat = AR5K_REG_SM(AR5K_INIT_RX_LAT_MAX,
 243				AR5K_USEC_RX_LATENCY_5211);
 244		txf2txs = AR5K_INIT_TXF2TXD_START_DELAY_5MHZ;
 245		break;
 246	case AR5K_BWMODE_40MHZ:
 247		txlat = AR5K_INIT_TX_LAT_MIN;
 248		rxlat = AR5K_REG_SM(rxlat / 2,
 249				AR5K_USEC_RX_LATENCY_5211);
 250		txf2txs = AR5K_INIT_TXF2TXD_START_DEFAULT;
 251		break;
 252	default:
 253		break;
 254	}
 255
 256	usec_reg = (usec | sclock | txlat | rxlat);
 257	ath5k_hw_reg_write(ah, usec_reg, AR5K_USEC);
 258
 259	/* On 5112 set tx frame to tx data start delay */
 260	if (ah->ah_radio == AR5K_RF5112) {
 261		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL2,
 262					AR5K_PHY_RF_CTL2_TXF2TXD_START,
 263					txf2txs);
 264	}
 265}
 266
 267/**
 268 * ath5k_hw_set_sleep_clock() - Setup sleep clock operation
 269 * @ah: The &struct ath5k_hw
 270 * @enable: Enable sleep clock operation (false to disable)
 271 *
 272 * If there is an external 32KHz crystal available, use it
 273 * as ref. clock instead of 32/40MHz clock and baseband clocks
 274 * to save power during sleep or restore normal 32/40MHz
 275 * operation.
 276 *
 277 * NOTE: When operating on 32KHz certain PHY registers (27 - 31,
 278 * 123 - 127) require delay on access.
 279 */
 280static void
 281ath5k_hw_set_sleep_clock(struct ath5k_hw *ah, bool enable)
 282{
 283	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 284	u32 scal, spending, sclock;
 285
 286	/* Only set 32KHz settings if we have an external
 287	 * 32KHz crystal present */
 288	if ((AR5K_EEPROM_HAS32KHZCRYSTAL(ee->ee_misc1) ||
 289	AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(ee->ee_misc1)) &&
 290	enable) {
 291
 292		/* 1 usec/cycle */
 293		AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, 1);
 294		/* Set up tsf increment on each cycle */
 295		AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 61);
 296
 297		/* Set baseband sleep control registers
 298		 * and sleep control rate */
 299		ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
 300
 301		if ((ah->ah_radio == AR5K_RF5112) ||
 302		(ah->ah_radio == AR5K_RF5413) ||
 303		(ah->ah_radio == AR5K_RF2316) ||
 304		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
 305			spending = 0x14;
 306		else
 307			spending = 0x18;
 308		ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
 309
 310		if ((ah->ah_radio == AR5K_RF5112) ||
 311		(ah->ah_radio == AR5K_RF5413) ||
 312		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
 313			ath5k_hw_reg_write(ah, 0x26, AR5K_PHY_SLMT);
 314			ath5k_hw_reg_write(ah, 0x0d, AR5K_PHY_SCAL);
 315			ath5k_hw_reg_write(ah, 0x07, AR5K_PHY_SCLOCK);
 316			ath5k_hw_reg_write(ah, 0x3f, AR5K_PHY_SDELAY);
 317			AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
 318				AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x02);
 319		} else {
 320			ath5k_hw_reg_write(ah, 0x0a, AR5K_PHY_SLMT);
 321			ath5k_hw_reg_write(ah, 0x0c, AR5K_PHY_SCAL);
 322			ath5k_hw_reg_write(ah, 0x03, AR5K_PHY_SCLOCK);
 323			ath5k_hw_reg_write(ah, 0x20, AR5K_PHY_SDELAY);
 324			AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
 325				AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x03);
 326		}
 327
 328		/* Enable sleep clock operation */
 329		AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG,
 330				AR5K_PCICFG_SLEEP_CLOCK_EN);
 331
 332	} else {
 333
 334		/* Disable sleep clock operation and
 335		 * restore default parameters */
 336		AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
 337				AR5K_PCICFG_SLEEP_CLOCK_EN);
 338
 339		AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
 340				AR5K_PCICFG_SLEEP_CLOCK_RATE, 0);
 341
 342		/* Set DAC/ADC delays */
 343		ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
 344		ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
 345
 346		if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
 347			scal = AR5K_PHY_SCAL_32MHZ_2417;
 348		else if (ee->ee_is_hb63)
 349			scal = AR5K_PHY_SCAL_32MHZ_HB63;
 350		else
 351			scal = AR5K_PHY_SCAL_32MHZ;
 352		ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
 353
 354		ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
 355		ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
 356
 357		if ((ah->ah_radio == AR5K_RF5112) ||
 358		(ah->ah_radio == AR5K_RF5413) ||
 359		(ah->ah_radio == AR5K_RF2316) ||
 360		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
 361			spending = 0x14;
 362		else
 363			spending = 0x18;
 364		ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
 365
 366		/* Set up tsf increment on each cycle */
 367		AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 1);
 368
 369		if ((ah->ah_radio == AR5K_RF5112) ||
 370			(ah->ah_radio == AR5K_RF5413) ||
 371			(ah->ah_radio == AR5K_RF2316) ||
 372			(ah->ah_radio == AR5K_RF2317))
 373			sclock = 40 - 1;
 374		else
 375			sclock = 32 - 1;
 376		AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, sclock);
 377	}
 378}
 379
 380
 381/*********************\
 382* Reset/Sleep control *
 383\*********************/
 384
 385/**
 386 * ath5k_hw_nic_reset() - Reset the various chipset units
 387 * @ah: The &struct ath5k_hw
 388 * @val: Mask to indicate what units to reset
 389 *
 390 * To reset the various chipset units we need to write
 391 * the mask to AR5K_RESET_CTL and poll the register until
 392 * all flags are cleared.
