Linux Audio

Check our new training course

Loading...
v6.8
   1/*-
   2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
   3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
   4 * Copyright (c) 2006 Devicescape Software, Inc.
   5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
   6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
   7 *
   8 * All rights reserved.
   9 *
  10 * Redistribution and use in source and binary forms, with or without
  11 * modification, are permitted provided that the following conditions
  12 * are met:
  13 * 1. Redistributions of source code must retain the above copyright
  14 *    notice, this list of conditions and the following disclaimer,
  15 *    without modification.
  16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
  17 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
  18 *    redistribution must be conditioned upon including a substantially
  19 *    similar Disclaimer requirement for further binary redistribution.
  20 * 3. Neither the names of the above-listed copyright holders nor the names
  21 *    of any contributors may be used to endorse or promote products derived
  22 *    from this software without specific prior written permission.
  23 *
  24 * Alternatively, this software may be distributed under the terms of the
  25 * GNU General Public License ("GPL") version 2 as published by the Free
  26 * Software Foundation.
  27 *
  28 * NO WARRANTY
  29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
  32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
  33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
  34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
  37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  39 * THE POSSIBILITY OF SUCH DAMAGES.
  40 *
  41 */
  42
  43#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  44
  45#include <linux/module.h>
  46#include <linux/delay.h>
  47#include <linux/dma-mapping.h>
  48#include <linux/hardirq.h>
  49#include <linux/if.h>
  50#include <linux/io.h>
  51#include <linux/netdevice.h>
  52#include <linux/cache.h>
  53#include <linux/ethtool.h>
  54#include <linux/uaccess.h>
  55#include <linux/slab.h>
  56#include <linux/etherdevice.h>
  57#include <linux/nl80211.h>
  58
  59#include <net/cfg80211.h>
  60#include <net/ieee80211_radiotap.h>
  61
  62#include <asm/unaligned.h>
  63
  64#include <net/mac80211.h>
  65#include "base.h"
  66#include "reg.h"
  67#include "debug.h"
  68#include "ani.h"
  69#include "ath5k.h"
  70#include "../regd.h"
  71
  72#define CREATE_TRACE_POINTS
  73#include "trace.h"
  74
  75bool ath5k_modparam_nohwcrypt;
  76module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, 0444);
  77MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  78
  79static bool modparam_fastchanswitch;
  80module_param_named(fastchanswitch, modparam_fastchanswitch, bool, 0444);
  81MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
  82
  83static bool ath5k_modparam_no_hw_rfkill_switch;
  84module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
  85		   bool, 0444);
  86MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
  87
  88
  89/* Module info */
  90MODULE_AUTHOR("Jiri Slaby");
  91MODULE_AUTHOR("Nick Kossifidis");
  92MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
 
  93MODULE_LICENSE("Dual BSD/GPL");
  94
  95static int ath5k_init(struct ieee80211_hw *hw);
  96static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
  97								bool skip_pcu);
  98
  99/* Known SREVs */
 100static const struct ath5k_srev_name srev_names[] = {
 101#ifdef CONFIG_ATH5K_AHB
 102	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R2 },
 103	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R7 },
 104	{ "2313",	AR5K_VERSION_MAC,	AR5K_SREV_AR2313_R8 },
 105	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R6 },
 106	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R7 },
 107	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R1 },
 108	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R2 },
 109#else
 110	{ "5210",	AR5K_VERSION_MAC,	AR5K_SREV_AR5210 },
 111	{ "5311",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311 },
 112	{ "5311A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311A },
 113	{ "5311B",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311B },
 114	{ "5211",	AR5K_VERSION_MAC,	AR5K_SREV_AR5211 },
 115	{ "5212",	AR5K_VERSION_MAC,	AR5K_SREV_AR5212 },
 116	{ "5213",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213 },
 117	{ "5213A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213A },
 118	{ "2413",	AR5K_VERSION_MAC,	AR5K_SREV_AR2413 },
 119	{ "2414",	AR5K_VERSION_MAC,	AR5K_SREV_AR2414 },
 120	{ "5424",	AR5K_VERSION_MAC,	AR5K_SREV_AR5424 },
 121	{ "5413",	AR5K_VERSION_MAC,	AR5K_SREV_AR5413 },
 122	{ "5414",	AR5K_VERSION_MAC,	AR5K_SREV_AR5414 },
 123	{ "2415",	AR5K_VERSION_MAC,	AR5K_SREV_AR2415 },
 124	{ "5416",	AR5K_VERSION_MAC,	AR5K_SREV_AR5416 },
 125	{ "5418",	AR5K_VERSION_MAC,	AR5K_SREV_AR5418 },
 126	{ "2425",	AR5K_VERSION_MAC,	AR5K_SREV_AR2425 },
 127	{ "2417",	AR5K_VERSION_MAC,	AR5K_SREV_AR2417 },
 128#endif
 129	{ "xxxxx",	AR5K_VERSION_MAC,	AR5K_SREV_UNKNOWN },
 130	{ "5110",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5110 },
 131	{ "5111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111 },
 132	{ "5111A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111A },
 133	{ "2111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2111 },
 134	{ "5112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112 },
 135	{ "5112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112A },
 136	{ "5112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112B },
 137	{ "2112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112 },
 138	{ "2112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112A },
 139	{ "2112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112B },
 140	{ "2413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2413 },
 141	{ "5413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5413 },
 142	{ "5424",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5424 },
 143	{ "5133",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5133 },
 144#ifdef CONFIG_ATH5K_AHB
 145	{ "2316",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2316 },
 146	{ "2317",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2317 },
 147#endif
 148	{ "xxxxx",	AR5K_VERSION_RAD,	AR5K_SREV_UNKNOWN },
 149};
 150
 151static const struct ieee80211_rate ath5k_rates[] = {
 152	{ .bitrate = 10,
 153	  .hw_value = ATH5K_RATE_CODE_1M, },
 154	{ .bitrate = 20,
 155	  .hw_value = ATH5K_RATE_CODE_2M,
 156	  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
 157	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 158	{ .bitrate = 55,
 159	  .hw_value = ATH5K_RATE_CODE_5_5M,
 160	  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
 161	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 162	{ .bitrate = 110,
 163	  .hw_value = ATH5K_RATE_CODE_11M,
 164	  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
 165	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 166	{ .bitrate = 60,
 167	  .hw_value = ATH5K_RATE_CODE_6M,
 168	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 169		   IEEE80211_RATE_SUPPORTS_10MHZ },
 170	{ .bitrate = 90,
 171	  .hw_value = ATH5K_RATE_CODE_9M,
 172	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 173		   IEEE80211_RATE_SUPPORTS_10MHZ },
 174	{ .bitrate = 120,
 175	  .hw_value = ATH5K_RATE_CODE_12M,
 176	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 177		   IEEE80211_RATE_SUPPORTS_10MHZ },
 178	{ .bitrate = 180,
 179	  .hw_value = ATH5K_RATE_CODE_18M,
 180	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 181		   IEEE80211_RATE_SUPPORTS_10MHZ },
 182	{ .bitrate = 240,
 183	  .hw_value = ATH5K_RATE_CODE_24M,
 184	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 185		   IEEE80211_RATE_SUPPORTS_10MHZ },
 186	{ .bitrate = 360,
 187	  .hw_value = ATH5K_RATE_CODE_36M,
 188	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 189		   IEEE80211_RATE_SUPPORTS_10MHZ },
 190	{ .bitrate = 480,
 191	  .hw_value = ATH5K_RATE_CODE_48M,
 192	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 193		   IEEE80211_RATE_SUPPORTS_10MHZ },
 194	{ .bitrate = 540,
 195	  .hw_value = ATH5K_RATE_CODE_54M,
 196	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 197		   IEEE80211_RATE_SUPPORTS_10MHZ },
 198};
 199
 200static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
 201{
 202	u64 tsf = ath5k_hw_get_tsf64(ah);
 203
 204	if ((tsf & 0x7fff) < rstamp)
 205		tsf -= 0x8000;
 206
 207	return (tsf & ~0x7fff) | rstamp;
 208}
 209
 210const char *
 211ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
 212{
 213	const char *name = "xxxxx";
 214	unsigned int i;
 215
 216	for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
 217		if (srev_names[i].sr_type != type)
 218			continue;
 219
 220		if ((val & 0xf0) == srev_names[i].sr_val)
 221			name = srev_names[i].sr_name;
 222
 223		if ((val & 0xff) == srev_names[i].sr_val) {
 224			name = srev_names[i].sr_name;
 225			break;
 226		}
 227	}
 228
 229	return name;
 230}
 231static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
 232{
 233	struct ath5k_hw *ah = hw_priv;
 234	return ath5k_hw_reg_read(ah, reg_offset);
 235}
 236
 237static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
 238{
 239	struct ath5k_hw *ah = hw_priv;
 240	ath5k_hw_reg_write(ah, val, reg_offset);
 241}
 242
 243static const struct ath_ops ath5k_common_ops = {
 244	.read = ath5k_ioread32,
 245	.write = ath5k_iowrite32,
 246};
 247
 248/***********************\
 249* Driver Initialization *
 250\***********************/
 251
 252static void ath5k_reg_notifier(struct wiphy *wiphy,
 253			       struct regulatory_request *request)
 254{
 255	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
 256	struct ath5k_hw *ah = hw->priv;
 257	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
 258
 259	ath_reg_notifier_apply(wiphy, request, regulatory);
 260}
 261
 262/********************\
 263* Channel/mode setup *
 264\********************/
 265
 266/*
 267 * Returns true for the channel numbers used.
 268 */
 269#ifdef CONFIG_ATH5K_TEST_CHANNELS
 270static bool ath5k_is_standard_channel(short chan, enum nl80211_band band)
 271{
 272	return true;
 273}
 274
 275#else
 276static bool ath5k_is_standard_channel(short chan, enum nl80211_band band)
 277{
 278	if (band == NL80211_BAND_2GHZ && chan <= 14)
 279		return true;
 280
 281	return	/* UNII 1,2 */
 282		(((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
 283		/* midband */
 284		((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
 285		/* UNII-3 */
 286		((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
 287		/* 802.11j 5.030-5.080 GHz (20MHz) */
 288		(chan == 8 || chan == 12 || chan == 16) ||
 289		/* 802.11j 4.9GHz (20MHz) */
 290		(chan == 184 || chan == 188 || chan == 192 || chan == 196));
 291}
 292#endif
 293
 294static unsigned int
 295ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
 296		unsigned int mode, unsigned int max)
 297{
 298	unsigned int count, size, freq, ch;
 299	enum nl80211_band band;
 300
 301	switch (mode) {
 302	case AR5K_MODE_11A:
 303		/* 1..220, but 2GHz frequencies are filtered by check_channel */
 304		size = 220;
 305		band = NL80211_BAND_5GHZ;
 306		break;
 307	case AR5K_MODE_11B:
 308	case AR5K_MODE_11G:
 309		size = 26;
 310		band = NL80211_BAND_2GHZ;
 311		break;
 312	default:
 313		ATH5K_WARN(ah, "bad mode, not copying channels\n");
 314		return 0;
 315	}
 316
 317	count = 0;
 318	for (ch = 1; ch <= size && count < max; ch++) {
 319		freq = ieee80211_channel_to_frequency(ch, band);
 320
 321		if (freq == 0) /* mapping failed - not a standard channel */
 322			continue;
 323
 324		/* Write channel info, needed for ath5k_channel_ok() */
 325		channels[count].center_freq = freq;
 326		channels[count].band = band;
 327		channels[count].hw_value = mode;
 328
 329		/* Check if channel is supported by the chipset */
 330		if (!ath5k_channel_ok(ah, &channels[count]))
 331			continue;
 332
 333		if (!ath5k_is_standard_channel(ch, band))
 334			continue;
 335
 336		count++;
 337	}
 338
 339	return count;
 340}
 341
 342static void
 343ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
 344{
 345	u8 i;
 346
 347	for (i = 0; i < AR5K_MAX_RATES; i++)
 348		ah->rate_idx[b->band][i] = -1;
 349
 350	for (i = 0; i < b->n_bitrates; i++) {
 351		ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
 352		if (b->bitrates[i].hw_value_short)
 353			ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
 354	}
 355}
 356
 357static int
 358ath5k_setup_bands(struct ieee80211_hw *hw)
 359{
 360	struct ath5k_hw *ah = hw->priv;
 361	struct ieee80211_supported_band *sband;
 362	int max_c, count_c = 0;
 363	int i;
 364
 365	BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < NUM_NL80211_BANDS);
 366	max_c = ARRAY_SIZE(ah->channels);
 367
 368	/* 2GHz band */
 369	sband = &ah->sbands[NL80211_BAND_2GHZ];
 370	sband->band = NL80211_BAND_2GHZ;
 371	sband->bitrates = &ah->rates[NL80211_BAND_2GHZ][0];
 372
 373	if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
 374		/* G mode */
 375		memcpy(sband->bitrates, &ath5k_rates[0],
 376		       sizeof(struct ieee80211_rate) * 12);
 377		sband->n_bitrates = 12;
 378
 379		sband->channels = ah->channels;
 380		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
 381					AR5K_MODE_11G, max_c);
 382
 383		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
 384		count_c = sband->n_channels;
 385		max_c -= count_c;
 386	} else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
 387		/* B mode */
 388		memcpy(sband->bitrates, &ath5k_rates[0],
 389		       sizeof(struct ieee80211_rate) * 4);
 390		sband->n_bitrates = 4;
 391
 392		/* 5211 only supports B rates and uses 4bit rate codes
 393		 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
 394		 * fix them up here:
 395		 */
 396		if (ah->ah_version == AR5K_AR5211) {
 397			for (i = 0; i < 4; i++) {
 398				sband->bitrates[i].hw_value =
 399					sband->bitrates[i].hw_value & 0xF;
 400				sband->bitrates[i].hw_value_short =
 401					sband->bitrates[i].hw_value_short & 0xF;
 402			}
 403		}
 404
 405		sband->channels = ah->channels;
 406		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
 407					AR5K_MODE_11B, max_c);
 408
 409		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
 410		count_c = sband->n_channels;
 411		max_c -= count_c;
 412	}
 413	ath5k_setup_rate_idx(ah, sband);
 414
 415	/* 5GHz band, A mode */
 416	if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
 417		sband = &ah->sbands[NL80211_BAND_5GHZ];
 418		sband->band = NL80211_BAND_5GHZ;
 419		sband->bitrates = &ah->rates[NL80211_BAND_5GHZ][0];
 420
 421		memcpy(sband->bitrates, &ath5k_rates[4],
 422		       sizeof(struct ieee80211_rate) * 8);
 423		sband->n_bitrates = 8;
 424
 425		sband->channels = &ah->channels[count_c];
 426		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
 427					AR5K_MODE_11A, max_c);
 428
 429		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
 430	}
 431	ath5k_setup_rate_idx(ah, sband);
 432
 433	ath5k_debug_dump_bands(ah);
 434
 435	return 0;
 436}
 437
 438/*
 439 * Set/change channels. We always reset the chip.
 440 * To accomplish this we must first cleanup any pending DMA,
 441 * then restart stuff after a la  ath5k_init.
 442 *
 443 * Called with ah->lock.
 444 */
 445int
 446ath5k_chan_set(struct ath5k_hw *ah, struct cfg80211_chan_def *chandef)
 447{
 448	ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
 449		  "channel set, resetting (%u -> %u MHz)\n",
 450		  ah->curchan->center_freq, chandef->chan->center_freq);
 451
 452	switch (chandef->width) {
 453	case NL80211_CHAN_WIDTH_20:
 454	case NL80211_CHAN_WIDTH_20_NOHT:
 455		ah->ah_bwmode = AR5K_BWMODE_DEFAULT;
 456		break;
 457	case NL80211_CHAN_WIDTH_5:
 458		ah->ah_bwmode = AR5K_BWMODE_5MHZ;
 459		break;
 460	case NL80211_CHAN_WIDTH_10:
 461		ah->ah_bwmode = AR5K_BWMODE_10MHZ;
 462		break;
 463	default:
 464		WARN_ON(1);
 465		return -EINVAL;
 466	}
 467
 468	/*
 469	 * To switch channels clear any pending DMA operations;
 470	 * wait long enough for the RX fifo to drain, reset the
 471	 * hardware at the new frequency, and then re-enable
 472	 * the relevant bits of the h/w.
 473	 */
 474	return ath5k_reset(ah, chandef->chan, true);
 475}
 476
 477void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
 478{
 479	struct ath5k_vif_iter_data *iter_data = data;
 480	int i;
 481	struct ath5k_vif *avf = (void *)vif->drv_priv;
 482
 483	if (iter_data->hw_macaddr)
 484		for (i = 0; i < ETH_ALEN; i++)
 485			iter_data->mask[i] &=
 486				~(iter_data->hw_macaddr[i] ^ mac[i]);
 487
 488	if (!iter_data->found_active) {
 489		iter_data->found_active = true;
 490		memcpy(iter_data->active_mac, mac, ETH_ALEN);
 491	}
 492
 493	if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
 494		if (ether_addr_equal(iter_data->hw_macaddr, mac))
 495			iter_data->need_set_hw_addr = false;
 496
 497	if (!iter_data->any_assoc) {
 498		if (avf->assoc)
 499			iter_data->any_assoc = true;
 500	}
 501
 502	/* Calculate combined mode - when APs are active, operate in AP mode.
 503	 * Otherwise use the mode of the new interface. This can currently
 504	 * only deal with combinations of APs and STAs. Only one ad-hoc
 505	 * interfaces is allowed.
 506	 */
 507	if (avf->opmode == NL80211_IFTYPE_AP)
 508		iter_data->opmode = NL80211_IFTYPE_AP;
 509	else {
 510		if (avf->opmode == NL80211_IFTYPE_STATION)
 511			iter_data->n_stas++;
 512		if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
 513			iter_data->opmode = avf->opmode;
 514	}
 515}
 516
 517void
 518ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
 519				   struct ieee80211_vif *vif)
 520{
 521	struct ath_common *common = ath5k_hw_common(ah);
 522	struct ath5k_vif_iter_data iter_data;
 523	u32 rfilt;
 524
 525	/*
 526	 * Use the hardware MAC address as reference, the hardware uses it
 527	 * together with the BSSID mask when matching addresses.
 528	 */
 529	iter_data.hw_macaddr = common->macaddr;
 530	eth_broadcast_addr(iter_data.mask);
 531	iter_data.found_active = false;
 532	iter_data.need_set_hw_addr = true;
 533	iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
 534	iter_data.n_stas = 0;
 535
 536	if (vif)
 537		ath5k_vif_iter(&iter_data, vif->addr, vif);
 538
 539	/* Get list of all active MAC addresses */
 540	ieee80211_iterate_active_interfaces_atomic(
 541		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
 542		ath5k_vif_iter, &iter_data);
 543	memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
 544
 545	ah->opmode = iter_data.opmode;
 546	if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
 547		/* Nothing active, default to station mode */
 548		ah->opmode = NL80211_IFTYPE_STATION;
 549
 550	ath5k_hw_set_opmode(ah, ah->opmode);
 551	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
 552		  ah->opmode, ath_opmode_to_string(ah->opmode));
 553
 554	if (iter_data.need_set_hw_addr && iter_data.found_active)
 555		ath5k_hw_set_lladdr(ah, iter_data.active_mac);
 556
 557	if (ath5k_hw_hasbssidmask(ah))
 558		ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
 559
 560	/* Set up RX Filter */
 561	if (iter_data.n_stas > 1) {
 562		/* If you have multiple STA interfaces connected to
 563		 * different APs, ARPs are not received (most of the time?)
 564		 * Enabling PROMISC appears to fix that problem.
 565		 */
 566		ah->filter_flags |= AR5K_RX_FILTER_PROM;
 567	}
 568
 569	rfilt = ah->filter_flags;
 570	ath5k_hw_set_rx_filter(ah, rfilt);
 571	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
 572}
 573
 574static inline int
 575ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
 576{
 577	int rix;
 578
 579	/* return base rate on errors */
 580	if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
 581			"hw_rix out of bounds: %x\n", hw_rix))
 582		return 0;
 583
 584	rix = ah->rate_idx[ah->curchan->band][hw_rix];
 585	if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
 586		rix = 0;
 587
 588	return rix;
 589}
 590
 591/***************\
 592* Buffers setup *
 593\***************/
 594
 595static
 596struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
 597{
 598	struct ath_common *common = ath5k_hw_common(ah);
 599	struct sk_buff *skb;
 600
 601	/*
 602	 * Allocate buffer with headroom_needed space for the
 603	 * fake physical layer header at the start.
 604	 */
 605	skb = ath_rxbuf_alloc(common,
 606			      common->rx_bufsize,
 607			      GFP_ATOMIC);
 608
 609	if (!skb) {
 610		ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
 611				common->rx_bufsize);
 612		return NULL;
 613	}
 614
 615	*skb_addr = dma_map_single(ah->dev,
 616				   skb->data, common->rx_bufsize,
 617				   DMA_FROM_DEVICE);
 618
 619	if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
 620		ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
 621		dev_kfree_skb(skb);
 622		return NULL;
 623	}
 624	return skb;
 625}
 626
 627static int
 628ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
 629{
 630	struct sk_buff *skb = bf->skb;
 631	struct ath5k_desc *ds;
 632	int ret;
 633
 634	if (!skb) {
 635		skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
 636		if (!skb)
 637			return -ENOMEM;
 638		bf->skb = skb;
 639	}
 640
 641	/*
 642	 * Setup descriptors.  For receive we always terminate
 643	 * the descriptor list with a self-linked entry so we'll
 644	 * not get overrun under high load (as can happen with a
 645	 * 5212 when ANI processing enables PHY error frames).
 646	 *
 647	 * To ensure the last descriptor is self-linked we create
 648	 * each descriptor as self-linked and add it to the end.  As
 649	 * each additional descriptor is added the previous self-linked
 650	 * entry is "fixed" naturally.  This should be safe even
 651	 * if DMA is happening.  When processing RX interrupts we
 652	 * never remove/process the last, self-linked, entry on the
 653	 * descriptor list.  This ensures the hardware always has
 654	 * someplace to write a new frame.
 655	 */
 656	ds = bf->desc;
 657	ds->ds_link = bf->daddr;	/* link to self */
 658	ds->ds_data = bf->skbaddr;
 659	ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
 660	if (ret) {
 661		ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
 662		return ret;
 663	}
 664
 665	if (ah->rxlink != NULL)
 666		*ah->rxlink = bf->daddr;
 667	ah->rxlink = &ds->ds_link;
 668	return 0;
 669}
 670
 671static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
 672{
 673	struct ieee80211_hdr *hdr;
 674	enum ath5k_pkt_type htype;
 675	__le16 fc;
 676
 677	hdr = (struct ieee80211_hdr *)skb->data;
 678	fc = hdr->frame_control;
 679
 680	if (ieee80211_is_beacon(fc))
 681		htype = AR5K_PKT_TYPE_BEACON;
 682	else if (ieee80211_is_probe_resp(fc))
 683		htype = AR5K_PKT_TYPE_PROBE_RESP;
 684	else if (ieee80211_is_atim(fc))
 685		htype = AR5K_PKT_TYPE_ATIM;
 686	else if (ieee80211_is_pspoll(fc))
 687		htype = AR5K_PKT_TYPE_PSPOLL;
 688	else
 689		htype = AR5K_PKT_TYPE_NORMAL;
 690
 691	return htype;
 692}
 693
 694static struct ieee80211_rate *
 695ath5k_get_rate(const struct ieee80211_hw *hw,
 696	       const struct ieee80211_tx_info *info,
 697	       struct ath5k_buf *bf, int idx)
 698{
 699	/*
 700	* convert a ieee80211_tx_rate RC-table entry to
 701	* the respective ieee80211_rate struct
 702	*/
 703	if (bf->rates[idx].idx < 0) {
 704		return NULL;
 705	}
 706
 707	return &hw->wiphy->bands[info->band]->bitrates[ bf->rates[idx].idx ];
 708}
 709
 710static u16
 711ath5k_get_rate_hw_value(const struct ieee80211_hw *hw,
 712			const struct ieee80211_tx_info *info,
 713			struct ath5k_buf *bf, int idx)
 714{
 715	struct ieee80211_rate *rate;
 716	u16 hw_rate;
 717	u8 rc_flags;
 718
 719	rate = ath5k_get_rate(hw, info, bf, idx);
 720	if (!rate)
 721		return 0;
 722
 723	rc_flags = bf->rates[idx].flags;
 724	hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
 725		   rate->hw_value_short : rate->hw_value;
 726
 727	return hw_rate;
 728}
 729
 730static bool ath5k_merge_ratetbl(struct ieee80211_sta *sta,
 731				struct ath5k_buf *bf,
 732				struct ieee80211_tx_info *tx_info)
 733{
 734	struct ieee80211_sta_rates *ratetbl;
 735	u8 i;
 736
 737	if (!sta)
 738		return false;
 739
 740	ratetbl = rcu_dereference(sta->rates);
 741	if (!ratetbl)
 742		return false;
 743
 744	if (tx_info->control.rates[0].idx < 0 ||
 745	    tx_info->control.rates[0].count == 0)
 746	{
 747		i = 0;
 748	} else {
 749		bf->rates[0] = tx_info->control.rates[0];
 750		i = 1;
 751	}
 752
 753	for ( ; i < IEEE80211_TX_MAX_RATES; i++) {
 754		bf->rates[i].idx = ratetbl->rate[i].idx;
 755		bf->rates[i].flags = ratetbl->rate[i].flags;
 756		if (tx_info->control.use_rts)
 757			bf->rates[i].count = ratetbl->rate[i].count_rts;
 758		else if (tx_info->control.use_cts_prot)
 759			bf->rates[i].count = ratetbl->rate[i].count_cts;
 760		else
 761			bf->rates[i].count = ratetbl->rate[i].count;
 762	}
 763
 764	return true;
 765}
 766
 767static int
 768ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
 769		  struct ath5k_txq *txq, int padsize,
 770		  struct ieee80211_tx_control *control)
 771{
 772	struct ath5k_desc *ds = bf->desc;
 773	struct sk_buff *skb = bf->skb;
 774	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 775	unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
 776	struct ieee80211_rate *rate;
 777	struct ieee80211_sta *sta;
 778	unsigned int mrr_rate[3], mrr_tries[3];
 779	int i, ret;
 780	u16 hw_rate;
 781	u16 cts_rate = 0;
 782	u16 duration = 0;
 783	u8 rc_flags;
 784
 785	flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
 786
 787	/* XXX endianness */
 788	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
 789			DMA_TO_DEVICE);
 790
 791	if (dma_mapping_error(ah->dev, bf->skbaddr))
 792		return -ENOSPC;
 793
 794	if (control)
 795		sta = control->sta;
 796	else
 797		sta = NULL;
 798
 799	if (!ath5k_merge_ratetbl(sta, bf, info)) {
 800		ieee80211_get_tx_rates(info->control.vif,
 801				       sta, skb, bf->rates,
 802				       ARRAY_SIZE(bf->rates));
 803	}
 804
 805	rate = ath5k_get_rate(ah->hw, info, bf, 0);
 806
 807	if (!rate) {
 808		ret = -EINVAL;
 809		goto err_unmap;
 810	}
 811
 812	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
 813		flags |= AR5K_TXDESC_NOACK;
 814
 815	rc_flags = bf->rates[0].flags;
 816
 817	hw_rate = ath5k_get_rate_hw_value(ah->hw, info, bf, 0);
 818
 819	pktlen = skb->len;
 820
 821	/* FIXME: If we are in g mode and rate is a CCK rate
 822	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
 823	 * from tx power (value is in dB units already) */
 824	if (info->control.hw_key) {
 825		keyidx = info->control.hw_key->hw_key_idx;
 826		pktlen += info->control.hw_key->icv_len;
 827	}
 828	if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
 829		flags |= AR5K_TXDESC_RTSENA;
 830		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
 831		duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
 832			info->control.vif, pktlen, info));
 833	}
 834	if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
 835		flags |= AR5K_TXDESC_CTSENA;
 836		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
 837		duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
 838			info->control.vif, pktlen, info));
 839	}
 840
 841	ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
 842		ieee80211_get_hdrlen_from_skb(skb), padsize,
 843		get_hw_packet_type(skb),
 844		(ah->ah_txpower.txp_requested * 2),
 845		hw_rate,
 846		bf->rates[0].count, keyidx, ah->ah_tx_ant, flags,
 847		cts_rate, duration);
 848	if (ret)
 849		goto err_unmap;
 850
 851	/* Set up MRR descriptor */
 852	if (ah->ah_capabilities.cap_has_mrr_support) {
 853		memset(mrr_rate, 0, sizeof(mrr_rate));
 854		memset(mrr_tries, 0, sizeof(mrr_tries));
 855
 856		for (i = 0; i < 3; i++) {
 857
 858			rate = ath5k_get_rate(ah->hw, info, bf, i);
 859			if (!rate)
 860				break;
 861
 862			mrr_rate[i] = ath5k_get_rate_hw_value(ah->hw, info, bf, i);
 863			mrr_tries[i] = bf->rates[i].count;
 864		}
 865
 866		ath5k_hw_setup_mrr_tx_desc(ah, ds,
 867			mrr_rate[0], mrr_tries[0],
 868			mrr_rate[1], mrr_tries[1],
 869			mrr_rate[2], mrr_tries[2]);
 870	}
 871
 872	ds->ds_link = 0;
 873	ds->ds_data = bf->skbaddr;
 874
 875	spin_lock_bh(&txq->lock);
 876	list_add_tail(&bf->list, &txq->q);
 877	txq->txq_len++;
 878	if (txq->link == NULL) /* is this first packet? */
 879		ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
 880	else /* no, so only link it */
 881		*txq->link = bf->daddr;
 882
 883	txq->link = &ds->ds_link;
 884	ath5k_hw_start_tx_dma(ah, txq->qnum);
 
