Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for Microchip MRF24J40 802.15.4 Wireless-PAN Networking controller
4 *
5 * Copyright (C) 2012 Alan Ott <alan@signal11.us>
6 * Signal 11 Software
7 */
8
9#include <linux/spi/spi.h>
10#include <linux/interrupt.h>
11#include <linux/mod_devicetable.h>
12#include <linux/module.h>
13#include <linux/regmap.h>
14#include <linux/ieee802154.h>
15#include <linux/irq.h>
16#include <net/cfg802154.h>
17#include <net/mac802154.h>
18
19/* MRF24J40 Short Address Registers */
20#define REG_RXMCR 0x00 /* Receive MAC control */
21#define BIT_PROMI BIT(0)
22#define BIT_ERRPKT BIT(1)
23#define BIT_NOACKRSP BIT(5)
24#define BIT_PANCOORD BIT(3)
25
26#define REG_PANIDL 0x01 /* PAN ID (low) */
27#define REG_PANIDH 0x02 /* PAN ID (high) */
28#define REG_SADRL 0x03 /* Short address (low) */
29#define REG_SADRH 0x04 /* Short address (high) */
30#define REG_EADR0 0x05 /* Long address (low) (high is EADR7) */
31#define REG_EADR1 0x06
32#define REG_EADR2 0x07
33#define REG_EADR3 0x08
34#define REG_EADR4 0x09
35#define REG_EADR5 0x0A
36#define REG_EADR6 0x0B
37#define REG_EADR7 0x0C
38#define REG_RXFLUSH 0x0D
39#define REG_ORDER 0x10
40#define REG_TXMCR 0x11 /* Transmit MAC control */
41#define TXMCR_MIN_BE_SHIFT 3
42#define TXMCR_MIN_BE_MASK 0x18
43#define TXMCR_CSMA_RETRIES_SHIFT 0
44#define TXMCR_CSMA_RETRIES_MASK 0x07
45
46#define REG_ACKTMOUT 0x12
47#define REG_ESLOTG1 0x13
48#define REG_SYMTICKL 0x14
49#define REG_SYMTICKH 0x15
50#define REG_PACON0 0x16 /* Power Amplifier Control */
51#define REG_PACON1 0x17 /* Power Amplifier Control */
52#define REG_PACON2 0x18 /* Power Amplifier Control */
53#define REG_TXBCON0 0x1A
54#define REG_TXNCON 0x1B /* Transmit Normal FIFO Control */
55#define BIT_TXNTRIG BIT(0)
56#define BIT_TXNSECEN BIT(1)
57#define BIT_TXNACKREQ BIT(2)
58
59#define REG_TXG1CON 0x1C
60#define REG_TXG2CON 0x1D
61#define REG_ESLOTG23 0x1E
62#define REG_ESLOTG45 0x1F
63#define REG_ESLOTG67 0x20
64#define REG_TXPEND 0x21
65#define REG_WAKECON 0x22
66#define REG_FROMOFFSET 0x23
67#define REG_TXSTAT 0x24 /* TX MAC Status Register */
68#define REG_TXBCON1 0x25
69#define REG_GATECLK 0x26
70#define REG_TXTIME 0x27
71#define REG_HSYMTMRL 0x28
72#define REG_HSYMTMRH 0x29
73#define REG_SOFTRST 0x2A /* Soft Reset */
74#define REG_SECCON0 0x2C
75#define REG_SECCON1 0x2D
76#define REG_TXSTBL 0x2E /* TX Stabilization */
77#define REG_RXSR 0x30
78#define REG_INTSTAT 0x31 /* Interrupt Status */
79#define BIT_TXNIF BIT(0)
80#define BIT_RXIF BIT(3)
81#define BIT_SECIF BIT(4)
82#define BIT_SECIGNORE BIT(7)
83
84#define REG_INTCON 0x32 /* Interrupt Control */
85#define BIT_TXNIE BIT(0)
86#define BIT_RXIE BIT(3)
87#define BIT_SECIE BIT(4)
88
89#define REG_GPIO 0x33 /* GPIO */
90#define REG_TRISGPIO 0x34 /* GPIO direction */
91#define REG_SLPACK 0x35
92#define REG_RFCTL 0x36 /* RF Control Mode Register */
93#define BIT_RFRST BIT(2)
94
95#define REG_SECCR2 0x37
96#define REG_BBREG0 0x38
97#define REG_BBREG1 0x39 /* Baseband Registers */
98#define BIT_RXDECINV BIT(2)
99
100#define REG_BBREG2 0x3A /* */
101#define BBREG2_CCA_MODE_SHIFT 6
102#define BBREG2_CCA_MODE_MASK 0xc0
103
104#define REG_BBREG3 0x3B
105#define REG_BBREG4 0x3C
106#define REG_BBREG6 0x3E /* */
107#define REG_CCAEDTH 0x3F /* Energy Detection Threshold */
108
109/* MRF24J40 Long Address Registers */
110#define REG_RFCON0 0x200 /* RF Control Registers */
111#define RFCON0_CH_SHIFT 4
112#define RFCON0_CH_MASK 0xf0
113#define RFOPT_RECOMMEND 3
114
115#define REG_RFCON1 0x201
116#define REG_RFCON2 0x202
117#define REG_RFCON3 0x203
118
119#define TXPWRL_MASK 0xc0
120#define TXPWRL_SHIFT 6
121#define TXPWRL_30 0x3
122#define TXPWRL_20 0x2
123#define TXPWRL_10 0x1
124#define TXPWRL_0 0x0
125
126#define TXPWRS_MASK 0x38
127#define TXPWRS_SHIFT 3
128#define TXPWRS_6_3 0x7
129#define TXPWRS_4_9 0x6
130#define TXPWRS_3_7 0x5
131#define TXPWRS_2_8 0x4
132#define TXPWRS_1_9 0x3
133#define TXPWRS_1_2 0x2
134#define TXPWRS_0_5 0x1
135#define TXPWRS_0 0x0
136
137#define REG_RFCON5 0x205
138#define REG_RFCON6 0x206
139#define REG_RFCON7 0x207
140#define REG_RFCON8 0x208
141#define REG_SLPCAL0 0x209
142#define REG_SLPCAL1 0x20A
143#define REG_SLPCAL2 0x20B
144#define REG_RFSTATE 0x20F
145#define REG_RSSI 0x210
146#define REG_SLPCON0 0x211 /* Sleep Clock Control Registers */
147#define BIT_INTEDGE BIT(1)
148
149#define REG_SLPCON1 0x220
150#define REG_WAKETIMEL 0x222 /* Wake-up Time Match Value Low */
151#define REG_WAKETIMEH 0x223 /* Wake-up Time Match Value High */
152#define REG_REMCNTL 0x224
153#define REG_REMCNTH 0x225
154#define REG_MAINCNT0 0x226
155#define REG_MAINCNT1 0x227
156#define REG_MAINCNT2 0x228
157#define REG_MAINCNT3 0x229
158#define REG_TESTMODE 0x22F /* Test mode */
159#define REG_ASSOEAR0 0x230
160#define REG_ASSOEAR1 0x231
161#define REG_ASSOEAR2 0x232
162#define REG_ASSOEAR3 0x233
163#define REG_ASSOEAR4 0x234
164#define REG_ASSOEAR5 0x235
165#define REG_ASSOEAR6 0x236
166#define REG_ASSOEAR7 0x237
167#define REG_ASSOSAR0 0x238
168#define REG_ASSOSAR1 0x239
169#define REG_UNONCE0 0x240
170#define REG_UNONCE1 0x241
171#define REG_UNONCE2 0x242
172#define REG_UNONCE3 0x243
173#define REG_UNONCE4 0x244
174#define REG_UNONCE5 0x245
175#define REG_UNONCE6 0x246
176#define REG_UNONCE7 0x247
177#define REG_UNONCE8 0x248
178#define REG_UNONCE9 0x249
179#define REG_UNONCE10 0x24A
180#define REG_UNONCE11 0x24B
181#define REG_UNONCE12 0x24C
182#define REG_RX_FIFO 0x300 /* Receive FIFO */
183
184/* Device configuration: Only channels 11-26 on page 0 are supported. */
185#define MRF24J40_CHAN_MIN 11
186#define MRF24J40_CHAN_MAX 26
187#define CHANNEL_MASK (((u32)1 << (MRF24J40_CHAN_MAX + 1)) \
188 - ((u32)1 << MRF24J40_CHAN_MIN))
189
190#define TX_FIFO_SIZE 128 /* From datasheet */
191#define RX_FIFO_SIZE 144 /* From datasheet */
192#define SET_CHANNEL_DELAY_US 192 /* From datasheet */
193
194enum mrf24j40_modules { MRF24J40, MRF24J40MA, MRF24J40MC };
195
196/* Device Private Data */
197struct mrf24j40 {
198 struct spi_device *spi;
199 struct ieee802154_hw *hw;
200
201 struct regmap *regmap_short;
202 struct regmap *regmap_long;
203
204 /* for writing txfifo */
205 struct spi_message tx_msg;
206 u8 tx_hdr_buf[2];
207 struct spi_transfer tx_hdr_trx;
208 u8 tx_len_buf[2];
209 struct spi_transfer tx_len_trx;
210 struct spi_transfer tx_buf_trx;
211 struct sk_buff *tx_skb;
212
213 /* post transmit message to send frame out */
214 struct spi_message tx_post_msg;
215 u8 tx_post_buf[2];
216 struct spi_transfer tx_post_trx;
217
218 /* for protect/unprotect/read length rxfifo */
219 struct spi_message rx_msg;
220 u8 rx_buf[3];
221 struct spi_transfer rx_trx;
222
223 /* receive handling */
224 struct spi_message rx_buf_msg;
225 u8 rx_addr_buf[2];
226 struct spi_transfer rx_addr_trx;
227 u8 rx_lqi_buf[2];
228 struct spi_transfer rx_lqi_trx;