 393 *
 394 * Returns 0 if we are O.K. or -EAGAIN (from athk5_hw_register_timeout)
 395 */
 396static int
 397ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
 398{
 399	int ret;
 400	u32 mask = val ? val : ~0U;
 401
 402	/* Read-and-clear RX Descriptor Pointer*/
 403	ath5k_hw_reg_read(ah, AR5K_RXDP);
 404
 405	/*
 406	 * Reset the device and wait until success
 407	 */
 408	ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
 409
 410	/* Wait at least 128 PCI clocks */
 411	usleep_range(15, 20);
 412
 413	if (ah->ah_version == AR5K_AR5210) {
 414		val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
 415			| AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
 416		mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
 417			| AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
 418	} else {
 419		val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
 420		mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
 421	}
 422
 423	ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
 424
 425	/*
 426	 * Reset configuration register (for hw byte-swap). Note that this
 427	 * is only set for big endian. We do the necessary magic in
 428	 * AR5K_INIT_CFG.
 429	 */
 430	if ((val & AR5K_RESET_CTL_PCU) == 0)
 431		ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
 432
 433	return ret;
 434}
 435
 436/**
 437 * ath5k_hw_wisoc_reset() -  Reset AHB chipset
 438 * @ah: The &struct ath5k_hw
 439 * @flags: Mask to indicate what units to reset
 440 *
 441 * Same as ath5k_hw_nic_reset but for AHB based devices
 442 *
 443 * Returns 0 if we are O.K. or -EAGAIN (from athk5_hw_register_timeout)
 444 */
 445static int
 446ath5k_hw_wisoc_reset(struct ath5k_hw *ah, u32 flags)
 447{
 448	u32 mask = flags ? flags : ~0U;
 449	u32 __iomem *reg;
 450	u32 regval;
 451	u32 val = 0;
 452
 453	/* ah->ah_mac_srev is not available at this point yet */
 454	if (ah->devid >= AR5K_SREV_AR2315_R6) {
 455		reg = (u32 __iomem *) AR5K_AR2315_RESET;
 456		if (mask & AR5K_RESET_CTL_PCU)
 457			val |= AR5K_AR2315_RESET_WMAC;
 458		if (mask & AR5K_RESET_CTL_BASEBAND)
 459			val |= AR5K_AR2315_RESET_BB_WARM;
 460	} else {
 461		reg = (u32 __iomem *) AR5K_AR5312_RESET;
 462		if (to_platform_device(ah->dev)->id == 0) {
 463			if (mask & AR5K_RESET_CTL_PCU)
 464				val |= AR5K_AR5312_RESET_WMAC0;
 465			if (mask & AR5K_RESET_CTL_BASEBAND)
 466				val |= AR5K_AR5312_RESET_BB0_COLD |
 467				       AR5K_AR5312_RESET_BB0_WARM;
 468		} else {
 469			if (mask & AR5K_RESET_CTL_PCU)
 470				val |= AR5K_AR5312_RESET_WMAC1;
 471			if (mask & AR5K_RESET_CTL_BASEBAND)
 472				val |= AR5K_AR5312_RESET_BB1_COLD |
 473				       AR5K_AR5312_RESET_BB1_WARM;
 474		}
 475	}
 476
 477	/* Put BB/MAC into reset */
 478	regval = ioread32(reg);
 479	iowrite32(regval | val, reg);
 480	regval = ioread32(reg);
 481	usleep_range(100, 150);
 482
 483	/* Bring BB/MAC out of reset */
 484	iowrite32(regval & ~val, reg);
 485	regval = ioread32(reg);
 486
 487	/*
 488	 * Reset configuration register (for hw byte-swap). Note that this
 489	 * is only set for big endian. We do the necessary magic in
 490	 * AR5K_INIT_CFG.
 491	 */
 492	if ((flags & AR5K_RESET_CTL_PCU) == 0)
 493		ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
 494
 495	return 0;
 496}
 497
 498/**
 499 * ath5k_hw_set_power_mode() - Set power mode
 500 * @ah: The &struct ath5k_hw
 501 * @mode: One of enum ath5k_power_mode
 502 * @set_chip: Set to true to write sleep control register
 503 * @sleep_duration: How much time the device is allowed to sleep
 504 * when sleep logic is enabled (in 128 microsecond increments).
 505 *
 506 * This function is used to configure sleep policy and allowed
 507 * sleep modes. For more information check out the sleep control
 508 * register on reg.h and STA_ID1.
 509 *
 510 * Returns 0 on success, -EIO if chip didn't wake up or -EINVAL if an invalid
 511 * mode is requested.
