Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * drivers/net/phy/micrel.c
   4 *
   5 * Driver for Micrel PHYs
   6 *
   7 * Author: David J. Choi
   8 *
   9 * Copyright (c) 2010-2013 Micrel, Inc.
  10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org>
 
 
 
 
  11 *
  12 * Support : Micrel Phys:
  13 *		Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814
  14 *		100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
  15 *			   ksz8021, ksz8031, ksz8051,
  16 *			   ksz8081, ksz8091,
  17 *			   ksz8061,
  18 *		Switch : ksz8873, ksz886x
  19 *			 ksz9477, lan8804
  20 */
  21
  22#include <linux/bitfield.h>
  23#include <linux/ethtool_netlink.h>
  24#include <linux/kernel.h>
  25#include <linux/module.h>
  26#include <linux/phy.h>
  27#include <linux/micrel_phy.h>
  28#include <linux/of.h>
  29#include <linux/clk.h>
  30#include <linux/delay.h>
  31#include <linux/ptp_clock_kernel.h>
  32#include <linux/ptp_clock.h>
  33#include <linux/ptp_classify.h>
  34#include <linux/net_tstamp.h>
  35#include <linux/gpio/consumer.h>
  36
  37/* Operation Mode Strap Override */
  38#define MII_KSZPHY_OMSO				0x16
  39#define KSZPHY_OMSO_FACTORY_TEST		BIT(15)
  40#define KSZPHY_OMSO_B_CAST_OFF			BIT(9)
  41#define KSZPHY_OMSO_NAND_TREE_ON		BIT(5)
  42#define KSZPHY_OMSO_RMII_OVERRIDE		BIT(1)
  43#define KSZPHY_OMSO_MII_OVERRIDE		BIT(0)
  44
  45/* general Interrupt control/status reg in vendor specific block. */
  46#define MII_KSZPHY_INTCS			0x1B
  47#define KSZPHY_INTCS_JABBER			BIT(15)
  48#define KSZPHY_INTCS_RECEIVE_ERR		BIT(14)
  49#define KSZPHY_INTCS_PAGE_RECEIVE		BIT(13)
  50#define KSZPHY_INTCS_PARELLEL			BIT(12)
  51#define KSZPHY_INTCS_LINK_PARTNER_ACK		BIT(11)
  52#define KSZPHY_INTCS_LINK_DOWN			BIT(10)
  53#define KSZPHY_INTCS_REMOTE_FAULT		BIT(9)
  54#define KSZPHY_INTCS_LINK_UP			BIT(8)
  55#define KSZPHY_INTCS_ALL			(KSZPHY_INTCS_LINK_UP |\
  56						KSZPHY_INTCS_LINK_DOWN)
  57#define KSZPHY_INTCS_LINK_DOWN_STATUS		BIT(2)
  58#define KSZPHY_INTCS_LINK_UP_STATUS		BIT(0)
  59#define KSZPHY_INTCS_STATUS			(KSZPHY_INTCS_LINK_DOWN_STATUS |\
  60						 KSZPHY_INTCS_LINK_UP_STATUS)
  61
  62/* LinkMD Control/Status */
  63#define KSZ8081_LMD				0x1d
  64#define KSZ8081_LMD_ENABLE_TEST			BIT(15)
  65#define KSZ8081_LMD_STAT_NORMAL			0
  66#define KSZ8081_LMD_STAT_OPEN			1
  67#define KSZ8081_LMD_STAT_SHORT			2
  68#define KSZ8081_LMD_STAT_FAIL			3
  69#define KSZ8081_LMD_STAT_MASK			GENMASK(14, 13)
  70/* Short cable (<10 meter) has been detected by LinkMD */
  71#define KSZ8081_LMD_SHORT_INDICATOR		BIT(12)
  72#define KSZ8081_LMD_DELTA_TIME_MASK		GENMASK(8, 0)
  73
  74#define KSZ9x31_LMD				0x12
  75#define KSZ9x31_LMD_VCT_EN			BIT(15)
  76#define KSZ9x31_LMD_VCT_DIS_TX			BIT(14)
  77#define KSZ9x31_LMD_VCT_PAIR(n)			(((n) & 0x3) << 12)
  78#define KSZ9x31_LMD_VCT_SEL_RESULT		0
  79#define KSZ9x31_LMD_VCT_SEL_THRES_HI		BIT(10)
  80#define KSZ9x31_LMD_VCT_SEL_THRES_LO		BIT(11)
  81#define KSZ9x31_LMD_VCT_SEL_MASK		GENMASK(11, 10)
  82#define KSZ9x31_LMD_VCT_ST_NORMAL		0
  83#define KSZ9x31_LMD_VCT_ST_OPEN			1
  84#define KSZ9x31_LMD_VCT_ST_SHORT		2
  85#define KSZ9x31_LMD_VCT_ST_FAIL			3
  86#define KSZ9x31_LMD_VCT_ST_MASK			GENMASK(9, 8)
  87#define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID	BIT(7)
  88#define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG	BIT(6)
  89#define KSZ9x31_LMD_VCT_DATA_MASK100		BIT(5)
  90#define KSZ9x31_LMD_VCT_DATA_NLP_FLP		BIT(4)
  91#define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK	GENMASK(3, 2)
  92#define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK	GENMASK(1, 0)
  93#define KSZ9x31_LMD_VCT_DATA_MASK		GENMASK(7, 0)
  94
  95#define KSZPHY_WIRE_PAIR_MASK			0x3
  96
  97#define LAN8814_CABLE_DIAG			0x12
  98#define LAN8814_CABLE_DIAG_STAT_MASK		GENMASK(9, 8)
  99#define LAN8814_CABLE_DIAG_VCT_DATA_MASK	GENMASK(7, 0)
 100#define LAN8814_PAIR_BIT_SHIFT			12
 101
 102#define LAN8814_WIRE_PAIR_MASK			0xF
 103
 104/* Lan8814 general Interrupt control/status reg in GPHY specific block. */
 105#define LAN8814_INTC				0x18
 106#define LAN8814_INTS				0x1B
 107
 108#define LAN8814_INT_LINK_DOWN			BIT(2)
 109#define LAN8814_INT_LINK_UP			BIT(0)
 110#define LAN8814_INT_LINK			(LAN8814_INT_LINK_UP |\
 111						 LAN8814_INT_LINK_DOWN)
 112
 113#define LAN8814_INTR_CTRL_REG			0x34
 114#define LAN8814_INTR_CTRL_REG_POLARITY		BIT(1)
 115#define LAN8814_INTR_CTRL_REG_INTR_ENABLE	BIT(0)
 116
 117/* Represents 1ppm adjustment in 2^32 format with
 118 * each nsec contains 4 clock cycles.
 119 * The value is calculated as following: (1/1000000)/((2^-32)/4)
 120 */
 121#define LAN8814_1PPM_FORMAT			17179
 122
 123#define PTP_RX_VERSION				0x0248
 124#define PTP_TX_VERSION				0x0288
 125#define PTP_MAX_VERSION(x)			(((x) & GENMASK(7, 0)) << 8)
 126#define PTP_MIN_VERSION(x)			((x) & GENMASK(7, 0))
 127
 128#define PTP_RX_MOD				0x024F
 129#define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
 130#define PTP_RX_TIMESTAMP_EN			0x024D
 131#define PTP_TX_TIMESTAMP_EN			0x028D
 132
 133#define PTP_TIMESTAMP_EN_SYNC_			BIT(0)
 134#define PTP_TIMESTAMP_EN_DREQ_			BIT(1)
 135#define PTP_TIMESTAMP_EN_PDREQ_			BIT(2)
 136#define PTP_TIMESTAMP_EN_PDRES_			BIT(3)
 137
 138#define PTP_TX_PARSE_L2_ADDR_EN			0x0284
 139#define PTP_RX_PARSE_L2_ADDR_EN			0x0244
 140
 141#define PTP_TX_PARSE_IP_ADDR_EN			0x0285
 142#define PTP_RX_PARSE_IP_ADDR_EN			0x0245
 143#define LTC_HARD_RESET				0x023F
 144#define LTC_HARD_RESET_				BIT(0)
 145
 146#define TSU_HARD_RESET				0x02C1
 147#define TSU_HARD_RESET_				BIT(0)
 148
 149#define PTP_CMD_CTL				0x0200
 150#define PTP_CMD_CTL_PTP_DISABLE_		BIT(0)
 151#define PTP_CMD_CTL_PTP_ENABLE_			BIT(1)
 152#define PTP_CMD_CTL_PTP_CLOCK_READ_		BIT(3)
 153#define PTP_CMD_CTL_PTP_CLOCK_LOAD_		BIT(4)
 154#define PTP_CMD_CTL_PTP_LTC_STEP_SEC_		BIT(5)
 155#define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_		BIT(6)
 156
 157#define PTP_CLOCK_SET_SEC_MID			0x0206
 158#define PTP_CLOCK_SET_SEC_LO			0x0207
 159#define PTP_CLOCK_SET_NS_HI			0x0208
 160#define PTP_CLOCK_SET_NS_LO			0x0209
 161
 162#define PTP_CLOCK_READ_SEC_MID			0x022A
 163#define PTP_CLOCK_READ_SEC_LO			0x022B
 164#define PTP_CLOCK_READ_NS_HI			0x022C
 165#define PTP_CLOCK_READ_NS_LO			0x022D
 166
 167#define PTP_OPERATING_MODE			0x0241
 168#define PTP_OPERATING_MODE_STANDALONE_		BIT(0)
 169
 170#define PTP_TX_MOD				0x028F
 171#define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_	BIT(12)
 172#define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
 173
 174#define PTP_RX_PARSE_CONFIG			0x0242
 175#define PTP_RX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
 176#define PTP_RX_PARSE_CONFIG_IPV4_EN_		BIT(1)
 177#define PTP_RX_PARSE_CONFIG_IPV6_EN_		BIT(2)
 178
 179#define PTP_TX_PARSE_CONFIG			0x0282
 180#define PTP_TX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
 181#define PTP_TX_PARSE_CONFIG_IPV4_EN_		BIT(1)
 182#define PTP_TX_PARSE_CONFIG_IPV6_EN_		BIT(2)
 183
 184#define PTP_CLOCK_RATE_ADJ_HI			0x020C
 185#define PTP_CLOCK_RATE_ADJ_LO			0x020D
 186#define PTP_CLOCK_RATE_ADJ_DIR_			BIT(15)
 187
 188#define PTP_LTC_STEP_ADJ_HI			0x0212
 189#define PTP_LTC_STEP_ADJ_LO			0x0213
 190#define PTP_LTC_STEP_ADJ_DIR_			BIT(15)
 191
 192#define LAN8814_INTR_STS_REG			0x0033
 193#define LAN8814_INTR_STS_REG_1588_TSU0_		BIT(0)
 194#define LAN8814_INTR_STS_REG_1588_TSU1_		BIT(1)
 195#define LAN8814_INTR_STS_REG_1588_TSU2_		BIT(2)
 196#define LAN8814_INTR_STS_REG_1588_TSU3_		BIT(3)
 197
 198#define PTP_CAP_INFO				0x022A
 199#define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val)	(((reg_val) & 0x0f00) >> 8)
 200#define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val)	((reg_val) & 0x000f)
 201
 202#define PTP_TX_EGRESS_SEC_HI			0x0296
 203#define PTP_TX_EGRESS_SEC_LO			0x0297
 204#define PTP_TX_EGRESS_NS_HI			0x0294
 205#define PTP_TX_EGRESS_NS_LO			0x0295
 206#define PTP_TX_MSG_HEADER2			0x0299
 207
 208#define PTP_RX_INGRESS_SEC_HI			0x0256
 209#define PTP_RX_INGRESS_SEC_LO			0x0257
 210#define PTP_RX_INGRESS_NS_HI			0x0254
 211#define PTP_RX_INGRESS_NS_LO			0x0255
 212#define PTP_RX_MSG_HEADER2			0x0259
 213
 214#define PTP_TSU_INT_EN				0x0200
 215#define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_	BIT(3)
 216#define PTP_TSU_INT_EN_PTP_TX_TS_EN_		BIT(2)
 217#define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_	BIT(1)
 218#define PTP_TSU_INT_EN_PTP_RX_TS_EN_		BIT(0)
 219
 220#define PTP_TSU_INT_STS				0x0201
 221#define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_	BIT(3)
 222#define PTP_TSU_INT_STS_PTP_TX_TS_EN_		BIT(2)
 223#define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_	BIT(1)
 224#define PTP_TSU_INT_STS_PTP_RX_TS_EN_		BIT(0)
 225
 226#define LAN8814_LED_CTRL_1			0x0
 227#define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_	BIT(6)
 228
 229/* PHY Control 1 */
 230#define MII_KSZPHY_CTRL_1			0x1e
 231#define KSZ8081_CTRL1_MDIX_STAT			BIT(4)
 232
 233/* PHY Control 2 / PHY Control (if no PHY Control 1) */
 234#define MII_KSZPHY_CTRL_2			0x1f
 235#define MII_KSZPHY_CTRL				MII_KSZPHY_CTRL_2
 236/* bitmap of PHY register to set interrupt mode */
 237#define KSZ8081_CTRL2_HP_MDIX			BIT(15)
 238#define KSZ8081_CTRL2_MDI_MDI_X_SELECT		BIT(14)
 239#define KSZ8081_CTRL2_DISABLE_AUTO_MDIX		BIT(13)
 240#define KSZ8081_CTRL2_FORCE_LINK		BIT(11)
 241#define KSZ8081_CTRL2_POWER_SAVING		BIT(10)
 242#define KSZPHY_CTRL_INT_ACTIVE_HIGH		BIT(9)
 243#define KSZPHY_RMII_REF_CLK_SEL			BIT(7)
 244
 245/* Write/read to/from extended registers */
 246#define MII_KSZPHY_EXTREG			0x0b
 247#define KSZPHY_EXTREG_WRITE			0x8000
 248
 249#define MII_KSZPHY_EXTREG_WRITE			0x0c
 250#define MII_KSZPHY_EXTREG_READ			0x0d
 251
 252/* Extended registers */
 253#define MII_KSZPHY_CLK_CONTROL_PAD_SKEW		0x104
 254#define MII_KSZPHY_RX_DATA_PAD_SKEW		0x105
 255#define MII_KSZPHY_TX_DATA_PAD_SKEW		0x106
 256
 257#define PS_TO_REG				200
 258#define FIFO_SIZE				8
 259
 260/* Delay used to get the second part from the LTC */
 261#define LAN8841_GET_SEC_LTC_DELAY		(500 * NSEC_PER_MSEC)
 
 262
 263struct kszphy_hw_stat {
 264	const char *string;
 265	u8 reg;
 266	u8 bits;
 267};
 268
 269static struct kszphy_hw_stat kszphy_hw_stats[] = {
 270	{ "phy_receive_errors", 21, 16},
 271	{ "phy_idle_errors", 10, 8 },
 272};
 273
 274struct kszphy_type {
 275	u32 led_mode_reg;
 276	u16 interrupt_level_mask;
 277	u16 cable_diag_reg;
 278	unsigned long pair_mask;
 279	u16 disable_dll_tx_bit;
 280	u16 disable_dll_rx_bit;
 281	u16 disable_dll_mask;
 282	bool has_broadcast_disable;
 283	bool has_nand_tree_disable;
 284	bool has_rmii_ref_clk_sel;
 285};
 286
 287/* Shared structure between the PHYs of the same package. */
 288struct lan8814_shared_priv {
 289	struct phy_device *phydev;
 290	struct ptp_clock *ptp_clock;
 291	struct ptp_clock_info ptp_clock_info;
 292
 293	/* Reference counter to how many ports in the package are enabling the
 294	 * timestamping
 295	 */
 296	u8 ref;
 297
 298	/* Lock for ptp_clock and ref */
 299	struct mutex shared_lock;
 300};
 301
 302struct lan8814_ptp_rx_ts {
 303	struct list_head list;
 304	u32 seconds;
 305	u32 nsec;
 306	u16 seq_id;
 307};
 308
 309struct kszphy_ptp_priv {
 310	struct mii_timestamper mii_ts;
 311	struct phy_device *phydev;
 312
 313	struct sk_buff_head tx_queue;
 314	struct sk_buff_head rx_queue;
 315
 316	struct list_head rx_ts_list;
 317	/* Lock for Rx ts fifo */
 318	spinlock_t rx_ts_lock;
 319
 320	int hwts_tx_type;
 321	enum hwtstamp_rx_filters rx_filter;
 322	int layer;
 323	int version;
 324
 325	struct ptp_clock *ptp_clock;
 326	struct ptp_clock_info ptp_clock_info;
 327	/* Lock for ptp_clock */
 328	struct mutex ptp_lock;
 329	struct ptp_pin_desc *pin_config;
 330
 331	s64 seconds;
 332	/* Lock for accessing seconds */
 333	spinlock_t seconds_lock;
 334};
 335
 336struct kszphy_priv {
 337	struct kszphy_ptp_priv ptp_priv;
 338	const struct kszphy_type *type;
 339	int led_mode;
 340	u16 vct_ctrl1000;
 341	bool rmii_ref_clk_sel;
 342	bool rmii_ref_clk_sel_val;
 343	u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
 344};
 345
 346static const struct kszphy_type lan8814_type = {
 347	.led_mode_reg		= ~LAN8814_LED_CTRL_1,
 348	.cable_diag_reg		= LAN8814_CABLE_DIAG,
 349	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
 350};
 351
 352static const struct kszphy_type ksz886x_type = {
 353	.cable_diag_reg		= KSZ8081_LMD,
 354	.pair_mask		= KSZPHY_WIRE_PAIR_MASK,
 355};
 356
 357static const struct kszphy_type ksz8021_type = {
 358	.led_mode_reg		= MII_KSZPHY_CTRL_2,
 359	.has_broadcast_disable	= true,
 360	.has_nand_tree_disable	= true,
 361	.has_rmii_ref_clk_sel	= true,
 362};
 363
 364static const struct kszphy_type ksz8041_type = {
 365	.led_mode_reg		= MII_KSZPHY_CTRL_1,
 366};
 367
 368static const struct kszphy_type ksz8051_type = {
 369	.led_mode_reg		= MII_KSZPHY_CTRL_2,
 370	.has_nand_tree_disable	= true,
 371};
 372
 373static const struct kszphy_type ksz8081_type = {
 374	.led_mode_reg		= MII_KSZPHY_CTRL_2,
 375	.has_broadcast_disable	= true,
 376	.has_nand_tree_disable	= true,
 377	.has_rmii_ref_clk_sel	= true,
 378};
 379
 380static const struct kszphy_type ks8737_type = {
 381	.interrupt_level_mask	= BIT(14),
 382};
 383
 384static const struct kszphy_type ksz9021_type = {
 385	.interrupt_level_mask	= BIT(14),
 386};
 387
 388static const struct kszphy_type ksz9131_type = {
 389	.interrupt_level_mask	= BIT(14),
 390	.disable_dll_tx_bit	= BIT(12),
 391	.disable_dll_rx_bit	= BIT(12),
 392	.disable_dll_mask	= BIT_MASK(12),
 393};
 394
 395static const struct kszphy_type lan8841_type = {
 396	.disable_dll_tx_bit	= BIT(14),
 397	.disable_dll_rx_bit	= BIT(14),
 398	.disable_dll_mask	= BIT_MASK(14),
 399	.cable_diag_reg		= LAN8814_CABLE_DIAG,
 400	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
 401};
 402
 403static int kszphy_extended_write(struct phy_device *phydev,
 404				u32 regnum, u16 val)
 405{
 406	phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
 407	return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
 408}
 409
 410static int kszphy_extended_read(struct phy_device *phydev,
 411				u32 regnum)
 412{
 413	phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
 414	return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
 415}
 416
 417static int kszphy_ack_interrupt(struct phy_device *phydev)
 418{
 419	/* bit[7..0] int status, which is a read and clear register. */
 420	int rc;
 421
 422	rc = phy_read(phydev, MII_KSZPHY_INTCS);
 423
 424	return (rc < 0) ? rc : 0;
 425}
 426
 427static int kszphy_config_intr(struct phy_device *phydev)
 428{
 429	const struct kszphy_type *type = phydev->drv->driver_data;
 430	int temp, err;
 431	u16 mask;
 
 
 432
 433	if (type && type->interrupt_level_mask)
 434		mask = type->interrupt_level_mask;
 435	else
 436		mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
 437
 438	/* set the interrupt pin active low */
 439	temp = phy_read(phydev, MII_KSZPHY_CTRL);
 440	if (temp < 0)
 441		return temp;
 442	temp &= ~mask;
 443	phy_write(phydev, MII_KSZPHY_CTRL, temp);
 444
 445	/* enable / disable interrupts */
 446	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
 447		err = kszphy_ack_interrupt(phydev);
 448		if (err)
 449			return err;
 450
 451		err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL);
 452	} else {
 453		err = phy_write(phydev, MII_KSZPHY_INTCS, 0);
 454		if (err)
 455			return err;
 456
 457		err = kszphy_ack_interrupt(phydev);
 458	}
 459
 460	return err;
 461}
 462
 463static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
 464{
 465	int irq_status;
 466
 467	irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
 468	if (irq_status < 0) {
 469		phy_error(phydev);
 470		return IRQ_NONE;
 471	}
 472
 473	if (!(irq_status & KSZPHY_INTCS_STATUS))
 474		return IRQ_NONE;
 475
 476	phy_trigger_machine(phydev);
 477
 478	return IRQ_HANDLED;
 
 
 
 
 
 479}
 480
 481static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
 482{
 483	int ctrl;
 484
 485	ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
 486	if (ctrl < 0)
 487		return ctrl;
 488
 489	if (val)
 490		ctrl |= KSZPHY_RMII_REF_CLK_SEL;
 491	else
 492		ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
 493
 494	return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
 495}
 496
 497static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
 
