Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for Microchip MRF24J40 802.15.4 Wireless-PAN Networking controller
   4 *
   5 * Copyright (C) 2012 Alan Ott <alan@signal11.us>
   6 *                    Signal 11 Software
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 */
   8
   9#include <linux/spi/spi.h>
  10#include <linux/interrupt.h>
  11#include <linux/mod_devicetable.h>
  12#include <linux/module.h>
  13#include <linux/regmap.h>
  14#include <linux/ieee802154.h>
  15#include <linux/irq.h>
  16#include <net/cfg802154.h>
  17#include <net/mac802154.h>
 
  18
  19/* MRF24J40 Short Address Registers */
  20#define REG_RXMCR	0x00  /* Receive MAC control */
  21#define BIT_PROMI	BIT(0)
  22#define BIT_ERRPKT	BIT(1)
  23#define BIT_NOACKRSP	BIT(5)
  24#define BIT_PANCOORD	BIT(3)
  25
  26#define REG_PANIDL	0x01  /* PAN ID (low) */
  27#define REG_PANIDH	0x02  /* PAN ID (high) */
  28#define REG_SADRL	0x03  /* Short address (low) */
  29#define REG_SADRH	0x04  /* Short address (high) */
  30#define REG_EADR0	0x05  /* Long address (low) (high is EADR7) */
  31#define REG_EADR1	0x06
  32#define REG_EADR2	0x07
  33#define REG_EADR3	0x08
  34#define REG_EADR4	0x09
  35#define REG_EADR5	0x0A
  36#define REG_EADR6	0x0B
  37#define REG_EADR7	0x0C
  38#define REG_RXFLUSH	0x0D
  39#define REG_ORDER	0x10
  40#define REG_TXMCR	0x11  /* Transmit MAC control */
  41#define TXMCR_MIN_BE_SHIFT		3
  42#define TXMCR_MIN_BE_MASK		0x18
  43#define TXMCR_CSMA_RETRIES_SHIFT	0
  44#define TXMCR_CSMA_RETRIES_MASK		0x07
  45
  46#define REG_ACKTMOUT	0x12
  47#define REG_ESLOTG1	0x13
  48#define REG_SYMTICKL	0x14
  49#define REG_SYMTICKH	0x15
  50#define REG_PACON0	0x16  /* Power Amplifier Control */
  51#define REG_PACON1	0x17  /* Power Amplifier Control */
  52#define REG_PACON2	0x18  /* Power Amplifier Control */
  53#define REG_TXBCON0	0x1A
  54#define REG_TXNCON	0x1B  /* Transmit Normal FIFO Control */
  55#define BIT_TXNTRIG	BIT(0)
  56#define BIT_TXNSECEN	BIT(1)
  57#define BIT_TXNACKREQ	BIT(2)
  58
  59#define REG_TXG1CON	0x1C
  60#define REG_TXG2CON	0x1D
  61#define REG_ESLOTG23	0x1E
  62#define REG_ESLOTG45	0x1F
  63#define REG_ESLOTG67	0x20
  64#define REG_TXPEND	0x21
  65#define REG_WAKECON	0x22
  66#define REG_FROMOFFSET	0x23
  67#define REG_TXSTAT	0x24  /* TX MAC Status Register */
  68#define REG_TXBCON1	0x25
  69#define REG_GATECLK	0x26
  70#define REG_TXTIME	0x27
  71#define REG_HSYMTMRL	0x28
  72#define REG_HSYMTMRH	0x29
  73#define REG_SOFTRST	0x2A  /* Soft Reset */
  74#define REG_SECCON0	0x2C
  75#define REG_SECCON1	0x2D
  76#define REG_TXSTBL	0x2E  /* TX Stabilization */
  77#define REG_RXSR	0x30
  78#define REG_INTSTAT	0x31  /* Interrupt Status */
  79#define BIT_TXNIF	BIT(0)
  80#define BIT_RXIF	BIT(3)
  81#define BIT_SECIF	BIT(4)
  82#define BIT_SECIGNORE	BIT(7)
  83
  84#define REG_INTCON	0x32  /* Interrupt Control */
  85#define BIT_TXNIE	BIT(0)
  86#define BIT_RXIE	BIT(3)
  87#define BIT_SECIE	BIT(4)
  88
  89#define REG_GPIO	0x33  /* GPIO */
  90#define REG_TRISGPIO	0x34  /* GPIO direction */
  91#define REG_SLPACK	0x35
  92#define REG_RFCTL	0x36  /* RF Control Mode Register */
  93#define BIT_RFRST	BIT(2)
  94
  95#define REG_SECCR2	0x37
  96#define REG_BBREG0	0x38
  97#define REG_BBREG1	0x39  /* Baseband Registers */
  98#define BIT_RXDECINV	BIT(2)
  99
 100#define REG_BBREG2	0x3A  /* */
 101#define BBREG2_CCA_MODE_SHIFT	6
 102#define BBREG2_CCA_MODE_MASK	0xc0
 103
 104#define REG_BBREG3	0x3B
 105#define REG_BBREG4	0x3C
 106#define REG_BBREG6	0x3E  /* */
 107#define REG_CCAEDTH	0x3F  /* Energy Detection Threshold */
 108
 109/* MRF24J40 Long Address Registers */
 110#define REG_RFCON0	0x200  /* RF Control Registers */
 111#define RFCON0_CH_SHIFT	4
 112#define RFCON0_CH_MASK	0xf0
 113#define RFOPT_RECOMMEND	3
 114
 115#define REG_RFCON1	0x201
 116#define REG_RFCON2	0x202
 117#define REG_RFCON3	0x203
 118
 119#define TXPWRL_MASK	0xc0
 120#define TXPWRL_SHIFT	6
 121#define TXPWRL_30	0x3
 122#define TXPWRL_20	0x2
 123#define TXPWRL_10	0x1
 124#define TXPWRL_0	0x0
 125
 126#define TXPWRS_MASK	0x38
 127#define TXPWRS_SHIFT	3
 128#define TXPWRS_6_3	0x7
 129#define TXPWRS_4_9	0x6
 130#define TXPWRS_3_7	0x5
 131#define TXPWRS_2_8	0x4
 132#define TXPWRS_1_9	0x3
 133#define TXPWRS_1_2	0x2
 134#define TXPWRS_0_5	0x1
 135#define TXPWRS_0	0x0
 136
 137#define REG_RFCON5	0x205
 138#define REG_RFCON6	0x206
 139#define REG_RFCON7	0x207
 140#define REG_RFCON8	0x208
 141#define REG_SLPCAL0	0x209
 142#define REG_SLPCAL1	0x20A
 143#define REG_SLPCAL2	0x20B
 144#define REG_RFSTATE	0x20F
 145#define REG_RSSI	0x210
 146#define REG_SLPCON0	0x211  /* Sleep Clock Control Registers */
 147#define BIT_INTEDGE	BIT(1)
 148
 149#define REG_SLPCON1	0x220
 150#define REG_WAKETIMEL	0x222  /* Wake-up Time Match Value Low */
 151#define REG_WAKETIMEH	0x223  /* Wake-up Time Match Value High */
 152#define REG_REMCNTL	0x224
 153#define REG_REMCNTH	0x225
 154#define REG_MAINCNT0	0x226
 155#define REG_MAINCNT1	0x227
 156#define REG_MAINCNT2	0x228
 157#define REG_MAINCNT3	0x229
 158#define REG_TESTMODE	0x22F  /* Test mode */
 159#define REG_ASSOEAR0	0x230
 160#define REG_ASSOEAR1	0x231
 161#define REG_ASSOEAR2	0x232
 162#define REG_ASSOEAR3	0x233
 163#define REG_ASSOEAR4	0x234
 164#define REG_ASSOEAR5	0x235
 165#define REG_ASSOEAR6	0x236
 166#define REG_ASSOEAR7	0x237
 167#define REG_ASSOSAR0	0x238
 168#define REG_ASSOSAR1	0x239
 169#define REG_UNONCE0	0x240
 170#define REG_UNONCE1	0x241
 171#define REG_UNONCE2	0x242
 172#define REG_UNONCE3	0x243
 173#define REG_UNONCE4	0x244
 174#define REG_UNONCE5	0x245
 175#define REG_UNONCE6	0x246
 176#define REG_UNONCE7	0x247
 177#define REG_UNONCE8	0x248
 178#define REG_UNONCE9	0x249
 179#define REG_UNONCE10	0x24A
 180#define REG_UNONCE11	0x24B
 181#define REG_UNONCE12	0x24C
 182#define REG_RX_FIFO	0x300  /* Receive FIFO */
 183
 184/* Device configuration: Only channels 11-26 on page 0 are supported. */
 185#define MRF24J40_CHAN_MIN 11
 186#define MRF24J40_CHAN_MAX 26
 187#define CHANNEL_MASK (((u32)1 << (MRF24J40_CHAN_MAX + 1)) \
 188		      - ((u32)1 << MRF24J40_CHAN_MIN))
 189
 190#define TX_FIFO_SIZE 128 /* From datasheet */
 191#define RX_FIFO_SIZE 144 /* From datasheet */
 192#define SET_CHANNEL_DELAY_US 192 /* From datasheet */
 193
 194enum mrf24j40_modules { MRF24J40, MRF24J40MA, MRF24J40MC };
 195
 196/* Device Private Data */
 197struct mrf24j40 {
 198	struct spi_device *spi;
 199	struct ieee802154_hw *hw;
 200
 201	struct regmap *regmap_short;
 202	struct regmap *regmap_long;
 203
 204	/* for writing txfifo */
 205	struct spi_message tx_msg;
 206	u8 tx_hdr_buf[2];
 207	struct spi_transfer tx_hdr_trx;
 208	u8 tx_len_buf[2];
 209	struct spi_transfer tx_len_trx;
 210	struct spi_transfer tx_buf_trx;
 211	struct sk_buff *tx_skb;
 212
 213	/* post transmit message to send frame out  */
 214	struct spi_message tx_post_msg;
 215	u8 tx_post_buf[2];
 216	struct spi_transfer tx_post_trx;
 217
 218	/* for protect/unprotect/read length rxfifo */
 219	struct spi_message rx_msg;
 220	u8 rx_buf[3];
 221	struct spi_transfer rx_trx;
 222
 223	/* receive handling */
 224	struct spi_message rx_buf_msg;
 225	u8 rx_addr_buf[2];
 226	struct spi_transfer rx_addr_trx;
 227	u8 rx_lqi_buf[2];
 228	struct spi_transfer rx_lqi_trx;
 229	u8 rx_fifo_buf[RX_FIFO_SIZE];
 230	struct spi_transfer rx_fifo_buf_trx;
 231
 232	/* isr handling for reading intstat */
 233	struct spi_message irq_msg;
 234	u8 irq_buf[2];