 512 */
 513static int
 514ath5k_hw_set_power_mode(struct ath5k_hw *ah, enum ath5k_power_mode mode,
 515			      bool set_chip, u16 sleep_duration)
 516{
 517	unsigned int i;
 518	u32 staid, data;
 519
 520	staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
 521
 522	switch (mode) {
 523	case AR5K_PM_AUTO:
 524		staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
 525		/* fallthrough */
 526	case AR5K_PM_NETWORK_SLEEP:
 527		if (set_chip)
 528			ath5k_hw_reg_write(ah,
 529				AR5K_SLEEP_CTL_SLE_ALLOW |
 530				sleep_duration,
 531				AR5K_SLEEP_CTL);
 532
 533		staid |= AR5K_STA_ID1_PWR_SV;
 534		break;
 535
 536	case AR5K_PM_FULL_SLEEP:
 537		if (set_chip)
 538			ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
 539				AR5K_SLEEP_CTL);
 540
 541		staid |= AR5K_STA_ID1_PWR_SV;
 542		break;
 543
 544	case AR5K_PM_AWAKE:
 545
 546		staid &= ~AR5K_STA_ID1_PWR_SV;
 547
 548		if (!set_chip)
 549			goto commit;
 550
 551		data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL);
 552
 553		/* If card is down we 'll get 0xffff... so we
 554		 * need to clean this up before we write the register
 555		 */
 556		if (data & 0xffc00000)
 557			data = 0;
 558		else
 559			/* Preserve sleep duration etc */
 560			data = data & ~AR5K_SLEEP_CTL_SLE;
 561
 562		ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
 563							AR5K_SLEEP_CTL);
 564		usleep_range(15, 20);
 565
 566		for (i = 200; i > 0; i--) {
 567			/* Check if the chip did wake up */
 568			if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
 569					AR5K_PCICFG_SPWR_DN) == 0)
 570				break;
 571
 572			/* Wait a bit and retry */
 573			usleep_range(50, 75);
 574			ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
 575							AR5K_SLEEP_CTL);
 576		}
 577
 578		/* Fail if the chip didn't wake up */
 579		if (i == 0)
 580			return -EIO;
 581
 582		break;
 583
 584	default:
 585		return -EINVAL;
 586	}
 587
 588commit:
 589	ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
 590
 591	return 0;
 592}
 593
 594/**
 595 * ath5k_hw_on_hold() - Put device on hold
 596 * @ah: The &struct ath5k_hw
 597 *
 598 * Put MAC and Baseband on warm reset and keep that state
 599 * (don't clean sleep control register). After this MAC
 600 * and Baseband are disabled and a full reset is needed
 601 * to come back. This way we save as much power as possible
 602 * without putting the card on full sleep.
 603 *
 604 * Returns 0 on success or -EIO on error
 605 */
 606int
 607ath5k_hw_on_hold(struct ath5k_hw *ah)
 608{
 609	struct pci_dev *pdev = ah->pdev;
 610	u32 bus_flags;
 611	int ret;
 612
 613	if (ath5k_get_bus_type(ah) == ATH_AHB)
 614		return 0;
 615
 616	/* Make sure device is awake */
 617	ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0);
 618	if (ret) {
 619		ATH5K_ERR(ah, "failed to wakeup the MAC Chip\n");
 620		return ret;
 621	}
 622
 623	/*
 624	 * Put chipset on warm reset...
 625	 *
 626	 * Note: putting PCI core on warm reset on PCI-E cards
 627	 * results card to hang and always return 0xffff... so
 628	 * we ignore that flag for PCI-E cards. On PCI cards
 629	 * this flag gets cleared after 64 PCI clocks.
 630	 */
 631	bus_flags = (pdev && pci_is_pcie(pdev)) ? 0 : AR5K_RESET_CTL_PCI;
 632
 633	if (ah->ah_version == AR5K_AR5210) {
 634		ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
 635			AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
 636			AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
 637			usleep_range(2000, 2500);
 638	} else {
 639		ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
 640			AR5K_RESET_CTL_BASEBAND | bus_flags);
 641	}
 642
 643	if (ret) {
 644		ATH5K_ERR(ah, "failed to put device on warm reset\n");
 645		return -EIO;
 646	}
 647
 648	/* ...wakeup again!*/
 649	ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0);
 650	if (ret) {
 651		ATH5K_ERR(ah, "failed to put device on hold\n");
 652		return ret;
 653	}
 654
 655	return ret;
 656}
 657
 658/**
 659 * ath5k_hw_nic_wakeup() - Force card out of sleep
 660 * @ah: The &struct ath5k_hw
 661 * @channel: The &struct ieee80211_channel
 662 *
 663 * Bring up MAC + PHY Chips and program PLL
 664 * NOTE: Channel is NULL for the initial wakeup.
 665 *
 666 * Returns 0 on success, -EIO on hw failure or -EINVAL for false channel infos
 667 */
 668int
 669ath5k_hw_nic_wakeup(struct ath5k_hw *ah, struct ieee80211_channel *channel)
 670{
 671	struct pci_dev *pdev = ah->pdev;
 672	u32 turbo, mode, clock, bus_flags;
 673	int ret;
 674
 675	turbo = 0;
 676	mode = 0;
 677	clock = 0;
 678
 679	if ((ath5k_get_bus_type(ah) != ATH_AHB) || channel) {
 680		/* Wakeup the device */
 681		ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0);
 682		if (ret) {
 683			ATH5K_ERR(ah, "failed to wakeup the MAC Chip\n");
 684			return ret;
 685		}
 686	}
 687
 688	/*
 689	 * Put chipset on warm reset...