 498{
 499	int rc, temp, shift;
 500
 501	switch (reg) {
 502	case MII_KSZPHY_CTRL_1:
 503		shift = 14;
 504		break;
 505	case MII_KSZPHY_CTRL_2:
 506		shift = 4;
 507		break;
 508	default:
 509		return -EINVAL;
 510	}
 511
 512	temp = phy_read(phydev, reg);
 513	if (temp < 0) {
 514		rc = temp;
 515		goto out;
 516	}
 517
 518	temp &= ~(3 << shift);
 519	temp |= val << shift;
 520	rc = phy_write(phydev, reg, temp);
 521out:
 522	if (rc < 0)
 523		phydev_err(phydev, "failed to set led mode\n");
 524
 525	return rc;
 526}
 527
 528/* Disable PHY address 0 as the broadcast address, so that it can be used as a
 529 * unique (non-broadcast) address on a shared bus.
 530 */
 531static int kszphy_broadcast_disable(struct phy_device *phydev)
 532{
 533	int ret;
 534
 535	ret = phy_read(phydev, MII_KSZPHY_OMSO);
 536	if (ret < 0)
 537		goto out;
 538
 539	ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
 540out:
 541	if (ret)
 542		phydev_err(phydev, "failed to disable broadcast address\n");
 543
 544	return ret;
 545}
 546
 547static int kszphy_nand_tree_disable(struct phy_device *phydev)
 548{
 549	int ret;
 550
 551	ret = phy_read(phydev, MII_KSZPHY_OMSO);
 552	if (ret < 0)
 553		goto out;
 554
 555	if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
 556		return 0;
 557
 558	ret = phy_write(phydev, MII_KSZPHY_OMSO,
 559			ret & ~KSZPHY_OMSO_NAND_TREE_ON);
 560out:
 561	if (ret)
 562		phydev_err(phydev, "failed to disable NAND tree mode\n");
 563
 564	return ret;
 565}
 566
 567/* Some config bits need to be set again on resume, handle them here. */
 568static int kszphy_config_reset(struct phy_device *phydev)
 569{
 570	struct kszphy_priv *priv = phydev->priv;
 571	int ret;
 572
 573	if (priv->rmii_ref_clk_sel) {
 574		ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
 575		if (ret) {
 576			phydev_err(phydev,
 577				   "failed to set rmii reference clock\n");
 578			return ret;
 579		}
 580	}
 581
 582	if (priv->type && priv->led_mode >= 0)
 583		kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
 584
 585	return 0;
 586}
 587
 588static int kszphy_config_init(struct phy_device *phydev)
 589{
 590	struct kszphy_priv *priv = phydev->priv;
 591	const struct kszphy_type *type;
 592
 593	if (!priv)
 594		return 0;
 595
 596	type = priv->type;
 597
 598	if (type && type->has_broadcast_disable)
 599		kszphy_broadcast_disable(phydev);
 600
 601	if (type && type->has_nand_tree_disable)
 602		kszphy_nand_tree_disable(phydev);
 603
 604	return kszphy_config_reset(phydev);
 605}
 606
 607static int ksz8041_fiber_mode(struct phy_device *phydev)
 608{
 609	struct device_node *of_node = phydev->mdio.dev.of_node;
 610
 611	return of_property_read_bool(of_node, "micrel,fiber-mode");
 612}
 613
 614static int ksz8041_config_init(struct phy_device *phydev)
 615{
 616	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
 617
 618	/* Limit supported and advertised modes in fiber mode */
 619	if (ksz8041_fiber_mode(phydev)) {
 620		phydev->dev_flags |= MICREL_PHY_FXEN;
 621		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
 622		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
 623
 624		linkmode_and(phydev->supported, phydev->supported, mask);
 625		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
 626				 phydev->supported);
 627		linkmode_and(phydev->advertising, phydev->advertising, mask);
 628		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
 629				 phydev->advertising);
 630		phydev->autoneg = AUTONEG_DISABLE;
 631	}
 632
 633	return kszphy_config_init(phydev);
 634}
 635
 636static int ksz8041_config_aneg(struct phy_device *phydev)
 637{
 638	/* Skip auto-negotiation in fiber mode */
 639	if (phydev->dev_flags & MICREL_PHY_FXEN) {
 640		phydev->speed = SPEED_100;
 641		return 0;
 642	}
 643
 644	return genphy_config_aneg(phydev);
 645}
 646
 647static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
 648					    const bool ksz_8051)
 649{
 650	int ret;
 651
 652	if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK))
 653		return 0;
 654
 655	ret = phy_read(phydev, MII_BMSR);
 656	if (ret < 0)
 657		return ret;
 658
 659	/* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
 660	 * exact PHY ID. However, they can be told apart by the extended
 661	 * capability registers presence. The KSZ8051 PHY has them while
 662	 * the switch does not.
 663	 */
 664	ret &= BMSR_ERCAP;
 665	if (ksz_8051)
 666		return ret;
 667	else
 668		return !ret;
 669}
 670
 671static int ksz8051_match_phy_device(struct phy_device *phydev)
 672{
 673	return ksz8051_ksz8795_match_phy_device(phydev, true);
 674}
 675
 676static int ksz8081_config_init(struct phy_device *phydev)
 677{
 678	/* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
 679	 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
 680	 * pull-down is missing, the factory test mode should be cleared by
 681	 * manually writing a 0.
 682	 */
 683	phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
 684
 685	return kszphy_config_init(phydev);
 686}
 687
 688static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
 689{
 690	u16 val;
 691
 692	switch (ctrl) {
 693	case ETH_TP_MDI:
 694		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
 695		break;
 696	case ETH_TP_MDI_X:
 697		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
 698			KSZ8081_CTRL2_MDI_MDI_X_SELECT;
 699		break;
 700	case ETH_TP_MDI_AUTO:
 701		val = 0;
 702		break;
 703	default:
 704		return 0;
 705	}
 706
 707	return phy_modify(phydev, MII_KSZPHY_CTRL_2,
 708			  KSZ8081_CTRL2_HP_MDIX |
 709			  KSZ8081_CTRL2_MDI_MDI_X_SELECT |
 710			  KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
 711			  KSZ8081_CTRL2_HP_MDIX | val);
 712}
 713
 714static int ksz8081_config_aneg(struct phy_device *phydev)
 715{
 716	int ret;
 717
 718	ret = genphy_config_aneg(phydev);
 719	if (ret)
 720		return ret;
 721
 722	/* The MDI-X configuration is automatically changed by the PHY after
 723	 * switching from autoneg off to on. So, take MDI-X configuration under
 724	 * own control and set it after autoneg configuration was done.
 725	 */
 726	return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
 727}
 728
 729static int ksz8081_mdix_update(struct phy_device *phydev)
 730{
 731	int ret;
 732
 733	ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
 734	if (ret < 0)
 735		return ret;
 736
 737	if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
 738		if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
 739			phydev->mdix_ctrl = ETH_TP_MDI_X;
 740		else
 741			phydev->mdix_ctrl = ETH_TP_MDI;
 742	} else {
 743		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
 744	}
 745
 746	ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
 747	if (ret < 0)
 748		return ret;
 749
 750	if (ret & KSZ8081_CTRL1_MDIX_STAT)
 751		phydev->mdix = ETH_TP_MDI;
 752	else
 753		phydev->mdix = ETH_TP_MDI_X;
 754
 755	return 0;
 756}
 757
 758static int ksz8081_read_status(struct phy_device *phydev)
 759{
 760	int ret;
 
 761
 762	ret = ksz8081_mdix_update(phydev);
 763	if (ret < 0)
 764		return ret;
 765
 766	return genphy_read_status(phydev);
 
 
 767}
 768
 769static int ksz8061_config_init(struct phy_device *phydev)
 770{
 771	int ret;
 772
 773	ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
 774	if (ret)
 775		return ret;
 776
 777	return kszphy_config_init(phydev);
 778}
 779
 780static int ksz8795_match_phy_device(struct phy_device *phydev)
 781{
 782	return ksz8051_ksz8795_match_phy_device(phydev, false);
 783}
 784
 785static int ksz9021_load_values_from_of(struct phy_device *phydev,
 786				       const struct device_node *of_node,
 787				       u16 reg,
 788				       const char *field1, const char *field2,
 789				       const char *field3, const char *field4)
 790{
 791	int val1 = -1;
 792	int val2 = -2;
 793	int val3 = -3;
 794	int val4 = -4;
 795	int newval;
 796	int matches = 0;
 797
 798	if (!of_property_read_u32(of_node, field1, &val1))
 799		matches++;
 800
 801	if (!of_property_read_u32(of_node, field2, &val2))
 802		matches++;
 803
 804	if (!of_property_read_u32(of_node, field3, &val3))
 805		matches++;
 806
 807	if (!of_property_read_u32(of_node, field4, &val4))
 808		matches++;
 809
 810	if (!matches)
 811		return 0;
 812
 813	if (matches < 4)
 814		newval = kszphy_extended_read(phydev, reg);
 815	else
 816		newval = 0;
 817
 818	if (val1 != -1)
 819		newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
 820
 821	if (val2 != -2)
 822		newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
 823
 824	if (val3 != -3)
 825		newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
 826
 827	if (val4 != -4)
 828		newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
 829
 830	return kszphy_extended_write(phydev, reg, newval);
 831}
 832
 833static int ksz9021_config_init(struct phy_device *phydev)
 834{
 835	const struct device_node *of_node;
 836	const struct device *dev_walker;
 837
 838	/* The Micrel driver has a deprecated option to place phy OF
 839	 * properties in the MAC node. Walk up the tree of devices to
 840	 * find a device with an OF node.
 841	 */
 842	dev_walker = &phydev->mdio.dev;
 843	do {
 844		of_node = dev_walker->of_node;
 845		dev_walker = dev_walker->parent;
 846
 847	} while (!of_node && dev_walker);
 