 235	struct spi_transfer irq_trx;
 236};
 237
 238/* regmap information for short address register access */
 239#define MRF24J40_SHORT_WRITE	0x01
 240#define MRF24J40_SHORT_READ	0x00
 241#define MRF24J40_SHORT_NUMREGS	0x3F
 242
 243/* regmap information for long address register access */
 244#define MRF24J40_LONG_ACCESS	0x80
 245#define MRF24J40_LONG_NUMREGS	0x38F
 246
 247/* Read/Write SPI Commands for Short and Long Address registers. */
 248#define MRF24J40_READSHORT(reg) ((reg) << 1)
 249#define MRF24J40_WRITESHORT(reg) ((reg) << 1 | 1)
 250#define MRF24J40_READLONG(reg) (1 << 15 | (reg) << 5)
 251#define MRF24J40_WRITELONG(reg) (1 << 15 | (reg) << 5 | 1 << 4)
 252
 253/* The datasheet indicates the theoretical maximum for SCK to be 10MHz */
 254#define MAX_SPI_SPEED_HZ 10000000
 255
 256#define printdev(X) (&X->spi->dev)
 257
 258static bool
 259mrf24j40_short_reg_writeable(struct device *dev, unsigned int reg)
 260{
 261	switch (reg) {
 262	case REG_RXMCR:
 263	case REG_PANIDL:
 264	case REG_PANIDH:
 265	case REG_SADRL:
 266	case REG_SADRH:
 267	case REG_EADR0:
 268	case REG_EADR1:
 269	case REG_EADR2:
 270	case REG_EADR3:
 271	case REG_EADR4:
 272	case REG_EADR5:
 273	case REG_EADR6:
 274	case REG_EADR7:
 275	case REG_RXFLUSH:
 276	case REG_ORDER:
 277	case REG_TXMCR:
 278	case REG_ACKTMOUT:
 279	case REG_ESLOTG1:
 280	case REG_SYMTICKL:
 281	case REG_SYMTICKH:
 282	case REG_PACON0:
 283	case REG_PACON1:
 284	case REG_PACON2:
 285	case REG_TXBCON0:
 286	case REG_TXNCON:
 287	case REG_TXG1CON:
 288	case REG_TXG2CON:
 289	case REG_ESLOTG23:
 290	case REG_ESLOTG45:
 291	case REG_ESLOTG67:
 292	case REG_TXPEND:
 293	case REG_WAKECON:
 294	case REG_FROMOFFSET:
 295	case REG_TXBCON1:
 296	case REG_GATECLK:
 297	case REG_TXTIME:
 298	case REG_HSYMTMRL:
 299	case REG_HSYMTMRH:
 300	case REG_SOFTRST:
 301	case REG_SECCON0:
 302	case REG_SECCON1:
 303	case REG_TXSTBL:
 304	case REG_RXSR:
 305	case REG_INTCON:
 306	case REG_TRISGPIO:
 307	case REG_GPIO:
 308	case REG_RFCTL:
 309	case REG_SECCR2:
 310	case REG_SLPACK:
 311	case REG_BBREG0:
 312	case REG_BBREG1:
 313	case REG_BBREG2:
 314	case REG_BBREG3:
 315	case REG_BBREG4:
 316	case REG_BBREG6:
 317	case REG_CCAEDTH:
 318		return true;
 319	default:
 320		return false;
 321	}
 322}
 323
 324static bool
 325mrf24j40_short_reg_readable(struct device *dev, unsigned int reg)
 326{
 327	bool rc;
 328
 329	/* all writeable are also readable */
 330	rc = mrf24j40_short_reg_writeable(dev, reg);
 331	if (rc)
 332		return rc;
 333
 334	/* readonly regs */
 335	switch (reg) {
 336	case REG_TXSTAT:
 337	case REG_INTSTAT:
 338		return true;
 339	default:
 340		return false;
 341	}
 342}
 343
 344static bool
 345mrf24j40_short_reg_volatile(struct device *dev, unsigned int reg)
 346{
 347	/* can be changed during runtime */
 348	switch (reg) {
 349	case REG_TXSTAT:
 350	case REG_INTSTAT:
 351	case REG_RXFLUSH:
 352	case REG_TXNCON:
 353	case REG_SOFTRST:
 354	case REG_RFCTL:
 355	case REG_TXBCON0:
 356	case REG_TXG1CON:
 357	case REG_TXG2CON:
 358	case REG_TXBCON1:
 359	case REG_SECCON0:
 360	case REG_RXSR:
 361	case REG_SLPACK:
 362	case REG_SECCR2:
 363	case REG_BBREG6:
 364	/* use them in spi_async and regmap so it's volatile */
 365	case REG_BBREG1:
 366		return true;
 367	default:
 368		return false;
 369	}
 370}
 371
 372static bool
 373mrf24j40_short_reg_precious(struct device *dev, unsigned int reg)
 374{
 375	/* don't clear irq line on read */
 376	switch (reg) {
 377	case REG_INTSTAT:
 378		return true;
 379	default:
 380		return false;
 381	}
 382}
 383
 384static const struct regmap_config mrf24j40_short_regmap = {
 385	.name = "mrf24j40_short",
 386	.reg_bits = 7,
 387	.val_bits = 8,
 388	.pad_bits = 1,
 389	.write_flag_mask = MRF24J40_SHORT_WRITE,
 390	.read_flag_mask = MRF24J40_SHORT_READ,
 391	.cache_type = REGCACHE_RBTREE,
 392	.max_register = MRF24J40_SHORT_NUMREGS,
 393	.writeable_reg = mrf24j40_short_reg_writeable,
 394	.readable_reg = mrf24j40_short_reg_readable,
 395	.volatile_reg = mrf24j40_short_reg_volatile,
 396	.precious_reg = mrf24j40_short_reg_precious,
 397};
 398
 399static bool
 400mrf24j40_long_reg_writeable(struct device *dev, unsigned int reg)
 401{
 402	switch (reg) {
 403	case REG_RFCON0:
 404	case REG_RFCON1:
 405	case REG_RFCON2:
 406	case REG_RFCON3:
 407	case REG_RFCON5:
 408	case REG_RFCON6:
 409	case REG_RFCON7:
 410	case REG_RFCON8:
 411	case REG_SLPCAL2:
 412	case REG_SLPCON0:
 413	case REG_SLPCON1:
 414	case REG_WAKETIMEL:
 415	case REG_WAKETIMEH:
 416	case REG_REMCNTL:
 417	case REG_REMCNTH:
 418	case REG_MAINCNT0:
 419	case REG_MAINCNT1:
 420	case REG_MAINCNT2:
 421	case REG_MAINCNT3:
 422	case REG_TESTMODE:
 423	case REG_ASSOEAR0:
 424	case REG_ASSOEAR1:
 425	case REG_ASSOEAR2:
 426	case REG_ASSOEAR3:
 427	case REG_ASSOEAR4:
 428	case REG_ASSOEAR5:
 429	case REG_ASSOEAR6:
 430	case REG_ASSOEAR7:
 431	case REG_ASSOSAR0:
 432	case REG_ASSOSAR1:
 433	case REG_UNONCE0:
 434	case REG_UNONCE1:
 435	case REG_UNONCE2:
 436	case REG_UNONCE3:
 437	case REG_UNONCE4:
 438	case REG_UNONCE5:
 439	case REG_UNONCE6:
 440	case REG_UNONCE7:
 441	case REG_UNONCE8:
 442	case REG_UNONCE9:
 443	case REG_UNONCE10:
 444	case REG_UNONCE11:
 445	case REG_UNONCE12:
 446		return true;
 447	default:
 448		return false;
 449	}
 450}
 451
 452static bool
 453mrf24j40_long_reg_readable(struct device *dev, unsigned int reg)
 454{
 455	bool rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 456
 457	/* all writeable are also readable */
 458	rc = mrf24j40_long_reg_writeable(dev, reg);
 459	if (rc)
 460		return rc;
 461
 462	/* readonly regs */
 463	switch (reg) {
 464	case REG_SLPCAL0:
 465	case REG_SLPCAL1:
 466	case REG_RFSTATE:
 467	case REG_RSSI:
 468		return true;
 469	default:
 470		return false;
 471	}
 472}
 473
 474static bool
 475mrf24j40_long_reg_volatile(struct device *dev, unsigned int reg)
 476{
 477	/* can be changed during runtime */
 478	switch (reg) {
 479	case REG_SLPCAL0:
 480	case REG_SLPCAL1:
 481	case REG_SLPCAL2:
 482	case REG_RFSTATE:
 483	case REG_RSSI:
 484	case REG_MAINCNT3:
 485		return true;
 486	default:
 487		return false;
 488	}
 489}
 490
 491static const struct regmap_config mrf24j40_long_regmap = {
 492	.name = "mrf24j40_long",
 493	.reg_bits = 11,
 494	.val_bits = 8,
 495	.pad_bits = 5,
 496	.write_flag_mask = MRF24J40_LONG_ACCESS,
 497	.read_flag_mask = MRF24J40_LONG_ACCESS,
 498	.cache_type = REGCACHE_RBTREE,
 499	.max_register = MRF24J40_LONG_NUMREGS,
 500	.writeable_reg = mrf24j40_long_reg_writeable,
 501	.readable_reg = mrf24j40_long_reg_readable,
 502	.volatile_reg = mrf24j40_long_reg_volatile,
 503};
 504
 505static int mrf24j40_long_regmap_write(void *context, const void *data,
 506				      size_t count)
 507{
 508	struct spi_device *spi = context;
 509	u8 buf[3];
 510
 511	if (count > 3)
 512		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 513
 514	/* regmap supports read/write mask only in frist byte
 515	 * long write access need to set the 12th bit, so we
 516	 * make special handling for write.
 517	 */
 518	memcpy(buf, data, count);
 519	buf[1] |= (1 << 4);
 520
 521	return spi_write(spi, buf, count);
 522}
 523
 524static int
 525mrf24j40_long_regmap_read(void *context, const void *reg, size_t reg_size,
 526			  void *val, size_t val_size)
 527{
 528	struct spi_device *spi = context;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 529
 530	return spi_write_then_read(spi, reg, reg_size, val, val_size);
 