229 u8 rx_fifo_buf[RX_FIFO_SIZE];
230 struct spi_transfer rx_fifo_buf_trx;
231
232 /* isr handling for reading intstat */
233 struct spi_message irq_msg;
234 u8 irq_buf[2];
235 struct spi_transfer irq_trx;
236};
237
238/* regmap information for short address register access */
239#define MRF24J40_SHORT_WRITE 0x01
240#define MRF24J40_SHORT_READ 0x00
241#define MRF24J40_SHORT_NUMREGS 0x3F
242
243/* regmap information for long address register access */
244#define MRF24J40_LONG_ACCESS 0x80
245#define MRF24J40_LONG_NUMREGS 0x38F
246
247/* Read/Write SPI Commands for Short and Long Address registers. */
248#define MRF24J40_READSHORT(reg) ((reg) << 1)
249#define MRF24J40_WRITESHORT(reg) ((reg) << 1 | 1)
250#define MRF24J40_READLONG(reg) (1 << 15 | (reg) << 5)
251#define MRF24J40_WRITELONG(reg) (1 << 15 | (reg) << 5 | 1 << 4)
252
253/* The datasheet indicates the theoretical maximum for SCK to be 10MHz */
254#define MAX_SPI_SPEED_HZ 10000000
255
256#define printdev(X) (&X->spi->dev)
257
258static bool
259mrf24j40_short_reg_writeable(struct device *dev, unsigned int reg)
260{
261 switch (reg) {
262 case REG_RXMCR:
263 case REG_PANIDL:
264 case REG_PANIDH:
265 case REG_SADRL:
266 case REG_SADRH:
267 case REG_EADR0:
268 case REG_EADR1:
269 case REG_EADR2:
270 case REG_EADR3:
271 case REG_EADR4:
272 case REG_EADR5:
273 case REG_EADR6:
274 case REG_EADR7:
275 case REG_RXFLUSH:
276 case REG_ORDER:
277 case REG_TXMCR:
278 case REG_ACKTMOUT:
279 case REG_ESLOTG1:
280 case REG_SYMTICKL:
281 case REG_SYMTICKH:
282 case REG_PACON0:
283 case REG_PACON1:
284 case REG_PACON2:
285 case REG_TXBCON0:
286 case REG_TXNCON:
287 case REG_TXG1CON:
288 case REG_TXG2CON:
289 case REG_ESLOTG23:
290 case REG_ESLOTG45:
291 case REG_ESLOTG67:
292 case REG_TXPEND:
293 case REG_WAKECON:
294 case REG_FROMOFFSET:
295 case REG_TXBCON1:
296 case REG_GATECLK:
297 case REG_TXTIME:
298 case REG_HSYMTMRL:
299 case REG_HSYMTMRH:
300 case REG_SOFTRST:
301 case REG_SECCON0:
302 case REG_SECCON1:
303 case REG_TXSTBL:
304 case REG_RXSR:
305 case REG_INTCON:
306 case REG_TRISGPIO:
307 case REG_GPIO:
308 case REG_RFCTL:
309 case REG_SECCR2:
310 case REG_SLPACK:
311 case REG_BBREG0:
312 case REG_BBREG1:
313 case REG_BBREG2:
314 case REG_BBREG3:
315 case REG_BBREG4:
316 case REG_BBREG6:
317 case REG_CCAEDTH:
318 return true;
319 default:
320 return false;
321 }
322}
323
324static bool
325mrf24j40_short_reg_readable(struct device *dev, unsigned int reg)
326{
327 bool rc;
328
329 /* all writeable are also readable */
330 rc = mrf24j40_short_reg_writeable(dev, reg);
331 if (rc)
332 return rc;
333
334 /* readonly regs */
335 switch (reg) {
336 case REG_TXSTAT:
337 case REG_INTSTAT:
338 return true;
339 default:
340 return false;
341 }
342}
343
344static bool
345mrf24j40_short_reg_volatile(struct device *dev, unsigned int reg)
346{
347 /* can be changed during runtime */
348 switch (reg) {
349 case REG_TXSTAT:
350 case REG_INTSTAT:
351 case REG_RXFLUSH:
352 case REG_TXNCON:
353 case REG_SOFTRST:
354 case REG_RFCTL:
355 case REG_TXBCON0:
356 case REG_TXG1CON:
357 case REG_TXG2CON:
358 case REG_TXBCON1:
359 case REG_SECCON0:
360 case REG_RXSR:
361 case REG_SLPACK:
362 case REG_SECCR2:
363 case REG_BBREG6:
364 /* use them in spi_async and regmap so it's volatile */
365 case REG_BBREG1:
366 return true;
367 default:
368 return false;
369 }
370}
371
372static bool
373mrf24j40_short_reg_precious(struct device *dev, unsigned int reg)
374{
375 /* don't clear irq line on read */
376 switch (reg) {
377 case REG_INTSTAT:
378 return true;
379 default:
380 return false;
381 }
382}
383
384static const struct regmap_config mrf24j40_short_regmap = {
385 .name = "mrf24j40_short",
386 .reg_bits = 7,
387 .val_bits = 8,
388 .pad_bits = 1,
389 .write_flag_mask = MRF24J40_SHORT_WRITE,
390 .read_flag_mask = MRF24J40_SHORT_READ,
391 .cache_type = REGCACHE_RBTREE,
392 .max_register = MRF24J40_SHORT_NUMREGS,
393 .writeable_reg = mrf24j40_short_reg_writeable,
394 .readable_reg = mrf24j40_short_reg_readable,
395 .volatile_reg = mrf24j40_short_reg_volatile,
396 .precious_reg = mrf24j40_short_reg_precious,
397};
398
399static bool
400mrf24j40_long_reg_writeable(struct device *dev, unsigned int reg)
401{
402 switch (reg) {
403 case REG_RFCON0:
404 case REG_RFCON1:
405 case REG_RFCON2:
406 case REG_RFCON3:
407 case REG_RFCON5:
408 case REG_RFCON6:
409 case REG_RFCON7:
410 case REG_RFCON8:
411 case REG_SLPCAL2:
412 case REG_SLPCON0:
413 case REG_SLPCON1:
414 case REG_WAKETIMEL:
415 case REG_WAKETIMEH:
416 case REG_REMCNTL:
417 case REG_REMCNTH:
418 case REG_MAINCNT0:
419 case REG_MAINCNT1:
420 case REG_MAINCNT2:
421 case REG_MAINCNT3:
422 case REG_TESTMODE:
423 case REG_ASSOEAR0:
424 case REG_ASSOEAR1:
425 case REG_ASSOEAR2:
426 case REG_ASSOEAR3:
427 case REG_ASSOEAR4:
428 case REG_ASSOEAR5:
429 case REG_ASSOEAR6:
430 case REG_ASSOEAR7:
431 case REG_ASSOSAR0:
432 case REG_ASSOSAR1:
433 case REG_UNONCE0:
434 case REG_UNONCE1:
435 case REG_UNONCE2:
436 case REG_UNONCE3:
437 case REG_UNONCE4:
438 case REG_UNONCE5:
439 case REG_UNONCE6:
440 case REG_UNONCE7:
441 case REG_UNONCE8:
442 case REG_UNONCE9:
443 case REG_UNONCE10:
444 case REG_UNONCE11:
445 case REG_UNONCE12:
446 return true;
447 default:
448 return false;
449 }
450}
451
452static bool
453mrf24j40_long_reg_readable(struct device *dev, unsigned int reg)
454{
455 bool rc;
456
457 /* all writeable are also readable */
458 rc = mrf24j40_long_reg_writeable(dev, reg);
459 if (rc)
460 return rc;
461
462 /* readonly regs */
463 switch (reg) {
464 case REG_SLPCAL0:
465 case REG_SLPCAL1:
466 case REG_RFSTATE:
467 case REG_RSSI:
468 return true;
469 default:
470 return false;
471 }
472}
473
474static bool
475mrf24j40_long_reg_volatile(struct device *dev, unsigned int reg)
476{
477 /* can be changed during runtime */
478 switch (reg) {
479 case REG_SLPCAL0:
480 case REG_SLPCAL1:
481 case REG_SLPCAL2:
482 case REG_RFSTATE:
483 case REG_RSSI:
484 case REG_MAINCNT3:
485 return true;
486 default:
487 return false;
488 }
489}
490
491static const struct regmap_config mrf24j40_long_regmap = {
492 .name = "mrf24j40_long",
493 .reg_bits = 11,
494 .val_bits = 8,
495 .pad_bits = 5,
496 .write_flag_mask = MRF24J40_LONG_ACCESS,
497 .read_flag_mask = MRF24J40_LONG_ACCESS,
498 .cache_type = REGCACHE_RBTREE,
499 .max_register = MRF24J40_LONG_NUMREGS,
500 .writeable_reg = mrf24j40_long_reg_writeable,
501 .readable_reg = mrf24j40_long_reg_readable,
502 .volatile_reg = mrf24j40_long_reg_volatile,
503};
504
505static int mrf24j40_long_regmap_write(void *context, const void *data,
506 size_t count)
507{
508 struct spi_device *spi = context;
509 u8 buf[3];
510
511 if (count > 3)
512 return -EINVAL;
513
514 /* regmap supports read/write mask only in frist byte
515 * long write access need to set the 12th bit, so we
516 * make special handling for write.