 885	spin_unlock_bh(&txq->lock);
 886
 887	return 0;
 888err_unmap:
 889	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
 890	return ret;
 891}
 892
 893/*******************\
 894* Descriptors setup *
 895\*******************/
 896
 897static int
 898ath5k_desc_alloc(struct ath5k_hw *ah)
 899{
 900	struct ath5k_desc *ds;
 901	struct ath5k_buf *bf;
 902	dma_addr_t da;
 903	unsigned int i;
 904	int ret;
 905
 906	/* allocate descriptors */
 907	ah->desc_len = sizeof(struct ath5k_desc) *
 908			(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
 909
 910	ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
 911				&ah->desc_daddr, GFP_KERNEL);
 912	if (ah->desc == NULL) {
 913		ATH5K_ERR(ah, "can't allocate descriptors\n");
 914		ret = -ENOMEM;
 915		goto err;
 916	}
 917	ds = ah->desc;
 918	da = ah->desc_daddr;
 919	ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
 920		ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
 921
 922	bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
 923			sizeof(struct ath5k_buf), GFP_KERNEL);
 924	if (bf == NULL) {
 925		ATH5K_ERR(ah, "can't allocate bufptr\n");
 926		ret = -ENOMEM;
 927		goto err_free;
 928	}
 929	ah->bufptr = bf;
 930
 931	INIT_LIST_HEAD(&ah->rxbuf);
 932	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
 933		bf->desc = ds;
 934		bf->daddr = da;
 935		list_add_tail(&bf->list, &ah->rxbuf);
 936	}
 937
 938	INIT_LIST_HEAD(&ah->txbuf);
 939	ah->txbuf_len = ATH_TXBUF;
 940	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
 941		bf->desc = ds;
 942		bf->daddr = da;
 943		list_add_tail(&bf->list, &ah->txbuf);
 944	}
 945
 946	/* beacon buffers */
 947	INIT_LIST_HEAD(&ah->bcbuf);
 948	for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
 949		bf->desc = ds;
 950		bf->daddr = da;
 951		list_add_tail(&bf->list, &ah->bcbuf);
 952	}
 953
 954	return 0;
 955err_free:
 956	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
 957err:
 958	ah->desc = NULL;
 959	return ret;
 960}
 961
 962void
 963ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
 964{
 965	BUG_ON(!bf);
 966	if (!bf->skb)
 967		return;
 968	dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
 969			DMA_TO_DEVICE);
 970	ieee80211_free_txskb(ah->hw, bf->skb);
 971	bf->skb = NULL;
 972	bf->skbaddr = 0;
 973	bf->desc->ds_data = 0;
 974}
 975
 976void
 977ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
 978{
 979	struct ath_common *common = ath5k_hw_common(ah);
 980
 981	BUG_ON(!bf);
 982	if (!bf->skb)
 983		return;
 984	dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
 985			DMA_FROM_DEVICE);
 986	dev_kfree_skb_any(bf->skb);
 987	bf->skb = NULL;
 988	bf->skbaddr = 0;
 989	bf->desc->ds_data = 0;
 990}
 991
 992static void
 993ath5k_desc_free(struct ath5k_hw *ah)
 994{
 995	struct ath5k_buf *bf;
 996
 997	list_for_each_entry(bf, &ah->txbuf, list)
 998		ath5k_txbuf_free_skb(ah, bf);
 999	list_for_each_entry(bf, &ah->rxbuf, list)
1000		ath5k_rxbuf_free_skb(ah, bf);
1001	list_for_each_entry(bf, &ah->bcbuf, list)
1002		ath5k_txbuf_free_skb(ah, bf);
1003
1004	/* Free memory associated with all descriptors */
1005	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
1006	ah->desc = NULL;
1007	ah->desc_daddr = 0;
1008
1009	kfree(ah->bufptr);
1010	ah->bufptr = NULL;
1011}
1012
1013
1014/**************\
1015* Queues setup *
1016\**************/
1017
1018static struct ath5k_txq *
1019ath5k_txq_setup(struct ath5k_hw *ah,
1020		int qtype, int subtype)
1021{
1022	struct ath5k_txq *txq;
1023	struct ath5k_txq_info qi = {
1024		.tqi_subtype = subtype,
1025		/* XXX: default values not correct for B and XR channels,
1026		 * but who cares? */
1027		.tqi_aifs = AR5K_TUNE_AIFS,
1028		.tqi_cw_min = AR5K_TUNE_CWMIN,
1029		.tqi_cw_max = AR5K_TUNE_CWMAX
1030	};
1031	int qnum;
1032
1033	/*
1034	 * Enable interrupts only for EOL and DESC conditions.
1035	 * We mark tx descriptors to receive a DESC interrupt
1036	 * when a tx queue gets deep; otherwise we wait for the
1037	 * EOL to reap descriptors.  Note that this is done to
1038	 * reduce interrupt load and this only defers reaping
1039	 * descriptors, never transmitting frames.  Aside from
1040	 * reducing interrupts this also permits more concurrency.
1041	 * The only potential downside is if the tx queue backs
1042	 * up in which case the top half of the kernel may backup
1043	 * due to a lack of tx descriptors.
1044	 */
1045	qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1046				AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1047	qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1048	if (qnum < 0) {
1049		/*
1050		 * NB: don't print a message, this happens
1051		 * normally on parts with too few tx queues
1052		 */
1053		return ERR_PTR(qnum);
1054	}
1055	txq = &ah->txqs[qnum];
1056	if (!txq->setup) {
1057		txq->qnum = qnum;
1058		txq->link = NULL;
1059		INIT_LIST_HEAD(&txq->q);
1060		spin_lock_init(&txq->lock);
1061		txq->setup = true;
1062		txq->txq_len = 0;
1063		txq->txq_max = ATH5K_TXQ_LEN_MAX;
1064		txq->txq_poll_mark = false;
1065		txq->txq_stuck = 0;
1066	}
1067	return &ah->txqs[qnum];
1068}
1069
1070static int
1071ath5k_beaconq_setup(struct ath5k_hw *ah)
1072{
1073	struct ath5k_txq_info qi = {
1074		/* XXX: default values not correct for B and XR channels,
1075		 * but who cares? */
1076		.tqi_aifs = AR5K_TUNE_AIFS,
1077		.tqi_cw_min = AR5K_TUNE_CWMIN,
1078		.tqi_cw_max = AR5K_TUNE_CWMAX,
1079		/* NB: for dynamic turbo, don't enable any other interrupts */
1080		.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1081	};
1082
1083	return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1084}
1085
1086static int
1087ath5k_beaconq_config(struct ath5k_hw *ah)
1088{
1089	struct ath5k_txq_info qi;
1090	int ret;
1091
1092	ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
1093	if (ret)
1094		goto err;
1095
1096	if (ah->opmode == NL80211_IFTYPE_AP ||
1097	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1098		/*
1099		 * Always burst out beacon and CAB traffic
1100		 * (aifs = cwmin = cwmax = 0)
1101		 */
1102		qi.tqi_aifs = 0;
1103		qi.tqi_cw_min = 0;
1104		qi.tqi_cw_max = 0;
1105	} else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
1106		/*
1107		 * Adhoc mode; backoff between 0 and (2 * cw_min).
1108		 */
1109		qi.tqi_aifs = 0;
1110		qi.tqi_cw_min = 0;
1111		qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
1112	}
1113
1114	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1115		"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1116		qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1117
1118	ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1119	if (ret) {
1120		ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1121			"hardware queue!\n", __func__);
1122		goto err;
1123	}
1124	ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1125	if (ret)
1126		goto err;
1127
1128	/* reconfigure cabq with ready time to 80% of beacon_interval */
1129	ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1130	if (ret)
1131		goto err;
1132
1133	qi.tqi_ready_time = (ah->bintval * 80) / 100;
1134	ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1135	if (ret)
1136		goto err;
1137
1138	ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1139err:
1140	return ret;
1141}
1142
1143/**
1144 * ath5k_drain_tx_buffs - Empty tx buffers
1145 *
1146 * @ah: The &struct ath5k_hw
1147 *
1148 * Empty tx buffers from all queues in preparation
1149 * of a reset or during shutdown.
1150 *
1151 * NB:	this assumes output has been stopped and
1152 *	we do not need to block ath5k_tx_tasklet
1153 */
1154static void
1155ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1156{
1157	struct ath5k_txq *txq;
1158	struct ath5k_buf *bf, *bf0;
1159	int i;
1160
1161	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1162		if (ah->txqs[i].setup) {
1163			txq = &ah->txqs[i];
1164			spin_lock_bh(&txq->lock);
1165			list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1166				ath5k_debug_printtxbuf(ah, bf);
1167
1168				ath5k_txbuf_free_skb(ah, bf);
1169
1170				spin_lock(&ah->txbuflock);
1171				list_move_tail(&bf->list, &ah->txbuf);
1172				ah->txbuf_len++;
1173				txq->txq_len--;
1174				spin_unlock(&ah->txbuflock);
1175			}
1176			txq->link = NULL;
1177			txq->txq_poll_mark = false;
1178			spin_unlock_bh(&txq->lock);
1179		}
1180	}
1181}
1182
1183static void
1184ath5k_txq_release(struct ath5k_hw *ah)
1185{
1186	struct ath5k_txq *txq = ah->txqs;
1187	unsigned int i;
1188
1189	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1190		if (txq->setup) {
1191			ath5k_hw_release_tx_queue(ah, txq->qnum);
1192			txq->setup = false;
1193		}
1194}
1195
1196
1197/*************\
1198* RX Handling *
1199\*************/
1200
1201/*
1202 * Enable the receive h/w following a reset.
1203 */
1204static int
1205ath5k_rx_start(struct ath5k_hw *ah)
1206{
1207	struct ath_common *common = ath5k_hw_common(ah);
1208	struct ath5k_buf *bf;
1209	int ret;
1210
1211	common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1212
1213	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1214		  common->cachelsz, common->rx_bufsize);
1215
1216	spin_lock_bh(&ah->rxbuflock);
1217	ah->rxlink = NULL;
1218	list_for_each_entry(bf, &ah->rxbuf, list) {
1219		ret = ath5k_rxbuf_setup(ah, bf);
1220		if (ret != 0) {
1221			spin_unlock_bh(&ah->rxbuflock);
1222			goto err;
1223		}
1224	}
1225	bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1226	ath5k_hw_set_rxdp(ah, bf->daddr);
1227	spin_unlock_bh(&ah->rxbuflock);
1228
1229	ath5k_hw_start_rx_dma(ah);	/* enable recv descriptors */
1230	ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1231	ath5k_hw_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
1232
1233	return 0;
1234err:
1235	return ret;
1236}
1237
1238/*
1239 * Disable the receive logic on PCU (DRU)
1240 * In preparation for a shutdown.
1241 *
1242 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1243 * does.
1244 */
1245static void
1246ath5k_rx_stop(struct ath5k_hw *ah)
1247{
1248
1249	ath5k_hw_set_rx_filter(ah, 0);	/* clear recv filter */
1250	ath5k_hw_stop_rx_pcu(ah);	/* disable PCU */
1251
1252	ath5k_debug_printrxbuffs(ah);
1253}
1254
1255static unsigned int
1256ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1257		   struct ath5k_rx_status *rs)
1258{
1259	struct ath_common *common = ath5k_hw_common(ah);
1260	struct ieee80211_hdr *hdr = (void *)skb->data;
1261	unsigned int keyix, hlen;
1262
1263	if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1264			rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1265		return RX_FLAG_DECRYPTED;
1266
1267	/* Apparently when a default key is used to decrypt the packet
1268	   the hw does not set the index used to decrypt.  In such cases
1269	   get the index from the packet. */
1270	hlen = ieee80211_hdrlen(hdr->frame_control);
1271	if (ieee80211_has_protected(hdr->frame_control) &&
1272	    !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1273	    skb->len >= hlen + 4) {
1274		keyix = skb->data[hlen + 3] >> 6;
1275
1276		if (test_bit(keyix, common->keymap))
1277			return RX_FLAG_DECRYPTED;
1278	}
1279
1280	return 0;
1281}
1282
1283
1284static void
1285ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1286		     struct ieee80211_rx_status *rxs)
1287{
1288	u64 tsf, bc_tstamp;
1289	u32 hw_tu;
1290	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1291
1292	if (le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS) {
1293		/*
1294		 * Received an IBSS beacon with the same BSSID. Hardware *must*
1295		 * have updated the local TSF. We have to work around various
1296		 * hardware bugs, though...
1297		 */
1298		tsf = ath5k_hw_get_tsf64(ah);
1299		bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1300		hw_tu = TSF_TO_TU(tsf);
1301
1302		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1303			"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1304			(unsigned long long)bc_tstamp,
1305			(unsigned long long)rxs->mactime,
1306			(unsigned long long)(rxs->mactime - bc_tstamp),
1307			(unsigned long long)tsf);
1308
1309		/*
1310		 * Sometimes the HW will give us a wrong tstamp in the rx
1311		 * status, causing the timestamp extension to go wrong.
1312		 * (This seems to happen especially with beacon frames bigger
1313		 * than 78 byte (incl. FCS))
1314		 * But we know that the receive timestamp must be later than the
1315		 * timestamp of the beacon since HW must have synced to that.
1316		 *
1317		 * NOTE: here we assume mactime to be after the frame was
1318		 * received, not like mac80211 which defines it at the start.
1319		 */
1320		if (bc_tstamp > rxs->mactime) {
1321			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1322				"fixing mactime from %llx to %llx\n",
1323				(unsigned long long)rxs->mactime,
1324				(unsigned long long)tsf);
1325			rxs->mactime = tsf;
1326		}
1327
1328		/*
1329		 * Local TSF might have moved higher than our beacon timers,
1330		 * in that case we have to update them to continue sending
1331		 * beacons. This also takes care of synchronizing beacon sending
1332		 * times with other stations.
1333		 */
1334		if (hw_tu >= ah->nexttbtt)
1335			ath5k_beacon_update_timers(ah, bc_tstamp);
1336
1337		/* Check if the beacon timers are still correct, because a TSF
1338		 * update might have created a window between them - for a
1339		 * longer description see the comment of this function: */
1340		if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1341			ath5k_beacon_update_timers(ah, bc_tstamp);
1342			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1343				"fixed beacon timers after beacon receive\n");
1344		}
1345	}
1346}
1347
1348/*
1349 * Compute padding position. skb must contain an IEEE 802.11 frame
1350 */
1351static int ath5k_common_padpos(struct sk_buff *skb)
1352{
1353	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1354	__le16 frame_control = hdr->frame_control;
1355	int padpos = 24;
1356
1357	if (ieee80211_has_a4(frame_control))
1358		padpos += ETH_ALEN;
1359
1360	if (ieee80211_is_data_qos(frame_control))
1361		padpos += IEEE80211_QOS_CTL_LEN;
1362
1363	return padpos;
1364}
1365
1366/*
1367 * This function expects an 802.11 frame and returns the number of
1368 * bytes added, or -1 if we don't have enough header room.
1369 */
1370static int ath5k_add_padding(struct sk_buff *skb)
1371{
1372	int padpos = ath5k_common_padpos(skb);
1373	int padsize = padpos & 3;
1374
1375	if (padsize && skb->len > padpos) {
1376
1377		if (skb_headroom(skb) < padsize)
1378			return -1;
1379
1380		skb_push(skb, padsize);
1381		memmove(skb->data, skb->data + padsize, padpos);
1382		return padsize;
1383	}
1384
1385	return 0;
1386}
1387
1388/*
1389 * The MAC header is padded to have 32-bit boundary if the
1390 * packet payload is non-zero. The general calculation for
1391 * padsize would take into account odd header lengths:
1392 * padsize = 4 - (hdrlen & 3); however, since only
1393 * even-length headers are used, padding can only be 0 or 2
1394 * bytes and we can optimize this a bit.  We must not try to
1395 * remove padding from short control frames that do not have a
1396 * payload.
1397 *
1398 * This function expects an 802.11 frame and returns the number of
1399 * bytes removed.
1400 */
1401static int ath5k_remove_padding(struct sk_buff *skb)
1402{
1403	int padpos = ath5k_common_padpos(skb);
1404	int padsize = padpos & 3;
1405
1406	if (padsize && skb->len >= padpos + padsize) {
1407		memmove(skb->data + padsize, skb->data, padpos);
1408		skb_pull(skb, padsize);
1409		return padsize;
1410	}
1411
1412	return 0;
1413}
1414
1415static void
1416ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1417		    struct ath5k_rx_status *rs)
1418{
1419	struct ieee80211_rx_status *rxs;
1420	struct ath_common *common = ath5k_hw_common(ah);
1421
1422	ath5k_remove_padding(skb);
1423
1424	rxs = IEEE80211_SKB_RXCB(skb);
1425
1426	rxs->flag = 0;
1427	if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1428		rxs->flag |= RX_FLAG_MMIC_ERROR;
1429	if (unlikely(rs->rs_status & AR5K_RXERR_CRC))
1430		rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
1431
1432
1433	/*
1434	 * always extend the mac timestamp, since this information is
1435	 * also needed for proper IBSS merging.
1436	 *
1437	 * XXX: it might be too late to do it here, since rs_tstamp is
1438	 * 15bit only. that means TSF extension has to be done within
1439	 * 32768usec (about 32ms). it might be necessary to move this to
1440	 * the interrupt handler, like it is done in madwifi.
1441	 */
1442	rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1443	rxs->flag |= RX_FLAG_MACTIME_END;
1444
1445	rxs->freq = ah->curchan->center_freq;
1446	rxs->band = ah->curchan->band;
1447
1448	rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1449
1450	rxs->antenna = rs->rs_antenna;
1451
1452	if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1453		ah->stats.antenna_rx[rs->rs_antenna]++;
1454	else
1455		ah->stats.antenna_rx[0]++; /* invalid */
1456
1457	rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1458	rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1459	switch (ah->ah_bwmode) {
1460	case AR5K_BWMODE_5MHZ:
1461		rxs->bw = RATE_INFO_BW_5;
1462		break;
1463	case AR5K_BWMODE_10MHZ:
1464		rxs->bw = RATE_INFO_BW_10;
1465		break;
1466	default:
1467		break;
1468	}
1469
1470	if (rs->rs_rate ==
1471	    ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1472		rxs->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1473
1474	trace_ath5k_rx(ah, skb);
1475
1476	if (ath_is_mybeacon(common, (struct ieee80211_hdr *)skb->data)) {
1477		ewma_beacon_rssi_add(&ah->ah_beacon_rssi_avg, rs->rs_rssi);
1478
1479		/* check beacons in IBSS mode */
1480		if (ah->opmode == NL80211_IFTYPE_ADHOC)
1481			ath5k_check_ibss_tsf(ah, skb, rxs);
1482	}
1483
1484	ieee80211_rx(ah->hw, skb);
1485}
1486
1487/** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1488 *
1489 * Check if we want to further process this frame or not. Also update
1490 * statistics. Return true if we want this frame, false if not.
1491 */
1492static bool
1493ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1494{
1495	ah->stats.rx_all_count++;
1496	ah->stats.rx_bytes_count += rs->rs_datalen;
1497
1498	if (unlikely(rs->rs_status)) {
1499		unsigned int filters;
1500
1501		if (rs->rs_status & AR5K_RXERR_CRC)
1502			ah->stats.rxerr_crc++;
1503		if (rs->rs_status & AR5K_RXERR_FIFO)
1504			ah->stats.rxerr_fifo++;
1505		if (rs->rs_status & AR5K_RXERR_PHY) {
1506			ah->stats.rxerr_phy++;
1507			if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1508				ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1509
1510			/*
1511			 * Treat packets that underwent a CCK or OFDM reset as having a bad CRC.
1512			 * These restarts happen when the radio resynchronizes to a stronger frame
1513			 * while receiving a weaker frame. Here we receive the prefix of the weak
1514			 * frame. Since these are incomplete packets, mark their CRC as invalid.
1515			 */
1516			if (rs->rs_phyerr == AR5K_RX_PHY_ERROR_OFDM_RESTART ||
1517			    rs->rs_phyerr == AR5K_RX_PHY_ERROR_CCK_RESTART) {
1518				rs->rs_status |= AR5K_RXERR_CRC;
1519				rs->rs_status &= ~AR5K_RXERR_PHY;
1520			} else {
1521				return false;
1522			}
1523		}
1524		if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1525			/*
1526			 * Decrypt error.  If the error occurred
1527			 * because there was no hardware key, then
1528			 * let the frame through so the upper layers
1529			 * can process it.  This is necessary for 5210
1530			 * parts which have no way to setup a ``clear''
1531			 * key cache entry.
1532			 *
1533			 * XXX do key cache faulting
1534			 */
1535			ah->stats.rxerr_decrypt++;
1536			if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1537			    !(rs->rs_status & AR5K_RXERR_CRC))
1538				return true;
1539		}
1540		if (rs->rs_status & AR5K_RXERR_MIC) {
1541			ah->stats.rxerr_mic++;
1542			return true;
1543		}
1544
1545		/*
1546		 * Reject any frames with non-crypto errors, and take into account the
1547		 * current FIF_* filters.
1548		 */
1549		filters = AR5K_RXERR_DECRYPT;
1550		if (ah->fif_filter_flags & FIF_FCSFAIL)
1551			filters |= AR5K_RXERR_CRC;
1552
1553		if (rs->rs_status & ~filters)
1554			return false;
1555	}
1556
1557	if (unlikely(rs->rs_more)) {
1558		ah->stats.rxerr_jumbo++;
1559		return false;
1560	}
1561	return true;
1562}
1563
1564static void
1565ath5k_set_current_imask(struct ath5k_hw *ah)
1566{
1567	enum ath5k_int imask;
1568	unsigned long flags;
1569
1570	if (test_bit(ATH_STAT_RESET, ah->status))
1571		return;
1572
1573	spin_lock_irqsave(&ah->irqlock, flags);
1574	imask = ah->imask;
1575	if (ah->rx_pending)
1576		imask &= ~AR5K_INT_RX_ALL;
1577	if (ah->tx_pending)
1578		imask &= ~AR5K_INT_TX_ALL;
1579	ath5k_hw_set_imr(ah, imask);
1580	spin_unlock_irqrestore(&ah->irqlock, flags);
1581}
1582
1583static void
1584ath5k_tasklet_rx(struct tasklet_struct *t)
1585{
1586	struct ath5k_rx_status rs = {};
1587	struct sk_buff *skb, *next_skb;
1588	dma_addr_t next_skb_addr;
1589	struct ath5k_hw *ah = from_tasklet(ah, t, rxtq);
1590	struct ath_common *common = ath5k_hw_common(ah);
1591	struct ath5k_buf *bf;
1592	struct ath5k_desc *ds;
1593	int ret;
1594
1595	spin_lock(&ah->rxbuflock);
1596	if (list_empty(&ah->rxbuf)) {
1597		ATH5K_WARN(ah, "empty rx buf pool\n");
1598		goto unlock;
1599	}
1600	do {
1601		bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1602		BUG_ON(bf->skb == NULL);
1603		skb = bf->skb;
1604		ds = bf->desc;
1605
1606		/* bail if HW is still using self-linked descriptor */
1607		if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1608			break;
1609
1610		ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1611		if (unlikely(ret == -EINPROGRESS))
1612			break;
1613		else if (unlikely(ret)) {
1614			ATH5K_ERR(ah, "error in processing rx descriptor\n");
1615			ah->stats.rxerr_proc++;
1616			break;
1617		}
1618
1619		if (ath5k_receive_frame_ok(ah, &rs)) {
1620			next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1621
1622			/*
1623			 * If we can't replace bf->skb with a new skb under
1624			 * memory pressure, just skip this packet
1625			 */
1626			if (!next_skb)
1627				goto next;
1628
1629			dma_unmap_single(ah->dev, bf->skbaddr,
1630					 common->rx_bufsize,
1631					 DMA_FROM_DEVICE);
1632
1633			skb_put(skb, rs.rs_datalen);
1634
1635			ath5k_receive_frame(ah, skb, &rs);
1636
1637			bf->skb = next_skb;
1638			bf->skbaddr = next_skb_addr;
1639		}
1640next:
1641		list_move_tail(&bf->list, &ah->rxbuf);
1642	} while (ath5k_rxbuf_setup(ah, bf) == 0);
1643unlock:
1644	spin_unlock(&ah->rxbuflock);
1645	ah->rx_pending = false;
1646	ath5k_set_current_imask(ah);
1647}
1648
1649
1650/*************\
1651* TX Handling *
1652\*************/
1653
1654void
1655ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1656	       struct ath5k_txq *txq, struct ieee80211_tx_control *control)
1657{
1658	struct ath5k_hw *ah = hw->priv;
1659	struct ath5k_buf *bf;
1660	unsigned long flags;
1661	int padsize;
1662
1663	trace_ath5k_tx(ah, skb, txq);
1664
1665	/*
1666	 * The hardware expects the header padded to 4 byte boundaries.
1667	 * If this is not the case, we add the padding after the header.
1668	 */
1669	padsize = ath5k_add_padding(skb);
1670	if (padsize < 0) {
1671		ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1672			  " headroom to pad");
1673		goto drop_packet;
1674	}
1675
1676	if (txq->txq_len >= txq->txq_max &&
1677	    txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1678		ieee80211_stop_queue(hw, txq->qnum);
1679
1680	spin_lock_irqsave(&ah->txbuflock, flags);
1681	if (list_empty(&ah->txbuf)) {
1682		ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1683		spin_unlock_irqrestore(&ah->txbuflock, flags);
1684		ieee80211_stop_queues(hw);
1685		goto drop_packet;
1686	}
1687	bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1688	list_del(&bf->list);
1689	ah->txbuf_len--;
1690	if (list_empty(&ah->txbuf))
1691		ieee80211_stop_queues(hw);
1692	spin_unlock_irqrestore(&ah->txbuflock, flags);
1693
1694	bf->skb = skb;
1695
1696	if (ath5k_txbuf_setup(ah, bf, txq, padsize, control)) {
1697		bf->skb = NULL;
1698		spin_lock_irqsave(&ah->txbuflock, flags);
1699		list_add_tail(&bf->list, &ah->txbuf);
1700		ah->txbuf_len++;
1701		spin_unlock_irqrestore(&ah->txbuflock, flags);
1702		goto drop_packet;
1703	}
1704	return;
1705
1706drop_packet:
1707	ieee80211_free_txskb(hw, skb);
1708}
1709
1710static void
1711ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1712			 struct ath5k_txq *txq, struct ath5k_tx_status *ts,
1713			 struct ath5k_buf *bf)
1714{
1715	struct ieee80211_tx_info *info;
1716	u8 tries[3];
1717	int i;
1718	int size = 0;
1719
1720	ah->stats.tx_all_count++;
1721	ah->stats.tx_bytes_count += skb->len;
1722	info = IEEE80211_SKB_CB(skb);
1723
1724	size = min_t(int, sizeof(info->status.rates), sizeof(bf->rates));
1725	memcpy(info->status.rates, bf->rates, size);
1726
1727	tries[0] = info->status.rates[0].count;
1728	tries[1] = info->status.rates[1].count;
1729	tries[2] = info->status.rates[2].count;
1730
1731	ieee80211_tx_info_clear_status(info);
1732
1733	for (i = 0; i < ts->ts_final_idx; i++) {
1734		struct ieee80211_tx_rate *r =
1735			&info->status.rates[i];
1736
1737		r->count = tries[i];
1738	}
1739
1740	info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1741	info->status.rates[ts->ts_final_idx + 1].idx = -1;
1742
1743	if (unlikely(ts->ts_status)) {
1744		ah->stats.ack_fail++;
1745		if (ts->ts_status & AR5K_TXERR_FILT) {
1746			info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1747			ah->stats.txerr_filt++;
1748		}
1749		if (ts->ts_status & AR5K_TXERR_XRETRY)
1750			ah->stats.txerr_retry++;
1751		if (ts->ts_status & AR5K_TXERR_FIFO)
1752			ah->stats.txerr_fifo++;
1753	} else {
1754		info->flags |= IEEE80211_TX_STAT_ACK;
1755		info->status.ack_signal = ts->ts_rssi;
1756
1757		/* count the successful attempt as well */
1758		info->status.rates[ts->ts_final_idx].count++;
1759	}
1760
1761	/*
1762	* Remove MAC header padding before giving the frame
1763	* back to mac80211.
1764	*/
1765	ath5k_remove_padding(skb);
1766
1767	if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1768		ah->stats.antenna_tx[ts->ts_antenna]++;
1769	else
1770		ah->stats.antenna_tx[0]++; /* invalid */
1771
1772	trace_ath5k_tx_complete(ah, skb, txq, ts);
1773	ieee80211_tx_status_skb(ah->hw, skb);
1774}
1775
1776static void
1777ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1778{
1779	struct ath5k_tx_status ts = {};
1780	struct ath5k_buf *bf, *bf0;
1781	struct ath5k_desc *ds;
1782	struct sk_buff *skb;
1783	int ret;
1784
1785	spin_lock(&txq->lock);
1786	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1787
1788		txq->txq_poll_mark = false;
1789
1790		/* skb might already have been processed last time. */
1791		if (bf->skb != NULL) {
1792			ds = bf->desc;
1793
1794			ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1795			if (unlikely(ret == -EINPROGRESS))
1796				break;
1797			else if (unlikely(ret)) {
1798				ATH5K_ERR(ah,
1799					"error %d while processing "
1800					"queue %u\n", ret, txq->qnum);
1801				break;
1802			}
1803
1804			skb = bf->skb;
1805			bf->skb = NULL;
1806
1807			dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1808					DMA_TO_DEVICE);
1809			ath5k_tx_frame_completed(ah, skb, txq, &ts, bf);
1810		}
1811
1812		/*
1813		 * It's possible that the hardware can say the buffer is
1814		 * completed when it hasn't yet loaded the ds_link from
1815		 * host memory and moved on.
1816		 * Always keep the last descriptor to avoid HW races...
1817		 */
1818		if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1819			spin_lock(&ah->txbuflock);
1820			list_move_tail(&bf->list, &ah->txbuf);
1821			ah->txbuf_len++;
1822			txq->txq_len--;
1823			spin_unlock(&ah->txbuflock);
1824		}
1825	}
1826	spin_unlock(&txq->lock);
1827	if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1828		ieee80211_wake_queue(ah->hw, txq->qnum);
1829}
1830
1831static void
1832ath5k_tasklet_tx(struct tasklet_struct *t)
1833{
1834	int i;
1835	struct ath5k_hw *ah = from_tasklet(ah, t, txtq);
1836
1837	for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1838		if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1839			ath5k_tx_processq(ah, &ah->txqs[i]);
1840
1841	ah->tx_pending = false;
1842	ath5k_set_current_imask(ah);
1843}
1844
1845
1846/*****************\
1847* Beacon handling *
1848\*****************/
1849
1850/*
1851 * Setup the beacon frame for transmit.
1852 */
1853static int
1854ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1855{
1856	struct sk_buff *skb = bf->skb;
1857	struct	ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1858	struct ath5k_desc *ds;
1859	int ret = 0;
1860	u8 antenna;
1861	u32 flags;
1862	const int padsize = 0;
1863
1864	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1865			DMA_TO_DEVICE);
1866	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1867			"skbaddr %llx\n", skb, skb->data, skb->len,
1868			(unsigned long long)bf->skbaddr);
1869
1870	if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1871		ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1872		dev_kfree_skb_any(skb);
1873		bf->skb = NULL;
1874		return -EIO;
1875	}
1876
1877	ds = bf->desc;
1878	antenna = ah->ah_tx_ant;
1879
1880	flags = AR5K_TXDESC_NOACK;
1881	if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1882		ds->ds_link = bf->daddr;	/* self-linked */
1883		flags |= AR5K_TXDESC_VEOL;
1884	} else
1885		ds->ds_link = 0;
1886
1887	/*
1888	 * If we use multiple antennas on AP and use
1889	 * the Sectored AP scenario, switch antenna every
1890	 * 4 beacons to make sure everybody hears our AP.
1891	 * When a client tries to associate, hw will keep
1892	 * track of the tx antenna to be used for this client
1893	 * automatically, based on ACKed packets.
1894	 *
1895	 * Note: AP still listens and transmits RTS on the
1896	 * default antenna which is supposed to be an omni.
1897	 *
1898	 * Note2: On sectored scenarios it's possible to have
1899	 * multiple antennas (1 omni -- the default -- and 14
1900	 * sectors), so if we choose to actually support this
1901	 * mode, we need to allow the user to set how many antennas
1902	 * we have and tweak the code below to send beacons
1903	 * on all of them.
1904	 */
1905	if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1906		antenna = ah->bsent & 4 ? 2 : 1;
1907
1908
1909	/* FIXME: If we are in g mode and rate is a CCK rate
1910	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1911	 * from tx power (value is in dB units already) */
1912	ds->ds_data = bf->skbaddr;
1913	ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1914			ieee80211_get_hdrlen_from_skb(skb), padsize,
1915			AR5K_PKT_TYPE_BEACON,
1916			(ah->ah_txpower.txp_requested * 2),
1917			ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1918			1, AR5K_TXKEYIX_INVALID,
1919			antenna, flags, 0, 0);
1920	if (ret)
1921		goto err_unmap;
1922
1923	return 0;
1924err_unmap:
1925	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1926	return ret;
1927}
1928
1929/*
1930 * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
1931 * this is called only once at config_bss time, for AP we do it every
1932 * SWBA interrupt so that the TIM will reflect buffered frames.
1933 *
1934 * Called with the beacon lock.
1935 */
1936int
1937ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1938{
1939	int ret;
1940	struct ath5k_hw *ah = hw->priv;
1941	struct ath5k_vif *avf;
1942	struct sk_buff *skb;
1943
1944	if (WARN_ON(!vif)) {
1945		ret = -EINVAL;
1946		goto out;
1947	}
1948
1949	skb = ieee80211_beacon_get(hw, vif, 0);
1950
1951	if (!skb) {
1952		ret = -ENOMEM;
1953		goto out;
1954	}
1955
1956	avf = (void *)vif->drv_priv;
1957	ath5k_txbuf_free_skb(ah, avf->bbuf);
1958	avf->bbuf->skb = skb;
1959	ret = ath5k_beacon_setup(ah, avf->bbuf);
1960out:
1961	return ret;
1962}
1963
1964/*
1965 * Transmit a beacon frame at SWBA.  Dynamic updates to the
1966 * frame contents are done as needed and the slot time is
1967 * also adjusted based on current state.
1968 *
1969 * This is called from software irq context (beacontq tasklets)
1970 * or user context from ath5k_beacon_config.
1971 */
1972static void
1973ath5k_beacon_send(struct ath5k_hw *ah)
1974{
1975	struct ieee80211_vif *vif;
1976	struct ath5k_vif *avf;
1977	struct ath5k_buf *bf;
1978	struct sk_buff *skb;
1979	int err;
1980
1981	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1982
1983	/*
1984	 * Check if the previous beacon has gone out.  If
1985	 * not, don't try to post another: skip this
1986	 * period and wait for the next.  Missed beacons
1987	 * indicate a problem and should not occur.  If we
1988	 * miss too many consecutive beacons reset the device.
1989	 */
1990	if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1991		ah->bmisscount++;
1992		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1993			"missed %u consecutive beacons\n", ah->bmisscount);
1994		if (ah->bmisscount > 10) {	/* NB: 10 is a guess */
1995			ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1996				"stuck beacon time (%u missed)\n",
1997				ah->bmisscount);
1998			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1999				  "stuck beacon, resetting\n");
2000			ieee80211_queue_work(ah->hw, &ah->reset_work);
2001		}
2002		return;
2003	}
2004	if (unlikely(ah->bmisscount != 0)) {
2005		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2006			"resume beacon xmit after %u misses\n",
2007			ah->bmisscount);
2008		ah->bmisscount = 0;
2009	}
2010
2011	if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
2012			ah->num_mesh_vifs > 1) ||
2013			ah->opmode == NL80211_IFTYPE_MESH_POINT) {
2014		u64 tsf = ath5k_hw_get_tsf64(ah);
2015		u32 tsftu = TSF_TO_TU(tsf);
2016		int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
2017		vif = ah->bslot[(slot + 1) % ATH_BCBUF];
2018		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2019			"tsf %llx tsftu %x intval %u slot %u vif %p\n",
2020			(unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
2021	} else /* only one interface */
2022		vif = ah->bslot[0];
2023
2024	if (!vif)
2025		return;
2026
2027	avf = (void *)vif->drv_priv;
2028	bf = avf->bbuf;
2029
2030	/*
2031	 * Stop any current dma and put the new frame on the queue.
2032	 * This should never fail since we check above that no frames
2033	 * are still pending on the queue.
2034	 */
2035	if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
2036		ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
2037		/* NB: hw still stops DMA, so proceed */
2038	}
2039
2040	/* refresh the beacon for AP or MESH mode */
2041	if (ah->opmode == NL80211_IFTYPE_AP ||
2042	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
2043		err = ath5k_beacon_update(ah->hw, vif);
2044		if (err)
2045			return;
2046	}
2047
2048	if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
2049		     ah->opmode == NL80211_IFTYPE_MONITOR)) {
2050		ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
2051		return;
2052	}
2053
2054	trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
2055
2056	ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
2057	ath5k_hw_start_tx_dma(ah, ah->bhalq);
2058	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
2059		ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
2060
2061	skb = ieee80211_get_buffered_bc(ah->hw, vif);
2062	while (skb) {
2063		ath5k_tx_queue(ah->hw, skb, ah->cabq, NULL);
2064
2065		if (ah->cabq->txq_len >= ah->cabq->txq_max)
2066			break;
2067
2068		skb = ieee80211_get_buffered_bc(ah->hw, vif);
2069	}
2070
2071	ah->bsent++;
2072}
2073
2074/**
2075 * ath5k_beacon_update_timers - update beacon timers
2076 *
2077 * @ah: struct ath5k_hw pointer we are operating on
2078 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2079 *          beacon timer update based on the current HW TSF.
2080 *
2081 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2082 * of a received beacon or the current local hardware TSF and write it to the
2083 * beacon timer registers.
2084 *
2085 * This is called in a variety of situations, e.g. when a beacon is received,
2086 * when a TSF update has been detected, but also when an new IBSS is created or
2087 * when we otherwise know we have to update the timers, but we keep it in this
2088 * function to have it all together in one place.
2089 */
2090void
2091ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
2092{
2093	u32 nexttbtt, intval, hw_tu, bc_tu;
2094	u64 hw_tsf;
2095
2096	intval = ah->bintval & AR5K_BEACON_PERIOD;
2097	if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
2098		+ ah->num_mesh_vifs > 1) {
2099		intval /= ATH_BCBUF;	/* staggered multi-bss beacons */
2100		if (intval < 15)
2101			ATH5K_WARN(ah, "intval %u is too low, min 15\n",
2102				   intval);
2103	}
2104	if (WARN_ON(!intval))
2105		return;
2106
2107	/* beacon TSF converted to TU */
2108	bc_tu = TSF_TO_TU(bc_tsf);
2109
2110	/* current TSF converted to TU */
2111	hw_tsf = ath5k_hw_get_tsf64(ah);
2112	hw_tu = TSF_TO_TU(hw_tsf);
2113
2114#define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
2115	/* We use FUDGE to make sure the next TBTT is ahead of the current TU.
2116	 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
2117	 * configuration we need to make sure it is bigger than that. */
2118
2119	if (bc_tsf == -1) {
2120		/*
2121		 * no beacons received, called internally.
2122		 * just need to refresh timers based on HW TSF.
2123		 */
2124		nexttbtt = roundup(hw_tu + FUDGE, intval);
2125	} else if (bc_tsf == 0) {
2126		/*
2127		 * no beacon received, probably called by ath5k_reset_tsf().
2128		 * reset TSF to start with 0.
2129		 */
2130		nexttbtt = intval;
2131		intval |= AR5K_BEACON_RESET_TSF;
2132	} else if (bc_tsf > hw_tsf) {
2133		/*
2134		 * beacon received, SW merge happened but HW TSF not yet updated.
2135		 * not possible to reconfigure timers yet, but next time we
2136		 * receive a beacon with the same BSSID, the hardware will
2137		 * automatically update the TSF and then we need to reconfigure
2138		 * the timers.
2139		 */
2140		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2141			"need to wait for HW TSF sync\n");
2142		return;
2143	} else {
2144		/*
2145		 * most important case for beacon synchronization between STA.
2146		 *
2147		 * beacon received and HW TSF has been already updated by HW.
2148		 * update next TBTT based on the TSF of the beacon, but make
2149		 * sure it is ahead of our local TSF timer.
2150		 */
2151		nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2152	}
2153#undef FUDGE
2154
2155	ah->nexttbtt = nexttbtt;
2156
2157	intval |= AR5K_BEACON_ENA;
2158	ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2159
2160	/*
2161	 * debugging output last in order to preserve the time critical aspect
2162	 * of this function
2163	 */
2164	if (bc_tsf == -1)
2165		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2166			"reconfigured timers based on HW TSF\n");
2167	else if (bc_tsf == 0)
2168		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2169			"reset HW TSF and timers\n");
2170	else
2171		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2172			"updated timers based on beacon TSF\n");
2173
2174	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2175			  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2176			  (unsigned long long) bc_tsf,
2177			  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2178	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2179		intval & AR5K_BEACON_PERIOD,
2180		intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2181		intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2182}
2183
2184/**
2185 * ath5k_beacon_config - Configure the beacon queues and interrupts
2186 *
2187 * @ah: struct ath5k_hw pointer we are operating on
2188 *
2189 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2190 * interrupts to detect TSF updates only.
2191 */
2192void
2193ath5k_beacon_config(struct ath5k_hw *ah)
2194{
2195	spin_lock_bh(&ah->block);
2196	ah->bmisscount = 0;
2197	ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2198
2199	if (ah->enable_beacon) {
2200		/*
2201		 * In IBSS mode we use a self-linked tx descriptor and let the
2202		 * hardware send the beacons automatically. We have to load it
2203		 * only once here.
2204		 * We use the SWBA interrupt only to keep track of the beacon
2205		 * timers in order to detect automatic TSF updates.
2206		 */
2207		ath5k_beaconq_config(ah);
2208
2209		ah->imask |= AR5K_INT_SWBA;
2210
2211		if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2212			if (ath5k_hw_hasveol(ah))
2213				ath5k_beacon_send(ah);
2214		} else
2215			ath5k_beacon_update_timers(ah, -1);
2216	} else {
2217		ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2218	}
2219
2220	ath5k_hw_set_imr(ah, ah->imask);
 