 531}
 532
 533static const struct regmap_bus mrf24j40_long_regmap_bus = {
 534	.write = mrf24j40_long_regmap_write,
 535	.read = mrf24j40_long_regmap_read,
 536	.reg_format_endian_default = REGMAP_ENDIAN_BIG,
 537	.val_format_endian_default = REGMAP_ENDIAN_BIG,
 538};
 539
 540static void write_tx_buf_complete(void *context)
 541{
 542	struct mrf24j40 *devrec = context;
 543	__le16 fc = ieee802154_get_fc_from_skb(devrec->tx_skb);
 544	u8 val = BIT_TXNTRIG;
 545	int ret;
 
 
 
 
 
 
 
 546
 547	if (ieee802154_is_secen(fc))
 548		val |= BIT_TXNSECEN;
 549
 550	if (ieee802154_is_ackreq(fc))
 551		val |= BIT_TXNACKREQ;
 552
 553	devrec->tx_post_msg.complete = NULL;
 554	devrec->tx_post_buf[0] = MRF24J40_WRITESHORT(REG_TXNCON);
 555	devrec->tx_post_buf[1] = val;
 
 
 556
 557	ret = spi_async(devrec->spi, &devrec->tx_post_msg);
 558	if (ret)
 559		dev_err(printdev(devrec), "SPI write Failed for transmit buf\n");
 
 
 
 
 560}
 561
 562/* This function relies on an undocumented write method. Once a write command
 563   and address is set, as many bytes of data as desired can be clocked into
 564   the device. The datasheet only shows setting one byte at a time. */
 565static int write_tx_buf(struct mrf24j40 *devrec, u16 reg,
 566			const u8 *data, size_t length)
 567{
 568	u16 cmd;
 569	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 570
 571	/* Range check the length. 2 bytes are used for the length fields.*/
 572	if (length > TX_FIFO_SIZE-2) {
 573		dev_err(printdev(devrec), "write_tx_buf() was passed too large a buffer. Performing short write.\n");
 574		length = TX_FIFO_SIZE-2;
 575	}
 576
 
 
 
 
 
 577	cmd = MRF24J40_WRITELONG(reg);
 578	devrec->tx_hdr_buf[0] = cmd >> 8 & 0xff;
 579	devrec->tx_hdr_buf[1] = cmd & 0xff;
 580	devrec->tx_len_buf[0] = 0x0; /* Header Length. Set to 0 for now. TODO */
 581	devrec->tx_len_buf[1] = length; /* Total length */
 582	devrec->tx_buf_trx.tx_buf = data;
 583	devrec->tx_buf_trx.len = length;
 584
 585	ret = spi_async(devrec->spi, &devrec->tx_msg);
 586	if (ret)
 587		dev_err(printdev(devrec), "SPI write Failed for TX buf\n");
 588
 