517 */
518 memcpy(buf, data, count);
519 buf[1] |= (1 << 4);
520
521 return spi_write(spi, buf, count);
522}
523
524static int
525mrf24j40_long_regmap_read(void *context, const void *reg, size_t reg_size,
526 void *val, size_t val_size)
527{
528 struct spi_device *spi = context;
529
530 return spi_write_then_read(spi, reg, reg_size, val, val_size);
531}
532
533static const struct regmap_bus mrf24j40_long_regmap_bus = {
534 .write = mrf24j40_long_regmap_write,
535 .read = mrf24j40_long_regmap_read,
536 .reg_format_endian_default = REGMAP_ENDIAN_BIG,
537 .val_format_endian_default = REGMAP_ENDIAN_BIG,
538};
539
540static void write_tx_buf_complete(void *context)
541{
542 struct mrf24j40 *devrec = context;
543 __le16 fc = ieee802154_get_fc_from_skb(devrec->tx_skb);
544 u8 val = BIT_TXNTRIG;
545 int ret;
546
547 if (ieee802154_is_secen(fc))
548 val |= BIT_TXNSECEN;
549
550 if (ieee802154_is_ackreq(fc))
551 val |= BIT_TXNACKREQ;
552
553 devrec->tx_post_msg.complete = NULL;
554 devrec->tx_post_buf[0] = MRF24J40_WRITESHORT(REG_TXNCON);
555 devrec->tx_post_buf[1] = val;
556
557 ret = spi_async(devrec->spi, &devrec->tx_post_msg);
558 if (ret)
559 dev_err(printdev(devrec), "SPI write Failed for transmit buf\n");
560}
561
562/* This function relies on an undocumented write method. Once a write command
563 and address is set, as many bytes of data as desired can be clocked into
564 the device. The datasheet only shows setting one byte at a time. */
565static int write_tx_buf(struct mrf24j40 *devrec, u16 reg,
566 const u8 *data, size_t length)
567{
568 u16 cmd;
569 int ret;
570
571 /* Range check the length. 2 bytes are used for the length fields.*/
572 if (length > TX_FIFO_SIZE-2) {
573 dev_err(printdev(devrec), "write_tx_buf() was passed too large a buffer. Performing short write.\n");
574 length = TX_FIFO_SIZE-2;
575 }
576
577 cmd = MRF24J40_WRITELONG(reg);
578 devrec->tx_hdr_buf[0] = cmd >> 8 & 0xff;
579 devrec->tx_hdr_buf[1] = cmd & 0xff;
580 devrec->tx_len_buf[0] = 0x0; /* Header Length. Set to 0 for now. TODO */
581 devrec->tx_len_buf[1] = length; /* Total length */
582 devrec->tx_buf_trx.tx_buf = data;
583 devrec->tx_buf_trx.len = length;
584
585 ret = spi_async(devrec->spi, &devrec->tx_msg);
586 if (ret)
587 dev_err(printdev(devrec), "SPI write Failed for TX buf\n");
588
589 return ret;
590}
591
592static int mrf24j40_tx(struct ieee802154_hw *hw, struct sk_buff *skb)
593{
594 struct mrf24j40 *devrec = hw->priv;
595
596 dev_dbg(printdev(devrec), "tx packet of %d bytes\n", skb->len);
597 devrec->tx_skb = skb;
598
599 return write_tx_buf(devrec, 0x000, skb->data, skb->len);
600}
601
602static int mrf24j40_ed(struct ieee802154_hw *hw, u8 *level)
603{
604 /* TODO: */
605 pr_warn("mrf24j40: ed not implemented\n");
606 *level = 0;
607 return 0;
608}
609
610static int mrf24j40_start(struct ieee802154_hw *hw)
611{
612 struct mrf24j40 *devrec = hw->priv;
613
614 dev_dbg(printdev(devrec), "start\n");
615
616 /* Clear TXNIE and RXIE. Enable interrupts */
617 return regmap_update_bits(devrec->regmap_short, REG_INTCON,
618 BIT_TXNIE | BIT_RXIE | BIT_SECIE, 0);
619}
620
621static void mrf24j40_stop(struct ieee802154_hw *hw)
622{
623 struct mrf24j40 *devrec = hw->priv;
624
625 dev_dbg(printdev(devrec), "stop\n");
626
627 /* Set TXNIE and RXIE. Disable Interrupts */
628 regmap_update_bits(devrec->regmap_short, REG_INTCON,
629 BIT_TXNIE | BIT_RXIE, BIT_TXNIE | BIT_RXIE);
630}
631
632static int mrf24j40_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
633{
634 struct mrf24j40 *devrec = hw->priv;
635 u8 val;
636 int ret;
637
638 dev_dbg(printdev(devrec), "Set Channel %d\n", channel);
639
640 WARN_ON(page != 0);
641 WARN_ON(channel < MRF24J40_CHAN_MIN);
642 WARN_ON(channel > MRF24J40_CHAN_MAX);
643
644 /* Set Channel TODO */
645 val = (channel - 11) << RFCON0_CH_SHIFT | RFOPT_RECOMMEND;
646 ret = regmap_update_bits(devrec->regmap_long, REG_RFCON0,
647 RFCON0_CH_MASK, val);
648 if (ret)
649 return ret;
650
651 /* RF Reset */
652 ret = regmap_update_bits(devrec->regmap_short, REG_RFCTL, BIT_RFRST,
653 BIT_RFRST);
654 if (ret)
655 return ret;
656
657 ret = regmap_update_bits(devrec->regmap_short, REG_RFCTL, BIT_RFRST, 0);
658 if (!ret)
659 udelay(SET_CHANNEL_DELAY_US); /* per datasheet */
660
661 return ret;
662}
663
664static int mrf24j40_filter(struct ieee802154_hw *hw,
665 struct ieee802154_hw_addr_filt *filt,
666 unsigned long changed)
667{
668 struct mrf24j40 *devrec = hw->priv;
669
670 dev_dbg(printdev(devrec), "filter\n");
671
672 if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
673 /* Short Addr */
674 u8 addrh, addrl;
675
676 addrh = le16_to_cpu(filt->short_addr) >> 8 & 0xff;
677 addrl = le16_to_cpu(filt->short_addr) & 0xff;
678
679 regmap_write(devrec->regmap_short, REG_SADRH, addrh);
680 regmap_write(devrec->regmap_short, REG_SADRL, addrl);
681 dev_dbg(printdev(devrec),
682 "Set short addr to %04hx\n", filt->short_addr);
683 }
684
685 if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
686 /* Device Address */
687 u8 i, addr[8];
688
689 memcpy(addr, &filt->ieee_addr, 8);
690 for (i = 0; i < 8; i++)
691 regmap_write(devrec->regmap_short, REG_EADR0 + i,
692 addr[i]);
693
694#ifdef DEBUG
695 pr_debug("Set long addr to: ");
696 for (i = 0; i < 8; i++)
697 pr_debug("%02hhx ", addr[7 - i]);
698 pr_debug("\n");
699#endif
700 }
701
702 if (changed & IEEE802154_AFILT_PANID_CHANGED) {
703 /* PAN ID */
704 u8 panidl, panidh;
705
706 panidh = le16_to_cpu(filt->pan_id) >> 8 & 0xff;
707 panidl = le16_to_cpu(filt->pan_id) & 0xff;
708 regmap_write(devrec->regmap_short, REG_PANIDH, panidh);
709 regmap_write(devrec->regmap_short, REG_PANIDL, panidl);
710
711 dev_dbg(printdev(devrec), "Set PANID to %04hx\n", filt->pan_id);
712 }
713
714 if (changed & IEEE802154_AFILT_PANC_CHANGED) {
715 /* Pan Coordinator */
716 u8 val;
717 int ret;
718
719 if (filt->pan_coord)
720 val = BIT_PANCOORD;
721 else
722 val = 0;
723 ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
724 BIT_PANCOORD, val);
725 if (ret)
726 return ret;
727
728 /* REG_SLOTTED is maintained as default (unslotted/CSMA-CA).
729 * REG_ORDER is maintained as default (no beacon/superframe).
730 */
731
732 dev_dbg(printdev(devrec), "Set Pan Coord to %s\n",
733 filt->pan_coord ? "on" : "off");
734 }
735
736 return 0;
737}
738
739static void mrf24j40_handle_rx_read_buf_unlock(struct mrf24j40 *devrec)
740{
741 int ret;
742
743 /* Turn back on reception of packets off the air. */
744 devrec->rx_msg.complete = NULL;
745 devrec->rx_buf[0] = MRF24J40_WRITESHORT(REG_BBREG1);
746 devrec->rx_buf[1] = 0x00; /* CLR RXDECINV */
747 ret = spi_async(devrec->spi, &devrec->rx_msg);
748 if (ret)
749 dev_err(printdev(devrec), "failed to unlock rx buffer\n");
750}
751
752static void mrf24j40_handle_rx_read_buf_complete(void *context)
753{
754 struct mrf24j40 *devrec = context;
755 u8 len = devrec->rx_buf[2];
756 u8 rx_local_buf[RX_FIFO_SIZE];
757 struct sk_buff *skb;
758
759 memcpy(rx_local_buf, devrec->rx_fifo_buf, len);
760 mrf24j40_handle_rx_read_buf_unlock(devrec);
761
762 skb = dev_alloc_skb(IEEE802154_MTU);
763 if (!skb) {
764 dev_err(printdev(devrec), "failed to allocate skb\n");
765 return;
766 }
767
768 skb_put_data(skb, rx_local_buf, len);
769 ieee802154_rx_irqsafe(devrec->hw, skb, 0);
770
771#ifdef DEBUG
772 print_hex_dump(KERN_DEBUG, "mrf24j40 rx: ", DUMP_PREFIX_OFFSET, 16, 1,
773 rx_local_buf, len, 0);
774 pr_debug("mrf24j40 rx: lqi: %02hhx rssi: %02hhx\n",
775 devrec->rx_lqi_buf[0], devrec->rx_lqi_buf[1]);
776#endif
777}
778
779static void mrf24j40_handle_rx_read_buf(void *context)
780{
781 struct mrf24j40 *devrec = context;
782 u16 cmd;
783 int ret;
784
785 /* if length is invalid read the full MTU */
786 if (!ieee802154_is_valid_psdu_len(devrec->rx_buf[2]))
787 devrec->rx_buf[2] = IEEE802154_MTU;
788
789 cmd = MRF24J40_READLONG(REG_RX_FIFO + 1);
790 devrec->rx_addr_buf[0] = cmd >> 8 & 0xff;
791 devrec->rx_addr_buf[1] = cmd & 0xff;
792 devrec->rx_fifo_buf_trx.len = devrec->rx_buf[2];
793 ret = spi_async(devrec->spi, &devrec->rx_buf_msg);
794 if (ret) {
795 dev_err(printdev(devrec), "failed to read rx buffer\n");
796 mrf24j40_handle_rx_read_buf_unlock(devrec);
797 }
798}
799
800static void mrf24j40_handle_rx_read_len(void *context)
801{
802 struct mrf24j40 *devrec = context;
803 u16 cmd;
804 int ret;
805
806 /* read the length of received frame */
807 devrec->rx_msg.complete = mrf24j40_handle_rx_read_buf;
808 devrec->rx_trx.len = 3;
809 cmd = MRF24J40_READLONG(REG_RX_FIFO);
810 devrec->rx_buf[0] = cmd >> 8 & 0xff;
811 devrec->rx_buf[1] = cmd & 0xff;
812
813 ret = spi_async(devrec->spi, &devrec->rx_msg);
814 if (ret) {
815 dev_err(printdev(devrec), "failed to read rx buffer length\n");
816 mrf24j40_handle_rx_read_buf_unlock(devrec);
817 }
818}
819
820static int mrf24j40_handle_rx(struct mrf24j40 *devrec)
821{
822 /* Turn off reception of packets off the air. This prevents the
823 * device from overwriting the buffer while we're reading it.