 690	 *
 691	 * Note: putting PCI core on warm reset on PCI-E cards
 692	 * results card to hang and always return 0xffff... so
 693	 * we ignore that flag for PCI-E cards. On PCI cards
 694	 * this flag gets cleared after 64 PCI clocks.
 695	 */
 696	bus_flags = (pdev && pci_is_pcie(pdev)) ? 0 : AR5K_RESET_CTL_PCI;
 697
 698	if (ah->ah_version == AR5K_AR5210) {
 699		ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
 700			AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
 701			AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
 702			usleep_range(2000, 2500);
 703	} else {
 704		if (ath5k_get_bus_type(ah) == ATH_AHB)
 705			ret = ath5k_hw_wisoc_reset(ah, AR5K_RESET_CTL_PCU |
 706				AR5K_RESET_CTL_BASEBAND);
 707		else
 708			ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
 709				AR5K_RESET_CTL_BASEBAND | bus_flags);
 710	}
 711
 712	if (ret) {
 713		ATH5K_ERR(ah, "failed to reset the MAC Chip\n");
 714		return -EIO;
 715	}
 716
 717	/* ...wakeup again!...*/
 718	ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0);
 719	if (ret) {
 720		ATH5K_ERR(ah, "failed to resume the MAC Chip\n");
 721		return ret;
 722	}
 723
 724	/* ...reset configuration register on Wisoc ...
 725	 * ...clear reset control register and pull device out of
 726	 * warm reset on others */
 727	if (ath5k_get_bus_type(ah) == ATH_AHB)
 728		ret = ath5k_hw_wisoc_reset(ah, 0);
 729	else
 730		ret = ath5k_hw_nic_reset(ah, 0);
 731
 732	if (ret) {
 733		ATH5K_ERR(ah, "failed to warm reset the MAC Chip\n");
 734		return -EIO;
 735	}
 736
 737	/* On initialization skip PLL programming since we don't have
 738	 * a channel / mode set yet */
 739	if (!channel)
 740		return 0;
 741
 742	if (ah->ah_version != AR5K_AR5210) {
 743		/*
 744		 * Get channel mode flags
 745		 */
 746
 747		if (ah->ah_radio >= AR5K_RF5112) {
 748			mode = AR5K_PHY_MODE_RAD_RF5112;
 749			clock = AR5K_PHY_PLL_RF5112;
 750		} else {
 751			mode = AR5K_PHY_MODE_RAD_RF5111;	/*Zero*/
 752			clock = AR5K_PHY_PLL_RF5111;		/*Zero*/
 753		}
 754
 755		if (channel->band == IEEE80211_BAND_2GHZ) {
 756			mode |= AR5K_PHY_MODE_FREQ_2GHZ;
 757			clock |= AR5K_PHY_PLL_44MHZ;
 758
 759			if (channel->hw_value == AR5K_MODE_11B) {
 760				mode |= AR5K_PHY_MODE_MOD_CCK;
 761			} else {
 762				/* XXX Dynamic OFDM/CCK is not supported by the
 763				 * AR5211 so we set MOD_OFDM for plain g (no
 764				 * CCK headers) operation. We need to test
 765				 * this, 5211 might support ofdm-only g after
 766				 * all, there are also initial register values
 767				 * in the code for g mode (see initvals.c).
 768				 */
 769				if (ah->ah_version == AR5K_AR5211)
 770					mode |= AR5K_PHY_MODE_MOD_OFDM;
 771				else
 772					mode |= AR5K_PHY_MODE_MOD_DYN;
 773			}
 774		} else if (channel->band == IEEE80211_BAND_5GHZ) {
 775			mode |= (AR5K_PHY_MODE_FREQ_5GHZ |
 776				 AR5K_PHY_MODE_MOD_OFDM);
 777
 778			/* Different PLL setting for 5413 */
 779			if (ah->ah_radio == AR5K_RF5413)
 780				clock = AR5K_PHY_PLL_40MHZ_5413;
 781			else
 782				clock |= AR5K_PHY_PLL_40MHZ;
 783		} else {
 784			ATH5K_ERR(ah, "invalid radio frequency mode\n");
 785			return -EINVAL;
 786		}
 787
 788		/*XXX: Can bwmode be used with dynamic mode ?
 789		 * (I don't think it supports 44MHz) */
 790		/* On 2425 initvals TURBO_SHORT is not present */
 791		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) {
 792			turbo = AR5K_PHY_TURBO_MODE;
 793			if (ah->ah_radio != AR5K_RF2425)
 794				turbo |= AR5K_PHY_TURBO_SHORT;
 795		} else if (ah->ah_bwmode != AR5K_BWMODE_DEFAULT) {
 796			if (ah->ah_radio == AR5K_RF5413) {
 797				mode |= (ah->ah_bwmode == AR5K_BWMODE_10MHZ) ?
 798					AR5K_PHY_MODE_HALF_RATE :
 799					AR5K_PHY_MODE_QUARTER_RATE;
 800			} else if (ah->ah_version == AR5K_AR5212) {
 801				clock |= (ah->ah_bwmode == AR5K_BWMODE_10MHZ) ?