 589	return ret;
 590}
 591
 592static int mrf24j40_tx(struct ieee802154_hw *hw, struct sk_buff *skb)
 
 593{
 594	struct mrf24j40 *devrec = hw->priv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 595
 596	dev_dbg(printdev(devrec), "tx packet of %d bytes\n", skb->len);
 597	devrec->tx_skb = skb;
 598
 599	return write_tx_buf(devrec, 0x000, skb->data, skb->len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 600}
 601
 602static int mrf24j40_ed(struct ieee802154_hw *hw, u8 *level)
 603{
 604	/* TODO: */
 605	pr_warn("mrf24j40: ed not implemented\n");
 606	*level = 0;
 607	return 0;
 608}
 609
 610static int mrf24j40_start(struct ieee802154_hw *hw)
 611{
 612	struct mrf24j40 *devrec = hw->priv;
 
 
 613
 614	dev_dbg(printdev(devrec), "start\n");
 615
 616	/* Clear TXNIE and RXIE. Enable interrupts */
 617	return regmap_update_bits(devrec->regmap_short, REG_INTCON,
 618				  BIT_TXNIE | BIT_RXIE | BIT_SECIE, 0);
 
 
 
 
 619}
 620
 621static void mrf24j40_stop(struct ieee802154_hw *hw)
 622{
 623	struct mrf24j40 *devrec = hw->priv;
 624
 
 625	dev_dbg(printdev(devrec), "stop\n");
 626
 627	/* Set TXNIE and RXIE. Disable Interrupts */
 628	regmap_update_bits(devrec->regmap_short, REG_INTCON,
 629			   BIT_TXNIE | BIT_RXIE, BIT_TXNIE | BIT_RXIE);
 
 
 
 
 630}
 631
 632static int mrf24j40_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
 
 633{
 634	struct mrf24j40 *devrec = hw->priv;
 635	u8 val;
 636	int ret;
 637
 638	dev_dbg(printdev(devrec), "Set Channel %d\n", channel);
 639
 640	WARN_ON(page != 0);
 641	WARN_ON(channel < MRF24J40_CHAN_MIN);
 642	WARN_ON(channel > MRF24J40_CHAN_MAX);
 643
 644	/* Set Channel TODO */
 645	val = (channel - 11) << RFCON0_CH_SHIFT | RFOPT_RECOMMEND;
 646	ret = regmap_update_bits(devrec->regmap_long, REG_RFCON0,
 647				 RFCON0_CH_MASK, val);
 648	if (ret)
 649		return ret;
 650
 651	/* RF Reset */
 652	ret = regmap_update_bits(devrec->regmap_short, REG_RFCTL, BIT_RFRST,
 653				 BIT_RFRST);
 654	if (ret)
 655		return ret;
 
 
 
 
 656
 657	ret = regmap_update_bits(devrec->regmap_short, REG_RFCTL, BIT_RFRST, 0);
 658	if (!ret)
 659		udelay(SET_CHANNEL_DELAY_US); /* per datasheet */
 660
 661	return ret;
 662}
 663
 664static int mrf24j40_filter(struct ieee802154_hw *hw,
 665			   struct ieee802154_hw_addr_filt *filt,
 666			   unsigned long changed)
 667{
 668	struct mrf24j40 *devrec = hw->priv;
 669
 670	dev_dbg(printdev(devrec), "filter\n");
 671
 672	if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
 673		/* Short Addr */
 674		u8 addrh, addrl;
 675
 676		addrh = le16_to_cpu(filt->short_addr) >> 8 & 0xff;
 677		addrl = le16_to_cpu(filt->short_addr) & 0xff;
 678
 679		regmap_write(devrec->regmap_short, REG_SADRH, addrh);
 680		regmap_write(devrec->regmap_short, REG_SADRL, addrl);
 681		dev_dbg(printdev(devrec),
 682			"Set short addr to %04hx\n", filt->short_addr);
 683	}
 684
 685	if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
 686		/* Device Address */
 687		u8 i, addr[8];
 688
 689		memcpy(addr, &filt->ieee_addr, 8);
 690		for (i = 0; i < 8; i++)
 691			regmap_write(devrec->regmap_short, REG_EADR0 + i,
 692				     addr[i]);
 693
 694#ifdef DEBUG
 695		pr_debug("Set long addr to: ");
 696		for (i = 0; i < 8; i++)
 697			pr_debug("%02hhx ", addr[7 - i]);
 698		pr_debug("\n");
 699#endif
 700	}
 701
 702	if (changed & IEEE802154_AFILT_PANID_CHANGED) {
 703		/* PAN ID */
 704		u8 panidl, panidh;
 705
 706		panidh = le16_to_cpu(filt->pan_id) >> 8 & 0xff;
 707		panidl = le16_to_cpu(filt->pan_id) & 0xff;
 708		regmap_write(devrec->regmap_short, REG_PANIDH, panidh);
 709		regmap_write(devrec->regmap_short, REG_PANIDL, panidl);
 710
 711		dev_dbg(printdev(devrec), "Set PANID to %04hx\n", filt->pan_id);
 712	}
 713
 714	if (changed & IEEE802154_AFILT_PANC_CHANGED) {
 715		/* Pan Coordinator */
 716		u8 val;
 717		int ret;
 718
 719		if (filt->pan_coord)
 720			val = BIT_PANCOORD;
 721		else
 722			val = 0;
 723		ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
 724					 BIT_PANCOORD, val);
 725		if (ret)
 726			return ret;
 
 
 
 
 