824 */
825 devrec->rx_msg.complete = mrf24j40_handle_rx_read_len;
826 devrec->rx_trx.len = 2;
827 devrec->rx_buf[0] = MRF24J40_WRITESHORT(REG_BBREG1);
828 devrec->rx_buf[1] = BIT_RXDECINV; /* SET RXDECINV */
829
830 return spi_async(devrec->spi, &devrec->rx_msg);
831}
832
833static int
834mrf24j40_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be,
835 u8 retries)
836{
837 struct mrf24j40 *devrec = hw->priv;
838 u8 val;
839
840 /* min_be */
841 val = min_be << TXMCR_MIN_BE_SHIFT;
842 /* csma backoffs */
843 val |= retries << TXMCR_CSMA_RETRIES_SHIFT;
844
845 return regmap_update_bits(devrec->regmap_short, REG_TXMCR,
846 TXMCR_MIN_BE_MASK | TXMCR_CSMA_RETRIES_MASK,
847 val);
848}
849
850static int mrf24j40_set_cca_mode(struct ieee802154_hw *hw,
851 const struct wpan_phy_cca *cca)
852{
853 struct mrf24j40 *devrec = hw->priv;
854 u8 val;
855
856 /* mapping 802.15.4 to driver spec */
857 switch (cca->mode) {
858 case NL802154_CCA_ENERGY:
859 val = 2;
860 break;
861 case NL802154_CCA_CARRIER:
862 val = 1;
863 break;
864 case NL802154_CCA_ENERGY_CARRIER:
865 switch (cca->opt) {
866 case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
867 val = 3;
868 break;
869 default:
870 return -EINVAL;
871 }
872 break;
873 default:
874 return -EINVAL;
875 }
876
877 return regmap_update_bits(devrec->regmap_short, REG_BBREG2,
878 BBREG2_CCA_MODE_MASK,
879 val << BBREG2_CCA_MODE_SHIFT);
880}
881
882/* array for representing ed levels */
883static const s32 mrf24j40_ed_levels[] = {
884 -9000, -8900, -8800, -8700, -8600, -8500, -8400, -8300, -8200, -8100,
885 -8000, -7900, -7800, -7700, -7600, -7500, -7400, -7300, -7200, -7100,
886 -7000, -6900, -6800, -6700, -6600, -6500, -6400, -6300, -6200, -6100,
887 -6000, -5900, -5800, -5700, -5600, -5500, -5400, -5300, -5200, -5100,
888 -5000, -4900, -4800, -4700, -4600, -4500, -4400, -4300, -4200, -4100,
889 -4000, -3900, -3800, -3700, -3600, -3500
890};
891
892/* map ed levels to register value */
893static const s32 mrf24j40_ed_levels_map[][2] = {
894 { -9000, 0 }, { -8900, 1 }, { -8800, 2 }, { -8700, 5 }, { -8600, 9 },
895 { -8500, 13 }, { -8400, 18 }, { -8300, 23 }, { -8200, 27 },
896 { -8100, 32 }, { -8000, 37 }, { -7900, 43 }, { -7800, 48 },
897 { -7700, 53 }, { -7600, 58 }, { -7500, 63 }, { -7400, 68 },
898 { -7300, 73 }, { -7200, 78 }, { -7100, 83 }, { -7000, 89 },
899 { -6900, 95 }, { -6800, 100 }, { -6700, 107 }, { -6600, 111 },
900 { -6500, 117 }, { -6400, 121 }, { -6300, 125 }, { -6200, 129 },
901 { -6100, 133 }, { -6000, 138 }, { -5900, 143 }, { -5800, 148 },
902 { -5700, 153 }, { -5600, 159 }, { -5500, 165 }, { -5400, 170 },
903 { -5300, 176 }, { -5200, 183 }, { -5100, 188 }, { -5000, 193 },
904 { -4900, 198 }, { -4800, 203 }, { -4700, 207 }, { -4600, 212 },
905 { -4500, 216 }, { -4400, 221 }, { -4300, 225 }, { -4200, 228 },
906 { -4100, 233 }, { -4000, 239 }, { -3900, 245 }, { -3800, 250 },
907 { -3700, 253 }, { -3600, 254 }, { -3500, 255 },
908};
909
910static int mrf24j40_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
911{
912 struct mrf24j40 *devrec = hw->priv;
913 int i;
914
915 for (i = 0; i < ARRAY_SIZE(mrf24j40_ed_levels_map); i++) {
916 if (mrf24j40_ed_levels_map[i][0] == mbm)
917 return regmap_write(devrec->regmap_short, REG_CCAEDTH,
918 mrf24j40_ed_levels_map[i][1]);
919 }
920
921 return -EINVAL;
922}
923
924static const s32 mrf24j40ma_powers[] = {
925 0, -50, -120, -190, -280, -370, -490, -630, -1000, -1050, -1120, -1190,
926 -1280, -1370, -1490, -1630, -2000, -2050, -2120, -2190, -2280, -2370,
927 -2490, -2630, -3000, -3050, -3120, -3190, -3280, -3370, -3490, -3630,
928};
929
930static int mrf24j40_set_txpower(struct ieee802154_hw *hw, s32 mbm)
931{
932 struct mrf24j40 *devrec = hw->priv;
933 s32 small_scale;
934 u8 val;
935
936 if (0 >= mbm && mbm > -1000) {
937 val = TXPWRL_0 << TXPWRL_SHIFT;
938 small_scale = mbm;
939 } else if (-1000 >= mbm && mbm > -2000) {
940 val = TXPWRL_10 << TXPWRL_SHIFT;
941 small_scale = mbm + 1000;
942 } else if (-2000 >= mbm && mbm > -3000) {
943 val = TXPWRL_20 << TXPWRL_SHIFT;
944 small_scale = mbm + 2000;
945 } else if (-3000 >= mbm && mbm > -4000) {
946 val = TXPWRL_30 << TXPWRL_SHIFT;
947 small_scale = mbm + 3000;
948 } else {
949 return -EINVAL;
950 }
951
952 switch (small_scale) {
953 case 0:
954 val |= (TXPWRS_0 << TXPWRS_SHIFT);
955 break;
956 case -50:
957 val |= (TXPWRS_0_5 << TXPWRS_SHIFT);
958 break;
959 case -120:
960 val |= (TXPWRS_1_2 << TXPWRS_SHIFT);
961 break;
962 case -190:
963 val |= (TXPWRS_1_9 << TXPWRS_SHIFT);
964 break;
965 case -280:
966 val |= (TXPWRS_2_8 << TXPWRS_SHIFT);
967 break;
968 case -370:
969 val |= (TXPWRS_3_7 << TXPWRS_SHIFT);
970 break;
971 case -490:
972 val |= (TXPWRS_4_9 << TXPWRS_SHIFT);
973 break;
974 case -630:
975 val |= (TXPWRS_6_3 << TXPWRS_SHIFT);
976 break;
977 default:
978 return -EINVAL;
979 }
980
981 return regmap_update_bits(devrec->regmap_long, REG_RFCON3,
982 TXPWRL_MASK | TXPWRS_MASK, val);
983}
984
985static int mrf24j40_set_promiscuous_mode(struct ieee802154_hw *hw, bool on)
986{
987 struct mrf24j40 *devrec = hw->priv;
988 int ret;
989
990 if (on) {
991 /* set PROMI, ERRPKT and NOACKRSP */
992 ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
993 BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP,
994 BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP);
995 } else {
996 /* clear PROMI, ERRPKT and NOACKRSP */
997 ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
998 BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP,
999 0);
1000 }
1001
1002 return ret;
1003}
1004
1005static const struct ieee802154_ops mrf24j40_ops = {
1006 .owner = THIS_MODULE,
1007 .xmit_async = mrf24j40_tx,
1008 .ed = mrf24j40_ed,
1009 .start = mrf24j40_start,
1010 .stop = mrf24j40_stop,
1011 .set_channel = mrf24j40_set_channel,
1012 .set_hw_addr_filt = mrf24j40_filter,
1013 .set_csma_params = mrf24j40_csma_params,
1014 .set_cca_mode = mrf24j40_set_cca_mode,
1015 .set_cca_ed_level = mrf24j40_set_cca_ed_level,
1016 .set_txpower = mrf24j40_set_txpower,
1017 .set_promiscuous_mode = mrf24j40_set_promiscuous_mode,
1018};
1019
1020static void mrf24j40_intstat_complete(void *context)
1021{
1022 struct mrf24j40 *devrec = context;
1023 u8 intstat = devrec->irq_buf[1];
1024
1025 enable_irq(devrec->spi->irq);
1026
1027 /* Ignore Rx security decryption */
1028 if (intstat & BIT_SECIF)
1029 regmap_write_async(devrec->regmap_short, REG_SECCON0,
1030 BIT_SECIGNORE);
1031
1032 /* Check for TX complete */
1033 if (intstat & BIT_TXNIF)
1034 ieee802154_xmit_complete(devrec->hw, devrec->tx_skb, false);
1035
1036 /* Check for Rx */
1037 if (intstat & BIT_RXIF)
1038 mrf24j40_handle_rx(devrec);
1039}
1040
1041static irqreturn_t mrf24j40_isr(int irq, void *data)
1042{
1043 struct mrf24j40 *devrec = data;
1044 int ret;
1045
1046 disable_irq_nosync(irq);
1047
1048 devrec->irq_buf[0] = MRF24J40_READSHORT(REG_INTSTAT);
1049 devrec->irq_buf[1] = 0;
1050
1051 /* Read the interrupt status */
1052 ret = spi_async(devrec->spi, &devrec->irq_msg);
1053 if (ret) {
1054 enable_irq(irq);
1055 return IRQ_NONE;
1056 }
1057
1058 return IRQ_HANDLED;
1059}
1060
1061static int mrf24j40_hw_init(struct mrf24j40 *devrec)
1062{
1063 u32 irq_type;
1064 int ret;
1065
1066 /* Initialize the device.