 802					AR5K_PHY_PLL_HALF_RATE :
 803					AR5K_PHY_PLL_QUARTER_RATE;
 804			}
 805		}
 806
 807	} else { /* Reset the device */
 808
 809		/* ...enable Atheros turbo mode if requested */
 810		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
 811			ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
 812					AR5K_PHY_TURBO);
 813	}
 814
 815	if (ah->ah_version != AR5K_AR5210) {
 816
 817		/* ...update PLL if needed */
 818		if (ath5k_hw_reg_read(ah, AR5K_PHY_PLL) != clock) {
 819			ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
 820			usleep_range(300, 350);
 821		}
 822
 823		/* ...set the PHY operating mode */
 824		ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
 825		ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
 826	}
 827
 828	return 0;
 829}
 830
 831
 832/**************************************\
 833* Post-initvals register modifications *
 834\**************************************/
 835
 836/**
 837 * ath5k_hw_tweak_initval_settings() - Tweak initial settings
 838 * @ah: The &struct ath5k_hw
 839 * @channel: The &struct ieee80211_channel
 840 *
 841 * Some settings are not handled on initvals, e.g. bwmode
 842 * settings, some phy settings, workarounds etc that in general
 843 * don't fit anywhere else or are too small to introduce a separate
 844 * function for each one. So we have this function to handle
 845 * them all during reset and complete card's initialization.
 846 */
 847static void
 848ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah,
 849				struct ieee80211_channel *channel)
 850{
 851	if (ah->ah_version == AR5K_AR5212 &&
 852	    ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
 853
 854		/* Setup ADC control */
 855		ath5k_hw_reg_write(ah,
 856				(AR5K_REG_SM(2,
 857				AR5K_PHY_ADC_CTL_INBUFGAIN_OFF) |
 858				AR5K_REG_SM(2,
 859				AR5K_PHY_ADC_CTL_INBUFGAIN_ON) |
 860				AR5K_PHY_ADC_CTL_PWD_DAC_OFF |
 861				AR5K_PHY_ADC_CTL_PWD_ADC_OFF),
 862				AR5K_PHY_ADC_CTL);
 863
 864
 865
 866		/* Disable barker RSSI threshold */
 867		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
 868				AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR);
 869
 870		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
 871			AR5K_PHY_DAG_CCK_CTL_RSSI_THR, 2);
 872
 873		/* Set the mute mask */
 874		ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK);
 875	}
 876
 877	/* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */
 878	if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212B)
 879		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BLUETOOTH);
 880
 881	/* Enable DCU double buffering */
 882	if (ah->ah_phy_revision > AR5K_SREV_PHY_5212B)
 883		AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
 884				AR5K_TXCFG_DCU_DBL_BUF_DIS);
 885
 886	/* Set fast ADC */
 887	if ((ah->ah_radio == AR5K_RF5413) ||
 888		(ah->ah_radio == AR5K_RF2317) ||
 889		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
 890		u32 fast_adc = true;
 891
 892		if (channel->center_freq == 2462 ||
 893		channel->center_freq == 2467)
 894			fast_adc = 0;
 895
 896		/* Only update if needed */
 897		if (ath5k_hw_reg_read(ah, AR5K_PHY_FAST_ADC) != fast_adc)
 898				ath5k_hw_reg_write(ah, fast_adc,
 899						AR5K_PHY_FAST_ADC);
 900	}
 901
 902	/* Fix for first revision of the RF5112 RF chipset */
 903	if (ah->ah_radio == AR5K_RF5112 &&
 904			ah->ah_radio_5ghz_revision <
 905			AR5K_SREV_RAD_5112A) {
 906		u32 data;
 907		ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
 908				AR5K_PHY_CCKTXCTL);
 909		if (channel->band == IEEE80211_BAND_5GHZ)
 910			data = 0xffb81020;
 911		else
 912			data = 0xffb80d20;
 913		ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
 914	}
 915
 916	if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
 917		/* Clear QCU/DCU clock gating register */
 918		ath5k_hw_reg_write(ah, 0, AR5K_QCUDCU_CLKGT);
 919		/* Set DAC/ADC delays */
 920		ath5k_hw_reg_write(ah, AR5K_PHY_SCAL_32MHZ_5311,
 921						AR5K_PHY_SCAL);
 922		/* Enable PCU FIFO corruption ECO */
 923		AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211,
 924					AR5K_DIAG_SW_ECO_ENABLE);
 925	}
 926
 927	if (ah->ah_bwmode) {
 928		/* Increase PHY switch and AGC settling time
 929		 * on turbo mode (ath5k_hw_commit_eeprom_settings
 930		 * will override settling time if available) */
 931		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) {
 932
 933			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
 934						AR5K_PHY_SETTLING_AGC,
 935						AR5K_AGC_SETTLING_TURBO);
 936
 937			/* XXX: Initvals indicate we only increase
 938			 * switch time on AR5212, 5211 and 5210
 939			 * only change agc time (bug?) */
 940			if (ah->ah_version == AR5K_AR5212)
 941				AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
 942						AR5K_PHY_SETTLING_SWITCH,
 943						AR5K_SWITCH_SETTLING_TURBO);
 944
 945			if (ah->ah_version == AR5K_AR5210) {
 946				/* Set Frame Control Register */
 947				ath5k_hw_reg_write(ah,
 948					(AR5K_PHY_FRAME_CTL_INI |
 949					AR5K_PHY_TURBO_MODE |
 950					AR5K_PHY_TURBO_SHORT | 0x2020),
 951					AR5K_PHY_FRAME_CTL_5210);
 952			}
 953		/* On 5413 PHY force window length for half/quarter rate*/
 954		} else if ((ah->ah_mac_srev >= AR5K_SREV_AR5424) &&
 955		(ah->ah_mac_srev <= AR5K_SREV_AR5414)) {
 956			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL_5211,
 957						AR5K_PHY_FRAME_CTL_WIN_LEN,
 958						3);
 959		}
 960	} else if (ah->ah_version == AR5K_AR5210) {
 961		/* Set Frame Control Register for normal operation */
 962		ath5k_hw_reg_write(ah, (AR5K_PHY_FRAME_CTL_INI | 0x1020),
 963						AR5K_PHY_FRAME_CTL_5210);
 964	}
 965}
 966
 967/**
 968 * ath5k_hw_commit_eeprom_settings() - Commit settings from EEPROM
 969 * @ah: The &struct ath5k_hw
 970 * @channel: The &struct ieee80211_channel
 971 *
 972 * Use settings stored on EEPROM to properly initialize the card
 973 * based on various infos and per-mode calibration data.