 727
 728		/* REG_SLOTTED is maintained as default (unslotted/CSMA-CA).
 729		 * REG_ORDER is maintained as default (no beacon/superframe).
 730		 */
 731
 732		dev_dbg(printdev(devrec), "Set Pan Coord to %s\n",
 733			filt->pan_coord ? "on" : "off");
 734	}
 735
 736	return 0;
 737}
 738
 739static void mrf24j40_handle_rx_read_buf_unlock(struct mrf24j40 *devrec)
 740{
 741	int ret;
 742
 743	/* Turn back on reception of packets off the air. */
 744	devrec->rx_msg.complete = NULL;
 745	devrec->rx_buf[0] = MRF24J40_WRITESHORT(REG_BBREG1);
 746	devrec->rx_buf[1] = 0x00; /* CLR RXDECINV */
 747	ret = spi_async(devrec->spi, &devrec->rx_msg);
 748	if (ret)
 749		dev_err(printdev(devrec), "failed to unlock rx buffer\n");
 750}
 751
 752static void mrf24j40_handle_rx_read_buf_complete(void *context)
 753{
 754	struct mrf24j40 *devrec = context;
 755	u8 len = devrec->rx_buf[2];
 756	u8 rx_local_buf[RX_FIFO_SIZE];
 757	struct sk_buff *skb;
 758
 759	memcpy(rx_local_buf, devrec->rx_fifo_buf, len);
 760	mrf24j40_handle_rx_read_buf_unlock(devrec);
 761
 762	skb = dev_alloc_skb(IEEE802154_MTU);
 763	if (!skb) {
 764		dev_err(printdev(devrec), "failed to allocate skb\n");
 765		return;
 766	}
 767
 768	skb_put_data(skb, rx_local_buf, len);
 769	ieee802154_rx_irqsafe(devrec->hw, skb, 0);
 770
 771#ifdef DEBUG
 772	 print_hex_dump(KERN_DEBUG, "mrf24j40 rx: ", DUMP_PREFIX_OFFSET, 16, 1,
 773			rx_local_buf, len, 0);
 774	 pr_debug("mrf24j40 rx: lqi: %02hhx rssi: %02hhx\n",
 775		  devrec->rx_lqi_buf[0], devrec->rx_lqi_buf[1]);
 776#endif
 777}
 778
 779static void mrf24j40_handle_rx_read_buf(void *context)
 780{
 781	struct mrf24j40 *devrec = context;
 782	u16 cmd;
 783	int ret;
 784
 785	/* if length is invalid read the full MTU */
 786	if (!ieee802154_is_valid_psdu_len(devrec->rx_buf[2]))
 787		devrec->rx_buf[2] = IEEE802154_MTU;
 788
 789	cmd = MRF24J40_READLONG(REG_RX_FIFO + 1);
 790	devrec->rx_addr_buf[0] = cmd >> 8 & 0xff;
 791	devrec->rx_addr_buf[1] = cmd & 0xff;
 792	devrec->rx_fifo_buf_trx.len = devrec->rx_buf[2];
 793	ret = spi_async(devrec->spi, &devrec->rx_buf_msg);
 794	if (ret) {
 795		dev_err(printdev(devrec), "failed to read rx buffer\n");
 796		mrf24j40_handle_rx_read_buf_unlock(devrec);
 797	}
 798}
 799
 800static void mrf24j40_handle_rx_read_len(void *context)
 801{
 802	struct mrf24j40 *devrec = context;
 803	u16 cmd;
 804	int ret;
 805
 806	/* read the length of received frame */
 807	devrec->rx_msg.complete = mrf24j40_handle_rx_read_buf;
 808	devrec->rx_trx.len = 3;
 809	cmd = MRF24J40_READLONG(REG_RX_FIFO);
 810	devrec->rx_buf[0] = cmd >> 8 & 0xff;
 811	devrec->rx_buf[1] = cmd & 0xff;
 812
 813	ret = spi_async(devrec->spi, &devrec->rx_msg);
 814	if (ret) {
 815		dev_err(printdev(devrec), "failed to read rx buffer length\n");
 816		mrf24j40_handle_rx_read_buf_unlock(devrec);
 817	}
 818}
 819
 820static int mrf24j40_handle_rx(struct mrf24j40 *devrec)
 821{
 822	/* Turn off reception of packets off the air. This prevents the
 823	 * device from overwriting the buffer while we're reading it.
 824	 */
 825	devrec->rx_msg.complete = mrf24j40_handle_rx_read_len;
 826	devrec->rx_trx.len = 2;
 827	devrec->rx_buf[0] = MRF24J40_WRITESHORT(REG_BBREG1);
 828	devrec->rx_buf[1] = BIT_RXDECINV; /* SET RXDECINV */
 829
 830	return spi_async(devrec->spi, &devrec->rx_msg);
 831}
 832
 833static int
 834mrf24j40_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be,
 835		     u8 retries)
 836{
 837	struct mrf24j40 *devrec = hw->priv;
 838	u8 val;
 839
 840	/* min_be */
 841	val = min_be << TXMCR_MIN_BE_SHIFT;
 842	/* csma backoffs */
 843	val |= retries << TXMCR_CSMA_RETRIES_SHIFT;
 844
 845	return regmap_update_bits(devrec->regmap_short, REG_TXMCR,
 846				  TXMCR_MIN_BE_MASK | TXMCR_CSMA_RETRIES_MASK,
 847				  val);
 848}
 849
 850static int mrf24j40_set_cca_mode(struct ieee802154_hw *hw,
 851				 const struct wpan_phy_cca *cca)
 852{
 853	struct mrf24j40 *devrec = hw->priv;
 854	u8 val;
 
 
 855
 856	/* mapping 802.15.4 to driver spec */
 857	switch (cca->mode) {
 858	case NL802154_CCA_ENERGY:
 859		val = 2;
 860		break;
 861	case NL802154_CCA_CARRIER:
 862		val = 1;
 863		break;
 864	case NL802154_CCA_ENERGY_CARRIER:
 865		switch (cca->opt) {
 866		case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
 867			val = 3;
 868			break;
 869		default:
 870			return -EINVAL;
 871		}
 872		break;
 873	default:
 874		return -EINVAL;
 875	}
 876
 877	return regmap_update_bits(devrec->regmap_short, REG_BBREG2,
 878				  BBREG2_CCA_MODE_MASK,
 879				  val << BBREG2_CCA_MODE_SHIFT);
 880}
 881
 882/* array for representing ed levels */
 883static const s32 mrf24j40_ed_levels[] = {
 884	-9000, -8900, -8800, -8700, -8600, -8500, -8400, -8300, -8200, -8100,
 885	-8000, -7900, -7800, -7700, -7600, -7500, -7400, -7300, -7200, -7100,
 886	-7000, -6900, -6800, -6700, -6600, -6500, -6400, -6300, -6200, -6100,
 887	-6000, -5900, -5800, -5700, -5600, -5500, -5400, -5300, -5200, -5100,
 888	-5000, -4900, -4800, -4700, -4600, -4500, -4400, -4300, -4200, -4100,
 889	-4000, -3900, -3800, -3700, -3600, -3500
 890};
 891
 892/* map ed levels to register value */
 893static const s32 mrf24j40_ed_levels_map[][2] = {
 894	{ -9000, 0 }, { -8900, 1 }, { -8800, 2 }, { -8700, 5 }, { -8600, 9 },
 895	{ -8500, 13 }, { -8400, 18 }, { -8300, 23 }, { -8200, 27 },
 896	{ -8100, 32 }, { -8000, 37 }, { -7900, 43 }, { -7800, 48 },
 897	{ -7700, 53 }, { -7600, 58 }, { -7500, 63 }, { -7400, 68 },
 898	{ -7300, 73 }, { -7200, 78 }, { -7100, 83 }, { -7000, 89 },
 899	{ -6900, 95 }, { -6800, 100 }, { -6700, 107 }, { -6600, 111 },
 900	{ -6500, 117 }, { -6400, 121 }, { -6300, 125 }, { -6200, 129 },
 901	{ -6100, 133 },	{ -6000, 138 }, { -5900, 143 }, { -5800, 148 },
 902	{ -5700, 153 }, { -5600, 159 },	{ -5500, 165 }, { -5400, 170 },
 903	{ -5300, 176 }, { -5200, 183 }, { -5100, 188 }, { -5000, 193 },
 904	{ -4900, 198 }, { -4800, 203 }, { -4700, 207 }, { -4600, 212 },
 905	{ -4500, 216 }, { -4400, 221 }, { -4300, 225 }, { -4200, 228 },
 906	{ -4100, 233 }, { -4000, 239 }, { -3900, 245 }, { -3800, 250 },
 907	{ -3700, 253 }, { -3600, 254 }, { -3500, 255 },
 908};
 909
 910static int mrf24j40_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
 911{
 912	struct mrf24j40 *devrec = hw->priv;
 913	int i;
 914
 915	for (i = 0; i < ARRAY_SIZE(mrf24j40_ed_levels_map); i++) {
 916		if (mrf24j40_ed_levels_map[i][0] == mbm)
 917			return regmap_write(devrec->regmap_short, REG_CCAEDTH,
 918					    mrf24j40_ed_levels_map[i][1]);
 919	}
 920
 921	return -EINVAL;
 922}
 923
 924static const s32 mrf24j40ma_powers[] = {
 925	0, -50, -120, -190, -280, -370, -490, -630, -1000, -1050, -1120, -1190,
 926	-1280, -1370, -1490, -1630, -2000, -2050, -2120, -2190, -2280, -2370,
 927	-2490, -2630, -3000, -3050, -3120, -3190, -3280, -3370, -3490, -3630,
 928};
 929
 930static int mrf24j40_set_txpower(struct ieee802154_hw *hw, s32 mbm)
 931{
 932	struct mrf24j40 *devrec = hw->priv;
 933	s32 small_scale;
 934	u8 val;
 935
 936	if (0 >= mbm && mbm > -1000) {
 937		val = TXPWRL_0 << TXPWRL_SHIFT;
 938		small_scale = mbm;
 939	} else if (-1000 >= mbm && mbm > -2000) {
 940		val = TXPWRL_10 << TXPWRL_SHIFT;
 941		small_scale = mbm + 1000;
 942	} else if (-2000 >= mbm && mbm > -3000) {
 943		val = TXPWRL_20 << TXPWRL_SHIFT;
 944		small_scale = mbm + 2000;
 945	} else if (-3000 >= mbm && mbm > -4000) {
 946		val = TXPWRL_30 << TXPWRL_SHIFT;
 947		small_scale = mbm + 3000;
 948	} else {
 949		return -EINVAL;
 950	}
 951
 952	switch (small_scale) {
 953	case 0:
 954		val |= (TXPWRS_0 << TXPWRS_SHIFT);
 955		break;
 956	case -50:
 957		val |= (TXPWRS_0_5 << TXPWRS_SHIFT);
 958		break;
 959	case -120:
 960		val |= (TXPWRS_1_2 << TXPWRS_SHIFT);
 961		break;
 962	case -190:
 963		val |= (TXPWRS_1_9 << TXPWRS_SHIFT);
 964		break;
 965	case -280:
 966		val |= (TXPWRS_2_8 << TXPWRS_SHIFT);
 967		break;
 968	case -370:
 969		val |= (TXPWRS_3_7 << TXPWRS_SHIFT);
 970		break;
 971	case -490:
 972		val |= (TXPWRS_4_9 << TXPWRS_SHIFT);
 973		break;
 974	case -630:
 975		val |= (TXPWRS_6_3 << TXPWRS_SHIFT);
 976		break;
 977	default:
 978		return -EINVAL;
 979	}
 980
 981	return regmap_update_bits(devrec->regmap_long, REG_RFCON3,
 982				  TXPWRL_MASK | TXPWRS_MASK, val);
 983}
 