1067 From datasheet section 3.2: Initialization. */
1068 ret = regmap_write(devrec->regmap_short, REG_SOFTRST, 0x07);
1069 if (ret)
1070 goto err_ret;
1071
1072 ret = regmap_write(devrec->regmap_short, REG_PACON2, 0x98);
1073 if (ret)
1074 goto err_ret;
1075
1076 ret = regmap_write(devrec->regmap_short, REG_TXSTBL, 0x95);
1077 if (ret)
1078 goto err_ret;
1079
1080 ret = regmap_write(devrec->regmap_long, REG_RFCON0, 0x03);
1081 if (ret)
1082 goto err_ret;
1083
1084 ret = regmap_write(devrec->regmap_long, REG_RFCON1, 0x01);
1085 if (ret)
1086 goto err_ret;
1087
1088 ret = regmap_write(devrec->regmap_long, REG_RFCON2, 0x80);
1089 if (ret)
1090 goto err_ret;
1091
1092 ret = regmap_write(devrec->regmap_long, REG_RFCON6, 0x90);
1093 if (ret)
1094 goto err_ret;
1095
1096 ret = regmap_write(devrec->regmap_long, REG_RFCON7, 0x80);
1097 if (ret)
1098 goto err_ret;
1099
1100 ret = regmap_write(devrec->regmap_long, REG_RFCON8, 0x10);
1101 if (ret)
1102 goto err_ret;
1103
1104 ret = regmap_write(devrec->regmap_long, REG_SLPCON1, 0x21);
1105 if (ret)
1106 goto err_ret;
1107
1108 ret = regmap_write(devrec->regmap_short, REG_BBREG2, 0x80);
1109 if (ret)
1110 goto err_ret;
1111
1112 ret = regmap_write(devrec->regmap_short, REG_CCAEDTH, 0x60);
1113 if (ret)
1114 goto err_ret;
1115
1116 ret = regmap_write(devrec->regmap_short, REG_BBREG6, 0x40);
1117 if (ret)
1118 goto err_ret;
1119
1120 ret = regmap_write(devrec->regmap_short, REG_RFCTL, 0x04);
1121 if (ret)
1122 goto err_ret;
1123
1124 ret = regmap_write(devrec->regmap_short, REG_RFCTL, 0x0);
1125 if (ret)
1126 goto err_ret;
1127
1128 udelay(192);
1129
1130 /* Set RX Mode. RXMCR<1:0>: 0x0 normal, 0x1 promisc, 0x2 error */
1131 ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR, 0x03, 0x00);
1132 if (ret)
1133 goto err_ret;
1134
1135 if (spi_get_device_id(devrec->spi)->driver_data == MRF24J40MC) {
1136 /* Enable external amplifier.
1137 * From MRF24J40MC datasheet section 1.3: Operation.
1138 */
1139 regmap_update_bits(devrec->regmap_long, REG_TESTMODE, 0x07,
1140 0x07);
1141
1142 /* Set GPIO3 as output. */
1143 regmap_update_bits(devrec->regmap_short, REG_TRISGPIO, 0x08,
1144 0x08);
1145
1146 /* Set GPIO3 HIGH to enable U5 voltage regulator */
1147 regmap_update_bits(devrec->regmap_short, REG_GPIO, 0x08, 0x08);
1148
1149 /* Reduce TX pwr to meet FCC requirements.
1150 * From MRF24J40MC datasheet section 3.1.1
1151 */
1152 regmap_write(devrec->regmap_long, REG_RFCON3, 0x28);
1153 }
1154
1155 irq_type = irq_get_trigger_type(devrec->spi->irq);
1156 if (irq_type == IRQ_TYPE_EDGE_RISING ||
1157 irq_type == IRQ_TYPE_EDGE_FALLING)
1158 dev_warn(&devrec->spi->dev,
1159 "Using edge triggered irq's are not recommended, because it can cause races and result in a non-functional driver!\n");
1160 switch (irq_type) {
1161 case IRQ_TYPE_EDGE_RISING:
1162 case IRQ_TYPE_LEVEL_HIGH:
1163 /* set interrupt polarity to rising */
1164 ret = regmap_update_bits(devrec->regmap_long, REG_SLPCON0,
1165 BIT_INTEDGE, BIT_INTEDGE);
1166 if (ret)
1167 goto err_ret;
1168 break;
1169 default:
1170 /* default is falling edge */
1171 break;
1172 }
1173
1174 return 0;
1175
1176err_ret:
1177 return ret;
1178}
1179
1180static void
1181mrf24j40_setup_tx_spi_messages(struct mrf24j40 *devrec)
1182{
1183 spi_message_init(&devrec->tx_msg);
1184 devrec->tx_msg.context = devrec;
1185 devrec->tx_msg.complete = write_tx_buf_complete;
1186 devrec->tx_hdr_trx.len = 2;
1187 devrec->tx_hdr_trx.tx_buf = devrec->tx_hdr_buf;
1188 spi_message_add_tail(&devrec->tx_hdr_trx, &devrec->tx_msg);
1189 devrec->tx_len_trx.len = 2;
1190 devrec->tx_len_trx.tx_buf = devrec->tx_len_buf;
1191 spi_message_add_tail(&devrec->tx_len_trx, &devrec->tx_msg);
1192 spi_message_add_tail(&devrec->tx_buf_trx, &devrec->tx_msg);
1193
1194 spi_message_init(&devrec->tx_post_msg);
1195 devrec->tx_post_msg.context = devrec;
1196 devrec->tx_post_trx.len = 2;
1197 devrec->tx_post_trx.tx_buf = devrec->tx_post_buf;
1198 spi_message_add_tail(&devrec->tx_post_trx, &devrec->tx_post_msg);
1199}
1200
1201static void
1202mrf24j40_setup_rx_spi_messages(struct mrf24j40 *devrec)
1203{
1204 spi_message_init(&devrec->rx_msg);
1205 devrec->rx_msg.context = devrec;
1206 devrec->rx_trx.len = 2;
1207 devrec->rx_trx.tx_buf = devrec->rx_buf;
1208 devrec->rx_trx.rx_buf = devrec->rx_buf;
1209 spi_message_add_tail(&devrec->rx_trx, &devrec->rx_msg);
1210
1211 spi_message_init(&devrec->rx_buf_msg);
1212 devrec->rx_buf_msg.context = devrec;
1213 devrec->rx_buf_msg.complete = mrf24j40_handle_rx_read_buf_complete;
1214 devrec->rx_addr_trx.len = 2;
1215 devrec->rx_addr_trx.tx_buf = devrec->rx_addr_buf;
1216 spi_message_add_tail(&devrec->rx_addr_trx, &devrec->rx_buf_msg);
1217 devrec->rx_fifo_buf_trx.rx_buf = devrec->rx_fifo_buf;
1218 spi_message_add_tail(&devrec->rx_fifo_buf_trx, &devrec->rx_buf_msg);
1219 devrec->rx_lqi_trx.len = 2;
1220 devrec->rx_lqi_trx.rx_buf = devrec->rx_lqi_buf;
1221 spi_message_add_tail(&devrec->rx_lqi_trx, &devrec->rx_buf_msg);
1222}
1223
1224static void
1225mrf24j40_setup_irq_spi_messages(struct mrf24j40 *devrec)
1226{
1227 spi_message_init(&devrec->irq_msg);
1228 devrec->irq_msg.context = devrec;
1229 devrec->irq_msg.complete = mrf24j40_intstat_complete;
1230 devrec->irq_trx.len = 2;
1231 devrec->irq_trx.tx_buf = devrec->irq_buf;
1232 devrec->irq_trx.rx_buf = devrec->irq_buf;
1233 spi_message_add_tail(&devrec->irq_trx, &devrec->irq_msg);
1234}
1235
1236static void mrf24j40_phy_setup(struct mrf24j40 *devrec)
1237{
1238 ieee802154_random_extended_addr(&devrec->hw->phy->perm_extended_addr);
1239 devrec->hw->phy->current_channel = 11;
1240
1241 /* mrf24j40 supports max_minbe 0 - 3 */
1242 devrec->hw->phy->supported.max_minbe = 3;
1243 /* datasheet doesn't say anything about max_be, but we have min_be
1244 * So we assume the max_be default.