2221	spin_unlock_bh(&ah->block);
2222}
2223
2224static void ath5k_tasklet_beacon(struct tasklet_struct *t)
2225{
2226	struct ath5k_hw *ah = from_tasklet(ah, t, beacontq);
2227
2228	/*
2229	 * Software beacon alert--time to send a beacon.
2230	 *
2231	 * In IBSS mode we use this interrupt just to
2232	 * keep track of the next TBTT (target beacon
2233	 * transmission time) in order to detect whether
2234	 * automatic TSF updates happened.
2235	 */
2236	if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2237		/* XXX: only if VEOL supported */
2238		u64 tsf = ath5k_hw_get_tsf64(ah);
2239		ah->nexttbtt += ah->bintval;
2240		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2241				"SWBA nexttbtt: %x hw_tu: %x "
2242				"TSF: %llx\n",
2243				ah->nexttbtt,
2244				TSF_TO_TU(tsf),
2245				(unsigned long long) tsf);
2246	} else {
2247		spin_lock(&ah->block);
2248		ath5k_beacon_send(ah);
2249		spin_unlock(&ah->block);
2250	}
2251}
2252
2253
2254/********************\
2255* Interrupt handling *
2256\********************/
2257
2258static void
2259ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2260{
2261	if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2262	   !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2263	   !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2264
2265		/* Run ANI only when calibration is not active */
2266
2267		ah->ah_cal_next_ani = jiffies +
2268			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2269		tasklet_schedule(&ah->ani_tasklet);
2270
2271	} else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2272		!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2273		!(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2274
2275		/* Run calibration only when another calibration
2276		 * is not running.
2277		 *
2278		 * Note: This is for both full/short calibration,
2279		 * if it's time for a full one, ath5k_calibrate_work will deal
2280		 * with it. */
2281
2282		ah->ah_cal_next_short = jiffies +
2283			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2284		ieee80211_queue_work(ah->hw, &ah->calib_work);
2285	}
2286	/* we could use SWI to generate enough interrupts to meet our
2287	 * calibration interval requirements, if necessary:
2288	 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2289}
2290
2291static void
2292ath5k_schedule_rx(struct ath5k_hw *ah)
2293{
2294	ah->rx_pending = true;
2295	tasklet_schedule(&ah->rxtq);
2296}
2297
2298static void
2299ath5k_schedule_tx(struct ath5k_hw *ah)
2300{
2301	ah->tx_pending = true;
2302	tasklet_schedule(&ah->txtq);
2303}
2304
2305static irqreturn_t
2306ath5k_intr(int irq, void *dev_id)
2307{
2308	struct ath5k_hw *ah = dev_id;
2309	enum ath5k_int status;
2310	unsigned int counter = 1000;
2311
2312
2313	/*
2314	 * If hw is not ready (or detached) and we get an
2315	 * interrupt, or if we have no interrupts pending
2316	 * (that means it's not for us) skip it.
2317	 *
2318	 * NOTE: Group 0/1 PCI interface registers are not
2319	 * supported on WiSOCs, so we can't check for pending
2320	 * interrupts (ISR belongs to another register group
2321	 * so we are ok).
2322	 */
2323	if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2324			((ath5k_get_bus_type(ah) != ATH_AHB) &&
2325			!ath5k_hw_is_intr_pending(ah))))
2326		return IRQ_NONE;
2327
2328	/** Main loop **/
2329	do {
2330		ath5k_hw_get_isr(ah, &status);	/* NB: clears IRQ too */
2331
2332		ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2333				status, ah->imask);
2334
2335		/*
2336		 * Fatal hw error -> Log and reset
2337		 *
2338		 * Fatal errors are unrecoverable so we have to
2339		 * reset the card. These errors include bus and
2340		 * dma errors.
2341		 */
2342		if (unlikely(status & AR5K_INT_FATAL)) {
2343
2344			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2345				  "fatal int, resetting\n");
2346			ieee80211_queue_work(ah->hw, &ah->reset_work);
2347
2348		/*
2349		 * RX Overrun -> Count and reset if needed
2350		 *
2351		 * Receive buffers are full. Either the bus is busy or
2352		 * the CPU is not fast enough to process all received
2353		 * frames.
2354		 */
2355		} else if (unlikely(status & AR5K_INT_RXORN)) {
2356
2357			/*
2358			 * Older chipsets need a reset to come out of this
2359			 * condition, but we treat it as RX for newer chips.
2360			 * We don't know exactly which versions need a reset
2361			 * this guess is copied from the HAL.
2362			 */
2363			ah->stats.rxorn_intr++;
2364
2365			if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2366				ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2367					  "rx overrun, resetting\n");
2368				ieee80211_queue_work(ah->hw, &ah->reset_work);
2369			} else
2370				ath5k_schedule_rx(ah);
2371
2372		} else {
2373
2374			/* Software Beacon Alert -> Schedule beacon tasklet */
2375			if (status & AR5K_INT_SWBA)
2376				tasklet_hi_schedule(&ah->beacontq);
2377
2378			/*
2379			 * No more RX descriptors -> Just count
2380			 *
2381			 * NB: the hardware should re-read the link when
2382			 *     RXE bit is written, but it doesn't work at
2383			 *     least on older hardware revs.
2384			 */
2385			if (status & AR5K_INT_RXEOL)
2386				ah->stats.rxeol_intr++;
2387
2388
2389			/* TX Underrun -> Bump tx trigger level */
2390			if (status & AR5K_INT_TXURN)
2391				ath5k_hw_update_tx_triglevel(ah, true);
2392
2393			/* RX -> Schedule rx tasklet */
2394			if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2395				ath5k_schedule_rx(ah);
2396
2397			/* TX -> Schedule tx tasklet */
2398			if (status & (AR5K_INT_TXOK
2399					| AR5K_INT_TXDESC
2400					| AR5K_INT_TXERR
2401					| AR5K_INT_TXEOL))
2402				ath5k_schedule_tx(ah);
2403
2404			/* Missed beacon -> TODO
2405			if (status & AR5K_INT_BMISS)
2406			*/
2407
2408			/* MIB event -> Update counters and notify ANI */
2409			if (status & AR5K_INT_MIB) {
2410				ah->stats.mib_intr++;
2411				ath5k_hw_update_mib_counters(ah);
2412				ath5k_ani_mib_intr(ah);
2413			}
2414
2415			/* GPIO -> Notify RFKill layer */
2416			if (status & AR5K_INT_GPIO)
2417				tasklet_schedule(&ah->rf_kill.toggleq);
2418
2419		}
2420
2421		if (ath5k_get_bus_type(ah) == ATH_AHB)
2422			break;
2423
2424	} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2425
2426	/*
2427	 * Until we handle rx/tx interrupts mask them on IMR
2428	 *
2429	 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2430	 * and unset after we 've handled the interrupts.
2431	 */
2432	if (ah->rx_pending || ah->tx_pending)
2433		ath5k_set_current_imask(ah);
2434
2435	if (unlikely(!counter))
2436		ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2437
2438	/* Fire up calibration poll */
2439	ath5k_intr_calibration_poll(ah);
2440
2441	return IRQ_HANDLED;
2442}
2443
2444/*
2445 * Periodically recalibrate the PHY to account
2446 * for temperature/environment changes.
2447 */
2448static void
2449ath5k_calibrate_work(struct work_struct *work)
2450{
2451	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2452		calib_work);
2453
2454	/* Should we run a full calibration ? */
2455	if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2456
2457		ah->ah_cal_next_full = jiffies +
2458			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2459		ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2460
2461		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2462				"running full calibration\n");
2463
2464		if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2465			/*
2466			 * Rfgain is out of bounds, reset the chip
2467			 * to load new gain values.
2468			 */
2469			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2470					"got new rfgain, resetting\n");
2471			ieee80211_queue_work(ah->hw, &ah->reset_work);
2472		}
2473	} else
2474		ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2475
2476
2477	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2478		ieee80211_frequency_to_channel(ah->curchan->center_freq),
2479		ah->curchan->hw_value);
2480
2481	if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2482		ATH5K_ERR(ah, "calibration of channel %u failed\n",
2483			ieee80211_frequency_to_channel(
2484				ah->curchan->center_freq));
2485
2486	/* Clear calibration flags */
2487	if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2488		ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2489	else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2490		ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
2491}
2492
2493
2494static void
2495ath5k_tasklet_ani(struct tasklet_struct *t)
2496{
2497	struct ath5k_hw *ah = from_tasklet(ah, t, ani_tasklet);
2498
2499	ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2500	ath5k_ani_calibration(ah);
2501	ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2502}
2503
2504
2505static void
2506ath5k_tx_complete_poll_work(struct work_struct *work)
2507{
2508	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2509			tx_complete_work.work);
2510	struct ath5k_txq *txq;
2511	int i;
2512	bool needreset = false;
2513
2514	if (!test_bit(ATH_STAT_STARTED, ah->status))
2515		return;
2516
2517	mutex_lock(&ah->lock);
2518
2519	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2520		if (ah->txqs[i].setup) {
2521			txq = &ah->txqs[i];
2522			spin_lock_bh(&txq->lock);
2523			if (txq->txq_len > 1) {
2524				if (txq->txq_poll_mark) {
2525					ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2526						  "TX queue stuck %d\n",
2527						  txq->qnum);
2528					needreset = true;
2529					txq->txq_stuck++;
2530					spin_unlock_bh(&txq->lock);
2531					break;
2532				} else {
2533					txq->txq_poll_mark = true;
2534				}
2535			}
2536			spin_unlock_bh(&txq->lock);
2537		}
2538	}
2539
2540	if (needreset) {
2541		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2542			  "TX queues stuck, resetting\n");
2543		ath5k_reset(ah, NULL, true);
2544	}
2545
2546	mutex_unlock(&ah->lock);
2547
2548	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2549		msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2550}
2551
2552
2553/*************************\
2554* Initialization routines *
2555\*************************/
2556
2557static const struct ieee80211_iface_limit if_limits[] = {
2558	{ .max = 2048,	.types = BIT(NL80211_IFTYPE_STATION) },
2559	{ .max = 4,	.types =
2560#ifdef CONFIG_MAC80211_MESH
2561				 BIT(NL80211_IFTYPE_MESH_POINT) |
2562#endif
2563				 BIT(NL80211_IFTYPE_AP) },
2564};
2565
2566static const struct ieee80211_iface_combination if_comb = {
2567	.limits = if_limits,
2568	.n_limits = ARRAY_SIZE(if_limits),
2569	.max_interfaces = 2048,
2570	.num_different_channels = 1,
2571};
2572
2573int
2574ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2575{
2576	struct ieee80211_hw *hw = ah->hw;
2577	struct ath_common *common;
2578	int ret;
2579	int csz;
2580
2581	/* Initialize driver private data */
2582	SET_IEEE80211_DEV(hw, ah->dev);
2583	ieee80211_hw_set(hw, SUPPORTS_RC_TABLE);
2584	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2585	ieee80211_hw_set(hw, MFP_CAPABLE);
2586	ieee80211_hw_set(hw, SIGNAL_DBM);
2587	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2588	ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
2589
2590	hw->wiphy->interface_modes =
2591		BIT(NL80211_IFTYPE_AP) |
2592		BIT(NL80211_IFTYPE_STATION) |
2593		BIT(NL80211_IFTYPE_ADHOC) |
2594		BIT(NL80211_IFTYPE_MESH_POINT);
2595
2596	hw->wiphy->iface_combinations = &if_comb;
2597	hw->wiphy->n_iface_combinations = 1;
2598
2599	/* SW support for IBSS_RSN is provided by mac80211 */
2600	hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2601
2602	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
2603
2604	/* both antennas can be configured as RX or TX */
2605	hw->wiphy->available_antennas_tx = 0x3;
2606	hw->wiphy->available_antennas_rx = 0x3;
2607
2608	hw->extra_tx_headroom = 2;
2609
2610	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
2611
2612	/*
2613	 * Mark the device as detached to avoid processing
2614	 * interrupts until setup is complete.
2615	 */
2616	__set_bit(ATH_STAT_INVALID, ah->status);
2617
2618	ah->opmode = NL80211_IFTYPE_STATION;
2619	ah->bintval = 1000;
2620	mutex_init(&ah->lock);
2621	spin_lock_init(&ah->rxbuflock);
2622	spin_lock_init(&ah->txbuflock);
2623	spin_lock_init(&ah->block);
2624	spin_lock_init(&ah->irqlock);
2625
2626	/* Setup interrupt handler */
2627	ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2628	if (ret) {
2629		ATH5K_ERR(ah, "request_irq failed\n");
2630		goto err;
2631	}
2632
2633	common = ath5k_hw_common(ah);
2634	common->ops = &ath5k_common_ops;
2635	common->bus_ops = bus_ops;
2636	common->ah = ah;
2637	common->hw = hw;
2638	common->priv = ah;
2639	common->clockrate = 40;
2640
2641	/*
2642	 * Cache line size is used to size and align various
2643	 * structures used to communicate with the hardware.
2644	 */
2645	ath5k_read_cachesize(common, &csz);
2646	common->cachelsz = csz << 2; /* convert to bytes */
2647
2648	spin_lock_init(&common->cc_lock);
2649
2650	/* Initialize device */
2651	ret = ath5k_hw_init(ah);
2652	if (ret)
2653		goto err_irq;
2654
2655	/* Set up multi-rate retry capabilities */
2656	if (ah->ah_capabilities.cap_has_mrr_support) {
2657		hw->max_rates = 4;
2658		hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2659					 AR5K_INIT_RETRY_LONG);
2660	}
2661
2662	hw->vif_data_size = sizeof(struct ath5k_vif);
2663
2664	/* Finish private driver data initialization */
2665	ret = ath5k_init(hw);
2666	if (ret)
2667		goto err_ah;
2668
2669	ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2670			ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2671					ah->ah_mac_srev,
2672					ah->ah_phy_revision);
2673
2674	if (!ah->ah_single_chip) {
2675		/* Single chip radio (!RF5111) */
2676		if (ah->ah_radio_5ghz_revision &&
2677			!ah->ah_radio_2ghz_revision) {
2678			/* No 5GHz support -> report 2GHz radio */
2679			if (!test_bit(AR5K_MODE_11A,
2680				ah->ah_capabilities.cap_mode)) {
2681				ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2682					ath5k_chip_name(AR5K_VERSION_RAD,
2683						ah->ah_radio_5ghz_revision),
2684						ah->ah_radio_5ghz_revision);
2685			/* No 2GHz support (5110 and some
2686			 * 5GHz only cards) -> report 5GHz radio */
2687			} else if (!test_bit(AR5K_MODE_11B,
2688				ah->ah_capabilities.cap_mode)) {
2689				ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2690					ath5k_chip_name(AR5K_VERSION_RAD,
2691						ah->ah_radio_5ghz_revision),
2692						ah->ah_radio_5ghz_revision);
2693			/* Multiband radio */
2694			} else {
2695				ATH5K_INFO(ah, "RF%s multiband radio found"
2696					" (0x%x)\n",
2697					ath5k_chip_name(AR5K_VERSION_RAD,
2698						ah->ah_radio_5ghz_revision),
2699						ah->ah_radio_5ghz_revision);
2700			}
2701		}
2702		/* Multi chip radio (RF5111 - RF2111) ->
2703		 * report both 2GHz/5GHz radios */
2704		else if (ah->ah_radio_5ghz_revision &&
2705				ah->ah_radio_2ghz_revision) {
2706			ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2707				ath5k_chip_name(AR5K_VERSION_RAD,
2708					ah->ah_radio_5ghz_revision),
2709					ah->ah_radio_5ghz_revision);
2710			ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2711				ath5k_chip_name(AR5K_VERSION_RAD,
2712					ah->ah_radio_2ghz_revision),
2713					ah->ah_radio_2ghz_revision);
2714		}
2715	}
2716
2717	ath5k_debug_init_device(ah);
2718
2719	/* ready to process interrupts */
2720	__clear_bit(ATH_STAT_INVALID, ah->status);
2721
2722	return 0;
2723err_ah:
2724	ath5k_hw_deinit(ah);
2725err_irq:
2726	free_irq(ah->irq, ah);
2727err:
2728	return ret;
2729}
2730
2731static int
2732ath5k_stop_locked(struct ath5k_hw *ah)
2733{
2734
2735	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2736			test_bit(ATH_STAT_INVALID, ah->status));
2737
2738	/*
2739	 * Shutdown the hardware and driver:
2740	 *    stop output from above
2741	 *    disable interrupts
2742	 *    turn off timers
2743	 *    turn off the radio
2744	 *    clear transmit machinery
2745	 *    clear receive machinery
2746	 *    drain and release tx queues
2747	 *    reclaim beacon resources
2748	 *    power down hardware
2749	 *
2750	 * Note that some of this work is not possible if the
2751	 * hardware is gone (invalid).
2752	 */
2753	ieee80211_stop_queues(ah->hw);
2754
2755	if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2756		ath5k_led_off(ah);
2757		ath5k_hw_set_imr(ah, 0);
2758		synchronize_irq(ah->irq);
2759		ath5k_rx_stop(ah);
2760		ath5k_hw_dma_stop(ah);
2761		ath5k_drain_tx_buffs(ah);
2762		ath5k_hw_phy_disable(ah);
2763	}
2764
2765	return 0;
2766}
2767
2768int ath5k_start(struct ieee80211_hw *hw)
2769{
2770	struct ath5k_hw *ah = hw->priv;
2771	struct ath_common *common = ath5k_hw_common(ah);
2772	int ret, i;
2773
2774	mutex_lock(&ah->lock);
2775
2776	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2777
2778	/*
2779	 * Stop anything previously setup.  This is safe
2780	 * no matter this is the first time through or not.
2781	 */
2782	ath5k_stop_locked(ah);
2783
2784	/*
2785	 * The basic interface to setting the hardware in a good
2786	 * state is ``reset''.  On return the hardware is known to
2787	 * be powered up and with interrupts disabled.  This must
2788	 * be followed by initialization of the appropriate bits
2789	 * and then setup of the interrupt mask.
2790	 */
2791	ah->curchan = ah->hw->conf.chandef.chan;
2792	ah->imask = AR5K_INT_RXOK
2793		| AR5K_INT_RXERR
2794		| AR5K_INT_RXEOL
2795		| AR5K_INT_RXORN
2796		| AR5K_INT_TXDESC
2797		| AR5K_INT_TXEOL
2798		| AR5K_INT_FATAL
2799		| AR5K_INT_GLOBAL
2800		| AR5K_INT_MIB;
2801
2802	ret = ath5k_reset(ah, NULL, false);
2803	if (ret)
2804		goto done;
2805
2806	if (!ath5k_modparam_no_hw_rfkill_switch)
2807		ath5k_rfkill_hw_start(ah);
2808
2809	/*
2810	 * Reset the key cache since some parts do not reset the
2811	 * contents on initial power up or resume from suspend.
2812	 */
2813	for (i = 0; i < common->keymax; i++)
2814		ath_hw_keyreset(common, (u16) i);
2815
2816	/* Use higher rates for acks instead of base
2817	 * rate */
2818	ah->ah_ack_bitrate_high = true;
2819
2820	for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2821		ah->bslot[i] = NULL;
2822
2823	ret = 0;
2824done:
 