 984
 985static int mrf24j40_set_promiscuous_mode(struct ieee802154_hw *hw, bool on)
 986{
 987	struct mrf24j40 *devrec = hw->priv;
 988	int ret;
 989
 990	if (on) {
 991		/* set PROMI, ERRPKT and NOACKRSP */
 992		ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
 993					 BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP,
 994					 BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP);
 995	} else {
 996		/* clear PROMI, ERRPKT and NOACKRSP */
 997		ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
 998					 BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP,
 999					 0);
1000	}
1001
1002	return ret;
1003}
1004
1005static const struct ieee802154_ops mrf24j40_ops = {
1006	.owner = THIS_MODULE,
1007	.xmit_async = mrf24j40_tx,
1008	.ed = mrf24j40_ed,
1009	.start = mrf24j40_start,
1010	.stop = mrf24j40_stop,
1011	.set_channel = mrf24j40_set_channel,
1012	.set_hw_addr_filt = mrf24j40_filter,
1013	.set_csma_params = mrf24j40_csma_params,
1014	.set_cca_mode = mrf24j40_set_cca_mode,
1015	.set_cca_ed_level = mrf24j40_set_cca_ed_level,
1016	.set_txpower = mrf24j40_set_txpower,
1017	.set_promiscuous_mode = mrf24j40_set_promiscuous_mode,
1018};
1019
1020static void mrf24j40_intstat_complete(void *context)
1021{
1022	struct mrf24j40 *devrec = context;
1023	u8 intstat = devrec->irq_buf[1];
1024
1025	enable_irq(devrec->spi->irq);
1026
1027	/* Ignore Rx security decryption */
1028	if (intstat & BIT_SECIF)
1029		regmap_write_async(devrec->regmap_short, REG_SECCON0,
1030				   BIT_SECIGNORE);
1031
1032	/* Check for TX complete */
1033	if (intstat & BIT_TXNIF)
1034		ieee802154_xmit_complete(devrec->hw, devrec->tx_skb, false);
1035
1036	/* Check for Rx */
1037	if (intstat & BIT_RXIF)
1038		mrf24j40_handle_rx(devrec);
1039}
1040
1041static irqreturn_t mrf24j40_isr(int irq, void *data)
1042{
1043	struct mrf24j40 *devrec = data;
 