1245 */
1246 devrec->hw->phy->supported.min_maxbe = 5;
1247 devrec->hw->phy->supported.max_maxbe = 5;
1248
1249 devrec->hw->phy->cca.mode = NL802154_CCA_CARRIER;
1250 devrec->hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
1251 BIT(NL802154_CCA_CARRIER) |
1252 BIT(NL802154_CCA_ENERGY_CARRIER);
1253 devrec->hw->phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND);
1254
1255 devrec->hw->phy->cca_ed_level = -6900;
1256 devrec->hw->phy->supported.cca_ed_levels = mrf24j40_ed_levels;
1257 devrec->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(mrf24j40_ed_levels);
1258
1259 switch (spi_get_device_id(devrec->spi)->driver_data) {
1260 case MRF24J40:
1261 case MRF24J40MA:
1262 devrec->hw->phy->supported.tx_powers = mrf24j40ma_powers;
1263 devrec->hw->phy->supported.tx_powers_size = ARRAY_SIZE(mrf24j40ma_powers);
1264 devrec->hw->phy->flags |= WPAN_PHY_FLAG_TXPOWER;
1265 break;
1266 default:
1267 break;
1268 }
1269}
1270
1271static int mrf24j40_probe(struct spi_device *spi)
1272{
1273 int ret = -ENOMEM, irq_type;
1274 struct ieee802154_hw *hw;
1275 struct mrf24j40 *devrec;
1276
1277 dev_info(&spi->dev, "probe(). IRQ: %d\n", spi->irq);
1278
1279 /* Register with the 802154 subsystem */
1280
1281 hw = ieee802154_alloc_hw(sizeof(*devrec), &mrf24j40_ops);
1282 if (!hw)
1283 goto err_ret;
1284
1285 devrec = hw->priv;
1286 devrec->spi = spi;
1287 spi_set_drvdata(spi, devrec);
1288 devrec->hw = hw;
1289 devrec->hw->parent = &spi->dev;
1290 devrec->hw->phy->supported.channels[0] = CHANNEL_MASK;
1291 devrec->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | IEEE802154_HW_AFILT |
1292 IEEE802154_HW_CSMA_PARAMS |
1293 IEEE802154_HW_PROMISCUOUS;
1294
1295 devrec->hw->phy->flags = WPAN_PHY_FLAG_CCA_MODE |
1296 WPAN_PHY_FLAG_CCA_ED_LEVEL;
1297
1298 mrf24j40_setup_tx_spi_messages(devrec);
1299 mrf24j40_setup_rx_spi_messages(devrec);
1300 mrf24j40_setup_irq_spi_messages(devrec);
1301
1302 devrec->regmap_short = devm_regmap_init_spi(spi,
1303 &mrf24j40_short_regmap);
1304 if (IS_ERR(devrec->regmap_short)) {
1305 ret = PTR_ERR(devrec->regmap_short);
1306 dev_err(&spi->dev, "Failed to allocate short register map: %d\n",
1307 ret);
1308 goto err_register_device;
1309 }
1310
1311 devrec->regmap_long = devm_regmap_init(&spi->dev,
1312 &mrf24j40_long_regmap_bus,
1313 spi, &mrf24j40_long_regmap);
1314 if (IS_ERR(devrec->regmap_long)) {
1315 ret = PTR_ERR(devrec->regmap_long);
1316 dev_err(&spi->dev, "Failed to allocate long register map: %d\n",
1317 ret);
1318 goto err_register_device;
1319 }
1320
1321 if (spi->max_speed_hz > MAX_SPI_SPEED_HZ) {
1322 dev_warn(&spi->dev, "spi clock above possible maximum: %d",
1323 MAX_SPI_SPEED_HZ);
1324 ret = -EINVAL;
1325 goto err_register_device;
1326 }
1327
1328 ret = mrf24j40_hw_init(devrec);
1329 if (ret)
1330 goto err_register_device;
1331
1332 mrf24j40_phy_setup(devrec);
1333
1334 /* request IRQF_TRIGGER_LOW as fallback default */
1335 irq_type = irq_get_trigger_type(spi->irq);
1336 if (!irq_type)
1337 irq_type = IRQF_TRIGGER_LOW;
1338
1339 ret = devm_request_irq(&spi->dev, spi->irq, mrf24j40_isr,
1340 irq_type, dev_name(&spi->dev), devrec);
1341 if (ret) {
1342 dev_err(printdev(devrec), "Unable to get IRQ");
1343 goto err_register_device;
1344 }
1345
1346 dev_dbg(printdev(devrec), "registered mrf24j40\n");
1347 ret = ieee802154_register_hw(devrec->hw);
1348 if (ret)
1349 goto err_register_device;
1350
1351 return 0;
1352
1353err_register_device:
1354 ieee802154_free_hw(devrec->hw);
1355err_ret:
1356 return ret;
1357}
1358
1359static void mrf24j40_remove(struct spi_device *spi)
1360{
1361 struct mrf24j40 *devrec = spi_get_drvdata(spi);
1362
1363 dev_dbg(printdev(devrec), "remove\n");
1364
1365 ieee802154_unregister_hw(devrec->hw);
1366 ieee802154_free_hw(devrec->hw);
1367 /* TODO: Will ieee802154_free_device() wait until ->xmit() is
1368 * complete? */
1369}
1370
1371static const struct of_device_id mrf24j40_of_match[] = {
1372 { .compatible = "microchip,mrf24j40", .data = (void *)MRF24J40 },
1373 { .compatible = "microchip,mrf24j40ma", .data = (void *)MRF24J40MA },
1374 { .compatible = "microchip,mrf24j40mc", .data = (void *)MRF24J40MC },
1375 { },
1376};
1377MODULE_DEVICE_TABLE(of, mrf24j40_of_match);
1378
1379static const struct spi_device_id mrf24j40_ids[] = {
1380 { "mrf24j40", MRF24J40 },
1381 { "mrf24j40ma", MRF24J40MA },
1382 { "mrf24j40mc", MRF24J40MC },
1383 { },
1384};
1385MODULE_DEVICE_TABLE(spi, mrf24j40_ids);
1386
1387static struct spi_driver mrf24j40_driver = {
1388 .driver = {
1389 .of_match_table = mrf24j40_of_match,
1390 .name = "mrf24j40",
1391 },
1392 .id_table = mrf24j40_ids,
1393 .probe = mrf24j40_probe,
1394 .remove = mrf24j40_remove,
1395};
1396
1397module_spi_driver(mrf24j40_driver);
1398
1399MODULE_LICENSE("GPL");
1400MODULE_AUTHOR("Alan Ott");
1401MODULE_DESCRIPTION("MRF24J40 SPI 802.15.4 Controller Driver");
1/*
2 * Driver for Microchip MRF24J40 802.15.4 Wireless-PAN Networking controller
3 *
4 * Copyright (C) 2012 Alan Ott <alan@signal11.us>
5 * Signal 11 Software
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22#include <linux/spi/spi.h>
23#include <linux/interrupt.h>
24#include <linux/module.h>
25#include <net/wpan-phy.h>
26#include <net/mac802154.h>
27#include <net/ieee802154.h>
28
29/* MRF24J40 Short Address Registers */
30#define REG_RXMCR 0x00 /* Receive MAC control */
31#define REG_PANIDL 0x01 /* PAN ID (low) */
32#define REG_PANIDH 0x02 /* PAN ID (high) */
33#define REG_SADRL 0x03 /* Short address (low) */
34#define REG_SADRH 0x04 /* Short address (high) */
35#define REG_EADR0 0x05 /* Long address (low) (high is EADR7) */
36#define REG_TXMCR 0x11 /* Transmit MAC control */
37#define REG_PACON0 0x16 /* Power Amplifier Control */
38#define REG_PACON1 0x17 /* Power Amplifier Control */
39#define REG_PACON2 0x18 /* Power Amplifier Control */
40#define REG_TXNCON 0x1B /* Transmit Normal FIFO Control */
41#define REG_TXSTAT 0x24 /* TX MAC Status Register */
42#define REG_SOFTRST 0x2A /* Soft Reset */
43#define REG_TXSTBL 0x2E /* TX Stabilization */
44#define REG_INTSTAT 0x31 /* Interrupt Status */
45#define REG_INTCON 0x32 /* Interrupt Control */
46#define REG_RFCTL 0x36 /* RF Control Mode Register */
47#define REG_BBREG1 0x39 /* Baseband Registers */
48#define REG_BBREG2 0x3A /* */
49#define REG_BBREG6 0x3E /* */
50#define REG_CCAEDTH 0x3F /* Energy Detection Threshold */
51
52/* MRF24J40 Long Address Registers */
53#define REG_RFCON0 0x200 /* RF Control Registers */
54#define REG_RFCON1 0x201
55#define REG_RFCON2 0x202
56#define REG_RFCON3 0x203
57#define REG_RFCON5 0x205
58#define REG_RFCON6 0x206
59#define REG_RFCON7 0x207
60#define REG_RFCON8 0x208
61#define REG_RSSI 0x210
62#define REG_SLPCON0 0x211 /* Sleep Clock Control Registers */
63#define REG_SLPCON1 0x220
64#define REG_WAKETIMEL 0x222 /* Wake-up Time Match Value Low */
65#define REG_WAKETIMEH 0x223 /* Wake-up Time Match Value High */
66#define REG_RX_FIFO 0x300 /* Receive FIFO */
67
68/* Device configuration: Only channels 11-26 on page 0 are supported. */
69#define MRF24J40_CHAN_MIN 11
70#define MRF24J40_CHAN_MAX 26
71#define CHANNEL_MASK (((u32)1 << (MRF24J40_CHAN_MAX + 1)) \
72 - ((u32)1 << MRF24J40_CHAN_MIN))
73
74#define TX_FIFO_SIZE 128 /* From datasheet */
75#define RX_FIFO_SIZE 144 /* From datasheet */
76#define SET_CHANNEL_DELAY_US 192 /* From datasheet */
77
78/* Device Private Data */
79struct mrf24j40 {
80 struct spi_device *spi;
81 struct ieee802154_dev *dev;
82
83 struct mutex buffer_mutex; /* only used to protect buf */
84 struct completion tx_complete;
85 u8 *buf; /* 3 bytes. Used for SPI single-register transfers. */
86};
87
88/* Read/Write SPI Commands for Short and Long Address registers. */
89#define MRF24J40_READSHORT(reg) ((reg) << 1)
90#define MRF24J40_WRITESHORT(reg) ((reg) << 1 | 1)
91#define MRF24J40_READLONG(reg) (1 << 15 | (reg) << 5)
92#define MRF24J40_WRITELONG(reg) (1 << 15 | (reg) << 5 | 1 << 4)
93
94/* The datasheet indicates the theoretical maximum for SCK to be 10MHz */
95#define MAX_SPI_SPEED_HZ 10000000
96
97#define printdev(X) (&X->spi->dev)
98
99static int write_short_reg(struct mrf24j40 *devrec, u8 reg, u8 value)
100{
101 int ret;
102 struct spi_message msg;
103 struct spi_transfer xfer = {
104 .len = 2,
105 .tx_buf = devrec->buf,
106 .rx_buf = devrec->buf,
107 };
108
109 spi_message_init(&msg);
110 spi_message_add_tail(&xfer, &msg);
111
112 mutex_lock(&devrec->buffer_mutex);
113 devrec->buf[0] = MRF24J40_WRITESHORT(reg);
114 devrec->buf[1] = value;
115
116 ret = spi_sync(devrec->spi, &msg);
117 if (ret)
118 dev_err(printdev(devrec),
119 "SPI write Failed for short register 0x%hhx\n", reg);
120
121 mutex_unlock(&devrec->buffer_mutex);
122 return ret;
123}
124
125static int read_short_reg(struct mrf24j40 *devrec, u8 reg, u8 *val)
126{
127 int ret = -1;
128 struct spi_message msg;
129 struct spi_transfer xfer = {
130 .len = 2,
131 .tx_buf = devrec->buf,
132 .rx_buf = devrec->buf,
133 };
134
135 spi_message_init(&msg);
136 spi_message_add_tail(&xfer, &msg);
137
138 mutex_lock(&devrec->buffer_mutex);
139 devrec->buf[0] = MRF24J40_READSHORT(reg);
140 devrec->buf[1] = 0;
141
142 ret = spi_sync(devrec->spi, &msg);
143 if (ret)
144 dev_err(printdev(devrec),
145 "SPI read Failed for short register 0x%hhx\n", reg);
146 else
147 *val = devrec->buf[1];
148
149 mutex_unlock(&devrec->buffer_mutex);
150 return ret;
151}
152
153static int read_long_reg(struct mrf24j40 *devrec, u16 reg, u8 *value)
154{
155 int ret;
156 u16 cmd;
157 struct spi_message msg;
158 struct spi_transfer xfer = {
159 .len = 3,
160 .tx_buf = devrec->buf,
161 .rx_buf = devrec->buf,
162 };