2825	mutex_unlock(&ah->lock);
2826
2827	set_bit(ATH_STAT_STARTED, ah->status);
2828	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2829			msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2830
2831	return ret;
2832}
2833
2834static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2835{
2836	ah->rx_pending = false;
2837	ah->tx_pending = false;
2838	tasklet_kill(&ah->rxtq);
2839	tasklet_kill(&ah->txtq);
2840	tasklet_kill(&ah->beacontq);
2841	tasklet_kill(&ah->ani_tasklet);
2842}
2843
2844/*
2845 * Stop the device, grabbing the top-level lock to protect
2846 * against concurrent entry through ath5k_init (which can happen
2847 * if another thread does a system call and the thread doing the
2848 * stop is preempted).
2849 */
2850void ath5k_stop(struct ieee80211_hw *hw)
2851{
2852	struct ath5k_hw *ah = hw->priv;
2853	int ret;
2854
2855	mutex_lock(&ah->lock);
2856	ret = ath5k_stop_locked(ah);
2857	if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2858		/*
2859		 * Don't set the card in full sleep mode!
2860		 *
2861		 * a) When the device is in this state it must be carefully
2862		 * woken up or references to registers in the PCI clock
2863		 * domain may freeze the bus (and system).  This varies
2864		 * by chip and is mostly an issue with newer parts
2865		 * (madwifi sources mentioned srev >= 0x78) that go to
2866		 * sleep more quickly.
2867		 *
2868		 * b) On older chips full sleep results a weird behaviour
2869		 * during wakeup. I tested various cards with srev < 0x78
2870		 * and they don't wake up after module reload, a second
2871		 * module reload is needed to bring the card up again.
2872		 *
2873		 * Until we figure out what's going on don't enable
2874		 * full chip reset on any chip (this is what Legacy HAL
2875		 * and Sam's HAL do anyway). Instead Perform a full reset
2876		 * on the device (same as initial state after attach) and
2877		 * leave it idle (keep MAC/BB on warm reset) */
2878		ret = ath5k_hw_on_hold(ah);
2879
2880		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2881				"putting device to sleep\n");
2882	}
2883
 
2884	mutex_unlock(&ah->lock);
2885
2886	ath5k_stop_tasklets(ah);
2887
2888	clear_bit(ATH_STAT_STARTED, ah->status);
2889	cancel_delayed_work_sync(&ah->tx_complete_work);
2890
2891	if (!ath5k_modparam_no_hw_rfkill_switch)
2892		ath5k_rfkill_hw_stop(ah);
2893}
2894
2895/*
2896 * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2897 * and change to the given channel.
2898 *
2899 * This should be called with ah->lock.
2900 */
2901static int
2902ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2903							bool skip_pcu)
2904{
2905	struct ath_common *common = ath5k_hw_common(ah);
2906	int ret, ani_mode;
2907	bool fast = chan && modparam_fastchanswitch ? 1 : 0;
2908
2909	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2910
2911	__set_bit(ATH_STAT_RESET, ah->status);
2912
2913	ath5k_hw_set_imr(ah, 0);
2914	synchronize_irq(ah->irq);
2915	ath5k_stop_tasklets(ah);
2916
2917	/* Save ani mode and disable ANI during
2918	 * reset. If we don't we might get false
2919	 * PHY error interrupts. */
2920	ani_mode = ah->ani_state.ani_mode;
2921	ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2922
2923	/* We are going to empty hw queues
2924	 * so we should also free any remaining
2925	 * tx buffers */
2926	ath5k_drain_tx_buffs(ah);
2927
2928	/* Stop PCU */
2929	ath5k_hw_stop_rx_pcu(ah);
2930
2931	/* Stop DMA
2932	 *
2933	 * Note: If DMA didn't stop continue
2934	 * since only a reset will fix it.
2935	 */
2936	ret = ath5k_hw_dma_stop(ah);
2937
2938	/* RF Bus grant won't work if we have pending
2939	 * frames
2940	 */
2941	if (ret && fast) {
2942		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2943			  "DMA didn't stop, falling back to normal reset\n");
2944		fast = false;
2945	}
2946
2947	if (chan)
2948		ah->curchan = chan;
2949
 