 848
 849	if (of_node) {
 850		ksz9021_load_values_from_of(phydev, of_node,
 851				    MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
 852				    "txen-skew-ps", "txc-skew-ps",
 853				    "rxdv-skew-ps", "rxc-skew-ps");
 854		ksz9021_load_values_from_of(phydev, of_node,
 855				    MII_KSZPHY_RX_DATA_PAD_SKEW,
 856				    "rxd0-skew-ps", "rxd1-skew-ps",
 857				    "rxd2-skew-ps", "rxd3-skew-ps");
 858		ksz9021_load_values_from_of(phydev, of_node,
 859				    MII_KSZPHY_TX_DATA_PAD_SKEW,
 860				    "txd0-skew-ps", "txd1-skew-ps",
 861				    "txd2-skew-ps", "txd3-skew-ps");
 862	}
 863	return 0;
 864}
 865
 866#define KSZ9031_PS_TO_REG		60
 867
 868/* Extended registers */
 869/* MMD Address 0x0 */
 870#define MII_KSZ9031RN_FLP_BURST_TX_LO	3
 871#define MII_KSZ9031RN_FLP_BURST_TX_HI	4
 872
 873/* MMD Address 0x2 */
 874#define MII_KSZ9031RN_CONTROL_PAD_SKEW	4
 875#define MII_KSZ9031RN_RX_CTL_M		GENMASK(7, 4)
 876#define MII_KSZ9031RN_TX_CTL_M		GENMASK(3, 0)
 877
 878#define MII_KSZ9031RN_RX_DATA_PAD_SKEW	5
 879#define MII_KSZ9031RN_RXD3		GENMASK(15, 12)
 880#define MII_KSZ9031RN_RXD2		GENMASK(11, 8)
 881#define MII_KSZ9031RN_RXD1		GENMASK(7, 4)
 882#define MII_KSZ9031RN_RXD0		GENMASK(3, 0)
 883
 884#define MII_KSZ9031RN_TX_DATA_PAD_SKEW	6
 885#define MII_KSZ9031RN_TXD3		GENMASK(15, 12)
 886#define MII_KSZ9031RN_TXD2		GENMASK(11, 8)
 887#define MII_KSZ9031RN_TXD1		GENMASK(7, 4)
 888#define MII_KSZ9031RN_TXD0		GENMASK(3, 0)
 889
 890#define MII_KSZ9031RN_CLK_PAD_SKEW	8
 891#define MII_KSZ9031RN_GTX_CLK		GENMASK(9, 5)
 892#define MII_KSZ9031RN_RX_CLK		GENMASK(4, 0)
 893
 894/* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
 895 * provide different RGMII options we need to configure delay offset
 896 * for each pad relative to build in delay.
 897 */
 898/* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
 899 * 1.80ns
 900 */
 901#define RX_ID				0x7
 902#define RX_CLK_ID			0x19
 903
 904/* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
 905 * internal 1.2ns delay.
 906 */
 907#define RX_ND				0xc
 908#define RX_CLK_ND			0x0
 909
 910/* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
 911#define TX_ID				0x0
 912#define TX_CLK_ID			0x1f
 913
 914/* set tx and tx_clk to "No delay adjustment" to keep 0ns
 915 * dealy
 916 */
 917#define TX_ND				0x7
 918#define TX_CLK_ND			0xf
 919
 920/* MMD Address 0x1C */
 921#define MII_KSZ9031RN_EDPD		0x23
 922#define MII_KSZ9031RN_EDPD_ENABLE	BIT(0)
 923
 924static int ksz9031_of_load_skew_values(struct phy_device *phydev,
 925				       const struct device_node *of_node,
 926				       u16 reg, size_t field_sz,
 927				       const char *field[], u8 numfields,
 928				       bool *update)
 929{
 930	int val[4] = {-1, -2, -3, -4};
 931	int matches = 0;
 932	u16 mask;
 933	u16 maxval;
 934	u16 newval;
 935	int i;
 936
 937	for (i = 0; i < numfields; i++)
 938		if (!of_property_read_u32(of_node, field[i], val + i))
 939			matches++;
 940
 941	if (!matches)
 942		return 0;
 943
 944	*update |= true;
 945
 946	if (matches < numfields)
 947		newval = phy_read_mmd(phydev, 2, reg);
 948	else
 949		newval = 0;
 950
 951	maxval = (field_sz == 4) ? 0xf : 0x1f;
 952	for (i = 0; i < numfields; i++)
 953		if (val[i] != -(i + 1)) {
 954			mask = 0xffff;
 955			mask ^= maxval << (field_sz * i);
 956			newval = (newval & mask) |
 957				(((val[i] / KSZ9031_PS_TO_REG) & maxval)
 958					<< (field_sz * i));
 959		}
 960
 961	return phy_write_mmd(phydev, 2, reg, newval);
 962}
 963
 964/* Center KSZ9031RNX FLP timing at 16ms. */
 965static int ksz9031_center_flp_timing(struct phy_device *phydev)
 966{
 967	int result;
 968
 969	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
 970			       0x0006);
 971	if (result)
 972		return result;
 973
 974	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
 975			       0x1A80);
 976	if (result)
 977		return result;
 978
 979	return genphy_restart_aneg(phydev);
 980}
 981
 982/* Enable energy-detect power-down mode */
 983static int ksz9031_enable_edpd(struct phy_device *phydev)
 984{
 985	int reg;
 986
 987	reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
 988	if (reg < 0)
 989		return reg;
 990	return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
 991			     reg | MII_KSZ9031RN_EDPD_ENABLE);
 992}
 993
 994static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
 995{
 996	u16 rx, tx, rx_clk, tx_clk;
 997	int ret;
 998
 999	switch (phydev->interface) {
1000	case PHY_INTERFACE_MODE_RGMII:
1001		tx = TX_ND;
1002		tx_clk = TX_CLK_ND;
1003		rx = RX_ND;
1004		rx_clk = RX_CLK_ND;
1005		break;
1006	case PHY_INTERFACE_MODE_RGMII_ID:
1007		tx = TX_ID;
1008		tx_clk = TX_CLK_ID;
1009		rx = RX_ID;
1010		rx_clk = RX_CLK_ID;
1011		break;
1012	case PHY_INTERFACE_MODE_RGMII_RXID:
1013		tx = TX_ND;
1014		tx_clk = TX_CLK_ND;
1015		rx = RX_ID;
1016		rx_clk = RX_CLK_ID;
1017		break;
1018	case PHY_INTERFACE_MODE_RGMII_TXID:
1019		tx = TX_ID;
1020		tx_clk = TX_CLK_ID;
1021		rx = RX_ND;
1022		rx_clk = RX_CLK_ND;
1023		break;
1024	default:
1025		return 0;
1026	}
1027
1028	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
1029			    FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
1030			    FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
1031	if (ret < 0)
1032		return ret;
1033
1034	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
1035			    FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
1036			    FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
1037			    FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
1038			    FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
1039	if (ret < 0)
1040		return ret;
1041
1042	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
1043			    FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
1044			    FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
1045			    FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
1046			    FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
1047	if (ret < 0)
1048		return ret;
1049
1050	return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
1051			     FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
1052			     FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
1053}
1054
1055static int ksz9031_config_init(struct phy_device *phydev)
1056{
1057	const struct device_node *of_node;
1058	static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
1059	static const char *rx_data_skews[4] = {
1060		"rxd0-skew-ps", "rxd1-skew-ps",
1061		"rxd2-skew-ps", "rxd3-skew-ps"
1062	};
1063	static const char *tx_data_skews[4] = {
1064		"txd0-skew-ps", "txd1-skew-ps",
1065		"txd2-skew-ps", "txd3-skew-ps"
1066	};
1067	static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
1068	const struct device *dev_walker;
1069	int result;
1070
1071	result = ksz9031_enable_edpd(phydev);
1072	if (result < 0)
1073		return result;
1074
1075	/* The Micrel driver has a deprecated option to place phy OF
1076	 * properties in the MAC node. Walk up the tree of devices to
1077	 * find a device with an OF node.
1078	 */
1079	dev_walker = &phydev->mdio.dev;
1080	do {
1081		of_node = dev_walker->of_node;
1082		dev_walker = dev_walker->parent;
1083	} while (!of_node && dev_walker);
1084
1085	if (of_node) {
1086		bool update = false;
1087
1088		if (phy_interface_is_rgmii(phydev)) {
1089			result = ksz9031_config_rgmii_delay(phydev);
1090			if (result < 0)
1091				return result;
1092		}
1093
1094		ksz9031_of_load_skew_values(phydev, of_node,
1095				MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1096				clk_skews, 2, &update);
1097
1098		ksz9031_of_load_skew_values(phydev, of_node,
1099				MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1100				control_skews, 2, &update);
1101
1102		ksz9031_of_load_skew_values(phydev, of_node,
1103				MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1104				rx_data_skews, 4, &update);
1105
1106		ksz9031_of_load_skew_values(phydev, of_node,
1107				MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1108				tx_data_skews, 4, &update);
1109
1110		if (update && !phy_interface_is_rgmii(phydev))
1111			phydev_warn(phydev,
1112				    "*-skew-ps values should be used only with RGMII PHY modes\n");
1113
1114		/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1115		 * When the device links in the 1000BASE-T slave mode only,
1116		 * the optional 125MHz reference output clock (CLK125_NDO)
1117		 * has wide duty cycle variation.
1118		 *
1119		 * The optional CLK125_NDO clock does not meet the RGMII
1120		 * 45/55 percent (min/max) duty cycle requirement and therefore
1121		 * cannot be used directly by the MAC side for clocking
1122		 * applications that have setup/hold time requirements on
1123		 * rising and falling clock edges.
1124		 *
1125		 * Workaround:
1126		 * Force the phy to be the master to receive a stable clock
1127		 * which meets the duty cycle requirement.
1128		 */
1129		if (of_property_read_bool(of_node, "micrel,force-master")) {
1130			result = phy_read(phydev, MII_CTRL1000);
1131			if (result < 0)
1132				goto err_force_master;
1133
1134			/* enable master mode, config & prefer master */
1135			result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
1136			result = phy_write(phydev, MII_CTRL1000, result);
1137			if (result < 0)
1138				goto err_force_master;
1139		}
1140	}
1141
1142	return ksz9031_center_flp_timing(phydev);
1143
1144err_force_master:
1145	phydev_err(phydev, "failed to force the phy to master mode\n");
1146	return result;
1147}
1148
1149#define KSZ9131_SKEW_5BIT_MAX	2400
1150#define KSZ9131_SKEW_4BIT_MAX	800
1151#define KSZ9131_OFFSET		700
1152#define KSZ9131_STEP		100
1153
1154static int ksz9131_of_load_skew_values(struct phy_device *phydev,
1155				       struct device_node *of_node,
1156				       u16 reg, size_t field_sz,
1157				       char *field[], u8 numfields)
1158{
1159	int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
1160		      -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
1161	int skewval, skewmax = 0;
1162	int matches = 0;
1163	u16 maxval;
1164	u16 newval;
1165	u16 mask;
1166	int i;
1167
1168	/* psec properties in dts should mean x pico seconds */
1169	if (field_sz == 5)
1170		skewmax = KSZ9131_SKEW_5BIT_MAX;
1171	else
1172		skewmax = KSZ9131_SKEW_4BIT_MAX;
1173
1174	for (i = 0; i < numfields; i++)
1175		if (!of_property_read_s32(of_node, field[i], &skewval)) {
1176			if (skewval < -KSZ9131_OFFSET)
1177				skewval = -KSZ9131_OFFSET;
1178			else if (skewval > skewmax)
1179				skewval = skewmax;
1180
1181			val[i] = skewval + KSZ9131_OFFSET;
1182			matches++;
1183		}
1184
1185	if (!matches)
1186		return 0;
1187
1188	if (matches < numfields)
1189		newval = phy_read_mmd(phydev, 2, reg);
1190	else
1191		newval = 0;
1192
1193	maxval = (field_sz == 4) ? 0xf : 0x1f;
1194	for (i = 0; i < numfields; i++)
1195		if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
1196			mask = 0xffff;
1197			mask ^= maxval << (field_sz * i);
1198			newval = (newval & mask) |
1199				(((val[i] / KSZ9131_STEP) & maxval)
1200					<< (field_sz * i));
1201		}
1202
1203	return phy_write_mmd(phydev, 2, reg, newval);
1204}
1205
1206#define KSZ9131RN_MMD_COMMON_CTRL_REG	2
1207#define KSZ9131RN_RXC_DLL_CTRL		76
1208#define KSZ9131RN_TXC_DLL_CTRL		77
1209#define KSZ9131RN_DLL_ENABLE_DELAY	0
1210
1211static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
1212{
1213	const struct kszphy_type *type = phydev->drv->driver_data;
1214	u16 rxcdll_val, txcdll_val;
1215	int ret;
1216
1217	switch (phydev->interface) {
1218	case PHY_INTERFACE_MODE_RGMII:
1219		rxcdll_val = type->disable_dll_rx_bit;
1220		txcdll_val = type->disable_dll_tx_bit;
1221		break;
1222	case PHY_INTERFACE_MODE_RGMII_ID:
1223		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1224		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1225		break;
1226	case PHY_INTERFACE_MODE_RGMII_RXID:
1227		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1228		txcdll_val = type->disable_dll_tx_bit;
1229		break;
1230	case PHY_INTERFACE_MODE_RGMII_TXID:
1231		rxcdll_val = type->disable_dll_rx_bit;
1232		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1233		break;
1234	default:
1235		return 0;
1236	}
1237
1238	ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1239			     KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask,
1240			     rxcdll_val);
1241	if (ret < 0)
1242		return ret;
1243
1244	return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1245			      KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask,
1246			      txcdll_val);
1247}
1248
1249/* Silicon Errata DS80000693B
1250 *
1251 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link
1252 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
1253 * according to the datasheet (off if there is no link).
1254 */
1255static int ksz9131_led_errata(struct phy_device *phydev)
1256{
1257	int reg;
1258
1259	reg = phy_read_mmd(phydev, 2, 0);
1260	if (reg < 0)
1261		return reg;
1262
1263	if (!(reg & BIT(4)))
1264		return 0;
1265
1266	return phy_set_bits(phydev, 0x1e, BIT(9));
1267}
1268
1269static int ksz9131_config_init(struct phy_device *phydev)
1270{
1271	struct device_node *of_node;
1272	char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
1273	char *rx_data_skews[4] = {
1274		"rxd0-skew-psec", "rxd1-skew-psec",
1275		"rxd2-skew-psec", "rxd3-skew-psec"
1276	};
1277	char *tx_data_skews[4] = {
1278		"txd0-skew-psec", "txd1-skew-psec",
1279		"txd2-skew-psec", "txd3-skew-psec"
1280	};
1281	char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
1282	const struct device *dev_walker;
1283	int ret;
1284
1285	dev_walker = &phydev->mdio.dev;
1286	do {
1287		of_node = dev_walker->of_node;
1288		dev_walker = dev_walker->parent;
1289	} while (!of_node && dev_walker);
1290
1291	if (!of_node)
1292		return 0;
1293
1294	if (phy_interface_is_rgmii(phydev)) {
1295		ret = ksz9131_config_rgmii_delay(phydev);
1296		if (ret < 0)
1297			return ret;
1298	}
1299
1300	ret = ksz9131_of_load_skew_values(phydev, of_node,
1301					  MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1302					  clk_skews, 2);
1303	if (ret < 0)
1304		return ret;
1305
1306	ret = ksz9131_of_load_skew_values(phydev, of_node,
1307					  MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1308					  control_skews, 2);
1309	if (ret < 0)
1310		return ret;
1311
1312	ret = ksz9131_of_load_skew_values(phydev, of_node,
1313					  MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1314					  rx_data_skews, 4);
1315	if (ret < 0)
1316		return ret;
1317
1318	ret = ksz9131_of_load_skew_values(phydev, of_node,
1319					  MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1320					  tx_data_skews, 4);
1321	if (ret < 0)
1322		return ret;
1323
1324	ret = ksz9131_led_errata(phydev);
1325	if (ret < 0)
1326		return ret;
1327
1328	return 0;
1329}
1330
1331#define MII_KSZ9131_AUTO_MDIX		0x1C
1332#define MII_KSZ9131_AUTO_MDI_SET	BIT(7)
1333#define MII_KSZ9131_AUTO_MDIX_SWAP_OFF	BIT(6)
1334
1335static int ksz9131_mdix_update(struct phy_device *phydev)
1336{
1337	int ret;
1338
1339	ret = phy_read(phydev, MII_KSZ9131_AUTO_MDIX);
1340	if (ret < 0)
1341		return ret;
1342
1343	if (ret & MII_KSZ9131_AUTO_MDIX_SWAP_OFF) {
1344		if (ret & MII_KSZ9131_AUTO_MDI_SET)
1345			phydev->mdix_ctrl = ETH_TP_MDI;
1346		else
1347			phydev->mdix_ctrl = ETH_TP_MDI_X;
1348	} else {
1349		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1350	}
1351
1352	if (ret & MII_KSZ9131_AUTO_MDI_SET)
1353		phydev->mdix = ETH_TP_MDI;
1354	else
1355		phydev->mdix = ETH_TP_MDI_X;
1356
1357	return 0;
1358}
1359
1360static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl)
1361{
1362	u16 val;
1363
1364	switch (ctrl) {
1365	case ETH_TP_MDI:
1366		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1367		      MII_KSZ9131_AUTO_MDI_SET;
1368		break;
1369	case ETH_TP_MDI_X:
1370		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF;
1371		break;
1372	case ETH_TP_MDI_AUTO:
1373		val = 0;
1374		break;
1375	default:
1376		return 0;
1377	}
1378
1379	return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX,
1380			  MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1381			  MII_KSZ9131_AUTO_MDI_SET, val);
1382}
1383
1384static int ksz9131_read_status(struct phy_device *phydev)
1385{
1386	int ret;
1387
1388	ret = ksz9131_mdix_update(phydev);
1389	if (ret < 0)
1390		return ret;
1391
1392	return genphy_read_status(phydev);
1393}
1394
1395static int ksz9131_config_aneg(struct phy_device *phydev)
1396{
1397	int ret;
1398
1399	ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
1400	if (ret)
1401		return ret;
1402
1403	return genphy_config_aneg(phydev);
1404}
1405
1406static int ksz9477_get_features(struct phy_device *phydev)
1407{
1408	int ret;
1409
1410	ret = genphy_read_abilities(phydev);
1411	if (ret)
1412		return ret;
1413
1414	/* The "EEE control and capability 1" (Register 3.20) seems to be
1415	 * influenced by the "EEE advertisement 1" (Register 7.60). Changes
1416	 * on the 7.60 will affect 3.20. So, we need to construct our own list
1417	 * of caps.
1418	 * KSZ8563R should have 100BaseTX/Full only.
1419	 */
1420	linkmode_and(phydev->supported_eee, phydev->supported,
1421		     PHY_EEE_CAP1_FEATURES);
1422
1423	return 0;
1424}
1425
1426#define KSZ8873MLL_GLOBAL_CONTROL_4	0x06
1427#define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX	BIT(6)
1428#define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED	BIT(4)
1429static int ksz8873mll_read_status(struct phy_device *phydev)
1430{
1431	int regval;
1432
1433	/* dummy read */
1434	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1435
1436	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1437
1438	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
1439		phydev->duplex = DUPLEX_HALF;
1440	else
1441		phydev->duplex = DUPLEX_FULL;
1442
1443	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
1444		phydev->speed = SPEED_10;
1445	else
1446		phydev->speed = SPEED_100;
1447
1448	phydev->link = 1;
1449	phydev->pause = phydev->asym_pause = 0;
1450
1451	return 0;
1452}
1453
1454static int ksz9031_get_features(struct phy_device *phydev)
1455{
1456	int ret;
1457
1458	ret = genphy_read_abilities(phydev);
1459	if (ret < 0)
1460		return ret;
1461
1462	/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1463	 * Whenever the device's Asymmetric Pause capability is set to 1,
1464	 * link-up may fail after a link-up to link-down transition.
1465	 *
1466	 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue
1467	 *
1468	 * Workaround:
1469	 * Do not enable the Asymmetric Pause capability bit.
1470	 */
1471	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
1472
1473	/* We force setting the Pause capability as the core will force the
1474	 * Asymmetric Pause capability to 1 otherwise.
1475	 */
1476	linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
1477
1478	return 0;
1479}
1480
1481static int ksz9031_read_status(struct phy_device *phydev)
1482{
1483	int err;
1484	int regval;
1485
1486	err = genphy_read_status(phydev);
1487	if (err)
1488		return err;
1489
1490	/* Make sure the PHY is not broken. Read idle error count,
1491	 * and reset the PHY if it is maxed out.
1492	 */
1493	regval = phy_read(phydev, MII_STAT1000);
1494	if ((regval & 0xFF) == 0xFF) {
1495		phy_init_hw(phydev);
1496		phydev->link = 0;
1497		if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
1498			phydev->drv->config_intr(phydev);
1499		return genphy_config_aneg(phydev);
1500	}
1501
1502	return 0;
1503}
1504
1505static int ksz9x31_cable_test_start(struct phy_device *phydev)
1506{
1507	struct kszphy_priv *priv = phydev->priv;
1508	int ret;
1509
1510	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1511	 * Prior to running the cable diagnostics, Auto-negotiation should
1512	 * be disabled, full duplex set and the link speed set to 1000Mbps
1513	 * via the Basic Control Register.
1514	 */
1515	ret = phy_modify(phydev, MII_BMCR,
1516			 BMCR_SPEED1000 | BMCR_FULLDPLX |
1517			 BMCR_ANENABLE | BMCR_SPEED100,
1518			 BMCR_SPEED1000 | BMCR_FULLDPLX);
1519	if (ret)
1520		return ret;
1521
1522	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1523	 * The Master-Slave configuration should be set to Slave by writing
1524	 * a value of 0x1000 to the Auto-Negotiation Master Slave Control
1525	 * Register.
1526	 */
1527	ret = phy_read(phydev, MII_CTRL1000);
1528	if (ret < 0)
1529		return ret;
1530
1531	/* Cache these bits, they need to be restored once LinkMD finishes. */
1532	priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1533	ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1534	ret |= CTL1000_ENABLE_MASTER;
1535
1536	return phy_write(phydev, MII_CTRL1000, ret);
1537}
1538
1539static int ksz9x31_cable_test_result_trans(u16 status)
1540{
1541	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1542	case KSZ9x31_LMD_VCT_ST_NORMAL:
1543		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1544	case KSZ9x31_LMD_VCT_ST_OPEN:
1545		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1546	case KSZ9x31_LMD_VCT_ST_SHORT:
1547		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1548	case KSZ9x31_LMD_VCT_ST_FAIL:
1549		fallthrough;
1550	default:
1551		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1552	}
1553}
1554
1555static bool ksz9x31_cable_test_failed(u16 status)
1556{
1557	int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
1558
1559	return stat == KSZ9x31_LMD_VCT_ST_FAIL;
1560}
1561
1562static bool ksz9x31_cable_test_fault_length_valid(u16 status)
1563{
1564	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1565	case KSZ9x31_LMD_VCT_ST_OPEN:
1566		fallthrough;
1567	case KSZ9x31_LMD_VCT_ST_SHORT:
1568		return true;
1569	}
1570	return false;
1571}
1572
1573static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
1574{
1575	int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
1576
1577	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1578	 *
1579	 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity
1580	 */
1581	if (phydev_id_compare(phydev, PHY_ID_KSZ9131))
1582		dt = clamp(dt - 22, 0, 255);
1583
1584	return (dt * 400) / 10;
1585}
1586
1587static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
1588{
1589	int val, ret;
1590
1591	ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
1592				    !(val & KSZ9x31_LMD_VCT_EN),
1593				    30000, 100000, true);
1594
1595	return ret < 0 ? ret : 0;
1596}
1597
1598static int ksz9x31_cable_test_get_pair(int pair)
1599{
1600	static const int ethtool_pair[] = {
1601		ETHTOOL_A_CABLE_PAIR_A,
1602		ETHTOOL_A_CABLE_PAIR_B,
1603		ETHTOOL_A_CABLE_PAIR_C,
1604		ETHTOOL_A_CABLE_PAIR_D,
1605	};
1606
1607	return ethtool_pair[pair];
1608}
1609
1610static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
1611{
1612	int ret, val;
1613
1614	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1615	 * To test each individual cable pair, set the cable pair in the Cable
1616	 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable
1617	 * Diagnostic Register, along with setting the Cable Diagnostics Test
1618	 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit
1619	 * will self clear when the test is concluded.
1620	 */
1621	ret = phy_write(phydev, KSZ9x31_LMD,
1622			KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
1623	if (ret)
1624		return ret;
1625
1626	ret = ksz9x31_cable_test_wait_for_completion(phydev);
1627	if (ret)
1628		return ret;
1629
1630	val = phy_read(phydev, KSZ9x31_LMD);
1631	if (val < 0)
1632		return val;
1633
1634	if (ksz9x31_cable_test_failed(val))
1635		return -EAGAIN;
1636
1637	ret = ethnl_cable_test_result(phydev,
1638				      ksz9x31_cable_test_get_pair(pair),
1639				      ksz9x31_cable_test_result_trans(val));
1640	if (ret)
1641		return ret;
1642
1643	if (!ksz9x31_cable_test_fault_length_valid(val))
1644		return 0;
1645
1646	return ethnl_cable_test_fault_length(phydev,
1647					     ksz9x31_cable_test_get_pair(pair),
1648					     ksz9x31_cable_test_fault_length(phydev, val));
1649}
1650
1651static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
1652					 bool *finished)
1653{
1654	struct kszphy_priv *priv = phydev->priv;
1655	unsigned long pair_mask = 0xf;
1656	int retries = 20;
1657	int pair, ret, rv;
1658
1659	*finished = false;
1660
1661	/* Try harder if link partner is active */
1662	while (pair_mask && retries--) {
1663		for_each_set_bit(pair, &pair_mask, 4) {
1664			ret = ksz9x31_cable_test_one_pair(phydev, pair);
1665			if (ret == -EAGAIN)
1666				continue;
1667			if (ret < 0)
1668				return ret;
1669			clear_bit(pair, &pair_mask);
1670		}
1671		/* If link partner is in autonegotiation mode it will send 2ms
1672		 * of FLPs with at least 6ms of silence.
1673		 * Add 2ms sleep to have better chances to hit this silence.
1674		 */
1675		if (pair_mask)
1676			usleep_range(2000, 3000);
1677	}
1678
1679	/* Report remaining unfinished pair result as unknown. */
1680	for_each_set_bit(pair, &pair_mask, 4) {
1681		ret = ethnl_cable_test_result(phydev,
1682					      ksz9x31_cable_test_get_pair(pair),
1683					      ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
1684	}
1685
1686	*finished = true;
1687
1688	/* Restore cached bits from before LinkMD got started. */
1689	rv = phy_modify(phydev, MII_CTRL1000,
1690			CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
1691			priv->vct_ctrl1000);
1692	if (rv)
1693		return rv;
1694
1695	return ret;
1696}
1697
1698static int ksz8873mll_config_aneg(struct phy_device *phydev)
1699{
1700	return 0;
1701}
1702
1703static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
1704{
1705	u16 val;
1706
1707	switch (ctrl) {
1708	case ETH_TP_MDI:
1709		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
1710		break;
1711	case ETH_TP_MDI_X:
1712		/* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
1713		 * counter intuitive, the "-X" in "1 = Force MDI" in the data
1714		 * sheet seems to be missing:
1715		 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
1716		 * 0 = Normal operation (transmit on TX+/TX- pins)
1717		 */
1718		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
1719		break;
1720	case ETH_TP_MDI_AUTO:
1721		val = 0;
1722		break;
1723	default:
1724		return 0;
1725	}
1726
1727	return phy_modify(phydev, MII_BMCR,
1728			  KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
1729			  KSZ886X_BMCR_DISABLE_AUTO_MDIX,
1730			  KSZ886X_BMCR_HP_MDIX | val);
1731}
1732
1733static int ksz886x_config_aneg(struct phy_device *phydev)
1734{
1735	int ret;
1736
1737	ret = genphy_config_aneg(phydev);
1738	if (ret)
1739		return ret;
1740
1741	if (phydev->autoneg != AUTONEG_ENABLE) {
1742		/* When autonegotation is disabled, we need to manually force
1743		 * the link state. If we don't do this, the PHY will keep
1744		 * sending Fast Link Pulses (FLPs) which are part of the
1745		 * autonegotiation process. This is not desired when
1746		 * autonegotiation is off.
1747		 */
1748		ret = phy_set_bits(phydev, MII_KSZPHY_CTRL,
1749				   KSZ886X_CTRL_FORCE_LINK);
1750		if (ret)
1751			return ret;
1752	} else {
1753		/* If we had previously forced the link state, we need to
1754		 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY
1755		 * will not perform autonegotiation.
1756		 */
1757		ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL,
1758				     KSZ886X_CTRL_FORCE_LINK);
1759		if (ret)
1760			return ret;
1761	}
1762
1763	/* The MDI-X configuration is automatically changed by the PHY after
1764	 * switching from autoneg off to on. So, take MDI-X configuration under
1765	 * own control and set it after autoneg configuration was done.
1766	 */
1767	return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
1768}
1769
1770static int ksz886x_mdix_update(struct phy_device *phydev)
1771{
1772	int ret;
1773
1774	ret = phy_read(phydev, MII_BMCR);
1775	if (ret < 0)
1776		return ret;
1777
1778	if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
1779		if (ret & KSZ886X_BMCR_FORCE_MDI)
1780			phydev->mdix_ctrl = ETH_TP_MDI_X;
1781		else
1782			phydev->mdix_ctrl = ETH_TP_MDI;
1783	} else {
1784		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1785	}
1786
1787	ret = phy_read(phydev, MII_KSZPHY_CTRL);
1788	if (ret < 0)
1789		return ret;
1790
1791	/* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
1792	if (ret & KSZ886X_CTRL_MDIX_STAT)
1793		phydev->mdix = ETH_TP_MDI_X;
1794	else
1795		phydev->mdix = ETH_TP_MDI;
1796
1797	return 0;
1798}
1799
1800static int ksz886x_read_status(struct phy_device *phydev)
1801{
1802	int ret;
1803
1804	ret = ksz886x_mdix_update(phydev);
1805	if (ret < 0)
1806		return ret;
1807
1808	return genphy_read_status(phydev);
1809}
1810
1811struct ksz9477_errata_write {
1812	u8 dev_addr;
1813	u8 reg_addr;
1814	u16 val;
1815};
1816
1817static const struct ksz9477_errata_write ksz9477_errata_writes[] = {
1818	 /* Register settings are needed to improve PHY receive performance */
1819	{0x01, 0x6f, 0xdd0b},
1820	{0x01, 0x8f, 0x6032},
1821	{0x01, 0x9d, 0x248c},
1822	{0x01, 0x75, 0x0060},
1823	{0x01, 0xd3, 0x7777},
1824	{0x1c, 0x06, 0x3008},
1825	{0x1c, 0x08, 0x2000},
1826
1827	/* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */
1828	{0x1c, 0x04, 0x00d0},
1829
1830	/* Register settings are required to meet data sheet supply current specifications */
1831	{0x1c, 0x13, 0x6eff},
1832	{0x1c, 0x14, 0xe6ff},
1833	{0x1c, 0x15, 0x6eff},
1834	{0x1c, 0x16, 0xe6ff},
1835	{0x1c, 0x17, 0x00ff},
1836	{0x1c, 0x18, 0x43ff},
1837	{0x1c, 0x19, 0xc3ff},
1838	{0x1c, 0x1a, 0x6fff},
1839	{0x1c, 0x1b, 0x07ff},
1840	{0x1c, 0x1c, 0x0fff},
1841	{0x1c, 0x1d, 0xe7ff},
1842	{0x1c, 0x1e, 0xefff},
1843	{0x1c, 0x20, 0xeeee},
1844};
1845
1846static int ksz9477_config_init(struct phy_device *phydev)
1847{
1848	int err;
1849	int i;
1850
1851	/* Apply PHY settings to address errata listed in
1852	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1853	 * Silicon Errata and Data Sheet Clarification documents.
1854	 *
1855	 * Document notes: Before configuring the PHY MMD registers, it is
1856	 * necessary to set the PHY to 100 Mbps speed with auto-negotiation
1857	 * disabled by writing to register 0xN100-0xN101. After writing the
1858	 * MMD registers, and after all errata workarounds that involve PHY
1859	 * register settings, write register 0xN100-0xN101 again to enable
1860	 * and restart auto-negotiation.
1861	 */
1862	err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX);
1863	if (err)
1864		return err;
1865
1866	for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) {
1867		const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i];