1044	int ret;
1045
1046	disable_irq_nosync(irq);
1047
1048	devrec->irq_buf[0] = MRF24J40_READSHORT(REG_INTSTAT);
1049	devrec->irq_buf[1] = 0;
1050
1051	/* Read the interrupt status */
1052	ret = spi_async(devrec->spi, &devrec->irq_msg);
1053	if (ret) {
1054		enable_irq(irq);
1055		return IRQ_NONE;
1056	}
1057
1058	return IRQ_HANDLED;
1059}
1060
1061static int mrf24j40_hw_init(struct mrf24j40 *devrec)
1062{
1063	u32 irq_type;
1064	int ret;
1065
1066	/* Initialize the device.
1067		From datasheet section 3.2: Initialization. */
1068	ret = regmap_write(devrec->regmap_short, REG_SOFTRST, 0x07);
1069	if (ret)
1070		goto err_ret;
1071
1072	ret = regmap_write(devrec->regmap_short, REG_PACON2, 0x98);
1073	if (ret)
1074		goto err_ret;
1075
1076	ret = regmap_write(devrec->regmap_short, REG_TXSTBL, 0x95);
1077	if (ret)
1078		goto err_ret;
1079
1080	ret = regmap_write(devrec->regmap_long, REG_RFCON0, 0x03);
1081	if (ret)
1082		goto err_ret;
1083
1084	ret = regmap_write(devrec->regmap_long, REG_RFCON1, 0x01);
1085	if (ret)
1086		goto err_ret;
1087
1088	ret = regmap_write(devrec->regmap_long, REG_RFCON2, 0x80);
1089	if (ret)
1090		goto err_ret;
1091
1092	ret = regmap_write(devrec->regmap_long, REG_RFCON6, 0x90);
1093	if (ret)
1094		goto err_ret;
1095
1096	ret = regmap_write(devrec->regmap_long, REG_RFCON7, 0x80);
1097	if (ret)
1098		goto err_ret;
1099
1100	ret = regmap_write(devrec->regmap_long, REG_RFCON8, 0x10);
1101	if (ret)
1102		goto err_ret;
1103
1104	ret = regmap_write(devrec->regmap_long, REG_SLPCON1, 0x21);
1105	if (ret)
1106		goto err_ret;
1107
1108	ret = regmap_write(devrec->regmap_short, REG_BBREG2, 0x80);
1109	if (ret)
1110		goto err_ret;
1111
1112	ret = regmap_write(devrec->regmap_short, REG_CCAEDTH, 0x60);
1113	if (ret)
1114		goto err_ret;
1115
1116	ret = regmap_write(devrec->regmap_short, REG_BBREG6, 0x40);
1117	if (ret)
1118		goto err_ret;
1119
1120	ret = regmap_write(devrec->regmap_short, REG_RFCTL, 0x04);
1121	if (ret)
1122		goto err_ret;
1123
1124	ret = regmap_write(devrec->regmap_short, REG_RFCTL, 0x0);
1125	if (ret)
1126		goto err_ret;
1127
1128	udelay(192);
1129
1130	/* Set RX Mode. RXMCR<1:0>: 0x0 normal, 0x1 promisc, 0x2 error */
1131	ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR, 0x03, 0x00);
1132	if (ret)
1133		goto err_ret;
1134
1135	if (spi_get_device_id(devrec->spi)->driver_data == MRF24J40MC) {
1136		/* Enable external amplifier.
1137		 * From MRF24J40MC datasheet section 1.3: Operation.
1138		 */
1139		regmap_update_bits(devrec->regmap_long, REG_TESTMODE, 0x07,
1140				   0x07);
1141
1142		/* Set GPIO3 as output. */
1143		regmap_update_bits(devrec->regmap_short, REG_TRISGPIO, 0x08,
1144				   0x08);
1145
1146		/* Set GPIO3 HIGH to enable U5 voltage regulator */
1147		regmap_update_bits(devrec->regmap_short, REG_GPIO, 0x08, 0x08);
1148
1149		/* Reduce TX pwr to meet FCC requirements.
1150		 * From MRF24J40MC datasheet section 3.1.1
1151		 */
1152		regmap_write(devrec->regmap_long, REG_RFCON3, 0x28);
1153	}
1154
1155	irq_type = irq_get_trigger_type(devrec->spi->irq);
1156	if (irq_type == IRQ_TYPE_EDGE_RISING ||
1157	    irq_type == IRQ_TYPE_EDGE_FALLING)
1158		dev_warn(&devrec->spi->dev,
1159			 "Using edge triggered irq's are not recommended, because it can cause races and result in a non-functional driver!\n");
1160	switch (irq_type) {
1161	case IRQ_TYPE_EDGE_RISING:
1162	case IRQ_TYPE_LEVEL_HIGH:
1163		/* set interrupt polarity to rising */
1164		ret = regmap_update_bits(devrec->regmap_long, REG_SLPCON0,
1165					 BIT_INTEDGE, BIT_INTEDGE);
1166		if (ret)
1167			goto err_ret;
1168		break;
1169	default:
1170		/* default is falling edge */
1171		break;
1172	}
1173
1174	return 0;
1175
1176err_ret:
1177	return ret;
1178}
1179
1180static void
1181mrf24j40_setup_tx_spi_messages(struct mrf24j40 *devrec)
1182{
1183	spi_message_init(&devrec->tx_msg);
1184	devrec->tx_msg.context = devrec;
1185	devrec->tx_msg.complete = write_tx_buf_complete;
1186	devrec->tx_hdr_trx.len = 2;
1187	devrec->tx_hdr_trx.tx_buf = devrec->tx_hdr_buf;
1188	spi_message_add_tail(&devrec->tx_hdr_trx, &devrec->tx_msg);
1189	devrec->tx_len_trx.len = 2;
1190	devrec->tx_len_trx.tx_buf = devrec->tx_len_buf;
1191	spi_message_add_tail(&devrec->tx_len_trx, &devrec->tx_msg);
1192	spi_message_add_tail(&devrec->tx_buf_trx, &devrec->tx_msg);
1193
1194	spi_message_init(&devrec->tx_post_msg);
1195	devrec->tx_post_msg.context = devrec;
1196	devrec->tx_post_trx.len = 2;
1197	devrec->tx_post_trx.tx_buf = devrec->tx_post_buf;
1198	spi_message_add_tail(&devrec->tx_post_trx, &devrec->tx_post_msg);
1199}
1200
1201static void
1202mrf24j40_setup_rx_spi_messages(struct mrf24j40 *devrec)
1203{
1204	spi_message_init(&devrec->rx_msg);
1205	devrec->rx_msg.context = devrec;
1206	devrec->rx_trx.len = 2;
1207	devrec->rx_trx.tx_buf = devrec->rx_buf;
1208	devrec->rx_trx.rx_buf = devrec->rx_buf;
1209	spi_message_add_tail(&devrec->rx_trx, &devrec->rx_msg);
1210
1211	spi_message_init(&devrec->rx_buf_msg);
1212	devrec->rx_buf_msg.context = devrec;
1213	devrec->rx_buf_msg.complete = mrf24j40_handle_rx_read_buf_complete;
1214	devrec->rx_addr_trx.len = 2;
1215	devrec->rx_addr_trx.tx_buf = devrec->rx_addr_buf;
1216	spi_message_add_tail(&devrec->rx_addr_trx, &devrec->rx_buf_msg);
1217	devrec->rx_fifo_buf_trx.rx_buf = devrec->rx_fifo_buf;
1218	spi_message_add_tail(&devrec->rx_fifo_buf_trx, &devrec->rx_buf_msg);
1219	devrec->rx_lqi_trx.len = 2;
1220	devrec->rx_lqi_trx.rx_buf = devrec->rx_lqi_buf;
1221	spi_message_add_tail(&devrec->rx_lqi_trx, &devrec->rx_buf_msg);
1222}
1223
1224static void
1225mrf24j40_setup_irq_spi_messages(struct mrf24j40 *devrec)
1226{
1227	spi_message_init(&devrec->irq_msg);
1228	devrec->irq_msg.context = devrec;
1229	devrec->irq_msg.complete = mrf24j40_intstat_complete;
1230	devrec->irq_trx.len = 2;
1231	devrec->irq_trx.tx_buf = devrec->irq_buf;
1232	devrec->irq_trx.rx_buf = devrec->irq_buf;
1233	spi_message_add_tail(&devrec->irq_trx, &devrec->irq_msg);
1234}
1235
1236static void  mrf24j40_phy_setup(struct mrf24j40 *devrec)
1237{
1238	ieee802154_random_extended_addr(&devrec->hw->phy->perm_extended_addr);
1239	devrec->hw->phy->current_channel = 11;
1240
1241	/* mrf24j40 supports max_minbe 0 - 3 */
1242	devrec->hw->phy->supported.max_minbe = 3;
1243	/* datasheet doesn't say anything about max_be, but we have min_be
1244	 * So we assume the max_be default.
1245	 */
1246	devrec->hw->phy->supported.min_maxbe = 5;
1247	devrec->hw->phy->supported.max_maxbe = 5;
1248
1249	devrec->hw->phy->cca.mode = NL802154_CCA_CARRIER;
1250	devrec->hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
1251					       BIT(NL802154_CCA_CARRIER) |
1252					       BIT(NL802154_CCA_ENERGY_CARRIER);
1253	devrec->hw->phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND);
1254
1255	devrec->hw->phy->cca_ed_level = -6900;
1256	devrec->hw->phy->supported.cca_ed_levels = mrf24j40_ed_levels;
1257	devrec->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(mrf24j40_ed_levels);
1258
1259	switch (spi_get_device_id(devrec->spi)->driver_data) {
1260	case MRF24J40:
1261	case MRF24J40MA:
1262		devrec->hw->phy->supported.tx_powers = mrf24j40ma_powers;
1263		devrec->hw->phy->supported.tx_powers_size = ARRAY_SIZE(mrf24j40ma_powers);
1264		devrec->hw->phy->flags |= WPAN_PHY_FLAG_TXPOWER;
1265		break;
1266	default:
1267		break;
1268	}
1269}
1270
1271static int mrf24j40_probe(struct spi_device *spi)
1272{
1273	int ret = -ENOMEM, irq_type;
1274	struct ieee802154_hw *hw;
1275	struct mrf24j40 *devrec;
1276
1277	dev_info(&spi->dev, "probe(). IRQ: %d\n", spi->irq);
1278
1279	/* Register with the 802154 subsystem */
1280
1281	hw = ieee802154_alloc_hw(sizeof(*devrec), &mrf24j40_ops);
1282	if (!hw)
1283		goto err_ret;
 
 
 
 
 
1284
1285	devrec = hw->priv;
 