 
2950	ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2951	if (ret) {
2952		ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2953		goto err;
2954	}
2955
2956	ret = ath5k_rx_start(ah);
2957	if (ret) {
2958		ATH5K_ERR(ah, "can't start recv logic\n");
2959		goto err;
2960	}
2961
2962	ath5k_ani_init(ah, ani_mode);
2963
2964	/*
2965	 * Set calibration intervals
2966	 *
2967	 * Note: We don't need to run calibration imediately
2968	 * since some initial calibration is done on reset
2969	 * even for fast channel switching. Also on scanning
2970	 * this will get set again and again and it won't get
2971	 * executed unless we connect somewhere and spend some
2972	 * time on the channel (that's what calibration needs
2973	 * anyway to be accurate).
2974	 */
2975	ah->ah_cal_next_full = jiffies +
2976		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2977	ah->ah_cal_next_ani = jiffies +
2978		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2979	ah->ah_cal_next_short = jiffies +
2980		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2981
2982	ewma_beacon_rssi_init(&ah->ah_beacon_rssi_avg);
2983
2984	/* clear survey data and cycle counters */
2985	memset(&ah->survey, 0, sizeof(ah->survey));
2986	spin_lock_bh(&common->cc_lock);
2987	ath_hw_cycle_counters_update(common);
2988	memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2989	memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2990	spin_unlock_bh(&common->cc_lock);
2991
2992	/*
2993	 * Change channels and update the h/w rate map if we're switching;
2994	 * e.g. 11a to 11b/g.
2995	 *
2996	 * We may be doing a reset in response to an ioctl that changes the
2997	 * channel so update any state that might change as a result.
2998	 *
2999	 * XXX needed?
3000	 */
3001/*	ath5k_chan_change(ah, c); */
3002
3003	__clear_bit(ATH_STAT_RESET, ah->status);
3004
3005	ath5k_beacon_config(ah);
3006	/* intrs are enabled by ath5k_beacon_config */
3007
3008	ieee80211_wake_queues(ah->hw);
3009
3010	return 0;
3011err:
3012	return ret;
3013}
3014
3015static void ath5k_reset_work(struct work_struct *work)
3016{
3017	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
3018		reset_work);
3019
3020	mutex_lock(&ah->lock);
3021	ath5k_reset(ah, NULL, true);
3022	mutex_unlock(&ah->lock);
3023}
3024
3025static int
3026ath5k_init(struct ieee80211_hw *hw)
3027{
3028
3029	struct ath5k_hw *ah = hw->priv;
3030	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
3031	struct ath5k_txq *txq;
3032	u8 mac[ETH_ALEN] = {};
3033	int ret;
3034
3035
3036	/*
3037	 * Collect the channel list.  The 802.11 layer
3038	 * is responsible for filtering this list based
3039	 * on settings like the phy mode and regulatory
3040	 * domain restrictions.
3041	 */
3042	ret = ath5k_setup_bands(hw);
3043	if (ret) {
3044		ATH5K_ERR(ah, "can't get channels\n");
3045		goto err;
3046	}
3047
3048	/*
3049	 * Allocate tx+rx descriptors and populate the lists.
3050	 */
3051	ret = ath5k_desc_alloc(ah);
3052	if (ret) {
3053		ATH5K_ERR(ah, "can't allocate descriptors\n");
3054		goto err;
3055	}
3056
3057	/*
3058	 * Allocate hardware transmit queues: one queue for
3059	 * beacon frames and one data queue for each QoS
3060	 * priority.  Note that hw functions handle resetting
3061	 * these queues at the needed time.
3062	 */
3063	ret = ath5k_beaconq_setup(ah);
3064	if (ret < 0) {
3065		ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
3066		goto err_desc;
3067	}
3068	ah->bhalq = ret;
3069	ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
3070	if (IS_ERR(ah->cabq)) {
3071		ATH5K_ERR(ah, "can't setup cab queue\n");
3072		ret = PTR_ERR(ah->cabq);
3073		goto err_bhal;
3074	}
3075
3076	/* 5211 and 5212 usually support 10 queues but we better rely on the
3077	 * capability information */
3078	if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
3079		/* This order matches mac80211's queue priority, so we can
3080		* directly use the mac80211 queue number without any mapping */
3081		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
3082		if (IS_ERR(txq)) {
3083			ATH5K_ERR(ah, "can't setup xmit queue\n");
3084			ret = PTR_ERR(txq);
3085			goto err_queues;
3086		}
3087		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
3088		if (IS_ERR(txq)) {
3089			ATH5K_ERR(ah, "can't setup xmit queue\n");
3090			ret = PTR_ERR(txq);
3091			goto err_queues;
3092		}
3093		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3094		if (IS_ERR(txq)) {
3095			ATH5K_ERR(ah, "can't setup xmit queue\n");
3096			ret = PTR_ERR(txq);
3097			goto err_queues;
3098		}
3099		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
3100		if (IS_ERR(txq)) {
3101			ATH5K_ERR(ah, "can't setup xmit queue\n");
3102			ret = PTR_ERR(txq);
3103			goto err_queues;
3104		}
3105		hw->queues = 4;
3106	} else {
3107		/* older hardware (5210) can only support one data queue */
3108		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3109		if (IS_ERR(txq)) {
3110			ATH5K_ERR(ah, "can't setup xmit queue\n");
3111			ret = PTR_ERR(txq);
3112			goto err_queues;
3113		}
3114		hw->queues = 1;
3115	}
3116
3117	tasklet_setup(&ah->rxtq, ath5k_tasklet_rx);
3118	tasklet_setup(&ah->txtq, ath5k_tasklet_tx);
3119	tasklet_setup(&ah->beacontq, ath5k_tasklet_beacon);
3120	tasklet_setup(&ah->ani_tasklet, ath5k_tasklet_ani);
3121
3122	INIT_WORK(&ah->reset_work, ath5k_reset_work);
3123	INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
3124	INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
3125
3126	ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
3127	if (ret) {
3128		ATH5K_ERR(ah, "unable to read address from EEPROM\n");
3129		goto err_queues;
3130	}
3131
3132	SET_IEEE80211_PERM_ADDR(hw, mac);
3133	/* All MAC address bits matter for ACKs */
3134	ath5k_update_bssid_mask_and_opmode(ah, NULL);
3135
3136	regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
3137	ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
3138	if (ret) {
3139		ATH5K_ERR(ah, "can't initialize regulatory system\n");
3140		goto err_queues;
3141	}
3142
3143	ret = ieee80211_register_hw(hw);
3144	if (ret) {
3145		ATH5K_ERR(ah, "can't register ieee80211 hw\n");
3146		goto err_queues;
3147	}
3148
3149	if (!ath_is_world_regd(regulatory))
3150		regulatory_hint(hw->wiphy, regulatory->alpha2);
3151
3152	ath5k_init_leds(ah);
3153
3154	ath5k_sysfs_register(ah);
3155
3156	return 0;
3157err_queues:
3158	ath5k_txq_release(ah);
3159err_bhal:
3160	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3161err_desc:
3162	ath5k_desc_free(ah);
3163err:
3164	return ret;
3165}
3166
3167void
3168ath5k_deinit_ah(struct ath5k_hw *ah)
3169{
3170	struct ieee80211_hw *hw = ah->hw;
3171
3172	/*
3173	 * NB: the order of these is important:
3174	 * o call the 802.11 layer before detaching ath5k_hw to
3175	 *   ensure callbacks into the driver to delete global
3176	 *   key cache entries can be handled
3177	 * o reclaim the tx queue data structures after calling
3178	 *   the 802.11 layer as we'll get called back to reclaim
3179	 *   node state and potentially want to use them
3180	 * o to cleanup the tx queues the hal is called, so detach
3181	 *   it last
3182	 * XXX: ??? detach ath5k_hw ???
3183	 * Other than that, it's straightforward...
3184	 */
3185	ieee80211_unregister_hw(hw);
3186	ath5k_desc_free(ah);
3187	ath5k_txq_release(ah);
3188	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3189	ath5k_unregister_leds(ah);
3190
3191	ath5k_sysfs_unregister(ah);
3192	/*
3193	 * NB: can't reclaim these until after ieee80211_ifdetach
3194	 * returns because we'll get called back to reclaim node
3195	 * state and potentially want to use them.
3196	 */
3197	ath5k_hw_deinit(ah);
3198	free_irq(ah->irq, ah);
3199}
3200
3201bool
3202ath5k_any_vif_assoc(struct ath5k_hw *ah)
3203{
3204	struct ath5k_vif_iter_data iter_data;
3205	iter_data.hw_macaddr = NULL;
3206	iter_data.any_assoc = false;
3207	iter_data.need_set_hw_addr = false;
3208	iter_data.found_active = true;
3209
3210	ieee80211_iterate_active_interfaces_atomic(
3211		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
3212		ath5k_vif_iter, &iter_data);
3213	return iter_data.any_assoc;
3214}
3215
3216void
3217ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3218{
3219	struct ath5k_hw *ah = hw->priv;
3220	u32 rfilt;
3221	rfilt = ath5k_hw_get_rx_filter(ah);
3222	if (enable)
3223		rfilt |= AR5K_RX_FILTER_BEACON;
3224	else
3225		rfilt &= ~AR5K_RX_FILTER_BEACON;
3226	ath5k_hw_set_rx_filter(ah, rfilt);
3227	ah->filter_flags = rfilt;
3228}
3229
3230void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3231		   const char *fmt, ...)
3232{
3233	struct va_format vaf;
3234	va_list args;
3235
3236	va_start(args, fmt);
3237
3238	vaf.fmt = fmt;
3239	vaf.va = &args;
3240
3241	if (ah && ah->hw)
3242		printk("%s" pr_fmt("%s: %pV"),
3243		       level, wiphy_name(ah->hw->wiphy), &vaf);
3244	else
3245		printk("%s" pr_fmt("%pV"), level, &vaf);
3246
3247	va_end(args);
3248}
v3.15
   1/*-
   2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
   3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
   4 * Copyright (c) 2006 Devicescape Software, Inc.
   5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
   6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
   7 *
   8 * All rights reserved.
   9 *
  10 * Redistribution and use in source and binary forms, with or without
  11 * modification, are permitted provided that the following conditions
  12 * are met:
  13 * 1. Redistributions of source code must retain the above copyright
  14 *    notice, this list of conditions and the following disclaimer,
  15 *    without modification.
  16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
  17 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
  18 *    redistribution must be conditioned upon including a substantially
  19 *    similar Disclaimer requirement for further binary redistribution.
  20 * 3. Neither the names of the above-listed copyright holders nor the names
  21 *    of any contributors may be used to endorse or promote products derived
  22 *    from this software without specific prior written permission.
  23 *
  24 * Alternatively, this software may be distributed under the terms of the
  25 * GNU General Public License ("GPL") version 2 as published by the Free
  26 * Software Foundation.
  27 *
  28 * NO WARRANTY
  29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
  32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
  33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
  34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
  37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  39 * THE POSSIBILITY OF SUCH DAMAGES.
  40 *
  41 */
  42
  43#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  44
  45#include <linux/module.h>
  46#include <linux/delay.h>
  47#include <linux/dma-mapping.h>
  48#include <linux/hardirq.h>
  49#include <linux/if.h>
  50#include <linux/io.h>
  51#include <linux/netdevice.h>
  52#include <linux/cache.h>
  53#include <linux/ethtool.h>
  54#include <linux/uaccess.h>
  55#include <linux/slab.h>
  56#include <linux/etherdevice.h>
  57#include <linux/nl80211.h>
  58
  59#include <net/cfg80211.h>
  60#include <net/ieee80211_radiotap.h>
  61
  62#include <asm/unaligned.h>
  63
  64#include <net/mac80211.h>
  65#include "base.h"
  66#include "reg.h"
  67#include "debug.h"
  68#include "ani.h"
  69#include "ath5k.h"
  70#include "../regd.h"
  71
  72#define CREATE_TRACE_POINTS
  73#include "trace.h"
  74
  75bool ath5k_modparam_nohwcrypt;
  76module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
  77MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  78
  79static bool modparam_fastchanswitch;
  80module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
  81MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
  82
  83static bool ath5k_modparam_no_hw_rfkill_switch;
  84module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
  85								bool, S_IRUGO);
  86MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
  87
  88
  89/* Module info */
  90MODULE_AUTHOR("Jiri Slaby");
  91MODULE_AUTHOR("Nick Kossifidis");
  92MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
  93MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
  94MODULE_LICENSE("Dual BSD/GPL");
  95
  96static int ath5k_init(struct ieee80211_hw *hw);
  97static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
  98								bool skip_pcu);
  99
 100/* Known SREVs */
 101static const struct ath5k_srev_name srev_names[] = {
 102#ifdef CONFIG_ATHEROS_AR231X
 103	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R2 },
 104	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R7 },
 105	{ "2313",	AR5K_VERSION_MAC,	AR5K_SREV_AR2313_R8 },
 106	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R6 },
 107	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R7 },
 108	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R1 },
 109	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R2 },
 110#else
 111	{ "5210",	AR5K_VERSION_MAC,	AR5K_SREV_AR5210 },
 112	{ "5311",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311 },
 113	{ "5311A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311A },
 114	{ "5311B",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311B },
 115	{ "5211",	AR5K_VERSION_MAC,	AR5K_SREV_AR5211 },
 116	{ "5212",	AR5K_VERSION_MAC,	AR5K_SREV_AR5212 },
 117	{ "5213",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213 },
 118	{ "5213A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213A },
 119	{ "2413",	AR5K_VERSION_MAC,	AR5K_SREV_AR2413 },
 120	{ "2414",	AR5K_VERSION_MAC,	AR5K_SREV_AR2414 },
 121	{ "5424",	AR5K_VERSION_MAC,	AR5K_SREV_AR5424 },
 122	{ "5413",	AR5K_VERSION_MAC,	AR5K_SREV_AR5413 },
 123	{ "5414",	AR5K_VERSION_MAC,	AR5K_SREV_AR5414 },
 124	{ "2415",	AR5K_VERSION_MAC,	AR5K_SREV_AR2415 },
 125	{ "5416",	AR5K_VERSION_MAC,	AR5K_SREV_AR5416 },
 126	{ "5418",	AR5K_VERSION_MAC,	AR5K_SREV_AR5418 },
 127	{ "2425",	AR5K_VERSION_MAC,	AR5K_SREV_AR2425 },
 128	{ "2417",	AR5K_VERSION_MAC,	AR5K_SREV_AR2417 },
 129#endif
 130	{ "xxxxx",	AR5K_VERSION_MAC,	AR5K_SREV_UNKNOWN },
 131	{ "5110",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5110 },
 132	{ "5111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111 },
 133	{ "5111A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111A },
 134	{ "2111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2111 },
 135	{ "5112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112 },
 136	{ "5112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112A },
 137	{ "5112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112B },
 138	{ "2112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112 },
 139	{ "2112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112A },
 140	{ "2112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112B },
 141	{ "2413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2413 },
 142	{ "5413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5413 },
 143	{ "5424",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5424 },
 144	{ "5133",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5133 },
 145#ifdef CONFIG_ATHEROS_AR231X
 146	{ "2316",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2316 },
 147	{ "2317",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2317 },
 148#endif
 149	{ "xxxxx",	AR5K_VERSION_RAD,	AR5K_SREV_UNKNOWN },
 150};
 151
 152static const struct ieee80211_rate ath5k_rates[] = {
 153	{ .bitrate = 10,
 154	  .hw_value = ATH5K_RATE_CODE_1M, },
 155	{ .bitrate = 20,
 156	  .hw_value = ATH5K_RATE_CODE_2M,
 157	  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
 158	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 159	{ .bitrate = 55,
 160	  .hw_value = ATH5K_RATE_CODE_5_5M,
 161	  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
 162	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 163	{ .bitrate = 110,
 164	  .hw_value = ATH5K_RATE_CODE_11M,
 165	  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
 166	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 167	{ .bitrate = 60,
 168	  .hw_value = ATH5K_RATE_CODE_6M,
 169	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 170		   IEEE80211_RATE_SUPPORTS_10MHZ },
 171	{ .bitrate = 90,
 172	  .hw_value = ATH5K_RATE_CODE_9M,
 173	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 174		   IEEE80211_RATE_SUPPORTS_10MHZ },
 175	{ .bitrate = 120,
 176	  .hw_value = ATH5K_RATE_CODE_12M,
 177	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 178		   IEEE80211_RATE_SUPPORTS_10MHZ },
 179	{ .bitrate = 180,
 180	  .hw_value = ATH5K_RATE_CODE_18M,
 181	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 182		   IEEE80211_RATE_SUPPORTS_10MHZ },
 183	{ .bitrate = 240,
 184	  .hw_value = ATH5K_RATE_CODE_24M,
 185	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 186		   IEEE80211_RATE_SUPPORTS_10MHZ },
 187	{ .bitrate = 360,
 188	  .hw_value = ATH5K_RATE_CODE_36M,
 189	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 190		   IEEE80211_RATE_SUPPORTS_10MHZ },
 191	{ .bitrate = 480,
 192	  .hw_value = ATH5K_RATE_CODE_48M,
 193	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 194		   IEEE80211_RATE_SUPPORTS_10MHZ },
 195	{ .bitrate = 540,
 196	  .hw_value = ATH5K_RATE_CODE_54M,
 197	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 198		   IEEE80211_RATE_SUPPORTS_10MHZ },
 199};
 200
 201static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
 202{
 203	u64 tsf = ath5k_hw_get_tsf64(ah);
 204
 205	if ((tsf & 0x7fff) < rstamp)
 206		tsf -= 0x8000;
 207
 208	return (tsf & ~0x7fff) | rstamp;
 209}
 210
 211const char *
 212ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
 213{
 214	const char *name = "xxxxx";
 215	unsigned int i;
 216
 217	for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
 218		if (srev_names[i].sr_type != type)
 219			continue;
 220
 221		if ((val & 0xf0) == srev_names[i].sr_val)
 222			name = srev_names[i].sr_name;
 223
 224		if ((val & 0xff) == srev_names[i].sr_val) {
 225			name = srev_names[i].sr_name;
 226			break;
 227		}
 228	}
 229
 230	return name;
 231}
 232static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
 233{
 234	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
 235	return ath5k_hw_reg_read(ah, reg_offset);
 236}
 237
 238static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
 239{
 240	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
 241	ath5k_hw_reg_write(ah, val, reg_offset);
 242}
 243
 244static const struct ath_ops ath5k_common_ops = {
 245	.read = ath5k_ioread32,
 246	.write = ath5k_iowrite32,
 247};
 248
 249/***********************\
 250* Driver Initialization *
 251\***********************/
 252
 253static void ath5k_reg_notifier(struct wiphy *wiphy,
 254			       struct regulatory_request *request)
 255{
 256	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
 257	struct ath5k_hw *ah = hw->priv;
 258	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
 259
 260	ath_reg_notifier_apply(wiphy, request, regulatory);
 261}
 262
 263/********************\
 264* Channel/mode setup *
 265\********************/
 266
 267/*
 268 * Returns true for the channel numbers used.
 269 */
 270#ifdef CONFIG_ATH5K_TEST_CHANNELS
 271static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
 272{
 273	return true;
 274}
 275
 276#else
 277static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
 278{
 279	if (band == IEEE80211_BAND_2GHZ && chan <= 14)
 280		return true;
 281
 282	return	/* UNII 1,2 */
 283		(((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
 284		/* midband */
 285		((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
 286		/* UNII-3 */
 287		((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
 288		/* 802.11j 5.030-5.080 GHz (20MHz) */
 289		(chan == 8 || chan == 12 || chan == 16) ||
 290		/* 802.11j 4.9GHz (20MHz) */
 291		(chan == 184 || chan == 188 || chan == 192 || chan == 196));
 292}
 293#endif
 294
 295static unsigned int
 296ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
 297		unsigned int mode, unsigned int max)
 298{
 299	unsigned int count, size, freq, ch;
 300	enum ieee80211_band band;
 301
 302	switch (mode) {
 303	case AR5K_MODE_11A:
 304		/* 1..220, but 2GHz frequencies are filtered by check_channel */
 305		size = 220;
 306		band = IEEE80211_BAND_5GHZ;
 307		break;
 308	case AR5K_MODE_11B:
 309	case AR5K_MODE_11G:
 310		size = 26;
 311		band = IEEE80211_BAND_2GHZ;
 312		break;
 313	default:
 314		ATH5K_WARN(ah, "bad mode, not copying channels\n");
 315		return 0;
 316	}
 317
 318	count = 0;
 319	for (ch = 1; ch <= size && count < max; ch++) {
 320		freq = ieee80211_channel_to_frequency(ch, band);
 321
 322		if (freq == 0) /* mapping failed - not a standard channel */
 323			continue;
 324
 325		/* Write channel info, needed for ath5k_channel_ok() */
 326		channels[count].center_freq = freq;
 327		channels[count].band = band;
 328		channels[count].hw_value = mode;
 329
 330		/* Check if channel is supported by the chipset */
 331		if (!ath5k_channel_ok(ah, &channels[count]))
 332			continue;
 333
 334		if (!ath5k_is_standard_channel(ch, band))
 335			continue;
 336
 337		count++;
 338	}
 339
 340	return count;
 341}
 342
 343static void
 344ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
 345{
 346	u8 i;
 347
 348	for (i = 0; i < AR5K_MAX_RATES; i++)
 349		ah->rate_idx[b->band][i] = -1;
 350
 351	for (i = 0; i < b->n_bitrates; i++) {
 352		ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
 353		if (b->bitrates[i].hw_value_short)
 354			ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
 355	}
 356}
 357
 358static int
 359ath5k_setup_bands(struct ieee80211_hw *hw)
 360{
 361	struct ath5k_hw *ah = hw->priv;
 362	struct ieee80211_supported_band *sband;
 363	int max_c, count_c = 0;
 364	int i;
 365
 366	BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS);
 367	max_c = ARRAY_SIZE(ah->channels);
 368
 369	/* 2GHz band */
 370	sband = &ah->sbands[IEEE80211_BAND_2GHZ];
 371	sband->band = IEEE80211_BAND_2GHZ;
 372	sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0];
 373
 374	if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
 375		/* G mode */
 376		memcpy(sband->bitrates, &ath5k_rates[0],
 377		       sizeof(struct ieee80211_rate) * 12);
 378		sband->n_bitrates = 12;
 379
 380		sband->channels = ah->channels;
 381		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
 382					AR5K_MODE_11G, max_c);
 383
 384		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
 385		count_c = sband->n_channels;
 386		max_c -= count_c;
 387	} else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
 388		/* B mode */
 389		memcpy(sband->bitrates, &ath5k_rates[0],
 390		       sizeof(struct ieee80211_rate) * 4);
 391		sband->n_bitrates = 4;
 392
 393		/* 5211 only supports B rates and uses 4bit rate codes
 394		 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
 395		 * fix them up here:
 396		 */
 397		if (ah->ah_version == AR5K_AR5211) {
 398			for (i = 0; i < 4; i++) {
 399				sband->bitrates[i].hw_value =
 400					sband->bitrates[i].hw_value & 0xF;
 401				sband->bitrates[i].hw_value_short =
 402					sband->bitrates[i].hw_value_short & 0xF;
 403			}
 404		}
 405
 406		sband->channels = ah->channels;
 407		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
 408					AR5K_MODE_11B, max_c);
 409
 410		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
 411		count_c = sband->n_channels;
 412		max_c -= count_c;
 413	}
 414	ath5k_setup_rate_idx(ah, sband);
 415
 416	/* 5GHz band, A mode */
 417	if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
 418		sband = &ah->sbands[IEEE80211_BAND_5GHZ];
 419		sband->band = IEEE80211_BAND_5GHZ;
 420		sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0];
 421
 422		memcpy(sband->bitrates, &ath5k_rates[4],
 423		       sizeof(struct ieee80211_rate) * 8);
 424		sband->n_bitrates = 8;
 425
 426		sband->channels = &ah->channels[count_c];
 427		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
 428					AR5K_MODE_11A, max_c);
 429
 430		hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
 431	}
 432	ath5k_setup_rate_idx(ah, sband);
 433
 434	ath5k_debug_dump_bands(ah);
 435
 436	return 0;
 437}
 438
 439/*
 440 * Set/change channels. We always reset the chip.
 441 * To accomplish this we must first cleanup any pending DMA,
 442 * then restart stuff after a la  ath5k_init.
 443 *
 444 * Called with ah->lock.
 445 */
 446int
 447ath5k_chan_set(struct ath5k_hw *ah, struct cfg80211_chan_def *chandef)
 448{
 449	ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
 450		  "channel set, resetting (%u -> %u MHz)\n",
 451		  ah->curchan->center_freq, chandef->chan->center_freq);
 452
 453	switch (chandef->width) {
 454	case NL80211_CHAN_WIDTH_20:
 455	case NL80211_CHAN_WIDTH_20_NOHT:
 456		ah->ah_bwmode = AR5K_BWMODE_DEFAULT;
 457		break;
 458	case NL80211_CHAN_WIDTH_5:
 459		ah->ah_bwmode = AR5K_BWMODE_5MHZ;
 460		break;
 461	case NL80211_CHAN_WIDTH_10:
 462		ah->ah_bwmode = AR5K_BWMODE_10MHZ;
 463		break;
 464	default:
 465		WARN_ON(1);
 466		return -EINVAL;
 467	}
 468
 469	/*
 470	 * To switch channels clear any pending DMA operations;
 471	 * wait long enough for the RX fifo to drain, reset the
 472	 * hardware at the new frequency, and then re-enable
 473	 * the relevant bits of the h/w.
 474	 */
 475	return ath5k_reset(ah, chandef->chan, true);
 476}
 477
 478void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
 479{
 480	struct ath5k_vif_iter_data *iter_data = data;
 481	int i;
 482	struct ath5k_vif *avf = (void *)vif->drv_priv;
 483
 484	if (iter_data->hw_macaddr)
 485		for (i = 0; i < ETH_ALEN; i++)
 486			iter_data->mask[i] &=
 487				~(iter_data->hw_macaddr[i] ^ mac[i]);
 488
 489	if (!iter_data->found_active) {
 490		iter_data->found_active = true;
 491		memcpy(iter_data->active_mac, mac, ETH_ALEN);
 492	}
 493
 494	if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
 495		if (ether_addr_equal(iter_data->hw_macaddr, mac))
 496			iter_data->need_set_hw_addr = false;
 497
 498	if (!iter_data->any_assoc) {
 499		if (avf->assoc)
 500			iter_data->any_assoc = true;
 501	}
 502
 503	/* Calculate combined mode - when APs are active, operate in AP mode.
 504	 * Otherwise use the mode of the new interface. This can currently
 505	 * only deal with combinations of APs and STAs. Only one ad-hoc
 506	 * interfaces is allowed.
 507	 */
 508	if (avf->opmode == NL80211_IFTYPE_AP)
 509		iter_data->opmode = NL80211_IFTYPE_AP;
 510	else {
 511		if (avf->opmode == NL80211_IFTYPE_STATION)
 512			iter_data->n_stas++;
 513		if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
 514			iter_data->opmode = avf->opmode;
 515	}
 516}
 517
 518void
 519ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
 520				   struct ieee80211_vif *vif)
 521{
 522	struct ath_common *common = ath5k_hw_common(ah);
 523	struct ath5k_vif_iter_data iter_data;
 524	u32 rfilt;
 525
 526	/*
 527	 * Use the hardware MAC address as reference, the hardware uses it
 528	 * together with the BSSID mask when matching addresses.
 529	 */
 530	iter_data.hw_macaddr = common->macaddr;
 531	memset(&iter_data.mask, 0xff, ETH_ALEN);
 532	iter_data.found_active = false;
 533	iter_data.need_set_hw_addr = true;
 534	iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
 535	iter_data.n_stas = 0;
 536
 537	if (vif)
 538		ath5k_vif_iter(&iter_data, vif->addr, vif);
 539
 540	/* Get list of all active MAC addresses */
 541	ieee80211_iterate_active_interfaces_atomic(
 542		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
 543		ath5k_vif_iter, &iter_data);
 544	memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
 545
 546	ah->opmode = iter_data.opmode;
 547	if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
 548		/* Nothing active, default to station mode */
 549		ah->opmode = NL80211_IFTYPE_STATION;
 550
 551	ath5k_hw_set_opmode(ah, ah->opmode);
 552	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
 553		  ah->opmode, ath_opmode_to_string(ah->opmode));
 554
 555	if (iter_data.need_set_hw_addr && iter_data.found_active)
 556		ath5k_hw_set_lladdr(ah, iter_data.active_mac);
 557
 558	if (ath5k_hw_hasbssidmask(ah))
 559		ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
 560
 561	/* Set up RX Filter */
 562	if (iter_data.n_stas > 1) {
 563		/* If you have multiple STA interfaces connected to
 564		 * different APs, ARPs are not received (most of the time?)
 565		 * Enabling PROMISC appears to fix that problem.
 566		 */
 567		ah->filter_flags |= AR5K_RX_FILTER_PROM;
 568	}
 569
 570	rfilt = ah->filter_flags;
 571	ath5k_hw_set_rx_filter(ah, rfilt);
 572	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
 573}
 574
 575static inline int
 576ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
 577{
 578	int rix;
 579
 580	/* return base rate on errors */
 581	if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
 582			"hw_rix out of bounds: %x\n", hw_rix))
 583		return 0;
 584
 585	rix = ah->rate_idx[ah->curchan->band][hw_rix];
 586	if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
 587		rix = 0;
 588
 589	return rix;
 590}
 591
 592/***************\
 593* Buffers setup *
 594\***************/
 595
 596static
 597struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
 598{
 599	struct ath_common *common = ath5k_hw_common(ah);
 600	struct sk_buff *skb;
 601
 602	/*
 603	 * Allocate buffer with headroom_needed space for the
 604	 * fake physical layer header at the start.
 605	 */
 606	skb = ath_rxbuf_alloc(common,
 607			      common->rx_bufsize,
 608			      GFP_ATOMIC);
 609
 610	if (!skb) {
 611		ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
 612				common->rx_bufsize);
 613		return NULL;
 614	}
 615
 616	*skb_addr = dma_map_single(ah->dev,
 617				   skb->data, common->rx_bufsize,
 618				   DMA_FROM_DEVICE);
 619
 620	if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
 621		ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
 622		dev_kfree_skb(skb);
 623		return NULL;
 624	}
 625	return skb;
 626}
 627
 628static int
 629ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
 630{
 631	struct sk_buff *skb = bf->skb;
 632	struct ath5k_desc *ds;
 633	int ret;
 634
 635	if (!skb) {
 636		skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
 637		if (!skb)
 638			return -ENOMEM;
 639		bf->skb = skb;
 640	}
 641
 642	/*
 643	 * Setup descriptors.  For receive we always terminate
 644	 * the descriptor list with a self-linked entry so we'll
 645	 * not get overrun under high load (as can happen with a
 646	 * 5212 when ANI processing enables PHY error frames).
 647	 *
 648	 * To ensure the last descriptor is self-linked we create
 649	 * each descriptor as self-linked and add it to the end.  As
 650	 * each additional descriptor is added the previous self-linked
 651	 * entry is "fixed" naturally.  This should be safe even
 652	 * if DMA is happening.  When processing RX interrupts we
 653	 * never remove/process the last, self-linked, entry on the
 654	 * descriptor list.  This ensures the hardware always has
 655	 * someplace to write a new frame.
 656	 */
 657	ds = bf->desc;
 658	ds->ds_link = bf->daddr;	/* link to self */
 659	ds->ds_data = bf->skbaddr;
 660	ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
 661	if (ret) {
 662		ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
 663		return ret;
 664	}
 665
 666	if (ah->rxlink != NULL)
 667		*ah->rxlink = bf->daddr;
 668	ah->rxlink = &ds->ds_link;
 669	return 0;
 670}
 671
 672static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
 673{
 674	struct ieee80211_hdr *hdr;
 675	enum ath5k_pkt_type htype;
 676	__le16 fc;
 677
 678	hdr = (struct ieee80211_hdr *)skb->data;
 679	fc = hdr->frame_control;
 680
 681	if (ieee80211_is_beacon(fc))
 682		htype = AR5K_PKT_TYPE_BEACON;
 683	else if (ieee80211_is_probe_resp(fc))
 684		htype = AR5K_PKT_TYPE_PROBE_RESP;
 685	else if (ieee80211_is_atim(fc))
 686		htype = AR5K_PKT_TYPE_ATIM;
 687	else if (ieee80211_is_pspoll(fc))
 688		htype = AR5K_PKT_TYPE_PSPOLL;
 689	else
 690		htype = AR5K_PKT_TYPE_NORMAL;
 691
 692	return htype;
 693}
 694
 695static struct ieee80211_rate *
 696ath5k_get_rate(const struct ieee80211_hw *hw,
 697	       const struct ieee80211_tx_info *info,
 698	       struct ath5k_buf *bf, int idx)
 699{
 700	/*
 701	* convert a ieee80211_tx_rate RC-table entry to
 702	* the respective ieee80211_rate struct
 703	*/
 704	if (bf->rates[idx].idx < 0) {
 705		return NULL;
 706	}
 707
 708	return &hw->wiphy->bands[info->band]->bitrates[ bf->rates[idx].idx ];
 709}
 710
 711static u16
 712ath5k_get_rate_hw_value(const struct ieee80211_hw *hw,
 713			const struct ieee80211_tx_info *info,
 714			struct ath5k_buf *bf, int idx)
 715{
 716	struct ieee80211_rate *rate;
 717	u16 hw_rate;
 718	u8 rc_flags;
 719
 720	rate = ath5k_get_rate(hw, info, bf, idx);
 721	if (!rate)
 722		return 0;
 723
 724	rc_flags = bf->rates[idx].flags;
 725	hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
 726		   rate->hw_value_short : rate->hw_value;
 727
 728	return hw_rate;
 729}
 730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 731static int
 732ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
 733		  struct ath5k_txq *txq, int padsize,
 734		  struct ieee80211_tx_control *control)
 735{
 736	struct ath5k_desc *ds = bf->desc;
 737	struct sk_buff *skb = bf->skb;
 738	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 739	unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
 740	struct ieee80211_rate *rate;
 