1868
1869		err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val);
1870		if (err)
1871			return err;
1872	}
1873
1874	/* According to KSZ9477 Errata DS80000754C (Module 4) all EEE modes
1875	 * in this switch shall be regarded as broken.
1876	 */
1877	if (phydev->dev_flags & MICREL_NO_EEE)
1878		phydev->eee_broken_modes = -1;
1879
1880	err = genphy_restart_aneg(phydev);
1881	if (err)
1882		return err;
1883
1884	return kszphy_config_init(phydev);
1885}
1886
1887static int kszphy_get_sset_count(struct phy_device *phydev)
1888{
1889	return ARRAY_SIZE(kszphy_hw_stats);
1890}
1891
1892static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
1893{
1894	int i;
1895
1896	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) {
1897		strscpy(data + i * ETH_GSTRING_LEN,
1898			kszphy_hw_stats[i].string, ETH_GSTRING_LEN);
1899	}
1900}
1901
1902static u64 kszphy_get_stat(struct phy_device *phydev, int i)
1903{
1904	struct kszphy_hw_stat stat = kszphy_hw_stats[i];
1905	struct kszphy_priv *priv = phydev->priv;
1906	int val;
1907	u64 ret;
1908
1909	val = phy_read(phydev, stat.reg);
1910	if (val < 0) {
1911		ret = U64_MAX;
1912	} else {
1913		val = val & ((1 << stat.bits) - 1);
1914		priv->stats[i] += val;
1915		ret = priv->stats[i];
1916	}
1917
1918	return ret;
1919}
1920
1921static void kszphy_get_stats(struct phy_device *phydev,
1922			     struct ethtool_stats *stats, u64 *data)
1923{
1924	int i;
1925
1926	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
1927		data[i] = kszphy_get_stat(phydev, i);
1928}
1929
1930static int kszphy_suspend(struct phy_device *phydev)
1931{
1932	/* Disable PHY Interrupts */
1933	if (phy_interrupt_is_valid(phydev)) {
1934		phydev->interrupts = PHY_INTERRUPT_DISABLED;
1935		if (phydev->drv->config_intr)
1936			phydev->drv->config_intr(phydev);
1937	}
1938
1939	return genphy_suspend(phydev);
1940}
1941
1942static void kszphy_parse_led_mode(struct phy_device *phydev)
1943{
1944	const struct kszphy_type *type = phydev->drv->driver_data;
1945	const struct device_node *np = phydev->mdio.dev.of_node;
1946	struct kszphy_priv *priv = phydev->priv;
1947	int ret;
1948
1949	if (type && type->led_mode_reg) {
1950		ret = of_property_read_u32(np, "micrel,led-mode",
1951					   &priv->led_mode);
1952
1953		if (ret)
1954			priv->led_mode = -1;
1955
1956		if (priv->led_mode > 3) {
1957			phydev_err(phydev, "invalid led mode: 0x%02x\n",
1958				   priv->led_mode);
1959			priv->led_mode = -1;
1960		}
1961	} else {
1962		priv->led_mode = -1;
1963	}
1964}
1965
1966static int kszphy_resume(struct phy_device *phydev)
1967{
1968	int ret;
1969
1970	genphy_resume(phydev);
1971
1972	/* After switching from power-down to normal mode, an internal global
1973	 * reset is automatically generated. Wait a minimum of 1 ms before
1974	 * read/write access to the PHY registers.
1975	 */
1976	usleep_range(1000, 2000);
1977
1978	ret = kszphy_config_reset(phydev);
1979	if (ret)
1980		return ret;
1981
1982	/* Enable PHY Interrupts */
1983	if (phy_interrupt_is_valid(phydev)) {
1984		phydev->interrupts = PHY_INTERRUPT_ENABLED;
1985		if (phydev->drv->config_intr)
1986			phydev->drv->config_intr(phydev);
1987	}
1988
1989	return 0;
1990}
1991
1992static int kszphy_probe(struct phy_device *phydev)
1993{
1994	const struct kszphy_type *type = phydev->drv->driver_data;
1995	const struct device_node *np = phydev->mdio.dev.of_node;
1996	struct kszphy_priv *priv;
1997	struct clk *clk;
1998
1999	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
2000	if (!priv)
2001		return -ENOMEM;
2002
2003	phydev->priv = priv;
2004
2005	priv->type = type;
2006
2007	kszphy_parse_led_mode(phydev);
2008
2009	clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref");
2010	/* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
2011	if (!IS_ERR_OR_NULL(clk)) {
2012		unsigned long rate = clk_get_rate(clk);
2013		bool rmii_ref_clk_sel_25_mhz;
2014
2015		if (type)
2016			priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
2017		rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
2018				"micrel,rmii-reference-clock-select-25-mhz");
2019
2020		if (rate > 24500000 && rate < 25500000) {
2021			priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
2022		} else if (rate > 49500000 && rate < 50500000) {
2023			priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
2024		} else {
2025			phydev_err(phydev, "Clock rate out of range: %ld\n",
2026				   rate);
2027			return -EINVAL;
2028		}
2029	} else if (!clk) {
2030		/* unnamed clock from the generic ethernet-phy binding */
2031		clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL);
2032		if (IS_ERR(clk))
2033			return PTR_ERR(clk);
2034	}
2035
2036	if (ksz8041_fiber_mode(phydev))
2037		phydev->port = PORT_FIBRE;
2038
2039	/* Support legacy board-file configuration */
2040	if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
2041		priv->rmii_ref_clk_sel = true;
2042		priv->rmii_ref_clk_sel_val = true;
2043	}
2044
2045	return 0;
2046}
2047
2048static int lan8814_cable_test_start(struct phy_device *phydev)
2049{
2050	/* If autoneg is enabled, we won't be able to test cross pair
2051	 * short. In this case, the PHY will "detect" a link and
2052	 * confuse the internal state machine - disable auto neg here.
2053	 * Set the speed to 1000mbit and full duplex.
2054	 */
2055	return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100,
2056			  BMCR_SPEED1000 | BMCR_FULLDPLX);
2057}
2058
2059static int ksz886x_cable_test_start(struct phy_device *phydev)
2060{
2061	if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
2062		return -EOPNOTSUPP;
2063
2064	/* If autoneg is enabled, we won't be able to test cross pair
2065	 * short. In this case, the PHY will "detect" a link and
2066	 * confuse the internal state machine - disable auto neg here.
2067	 * If autoneg is disabled, we should set the speed to 10mbit.
2068	 */
2069	return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
2070}
2071
2072static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask)
2073{
2074	switch (FIELD_GET(mask, status)) {
2075	case KSZ8081_LMD_STAT_NORMAL:
2076		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
2077	case KSZ8081_LMD_STAT_SHORT:
2078		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
2079	case KSZ8081_LMD_STAT_OPEN:
2080		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
2081	case KSZ8081_LMD_STAT_FAIL:
2082		fallthrough;
2083	default:
2084		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
2085	}
2086}
2087
2088static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask)
2089{
2090	return FIELD_GET(mask, status) ==
2091		KSZ8081_LMD_STAT_FAIL;
2092}
2093
2094static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask)
2095{
2096	switch (FIELD_GET(mask, status)) {
2097	case KSZ8081_LMD_STAT_OPEN:
2098		fallthrough;
2099	case KSZ8081_LMD_STAT_SHORT:
2100		return true;
2101	}
2102	return false;
2103}
2104
2105static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev,
2106							   u16 status, u16 data_mask)
2107{
2108	int dt;
2109
2110	/* According to the data sheet the distance to the fault is
2111	 * DELTA_TIME * 0.4 meters for ksz phys.
2112	 * (DELTA_TIME - 22) * 0.8 for lan8814 phy.
2113	 */
2114	dt = FIELD_GET(data_mask, status);
2115
2116	if (phydev_id_compare(phydev, PHY_ID_LAN8814))
2117		return ((dt - 22) * 800) / 10;
2118	else
2119		return (dt * 400) / 10;
2120}
2121
2122static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
2123{
2124	const struct kszphy_type *type = phydev->drv->driver_data;
2125	int val, ret;
2126
2127	ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val,
2128				    !(val & KSZ8081_LMD_ENABLE_TEST),
2129				    30000, 100000, true);
2130
2131	return ret < 0 ? ret : 0;
2132}
2133
2134static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair)
2135{
2136	static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A,
2137					    ETHTOOL_A_CABLE_PAIR_B,
2138					    ETHTOOL_A_CABLE_PAIR_C,
2139					    ETHTOOL_A_CABLE_PAIR_D,
2140					  };
2141	u32 fault_length;
2142	int ret;
2143	int val;
2144
2145	val = KSZ8081_LMD_ENABLE_TEST;
2146	val = val | (pair << LAN8814_PAIR_BIT_SHIFT);
2147
2148	ret = phy_write(phydev, LAN8814_CABLE_DIAG, val);
2149	if (ret < 0)
2150		return ret;
2151
2152	ret = ksz886x_cable_test_wait_for_completion(phydev);
2153	if (ret)
2154		return ret;
2155
2156	val = phy_read(phydev, LAN8814_CABLE_DIAG);
2157	if (val < 0)
2158		return val;
2159
2160	if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK))
2161		return -EAGAIN;
2162
2163	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2164				      ksz886x_cable_test_result_trans(val,
2165								      LAN8814_CABLE_DIAG_STAT_MASK
2166								      ));
2167	if (ret)
2168		return ret;
2169
2170	if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK))
2171		return 0;
2172
2173	fault_length = ksz886x_cable_test_fault_length(phydev, val,
2174						       LAN8814_CABLE_DIAG_VCT_DATA_MASK);
2175
2176	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2177}
2178
2179static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
2180{
2181	static const int ethtool_pair[] = {
2182		ETHTOOL_A_CABLE_PAIR_A,
2183		ETHTOOL_A_CABLE_PAIR_B,
2184	};
2185	int ret, val, mdix;
2186	u32 fault_length;
2187
2188	/* There is no way to choice the pair, like we do one ksz9031.
2189	 * We can workaround this limitation by using the MDI-X functionality.
2190	 */
2191	if (pair == 0)
2192		mdix = ETH_TP_MDI;
2193	else
2194		mdix = ETH_TP_MDI_X;
2195
2196	switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
2197	case PHY_ID_KSZ8081:
2198		ret = ksz8081_config_mdix(phydev, mdix);
2199		break;
2200	case PHY_ID_KSZ886X:
2201		ret = ksz886x_config_mdix(phydev, mdix);
2202		break;
2203	default:
2204		ret = -ENODEV;
2205	}
2206
2207	if (ret)
2208		return ret;
2209
2210	/* Now we are ready to fire. This command will send a 100ns pulse
2211	 * to the pair.
2212	 */
2213	ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
2214	if (ret)
2215		return ret;
2216
2217	ret = ksz886x_cable_test_wait_for_completion(phydev);
2218	if (ret)
2219		return ret;
2220
2221	val = phy_read(phydev, KSZ8081_LMD);
2222	if (val < 0)
2223		return val;
2224
2225	if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK))
2226		return -EAGAIN;
2227
2228	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2229				      ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK));
2230	if (ret)
2231		return ret;
2232
2233	if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK))
2234		return 0;
2235
2236	fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK);
2237
2238	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2239}
2240
2241static int ksz886x_cable_test_get_status(struct phy_device *phydev,
2242					 bool *finished)
2243{
2244	const struct kszphy_type *type = phydev->drv->driver_data;
2245	unsigned long pair_mask = type->pair_mask;
2246	int retries = 20;
2247	int ret = 0;
2248	int pair;
2249
2250	*finished = false;
2251
2252	/* Try harder if link partner is active */
2253	while (pair_mask && retries--) {
2254		for_each_set_bit(pair, &pair_mask, 4) {
2255			if (type->cable_diag_reg == LAN8814_CABLE_DIAG)
2256				ret = lan8814_cable_test_one_pair(phydev, pair);
2257			else
2258				ret = ksz886x_cable_test_one_pair(phydev, pair);
2259			if (ret == -EAGAIN)
2260				continue;
2261			if (ret < 0)
2262				return ret;
2263			clear_bit(pair, &pair_mask);
2264		}
2265		/* If link partner is in autonegotiation mode it will send 2ms
2266		 * of FLPs with at least 6ms of silence.
2267		 * Add 2ms sleep to have better chances to hit this silence.
2268		 */
2269		if (pair_mask)
2270			msleep(2);
2271	}
2272
2273	*finished = true;
2274
2275	return ret;
2276}
2277
2278#define LAN_EXT_PAGE_ACCESS_CONTROL			0x16
2279#define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA		0x17
2280#define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC		0x4000
2281
2282#define LAN8814_QSGMII_SOFT_RESET			0x43
2283#define LAN8814_QSGMII_SOFT_RESET_BIT			BIT(0)
2284#define LAN8814_QSGMII_PCS1G_ANEG_CONFIG		0x13
2285#define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA	BIT(3)
2286#define LAN8814_ALIGN_SWAP				0x4a
2287#define LAN8814_ALIGN_TX_A_B_SWAP			0x1
2288#define LAN8814_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2289
2290#define LAN8804_ALIGN_SWAP				0x4a
2291#define LAN8804_ALIGN_TX_A_B_SWAP			0x1
2292#define LAN8804_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2293#define LAN8814_CLOCK_MANAGEMENT			0xd
2294#define LAN8814_LINK_QUALITY				0x8e
2295
2296static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
2297{
2298	int data;
2299
2300	phy_lock_mdio_bus(phydev);
2301	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2302	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2303	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2304		    (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
2305	data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
2306	phy_unlock_mdio_bus(phydev);
2307
2308	return data;
2309}
2310
2311static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
2312				 u16 val)
2313{
2314	phy_lock_mdio_bus(phydev);
2315	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2316	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2317	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2318		    page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
2319
2320	val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
2321	if (val != 0)
2322		phydev_err(phydev, "Error: phy_write has returned error %d\n",
2323			   val);
2324	phy_unlock_mdio_bus(phydev);
2325	return val;
2326}
2327
2328static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
2329{
2330	u16 val = 0;
2331
2332	if (enable)
2333		val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
2334		      PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
2335		      PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
2336		      PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
2337
2338	return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val);
2339}
2340
2341static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
2342				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2343{
2344	*seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI);
2345	*seconds = (*seconds << 16) |
2346		   lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO);
2347
2348	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI);
2349	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2350			lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO);
2351
2352	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2);
2353}
2354
2355static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
2356				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2357{
2358	*seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI);
2359	*seconds = *seconds << 16 |
2360		   lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO);
2361
2362	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI);
2363	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2364			lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO);
2365
2366	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2);
2367}
2368
2369static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info)
2370{
2371	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2372	struct phy_device *phydev = ptp_priv->phydev;
2373	struct lan8814_shared_priv *shared = phydev->shared->priv;
2374
2375	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
2376				SOF_TIMESTAMPING_RX_HARDWARE |
2377				SOF_TIMESTAMPING_RAW_HARDWARE;
2378
2379	info->phc_index = ptp_clock_index(shared->ptp_clock);
2380
2381	info->tx_types =
2382		(1 << HWTSTAMP_TX_OFF) |
2383		(1 << HWTSTAMP_TX_ON) |
2384		(1 << HWTSTAMP_TX_ONESTEP_SYNC);
2385
2386	info->rx_filters =
2387		(1 << HWTSTAMP_FILTER_NONE) |
2388		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2389		(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
2390		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
2391		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2392
2393	return 0;
2394}
2395
2396static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
2397{
2398	int i;
2399
2400	for (i = 0; i < FIFO_SIZE; ++i)
2401		lanphy_read_page_reg(phydev, 5,
2402				     egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
2403
2404	/* Read to clear overflow status bit */
2405	lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2406}
2407
2408static int lan8814_hwtstamp(struct mii_timestamper *mii_ts,
2409			    struct kernel_hwtstamp_config *config,
2410			    struct netlink_ext_ack *extack)
2411{
2412	struct kszphy_ptp_priv *ptp_priv =
2413			  container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2414	struct phy_device *phydev = ptp_priv->phydev;
2415	struct lan8814_shared_priv *shared = phydev->shared->priv;
2416	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2417	int txcfg = 0, rxcfg = 0;
2418	int pkt_ts_enable;
2419
2420	ptp_priv->hwts_tx_type = config->tx_type;
2421	ptp_priv->rx_filter = config->rx_filter;
2422
2423	switch (config->rx_filter) {
2424	case HWTSTAMP_FILTER_NONE:
2425		ptp_priv->layer = 0;
2426		ptp_priv->version = 0;
2427		break;
2428	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2429	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2430	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2431		ptp_priv->layer = PTP_CLASS_L4;
2432		ptp_priv->version = PTP_CLASS_V2;
2433		break;
2434	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2435	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2436	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2437		ptp_priv->layer = PTP_CLASS_L2;
2438		ptp_priv->version = PTP_CLASS_V2;
2439		break;
2440	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2441	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2442	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2443		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
2444		ptp_priv->version = PTP_CLASS_V2;
2445		break;
2446	default:
2447		return -ERANGE;
2448	}
2449
2450	if (ptp_priv->layer & PTP_CLASS_L2) {
2451		rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
2452		txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
2453	} else if (ptp_priv->layer & PTP_CLASS_L4) {
2454		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
2455		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
2456	}
2457	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg);
2458	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg);
2459
2460	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
2461			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
2462	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
2463	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
2464
2465	if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC)
2466		lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2467				      PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2468
2469	if (config->rx_filter != HWTSTAMP_FILTER_NONE)
2470		lan8814_config_ts_intr(ptp_priv->phydev, true);
2471	else
2472		lan8814_config_ts_intr(ptp_priv->phydev, false);
2473
2474	mutex_lock(&shared->shared_lock);
2475	if (config->rx_filter != HWTSTAMP_FILTER_NONE)
2476		shared->ref++;
2477	else
2478		shared->ref--;
2479
2480	if (shared->ref)
2481		lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2482				      PTP_CMD_CTL_PTP_ENABLE_);
2483	else
2484		lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2485				      PTP_CMD_CTL_PTP_DISABLE_);
2486	mutex_unlock(&shared->shared_lock);
2487
2488	/* In case of multiple starts and stops, these needs to be cleared */
2489	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2490		list_del(&rx_ts->list);
2491		kfree(rx_ts);
2492	}
2493	skb_queue_purge(&ptp_priv->rx_queue);
2494	skb_queue_purge(&ptp_priv->tx_queue);
2495
2496	lan8814_flush_fifo(ptp_priv->phydev, false);
2497	lan8814_flush_fifo(ptp_priv->phydev, true);
2498
2499	return 0;
2500}
2501
2502static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
2503			     struct sk_buff *skb, int type)
2504{
2505	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2506
2507	switch (ptp_priv->hwts_tx_type) {
2508	case HWTSTAMP_TX_ONESTEP_SYNC:
2509		if (ptp_msg_is_sync(skb, type)) {
2510			kfree_skb(skb);
2511			return;
2512		}
2513		fallthrough;
2514	case HWTSTAMP_TX_ON:
2515		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2516		skb_queue_tail(&ptp_priv->tx_queue, skb);
2517		break;
2518	case HWTSTAMP_TX_OFF:
2519	default:
2520		kfree_skb(skb);
2521		break;
2522	}
2523}
2524
2525static void lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
2526{
2527	struct ptp_header *ptp_header;
2528	u32 type;
2529
2530	skb_push(skb, ETH_HLEN);
2531	type = ptp_classify_raw(skb);
2532	ptp_header = ptp_parse_header(skb, type);
2533	skb_pull_inline(skb, ETH_HLEN);
2534
2535	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
2536}
2537
2538static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv,
2539				 struct sk_buff *skb)
2540{
2541	struct skb_shared_hwtstamps *shhwtstamps;
2542	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2543	unsigned long flags;
2544	bool ret = false;
2545	u16 skb_sig;
2546
2547	lan8814_get_sig_rx(skb, &skb_sig);
2548
2549	/* Iterate over all RX timestamps and match it with the received skbs */
2550	spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2551	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2552		/* Check if we found the signature we were looking for. */
2553		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2554			continue;
2555
2556		shhwtstamps = skb_hwtstamps(skb);
2557		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2558		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
2559						  rx_ts->nsec);
2560		list_del(&rx_ts->list);
2561		kfree(rx_ts);
2562
2563		ret = true;
2564		break;
2565	}
2566	spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2567
2568	if (ret)
2569		netif_rx(skb);
2570	return ret;
2571}
2572
2573static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
2574{
2575	struct kszphy_ptp_priv *ptp_priv =
2576			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2577
2578	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
2579	    type == PTP_CLASS_NONE)
2580		return false;
2581
2582	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
2583		return false;
2584
2585	/* If we failed to match then add it to the queue for when the timestamp
2586	 * will come
2587	 */
2588	if (!lan8814_match_rx_skb(ptp_priv, skb))
2589		skb_queue_tail(&ptp_priv->rx_queue, skb);
2590
2591	return true;
2592}
2593
2594static void lan8814_ptp_clock_set(struct phy_device *phydev,
2595				  u32 seconds, u32 nano_seconds)
2596{
2597	u32 sec_low, sec_high, nsec_low, nsec_high;
2598
2599	sec_low = seconds & 0xffff;
2600	sec_high = (seconds >> 16) & 0xffff;
2601	nsec_low = nano_seconds & 0xffff;
2602	nsec_high = (nano_seconds >> 16) & 0x3fff;
2603
2604	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, sec_low);
2605	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, sec_high);
2606	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, nsec_low);
2607	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, nsec_high);
2608
2609	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_);
2610}
2611
2612static void lan8814_ptp_clock_get(struct phy_device *phydev,
2613				  u32 *seconds, u32 *nano_seconds)
2614{
2615	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_);
2616
2617	*seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID);
2618	*seconds = (*seconds << 16) |
2619		   lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO);
2620
2621	*nano_seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI);
2622	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2623			lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO);
2624}
2625
2626static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
2627				   struct timespec64 *ts)
2628{
2629	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2630							  ptp_clock_info);
2631	struct phy_device *phydev = shared->phydev;
2632	u32 nano_seconds;
2633	u32 seconds;
2634
2635	mutex_lock(&shared->shared_lock);
2636	lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
2637	mutex_unlock(&shared->shared_lock);
2638	ts->tv_sec = seconds;
2639	ts->tv_nsec = nano_seconds;
2640
2641	return 0;
2642}
2643
2644static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
2645				   const struct timespec64 *ts)
2646{
2647	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2648							  ptp_clock_info);
2649	struct phy_device *phydev = shared->phydev;
2650
2651	mutex_lock(&shared->shared_lock);
2652	lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
2653	mutex_unlock(&shared->shared_lock);
2654
2655	return 0;
2656}
2657
2658static void lan8814_ptp_clock_step(struct phy_device *phydev,
2659				   s64 time_step_ns)
2660{
2661	u32 nano_seconds_step;
2662	u64 abs_time_step_ns;
2663	u32 unsigned_seconds;
2664	u32 nano_seconds;
2665	u32 remainder;
2666	s32 seconds;
2667
2668	if (time_step_ns >  15000000000LL) {
2669		/* convert to clock set */
2670		lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds);
2671		unsigned_seconds += div_u64_rem(time_step_ns, 1000000000LL,
2672						&remainder);
2673		nano_seconds += remainder;
2674		if (nano_seconds >= 1000000000) {
2675			unsigned_seconds++;
2676			nano_seconds -= 1000000000;
2677		}
2678		lan8814_ptp_clock_set(phydev, unsigned_seconds, nano_seconds);
2679		return;
2680	} else if (time_step_ns < -15000000000LL) {
2681		/* convert to clock set */
2682		time_step_ns = -time_step_ns;
2683
2684		lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds);
2685		unsigned_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
2686						&remainder);
2687		nano_seconds_step = remainder;
2688		if (nano_seconds < nano_seconds_step) {
2689			unsigned_seconds--;
2690			nano_seconds += 1000000000;
2691		}
2692		nano_seconds -= nano_seconds_step;
2693		lan8814_ptp_clock_set(phydev, unsigned_seconds,
2694				      nano_seconds);
2695		return;
2696	}
2697
2698	/* do clock step */
2699	if (time_step_ns >= 0) {
2700		abs_time_step_ns = (u64)time_step_ns;
2701		seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
2702					   &remainder);
2703		nano_seconds = remainder;
2704	} else {
2705		abs_time_step_ns = (u64)(-time_step_ns);
2706		seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
2707			    &remainder));
2708		nano_seconds = remainder;
2709		if (nano_seconds > 0) {
2710			/* subtracting nano seconds is not allowed
2711			 * convert to subtracting from seconds,
2712			 * and adding to nanoseconds
2713			 */
2714			seconds--;
2715			nano_seconds = (1000000000 - nano_seconds);
2716		}
2717	}
2718
2719	if (nano_seconds > 0) {
2720		/* add 8 ns to cover the likely normal increment */
2721		nano_seconds += 8;
2722	}
2723
2724	if (nano_seconds >= 1000000000) {
2725		/* carry into seconds */
2726		seconds++;
2727		nano_seconds -= 1000000000;
2728	}
2729
2730	while (seconds) {
2731		if (seconds > 0) {
2732			u32 adjustment_value = (u32)seconds;
2733			u16 adjustment_value_lo, adjustment_value_hi;
2734
2735			if (adjustment_value > 0xF)
2736				adjustment_value = 0xF;
2737
2738			adjustment_value_lo = adjustment_value & 0xffff;
2739			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2740
2741			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2742					      adjustment_value_lo);
2743			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2744					      PTP_LTC_STEP_ADJ_DIR_ |
2745					      adjustment_value_hi);
2746			seconds -= ((s32)adjustment_value);
2747		} else {
2748			u32 adjustment_value = (u32)(-seconds);
2749			u16 adjustment_value_lo, adjustment_value_hi;
2750
2751			if (adjustment_value > 0xF)
2752				adjustment_value = 0xF;
2753
2754			adjustment_value_lo = adjustment_value & 0xffff;
2755			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2756
2757			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2758					      adjustment_value_lo);
2759			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2760					      adjustment_value_hi);
2761			seconds += ((s32)adjustment_value);
2762		}
2763		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2764				      PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
2765	}
2766	if (nano_seconds) {
2767		u16 nano_seconds_lo;
2768		u16 nano_seconds_hi;
2769
2770		nano_seconds_lo = nano_seconds & 0xffff;
2771		nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
2772
2773		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2774				      nano_seconds_lo);
2775		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2776				      PTP_LTC_STEP_ADJ_DIR_ |
2777				      nano_seconds_hi);
2778		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2779				      PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
2780	}
2781}
2782
2783static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
2784{
2785	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2786							  ptp_clock_info);
2787	struct phy_device *phydev = shared->phydev;
2788
2789	mutex_lock(&shared->shared_lock);
2790	lan8814_ptp_clock_step(phydev, delta);
2791	mutex_unlock(&shared->shared_lock);
2792
2793	return 0;
2794}
2795
2796static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
2797{
2798	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2799							  ptp_clock_info);
2800	struct phy_device *phydev = shared->phydev;
2801	u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
2802	bool positive = true;
2803	u32 kszphy_rate_adj;
2804
2805	if (scaled_ppm < 0) {
2806		scaled_ppm = -scaled_ppm;
2807		positive = false;
2808	}
2809
2810	kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
2811	kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
2812
2813	kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
2814	kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
2815
2816	if (positive)
2817		kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
2818
2819	mutex_lock(&shared->shared_lock);
2820	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi);
2821	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo);
2822	mutex_unlock(&shared->shared_lock);
2823
2824	return 0;
2825}
2826
2827static void lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
2828{
2829	struct ptp_header *ptp_header;
2830	u32 type;
2831
2832	type = ptp_classify_raw(skb);
2833	ptp_header = ptp_parse_header(skb, type);