 974 */
 975static void
 976ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah,
 977		struct ieee80211_channel *channel)
 978{
 979	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 980	s16 cck_ofdm_pwr_delta;
 981	u8 ee_mode;
 982
 983	/* TODO: Add support for AR5210 EEPROM */
 984	if (ah->ah_version == AR5K_AR5210)
 985		return;
 986
 987	ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
 988
 989	/* Adjust power delta for channel 14 */
 990	if (channel->center_freq == 2484)
 991		cck_ofdm_pwr_delta =
 992			((ee->ee_cck_ofdm_power_delta -
 993			ee->ee_scaled_cck_delta) * 2) / 10;
 994	else
 995		cck_ofdm_pwr_delta =
 996			(ee->ee_cck_ofdm_power_delta * 2) / 10;
 997
 998	/* Set CCK to OFDM power delta on tx power
 999	 * adjustment register */
1000	if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
1001		if (channel->hw_value == AR5K_MODE_11G)
1002			ath5k_hw_reg_write(ah,
1003			AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1),
1004				AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) |
1005			AR5K_REG_SM((cck_ofdm_pwr_delta * -1),
1006				AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX),
1007				AR5K_PHY_TX_PWR_ADJ);
1008		else
1009			ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ);
1010	} else {
1011		/* For older revs we scale power on sw during tx power
1012		 * setup */
1013		ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta;
1014		ah->ah_txpower.txp_cck_ofdm_gainf_delta =
1015						ee->ee_cck_ofdm_gain_delta;
1016	}
1017
1018	/* XXX: necessary here? is called from ath5k_hw_set_antenna_mode()
1019	 * too */
1020	ath5k_hw_set_antenna_switch(ah, ee_mode);
1021
1022	/* Noise floor threshold */
1023	ath5k_hw_reg_write(ah,
1024		AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
1025		AR5K_PHY_NFTHRES);
1026
1027	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
1028	(ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0)) {
1029		/* Switch settling time (Turbo) */
1030		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
1031				AR5K_PHY_SETTLING_SWITCH,
1032				ee->ee_switch_settling_turbo[ee_mode]);
1033
1034		/* Tx/Rx attenuation (Turbo) */
1035		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
1036				AR5K_PHY_GAIN_TXRX_ATTEN,
1037				ee->ee_atn_tx_rx_turbo[ee_mode]);
1038
1039		/* ADC/PGA desired size (Turbo) */
1040		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
1041				AR5K_PHY_DESIRED_SIZE_ADC,
1042				ee->ee_adc_desired_size_turbo[ee_mode]);
1043
1044		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
1045				AR5K_PHY_DESIRED_SIZE_PGA,
1046				ee->ee_pga_desired_size_turbo[ee_mode]);
1047
1048		/* Tx/Rx margin (Turbo) */
1049		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
1050				AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
1051				ee->ee_margin_tx_rx_turbo[ee_mode]);
1052
1053	} else {
1054		/* Switch settling time */
1055		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
1056				AR5K_PHY_SETTLING_SWITCH,
1057				ee->ee_switch_settling[ee_mode]);
1058
1059		/* Tx/Rx attenuation */
1060		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
1061				AR5K_PHY_GAIN_TXRX_ATTEN,
1062				ee->ee_atn_tx_rx[ee_mode]);
1063
1064		/* ADC/PGA desired size */
1065		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
1066				AR5K_PHY_DESIRED_SIZE_ADC,
1067				ee->ee_adc_desired_size[ee_mode]);
1068
1069		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
1070				AR5K_PHY_DESIRED_SIZE_PGA,
1071				ee->ee_pga_desired_size[ee_mode]);
1072
1073		/* Tx/Rx margin */
1074		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
1075			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
1076				AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
1077				ee->ee_margin_tx_rx[ee_mode]);
1078	}
1079
1080	/* XPA delays */
1081	ath5k_hw_reg_write(ah,
1082		(ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
1083		(ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
1084		(ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
1085		(ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4);
1086
1087	/* XLNA delay */
1088	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL3,
1089			AR5K_PHY_RF_CTL3_TXE2XLNA_ON,
1090			ee->ee_tx_end2xlna_enable[ee_mode]);