 741	unsigned int mrr_rate[3], mrr_tries[3];
 742	int i, ret;
 743	u16 hw_rate;
 744	u16 cts_rate = 0;
 745	u16 duration = 0;
 746	u8 rc_flags;
 747
 748	flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
 749
 750	/* XXX endianness */
 751	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
 752			DMA_TO_DEVICE);
 753
 754	if (dma_mapping_error(ah->dev, bf->skbaddr))
 755		return -ENOSPC;
 756
 757	ieee80211_get_tx_rates(info->control.vif, (control) ? control->sta : NULL, skb, bf->rates,
 758			       ARRAY_SIZE(bf->rates));
 
 
 
 
 
 
 
 
 759
 760	rate = ath5k_get_rate(ah->hw, info, bf, 0);
 761
 762	if (!rate) {
 763		ret = -EINVAL;
 764		goto err_unmap;
 765	}
 766
 767	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
 768		flags |= AR5K_TXDESC_NOACK;
 769
 770	rc_flags = info->control.rates[0].flags;
 771
 772	hw_rate = ath5k_get_rate_hw_value(ah->hw, info, bf, 0);
 773
 774	pktlen = skb->len;
 775
 776	/* FIXME: If we are in g mode and rate is a CCK rate
 777	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
 778	 * from tx power (value is in dB units already) */
 779	if (info->control.hw_key) {
 780		keyidx = info->control.hw_key->hw_key_idx;
 781		pktlen += info->control.hw_key->icv_len;
 782	}
 783	if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
 784		flags |= AR5K_TXDESC_RTSENA;
 785		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
 786		duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
 787			info->control.vif, pktlen, info));
 788	}
 789	if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
 790		flags |= AR5K_TXDESC_CTSENA;
 791		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
 792		duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
 793			info->control.vif, pktlen, info));
 794	}
 795
 796	ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
 797		ieee80211_get_hdrlen_from_skb(skb), padsize,
 798		get_hw_packet_type(skb),
 799		(ah->ah_txpower.txp_requested * 2),
 800		hw_rate,
 801		bf->rates[0].count, keyidx, ah->ah_tx_ant, flags,
 802		cts_rate, duration);
 803	if (ret)
 804		goto err_unmap;
 805
 806	/* Set up MRR descriptor */
 807	if (ah->ah_capabilities.cap_has_mrr_support) {
 808		memset(mrr_rate, 0, sizeof(mrr_rate));
 809		memset(mrr_tries, 0, sizeof(mrr_tries));
 810
 811		for (i = 0; i < 3; i++) {
 812
 813			rate = ath5k_get_rate(ah->hw, info, bf, i);
 814			if (!rate)
 815				break;
 816
 817			mrr_rate[i] = ath5k_get_rate_hw_value(ah->hw, info, bf, i);
 818			mrr_tries[i] = bf->rates[i].count;
 819		}
 820
 821		ath5k_hw_setup_mrr_tx_desc(ah, ds,
 822			mrr_rate[0], mrr_tries[0],
 823			mrr_rate[1], mrr_tries[1],
 824			mrr_rate[2], mrr_tries[2]);
 825	}
 826
 827	ds->ds_link = 0;
 828	ds->ds_data = bf->skbaddr;
 829
 830	spin_lock_bh(&txq->lock);
 831	list_add_tail(&bf->list, &txq->q);
 832	txq->txq_len++;
 833	if (txq->link == NULL) /* is this first packet? */
 834		ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
 835	else /* no, so only link it */
 836		*txq->link = bf->daddr;
 837
 838	txq->link = &ds->ds_link;
 839	ath5k_hw_start_tx_dma(ah, txq->qnum);
 840	mmiowb();
 841	spin_unlock_bh(&txq->lock);
 842
 843	return 0;
 844err_unmap:
 845	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
 846	return ret;
 847}
 848
 849/*******************\
 850* Descriptors setup *
 851\*******************/
 852
 853static int
 854ath5k_desc_alloc(struct ath5k_hw *ah)
 855{
 856	struct ath5k_desc *ds;
 857	struct ath5k_buf *bf;
 858	dma_addr_t da;
 859	unsigned int i;
 860	int ret;
 861
 862	/* allocate descriptors */
 863	ah->desc_len = sizeof(struct ath5k_desc) *
 864			(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
 865
 866	ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
 867				&ah->desc_daddr, GFP_KERNEL);
 868	if (ah->desc == NULL) {
 869		ATH5K_ERR(ah, "can't allocate descriptors\n");
 870		ret = -ENOMEM;
 871		goto err;
 872	}
 873	ds = ah->desc;
 874	da = ah->desc_daddr;
 875	ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
 876		ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
 877
 878	bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
 879			sizeof(struct ath5k_buf), GFP_KERNEL);
 880	if (bf == NULL) {
 881		ATH5K_ERR(ah, "can't allocate bufptr\n");
 882		ret = -ENOMEM;
 883		goto err_free;
 884	}
 885	ah->bufptr = bf;
 886
 887	INIT_LIST_HEAD(&ah->rxbuf);
 888	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
 889		bf->desc = ds;
 890		bf->daddr = da;
 891		list_add_tail(&bf->list, &ah->rxbuf);
 892	}
 893
 894	INIT_LIST_HEAD(&ah->txbuf);
 895	ah->txbuf_len = ATH_TXBUF;
 896	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
 897		bf->desc = ds;
 898		bf->daddr = da;
 899		list_add_tail(&bf->list, &ah->txbuf);
 900	}
 901
 902	/* beacon buffers */
 903	INIT_LIST_HEAD(&ah->bcbuf);
 904	for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
 905		bf->desc = ds;
 906		bf->daddr = da;
 907		list_add_tail(&bf->list, &ah->bcbuf);
 908	}
 909
 910	return 0;
 911err_free:
 912	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
 913err:
 914	ah->desc = NULL;
 915	return ret;
 916}
 917
 918void
 919ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
 920{
 921	BUG_ON(!bf);
 922	if (!bf->skb)
 923		return;
 924	dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
 925			DMA_TO_DEVICE);
 926	ieee80211_free_txskb(ah->hw, bf->skb);
 927	bf->skb = NULL;
 928	bf->skbaddr = 0;
 929	bf->desc->ds_data = 0;
 930}
 931
 932void
 933ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
 934{
 935	struct ath_common *common = ath5k_hw_common(ah);
 936
 937	BUG_ON(!bf);
 938	if (!bf->skb)
 939		return;
 940	dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
 941			DMA_FROM_DEVICE);
 942	dev_kfree_skb_any(bf->skb);
 943	bf->skb = NULL;
 944	bf->skbaddr = 0;
 945	bf->desc->ds_data = 0;
 946}
 947
 948static void
 949ath5k_desc_free(struct ath5k_hw *ah)
 950{
 951	struct ath5k_buf *bf;
 952
 953	list_for_each_entry(bf, &ah->txbuf, list)
 954		ath5k_txbuf_free_skb(ah, bf);
 955	list_for_each_entry(bf, &ah->rxbuf, list)
 956		ath5k_rxbuf_free_skb(ah, bf);
 957	list_for_each_entry(bf, &ah->bcbuf, list)
 958		ath5k_txbuf_free_skb(ah, bf);
 959
 960	/* Free memory associated with all descriptors */
 961	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
 962	ah->desc = NULL;
 963	ah->desc_daddr = 0;
 964
 965	kfree(ah->bufptr);
 966	ah->bufptr = NULL;
 967}
 968
 969
 970/**************\
 971* Queues setup *
 972\**************/
 973
 974static struct ath5k_txq *
 975ath5k_txq_setup(struct ath5k_hw *ah,
 976		int qtype, int subtype)
 977{
 978	struct ath5k_txq *txq;
 979	struct ath5k_txq_info qi = {
 980		.tqi_subtype = subtype,
 981		/* XXX: default values not correct for B and XR channels,
 982		 * but who cares? */
 983		.tqi_aifs = AR5K_TUNE_AIFS,
 984		.tqi_cw_min = AR5K_TUNE_CWMIN,
 985		.tqi_cw_max = AR5K_TUNE_CWMAX
 986	};
 987	int qnum;
 988
 989	/*
 990	 * Enable interrupts only for EOL and DESC conditions.
 991	 * We mark tx descriptors to receive a DESC interrupt
 992	 * when a tx queue gets deep; otherwise we wait for the
 993	 * EOL to reap descriptors.  Note that this is done to
 994	 * reduce interrupt load and this only defers reaping
 995	 * descriptors, never transmitting frames.  Aside from
 996	 * reducing interrupts this also permits more concurrency.
 997	 * The only potential downside is if the tx queue backs
 998	 * up in which case the top half of the kernel may backup
 999	 * due to a lack of tx descriptors.
1000	 */
1001	qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1002				AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1003	qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1004	if (qnum < 0) {
1005		/*
1006		 * NB: don't print a message, this happens
1007		 * normally on parts with too few tx queues
1008		 */
1009		return ERR_PTR(qnum);
1010	}
1011	txq = &ah->txqs[qnum];
1012	if (!txq->setup) {
1013		txq->qnum = qnum;
1014		txq->link = NULL;
1015		INIT_LIST_HEAD(&txq->q);
1016		spin_lock_init(&txq->lock);
1017		txq->setup = true;
1018		txq->txq_len = 0;
1019		txq->txq_max = ATH5K_TXQ_LEN_MAX;
1020		txq->txq_poll_mark = false;
1021		txq->txq_stuck = 0;
1022	}
1023	return &ah->txqs[qnum];
1024}
1025
1026static int
1027ath5k_beaconq_setup(struct ath5k_hw *ah)
1028{
1029	struct ath5k_txq_info qi = {
1030		/* XXX: default values not correct for B and XR channels,
1031		 * but who cares? */
1032		.tqi_aifs = AR5K_TUNE_AIFS,
1033		.tqi_cw_min = AR5K_TUNE_CWMIN,
1034		.tqi_cw_max = AR5K_TUNE_CWMAX,
1035		/* NB: for dynamic turbo, don't enable any other interrupts */
1036		.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1037	};
1038
1039	return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1040}
1041
1042static int
1043ath5k_beaconq_config(struct ath5k_hw *ah)
1044{
1045	struct ath5k_txq_info qi;
1046	int ret;
1047
1048	ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
1049	if (ret)
1050		goto err;
1051
1052	if (ah->opmode == NL80211_IFTYPE_AP ||
1053	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1054		/*
1055		 * Always burst out beacon and CAB traffic
1056		 * (aifs = cwmin = cwmax = 0)
1057		 */
1058		qi.tqi_aifs = 0;
1059		qi.tqi_cw_min = 0;
1060		qi.tqi_cw_max = 0;
1061	} else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
1062		/*
1063		 * Adhoc mode; backoff between 0 and (2 * cw_min).
1064		 */
1065		qi.tqi_aifs = 0;
1066		qi.tqi_cw_min = 0;
1067		qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
1068	}
1069
1070	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1071		"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1072		qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1073
1074	ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1075	if (ret) {
1076		ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1077			"hardware queue!\n", __func__);
1078		goto err;
1079	}
1080	ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1081	if (ret)
1082		goto err;
1083
1084	/* reconfigure cabq with ready time to 80% of beacon_interval */
1085	ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1086	if (ret)
1087		goto err;
1088
1089	qi.tqi_ready_time = (ah->bintval * 80) / 100;
1090	ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1091	if (ret)
1092		goto err;
1093
1094	ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1095err:
1096	return ret;
1097}
1098
1099/**
1100 * ath5k_drain_tx_buffs - Empty tx buffers
1101 *
1102 * @ah The &struct ath5k_hw
1103 *
1104 * Empty tx buffers from all queues in preparation
1105 * of a reset or during shutdown.
1106 *
1107 * NB:	this assumes output has been stopped and
1108 *	we do not need to block ath5k_tx_tasklet
1109 */
1110static void
1111ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1112{
1113	struct ath5k_txq *txq;
1114	struct ath5k_buf *bf, *bf0;
1115	int i;
1116
1117	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1118		if (ah->txqs[i].setup) {
1119			txq = &ah->txqs[i];
1120			spin_lock_bh(&txq->lock);
1121			list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1122				ath5k_debug_printtxbuf(ah, bf);
1123
1124				ath5k_txbuf_free_skb(ah, bf);
1125
1126				spin_lock(&ah->txbuflock);
1127				list_move_tail(&bf->list, &ah->txbuf);
1128				ah->txbuf_len++;
1129				txq->txq_len--;
1130				spin_unlock(&ah->txbuflock);
1131			}
1132			txq->link = NULL;
1133			txq->txq_poll_mark = false;
1134			spin_unlock_bh(&txq->lock);
1135		}
1136	}
1137}
1138
1139static void
1140ath5k_txq_release(struct ath5k_hw *ah)
1141{
1142	struct ath5k_txq *txq = ah->txqs;
1143	unsigned int i;
1144
1145	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1146		if (txq->setup) {
1147			ath5k_hw_release_tx_queue(ah, txq->qnum);
1148			txq->setup = false;
1149		}
1150}
1151
1152
1153/*************\
1154* RX Handling *
1155\*************/
1156
1157/*
1158 * Enable the receive h/w following a reset.
1159 */
1160static int
1161ath5k_rx_start(struct ath5k_hw *ah)
1162{
1163	struct ath_common *common = ath5k_hw_common(ah);
1164	struct ath5k_buf *bf;
1165	int ret;
1166
1167	common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1168
1169	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1170		  common->cachelsz, common->rx_bufsize);
1171
1172	spin_lock_bh(&ah->rxbuflock);
1173	ah->rxlink = NULL;
1174	list_for_each_entry(bf, &ah->rxbuf, list) {
1175		ret = ath5k_rxbuf_setup(ah, bf);
1176		if (ret != 0) {
1177			spin_unlock_bh(&ah->rxbuflock);
1178			goto err;
1179		}
1180	}
1181	bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1182	ath5k_hw_set_rxdp(ah, bf->daddr);
1183	spin_unlock_bh(&ah->rxbuflock);
1184
1185	ath5k_hw_start_rx_dma(ah);	/* enable recv descriptors */
1186	ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1187	ath5k_hw_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
1188
1189	return 0;
1190err:
1191	return ret;
1192}
1193
1194/*
1195 * Disable the receive logic on PCU (DRU)
1196 * In preparation for a shutdown.
1197 *
1198 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1199 * does.
1200 */
1201static void
1202ath5k_rx_stop(struct ath5k_hw *ah)
1203{
1204
1205	ath5k_hw_set_rx_filter(ah, 0);	/* clear recv filter */
1206	ath5k_hw_stop_rx_pcu(ah);	/* disable PCU */
1207
1208	ath5k_debug_printrxbuffs(ah);
1209}
1210
1211static unsigned int
1212ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1213		   struct ath5k_rx_status *rs)
1214{
1215	struct ath_common *common = ath5k_hw_common(ah);
1216	struct ieee80211_hdr *hdr = (void *)skb->data;
1217	unsigned int keyix, hlen;
1218
1219	if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1220			rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1221		return RX_FLAG_DECRYPTED;
1222
1223	/* Apparently when a default key is used to decrypt the packet
1224	   the hw does not set the index used to decrypt.  In such cases
1225	   get the index from the packet. */
1226	hlen = ieee80211_hdrlen(hdr->frame_control);
1227	if (ieee80211_has_protected(hdr->frame_control) &&
1228	    !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1229	    skb->len >= hlen + 4) {
1230		keyix = skb->data[hlen + 3] >> 6;
1231
1232		if (test_bit(keyix, common->keymap))
1233			return RX_FLAG_DECRYPTED;
1234	}
1235
1236	return 0;
1237}
1238
1239
1240static void
1241ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1242		     struct ieee80211_rx_status *rxs)
1243{
1244	u64 tsf, bc_tstamp;
1245	u32 hw_tu;
1246	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1247
1248	if (le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS) {
1249		/*
1250		 * Received an IBSS beacon with the same BSSID. Hardware *must*
1251		 * have updated the local TSF. We have to work around various
1252		 * hardware bugs, though...
1253		 */
1254		tsf = ath5k_hw_get_tsf64(ah);
1255		bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1256		hw_tu = TSF_TO_TU(tsf);
1257
1258		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1259			"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1260			(unsigned long long)bc_tstamp,
1261			(unsigned long long)rxs->mactime,
1262			(unsigned long long)(rxs->mactime - bc_tstamp),
1263			(unsigned long long)tsf);
1264
1265		/*
1266		 * Sometimes the HW will give us a wrong tstamp in the rx
1267		 * status, causing the timestamp extension to go wrong.
1268		 * (This seems to happen especially with beacon frames bigger
1269		 * than 78 byte (incl. FCS))
1270		 * But we know that the receive timestamp must be later than the
1271		 * timestamp of the beacon since HW must have synced to that.
1272		 *
1273		 * NOTE: here we assume mactime to be after the frame was
1274		 * received, not like mac80211 which defines it at the start.
1275		 */
1276		if (bc_tstamp > rxs->mactime) {
1277			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1278				"fixing mactime from %llx to %llx\n",
1279				(unsigned long long)rxs->mactime,
1280				(unsigned long long)tsf);
1281			rxs->mactime = tsf;
1282		}
1283
1284		/*
1285		 * Local TSF might have moved higher than our beacon timers,
1286		 * in that case we have to update them to continue sending
1287		 * beacons. This also takes care of synchronizing beacon sending
1288		 * times with other stations.
1289		 */
1290		if (hw_tu >= ah->nexttbtt)
1291			ath5k_beacon_update_timers(ah, bc_tstamp);
1292
1293		/* Check if the beacon timers are still correct, because a TSF
1294		 * update might have created a window between them - for a
1295		 * longer description see the comment of this function: */
1296		if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1297			ath5k_beacon_update_timers(ah, bc_tstamp);
1298			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1299				"fixed beacon timers after beacon receive\n");
1300		}
1301	}
1302}
1303
1304/*
1305 * Compute padding position. skb must contain an IEEE 802.11 frame
1306 */
1307static int ath5k_common_padpos(struct sk_buff *skb)
1308{
1309	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1310	__le16 frame_control = hdr->frame_control;
1311	int padpos = 24;
1312
1313	if (ieee80211_has_a4(frame_control))
1314		padpos += ETH_ALEN;
1315
1316	if (ieee80211_is_data_qos(frame_control))
1317		padpos += IEEE80211_QOS_CTL_LEN;
1318
1319	return padpos;
1320}
1321
1322/*
1323 * This function expects an 802.11 frame and returns the number of
1324 * bytes added, or -1 if we don't have enough header room.
1325 */
1326static int ath5k_add_padding(struct sk_buff *skb)
1327{
1328	int padpos = ath5k_common_padpos(skb);
1329	int padsize = padpos & 3;
1330
1331	if (padsize && skb->len > padpos) {
1332
1333		if (skb_headroom(skb) < padsize)
1334			return -1;
1335
1336		skb_push(skb, padsize);
1337		memmove(skb->data, skb->data + padsize, padpos);
1338		return padsize;
1339	}
1340
1341	return 0;
1342}
1343
1344/*
1345 * The MAC header is padded to have 32-bit boundary if the
1346 * packet payload is non-zero. The general calculation for
1347 * padsize would take into account odd header lengths:
1348 * padsize = 4 - (hdrlen & 3); however, since only
1349 * even-length headers are used, padding can only be 0 or 2
1350 * bytes and we can optimize this a bit.  We must not try to
1351 * remove padding from short control frames that do not have a
1352 * payload.
1353 *
1354 * This function expects an 802.11 frame and returns the number of
1355 * bytes removed.
1356 */
1357static int ath5k_remove_padding(struct sk_buff *skb)
1358{
1359	int padpos = ath5k_common_padpos(skb);
1360	int padsize = padpos & 3;
1361
1362	if (padsize && skb->len >= padpos + padsize) {
1363		memmove(skb->data + padsize, skb->data, padpos);
1364		skb_pull(skb, padsize);
1365		return padsize;
1366	}
1367
1368	return 0;
1369}
1370
1371static void
1372ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1373		    struct ath5k_rx_status *rs)
1374{
1375	struct ieee80211_rx_status *rxs;
1376	struct ath_common *common = ath5k_hw_common(ah);
1377
1378	ath5k_remove_padding(skb);
1379
1380	rxs = IEEE80211_SKB_RXCB(skb);
1381
1382	rxs->flag = 0;
1383	if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1384		rxs->flag |= RX_FLAG_MMIC_ERROR;
 
 
 
1385
1386	/*
1387	 * always extend the mac timestamp, since this information is
1388	 * also needed for proper IBSS merging.
1389	 *
1390	 * XXX: it might be too late to do it here, since rs_tstamp is
1391	 * 15bit only. that means TSF extension has to be done within
1392	 * 32768usec (about 32ms). it might be necessary to move this to
1393	 * the interrupt handler, like it is done in madwifi.
1394	 */
1395	rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1396	rxs->flag |= RX_FLAG_MACTIME_END;
1397
1398	rxs->freq = ah->curchan->center_freq;
1399	rxs->band = ah->curchan->band;
1400
1401	rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1402
1403	rxs->antenna = rs->rs_antenna;
1404
1405	if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1406		ah->stats.antenna_rx[rs->rs_antenna]++;
1407	else
1408		ah->stats.antenna_rx[0]++; /* invalid */
1409
1410	rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1411	rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1412	switch (ah->ah_bwmode) {
1413	case AR5K_BWMODE_5MHZ:
1414		rxs->flag |= RX_FLAG_5MHZ;
1415		break;
1416	case AR5K_BWMODE_10MHZ:
1417		rxs->flag |= RX_FLAG_10MHZ;
1418		break;
1419	default:
1420		break;
1421	}
1422
1423	if (rxs->rate_idx >= 0 && rs->rs_rate ==
1424	    ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1425		rxs->flag |= RX_FLAG_SHORTPRE;
1426
1427	trace_ath5k_rx(ah, skb);
1428
1429	if (ath_is_mybeacon(common, (struct ieee80211_hdr *)skb->data)) {
1430		ewma_add(&ah->ah_beacon_rssi_avg, rs->rs_rssi);
1431
1432		/* check beacons in IBSS mode */
1433		if (ah->opmode == NL80211_IFTYPE_ADHOC)
1434			ath5k_check_ibss_tsf(ah, skb, rxs);
1435	}
1436
1437	ieee80211_rx(ah->hw, skb);
1438}
1439
1440/** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1441 *
1442 * Check if we want to further process this frame or not. Also update
1443 * statistics. Return true if we want this frame, false if not.
1444 */
1445static bool
1446ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1447{
1448	ah->stats.rx_all_count++;
1449	ah->stats.rx_bytes_count += rs->rs_datalen;
1450
1451	if (unlikely(rs->rs_status)) {
 
 
1452		if (rs->rs_status & AR5K_RXERR_CRC)
1453			ah->stats.rxerr_crc++;
1454		if (rs->rs_status & AR5K_RXERR_FIFO)
1455			ah->stats.rxerr_fifo++;
1456		if (rs->rs_status & AR5K_RXERR_PHY) {
1457			ah->stats.rxerr_phy++;
1458			if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1459				ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1460			return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
1461		}
1462		if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1463			/*
1464			 * Decrypt error.  If the error occurred
1465			 * because there was no hardware key, then
1466			 * let the frame through so the upper layers
1467			 * can process it.  This is necessary for 5210
1468			 * parts which have no way to setup a ``clear''
1469			 * key cache entry.
1470			 *
1471			 * XXX do key cache faulting
1472			 */
1473			ah->stats.rxerr_decrypt++;
1474			if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1475			    !(rs->rs_status & AR5K_RXERR_CRC))
1476				return true;
1477		}
1478		if (rs->rs_status & AR5K_RXERR_MIC) {
1479			ah->stats.rxerr_mic++;
1480			return true;
1481		}
1482
1483		/* reject any frames with non-crypto errors */
1484		if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
 
 
 
 
 
 
 
1485			return false;
1486	}
1487
1488	if (unlikely(rs->rs_more)) {
1489		ah->stats.rxerr_jumbo++;
1490		return false;
1491	}
1492	return true;
1493}
1494
1495static void
1496ath5k_set_current_imask(struct ath5k_hw *ah)
1497{
1498	enum ath5k_int imask;
1499	unsigned long flags;
1500
 
 
 