2834
2835	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
2836}
2837
2838static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv,
2839				 u32 seconds, u32 nsec, u16 seq_id)
2840{
2841	struct skb_shared_hwtstamps shhwtstamps;
2842	struct sk_buff *skb, *skb_tmp;
2843	unsigned long flags;
2844	bool ret = false;
2845	u16 skb_sig;
2846
2847	spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
2848	skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
2849		lan8814_get_sig_tx(skb, &skb_sig);
2850
2851		if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
2852			continue;
2853
2854		__skb_unlink(skb, &ptp_priv->tx_queue);
2855		ret = true;
2856		break;
2857	}
2858	spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
2859
2860	if (ret) {
2861		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2862		shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
2863		skb_complete_tx_timestamp(skb, &shhwtstamps);
2864	}
2865}
2866
2867static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
2868{
2869	struct phy_device *phydev = ptp_priv->phydev;
2870	u32 seconds, nsec;
2871	u16 seq_id;
2872
2873	lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
2874	lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id);
2875}
2876
2877static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
2878{
2879	struct phy_device *phydev = ptp_priv->phydev;
2880	u32 reg;
2881
2882	do {
2883		lan8814_dequeue_tx_skb(ptp_priv);
2884
2885		/* If other timestamps are available in the FIFO,
2886		 * process them.
2887		 */
2888		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
2889	} while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
2890}
2891
2892static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
2893			      struct lan8814_ptp_rx_ts *rx_ts)
2894{
2895	struct skb_shared_hwtstamps *shhwtstamps;
2896	struct sk_buff *skb, *skb_tmp;
2897	unsigned long flags;
2898	bool ret = false;
2899	u16 skb_sig;
2900
2901	spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
2902	skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
2903		lan8814_get_sig_rx(skb, &skb_sig);
2904
2905		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2906			continue;
2907
2908		__skb_unlink(skb, &ptp_priv->rx_queue);
2909
2910		ret = true;
2911		break;
2912	}
2913	spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
2914
2915	if (ret) {
2916		shhwtstamps = skb_hwtstamps(skb);
2917		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2918		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
2919		netif_rx(skb);
2920	}
2921
2922	return ret;
2923}
2924
2925static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
2926				struct lan8814_ptp_rx_ts *rx_ts)
2927{
2928	unsigned long flags;
2929
2930	/* If we failed to match the skb add it to the queue for when
2931	 * the frame will come
2932	 */
2933	if (!lan8814_match_skb(ptp_priv, rx_ts)) {
2934		spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2935		list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
2936		spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2937	} else {
2938		kfree(rx_ts);
2939	}
2940}
2941
2942static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
2943{
2944	struct phy_device *phydev = ptp_priv->phydev;
2945	struct lan8814_ptp_rx_ts *rx_ts;
2946	u32 reg;
2947
2948	do {
2949		rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
2950		if (!rx_ts)
2951			return;
2952
2953		lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
2954				      &rx_ts->seq_id);
2955		lan8814_match_rx_ts(ptp_priv, rx_ts);
2956
2957		/* If other timestamps are available in the FIFO,
2958		 * process them.
2959		 */
2960		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
2961	} while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
2962}
2963
2964static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status)
2965{
2966	struct kszphy_priv *priv = phydev->priv;
2967	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
2968
2969	if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
2970		lan8814_get_tx_ts(ptp_priv);
2971
2972	if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
2973		lan8814_get_rx_ts(ptp_priv);
2974
2975	if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
2976		lan8814_flush_fifo(phydev, true);
2977		skb_queue_purge(&ptp_priv->tx_queue);
2978	}
2979
2980	if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
2981		lan8814_flush_fifo(phydev, false);
2982		skb_queue_purge(&ptp_priv->rx_queue);
2983	}
2984}
2985
2986static int lan8804_config_init(struct phy_device *phydev)
2987{
2988	int val;
2989
2990	/* MDI-X setting for swap A,B transmit */
2991	val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP);
2992	val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK;
2993	val |= LAN8804_ALIGN_TX_A_B_SWAP;
2994	lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val);
2995
2996	/* Make sure that the PHY will not stop generating the clock when the
2997	 * link partner goes down
2998	 */
2999	lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e);
3000	lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY);
3001
3002	return 0;
3003}
3004
3005static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev)
3006{
3007	int status;
3008
3009	status = phy_read(phydev, LAN8814_INTS);
3010	if (status < 0) {
3011		phy_error(phydev);
3012		return IRQ_NONE;
3013	}
3014
3015	if (status > 0)
3016		phy_trigger_machine(phydev);
3017
3018	return IRQ_HANDLED;
3019}
3020
3021#define LAN8804_OUTPUT_CONTROL			25
3022#define LAN8804_OUTPUT_CONTROL_INTR_BUFFER	BIT(14)
3023#define LAN8804_CONTROL				31
3024#define LAN8804_CONTROL_INTR_POLARITY		BIT(14)
3025
3026static int lan8804_config_intr(struct phy_device *phydev)
3027{
3028	int err;
3029
3030	/* This is an internal PHY of lan966x and is not possible to change the
3031	 * polarity on the GIC found in lan966x, therefore change the polarity
3032	 * of the interrupt in the PHY from being active low instead of active
3033	 * high.
3034	 */
3035	phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY);
3036
3037	/* By default interrupt buffer is open-drain in which case the interrupt
3038	 * can be active only low. Therefore change the interrupt buffer to be
3039	 * push-pull to be able to change interrupt polarity
3040	 */
3041	phy_write(phydev, LAN8804_OUTPUT_CONTROL,
3042		  LAN8804_OUTPUT_CONTROL_INTR_BUFFER);
3043
3044	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3045		err = phy_read(phydev, LAN8814_INTS);
3046		if (err < 0)
3047			return err;
3048
3049		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3050		if (err)
3051			return err;
3052	} else {
3053		err = phy_write(phydev, LAN8814_INTC, 0);
3054		if (err)
3055			return err;
3056
3057		err = phy_read(phydev, LAN8814_INTS);
3058		if (err < 0)
3059			return err;
3060	}
3061
3062	return 0;
3063}
3064
3065static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
3066{
3067	int ret = IRQ_NONE;
3068	int irq_status;
3069
3070	irq_status = phy_read(phydev, LAN8814_INTS);
3071	if (irq_status < 0) {
3072		phy_error(phydev);
3073		return IRQ_NONE;
3074	}
3075
3076	if (irq_status & LAN8814_INT_LINK) {
3077		phy_trigger_machine(phydev);
3078		ret = IRQ_HANDLED;
3079	}
3080
3081	while (true) {
3082		irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
3083		if (!irq_status)
3084			break;
3085
3086		lan8814_handle_ptp_interrupt(phydev, irq_status);
3087		ret = IRQ_HANDLED;
3088	}
3089
3090	return ret;
3091}
3092
3093static int lan8814_ack_interrupt(struct phy_device *phydev)
3094{
3095	/* bit[12..0] int status, which is a read and clear register. */
3096	int rc;
3097
3098	rc = phy_read(phydev, LAN8814_INTS);
3099
3100	return (rc < 0) ? rc : 0;
3101}
3102
3103static int lan8814_config_intr(struct phy_device *phydev)
3104{
3105	int err;
3106
3107	lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG,
3108			      LAN8814_INTR_CTRL_REG_POLARITY |
3109			      LAN8814_INTR_CTRL_REG_INTR_ENABLE);
3110
3111	/* enable / disable interrupts */
3112	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3113		err = lan8814_ack_interrupt(phydev);
3114		if (err)
3115			return err;
3116
3117		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3118	} else {
3119		err = phy_write(phydev, LAN8814_INTC, 0);
3120		if (err)
3121			return err;
3122
3123		err = lan8814_ack_interrupt(phydev);
3124	}
3125
3126	return err;
3127}
3128
3129static void lan8814_ptp_init(struct phy_device *phydev)
3130{
3131	struct kszphy_priv *priv = phydev->priv;
3132	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3133	u32 temp;
3134
3135	if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
3136	    !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
3137		return;
3138
3139	lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_);
3140
3141	temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD);
3142	temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3143	lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp);
3144
3145	temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD);
3146	temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3147	lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp);
3148
3149	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0);
3150	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0);
3151
3152	/* Removing default registers configs related to L2 and IP */
3153	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0);
3154	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0);
3155	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0);
3156	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0);
3157
3158	/* Disable checking for minorVersionPTP field */
3159	lanphy_write_page_reg(phydev, 5, PTP_RX_VERSION,
3160			      PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
3161	lanphy_write_page_reg(phydev, 5, PTP_TX_VERSION,
3162			      PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
3163
3164	skb_queue_head_init(&ptp_priv->tx_queue);
3165	skb_queue_head_init(&ptp_priv->rx_queue);
3166	INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
3167	spin_lock_init(&ptp_priv->rx_ts_lock);
3168
3169	ptp_priv->phydev = phydev;
3170
3171	ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
3172	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
3173	ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
3174	ptp_priv->mii_ts.ts_info  = lan8814_ts_info;
3175
3176	phydev->mii_ts = &ptp_priv->mii_ts;
3177}
3178
3179static int lan8814_ptp_probe_once(struct phy_device *phydev)
3180{
3181	struct lan8814_shared_priv *shared = phydev->shared->priv;
3182
3183	/* Initialise shared lock for clock*/
3184	mutex_init(&shared->shared_lock);
3185
3186	shared->ptp_clock_info.owner = THIS_MODULE;
3187	snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
3188	shared->ptp_clock_info.max_adj = 31249999;
3189	shared->ptp_clock_info.n_alarm = 0;
3190	shared->ptp_clock_info.n_ext_ts = 0;
3191	shared->ptp_clock_info.n_pins = 0;
3192	shared->ptp_clock_info.pps = 0;
3193	shared->ptp_clock_info.pin_config = NULL;
3194	shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
3195	shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
3196	shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
3197	shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
3198	shared->ptp_clock_info.getcrosststamp = NULL;
3199
3200	shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
3201					       &phydev->mdio.dev);
3202	if (IS_ERR(shared->ptp_clock)) {
3203		phydev_err(phydev, "ptp_clock_register failed %lu\n",
3204			   PTR_ERR(shared->ptp_clock));
3205		return -EINVAL;
3206	}
3207
3208	/* Check if PHC support is missing at the configuration level */
3209	if (!shared->ptp_clock)
3210		return 0;
3211
3212	phydev_dbg(phydev, "successfully registered ptp clock\n");
3213
3214	shared->phydev = phydev;
3215
3216	/* The EP.4 is shared between all the PHYs in the package and also it
3217	 * can be accessed by any of the PHYs
3218	 */
3219	lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_);
3220	lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE,
3221			      PTP_OPERATING_MODE_STANDALONE_);
3222
3223	return 0;
3224}
3225
3226static void lan8814_setup_led(struct phy_device *phydev, int val)
3227{
3228	int temp;
3229
3230	temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1);
3231
3232	if (val)
3233		temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3234	else
3235		temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3236
3237	lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp);
3238}
3239
3240static int lan8814_config_init(struct phy_device *phydev)
3241{
3242	struct kszphy_priv *lan8814 = phydev->priv;
3243	int val;
3244
3245	/* Reset the PHY */
3246	val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET);
3247	val |= LAN8814_QSGMII_SOFT_RESET_BIT;
3248	lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val);
3249
3250	/* Disable ANEG with QSGMII PCS Host side */
3251	val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG);
3252	val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA;
3253	lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val);
3254
3255	/* MDI-X setting for swap A,B transmit */
3256	val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP);
3257	val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK;
3258	val |= LAN8814_ALIGN_TX_A_B_SWAP;
3259	lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val);
3260
3261	if (lan8814->led_mode >= 0)
3262		lan8814_setup_led(phydev, lan8814->led_mode);
3263
3264	return 0;
3265}
3266
3267/* It is expected that there will not be any 'lan8814_take_coma_mode'
3268 * function called in suspend. Because the GPIO line can be shared, so if one of
3269 * the phys goes back in coma mode, then all the other PHYs will go, which is
3270 * wrong.
3271 */
3272static int lan8814_release_coma_mode(struct phy_device *phydev)
3273{
3274	struct gpio_desc *gpiod;
3275
3276	gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
3277					GPIOD_OUT_HIGH_OPEN_DRAIN |
3278					GPIOD_FLAGS_BIT_NONEXCLUSIVE);
3279	if (IS_ERR(gpiod))
3280		return PTR_ERR(gpiod);
3281
3282	gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
3283	gpiod_set_value_cansleep(gpiod, 0);
3284
3285	return 0;
3286}
3287
3288static int lan8814_probe(struct phy_device *phydev)
3289{
3290	const struct kszphy_type *type = phydev->drv->driver_data;
3291	struct kszphy_priv *priv;
3292	u16 addr;
3293	int err;
3294
3295	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
3296	if (!priv)
3297		return -ENOMEM;
3298
3299	phydev->priv = priv;
3300
3301	priv->type = type;
3302
3303	kszphy_parse_led_mode(phydev);
3304
3305	/* Strap-in value for PHY address, below register read gives starting
3306	 * phy address value
3307	 */
3308	addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F;
3309	devm_phy_package_join(&phydev->mdio.dev, phydev,
3310			      addr, sizeof(struct lan8814_shared_priv));
3311
3312	if (phy_package_init_once(phydev)) {
3313		err = lan8814_release_coma_mode(phydev);
3314		if (err)
3315			return err;
3316
3317		err = lan8814_ptp_probe_once(phydev);
3318		if (err)
3319			return err;
3320	}
3321
3322	lan8814_ptp_init(phydev);
3323
3324	return 0;
3325}
3326
3327#define LAN8841_MMD_TIMER_REG			0
3328#define LAN8841_MMD0_REGISTER_17		17
3329#define LAN8841_MMD0_REGISTER_17_DROP_OPT(x)	((x) & 0x3)
3330#define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS	BIT(3)
3331#define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG	2
3332#define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK	BIT(14)
3333#define LAN8841_MMD_ANALOG_REG			28
3334#define LAN8841_ANALOG_CONTROL_1		1
3335#define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x)	(((x) & 0x3) << 5)
3336#define LAN8841_ANALOG_CONTROL_10		13
3337#define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x)	((x) & 0x3)
3338#define LAN8841_ANALOG_CONTROL_11		14
3339#define LAN8841_ANALOG_CONTROL_11_LDO_REF(x)	(((x) & 0x7) << 12)
3340#define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT	69
3341#define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc
3342#define LAN8841_BTRX_POWER_DOWN			70
3343#define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A	BIT(0)
3344#define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A	BIT(1)
3345#define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B	BIT(2)
3346#define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B	BIT(3)
3347#define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C	BIT(5)
3348#define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D	BIT(7)
3349#define LAN8841_ADC_CHANNEL_MASK		198
3350#define LAN8841_PTP_RX_PARSE_L2_ADDR_EN		370
3351#define LAN8841_PTP_RX_PARSE_IP_ADDR_EN		371
3352#define LAN8841_PTP_RX_VERSION			374
3353#define LAN8841_PTP_TX_PARSE_L2_ADDR_EN		434
3354#define LAN8841_PTP_TX_PARSE_IP_ADDR_EN		435
3355#define LAN8841_PTP_TX_VERSION			438
3356#define LAN8841_PTP_CMD_CTL			256
3357#define LAN8841_PTP_CMD_CTL_PTP_ENABLE		BIT(2)
3358#define LAN8841_PTP_CMD_CTL_PTP_DISABLE		BIT(1)
3359#define LAN8841_PTP_CMD_CTL_PTP_RESET		BIT(0)
3360#define LAN8841_PTP_RX_PARSE_CONFIG		368
3361#define LAN8841_PTP_TX_PARSE_CONFIG		432
3362#define LAN8841_PTP_RX_MODE			381
3363#define LAN8841_PTP_INSERT_TS_EN		BIT(0)
3364#define LAN8841_PTP_INSERT_TS_32BIT		BIT(1)
3365
3366static int lan8841_config_init(struct phy_device *phydev)
3367{
3368	int ret;
3369
3370	ret = ksz9131_config_init(phydev);
3371	if (ret)
3372		return ret;
3373
3374	/* Initialize the HW by resetting everything */
3375	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3376		       LAN8841_PTP_CMD_CTL,
3377		       LAN8841_PTP_CMD_CTL_PTP_RESET,
3378		       LAN8841_PTP_CMD_CTL_PTP_RESET);
3379
3380	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3381		       LAN8841_PTP_CMD_CTL,
3382		       LAN8841_PTP_CMD_CTL_PTP_ENABLE,
3383		       LAN8841_PTP_CMD_CTL_PTP_ENABLE);
3384
3385	/* Don't process any frames */
3386	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3387		      LAN8841_PTP_RX_PARSE_CONFIG, 0);
3388	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3389		      LAN8841_PTP_TX_PARSE_CONFIG, 0);
3390	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3391		      LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0);
3392	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3393		      LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0);
3394	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3395		      LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0);
3396	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3397		      LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0);
3398
3399	/* Disable checking for minorVersionPTP field */
3400	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3401		      LAN8841_PTP_RX_VERSION, 0xff00);
3402	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3403		      LAN8841_PTP_TX_VERSION, 0xff00);
3404
3405	/* 100BT Clause 40 improvenent errata */
3406	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3407		      LAN8841_ANALOG_CONTROL_1,
3408		      LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2));
3409	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3410		      LAN8841_ANALOG_CONTROL_10,
3411		      LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1));
3412
3413	/* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap
3414	 * Magnetics
3415	 */
3416	ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3417			   LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG);
3418	if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) {
3419		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3420			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT,
3421			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL);
3422		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3423			      LAN8841_BTRX_POWER_DOWN,
3424			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A |
3425			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_A |
3426			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B |
3427			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_B |
3428			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_C |
3429			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_D);
3430	}
3431
3432	/* LDO Adjustment errata */
3433	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3434		      LAN8841_ANALOG_CONTROL_11,
3435		      LAN8841_ANALOG_CONTROL_11_LDO_REF(1));
3436
3437	/* 100BT RGMII latency tuning errata */
3438	phy_write_mmd(phydev, MDIO_MMD_PMAPMD,
3439		      LAN8841_ADC_CHANNEL_MASK, 0x0);
3440	phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG,
3441		      LAN8841_MMD0_REGISTER_17,
3442		      LAN8841_MMD0_REGISTER_17_DROP_OPT(2) |
3443		      LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS);
3444
3445	return 0;
3446}
3447
3448#define LAN8841_OUTPUT_CTRL			25
3449#define LAN8841_OUTPUT_CTRL_INT_BUFFER		BIT(14)
3450#define LAN8841_INT_PTP				BIT(9)
3451
3452static int lan8841_config_intr(struct phy_device *phydev)
3453{
3454	int err;
3455
3456	phy_modify(phydev, LAN8841_OUTPUT_CTRL,
3457		   LAN8841_OUTPUT_CTRL_INT_BUFFER, 0);
3458
3459	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3460		err = phy_read(phydev, LAN8814_INTS);
3461		if (err)
3462			return err;
3463
3464		/* Enable / disable interrupts. It is OK to enable PTP interrupt
3465		 * even if it PTP is not enabled. Because the underneath blocks
3466		 * will not enable the PTP so we will never get the PTP
3467		 * interrupt.
3468		 */
3469		err = phy_write(phydev, LAN8814_INTC,
3470				LAN8814_INT_LINK | LAN8841_INT_PTP);
3471	} else {
3472		err = phy_write(phydev, LAN8814_INTC, 0);
3473		if (err)
3474			return err;
3475
3476		err = phy_read(phydev, LAN8814_INTS);
3477	}
3478
3479	return err;
3480}
3481
3482#define LAN8841_PTP_TX_EGRESS_SEC_LO			453
3483#define LAN8841_PTP_TX_EGRESS_SEC_HI			452
3484#define LAN8841_PTP_TX_EGRESS_NS_LO			451
3485#define LAN8841_PTP_TX_EGRESS_NS_HI			450
3486#define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID		BIT(15)
3487#define LAN8841_PTP_TX_MSG_HEADER2			455
3488
3489static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv,
3490				  u32 *sec, u32 *nsec, u16 *seq)
3491{
3492	struct phy_device *phydev = ptp_priv->phydev;
3493
3494	*nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI);
3495	if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID))
3496		return false;
3497
3498	*nsec = ((*nsec & 0x3fff) << 16);
3499	*nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO);
3500
3501	*sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI);
3502	*sec = *sec << 16;
3503	*sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO);
3504
3505	*seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
3506
3507	return true;
3508}
3509
3510static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv)
3511{
3512	u32 sec, nsec;
3513	u16 seq;
3514
3515	while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq))
3516		lan8814_match_tx_skb(ptp_priv, sec, nsec, seq);
3517}
3518
3519#define LAN8841_PTP_INT_STS			259
3520#define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT	BIT(13)
3521#define LAN8841_PTP_INT_STS_PTP_TX_TS_INT	BIT(12)
3522#define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT	BIT(2)
3523
3524static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv)
3525{
3526	struct phy_device *phydev = ptp_priv->phydev;
3527	int i;
3528
3529	for (i = 0; i < FIFO_SIZE; ++i)
3530		phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
3531
3532	phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
3533}
3534
3535#define LAN8841_PTP_GPIO_CAP_STS			506
3536#define LAN8841_PTP_GPIO_SEL				327
3537#define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio)		((gpio) << 8)
3538#define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP		498
3539#define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP		499
3540#define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP		500
3541#define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP		501
3542#define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP		502
3543#define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP		503
3544#define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP		504
3545#define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP		505
3546
3547static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv)
3548{
3549	struct phy_device *phydev = ptp_priv->phydev;
3550	struct ptp_clock_event ptp_event = {0};
3551	int pin, ret, tmp;
3552	s32 sec, nsec;
3553
3554	pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0);
3555	if (pin == -1)
3556		return;
3557
3558	tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS);
3559	if (tmp < 0)
3560		return;
3561
3562	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL,
3563			    LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin));
3564	if (ret)
3565		return;
3566
3567	mutex_lock(&ptp_priv->ptp_lock);
3568	if (tmp & BIT(pin)) {
3569		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP);
3570		sec <<= 16;
3571		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP);
3572
3573		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
3574		nsec <<= 16;
3575		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP);
3576	} else {
3577		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP);
3578		sec <<= 16;
3579		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP);
3580
3581		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
3582		nsec <<= 16;
3583		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP);
3584	}
3585	mutex_unlock(&ptp_priv->ptp_lock);
3586	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0);
3587	if (ret)
3588		return;
3589
3590	ptp_event.index = 0;
3591	ptp_event.timestamp = ktime_set(sec, nsec);
3592	ptp_event.type = PTP_CLOCK_EXTTS;
3593	ptp_clock_event(ptp_priv->ptp_clock, &ptp_event);
3594}
3595
3596static void lan8841_handle_ptp_interrupt(struct phy_device *phydev)
3597{
3598	struct kszphy_priv *priv = phydev->priv;
3599	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3600	u16 status;
3601
3602	do {
3603		status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
3604
3605		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT)
3606			lan8841_ptp_process_tx_ts(ptp_priv);
3607
3608		if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT)
3609			lan8841_gpio_process_cap(ptp_priv);
3610
3611		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) {
3612			lan8841_ptp_flush_fifo(ptp_priv);
3613			skb_queue_purge(&ptp_priv->tx_queue);
3614		}
3615
3616	} while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT |
3617			   LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT |
3618			   LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT));
3619}
3620
3621#define LAN8841_INTS_PTP		BIT(9)
3622
3623static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev)
3624{
3625	irqreturn_t ret = IRQ_NONE;
3626	int irq_status;
3627
3628	irq_status = phy_read(phydev, LAN8814_INTS);
3629	if (irq_status < 0) {
3630		phy_error(phydev);
3631		return IRQ_NONE;
3632	}
3633
3634	if (irq_status & LAN8814_INT_LINK) {
3635		phy_trigger_machine(phydev);
3636		ret = IRQ_HANDLED;
3637	}
3638
3639	if (irq_status & LAN8841_INTS_PTP) {
3640		lan8841_handle_ptp_interrupt(phydev);
3641		ret = IRQ_HANDLED;
3642	}
3643
3644	return ret;
3645}
3646
3647static int lan8841_ts_info(struct mii_timestamper *mii_ts,
3648			   struct ethtool_ts_info *info)
3649{
3650	struct kszphy_ptp_priv *ptp_priv;
3651
3652	ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3653
3654	info->phc_index = ptp_priv->ptp_clock ?
3655				ptp_clock_index(ptp_priv->ptp_clock) : -1;
3656	if (info->phc_index == -1)
3657		return 0;
3658
3659	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
3660				SOF_TIMESTAMPING_RX_HARDWARE |
3661				SOF_TIMESTAMPING_RAW_HARDWARE;
3662
3663	info->tx_types = (1 << HWTSTAMP_TX_OFF) |
3664			 (1 << HWTSTAMP_TX_ON) |
3665			 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
3666
3667	info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
3668			   (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
3669			   (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
3670			   (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
3671
3672	return 0;
3673}
3674
3675#define LAN8841_PTP_INT_EN			260
3676#define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN	BIT(13)
3677#define LAN8841_PTP_INT_EN_PTP_TX_TS_EN		BIT(12)
3678
3679static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv,
3680					  bool enable)
3681{
3682	struct phy_device *phydev = ptp_priv->phydev;
3683
3684	if (enable) {
3685		/* Enable interrupts on the TX side */
3686		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
3687			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3688			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN,
3689			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3690			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN);
3691
3692		/* Enable the modification of the frame on RX side,
3693		 * this will add the ns and 2 bits of sec in the reserved field
3694		 * of the PTP header
3695		 */
3696		phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3697			       LAN8841_PTP_RX_MODE,
3698			       LAN8841_PTP_INSERT_TS_EN |
3699			       LAN8841_PTP_INSERT_TS_32BIT,
3700			       LAN8841_PTP_INSERT_TS_EN |
3701			       LAN8841_PTP_INSERT_TS_32BIT);
3702
3703		ptp_schedule_worker(ptp_priv->ptp_clock, 0);
3704	} else {
3705		/* Disable interrupts on the TX side */
3706		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
3707			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3708			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0);
3709
3710		/* Disable modification of the RX frames */
3711		phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3712			       LAN8841_PTP_RX_MODE,
3713			       LAN8841_PTP_INSERT_TS_EN |
3714			       LAN8841_PTP_INSERT_TS_32BIT, 0);
3715
3716		ptp_cancel_worker_sync(ptp_priv->ptp_clock);
3717	}
3718}
3719
3720#define LAN8841_PTP_RX_TIMESTAMP_EN		379
3721#define LAN8841_PTP_TX_TIMESTAMP_EN		443
3722#define LAN8841_PTP_TX_MOD			445
3723
3724static int lan8841_hwtstamp(struct mii_timestamper *mii_ts,
3725			    struct kernel_hwtstamp_config *config,
3726			    struct netlink_ext_ack *extack)
3727{
3728	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3729	struct phy_device *phydev = ptp_priv->phydev;