1091
1092	/* Thresh64 (ANI) */
1093	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_NF,
1094			AR5K_PHY_NF_THRESH62,
1095			ee->ee_thr_62[ee_mode]);
1096
1097	/* False detect backoff for channels
1098	 * that have spur noise. Write the new
1099	 * cyclic power RSSI threshold. */
1100	if (ath5k_hw_chan_has_spur_noise(ah, channel))
1101		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
1102				AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
1103				AR5K_INIT_CYCRSSI_THR1 +
1104				ee->ee_false_detect[ee_mode]);
1105	else
1106		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
1107				AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
1108				AR5K_INIT_CYCRSSI_THR1);
1109
1110	/* I/Q correction (set enable bit last to match HAL sources) */
1111	/* TODO: Per channel i/q infos ? */
1112	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
1113		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF,
1114			    ee->ee_i_cal[ee_mode]);
1115		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF,
1116			    ee->ee_q_cal[ee_mode]);
1117		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1118	}
1119
1120	/* Heavy clipping -disable for now */
1121	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_1)
1122		ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE);
1123}
1124
1125
1126/*********************\
1127* Main reset function *
1128\*********************/
1129
1130/**
1131 * ath5k_hw_reset() - The main reset function
1132 * @ah: The &struct ath5k_hw
1133 * @op_mode: One of enum nl80211_iftype
1134 * @channel: The &struct ieee80211_channel
1135 * @fast: Enable fast channel switching
1136 * @skip_pcu: Skip pcu initialization
1137 *
1138 * This is the function we call each time we want to (re)initialize the
1139 * card and pass new settings to hw. We also call it when hw runs into
1140 * trouble to make it come back to a working state.
1141 *
1142 * Returns 0 on success, -EINVAL on false op_mode or channel infos, or -EIO
1143 * on failure.
1144 */
1145int
1146ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
1147		struct ieee80211_channel *channel, bool fast, bool skip_pcu)
1148{
1149	u32 s_seq[10], s_led[3], tsf_up, tsf_lo;
1150	u8 mode;
1151	int i, ret;
1152
1153	tsf_up = 0;
1154	tsf_lo = 0;
1155	mode = 0;
1156
1157	/*
1158	 * Sanity check for fast flag
1159	 * Fast channel change only available
1160	 * on AR2413/AR5413.
1161	 */
1162	if (fast && (ah->ah_radio != AR5K_RF2413) &&
1163	(ah->ah_radio != AR5K_RF5413))
1164		fast = false;
1165
1166	/* Disable sleep clock operation
1167	 * to avoid register access delay on certain
1168	 * PHY registers */
1169	if (ah->ah_version == AR5K_AR5212)
1170		ath5k_hw_set_sleep_clock(ah, false);
1171
1172	/*
1173	 * Stop PCU
1174	 */
1175	ath5k_hw_stop_rx_pcu(ah);
1176
1177	/*
1178	 * Stop DMA
1179	 *
1180	 * Note: If DMA didn't stop continue
1181	 * since only a reset will fix it.
1182	 */
1183	ret = ath5k_hw_dma_stop(ah);
1184
1185	/* RF Bus grant won't work if we have pending
1186	 * frames */
1187	if (ret && fast) {
1188		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1189			"DMA didn't stop, falling back to normal reset\n");
1190		fast = false;
1191		/* Non fatal, just continue with
1192		 * normal reset */
1193		ret = 0;
1194	}
1195
1196	mode = channel->hw_value;
1197	switch (mode) {
1198	case AR5K_MODE_11A:
1199		break;
1200	case AR5K_MODE_11G:
1201		if (ah->ah_version <= AR5K_AR5211) {
1202			ATH5K_ERR(ah,
1203				"G mode not available on 5210/5211");
1204			return -EINVAL;
1205		}
1206		break;
1207	case AR5K_MODE_11B:
1208		if (ah->ah_version < AR5K_AR5211) {
1209			ATH5K_ERR(ah,
1210				"B mode not available on 5210");
1211			return -EINVAL;
1212		}
1213		break;
1214	default:
1215		ATH5K_ERR(ah,
1216			"invalid channel: %d\n", channel->center_freq);
1217		return -EINVAL;
1218	}
1219
1220	/*
1221	 * If driver requested fast channel change and DMA has stopped
1222	 * go on. If it fails continue with a normal reset.
1223	 */
1224	if (fast) {
1225		ret = ath5k_hw_phy_init(ah, channel, mode, true);
1226		if (ret) {
1227			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1228				"fast chan change failed, falling back to normal reset\n");
1229			/* Non fatal, can happen eg.