1501	spin_lock_irqsave(&ah->irqlock, flags);
1502	imask = ah->imask;
1503	if (ah->rx_pending)
1504		imask &= ~AR5K_INT_RX_ALL;
1505	if (ah->tx_pending)
1506		imask &= ~AR5K_INT_TX_ALL;
1507	ath5k_hw_set_imr(ah, imask);
1508	spin_unlock_irqrestore(&ah->irqlock, flags);
1509}
1510
1511static void
1512ath5k_tasklet_rx(unsigned long data)
1513{
1514	struct ath5k_rx_status rs = {};
1515	struct sk_buff *skb, *next_skb;
1516	dma_addr_t next_skb_addr;
1517	struct ath5k_hw *ah = (void *)data;
1518	struct ath_common *common = ath5k_hw_common(ah);
1519	struct ath5k_buf *bf;
1520	struct ath5k_desc *ds;
1521	int ret;
1522
1523	spin_lock(&ah->rxbuflock);
1524	if (list_empty(&ah->rxbuf)) {
1525		ATH5K_WARN(ah, "empty rx buf pool\n");
1526		goto unlock;
1527	}
1528	do {
1529		bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1530		BUG_ON(bf->skb == NULL);
1531		skb = bf->skb;
1532		ds = bf->desc;
1533
1534		/* bail if HW is still using self-linked descriptor */
1535		if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1536			break;
1537
1538		ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1539		if (unlikely(ret == -EINPROGRESS))
1540			break;
1541		else if (unlikely(ret)) {
1542			ATH5K_ERR(ah, "error in processing rx descriptor\n");
1543			ah->stats.rxerr_proc++;
1544			break;
1545		}
1546
1547		if (ath5k_receive_frame_ok(ah, &rs)) {
1548			next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1549
1550			/*
1551			 * If we can't replace bf->skb with a new skb under
1552			 * memory pressure, just skip this packet
1553			 */
1554			if (!next_skb)
1555				goto next;
1556
1557			dma_unmap_single(ah->dev, bf->skbaddr,
1558					 common->rx_bufsize,
1559					 DMA_FROM_DEVICE);
1560
1561			skb_put(skb, rs.rs_datalen);
1562
1563			ath5k_receive_frame(ah, skb, &rs);
1564
1565			bf->skb = next_skb;
1566			bf->skbaddr = next_skb_addr;
1567		}
1568next:
1569		list_move_tail(&bf->list, &ah->rxbuf);
1570	} while (ath5k_rxbuf_setup(ah, bf) == 0);
1571unlock:
1572	spin_unlock(&ah->rxbuflock);
1573	ah->rx_pending = false;
1574	ath5k_set_current_imask(ah);
1575}
1576
1577
1578/*************\
1579* TX Handling *
1580\*************/
1581
1582void
1583ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1584	       struct ath5k_txq *txq, struct ieee80211_tx_control *control)
1585{
1586	struct ath5k_hw *ah = hw->priv;
1587	struct ath5k_buf *bf;
1588	unsigned long flags;
1589	int padsize;
1590
1591	trace_ath5k_tx(ah, skb, txq);
1592
1593	/*
1594	 * The hardware expects the header padded to 4 byte boundaries.
1595	 * If this is not the case, we add the padding after the header.
1596	 */
1597	padsize = ath5k_add_padding(skb);
1598	if (padsize < 0) {
1599		ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1600			  " headroom to pad");
1601		goto drop_packet;
1602	}
1603
1604	if (txq->txq_len >= txq->txq_max &&
1605	    txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1606		ieee80211_stop_queue(hw, txq->qnum);
1607
1608	spin_lock_irqsave(&ah->txbuflock, flags);
1609	if (list_empty(&ah->txbuf)) {
1610		ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1611		spin_unlock_irqrestore(&ah->txbuflock, flags);
1612		ieee80211_stop_queues(hw);
1613		goto drop_packet;
1614	}
1615	bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1616	list_del(&bf->list);
1617	ah->txbuf_len--;
1618	if (list_empty(&ah->txbuf))
1619		ieee80211_stop_queues(hw);
1620	spin_unlock_irqrestore(&ah->txbuflock, flags);
1621
1622	bf->skb = skb;
1623
1624	if (ath5k_txbuf_setup(ah, bf, txq, padsize, control)) {
1625		bf->skb = NULL;
1626		spin_lock_irqsave(&ah->txbuflock, flags);
1627		list_add_tail(&bf->list, &ah->txbuf);
1628		ah->txbuf_len++;
1629		spin_unlock_irqrestore(&ah->txbuflock, flags);
1630		goto drop_packet;
1631	}
1632	return;
1633
1634drop_packet:
1635	ieee80211_free_txskb(hw, skb);
1636}
1637
1638static void
1639ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1640			 struct ath5k_txq *txq, struct ath5k_tx_status *ts,
1641			 struct ath5k_buf *bf)
1642{
1643	struct ieee80211_tx_info *info;
1644	u8 tries[3];
1645	int i;
1646	int size = 0;
1647
1648	ah->stats.tx_all_count++;
1649	ah->stats.tx_bytes_count += skb->len;
1650	info = IEEE80211_SKB_CB(skb);
1651
1652	size = min_t(int, sizeof(info->status.rates), sizeof(bf->rates));
1653	memcpy(info->status.rates, bf->rates, size);
1654
1655	tries[0] = info->status.rates[0].count;
1656	tries[1] = info->status.rates[1].count;
1657	tries[2] = info->status.rates[2].count;
1658
1659	ieee80211_tx_info_clear_status(info);
1660
1661	for (i = 0; i < ts->ts_final_idx; i++) {
1662		struct ieee80211_tx_rate *r =
1663			&info->status.rates[i];
1664
1665		r->count = tries[i];
1666	}
1667
1668	info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1669	info->status.rates[ts->ts_final_idx + 1].idx = -1;
1670
1671	if (unlikely(ts->ts_status)) {
1672		ah->stats.ack_fail++;
1673		if (ts->ts_status & AR5K_TXERR_FILT) {
1674			info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1675			ah->stats.txerr_filt++;
1676		}
1677		if (ts->ts_status & AR5K_TXERR_XRETRY)
1678			ah->stats.txerr_retry++;
1679		if (ts->ts_status & AR5K_TXERR_FIFO)
1680			ah->stats.txerr_fifo++;
1681	} else {
1682		info->flags |= IEEE80211_TX_STAT_ACK;
1683		info->status.ack_signal = ts->ts_rssi;
1684
1685		/* count the successful attempt as well */
1686		info->status.rates[ts->ts_final_idx].count++;
1687	}
1688
1689	/*
1690	* Remove MAC header padding before giving the frame
1691	* back to mac80211.
1692	*/
1693	ath5k_remove_padding(skb);
1694
1695	if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1696		ah->stats.antenna_tx[ts->ts_antenna]++;
1697	else
1698		ah->stats.antenna_tx[0]++; /* invalid */
1699
1700	trace_ath5k_tx_complete(ah, skb, txq, ts);
1701	ieee80211_tx_status(ah->hw, skb);
1702}
1703
1704static void
1705ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1706{
1707	struct ath5k_tx_status ts = {};
1708	struct ath5k_buf *bf, *bf0;
1709	struct ath5k_desc *ds;
1710	struct sk_buff *skb;
1711	int ret;
1712
1713	spin_lock(&txq->lock);
1714	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1715
1716		txq->txq_poll_mark = false;
1717
1718		/* skb might already have been processed last time. */
1719		if (bf->skb != NULL) {
1720			ds = bf->desc;
1721
1722			ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1723			if (unlikely(ret == -EINPROGRESS))
1724				break;
1725			else if (unlikely(ret)) {
1726				ATH5K_ERR(ah,
1727					"error %d while processing "
1728					"queue %u\n", ret, txq->qnum);
1729				break;
1730			}
1731
1732			skb = bf->skb;
1733			bf->skb = NULL;
1734
1735			dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1736					DMA_TO_DEVICE);
1737			ath5k_tx_frame_completed(ah, skb, txq, &ts, bf);
1738		}
1739
1740		/*
1741		 * It's possible that the hardware can say the buffer is
1742		 * completed when it hasn't yet loaded the ds_link from
1743		 * host memory and moved on.
1744		 * Always keep the last descriptor to avoid HW races...
1745		 */
1746		if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1747			spin_lock(&ah->txbuflock);
1748			list_move_tail(&bf->list, &ah->txbuf);
1749			ah->txbuf_len++;
1750			txq->txq_len--;
1751			spin_unlock(&ah->txbuflock);
1752		}
1753	}
1754	spin_unlock(&txq->lock);
1755	if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1756		ieee80211_wake_queue(ah->hw, txq->qnum);
1757}
1758
1759static void
1760ath5k_tasklet_tx(unsigned long data)
1761{
1762	int i;
1763	struct ath5k_hw *ah = (void *)data;
1764
1765	for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1766		if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1767			ath5k_tx_processq(ah, &ah->txqs[i]);
1768
1769	ah->tx_pending = false;
1770	ath5k_set_current_imask(ah);
1771}
1772
1773
1774/*****************\
1775* Beacon handling *
1776\*****************/
1777
1778/*
1779 * Setup the beacon frame for transmit.
1780 */
1781static int
1782ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1783{
1784	struct sk_buff *skb = bf->skb;
1785	struct	ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1786	struct ath5k_desc *ds;
1787	int ret = 0;
1788	u8 antenna;
1789	u32 flags;
1790	const int padsize = 0;
1791
1792	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1793			DMA_TO_DEVICE);
1794	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1795			"skbaddr %llx\n", skb, skb->data, skb->len,
1796			(unsigned long long)bf->skbaddr);
1797
1798	if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1799		ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1800		dev_kfree_skb_any(skb);
1801		bf->skb = NULL;
1802		return -EIO;
1803	}
1804
1805	ds = bf->desc;
1806	antenna = ah->ah_tx_ant;
1807
1808	flags = AR5K_TXDESC_NOACK;
1809	if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1810		ds->ds_link = bf->daddr;	/* self-linked */
1811		flags |= AR5K_TXDESC_VEOL;
1812	} else
1813		ds->ds_link = 0;
1814
1815	/*
1816	 * If we use multiple antennas on AP and use
1817	 * the Sectored AP scenario, switch antenna every
1818	 * 4 beacons to make sure everybody hears our AP.
1819	 * When a client tries to associate, hw will keep
1820	 * track of the tx antenna to be used for this client
1821	 * automatically, based on ACKed packets.
1822	 *
1823	 * Note: AP still listens and transmits RTS on the
1824	 * default antenna which is supposed to be an omni.
1825	 *
1826	 * Note2: On sectored scenarios it's possible to have
1827	 * multiple antennas (1 omni -- the default -- and 14
1828	 * sectors), so if we choose to actually support this
1829	 * mode, we need to allow the user to set how many antennas
1830	 * we have and tweak the code below to send beacons
1831	 * on all of them.
1832	 */
1833	if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1834		antenna = ah->bsent & 4 ? 2 : 1;
1835
1836
1837	/* FIXME: If we are in g mode and rate is a CCK rate
1838	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1839	 * from tx power (value is in dB units already) */
1840	ds->ds_data = bf->skbaddr;
1841	ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1842			ieee80211_get_hdrlen_from_skb(skb), padsize,
1843			AR5K_PKT_TYPE_BEACON,
1844			(ah->ah_txpower.txp_requested * 2),
1845			ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1846			1, AR5K_TXKEYIX_INVALID,
1847			antenna, flags, 0, 0);
1848	if (ret)
1849		goto err_unmap;
1850
1851	return 0;
1852err_unmap:
1853	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1854	return ret;
1855}
1856
1857/*
1858 * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
1859 * this is called only once at config_bss time, for AP we do it every
1860 * SWBA interrupt so that the TIM will reflect buffered frames.
1861 *
1862 * Called with the beacon lock.
1863 */
1864int
1865ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1866{
1867	int ret;
1868	struct ath5k_hw *ah = hw->priv;
1869	struct ath5k_vif *avf;
1870	struct sk_buff *skb;
1871
1872	if (WARN_ON(!vif)) {
1873		ret = -EINVAL;
1874		goto out;
1875	}
1876
1877	skb = ieee80211_beacon_get(hw, vif);
1878
1879	if (!skb) {
1880		ret = -ENOMEM;
1881		goto out;
1882	}
1883
1884	avf = (void *)vif->drv_priv;
1885	ath5k_txbuf_free_skb(ah, avf->bbuf);
1886	avf->bbuf->skb = skb;
1887	ret = ath5k_beacon_setup(ah, avf->bbuf);
1888out:
1889	return ret;
1890}
1891
1892/*
1893 * Transmit a beacon frame at SWBA.  Dynamic updates to the
1894 * frame contents are done as needed and the slot time is
1895 * also adjusted based on current state.
1896 *
1897 * This is called from software irq context (beacontq tasklets)
1898 * or user context from ath5k_beacon_config.
1899 */
1900static void
1901ath5k_beacon_send(struct ath5k_hw *ah)
1902{
1903	struct ieee80211_vif *vif;
1904	struct ath5k_vif *avf;
1905	struct ath5k_buf *bf;
1906	struct sk_buff *skb;
1907	int err;
1908
1909	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1910
1911	/*
1912	 * Check if the previous beacon has gone out.  If
1913	 * not, don't don't try to post another: skip this
1914	 * period and wait for the next.  Missed beacons
1915	 * indicate a problem and should not occur.  If we
1916	 * miss too many consecutive beacons reset the device.
1917	 */
1918	if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1919		ah->bmisscount++;
1920		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1921			"missed %u consecutive beacons\n", ah->bmisscount);
1922		if (ah->bmisscount > 10) {	/* NB: 10 is a guess */
1923			ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1924				"stuck beacon time (%u missed)\n",
1925				ah->bmisscount);
1926			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1927				  "stuck beacon, resetting\n");
1928			ieee80211_queue_work(ah->hw, &ah->reset_work);
1929		}
1930		return;
1931	}
1932	if (unlikely(ah->bmisscount != 0)) {
1933		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1934			"resume beacon xmit after %u misses\n",
1935			ah->bmisscount);
1936		ah->bmisscount = 0;
1937	}
1938
1939	if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
1940			ah->num_mesh_vifs > 1) ||
1941			ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1942		u64 tsf = ath5k_hw_get_tsf64(ah);
1943		u32 tsftu = TSF_TO_TU(tsf);
1944		int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1945		vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1946		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1947			"tsf %llx tsftu %x intval %u slot %u vif %p\n",
1948			(unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1949	} else /* only one interface */
1950		vif = ah->bslot[0];
1951
1952	if (!vif)
1953		return;
1954
1955	avf = (void *)vif->drv_priv;
1956	bf = avf->bbuf;
1957
1958	/*
1959	 * Stop any current dma and put the new frame on the queue.
1960	 * This should never fail since we check above that no frames
1961	 * are still pending on the queue.
1962	 */
1963	if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1964		ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1965		/* NB: hw still stops DMA, so proceed */
1966	}
1967
1968	/* refresh the beacon for AP or MESH mode */
1969	if (ah->opmode == NL80211_IFTYPE_AP ||
1970	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1971		err = ath5k_beacon_update(ah->hw, vif);
1972		if (err)
1973			return;
1974	}
1975
1976	if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
1977		     ah->opmode == NL80211_IFTYPE_MONITOR)) {
1978		ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
1979		return;
1980	}
1981
1982	trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
1983
1984	ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
1985	ath5k_hw_start_tx_dma(ah, ah->bhalq);
1986	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1987		ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
1988
1989	skb = ieee80211_get_buffered_bc(ah->hw, vif);
1990	while (skb) {
1991		ath5k_tx_queue(ah->hw, skb, ah->cabq, NULL);
1992
1993		if (ah->cabq->txq_len >= ah->cabq->txq_max)
1994			break;
1995
1996		skb = ieee80211_get_buffered_bc(ah->hw, vif);
1997	}
1998
1999	ah->bsent++;
2000}
2001
2002/**
2003 * ath5k_beacon_update_timers - update beacon timers
2004 *
2005 * @ah: struct ath5k_hw pointer we are operating on
2006 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2007 *          beacon timer update based on the current HW TSF.
2008 *
2009 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2010 * of a received beacon or the current local hardware TSF and write it to the
2011 * beacon timer registers.
2012 *
2013 * This is called in a variety of situations, e.g. when a beacon is received,
2014 * when a TSF update has been detected, but also when an new IBSS is created or
2015 * when we otherwise know we have to update the timers, but we keep it in this
2016 * function to have it all together in one place.
2017 */
2018void
2019ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
2020{
2021	u32 nexttbtt, intval, hw_tu, bc_tu;
2022	u64 hw_tsf;
2023
2024	intval = ah->bintval & AR5K_BEACON_PERIOD;
2025	if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
2026		+ ah->num_mesh_vifs > 1) {
2027		intval /= ATH_BCBUF;	/* staggered multi-bss beacons */
2028		if (intval < 15)
2029			ATH5K_WARN(ah, "intval %u is too low, min 15\n",
2030				   intval);
2031	}
2032	if (WARN_ON(!intval))
2033		return;
2034
2035	/* beacon TSF converted to TU */
2036	bc_tu = TSF_TO_TU(bc_tsf);
2037
2038	/* current TSF converted to TU */
2039	hw_tsf = ath5k_hw_get_tsf64(ah);
2040	hw_tu = TSF_TO_TU(hw_tsf);
2041
2042#define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
2043	/* We use FUDGE to make sure the next TBTT is ahead of the current TU.
2044	 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
2045	 * configuration we need to make sure it is bigger than that. */
2046
2047	if (bc_tsf == -1) {
2048		/*
2049		 * no beacons received, called internally.
2050		 * just need to refresh timers based on HW TSF.
2051		 */
2052		nexttbtt = roundup(hw_tu + FUDGE, intval);
2053	} else if (bc_tsf == 0) {
2054		/*
2055		 * no beacon received, probably called by ath5k_reset_tsf().
2056		 * reset TSF to start with 0.
2057		 */
2058		nexttbtt = intval;
2059		intval |= AR5K_BEACON_RESET_TSF;
2060	} else if (bc_tsf > hw_tsf) {
2061		/*
2062		 * beacon received, SW merge happened but HW TSF not yet updated.
2063		 * not possible to reconfigure timers yet, but next time we
2064		 * receive a beacon with the same BSSID, the hardware will
2065		 * automatically update the TSF and then we need to reconfigure
2066		 * the timers.
2067		 */
2068		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2069			"need to wait for HW TSF sync\n");
2070		return;
2071	} else {
2072		/*
2073		 * most important case for beacon synchronization between STA.
2074		 *
2075		 * beacon received and HW TSF has been already updated by HW.
2076		 * update next TBTT based on the TSF of the beacon, but make
2077		 * sure it is ahead of our local TSF timer.
2078		 */
2079		nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2080	}
2081#undef FUDGE
2082
2083	ah->nexttbtt = nexttbtt;
2084
2085	intval |= AR5K_BEACON_ENA;
2086	ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2087
2088	/*
2089	 * debugging output last in order to preserve the time critical aspect
2090	 * of this function
2091	 */
2092	if (bc_tsf == -1)
2093		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2094			"reconfigured timers based on HW TSF\n");
2095	else if (bc_tsf == 0)
2096		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2097			"reset HW TSF and timers\n");
2098	else
2099		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2100			"updated timers based on beacon TSF\n");
2101
2102	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2103			  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2104			  (unsigned long long) bc_tsf,
2105			  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2106	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2107		intval & AR5K_BEACON_PERIOD,
2108		intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2109		intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2110}
2111
2112/**
2113 * ath5k_beacon_config - Configure the beacon queues and interrupts
2114 *
2115 * @ah: struct ath5k_hw pointer we are operating on
2116 *
2117 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2118 * interrupts to detect TSF updates only.
2119 */
2120void
2121ath5k_beacon_config(struct ath5k_hw *ah)
2122{
2123	spin_lock_bh(&ah->block);
2124	ah->bmisscount = 0;
2125	ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2126
2127	if (ah->enable_beacon) {
2128		/*
2129		 * In IBSS mode we use a self-linked tx descriptor and let the
2130		 * hardware send the beacons automatically. We have to load it
2131		 * only once here.
2132		 * We use the SWBA interrupt only to keep track of the beacon
2133		 * timers in order to detect automatic TSF updates.
2134		 */
2135		ath5k_beaconq_config(ah);
2136
2137		ah->imask |= AR5K_INT_SWBA;
2138
2139		if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2140			if (ath5k_hw_hasveol(ah))
2141				ath5k_beacon_send(ah);
2142		} else
2143			ath5k_beacon_update_timers(ah, -1);
2144	} else {
2145		ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2146	}
2147
2148	ath5k_hw_set_imr(ah, ah->imask);
2149	mmiowb();
2150	spin_unlock_bh(&ah->block);
2151}
2152
2153static void ath5k_tasklet_beacon(unsigned long data)
2154{
2155	struct ath5k_hw *ah = (struct ath5k_hw *) data;
2156
2157	/*
2158	 * Software beacon alert--time to send a beacon.
2159	 *
2160	 * In IBSS mode we use this interrupt just to
2161	 * keep track of the next TBTT (target beacon
2162	 * transmission time) in order to detect whether
2163	 * automatic TSF updates happened.
2164	 */
2165	if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2166		/* XXX: only if VEOL supported */
2167		u64 tsf = ath5k_hw_get_tsf64(ah);
2168		ah->nexttbtt += ah->bintval;
2169		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2170				"SWBA nexttbtt: %x hw_tu: %x "
2171				"TSF: %llx\n",
2172				ah->nexttbtt,
2173				TSF_TO_TU(tsf),
2174				(unsigned long long) tsf);
2175	} else {
2176		spin_lock(&ah->block);
2177		ath5k_beacon_send(ah);
2178		spin_unlock(&ah->block);
2179	}
2180}
2181
2182
2183/********************\
2184* Interrupt handling *
2185\********************/
2186
2187static void
2188ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2189{
2190	if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2191	   !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2192	   !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2193
2194		/* Run ANI only when calibration is not active */
2195
2196		ah->ah_cal_next_ani = jiffies +
2197			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2198		tasklet_schedule(&ah->ani_tasklet);
2199
2200	} else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2201		!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2202		!(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2203
2204		/* Run calibration only when another calibration
2205		 * is not running.
2206		 *
2207		 * Note: This is for both full/short calibration,
2208		 * if it's time for a full one, ath5k_calibrate_work will deal
2209		 * with it. */
2210
2211		ah->ah_cal_next_short = jiffies +
2212			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2213		ieee80211_queue_work(ah->hw, &ah->calib_work);
2214	}
2215	/* we could use SWI to generate enough interrupts to meet our
2216	 * calibration interval requirements, if necessary:
2217	 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2218}
2219
2220static void
2221ath5k_schedule_rx(struct ath5k_hw *ah)
2222{
2223	ah->rx_pending = true;
2224	tasklet_schedule(&ah->rxtq);
2225}
2226
2227static void
2228ath5k_schedule_tx(struct ath5k_hw *ah)
2229{
2230	ah->tx_pending = true;
2231	tasklet_schedule(&ah->txtq);
2232}
2233
2234static irqreturn_t
2235ath5k_intr(int irq, void *dev_id)
2236{
2237	struct ath5k_hw *ah = dev_id;
2238	enum ath5k_int status;
2239	unsigned int counter = 1000;
2240
2241
2242	/*
2243	 * If hw is not ready (or detached) and we get an
2244	 * interrupt, or if we have no interrupts pending
2245	 * (that means it's not for us) skip it.
2246	 *
2247	 * NOTE: Group 0/1 PCI interface registers are not
2248	 * supported on WiSOCs, so we can't check for pending
2249	 * interrupts (ISR belongs to another register group
2250	 * so we are ok).
2251	 */
2252	if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2253			((ath5k_get_bus_type(ah) != ATH_AHB) &&
2254			!ath5k_hw_is_intr_pending(ah))))
2255		return IRQ_NONE;
2256
2257	/** Main loop **/
2258	do {
2259		ath5k_hw_get_isr(ah, &status);	/* NB: clears IRQ too */
2260
2261		ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2262				status, ah->imask);
2263
2264		/*
2265		 * Fatal hw error -> Log and reset
2266		 *
2267		 * Fatal errors are unrecoverable so we have to
2268		 * reset the card. These errors include bus and
2269		 * dma errors.
2270		 */
2271		if (unlikely(status & AR5K_INT_FATAL)) {
2272
2273			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2274				  "fatal int, resetting\n");
2275			ieee80211_queue_work(ah->hw, &ah->reset_work);
2276
2277		/*
2278		 * RX Overrun -> Count and reset if needed
2279		 *
2280		 * Receive buffers are full. Either the bus is busy or
2281		 * the CPU is not fast enough to process all received
2282		 * frames.
2283		 */
2284		} else if (unlikely(status & AR5K_INT_RXORN)) {
2285
2286			/*
2287			 * Older chipsets need a reset to come out of this
2288			 * condition, but we treat it as RX for newer chips.
2289			 * We don't know exactly which versions need a reset
2290			 * this guess is copied from the HAL.
2291			 */
2292			ah->stats.rxorn_intr++;
2293
2294			if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2295				ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2296					  "rx overrun, resetting\n");
2297				ieee80211_queue_work(ah->hw, &ah->reset_work);
2298			} else
2299				ath5k_schedule_rx(ah);
2300
2301		} else {
2302
2303			/* Software Beacon Alert -> Schedule beacon tasklet */
2304			if (status & AR5K_INT_SWBA)
2305				tasklet_hi_schedule(&ah->beacontq);
2306
2307			/*
2308			 * No more RX descriptors -> Just count
2309			 *
2310			 * NB: the hardware should re-read the link when
2311			 *     RXE bit is written, but it doesn't work at
2312			 *     least on older hardware revs.
2313			 */
2314			if (status & AR5K_INT_RXEOL)
2315				ah->stats.rxeol_intr++;
2316
2317
2318			/* TX Underrun -> Bump tx trigger level */
2319			if (status & AR5K_INT_TXURN)
2320				ath5k_hw_update_tx_triglevel(ah, true);
2321
2322			/* RX -> Schedule rx tasklet */
2323			if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2324				ath5k_schedule_rx(ah);
2325
2326			/* TX -> Schedule tx tasklet */
2327			if (status & (AR5K_INT_TXOK
2328					| AR5K_INT_TXDESC
2329					| AR5K_INT_TXERR
2330					| AR5K_INT_TXEOL))
2331				ath5k_schedule_tx(ah);
2332
2333			/* Missed beacon -> TODO
2334			if (status & AR5K_INT_BMISS)
2335			*/
2336
2337			/* MIB event -> Update counters and notify ANI */
2338			if (status & AR5K_INT_MIB) {
2339				ah->stats.mib_intr++;
2340				ath5k_hw_update_mib_counters(ah);
2341				ath5k_ani_mib_intr(ah);
2342			}
2343
2344			/* GPIO -> Notify RFKill layer */
2345			if (status & AR5K_INT_GPIO)
2346				tasklet_schedule(&ah->rf_kill.toggleq);
2347
2348		}
2349
2350		if (ath5k_get_bus_type(ah) == ATH_AHB)
2351			break;
2352
2353	} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2354
2355	/*
2356	 * Until we handle rx/tx interrupts mask them on IMR
2357	 *
2358	 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2359	 * and unset after we 've handled the interrupts.
2360	 */
2361	if (ah->rx_pending || ah->tx_pending)
2362		ath5k_set_current_imask(ah);
2363
2364	if (unlikely(!counter))
2365		ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2366
2367	/* Fire up calibration poll */
2368	ath5k_intr_calibration_poll(ah);
2369
2370	return IRQ_HANDLED;
2371}
2372
2373/*
2374 * Periodically recalibrate the PHY to account
2375 * for temperature/environment changes.
2376 */
2377static void
2378ath5k_calibrate_work(struct work_struct *work)
2379{
2380	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2381		calib_work);
2382
2383	/* Should we run a full calibration ? */
2384	if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2385
2386		ah->ah_cal_next_full = jiffies +
2387			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2388		ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2389
2390		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2391				"running full calibration\n");
2392
2393		if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2394			/*
2395			 * Rfgain is out of bounds, reset the chip
2396			 * to load new gain values.
2397			 */
2398			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2399					"got new rfgain, resetting\n");
2400			ieee80211_queue_work(ah->hw, &ah->reset_work);
2401		}
2402	} else
2403		ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2404
2405
2406	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2407		ieee80211_frequency_to_channel(ah->curchan->center_freq),
2408		ah->curchan->hw_value);
2409
2410	if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2411		ATH5K_ERR(ah, "calibration of channel %u failed\n",
2412			ieee80211_frequency_to_channel(
2413				ah->curchan->center_freq));
2414
2415	/* Clear calibration flags */
2416	if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2417		ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2418	else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2419		ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
2420}
2421
2422
2423static void
2424ath5k_tasklet_ani(unsigned long data)
2425{
2426	struct ath5k_hw *ah = (void *)data;
2427
2428	ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2429	ath5k_ani_calibration(ah);
2430	ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2431}
2432
2433
2434static void
2435ath5k_tx_complete_poll_work(struct work_struct *work)
2436{
2437	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2438			tx_complete_work.work);
2439	struct ath5k_txq *txq;
2440	int i;
2441	bool needreset = false;
2442
2443	if (!test_bit(ATH_STAT_STARTED, ah->status))
2444		return;
2445
2446	mutex_lock(&ah->lock);
2447
2448	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2449		if (ah->txqs[i].setup) {
2450			txq = &ah->txqs[i];
2451			spin_lock_bh(&txq->lock);
2452			if (txq->txq_len > 1) {
2453				if (txq->txq_poll_mark) {
2454					ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2455						  "TX queue stuck %d\n",
2456						  txq->qnum);
2457					needreset = true;
2458					txq->txq_stuck++;
2459					spin_unlock_bh(&txq->lock);
2460					break;
2461				} else {
2462					txq->txq_poll_mark = true;
2463				}
2464			}
2465			spin_unlock_bh(&txq->lock);
2466		}
2467	}
2468
2469	if (needreset) {
2470		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2471			  "TX queues stuck, resetting\n");
2472		ath5k_reset(ah, NULL, true);
2473	}
2474
2475	mutex_unlock(&ah->lock);
2476
2477	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2478		msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2479}
2480
2481
2482/*************************\
2483* Initialization routines *
2484\*************************/
2485
2486static const struct ieee80211_iface_limit if_limits[] = {
2487	{ .max = 2048,	.types = BIT(NL80211_IFTYPE_STATION) },
2488	{ .max = 4,	.types =
2489#ifdef CONFIG_MAC80211_MESH
2490				 BIT(NL80211_IFTYPE_MESH_POINT) |
2491#endif
2492				 BIT(NL80211_IFTYPE_AP) },
2493};
2494
2495static const struct ieee80211_iface_combination if_comb = {
2496	.limits = if_limits,
2497	.n_limits = ARRAY_SIZE(if_limits),
2498	.max_interfaces = 2048,
2499	.num_different_channels = 1,
2500};
2501
2502int
2503ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2504{
2505	struct ieee80211_hw *hw = ah->hw;
2506	struct ath_common *common;
2507	int ret;
2508	int csz;
2509
2510	/* Initialize driver private data */
2511	SET_IEEE80211_DEV(hw, ah->dev);
2512	hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2513			IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2514			IEEE80211_HW_SIGNAL_DBM |
2515			IEEE80211_HW_MFP_CAPABLE |
2516			IEEE80211_HW_REPORTS_TX_ACK_STATUS |
2517			IEEE80211_HW_SUPPORTS_RC_TABLE;
2518
2519	hw->wiphy->interface_modes =
2520		BIT(NL80211_IFTYPE_AP) |
2521		BIT(NL80211_IFTYPE_STATION) |
2522		BIT(NL80211_IFTYPE_ADHOC) |
2523		BIT(NL80211_IFTYPE_MESH_POINT);
2524
2525	hw->wiphy->iface_combinations = &if_comb;
2526	hw->wiphy->n_iface_combinations = 1;
2527
2528	/* SW support for IBSS_RSN is provided by mac80211 */
2529	hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2530
2531	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
2532
2533	/* both antennas can be configured as RX or TX */
2534	hw->wiphy->available_antennas_tx = 0x3;
2535	hw->wiphy->available_antennas_rx = 0x3;
2536
2537	hw->extra_tx_headroom = 2;
2538
 