3730	int txcfg = 0, rxcfg = 0;
3731	int pkt_ts_enable;
3732
3733	ptp_priv->hwts_tx_type = config->tx_type;
3734	ptp_priv->rx_filter = config->rx_filter;
3735
3736	switch (config->rx_filter) {
3737	case HWTSTAMP_FILTER_NONE:
3738		ptp_priv->layer = 0;
3739		ptp_priv->version = 0;
3740		break;
3741	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3742	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3743	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3744		ptp_priv->layer = PTP_CLASS_L4;
3745		ptp_priv->version = PTP_CLASS_V2;
3746		break;
3747	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3748	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3749	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3750		ptp_priv->layer = PTP_CLASS_L2;
3751		ptp_priv->version = PTP_CLASS_V2;
3752		break;
3753	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3754	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3755	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3756		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
3757		ptp_priv->version = PTP_CLASS_V2;
3758		break;
3759	default:
3760		return -ERANGE;
3761	}
3762
3763	/* Setup parsing of the frames and enable the timestamping for ptp
3764	 * frames
3765	 */
3766	if (ptp_priv->layer & PTP_CLASS_L2) {
3767		rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_;
3768		txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_;
3769	} else if (ptp_priv->layer & PTP_CLASS_L4) {
3770		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
3771		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
3772	}
3773
3774	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg);
3775	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg);
3776
3777	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
3778			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
3779	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
3780	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
3781
3782	/* Enable / disable of the TX timestamp in the SYNC frames */
3783	phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD,
3784		       PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
3785		       ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ?
3786				PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0);
3787
3788	/* Now enable/disable the timestamping */
3789	lan8841_ptp_enable_processing(ptp_priv,
3790				      config->rx_filter != HWTSTAMP_FILTER_NONE);
3791
3792	skb_queue_purge(&ptp_priv->tx_queue);
3793
3794	lan8841_ptp_flush_fifo(ptp_priv);
3795
3796	return 0;
3797}
3798
3799static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts,
3800			     struct sk_buff *skb, int type)
3801{
3802	struct kszphy_ptp_priv *ptp_priv =
3803			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3804	struct ptp_header *header = ptp_parse_header(skb, type);
3805	struct skb_shared_hwtstamps *shhwtstamps;
3806	struct timespec64 ts;
3807	unsigned long flags;
3808	u32 ts_header;
3809
3810	if (!header)
3811		return false;
3812
3813	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
3814	    type == PTP_CLASS_NONE)
3815		return false;
3816
3817	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
3818		return false;
3819
3820	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
3821	ts.tv_sec = ptp_priv->seconds;
3822	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
3823	ts_header = __be32_to_cpu(header->reserved2);
3824
3825	shhwtstamps = skb_hwtstamps(skb);
3826	memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3827
3828	/* Check for any wrap arounds for the second part */
3829	if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3)
3830		ts.tv_sec -= GENMASK(1, 0) + 1;
3831	else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0)
3832		ts.tv_sec += 1;
3833
3834	shhwtstamps->hwtstamp =
3835		ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30,
3836			  ts_header & GENMASK(29, 0));
3837	header->reserved2 = 0;
3838
3839	netif_rx(skb);
3840
3841	return true;
3842}
3843
3844#define LAN8841_EVENT_A		0
3845#define LAN8841_EVENT_B		1
3846#define LAN8841_PTP_LTC_TARGET_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 278 : 288)
3847#define LAN8841_PTP_LTC_TARGET_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 279 : 289)
3848#define LAN8841_PTP_LTC_TARGET_NS_HI(event)	((event) == LAN8841_EVENT_A ? 280 : 290)
3849#define LAN8841_PTP_LTC_TARGET_NS_LO(event)	((event) == LAN8841_EVENT_A ? 281 : 291)
3850
3851static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event,
3852				  s64 sec, u32 nsec)
3853{
3854	struct phy_device *phydev = ptp_priv->phydev;
3855	int ret;
3856
3857	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event),
3858			    upper_16_bits(sec));
3859	if (ret)
3860		return ret;
3861
3862	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event),
3863			    lower_16_bits(sec));
3864	if (ret)
3865		return ret;
3866
3867	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff,
3868			    upper_16_bits(nsec));
3869	if (ret)
3870		return ret;
3871
3872	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event),
3873			    lower_16_bits(nsec));
3874}
3875
3876#define LAN8841_BUFFER_TIME	2
3877
3878static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv,
3879				     const struct timespec64 *ts)
3880{
3881	return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A,
3882				      ts->tv_sec + LAN8841_BUFFER_TIME, 0);
3883}
3884
3885#define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 282 : 292)
3886#define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 283 : 293)
3887#define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event)	((event) == LAN8841_EVENT_A ? 284 : 294)
3888#define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event)	((event) == LAN8841_EVENT_A ? 285 : 295)
3889
3890static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event,
3891				  s64 sec, u32 nsec)
3892{
3893	struct phy_device *phydev = ptp_priv->phydev;
3894	int ret;
3895
3896	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event),
3897			    upper_16_bits(sec));
3898	if (ret)
3899		return ret;
3900
3901	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event),
3902			    lower_16_bits(sec));
3903	if (ret)
3904		return ret;
3905
3906	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff,
3907			    upper_16_bits(nsec));
3908	if (ret)
3909		return ret;
3910
3911	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event),
3912			     lower_16_bits(nsec));
3913}
3914
3915#define LAN8841_PTP_LTC_SET_SEC_HI	262
3916#define LAN8841_PTP_LTC_SET_SEC_MID	263
3917#define LAN8841_PTP_LTC_SET_SEC_LO	264
3918#define LAN8841_PTP_LTC_SET_NS_HI	265
3919#define LAN8841_PTP_LTC_SET_NS_LO	266
3920#define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD	BIT(4)
3921
3922static int lan8841_ptp_settime64(struct ptp_clock_info *ptp,
3923				 const struct timespec64 *ts)
3924{
3925	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
3926							ptp_clock_info);
3927	struct phy_device *phydev = ptp_priv->phydev;
3928	unsigned long flags;
3929	int ret;
3930
3931	/* Set the value to be stored */
3932	mutex_lock(&ptp_priv->ptp_lock);
3933	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec));
3934	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec));
3935	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff);
3936	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec));
3937	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff);
3938
3939	/* Set the command to load the LTC */
3940	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
3941		      LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD);
3942	ret = lan8841_ptp_update_target(ptp_priv, ts);
3943	mutex_unlock(&ptp_priv->ptp_lock);
3944
3945	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
3946	ptp_priv->seconds = ts->tv_sec;
3947	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
3948
3949	return ret;
3950}
3951
3952#define LAN8841_PTP_LTC_RD_SEC_HI	358
3953#define LAN8841_PTP_LTC_RD_SEC_MID	359
3954#define LAN8841_PTP_LTC_RD_SEC_LO	360
3955#define LAN8841_PTP_LTC_RD_NS_HI	361
3956#define LAN8841_PTP_LTC_RD_NS_LO	362
3957#define LAN8841_PTP_CMD_CTL_PTP_LTC_READ	BIT(3)
3958
3959static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp,
3960				 struct timespec64 *ts)
3961{
3962	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
3963							ptp_clock_info);
3964	struct phy_device *phydev = ptp_priv->phydev;
3965	time64_t s;
3966	s64 ns;
3967
3968	mutex_lock(&ptp_priv->ptp_lock);
3969	/* Issue the command to read the LTC */
3970	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
3971		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
3972
3973	/* Read the LTC */
3974	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
3975	s <<= 16;
3976	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
3977	s <<= 16;
3978	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
3979
3980	ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff;
3981	ns <<= 16;
3982	ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO);
3983	mutex_unlock(&ptp_priv->ptp_lock);
3984
3985	set_normalized_timespec64(ts, s, ns);
3986	return 0;
3987}
3988
3989static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp,
3990				   struct timespec64 *ts)
3991{
3992	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
3993							ptp_clock_info);
3994	struct phy_device *phydev = ptp_priv->phydev;
3995	time64_t s;
3996
3997	mutex_lock(&ptp_priv->ptp_lock);
3998	/* Issue the command to read the LTC */
3999	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4000		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
4001
4002	/* Read the LTC */
4003	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
4004	s <<= 16;
4005	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
4006	s <<= 16;
4007	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
4008	mutex_unlock(&ptp_priv->ptp_lock);
4009
4010	set_normalized_timespec64(ts, s, 0);
4011}
4012
4013#define LAN8841_PTP_LTC_STEP_ADJ_LO			276
4014#define LAN8841_PTP_LTC_STEP_ADJ_HI			275
4015#define LAN8841_PTP_LTC_STEP_ADJ_DIR			BIT(15)
4016#define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS	BIT(5)
4017#define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS	BIT(6)
4018
4019static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
4020{
4021	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4022							ptp_clock_info);
4023	struct phy_device *phydev = ptp_priv->phydev;
4024	struct timespec64 ts;
4025	bool add = true;
4026	u32 nsec;
4027	s32 sec;
4028	int ret;
4029
4030	/* The HW allows up to 15 sec to adjust the time, but here we limit to
4031	 * 10 sec the adjustment. The reason is, in case the adjustment is 14
4032	 * sec and 999999999 nsec, then we add 8ns to compansate the actual
4033	 * increment so the value can be bigger than 15 sec. Therefore limit the
4034	 * possible adjustments so we will not have these corner cases
4035	 */
4036	if (delta > 10000000000LL || delta < -10000000000LL) {
4037		/* The timeadjustment is too big, so fall back using set time */
4038		u64 now;
4039
4040		ptp->gettime64(ptp, &ts);
4041
4042		now = ktime_to_ns(timespec64_to_ktime(ts));
4043		ts = ns_to_timespec64(now + delta);
4044
4045		ptp->settime64(ptp, &ts);
4046		return 0;
4047	}
4048
4049	sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec);
4050	if (delta < 0 && nsec != 0) {
4051		/* It is not allowed to adjust low the nsec part, therefore
4052		 * subtract more from second part and add to nanosecond such
4053		 * that would roll over, so the second part will increase
4054		 */
4055		sec--;
4056		nsec = NSEC_PER_SEC - nsec;
4057	}
4058
4059	/* Calculate the adjustments and the direction */
4060	if (delta < 0)
4061		add = false;
4062
4063	if (nsec > 0)
4064		/* add 8 ns to cover the likely normal increment */
4065		nsec += 8;
4066
4067	if (nsec >= NSEC_PER_SEC) {
4068		/* carry into seconds */
4069		sec++;
4070		nsec -= NSEC_PER_SEC;
4071	}
4072
4073	mutex_lock(&ptp_priv->ptp_lock);
4074	if (sec) {
4075		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec);
4076		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4077			      add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0);
4078		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4079			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS);
4080	}
4081
4082	if (nsec) {
4083		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO,
4084			      nsec & 0xffff);
4085		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4086			      (nsec >> 16) & 0x3fff);
4087		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4088			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS);
4089	}
4090	mutex_unlock(&ptp_priv->ptp_lock);
4091
4092	/* Update the target clock */
4093	ptp->gettime64(ptp, &ts);
4094	mutex_lock(&ptp_priv->ptp_lock);
4095	ret = lan8841_ptp_update_target(ptp_priv, &ts);
4096	mutex_unlock(&ptp_priv->ptp_lock);
4097
4098	return ret;
4099}
4100
4101#define LAN8841_PTP_LTC_RATE_ADJ_HI		269
4102#define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR		BIT(15)
4103#define LAN8841_PTP_LTC_RATE_ADJ_LO		270
4104
4105static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
4106{
4107	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4108							ptp_clock_info);
4109	struct phy_device *phydev = ptp_priv->phydev;
4110	bool faster = true;
4111	u32 rate;
4112
4113	if (!scaled_ppm)
4114		return 0;
4115
4116	if (scaled_ppm < 0) {
4117		scaled_ppm = -scaled_ppm;
4118		faster = false;
4119	}
4120
4121	rate = LAN8814_1PPM_FORMAT * (upper_16_bits(scaled_ppm));
4122	rate += (LAN8814_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16;
4123
4124	mutex_lock(&ptp_priv->ptp_lock);
4125	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI,
4126		      faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff)
4127			     : upper_16_bits(rate) & 0x3fff);
4128	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate));
4129	mutex_unlock(&ptp_priv->ptp_lock);
4130
4131	return 0;
4132}
4133
4134static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
4135			      enum ptp_pin_function func, unsigned int chan)
4136{
4137	switch (func) {
4138	case PTP_PF_NONE:
4139	case PTP_PF_PEROUT:
4140	case PTP_PF_EXTTS:
4141		break;
4142	default:
4143		return -1;
4144	}
4145
4146	return 0;
4147}
4148
4149#define LAN8841_PTP_GPIO_NUM	10
4150#define LAN8841_GPIO_EN		128
4151#define LAN8841_GPIO_DIR	129
4152#define LAN8841_GPIO_BUF	130
4153
4154static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin)
4155{
4156	struct phy_device *phydev = ptp_priv->phydev;
4157	int ret;
4158
4159	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4160	if (ret)
4161		return ret;
4162
4163	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4164	if (ret)
4165		return ret;
4166
4167	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4168}
4169
4170static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin)
4171{
4172	struct phy_device *phydev = ptp_priv->phydev;
4173	int ret;
4174
4175	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4176	if (ret)
4177		return ret;
4178
4179	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4180	if (ret)
4181		return ret;
4182
4183	return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4184}
4185
4186#define LAN8841_GPIO_DATA_SEL1				131
4187#define LAN8841_GPIO_DATA_SEL2				132
4188#define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK	GENMASK(2, 0)
4189#define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A	1
4190#define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B	2
4191#define LAN8841_PTP_GENERAL_CONFIG			257
4192#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A	BIT(1)
4193#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B	BIT(3)
4194#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK	GENMASK(7, 4)
4195#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK	GENMASK(11, 8)
4196#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A		4
4197#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B		7
4198
4199static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4200				    u8 event)
4201{
4202	struct phy_device *phydev = ptp_priv->phydev;
4203	u16 tmp;
4204	int ret;
4205
4206	/* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO
4207	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4208	 * depending on the pin, it requires to read a different register
4209	 */
4210	if (pin < 5) {
4211		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin);
4212		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp);
4213	} else {
4214		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5));
4215		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp);
4216	}
4217	if (ret)
4218		return ret;
4219
4220	/* Disable the event */
4221	if (event == LAN8841_EVENT_A)
4222		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4223		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK;
4224	else
4225		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4226		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK;
4227	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp);
4228}
4229
4230static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4231				    u8 event, int pulse_width)
4232{
4233	struct phy_device *phydev = ptp_priv->phydev;
4234	u16 tmp;
4235	int ret;
4236
4237	/* Enable the event */
4238	if (event == LAN8841_EVENT_A)
4239		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
4240				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4241				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK,
4242				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4243				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A);
4244	else
4245		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
4246				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4247				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK,
4248				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4249				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B);
4250	if (ret)
4251		return ret;
4252
4253	/* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO
4254	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4255	 * depending on the pin, it requires to read a different register
4256	 */
4257	if (event == LAN8841_EVENT_A)
4258		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A;
4259	else
4260		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B;
4261
4262	if (pin < 5)
4263		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1,
4264				       tmp << (3 * pin));
4265	else
4266		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2,
4267				       tmp << (3 * (pin - 5)));
4268
4269	return ret;
4270}
4271
4272#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS	13
4273#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS	12
4274#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS	11
4275#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS	10
4276#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS	9
4277#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS	8
4278#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US	7
4279#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US	6
4280#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US	5
4281#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US	4
4282#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US	3
4283#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US	2
4284#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS	1
4285#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS	0
4286
4287static int lan8841_ptp_perout(struct ptp_clock_info *ptp,
4288			      struct ptp_clock_request *rq, int on)
4289{
4290	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4291							ptp_clock_info);
4292	struct phy_device *phydev = ptp_priv->phydev;
4293	struct timespec64 ts_on, ts_period;
4294	s64 on_nsec, period_nsec;
4295	int pulse_width;
4296	int pin;
4297	int ret;
4298
4299	if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE)
4300		return -EOPNOTSUPP;
4301
4302	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index);
4303	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
4304		return -EINVAL;
4305
4306	if (!on) {
4307		ret = lan8841_ptp_perout_off(ptp_priv, pin);
4308		if (ret)
4309			return ret;
4310
4311		return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin);
4312	}
4313
4314	ts_on.tv_sec = rq->perout.on.sec;
4315	ts_on.tv_nsec = rq->perout.on.nsec;
4316	on_nsec = timespec64_to_ns(&ts_on);
4317
4318	ts_period.tv_sec = rq->perout.period.sec;
4319	ts_period.tv_nsec = rq->perout.period.nsec;
4320	period_nsec = timespec64_to_ns(&ts_period);
4321
4322	if (period_nsec < 200) {
4323		pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
4324				    phydev_name(phydev));
4325		return -EOPNOTSUPP;
4326	}
4327
4328	if (on_nsec >= period_nsec) {
4329		pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
4330				    phydev_name(phydev));
4331		return -EINVAL;
4332	}
4333
4334	switch (on_nsec) {
4335	case 200000000:
4336		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
4337		break;
4338	case 100000000:
4339		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
4340		break;
4341	case 50000000:
4342		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
4343		break;
4344	case 10000000:
4345		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
4346		break;
4347	case 5000000:
4348		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
4349		break;
4350	case 1000000:
4351		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
4352		break;
4353	case 500000:
4354		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
4355		break;
4356	case 100000:
4357		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
4358		break;
4359	case 50000:
4360		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
4361		break;
4362	case 10000:
4363		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
4364		break;
4365	case 5000:
4366		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
4367		break;
4368	case 1000:
4369		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
4370		break;
4371	case 500:
4372		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
4373		break;
4374	case 100:
4375		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
4376		break;
4377	default:
4378		pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
4379				    phydev_name(phydev));
4380		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
4381		break;
4382	}
4383
4384	mutex_lock(&ptp_priv->ptp_lock);
4385	ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec,
4386				     rq->perout.start.nsec);
4387	mutex_unlock(&ptp_priv->ptp_lock);
4388	if (ret)
4389		return ret;
4390
4391	ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec,
4392				     rq->perout.period.nsec);
4393	if (ret)
4394		return ret;
4395
4396	ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A,
4397				       pulse_width);
4398	if (ret)
4399		return ret;
4400
4401	ret = lan8841_ptp_perout_on(ptp_priv, pin);
4402	if (ret)
4403		lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A);
4404
4405	return ret;
4406}
4407
4408#define LAN8841_PTP_GPIO_CAP_EN			496
4409#define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio)	(BIT(gpio))
4410#define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio)	(BIT(gpio) << 8)
4411#define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN	BIT(2)
4412
4413static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin,
4414				u32 flags)
4415{
4416	struct phy_device *phydev = ptp_priv->phydev;
4417	u16 tmp = 0;
4418	int ret;
4419
4420	/* Set GPIO to be intput */
4421	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4422	if (ret)
4423		return ret;
4424
4425	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4426	if (ret)
4427		return ret;
4428
4429	/* Enable capture on the edges of the pin */
4430	if (flags & PTP_RISING_EDGE)
4431		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
4432	if (flags & PTP_FALLING_EDGE)
4433		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
4434	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp);
4435	if (ret)
4436		return ret;
4437
4438	/* Enable interrupt */
4439	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4440			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
4441			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN);
4442}
4443
4444static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin)
4445{
4446	struct phy_device *phydev = ptp_priv->phydev;
4447	int ret;
4448
4449	/* Set GPIO to be output */
4450	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4451	if (ret)
4452		return ret;
4453
4454	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4455	if (ret)
4456		return ret;
4457
4458	/* Disable capture on both of the edges */
4459	ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN,
4460			     LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) |
4461			     LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin),
4462			     0);
4463	if (ret)
4464		return ret;
4465
4466	/* Disable interrupt */
4467	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4468			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
4469			      0);
4470}
4471
4472static int lan8841_ptp_extts(struct ptp_clock_info *ptp,
4473			     struct ptp_clock_request *rq, int on)
4474{
4475	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4476							ptp_clock_info);
4477	int pin;
4478	int ret;
4479
4480	/* Reject requests with unsupported flags */
4481	if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
4482				PTP_EXTTS_EDGES |
4483				PTP_STRICT_FLAGS))
4484		return -EOPNOTSUPP;
4485
4486	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index);
4487	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
4488		return -EINVAL;
4489
4490	mutex_lock(&ptp_priv->ptp_lock);
4491	if (on)
4492		ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags);
4493	else
4494		ret = lan8841_ptp_extts_off(ptp_priv, pin);
4495	mutex_unlock(&ptp_priv->ptp_lock);
4496
4497	return ret;
4498}
4499
4500static int lan8841_ptp_enable(struct ptp_clock_info *ptp,
4501			      struct ptp_clock_request *rq, int on)
4502{
4503	switch (rq->type) {
4504	case PTP_CLK_REQ_EXTTS:
4505		return lan8841_ptp_extts(ptp, rq, on);
4506	case PTP_CLK_REQ_PEROUT:
4507		return lan8841_ptp_perout(ptp, rq, on);
4508	default:
4509		return -EOPNOTSUPP;
4510	}
4511
4512	return 0;
4513}
4514
4515static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp)
4516{
4517	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4518							ptp_clock_info);
4519	struct timespec64 ts;
4520	unsigned long flags;
4521
4522	lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts);
4523
4524	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
4525	ptp_priv->seconds = ts.tv_sec;
4526	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
4527
4528	return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY);
4529}
4530
4531static struct ptp_clock_info lan8841_ptp_clock_info = {
4532	.owner		= THIS_MODULE,
4533	.name		= "lan8841 ptp",
4534	.max_adj	= 31249999,
4535	.gettime64	= lan8841_ptp_gettime64,
4536	.settime64	= lan8841_ptp_settime64,
4537	.adjtime	= lan8841_ptp_adjtime,
4538	.adjfine	= lan8841_ptp_adjfine,
4539	.verify         = lan8841_ptp_verify,
4540	.enable         = lan8841_ptp_enable,
4541	.do_aux_work	= lan8841_ptp_do_aux_work,
4542	.n_per_out      = LAN8841_PTP_GPIO_NUM,
4543	.n_ext_ts       = LAN8841_PTP_GPIO_NUM,
4544	.n_pins         = LAN8841_PTP_GPIO_NUM,
4545};
4546
4547#define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3
4548#define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0)
4549
4550static int lan8841_probe(struct phy_device *phydev)
4551{
4552	struct kszphy_ptp_priv *ptp_priv;
4553	struct kszphy_priv *priv;
4554	int err;
4555
4556	err = kszphy_probe(phydev);
4557	if (err)
4558		return err;
4559
4560	if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4561			 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) &
4562	    LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN)
4563		phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID;
4564
4565	/* Register the clock */
4566	if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
4567		return 0;
4568
4569	priv = phydev->priv;
4570	ptp_priv = &priv->ptp_priv;
4571
4572	ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev,
4573					    LAN8841_PTP_GPIO_NUM,
4574					    sizeof(*ptp_priv->pin_config),
4575					    GFP_KERNEL);
4576	if (!ptp_priv->pin_config)
4577		return -ENOMEM;
4578
4579	for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) {
4580		struct ptp_pin_desc *p = &ptp_priv->pin_config[i];
4581
4582		snprintf(p->name, sizeof(p->name), "pin%d", i);
4583		p->index = i;
4584		p->func = PTP_PF_NONE;
4585	}
4586
4587	ptp_priv->ptp_clock_info = lan8841_ptp_clock_info;
4588	ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config;
4589	ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info,
4590						 &phydev->mdio.dev);
4591	if (IS_ERR(ptp_priv->ptp_clock)) {
4592		phydev_err(phydev, "ptp_clock_register failed: %lu\n",
4593			   PTR_ERR(ptp_priv->ptp_clock));
4594		return -EINVAL;
4595	}
4596
4597	if (!ptp_priv->ptp_clock)
4598		return 0;
4599
4600	/* Initialize the SW */
4601	skb_queue_head_init(&ptp_priv->tx_queue);
4602	ptp_priv->phydev = phydev;
4603	mutex_init(&ptp_priv->ptp_lock);
4604	spin_lock_init(&ptp_priv->seconds_lock);
4605
4606	ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp;
4607	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
4608	ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp;
4609	ptp_priv->mii_ts.ts_info = lan8841_ts_info;
4610
4611	phydev->mii_ts = &ptp_priv->mii_ts;
4612
4613	return 0;
4614}
4615
4616static int lan8841_suspend(struct phy_device *phydev)
4617{
4618	struct kszphy_priv *priv = phydev->priv;
4619	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
4620
4621	ptp_cancel_worker_sync(ptp_priv->ptp_clock);
4622
4623	return genphy_suspend(phydev);
4624}
4625
4626static struct phy_driver ksphy_driver[] = {
4627{
4628	.phy_id		= PHY_ID_KS8737,
4629	.phy_id_mask	= MICREL_PHY_ID_MASK,
4630	.name		= "Micrel KS8737",
4631	/* PHY_BASIC_FEATURES */
4632	.driver_data	= &ks8737_type,
4633	.probe		= kszphy_probe,
4634	.config_init	= kszphy_config_init,
4635	.config_intr	= kszphy_config_intr,
4636	.handle_interrupt = kszphy_handle_interrupt,
4637	.suspend	= kszphy_suspend,
4638	.resume		= kszphy_resume,
 