1230			 * on mode change */
1231			ret = 0;
1232		} else {
1233			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1234				"fast chan change successful\n");
1235			return 0;
1236		}
1237	}
1238
1239	/*
1240	 * Save some registers before a reset
1241	 */
1242	if (ah->ah_version != AR5K_AR5210) {
1243		/*
1244		 * Save frame sequence count
1245		 * For revs. after Oahu, only save
1246		 * seq num for DCU 0 (Global seq num)
1247		 */
1248		if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
1249
1250			for (i = 0; i < 10; i++)
1251				s_seq[i] = ath5k_hw_reg_read(ah,
1252					AR5K_QUEUE_DCU_SEQNUM(i));
1253
1254		} else {
1255			s_seq[0] = ath5k_hw_reg_read(ah,
1256					AR5K_QUEUE_DCU_SEQNUM(0));
1257		}
1258
1259		/* TSF accelerates on AR5211 during reset
1260		 * As a workaround save it here and restore
1261		 * it later so that it's back in time after
1262		 * reset. This way it'll get re-synced on the
1263		 * next beacon without breaking ad-hoc.
1264		 *
1265		 * On AR5212 TSF is almost preserved across a
1266		 * reset so it stays back in time anyway and
1267		 * we don't have to save/restore it.
1268		 *
1269		 * XXX: Since this breaks power saving we have
1270		 * to disable power saving until we receive the
1271		 * next beacon, so we can resync beacon timers */
1272		if (ah->ah_version == AR5K_AR5211) {
1273			tsf_up = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
1274			tsf_lo = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
1275		}
1276	}
1277
1278
1279	/*GPIOs*/
1280	s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) &
1281					AR5K_PCICFG_LEDSTATE;
1282	s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
1283	s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
1284
1285
1286	/*
1287	 * Since we are going to write rf buffer
1288	 * check if we have any pending gain_F
1289	 * optimization settings
1290	 */
1291	if (ah->ah_version == AR5K_AR5212 &&
1292	(ah->ah_radio <= AR5K_RF5112)) {
1293		if (!fast && ah->ah_rf_banks != NULL)
1294				ath5k_hw_gainf_calibrate(ah);
1295	}
1296
1297	/* Wakeup the device */
1298	ret = ath5k_hw_nic_wakeup(ah, channel);
1299	if (ret)
1300		return ret;
1301
1302	/* PHY access enable */
1303	if (ah->ah_mac_srev >= AR5K_SREV_AR5211)
1304		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1305	else
1306		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ | 0x40,
1307							AR5K_PHY(0));
1308
1309	/* Write initial settings */
1310	ret = ath5k_hw_write_initvals(ah, mode, skip_pcu);
1311	if (ret)
1312		return ret;
1313
1314	/* Initialize core clock settings */
1315	ath5k_hw_init_core_clock(ah);
1316
1317	/*
1318	 * Tweak initval settings for revised
1319	 * chipsets and add some more config
1320	 * bits
1321	 */
1322	ath5k_hw_tweak_initval_settings(ah, channel);
1323
1324	/* Commit values from EEPROM */
1325	ath5k_hw_commit_eeprom_settings(ah, channel);
1326
1327
1328	/*
1329	 * Restore saved values
1330	 */
1331
1332	/* Seqnum, TSF */
1333	if (ah->ah_version != AR5K_AR5210) {
1334		if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
1335			for (i = 0; i < 10; i++)
1336				ath5k_hw_reg_write(ah, s_seq[i],
1337					AR5K_QUEUE_DCU_SEQNUM(i));
1338		} else {
1339			ath5k_hw_reg_write(ah, s_seq[0],
1340				AR5K_QUEUE_DCU_SEQNUM(0));
1341		}
1342
1343		if (ah->ah_version == AR5K_AR5211) {
1344			ath5k_hw_reg_write(ah, tsf_up, AR5K_TSF_U32);
1345			ath5k_hw_reg_write(ah, tsf_lo, AR5K_TSF_L32);
1346		}
1347	}
1348
1349	/* Ledstate */
1350	AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
1351
1352	/* Gpio settings */
1353	ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
1354	ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
1355
1356	/*
1357	 * Initialize PCU
1358	 */
1359	ath5k_hw_pcu_init(ah, op_mode);
1360
1361	/*
1362	 * Initialize PHY
1363	 */
1364	ret = ath5k_hw_phy_init(ah, channel, mode, false);
1365	if (ret) {
1366		ATH5K_ERR(ah,
1367			"failed to initialize PHY (%i) !\n", ret);
1368		return ret;
1369	}
1370
1371	/*
1372	 * Configure QCUs/DCUs
1373	 */
1374	ret = ath5k_hw_init_queues(ah);
1375	if (ret)
1376		return ret;
1377
1378
1379	/*
1380	 * Initialize DMA/Interrupts
1381	 */
1382	ath5k_hw_dma_init(ah);
1383
1384
1385	/*
1386	 * Enable 32KHz clock function for AR5212+ chips
1387	 * Set clocks to 32KHz operation and use an
1388	 * external 32KHz crystal when sleeping if one
1389	 * exists.
1390	 * Disabled by default because it is also disabled in
1391	 * other drivers and it is known to cause stability
1392	 * issues on some devices
1393	 */
1394	if (ah->ah_use_32khz_clock && ah->ah_version == AR5K_AR5212 &&
1395	    op_mode != NL80211_IFTYPE_AP)
1396		ath5k_hw_set_sleep_clock(ah, true);
1397
1398	/*
1399	 * Disable beacons and reset the TSF
1400	 */
1401	AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE);
1402	ath5k_hw_reset_tsf(ah);
1403	return 0;
1404}