163
164 spi_message_init(&msg);
165 spi_message_add_tail(&xfer, &msg);
166
167 cmd = MRF24J40_READLONG(reg);
168 mutex_lock(&devrec->buffer_mutex);
169 devrec->buf[0] = cmd >> 8 & 0xff;
170 devrec->buf[1] = cmd & 0xff;
171 devrec->buf[2] = 0;
172
173 ret = spi_sync(devrec->spi, &msg);
174 if (ret)
175 dev_err(printdev(devrec),
176 "SPI read Failed for long register 0x%hx\n", reg);
177 else
178 *value = devrec->buf[2];
179
180 mutex_unlock(&devrec->buffer_mutex);
181 return ret;
182}
183
184static int write_long_reg(struct mrf24j40 *devrec, u16 reg, u8 val)
185{
186 int ret;
187 u16 cmd;
188 struct spi_message msg;
189 struct spi_transfer xfer = {
190 .len = 3,
191 .tx_buf = devrec->buf,
192 .rx_buf = devrec->buf,
193 };
194
195 spi_message_init(&msg);
196 spi_message_add_tail(&xfer, &msg);
197
198 cmd = MRF24J40_WRITELONG(reg);
199 mutex_lock(&devrec->buffer_mutex);
200 devrec->buf[0] = cmd >> 8 & 0xff;
201 devrec->buf[1] = cmd & 0xff;
202 devrec->buf[2] = val;
203
204 ret = spi_sync(devrec->spi, &msg);
205 if (ret)
206 dev_err(printdev(devrec),
207 "SPI write Failed for long register 0x%hx\n", reg);
208
209 mutex_unlock(&devrec->buffer_mutex);
210 return ret;
211}
212
213/* This function relies on an undocumented write method. Once a write command
214 and address is set, as many bytes of data as desired can be clocked into
215 the device. The datasheet only shows setting one byte at a time. */
216static int write_tx_buf(struct mrf24j40 *devrec, u16 reg,
217 const u8 *data, size_t length)
218{
219 int ret;
220 u16 cmd;
221 u8 lengths[2];
222 struct spi_message msg;
223 struct spi_transfer addr_xfer = {
224 .len = 2,
225 .tx_buf = devrec->buf,
226 };
227 struct spi_transfer lengths_xfer = {
228 .len = 2,
229 .tx_buf = &lengths, /* TODO: Is DMA really required for SPI? */
230 };
231 struct spi_transfer data_xfer = {
232 .len = length,
233 .tx_buf = data,
234 };
235
236 /* Range check the length. 2 bytes are used for the length fields.*/
237 if (length > TX_FIFO_SIZE-2) {
238 dev_err(printdev(devrec), "write_tx_buf() was passed too large a buffer. Performing short write.\n");
239 length = TX_FIFO_SIZE-2;
240 }
241
242 spi_message_init(&msg);
243 spi_message_add_tail(&addr_xfer, &msg);
244 spi_message_add_tail(&lengths_xfer, &msg);
245 spi_message_add_tail(&data_xfer, &msg);
246
247 cmd = MRF24J40_WRITELONG(reg);
248 mutex_lock(&devrec->buffer_mutex);
249 devrec->buf[0] = cmd >> 8 & 0xff;
250 devrec->buf[1] = cmd & 0xff;
251 lengths[0] = 0x0; /* Header Length. Set to 0 for now. TODO */
252 lengths[1] = length; /* Total length */
253
254 ret = spi_sync(devrec->spi, &msg);
255 if (ret)
256 dev_err(printdev(devrec), "SPI write Failed for TX buf\n");
257
258 mutex_unlock(&devrec->buffer_mutex);
259 return ret;
260}
261
262static int mrf24j40_read_rx_buf(struct mrf24j40 *devrec,
263 u8 *data, u8 *len, u8 *lqi)
264{
265 u8 rx_len;
266 u8 addr[2];
267 u8 lqi_rssi[2];
268 u16 cmd;
269 int ret;
270 struct spi_message msg;
271 struct spi_transfer addr_xfer = {
272 .len = 2,
273 .tx_buf = &addr,
274 };
275 struct spi_transfer data_xfer = {
276 .len = 0x0, /* set below */
277 .rx_buf = data,
278 };
279 struct spi_transfer status_xfer = {
280 .len = 2,
281 .rx_buf = &lqi_rssi,
282 };
283
284 /* Get the length of the data in the RX FIFO. The length in this
285 * register exclues the 1-byte length field at the beginning. */
286 ret = read_long_reg(devrec, REG_RX_FIFO, &rx_len);
287 if (ret)
288 goto out;
289
290 /* Range check the RX FIFO length, accounting for the one-byte
291 * length field at the begining. */
292 if (rx_len > RX_FIFO_SIZE-1) {
293 dev_err(printdev(devrec), "Invalid length read from device. Performing short read.\n");
294 rx_len = RX_FIFO_SIZE-1;
295 }
296
297 if (rx_len > *len) {
298 /* Passed in buffer wasn't big enough. Should never happen. */
299 dev_err(printdev(devrec), "Buffer not big enough. Performing short read\n");
300 rx_len = *len;
301 }
302
303 /* Set up the commands to read the data. */
304 cmd = MRF24J40_READLONG(REG_RX_FIFO+1);
305 addr[0] = cmd >> 8 & 0xff;
306 addr[1] = cmd & 0xff;
307 data_xfer.len = rx_len;
308
309 spi_message_init(&msg);
310 spi_message_add_tail(&addr_xfer, &msg);
311 spi_message_add_tail(&data_xfer, &msg);
312 spi_message_add_tail(&status_xfer, &msg);
313
314 ret = spi_sync(devrec->spi, &msg);
315 if (ret) {
316 dev_err(printdev(devrec), "SPI RX Buffer Read Failed.\n");
317 goto out;
318 }
319
320 *lqi = lqi_rssi[0];
321 *len = rx_len;
322
323#ifdef DEBUG
324 print_hex_dump(KERN_DEBUG, "mrf24j40 rx: ",
325 DUMP_PREFIX_OFFSET, 16, 1, data, *len, 0);
326 printk(KERN_DEBUG "mrf24j40 rx: lqi: %02hhx rssi: %02hhx\n",
327 lqi_rssi[0], lqi_rssi[1]);
328#endif
329
330out:
331 return ret;
332}
333
334static int mrf24j40_tx(struct ieee802154_dev *dev, struct sk_buff *skb)
335{
336 struct mrf24j40 *devrec = dev->priv;
337 u8 val;
338 int ret = 0;
339
340 dev_dbg(printdev(devrec), "tx packet of %d bytes\n", skb->len);
341
342 ret = write_tx_buf(devrec, 0x000, skb->data, skb->len);
343 if (ret)
344 goto err;
345
346 reinit_completion(&devrec->tx_complete);
347
348 /* Set TXNTRIG bit of TXNCON to send packet */
349 ret = read_short_reg(devrec, REG_TXNCON, &val);
350 if (ret)
351 goto err;
352 val |= 0x1;
353 /* Set TXNACKREQ if the ACK bit is set in the packet. */
354 if (skb->data[0] & IEEE802154_FC_ACK_REQ)
355 val |= 0x4;
356 write_short_reg(devrec, REG_TXNCON, val);
357
358 /* Wait for the device to send the TX complete interrupt. */
359 ret = wait_for_completion_interruptible_timeout(
360 &devrec->tx_complete,
361 5 * HZ);
362 if (ret == -ERESTARTSYS)
363 goto err;
364 if (ret == 0) {
365 dev_warn(printdev(devrec), "Timeout waiting for TX interrupt\n");
366 ret = -ETIMEDOUT;
367 goto err;
368 }
369
370 /* Check for send error from the device. */
371 ret = read_short_reg(devrec, REG_TXSTAT, &val);
372 if (ret)
373 goto err;
374 if (val & 0x1) {
375 dev_dbg(printdev(devrec), "Error Sending. Retry count exceeded\n");
376 ret = -ECOMM; /* TODO: Better error code ? */
377 } else
378 dev_dbg(printdev(devrec), "Packet Sent\n");
379
380err:
381
382 return ret;
383}
384
385static int mrf24j40_ed(struct ieee802154_dev *dev, u8 *level)
386{
387 /* TODO: */
388 printk(KERN_WARNING "mrf24j40: ed not implemented\n");
389 *level = 0;
390 return 0;
391}
392
393static int mrf24j40_start(struct ieee802154_dev *dev)
394{
395 struct mrf24j40 *devrec = dev->priv;
396 u8 val;
397 int ret;
398
399 dev_dbg(printdev(devrec), "start\n");
400
401 ret = read_short_reg(devrec, REG_INTCON, &val);
402 if (ret)
403 return ret;
404 val &= ~(0x1|0x8); /* Clear TXNIE and RXIE. Enable interrupts */
405 write_short_reg(devrec, REG_INTCON, val);
406
407 return 0;
408}
409
410static void mrf24j40_stop(struct ieee802154_dev *dev)
411{
412 struct mrf24j40 *devrec = dev->priv;
413 u8 val;
414 int ret;
415 dev_dbg(printdev(devrec), "stop\n");
416
417 ret = read_short_reg(devrec, REG_INTCON, &val);
418 if (ret)
419 return;
420 val |= 0x1|0x8; /* Set TXNIE and RXIE. Disable Interrupts */
421 write_short_reg(devrec, REG_INTCON, val);
422
423 return;
424}
425
426static int mrf24j40_set_channel(struct ieee802154_dev *dev,
427 int page, int channel)
428{
429 struct mrf24j40 *devrec = dev->priv;
430 u8 val;
431 int ret;
432
433 dev_dbg(printdev(devrec), "Set Channel %d\n", channel);
434
435 WARN_ON(page != 0);
436 WARN_ON(channel < MRF24J40_CHAN_MIN);
437 WARN_ON(channel > MRF24J40_CHAN_MAX);
438
439 /* Set Channel TODO */
440 val = (channel-11) << 4 | 0x03;
441 write_long_reg(devrec, REG_RFCON0, val);
442
443 /* RF Reset */
444 ret = read_short_reg(devrec, REG_RFCTL, &val);
445 if (ret)
446 return ret;
447 val |= 0x04;
448 write_short_reg(devrec, REG_RFCTL, val);
449 val &= ~0x04;
450 write_short_reg(devrec, REG_RFCTL, val);
451
452 udelay(SET_CHANNEL_DELAY_US); /* per datasheet */
453
454 return 0;
455}
456
457static int mrf24j40_filter(struct ieee802154_dev *dev,
458 struct ieee802154_hw_addr_filt *filt,
459 unsigned long changed)
460{
461 struct mrf24j40 *devrec = dev->priv;
462
463 dev_dbg(printdev(devrec), "filter\n");
464
465 if (changed & IEEE802515_AFILT_SADDR_CHANGED) {
466 /* Short Addr */
467 u8 addrh, addrl;
468 addrh = le16_to_cpu(filt->short_addr) >> 8 & 0xff;
469 addrl = le16_to_cpu(filt->short_addr) & 0xff;
470
471 write_short_reg(devrec, REG_SADRH, addrh);
472 write_short_reg(devrec, REG_SADRL, addrl);
473 dev_dbg(printdev(devrec),
474 "Set short addr to %04hx\n", filt->short_addr);
475 }
476
477 if (changed & IEEE802515_AFILT_IEEEADDR_CHANGED) {
478 /* Device Address */
479 u8 i, addr[8];
480
481 memcpy(addr, &filt->ieee_addr, 8);
482 for (i = 0; i < 8; i++)
483 write_short_reg(devrec, REG_EADR0 + i, addr[i]);
484
485#ifdef DEBUG
486 printk(KERN_DEBUG "Set long addr to: ");
487 for (i = 0; i < 8; i++)
488 printk("%02hhx ", addr[7 - i]);
489 printk(KERN_DEBUG "\n");
490#endif
491 }
492
493 if (changed & IEEE802515_AFILT_PANID_CHANGED) {
494 /* PAN ID */
495 u8 panidl, panidh;
496 panidh = le16_to_cpu(filt->pan_id) >> 8 & 0xff;
497 panidl = le16_to_cpu(filt->pan_id) & 0xff;
498 write_short_reg(devrec, REG_PANIDH, panidh);
499 write_short_reg(devrec, REG_PANIDL, panidl);
500
501 dev_dbg(printdev(devrec), "Set PANID to %04hx\n", filt->pan_id);
502 }
503
504 if (changed & IEEE802515_AFILT_PANC_CHANGED) {
505 /* Pan Coordinator */
506 u8 val;
507 int ret;
508
509 ret = read_short_reg(devrec, REG_RXMCR, &val);
510 if (ret)
511 return ret;
512 if (filt->pan_coord)
513 val |= 0x8;
514 else
515 val &= ~0x8;
516 write_short_reg(devrec, REG_RXMCR, val);
517
518 /* REG_SLOTTED is maintained as default (unslotted/CSMA-CA).