 
 
4639}, {
4640	.phy_id		= PHY_ID_KSZ8021,
4641	.phy_id_mask	= 0x00ffffff,
4642	.name		= "Micrel KSZ8021 or KSZ8031",
4643	/* PHY_BASIC_FEATURES */
4644	.driver_data	= &ksz8021_type,
4645	.probe		= kszphy_probe,
4646	.config_init	= kszphy_config_init,
 
 
 
4647	.config_intr	= kszphy_config_intr,
4648	.handle_interrupt = kszphy_handle_interrupt,
4649	.get_sset_count = kszphy_get_sset_count,
4650	.get_strings	= kszphy_get_strings,
4651	.get_stats	= kszphy_get_stats,
4652	.suspend	= kszphy_suspend,
4653	.resume		= kszphy_resume,
4654}, {
4655	.phy_id		= PHY_ID_KSZ8031,
4656	.phy_id_mask	= 0x00ffffff,
4657	.name		= "Micrel KSZ8031",
4658	/* PHY_BASIC_FEATURES */
4659	.driver_data	= &ksz8021_type,
4660	.probe		= kszphy_probe,
4661	.config_init	= kszphy_config_init,
 
 
 
4662	.config_intr	= kszphy_config_intr,
4663	.handle_interrupt = kszphy_handle_interrupt,
4664	.get_sset_count = kszphy_get_sset_count,
4665	.get_strings	= kszphy_get_strings,
4666	.get_stats	= kszphy_get_stats,
4667	.suspend	= kszphy_suspend,
4668	.resume		= kszphy_resume,
4669}, {
4670	.phy_id		= PHY_ID_KSZ8041,
4671	.phy_id_mask	= MICREL_PHY_ID_MASK,
4672	.name		= "Micrel KSZ8041",
4673	/* PHY_BASIC_FEATURES */
4674	.driver_data	= &ksz8041_type,
4675	.probe		= kszphy_probe,
4676	.config_init	= ksz8041_config_init,
4677	.config_aneg	= ksz8041_config_aneg,
 
 
4678	.config_intr	= kszphy_config_intr,
4679	.handle_interrupt = kszphy_handle_interrupt,
4680	.get_sset_count = kszphy_get_sset_count,
4681	.get_strings	= kszphy_get_strings,
4682	.get_stats	= kszphy_get_stats,
4683	/* No suspend/resume callbacks because of errata DS80000700A,
4684	 * receiver error following software power down.
4685	 */
4686}, {
4687	.phy_id		= PHY_ID_KSZ8041RNLI,
4688	.phy_id_mask	= MICREL_PHY_ID_MASK,
4689	.name		= "Micrel KSZ8041RNLI",
4690	/* PHY_BASIC_FEATURES */
4691	.driver_data	= &ksz8041_type,
4692	.probe		= kszphy_probe,
4693	.config_init	= kszphy_config_init,
 
 
 
4694	.config_intr	= kszphy_config_intr,
4695	.handle_interrupt = kszphy_handle_interrupt,
4696	.get_sset_count = kszphy_get_sset_count,
4697	.get_strings	= kszphy_get_strings,
4698	.get_stats	= kszphy_get_stats,
4699	.suspend	= kszphy_suspend,
4700	.resume		= kszphy_resume,
4701}, {
 
 
4702	.name		= "Micrel KSZ8051",
4703	/* PHY_BASIC_FEATURES */
4704	.driver_data	= &ksz8051_type,
4705	.probe		= kszphy_probe,
4706	.config_init	= kszphy_config_init,
 
 
 
4707	.config_intr	= kszphy_config_intr,
4708	.handle_interrupt = kszphy_handle_interrupt,
4709	.get_sset_count = kszphy_get_sset_count,
4710	.get_strings	= kszphy_get_strings,
4711	.get_stats	= kszphy_get_stats,
4712	.match_phy_device = ksz8051_match_phy_device,
4713	.suspend	= kszphy_suspend,
4714	.resume		= kszphy_resume,
4715}, {
4716	.phy_id		= PHY_ID_KSZ8001,
4717	.name		= "Micrel KSZ8001 or KS8721",
4718	.phy_id_mask	= 0x00fffffc,
4719	/* PHY_BASIC_FEATURES */
4720	.driver_data	= &ksz8041_type,
4721	.probe		= kszphy_probe,
4722	.config_init	= kszphy_config_init,
 
 
4723	.config_intr	= kszphy_config_intr,
4724	.handle_interrupt = kszphy_handle_interrupt,
4725	.get_sset_count = kszphy_get_sset_count,
4726	.get_strings	= kszphy_get_strings,
4727	.get_stats	= kszphy_get_stats,
4728	.suspend	= kszphy_suspend,
4729	.resume		= kszphy_resume,
4730}, {
4731	.phy_id		= PHY_ID_KSZ8081,
4732	.name		= "Micrel KSZ8081 or KSZ8091",
4733	.phy_id_mask	= MICREL_PHY_ID_MASK,
4734	.flags		= PHY_POLL_CABLE_TEST,
4735	/* PHY_BASIC_FEATURES */
4736	.driver_data	= &ksz8081_type,
4737	.probe		= kszphy_probe,
4738	.config_init	= ksz8081_config_init,
4739	.soft_reset	= genphy_soft_reset,
4740	.config_aneg	= ksz8081_config_aneg,
4741	.read_status	= ksz8081_read_status,
4742	.config_intr	= kszphy_config_intr,
4743	.handle_interrupt = kszphy_handle_interrupt,
4744	.get_sset_count = kszphy_get_sset_count,
4745	.get_strings	= kszphy_get_strings,
4746	.get_stats	= kszphy_get_stats,
4747	.suspend	= kszphy_suspend,
4748	.resume		= kszphy_resume,
4749	.cable_test_start	= ksz886x_cable_test_start,
4750	.cable_test_get_status	= ksz886x_cable_test_get_status,
4751}, {
4752	.phy_id		= PHY_ID_KSZ8061,
4753	.name		= "Micrel KSZ8061",
4754	.phy_id_mask	= MICREL_PHY_ID_MASK,
4755	/* PHY_BASIC_FEATURES */
4756	.probe		= kszphy_probe,
4757	.config_init	= ksz8061_config_init,
 
 
 
4758	.config_intr	= kszphy_config_intr,
4759	.handle_interrupt = kszphy_handle_interrupt,
4760	.suspend	= kszphy_suspend,
4761	.resume		= kszphy_resume,
4762}, {
4763	.phy_id		= PHY_ID_KSZ9021,
4764	.phy_id_mask	= 0x000ffffe,
4765	.name		= "Micrel KSZ9021 Gigabit PHY",
4766	/* PHY_GBIT_FEATURES */
4767	.driver_data	= &ksz9021_type,
4768	.probe		= kszphy_probe,
4769	.get_features	= ksz9031_get_features,
4770	.config_init	= ksz9021_config_init,
4771	.config_intr	= kszphy_config_intr,
4772	.handle_interrupt = kszphy_handle_interrupt,
4773	.get_sset_count = kszphy_get_sset_count,
4774	.get_strings	= kszphy_get_strings,
4775	.get_stats	= kszphy_get_stats,
4776	.suspend	= kszphy_suspend,
4777	.resume		= kszphy_resume,
4778	.read_mmd	= genphy_read_mmd_unsupported,
4779	.write_mmd	= genphy_write_mmd_unsupported,
4780}, {
4781	.phy_id		= PHY_ID_KSZ9031,
4782	.phy_id_mask	= MICREL_PHY_ID_MASK,
4783	.name		= "Micrel KSZ9031 Gigabit PHY",
4784	.flags		= PHY_POLL_CABLE_TEST,
4785	.driver_data	= &ksz9021_type,
4786	.probe		= kszphy_probe,
4787	.get_features	= ksz9031_get_features,
4788	.config_init	= ksz9031_config_init,
4789	.soft_reset	= genphy_soft_reset,
4790	.read_status	= ksz9031_read_status,
4791	.config_intr	= kszphy_config_intr,
4792	.handle_interrupt = kszphy_handle_interrupt,
4793	.get_sset_count = kszphy_get_sset_count,
4794	.get_strings	= kszphy_get_strings,
4795	.get_stats	= kszphy_get_stats,
4796	.suspend	= kszphy_suspend,
4797	.resume		= kszphy_resume,
4798	.cable_test_start	= ksz9x31_cable_test_start,
4799	.cable_test_get_status	= ksz9x31_cable_test_get_status,
4800}, {
4801	.phy_id		= PHY_ID_LAN8814,
4802	.phy_id_mask	= MICREL_PHY_ID_MASK,
4803	.name		= "Microchip INDY Gigabit Quad PHY",
4804	.flags          = PHY_POLL_CABLE_TEST,
4805	.config_init	= lan8814_config_init,
4806	.driver_data	= &lan8814_type,
4807	.probe		= lan8814_probe,
4808	.soft_reset	= genphy_soft_reset,
4809	.read_status	= ksz9031_read_status,
4810	.get_sset_count	= kszphy_get_sset_count,
4811	.get_strings	= kszphy_get_strings,
4812	.get_stats	= kszphy_get_stats,
4813	.suspend	= genphy_suspend,
4814	.resume		= kszphy_resume,
4815	.config_intr	= lan8814_config_intr,
4816	.handle_interrupt = lan8814_handle_interrupt,
4817	.cable_test_start	= lan8814_cable_test_start,
4818	.cable_test_get_status	= ksz886x_cable_test_get_status,
4819}, {
4820	.phy_id		= PHY_ID_LAN8804,
4821	.phy_id_mask	= MICREL_PHY_ID_MASK,
4822	.name		= "Microchip LAN966X Gigabit PHY",
4823	.config_init	= lan8804_config_init,
4824	.driver_data	= &ksz9021_type,
4825	.probe		= kszphy_probe,
4826	.soft_reset	= genphy_soft_reset,
4827	.read_status	= ksz9031_read_status,
4828	.get_sset_count	= kszphy_get_sset_count,
4829	.get_strings	= kszphy_get_strings,
4830	.get_stats	= kszphy_get_stats,
4831	.suspend	= genphy_suspend,
4832	.resume		= kszphy_resume,
4833	.config_intr	= lan8804_config_intr,
4834	.handle_interrupt = lan8804_handle_interrupt,
4835}, {
4836	.phy_id		= PHY_ID_LAN8841,
4837	.phy_id_mask	= MICREL_PHY_ID_MASK,
4838	.name		= "Microchip LAN8841 Gigabit PHY",
4839	.flags		= PHY_POLL_CABLE_TEST,
4840	.driver_data	= &lan8841_type,
4841	.config_init	= lan8841_config_init,
4842	.probe		= lan8841_probe,
4843	.soft_reset	= genphy_soft_reset,
4844	.config_intr	= lan8841_config_intr,
4845	.handle_interrupt = lan8841_handle_interrupt,
4846	.get_sset_count = kszphy_get_sset_count,
4847	.get_strings	= kszphy_get_strings,
4848	.get_stats	= kszphy_get_stats,
4849	.suspend	= lan8841_suspend,
4850	.resume		= genphy_resume,
4851	.cable_test_start	= lan8814_cable_test_start,
4852	.cable_test_get_status	= ksz886x_cable_test_get_status,
4853}, {
4854	.phy_id		= PHY_ID_KSZ9131,
4855	.phy_id_mask	= MICREL_PHY_ID_MASK,
4856	.name		= "Microchip KSZ9131 Gigabit PHY",
4857	/* PHY_GBIT_FEATURES */
4858	.flags		= PHY_POLL_CABLE_TEST,
4859	.driver_data	= &ksz9131_type,
4860	.probe		= kszphy_probe,
4861	.soft_reset	= genphy_soft_reset,
4862	.config_init	= ksz9131_config_init,
4863	.config_intr	= kszphy_config_intr,
4864	.config_aneg	= ksz9131_config_aneg,
4865	.read_status	= ksz9131_read_status,
4866	.handle_interrupt = kszphy_handle_interrupt,
4867	.get_sset_count = kszphy_get_sset_count,
4868	.get_strings	= kszphy_get_strings,
4869	.get_stats	= kszphy_get_stats,
4870	.suspend	= kszphy_suspend,
4871	.resume		= kszphy_resume,
4872	.cable_test_start	= ksz9x31_cable_test_start,
4873	.cable_test_get_status	= ksz9x31_cable_test_get_status,
4874	.get_features	= ksz9477_get_features,
4875}, {
4876	.phy_id		= PHY_ID_KSZ8873MLL,
4877	.phy_id_mask	= MICREL_PHY_ID_MASK,
4878	.name		= "Micrel KSZ8873MLL Switch",
4879	/* PHY_BASIC_FEATURES */
 
4880	.config_init	= kszphy_config_init,
4881	.config_aneg	= ksz8873mll_config_aneg,
4882	.read_status	= ksz8873mll_read_status,
4883	.suspend	= genphy_suspend,
4884	.resume		= genphy_resume,
 
4885}, {
4886	.phy_id		= PHY_ID_KSZ886X,
4887	.phy_id_mask	= MICREL_PHY_ID_MASK,
4888	.name		= "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
4889	.driver_data	= &ksz886x_type,
4890	/* PHY_BASIC_FEATURES */
4891	.flags		= PHY_POLL_CABLE_TEST,
4892	.config_init	= kszphy_config_init,
4893	.config_aneg	= ksz886x_config_aneg,
4894	.read_status	= ksz886x_read_status,
4895	.suspend	= genphy_suspend,
4896	.resume		= genphy_resume,
4897	.cable_test_start	= ksz886x_cable_test_start,
4898	.cable_test_get_status	= ksz886x_cable_test_get_status,
4899}, {
4900	.name		= "Micrel KSZ87XX Switch",
4901	/* PHY_BASIC_FEATURES */
4902	.config_init	= kszphy_config_init,
4903	.match_phy_device = ksz8795_match_phy_device,
 
4904	.suspend	= genphy_suspend,
4905	.resume		= genphy_resume,
4906}, {
4907	.phy_id		= PHY_ID_KSZ9477,
4908	.phy_id_mask	= MICREL_PHY_ID_MASK,
4909	.name		= "Microchip KSZ9477",
4910	/* PHY_GBIT_FEATURES */
4911	.config_init	= ksz9477_config_init,
4912	.config_intr	= kszphy_config_intr,
4913	.handle_interrupt = kszphy_handle_interrupt,
4914	.suspend	= genphy_suspend,
4915	.resume		= genphy_resume,
4916	.get_features	= ksz9477_get_features,
4917} };
4918
4919module_phy_driver(ksphy_driver);
 
 
 
 
 
 
 
 
 
 
 
 
 
4920
4921MODULE_DESCRIPTION("Micrel PHY driver");
4922MODULE_AUTHOR("David J. Choi");
4923MODULE_LICENSE("GPL");
4924
4925static struct mdio_device_id __maybe_unused micrel_tbl[] = {
4926	{ PHY_ID_KSZ9021, 0x000ffffe },
4927	{ PHY_ID_KSZ9031, MICREL_PHY_ID_MASK },
4928	{ PHY_ID_KSZ9131, MICREL_PHY_ID_MASK },
4929	{ PHY_ID_KSZ8001, 0x00fffffc },
4930	{ PHY_ID_KS8737, MICREL_PHY_ID_MASK },
4931	{ PHY_ID_KSZ8021, 0x00ffffff },
4932	{ PHY_ID_KSZ8031, 0x00ffffff },
4933	{ PHY_ID_KSZ8041, MICREL_PHY_ID_MASK },
4934	{ PHY_ID_KSZ8051, MICREL_PHY_ID_MASK },
4935	{ PHY_ID_KSZ8061, MICREL_PHY_ID_MASK },
4936	{ PHY_ID_KSZ8081, MICREL_PHY_ID_MASK },
4937	{ PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK },
4938	{ PHY_ID_KSZ886X, MICREL_PHY_ID_MASK },
4939	{ PHY_ID_LAN8814, MICREL_PHY_ID_MASK },
4940	{ PHY_ID_LAN8804, MICREL_PHY_ID_MASK },
4941	{ PHY_ID_LAN8841, MICREL_PHY_ID_MASK },
4942	{ }
4943};
4944
4945MODULE_DEVICE_TABLE(mdio, micrel_tbl);
v3.15
 