 
2539	/*
2540	 * Mark the device as detached to avoid processing
2541	 * interrupts until setup is complete.
2542	 */
2543	__set_bit(ATH_STAT_INVALID, ah->status);
2544
2545	ah->opmode = NL80211_IFTYPE_STATION;
2546	ah->bintval = 1000;
2547	mutex_init(&ah->lock);
2548	spin_lock_init(&ah->rxbuflock);
2549	spin_lock_init(&ah->txbuflock);
2550	spin_lock_init(&ah->block);
2551	spin_lock_init(&ah->irqlock);
2552
2553	/* Setup interrupt handler */
2554	ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2555	if (ret) {
2556		ATH5K_ERR(ah, "request_irq failed\n");
2557		goto err;
2558	}
2559
2560	common = ath5k_hw_common(ah);
2561	common->ops = &ath5k_common_ops;
2562	common->bus_ops = bus_ops;
2563	common->ah = ah;
2564	common->hw = hw;
2565	common->priv = ah;
2566	common->clockrate = 40;
2567
2568	/*
2569	 * Cache line size is used to size and align various
2570	 * structures used to communicate with the hardware.
2571	 */
2572	ath5k_read_cachesize(common, &csz);
2573	common->cachelsz = csz << 2; /* convert to bytes */
2574
2575	spin_lock_init(&common->cc_lock);
2576
2577	/* Initialize device */
2578	ret = ath5k_hw_init(ah);
2579	if (ret)
2580		goto err_irq;
2581
2582	/* Set up multi-rate retry capabilities */
2583	if (ah->ah_capabilities.cap_has_mrr_support) {
2584		hw->max_rates = 4;
2585		hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2586					 AR5K_INIT_RETRY_LONG);
2587	}
2588
2589	hw->vif_data_size = sizeof(struct ath5k_vif);
2590
2591	/* Finish private driver data initialization */
2592	ret = ath5k_init(hw);
2593	if (ret)
2594		goto err_ah;
2595
2596	ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2597			ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2598					ah->ah_mac_srev,
2599					ah->ah_phy_revision);
2600
2601	if (!ah->ah_single_chip) {
2602		/* Single chip radio (!RF5111) */
2603		if (ah->ah_radio_5ghz_revision &&
2604			!ah->ah_radio_2ghz_revision) {
2605			/* No 5GHz support -> report 2GHz radio */
2606			if (!test_bit(AR5K_MODE_11A,
2607				ah->ah_capabilities.cap_mode)) {
2608				ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2609					ath5k_chip_name(AR5K_VERSION_RAD,
2610						ah->ah_radio_5ghz_revision),
2611						ah->ah_radio_5ghz_revision);
2612			/* No 2GHz support (5110 and some
2613			 * 5GHz only cards) -> report 5GHz radio */
2614			} else if (!test_bit(AR5K_MODE_11B,
2615				ah->ah_capabilities.cap_mode)) {
2616				ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2617					ath5k_chip_name(AR5K_VERSION_RAD,
2618						ah->ah_radio_5ghz_revision),
2619						ah->ah_radio_5ghz_revision);
2620			/* Multiband radio */
2621			} else {
2622				ATH5K_INFO(ah, "RF%s multiband radio found"
2623					" (0x%x)\n",
2624					ath5k_chip_name(AR5K_VERSION_RAD,
2625						ah->ah_radio_5ghz_revision),
2626						ah->ah_radio_5ghz_revision);
2627			}
2628		}
2629		/* Multi chip radio (RF5111 - RF2111) ->
2630		 * report both 2GHz/5GHz radios */
2631		else if (ah->ah_radio_5ghz_revision &&
2632				ah->ah_radio_2ghz_revision) {
2633			ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2634				ath5k_chip_name(AR5K_VERSION_RAD,
2635					ah->ah_radio_5ghz_revision),
2636					ah->ah_radio_5ghz_revision);
2637			ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2638				ath5k_chip_name(AR5K_VERSION_RAD,
2639					ah->ah_radio_2ghz_revision),
2640					ah->ah_radio_2ghz_revision);
2641		}
2642	}
2643
2644	ath5k_debug_init_device(ah);
2645
2646	/* ready to process interrupts */
2647	__clear_bit(ATH_STAT_INVALID, ah->status);
2648
2649	return 0;
2650err_ah:
2651	ath5k_hw_deinit(ah);
2652err_irq:
2653	free_irq(ah->irq, ah);
2654err:
2655	return ret;
2656}
2657
2658static int
2659ath5k_stop_locked(struct ath5k_hw *ah)
2660{
2661
2662	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2663			test_bit(ATH_STAT_INVALID, ah->status));
2664
2665	/*
2666	 * Shutdown the hardware and driver:
2667	 *    stop output from above
2668	 *    disable interrupts
2669	 *    turn off timers
2670	 *    turn off the radio
2671	 *    clear transmit machinery
2672	 *    clear receive machinery
2673	 *    drain and release tx queues
2674	 *    reclaim beacon resources
2675	 *    power down hardware
2676	 *
2677	 * Note that some of this work is not possible if the
2678	 * hardware is gone (invalid).
2679	 */
2680	ieee80211_stop_queues(ah->hw);
2681
2682	if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2683		ath5k_led_off(ah);
2684		ath5k_hw_set_imr(ah, 0);
2685		synchronize_irq(ah->irq);
2686		ath5k_rx_stop(ah);
2687		ath5k_hw_dma_stop(ah);
2688		ath5k_drain_tx_buffs(ah);
2689		ath5k_hw_phy_disable(ah);
2690	}
2691
2692	return 0;
2693}
2694
2695int ath5k_start(struct ieee80211_hw *hw)
2696{
2697	struct ath5k_hw *ah = hw->priv;
2698	struct ath_common *common = ath5k_hw_common(ah);
2699	int ret, i;
2700
2701	mutex_lock(&ah->lock);
2702
2703	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2704
2705	/*
2706	 * Stop anything previously setup.  This is safe
2707	 * no matter this is the first time through or not.
2708	 */
2709	ath5k_stop_locked(ah);
2710
2711	/*
2712	 * The basic interface to setting the hardware in a good
2713	 * state is ``reset''.  On return the hardware is known to
2714	 * be powered up and with interrupts disabled.  This must
2715	 * be followed by initialization of the appropriate bits
2716	 * and then setup of the interrupt mask.
2717	 */
2718	ah->curchan = ah->hw->conf.chandef.chan;
2719	ah->imask = AR5K_INT_RXOK
2720		| AR5K_INT_RXERR
2721		| AR5K_INT_RXEOL
2722		| AR5K_INT_RXORN
2723		| AR5K_INT_TXDESC
2724		| AR5K_INT_TXEOL
2725		| AR5K_INT_FATAL
2726		| AR5K_INT_GLOBAL
2727		| AR5K_INT_MIB;
2728
2729	ret = ath5k_reset(ah, NULL, false);
2730	if (ret)
2731		goto done;
2732
2733	if (!ath5k_modparam_no_hw_rfkill_switch)
2734		ath5k_rfkill_hw_start(ah);
2735
2736	/*
2737	 * Reset the key cache since some parts do not reset the
2738	 * contents on initial power up or resume from suspend.
2739	 */
2740	for (i = 0; i < common->keymax; i++)
2741		ath_hw_keyreset(common, (u16) i);
2742
2743	/* Use higher rates for acks instead of base
2744	 * rate */
2745	ah->ah_ack_bitrate_high = true;
2746
2747	for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2748		ah->bslot[i] = NULL;
2749
2750	ret = 0;
2751done:
2752	mmiowb();
2753	mutex_unlock(&ah->lock);
2754
2755	set_bit(ATH_STAT_STARTED, ah->status);
2756	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2757			msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2758
2759	return ret;
2760}
2761
2762static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2763{
2764	ah->rx_pending = false;
2765	ah->tx_pending = false;
2766	tasklet_kill(&ah->rxtq);
2767	tasklet_kill(&ah->txtq);
2768	tasklet_kill(&ah->beacontq);
2769	tasklet_kill(&ah->ani_tasklet);
2770}
2771
2772/*
2773 * Stop the device, grabbing the top-level lock to protect
2774 * against concurrent entry through ath5k_init (which can happen
2775 * if another thread does a system call and the thread doing the
2776 * stop is preempted).
2777 */
2778void ath5k_stop(struct ieee80211_hw *hw)
2779{
2780	struct ath5k_hw *ah = hw->priv;
2781	int ret;
2782
2783	mutex_lock(&ah->lock);
2784	ret = ath5k_stop_locked(ah);
2785	if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2786		/*
2787		 * Don't set the card in full sleep mode!
2788		 *
2789		 * a) When the device is in this state it must be carefully
2790		 * woken up or references to registers in the PCI clock
2791		 * domain may freeze the bus (and system).  This varies
2792		 * by chip and is mostly an issue with newer parts
2793		 * (madwifi sources mentioned srev >= 0x78) that go to
2794		 * sleep more quickly.
2795		 *
2796		 * b) On older chips full sleep results a weird behaviour
2797		 * during wakeup. I tested various cards with srev < 0x78
2798		 * and they don't wake up after module reload, a second
2799		 * module reload is needed to bring the card up again.
2800		 *
2801		 * Until we figure out what's going on don't enable
2802		 * full chip reset on any chip (this is what Legacy HAL
2803		 * and Sam's HAL do anyway). Instead Perform a full reset
2804		 * on the device (same as initial state after attach) and
2805		 * leave it idle (keep MAC/BB on warm reset) */
2806		ret = ath5k_hw_on_hold(ah);
2807
2808		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2809				"putting device to sleep\n");
2810	}
2811
2812	mmiowb();
2813	mutex_unlock(&ah->lock);
2814
2815	ath5k_stop_tasklets(ah);
2816
2817	clear_bit(ATH_STAT_STARTED, ah->status);
2818	cancel_delayed_work_sync(&ah->tx_complete_work);
2819
2820	if (!ath5k_modparam_no_hw_rfkill_switch)
2821		ath5k_rfkill_hw_stop(ah);
2822}
2823
2824/*
2825 * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2826 * and change to the given channel.
2827 *
2828 * This should be called with ah->lock.
2829 */
2830static int
2831ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2832							bool skip_pcu)
2833{
2834	struct ath_common *common = ath5k_hw_common(ah);
2835	int ret, ani_mode;
2836	bool fast;
2837
2838	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2839
 
 
2840	ath5k_hw_set_imr(ah, 0);
2841	synchronize_irq(ah->irq);
2842	ath5k_stop_tasklets(ah);
2843
2844	/* Save ani mode and disable ANI during
2845	 * reset. If we don't we might get false
2846	 * PHY error interrupts. */
2847	ani_mode = ah->ani_state.ani_mode;
2848	ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2849
2850	/* We are going to empty hw queues
2851	 * so we should also free any remaining
2852	 * tx buffers */
2853	ath5k_drain_tx_buffs(ah);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2854	if (chan)
2855		ah->curchan = chan;
2856
2857	fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0;
2858
2859	ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2860	if (ret) {
2861		ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2862		goto err;
2863	}
2864
2865	ret = ath5k_rx_start(ah);
2866	if (ret) {
2867		ATH5K_ERR(ah, "can't start recv logic\n");
2868		goto err;
2869	}
2870
2871	ath5k_ani_init(ah, ani_mode);
2872
2873	/*
2874	 * Set calibration intervals
2875	 *
2876	 * Note: We don't need to run calibration imediately
2877	 * since some initial calibration is done on reset
2878	 * even for fast channel switching. Also on scanning
2879	 * this will get set again and again and it won't get
2880	 * executed unless we connect somewhere and spend some
2881	 * time on the channel (that's what calibration needs
2882	 * anyway to be accurate).
2883	 */
2884	ah->ah_cal_next_full = jiffies +
2885		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2886	ah->ah_cal_next_ani = jiffies +
2887		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2888	ah->ah_cal_next_short = jiffies +
2889		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2890
2891	ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
2892
2893	/* clear survey data and cycle counters */
2894	memset(&ah->survey, 0, sizeof(ah->survey));
2895	spin_lock_bh(&common->cc_lock);
2896	ath_hw_cycle_counters_update(common);
2897	memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2898	memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2899	spin_unlock_bh(&common->cc_lock);
2900
2901	/*
2902	 * Change channels and update the h/w rate map if we're switching;
2903	 * e.g. 11a to 11b/g.
2904	 *
2905	 * We may be doing a reset in response to an ioctl that changes the
2906	 * channel so update any state that might change as a result.
2907	 *
2908	 * XXX needed?
2909	 */
2910/*	ath5k_chan_change(ah, c); */
2911
 
 
2912	ath5k_beacon_config(ah);
2913	/* intrs are enabled by ath5k_beacon_config */
2914
2915	ieee80211_wake_queues(ah->hw);
2916
2917	return 0;
2918err:
2919	return ret;
2920}
2921
2922static void ath5k_reset_work(struct work_struct *work)
2923{
2924	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2925		reset_work);
2926
2927	mutex_lock(&ah->lock);
2928	ath5k_reset(ah, NULL, true);
2929	mutex_unlock(&ah->lock);
2930}
2931
2932static int
2933ath5k_init(struct ieee80211_hw *hw)
2934{
2935
2936	struct ath5k_hw *ah = hw->priv;
2937	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2938	struct ath5k_txq *txq;
2939	u8 mac[ETH_ALEN] = {};
2940	int ret;
2941
2942
2943	/*
2944	 * Collect the channel list.  The 802.11 layer
2945	 * is responsible for filtering this list based
2946	 * on settings like the phy mode and regulatory
2947	 * domain restrictions.
2948	 */
2949	ret = ath5k_setup_bands(hw);
2950	if (ret) {
2951		ATH5K_ERR(ah, "can't get channels\n");
2952		goto err;
2953	}
2954
2955	/*
2956	 * Allocate tx+rx descriptors and populate the lists.
2957	 */
2958	ret = ath5k_desc_alloc(ah);
2959	if (ret) {
2960		ATH5K_ERR(ah, "can't allocate descriptors\n");
2961		goto err;
2962	}
2963
2964	/*
2965	 * Allocate hardware transmit queues: one queue for
2966	 * beacon frames and one data queue for each QoS
2967	 * priority.  Note that hw functions handle resetting
2968	 * these queues at the needed time.
2969	 */
2970	ret = ath5k_beaconq_setup(ah);
2971	if (ret < 0) {
2972		ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
2973		goto err_desc;
2974	}
2975	ah->bhalq = ret;
2976	ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
2977	if (IS_ERR(ah->cabq)) {
2978		ATH5K_ERR(ah, "can't setup cab queue\n");
2979		ret = PTR_ERR(ah->cabq);
2980		goto err_bhal;
2981	}
2982
2983	/* 5211 and 5212 usually support 10 queues but we better rely on the
2984	 * capability information */
2985	if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
2986		/* This order matches mac80211's queue priority, so we can
2987		* directly use the mac80211 queue number without any mapping */
2988		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
2989		if (IS_ERR(txq)) {
2990			ATH5K_ERR(ah, "can't setup xmit queue\n");
2991			ret = PTR_ERR(txq);
2992			goto err_queues;
2993		}
2994		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
2995		if (IS_ERR(txq)) {
2996			ATH5K_ERR(ah, "can't setup xmit queue\n");
2997			ret = PTR_ERR(txq);
2998			goto err_queues;
2999		}
3000		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3001		if (IS_ERR(txq)) {
3002			ATH5K_ERR(ah, "can't setup xmit queue\n");
3003			ret = PTR_ERR(txq);
3004			goto err_queues;
3005		}
3006		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
3007		if (IS_ERR(txq)) {
3008			ATH5K_ERR(ah, "can't setup xmit queue\n");
3009			ret = PTR_ERR(txq);
3010			goto err_queues;
3011		}
3012		hw->queues = 4;
3013	} else {
3014		/* older hardware (5210) can only support one data queue */
3015		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3016		if (IS_ERR(txq)) {
3017			ATH5K_ERR(ah, "can't setup xmit queue\n");
3018			ret = PTR_ERR(txq);
3019			goto err_queues;
3020		}
3021		hw->queues = 1;
3022	}
3023
3024	tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
3025	tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
3026	tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
3027	tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
3028
3029	INIT_WORK(&ah->reset_work, ath5k_reset_work);
3030	INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
3031	INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
3032
3033	ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
3034	if (ret) {
3035		ATH5K_ERR(ah, "unable to read address from EEPROM\n");
3036		goto err_queues;
3037	}
3038
3039	SET_IEEE80211_PERM_ADDR(hw, mac);
3040	/* All MAC address bits matter for ACKs */
3041	ath5k_update_bssid_mask_and_opmode(ah, NULL);
3042
3043	regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
3044	ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
3045	if (ret) {
3046		ATH5K_ERR(ah, "can't initialize regulatory system\n");
3047		goto err_queues;
3048	}
3049
3050	ret = ieee80211_register_hw(hw);
3051	if (ret) {
3052		ATH5K_ERR(ah, "can't register ieee80211 hw\n");
3053		goto err_queues;
3054	}
3055
3056	if (!ath_is_world_regd(regulatory))
3057		regulatory_hint(hw->wiphy, regulatory->alpha2);
3058
3059	ath5k_init_leds(ah);
3060
3061	ath5k_sysfs_register(ah);
3062
3063	return 0;
3064err_queues:
3065	ath5k_txq_release(ah);
3066err_bhal:
3067	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3068err_desc:
3069	ath5k_desc_free(ah);
3070err:
3071	return ret;
3072}
3073
3074void
3075ath5k_deinit_ah(struct ath5k_hw *ah)
3076{
3077	struct ieee80211_hw *hw = ah->hw;
3078
3079	/*
3080	 * NB: the order of these is important:
3081	 * o call the 802.11 layer before detaching ath5k_hw to
3082	 *   ensure callbacks into the driver to delete global
3083	 *   key cache entries can be handled
3084	 * o reclaim the tx queue data structures after calling
3085	 *   the 802.11 layer as we'll get called back to reclaim
3086	 *   node state and potentially want to use them
3087	 * o to cleanup the tx queues the hal is called, so detach
3088	 *   it last
3089	 * XXX: ??? detach ath5k_hw ???
3090	 * Other than that, it's straightforward...
3091	 */
3092	ieee80211_unregister_hw(hw);
3093	ath5k_desc_free(ah);
3094	ath5k_txq_release(ah);
3095	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3096	ath5k_unregister_leds(ah);
3097
3098	ath5k_sysfs_unregister(ah);
3099	/*
3100	 * NB: can't reclaim these until after ieee80211_ifdetach
3101	 * returns because we'll get called back to reclaim node
3102	 * state and potentially want to use them.
3103	 */
3104	ath5k_hw_deinit(ah);
3105	free_irq(ah->irq, ah);
3106}
3107
3108bool
3109ath5k_any_vif_assoc(struct ath5k_hw *ah)
3110{
3111	struct ath5k_vif_iter_data iter_data;
3112	iter_data.hw_macaddr = NULL;
3113	iter_data.any_assoc = false;
3114	iter_data.need_set_hw_addr = false;
3115	iter_data.found_active = true;
3116
3117	ieee80211_iterate_active_interfaces_atomic(
3118		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
3119		ath5k_vif_iter, &iter_data);
3120	return iter_data.any_assoc;
3121}
3122
3123void
3124ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3125{
3126	struct ath5k_hw *ah = hw->priv;
3127	u32 rfilt;
3128	rfilt = ath5k_hw_get_rx_filter(ah);
3129	if (enable)
3130		rfilt |= AR5K_RX_FILTER_BEACON;
3131	else
3132		rfilt &= ~AR5K_RX_FILTER_BEACON;
3133	ath5k_hw_set_rx_filter(ah, rfilt);
3134	ah->filter_flags = rfilt;
3135}
3136
3137void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3138		   const char *fmt, ...)
3139{
3140	struct va_format vaf;
3141	va_list args;
3142
3143	va_start(args, fmt);
3144
3145	vaf.fmt = fmt;
3146	vaf.va = &args;
3147
3148	if (ah && ah->hw)
3149		printk("%s" pr_fmt("%s: %pV"),
3150		       level, wiphy_name(ah->hw->wiphy), &vaf);
3151	else
3152		printk("%s" pr_fmt("%pV"), level, &vaf);
3153
3154	va_end(args);
3155}