519 * REG_ORDER is maintained as default (no beacon/superframe).
520 */
521
522 dev_dbg(printdev(devrec), "Set Pan Coord to %s\n",
523 filt->pan_coord ? "on" : "off");
524 }
525
526 return 0;
527}
528
529static int mrf24j40_handle_rx(struct mrf24j40 *devrec)
530{
531 u8 len = RX_FIFO_SIZE;
532 u8 lqi = 0;
533 u8 val;
534 int ret = 0;
535 struct sk_buff *skb;
536
537 /* Turn off reception of packets off the air. This prevents the
538 * device from overwriting the buffer while we're reading it. */
539 ret = read_short_reg(devrec, REG_BBREG1, &val);
540 if (ret)
541 goto out;
542 val |= 4; /* SET RXDECINV */
543 write_short_reg(devrec, REG_BBREG1, val);
544
545 skb = alloc_skb(len, GFP_KERNEL);
546 if (!skb) {
547 ret = -ENOMEM;
548 goto out;
549 }
550
551 ret = mrf24j40_read_rx_buf(devrec, skb_put(skb, len), &len, &lqi);
552 if (ret < 0) {
553 dev_err(printdev(devrec), "Failure reading RX FIFO\n");
554 kfree_skb(skb);
555 ret = -EINVAL;
556 goto out;
557 }
558
559 /* Cut off the checksum */
560 skb_trim(skb, len-2);
561
562 /* TODO: Other drivers call ieee20154_rx_irqsafe() here (eg: cc2040,
563 * also from a workqueue). I think irqsafe is not necessary here.
564 * Can someone confirm? */
565 ieee802154_rx_irqsafe(devrec->dev, skb, lqi);
566
567 dev_dbg(printdev(devrec), "RX Handled\n");
568
569out:
570 /* Turn back on reception of packets off the air. */
571 ret = read_short_reg(devrec, REG_BBREG1, &val);
572 if (ret)
573 return ret;
574 val &= ~0x4; /* Clear RXDECINV */
575 write_short_reg(devrec, REG_BBREG1, val);
576
577 return ret;
578}
579
580static struct ieee802154_ops mrf24j40_ops = {
581 .owner = THIS_MODULE,
582 .xmit = mrf24j40_tx,
583 .ed = mrf24j40_ed,
584 .start = mrf24j40_start,
585 .stop = mrf24j40_stop,
586 .set_channel = mrf24j40_set_channel,
587 .set_hw_addr_filt = mrf24j40_filter,
588};
589
590static irqreturn_t mrf24j40_isr(int irq, void *data)
591{
592 struct mrf24j40 *devrec = data;
593 u8 intstat;
594 int ret;
595
596 /* Read the interrupt status */
597 ret = read_short_reg(devrec, REG_INTSTAT, &intstat);
598 if (ret)
599 goto out;
600
601 /* Check for TX complete */
602 if (intstat & 0x1)
603 complete(&devrec->tx_complete);
604
605 /* Check for Rx */
606 if (intstat & 0x8)
607 mrf24j40_handle_rx(devrec);
608
609out:
610 return IRQ_HANDLED;
611}
612
613static int mrf24j40_probe(struct spi_device *spi)
614{
615 int ret = -ENOMEM;
616 u8 val;
617 struct mrf24j40 *devrec;
618
619 printk(KERN_INFO "mrf24j40: probe(). IRQ: %d\n", spi->irq);
620
621 devrec = kzalloc(sizeof(struct mrf24j40), GFP_KERNEL);
622 if (!devrec)
623 goto err_devrec;
624 devrec->buf = kzalloc(3, GFP_KERNEL);
625 if (!devrec->buf)
626 goto err_buf;
627
628 spi->mode = SPI_MODE_0; /* TODO: Is this appropriate for right here? */
629 if (spi->max_speed_hz > MAX_SPI_SPEED_HZ)
630 spi->max_speed_hz = MAX_SPI_SPEED_HZ;
631
632 mutex_init(&devrec->buffer_mutex);
633 init_completion(&devrec->tx_complete);
634 devrec->spi = spi;
635 spi_set_drvdata(spi, devrec);
636
637 /* Register with the 802154 subsystem */
638
639 devrec->dev = ieee802154_alloc_device(0, &mrf24j40_ops);
640 if (!devrec->dev)
641 goto err_alloc_dev;
642
643 devrec->dev->priv = devrec;
644 devrec->dev->parent = &devrec->spi->dev;
645 devrec->dev->phy->channels_supported[0] = CHANNEL_MASK;
646 devrec->dev->flags = IEEE802154_HW_OMIT_CKSUM|IEEE802154_HW_AACK;
647
648 dev_dbg(printdev(devrec), "registered mrf24j40\n");
649 ret = ieee802154_register_device(devrec->dev);
650 if (ret)
651 goto err_register_device;
652
653 /* Initialize the device.
654 From datasheet section 3.2: Initialization. */
655 write_short_reg(devrec, REG_SOFTRST, 0x07);
656 write_short_reg(devrec, REG_PACON2, 0x98);
657 write_short_reg(devrec, REG_TXSTBL, 0x95);
658 write_long_reg(devrec, REG_RFCON0, 0x03);
659 write_long_reg(devrec, REG_RFCON1, 0x01);
660 write_long_reg(devrec, REG_RFCON2, 0x80);
661 write_long_reg(devrec, REG_RFCON6, 0x90);
662 write_long_reg(devrec, REG_RFCON7, 0x80);
663 write_long_reg(devrec, REG_RFCON8, 0x10);
664 write_long_reg(devrec, REG_SLPCON1, 0x21);
665 write_short_reg(devrec, REG_BBREG2, 0x80);
666 write_short_reg(devrec, REG_CCAEDTH, 0x60);
667 write_short_reg(devrec, REG_BBREG6, 0x40);
668 write_short_reg(devrec, REG_RFCTL, 0x04);
669 write_short_reg(devrec, REG_RFCTL, 0x0);
670 udelay(192);
671
672 /* Set RX Mode. RXMCR<1:0>: 0x0 normal, 0x1 promisc, 0x2 error */
673 ret = read_short_reg(devrec, REG_RXMCR, &val);
674 if (ret)
675 goto err_read_reg;
676 val &= ~0x3; /* Clear RX mode (normal) */
677 write_short_reg(devrec, REG_RXMCR, val);
678
679 ret = request_threaded_irq(spi->irq,
680 NULL,
681 mrf24j40_isr,
682 IRQF_TRIGGER_LOW|IRQF_ONESHOT,
683 dev_name(&spi->dev),
684 devrec);
685
686 if (ret) {
687 dev_err(printdev(devrec), "Unable to get IRQ");
688 goto err_irq;
689 }
690
691 return 0;
692
693err_irq:
694err_read_reg:
695 ieee802154_unregister_device(devrec->dev);
696err_register_device:
697 ieee802154_free_device(devrec->dev);
698err_alloc_dev:
699 kfree(devrec->buf);
700err_buf:
701 kfree(devrec);
702err_devrec:
703 return ret;
704}
705
706static int mrf24j40_remove(struct spi_device *spi)
707{
708 struct mrf24j40 *devrec = spi_get_drvdata(spi);
709
710 dev_dbg(printdev(devrec), "remove\n");
711
712 free_irq(spi->irq, devrec);
713 ieee802154_unregister_device(devrec->dev);
714 ieee802154_free_device(devrec->dev);
715 /* TODO: Will ieee802154_free_device() wait until ->xmit() is
716 * complete? */
717
718 /* Clean up the SPI stuff. */
719 kfree(devrec->buf);
720 kfree(devrec);
721 return 0;
722}
723
724static const struct spi_device_id mrf24j40_ids[] = {
725 { "mrf24j40", 0 },
726 { "mrf24j40ma", 0 },
727 { },
728};
729MODULE_DEVICE_TABLE(spi, mrf24j40_ids);
730
731static struct spi_driver mrf24j40_driver = {
732 .driver = {
733 .name = "mrf24j40",
734 .bus = &spi_bus_type,
735 .owner = THIS_MODULE,
736 },
737 .id_table = mrf24j40_ids,
738 .probe = mrf24j40_probe,
739 .remove = mrf24j40_remove,
740};
741
742module_spi_driver(mrf24j40_driver);
743
744MODULE_LICENSE("GPL");
745MODULE_AUTHOR("Alan Ott");
746MODULE_DESCRIPTION("MRF24J40 SPI 802.15.4 Controller Driver");