  1/*
  2 * drivers/net/phy/micrel.c
  3 *
  4 * Driver for Micrel PHYs
  5 *
  6 * Author: David J. Choi
  7 *
  8 * Copyright (c) 2010-2013 Micrel, Inc.
  9 *
 10 * This program is free software; you can redistribute  it and/or modify it
 11 * under  the terms of  the GNU General  Public License as published by the
 12 * Free Software Foundation;  either version 2 of the  License, or (at your
 13 * option) any later version.
 14 *
 15 * Support : Micrel Phys:
 16 *		Giga phys: ksz9021, ksz9031
 17 *		100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
 18 *			   ksz8021, ksz8031, ksz8051,
 19 *			   ksz8081, ksz8091,
 20 *			   ksz8061,
 21 *		Switch : ksz8873, ksz886x
 
 22 */
 23
 
 
 24#include <linux/kernel.h>
 25#include <linux/module.h>
 26#include <linux/phy.h>
 27#include <linux/micrel_phy.h>
 28#include <linux/of.h>
 
 
 
 
 
 
 
 29
 30/* Operation Mode Strap Override */
 31#define MII_KSZPHY_OMSO				0x16
 32#define KSZPHY_OMSO_B_CAST_OFF			(1 << 9)
 33#define KSZPHY_OMSO_RMII_OVERRIDE		(1 << 1)
 34#define KSZPHY_OMSO_MII_OVERRIDE		(1 << 0)
 
 
 35
 36/* general Interrupt control/status reg in vendor specific block. */
 37#define MII_KSZPHY_INTCS			0x1B
 38#define	KSZPHY_INTCS_JABBER			(1 << 15)
 39#define	KSZPHY_INTCS_RECEIVE_ERR		(1 << 14)
 40#define	KSZPHY_INTCS_PAGE_RECEIVE		(1 << 13)
 41#define	KSZPHY_INTCS_PARELLEL			(1 << 12)
 42#define	KSZPHY_INTCS_LINK_PARTNER_ACK		(1 << 11)
 43#define	KSZPHY_INTCS_LINK_DOWN			(1 << 10)
 44#define	KSZPHY_INTCS_REMOTE_FAULT		(1 << 9)
 45#define	KSZPHY_INTCS_LINK_UP			(1 << 8)
 46#define	KSZPHY_INTCS_ALL			(KSZPHY_INTCS_LINK_UP |\
 47						KSZPHY_INTCS_LINK_DOWN)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 48
 49/* general PHY control reg in vendor specific block. */
 50#define	MII_KSZPHY_CTRL			0x1F
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 51/* bitmap of PHY register to set interrupt mode */
 52#define KSZPHY_CTRL_INT_ACTIVE_HIGH		(1 << 9)
 53#define KSZ9021_CTRL_INT_ACTIVE_HIGH		(1 << 14)
 54#define KS8737_CTRL_INT_ACTIVE_HIGH		(1 << 14)
 55#define KSZ8051_RMII_50MHZ_CLK			(1 << 7)
 
 
 
 56
 57/* Write/read to/from extended registers */
 58#define MII_KSZPHY_EXTREG                       0x0b
 59#define KSZPHY_EXTREG_WRITE                     0x8000
 60
 61#define MII_KSZPHY_EXTREG_WRITE                 0x0c
 62#define MII_KSZPHY_EXTREG_READ                  0x0d
 63
 64/* Extended registers */
 65#define MII_KSZPHY_CLK_CONTROL_PAD_SKEW         0x104
 66#define MII_KSZPHY_RX_DATA_PAD_SKEW             0x105
 67#define MII_KSZPHY_TX_DATA_PAD_SKEW             0x106
 68
 69#define PS_TO_REG				200
 
 70
 71static int ksz_config_flags(struct phy_device *phydev)
 72{
 73	int regval;
 74
 75	if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
 76		regval = phy_read(phydev, MII_KSZPHY_CTRL);
 77		regval |= KSZ8051_RMII_50MHZ_CLK;
 78		return phy_write(phydev, MII_KSZPHY_CTRL, regval);
 79	}
 80	return 0;
 81}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 82
 83static int kszphy_extended_write(struct phy_device *phydev,
 84				u32 regnum, u16 val)
 85{
 86	phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
 87	return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
 88}
 89
 90static int kszphy_extended_read(struct phy_device *phydev,
 91				u32 regnum)
 92{
 93	phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
 94	return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
 95}
 96
 97static int kszphy_ack_interrupt(struct phy_device *phydev)
 98{
 99	/* bit[7..0] int status, which is a read and clear register. */
100	int rc;
101
102	rc = phy_read(phydev, MII_KSZPHY_INTCS);
103
104	return (rc < 0) ? rc : 0;
105}
106
107static int kszphy_set_interrupt(struct phy_device *phydev)
108{
109	int temp;
110	temp = (PHY_INTERRUPT_ENABLED == phydev->interrupts) ?
111		KSZPHY_INTCS_ALL : 0;
112	return phy_write(phydev, MII_KSZPHY_INTCS, temp);
113}
114
115static int kszphy_config_intr(struct phy_device *phydev)
116{
117	int temp, rc;
 
118
119	/* set the interrupt pin active low */
120	temp = phy_read(phydev, MII_KSZPHY_CTRL);
121	temp &= ~KSZPHY_CTRL_INT_ACTIVE_HIGH;
 
 
122	phy_write(phydev, MII_KSZPHY_CTRL, temp);
123	rc = kszphy_set_interrupt(phydev);
124	return rc < 0 ? rc : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125}
126
127static int ksz9021_config_intr(struct phy_device *phydev)
128{
129	int temp, rc;
 
 
 
 
 
 
 
 
 
 
 
130
131	/* set the interrupt pin active low */
132	temp = phy_read(phydev, MII_KSZPHY_CTRL);
133	temp &= ~KSZ9021_CTRL_INT_ACTIVE_HIGH;
134	phy_write(phydev, MII_KSZPHY_CTRL, temp);
135	rc = kszphy_set_interrupt(phydev);
136	return rc < 0 ? rc : 0;
137}
138
139static int ks8737_config_intr(struct phy_device *phydev)
140{
141	int temp, rc;
 
 
 
 
142
143	/* set the interrupt pin active low */
144	temp = phy_read(phydev, MII_KSZPHY_CTRL);
145	temp &= ~KS8737_CTRL_INT_ACTIVE_HIGH;
146	phy_write(phydev, MII_KSZPHY_CTRL, temp);
147	rc = kszphy_set_interrupt(phydev);
148	return rc < 0 ? rc : 0;
149}
150
151static int kszphy_setup_led(struct phy_device *phydev,
152			    unsigned int reg, unsigned int shift)
153{
 
154
155	struct device *dev = &phydev->dev;
156	struct device_node *of_node = dev->of_node;
157	int rc, temp;
158	u32 val;
159
160	if (!of_node && dev->parent->of_node)
161		of_node = dev->parent->of_node;
162
163	if (of_property_read_u32(of_node, "micrel,led-mode", &val))
164		return 0;
165
166	temp = phy_read(phydev, reg);
167	if (temp < 0)
168		return temp;
 
 
169
170	temp &= ~(3 << shift);
171	temp |= val << shift;
172	rc = phy_write(phydev, reg, temp);
 
 
 
 
 
 
 
 
 
 
 
 
 
173
174	return rc < 0 ? rc : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175}
176
177static int kszphy_config_init(struct phy_device *phydev)
178{
179	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
180}
181
182static int kszphy_config_init_led8041(struct phy_device *phydev)
183{
184	/* single led control, register 0x1e bits 15..14 */
185	return kszphy_setup_led(phydev, 0x1e, 14);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186}
187
188static int ksz8021_config_init(struct phy_device *phydev)
189{
190	const u16 val = KSZPHY_OMSO_B_CAST_OFF | KSZPHY_OMSO_RMII_OVERRIDE;
191	int rc;
192
193	rc = kszphy_setup_led(phydev, 0x1f, 4);
194	if (rc)
195		dev_err(&phydev->dev, "failed to set led mode\n");
196
197	phy_write(phydev, MII_KSZPHY_OMSO, val);
198	rc = ksz_config_flags(phydev);
199	return rc < 0 ? rc : 0;
200}
201
202static int ks8051_config_init(struct phy_device *phydev)
203{
204	int rc;
205
206	rc = kszphy_setup_led(phydev, 0x1f, 4);
207	if (rc)
208		dev_err(&phydev->dev, "failed to set led mode\n");
209
210	rc = ksz_config_flags(phydev);
211	return rc < 0 ? rc : 0;
 
 
 
 
212}
213
214static int ksz9021_load_values_from_of(struct phy_device *phydev,
215				       struct device_node *of_node, u16 reg,
216				       char *field1, char *field2,
217				       char *field3, char *field4)
 
218{
219	int val1 = -1;
220	int val2 = -2;
221	int val3 = -3;
222	int val4 = -4;
223	int newval;
224	int matches = 0;
225
226	if (!of_property_read_u32(of_node, field1, &val1))
227		matches++;
228
229	if (!of_property_read_u32(of_node, field2, &val2))
230		matches++;
231
232	if (!of_property_read_u32(of_node, field3, &val3))
233		matches++;
234
235	if (!of_property_read_u32(of_node, field4, &val4))
236		matches++;
237
238	if (!matches)
239		return 0;
240
241	if (matches < 4)
242		newval = kszphy_extended_read(phydev, reg);
243	else
244		newval = 0;
245
246	if (val1 != -1)
247		newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
248
249	if (val2 != -2)
250		newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
251
252	if (val3 != -3)
253		newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
254
255	if (val4 != -4)
256		newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
257
258	return kszphy_extended_write(phydev, reg, newval);
259}
260
261static int ksz9021_config_init(struct phy_device *phydev)
262{
263	struct device *dev = &phydev->dev;
264	struct device_node *of_node = dev->of_node;
 
 
 
 
 
 
 
 
 
265
266	if (!of_node && dev->parent->of_node)
267		of_node = dev->parent->of_node;
268
269	if (of_node) {
270		ksz9021_load_values_from_of(phydev, of_node,
271				    MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
272				    "txen-skew-ps", "txc-skew-ps",
273				    "rxdv-skew-ps", "rxc-skew-ps");
274		ksz9021_load_values_from_of(phydev, of_node,
275				    MII_KSZPHY_RX_DATA_PAD_SKEW,
276				    "rxd0-skew-ps", "rxd1-skew-ps",
277				    "rxd2-skew-ps", "rxd3-skew-ps");
278		ksz9021_load_values_from_of(phydev, of_node,
279				    MII_KSZPHY_TX_DATA_PAD_SKEW,
280				    "txd0-skew-ps", "txd1-skew-ps",
281				    "txd2-skew-ps", "txd3-skew-ps");
282	}
283	return 0;
284}
285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286#define KSZ8873MLL_GLOBAL_CONTROL_4	0x06
287#define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX	(1 << 6)
288#define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED	(1 << 4)
289static int ksz8873mll_read_status(struct phy_device *phydev)
290{
291	int regval;
292
293	/* dummy read */
294	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
295
296	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
297
298	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
299		phydev->duplex = DUPLEX_HALF;
300	else
301		phydev->duplex = DUPLEX_FULL;
302
303	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
304		phydev->speed = SPEED_10;
305	else
306		phydev->speed = SPEED_100;
307
308	phydev->link = 1;
309	phydev->pause = phydev->asym_pause = 0;
310
311	return 0;
312}
313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
314static int ksz8873mll_config_aneg(struct phy_device *phydev)
315{
316	return 0;
317}
318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
319static struct phy_driver ksphy_driver[] = {
320{
321	.phy_id		= PHY_ID_KS8737,
322	.phy_id_mask	= 0x00fffff0,
323	.name		= "Micrel KS8737",
324	.features	= (PHY_BASIC_FEATURES | SUPPORTED_Pause),
325	.flags		= PHY_HAS_MAGICANEG | PHY_HAS_INTERRUPT,
 
326	.config_init	= kszphy_config_init,
327	.config_aneg	= genphy_config_aneg,
328	.read_status	= genphy_read_status,
329	.ack_interrupt	= kszphy_ack_interrupt,
330	.config_intr	= ks8737_config_intr,
331	.suspend	= genphy_suspend,
332	.resume		= genphy_resume,
333	.driver		= { .owner = THIS_MODULE,},
334}, {
335	.phy_id		= PHY_ID_KSZ8021,
336	.phy_id_mask	= 0x00ffffff,
337	.name		= "Micrel KSZ8021 or KSZ8031",
338	.features	= (PHY_BASIC_FEATURES | SUPPORTED_Pause |
339			   SUPPORTED_Asym_Pause),
340	.flags		= PHY_HAS_MAGICANEG | PHY_HAS_INTERRUPT,
341	.config_init	= ksz8021_config_init,
342	.config_aneg	= genphy_config_aneg,
343	.read_status	= genphy_read_status,
344	.ack_interrupt	= kszphy_ack_interrupt,
345	.config_intr	= kszphy_config_intr,
346	.suspend	= genphy_suspend,
347	.resume		= genphy_resume,
348	.driver		= { .owner = THIS_MODULE,},
 
 
 
349}, {
350	.phy_id		= PHY_ID_KSZ8031,
351	.phy_id_mask	= 0x00ffffff,
352	.name		= "Micrel KSZ8031",
353	.features	= (PHY_BASIC_FEATURES | SUPPORTED_Pause |
354			   SUPPORTED_Asym_Pause),
355	.flags		= PHY_HAS_MAGICANEG | PHY_HAS_INTERRUPT,
356	.config_init	= ksz8021_config_init,
357	.config_aneg	= genphy_config_aneg,
358	.read_status	= genphy_read_status,
359	.ack_interrupt	= kszphy_ack_interrupt,
360	.config_intr	= kszphy_config_intr,
361	.suspend	= genphy_suspend,
362	.resume		= genphy_resume,
363	.driver		= { .owner = THIS_MODULE,},
 
 
 
364}, {
365	.phy_id		= PHY_ID_KSZ8041,
366	.phy_id_mask	= 0x00fffff0,
367	.name		= "Micrel KSZ8041",
368	.features	= (PHY_BASIC_FEATURES | SUPPORTED_Pause
369				| SUPPORTED_Asym_Pause),
370	.flags		= PHY_HAS_MAGICANEG | PHY_HAS_INTERRUPT,
371	.config_init	= kszphy_config_init_led8041,
372	.config_aneg	= genphy_config_aneg,
373	.read_status	= genphy_read_status,
374	.ack_interrupt	= kszphy_ack_interrupt,
375	.config_intr	= kszphy_config_intr,
376	.suspend	= genphy_suspend,
377	.resume		= genphy_resume,
378	.driver		= { .owner = THIS_MODULE,},
 
 
 
 
379}, {
380	.phy_id		= PHY_ID_KSZ8041RNLI,
381	.phy_id_mask	= 0x00fffff0,
382	.name		= "Micrel KSZ8041RNLI",
383	.features	= PHY_BASIC_FEATURES |
384			  SUPPORTED_Pause | SUPPORTED_Asym_Pause,
385	.flags		= PHY_HAS_MAGICANEG | PHY_HAS_INTERRUPT,
386	.config_init	= kszphy_config_init_led8041,
387	.config_aneg	= genphy_config_aneg,
388	.read_status	= genphy_read_status,
389	.ack_interrupt	= kszphy_ack_interrupt,
390	.config_intr	= kszphy_config_intr,
391	.suspend	= genphy_suspend,
392	.resume		= genphy_resume,
393	.driver		= { .owner = THIS_MODULE,},
 
 
 
394}, {
395	.phy_id		= PHY_ID_KSZ8051,
396	.phy_id_mask	= 0x00fffff0,
397	.name		= "Micrel KSZ8051",
398	.features	= (PHY_BASIC_FEATURES | SUPPORTED_Pause
399				| SUPPORTED_Asym_Pause),
400	.flags		= PHY_HAS_MAGICANEG | PHY_HAS_INTERRUPT,
401	.config_init	= ks8051_config_init,
402	.config_aneg	= genphy_config_aneg,
403	.read_status	= genphy_read_status,
404	.ack_interrupt	= kszphy_ack_interrupt,
405	.config_intr	= kszphy_config_intr,
406	.suspend	= genphy_suspend,
407	.resume		= genphy_resume,
408	.driver		= { .owner = THIS_MODULE,},
 
 
 
 
409}, {
410	.phy_id		= PHY_ID_KSZ8001,
411	.name		= "Micrel KSZ8001 or KS8721",
412	.phy_id_mask	= 0x00ffffff,
413	.features	= (PHY_BASIC_FEATURES | SUPPORTED_Pause),
414	.flags		= PHY_HAS_MAGICANEG | PHY_HAS_INTERRUPT,
415	.config_init	= kszphy_config_init_led8041,
416	.config_aneg	= genphy_config_aneg,
417	.read_status	= genphy_read_status,
418	.ack_interrupt	= kszphy_ack_interrupt,
419	.config_intr	= kszphy_config_intr,
420	.suspend	= genphy_suspend,
421	.resume		= genphy_resume,
422	.driver		= { .owner = THIS_MODULE,},
 
 
 
423}, {
424	.phy_id		= PHY_ID_KSZ8081,
425	.name		= "Micrel KSZ8081 or KSZ8091",
426	.phy_id_mask	= 0x00fffff0,
427	.features	= (PHY_BASIC_FEATURES | SUPPORTED_Pause),
428	.flags		= PHY_HAS_MAGICANEG | PHY_HAS_INTERRUPT,
429	.config_init	= kszphy_config_init,
430	.config_aneg	= genphy_config_aneg,
431	.read_status	= genphy_read_status,
432	.ack_interrupt	= kszphy_ack_interrupt,
 
 
433	.config_intr	= kszphy_config_intr,
434	.suspend	= genphy_suspend,
435	.resume		= genphy_resume,
436	.driver		= { .owner = THIS_MODULE,},
 
 
 
 
 
437}, {
438	.phy_id		= PHY_ID_KSZ8061,
439	.name		= "Micrel KSZ8061",
440	.phy_id_mask	= 0x00fffff0,
441	.features	= (PHY_BASIC_FEATURES | SUPPORTED_Pause),
442	.flags		= PHY_HAS_MAGICANEG | PHY_HAS_INTERRUPT,
443	.config_init	= kszphy_config_init,
444	.config_aneg	= genphy_config_aneg,
445	.read_status	= genphy_read_status,
446	.ack_interrupt	= kszphy_ack_interrupt,
447	.config_intr	= kszphy_config_intr,
448	.suspend	= genphy_suspend,
449	.resume		= genphy_resume,
450	.driver		= { .owner = THIS_MODULE,},
451}, {
452	.phy_id		= PHY_ID_KSZ9021,
453	.phy_id_mask	= 0x000ffffe,
454	.name		= "Micrel KSZ9021 Gigabit PHY",
455	.features	= (PHY_GBIT_FEATURES | SUPPORTED_Pause),
456	.flags		= PHY_HAS_MAGICANEG | PHY_HAS_INTERRUPT,
 
 
457	.config_init	= ksz9021_config_init,
458	.config_aneg	= genphy_config_aneg,
459	.read_status	= genphy_read_status,
460	.ack_interrupt	= kszphy_ack_interrupt,
461	.config_intr	= ksz9021_config_intr,
462	.suspend	= genphy_suspend,
463	.resume		= genphy_resume,
464	.driver		= { .owner = THIS_MODULE, },
 
 
465}, {
466	.phy_id		= PHY_ID_KSZ9031,
467	.phy_id_mask	= 0x00fffff0,
468	.name		= "Micrel KSZ9031 Gigabit PHY",
469	.features	= (PHY_GBIT_FEATURES | SUPPORTED_Pause
470				| SUPPORTED_Asym_Pause),
471	.flags		= PHY_HAS_MAGICANEG | PHY_HAS_INTERRUPT,
472	.config_init	= kszphy_config_init,
473	.config_aneg	= genphy_config_aneg,
474	.read_status	= genphy_read_status,
475	.ack_interrupt	= kszphy_ack_interrupt,
476	.config_intr	= ksz9021_config_intr,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
477	.suspend	= genphy_suspend,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
478	.resume		= genphy_resume,
479	.driver		= { .owner = THIS_MODULE, },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
480}, {
481	.phy_id		= PHY_ID_KSZ8873MLL,
482	.phy_id_mask	= 0x00fffff0,
483	.name		= "Micrel KSZ8873MLL Switch",
484	.features	= (SUPPORTED_Pause | SUPPORTED_Asym_Pause),
485	.flags		= PHY_HAS_MAGICANEG,
486	.config_init	= kszphy_config_init,
487	.config_aneg	= ksz8873mll_config_aneg,
488	.read_status	= ksz8873mll_read_status,
489	.suspend	= genphy_suspend,
490	.resume		= genphy_resume,
491	.driver		= { .owner = THIS_MODULE, },
492}, {
493	.phy_id		= PHY_ID_KSZ886X,
494	.phy_id_mask	= 0x00fffff0,
495	.name		= "Micrel KSZ886X Switch",
496	.features	= (PHY_BASIC_FEATURES | SUPPORTED_Pause),
497	.flags		= PHY_HAS_MAGICANEG | PHY_HAS_INTERRUPT,
 
 
 
 
 
 
 
 
 
 
 
498	.config_init	= kszphy_config_init,
499	.config_aneg	= genphy_config_aneg,
500	.read_status	= genphy_read_status,
501	.suspend	= genphy_suspend,
502	.resume		= genphy_resume,
503	.driver		= { .owner = THIS_MODULE, },
 
 
 
 
 
 
 
 
 
 
504} };
505
506static int __init ksphy_init(void)
507{
508	return phy_drivers_register(ksphy_driver,
509		ARRAY_SIZE(ksphy_driver));
510}
511
512static void __exit ksphy_exit(void)
513{
514	phy_drivers_unregister(ksphy_driver,
515		ARRAY_SIZE(ksphy_driver));
516}
517
518module_init(ksphy_init);
519module_exit(ksphy_exit);
520
521MODULE_DESCRIPTION("Micrel PHY driver");
522MODULE_AUTHOR("David J. Choi");
523MODULE_LICENSE("GPL");
524
525static struct mdio_device_id __maybe_unused micrel_tbl[] = {
526	{ PHY_ID_KSZ9021, 0x000ffffe },
527	{ PHY_ID_KSZ9031, 0x00fffff0 },
528	{ PHY_ID_KSZ8001, 0x00ffffff },
529	{ PHY_ID_KS8737, 0x00fffff0 },
 
530	{ PHY_ID_KSZ8021, 0x00ffffff },
531	{ PHY_ID_KSZ8031, 0x00ffffff },
532	{ PHY_ID_KSZ8041, 0x00fffff0 },
533	{ PHY_ID_KSZ8051, 0x00fffff0 },
534	{ PHY_ID_KSZ8061, 0x00fffff0 },
535	{ PHY_ID_KSZ8081, 0x00fffff0 },
536	{ PHY_ID_KSZ8873MLL, 0x00fffff0 },
537	{ PHY_ID_KSZ886X, 0x00fffff0 },
 
 
 
538	{ }
539};
540
541MODULE_DEVICE_TABLE(mdio, micrel_tbl);