1286	devrec->spi = spi;
1287	spi_set_drvdata(spi, devrec);
1288	devrec->hw = hw;
1289	devrec->hw->parent = &spi->dev;
1290	devrec->hw->phy->supported.channels[0] = CHANNEL_MASK;
1291	devrec->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | IEEE802154_HW_AFILT |
1292			    IEEE802154_HW_CSMA_PARAMS |
1293			    IEEE802154_HW_PROMISCUOUS;
1294
1295	devrec->hw->phy->flags = WPAN_PHY_FLAG_CCA_MODE |
1296				 WPAN_PHY_FLAG_CCA_ED_LEVEL;
1297
1298	mrf24j40_setup_tx_spi_messages(devrec);
1299	mrf24j40_setup_rx_spi_messages(devrec);
1300	mrf24j40_setup_irq_spi_messages(devrec);
1301
1302	devrec->regmap_short = devm_regmap_init_spi(spi,
1303						    &mrf24j40_short_regmap);
1304	if (IS_ERR(devrec->regmap_short)) {
1305		ret = PTR_ERR(devrec->regmap_short);
1306		dev_err(&spi->dev, "Failed to allocate short register map: %d\n",
1307			ret);
1308		goto err_register_device;
1309	}
1310
1311	devrec->regmap_long = devm_regmap_init(&spi->dev,
1312					       &mrf24j40_long_regmap_bus,
1313					       spi, &mrf24j40_long_regmap);
1314	if (IS_ERR(devrec->regmap_long)) {
1315		ret = PTR_ERR(devrec->regmap_long);
1316		dev_err(&spi->dev, "Failed to allocate long register map: %d\n",
1317			ret);
1318		goto err_register_device;
1319	}
1320
1321	if (spi->max_speed_hz > MAX_SPI_SPEED_HZ) {
1322		dev_warn(&spi->dev, "spi clock above possible maximum: %d",
1323			 MAX_SPI_SPEED_HZ);
1324		ret = -EINVAL;
1325		goto err_register_device;
1326	}
 
 
1327
1328	ret = mrf24j40_hw_init(devrec);
 
1329	if (ret)
1330		goto err_register_device;
1331
1332	mrf24j40_phy_setup(devrec);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1333
1334	/* request IRQF_TRIGGER_LOW as fallback default */
1335	irq_type = irq_get_trigger_type(spi->irq);
1336	if (!irq_type)
1337		irq_type = IRQF_TRIGGER_LOW;
 
 
 
 
 
 
 
 
 
1338
1339	ret = devm_request_irq(&spi->dev, spi->irq, mrf24j40_isr,
1340			       irq_type, dev_name(&spi->dev), devrec);
1341	if (ret) {
1342		dev_err(printdev(devrec), "Unable to get IRQ");
1343		goto err_register_device;
1344	}
1345
1346	dev_dbg(printdev(devrec), "registered mrf24j40\n");
1347	ret = ieee802154_register_hw(devrec->hw);
1348	if (ret)
1349		goto err_register_device;
1350
1351	return 0;
1352
 
 
 
1353err_register_device:
1354	ieee802154_free_hw(devrec->hw);
1355err_ret:
 
 
 
 
1356	return ret;
1357}
1358
1359static void mrf24j40_remove(struct spi_device *spi)
1360{
1361	struct mrf24j40 *devrec = spi_get_drvdata(spi);
1362
1363	dev_dbg(printdev(devrec), "remove\n");
1364
1365	ieee802154_unregister_hw(devrec->hw);
1366	ieee802154_free_hw(devrec->hw);
 
1367	/* TODO: Will ieee802154_free_device() wait until ->xmit() is
1368	 * complete? */
1369}
1370
1371static const struct of_device_id mrf24j40_of_match[] = {
1372	{ .compatible = "microchip,mrf24j40", .data = (void *)MRF24J40 },
1373	{ .compatible = "microchip,mrf24j40ma", .data = (void *)MRF24J40MA },
1374	{ .compatible = "microchip,mrf24j40mc", .data = (void *)MRF24J40MC },
1375	{ },
1376};
1377MODULE_DEVICE_TABLE(of, mrf24j40_of_match);
1378
1379static const struct spi_device_id mrf24j40_ids[] = {
1380	{ "mrf24j40", MRF24J40 },
1381	{ "mrf24j40ma", MRF24J40MA },
1382	{ "mrf24j40mc", MRF24J40MC },
1383	{ },
1384};
1385MODULE_DEVICE_TABLE(spi, mrf24j40_ids);
1386
1387static struct spi_driver mrf24j40_driver = {
1388	.driver = {
1389		.of_match_table = mrf24j40_of_match,
1390		.name = "mrf24j40",
 
 
1391	},
1392	.id_table = mrf24j40_ids,
1393	.probe = mrf24j40_probe,
1394	.remove = mrf24j40_remove,
1395};
1396
1397module_spi_driver(mrf24j40_driver);
1398
1399MODULE_LICENSE("GPL");
1400MODULE_AUTHOR("Alan Ott");
1401MODULE_DESCRIPTION("MRF24J40 SPI 802.15.4 Controller Driver");
v3.15
 
  1/*
  2 * Driver for Microchip MRF24J40 802.15.4 Wireless-PAN Networking controller
  3 *
  4 * Copyright (C) 2012 Alan Ott <alan@signal11.us>
  5 *                    Signal 11 Software
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License as published by
  9 * the Free Software Foundation; either version 2 of the License, or
 10 * (at your option) any later version.
 11 *
 12 * This program is distributed in the hope that it will be useful,
 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 * GNU General Public License for more details.
 16 *
 17 * You should have received a copy of the GNU General Public License
 18 * along with this program; if not, write to the Free Software
 19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 20 */
 21
 22#include <linux/spi/spi.h>
 23#include <linux/interrupt.h>
 
 24#include <linux/module.h>
 25#include <net/wpan-phy.h>
 
 
 
 26#include <net/mac802154.h>
 27#include <net/ieee802154.h>
 28
 29/* MRF24J40 Short Address Registers */
 30#define REG_RXMCR    0x00  /* Receive MAC control */
 31#define REG_PANIDL   0x01  /* PAN ID (low) */
 32#define REG_PANIDH   0x02  /* PAN ID (high) */
 33#define REG_SADRL    0x03  /* Short address (low) */
 34#define REG_SADRH    0x04  /* Short address (high) */
 35#define REG_EADR0    0x05  /* Long address (low) (high is EADR7) */
 36#define REG_TXMCR    0x11  /* Transmit MAC control */
 37#define REG_PACON0   0x16  /* Power Amplifier Control */
 38#define REG_PACON1   0x17  /* Power Amplifier Control */
 39#define REG_PACON2   0x18  /* Power Amplifier Control */
 40#define REG_TXNCON   0x1B  /* Transmit Normal FIFO Control */
 41#define REG_TXSTAT   0x24  /* TX MAC Status Register */
 42#define REG_SOFTRST  0x2A  /* Soft Reset */
 43#define REG_TXSTBL   0x2E  /* TX Stabilization */
 44#define REG_INTSTAT  0x31  /* Interrupt Status */
 45#define REG_INTCON   0x32  /* Interrupt Control */
 46#define REG_RFCTL    0x36  /* RF Control Mode Register */
 47#define REG_BBREG1   0x39  /* Baseband Registers */
 48#define REG_BBREG2   0x3A  /* */
 49#define REG_BBREG6   0x3E  /* */
 50#define REG_CCAEDTH  0x3F  /* Energy Detection Threshold */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 51
 52/* MRF24J40 Long Address Registers */
 53#define REG_RFCON0     0x200  /* RF Control Registers */
 54#define REG_RFCON1     0x201
 55#define REG_RFCON2     0x202
 56#define REG_RFCON3     0x203
 57#define REG_RFCON5     0x205
 58#define REG_RFCON6     0x206
 59#define REG_RFCON7     0x207
 60#define REG_RFCON8     0x208
 61#define REG_RSSI       0x210
 62#define REG_SLPCON0    0x211  /* Sleep Clock Control Registers */
 63#define REG_SLPCON1    0x220
 64#define REG_WAKETIMEL  0x222  /* Wake-up Time Match Value Low */
 65#define REG_WAKETIMEH  0x223  /* Wake-up Time Match Value High */
 66#define REG_RX_FIFO    0x300  /* Receive FIFO */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 67
 68/* Device configuration: Only channels 11-26 on page 0 are supported. */
 69#define MRF24J40_CHAN_MIN 11
 70#define MRF24J40_CHAN_MAX 26
 71#define CHANNEL_MASK (((u32)1 << (MRF24J40_CHAN_MAX + 1)) \
 72		      - ((u32)1 << MRF24J40_CHAN_MIN))
 73
 74#define TX_FIFO_SIZE 128 /* From datasheet */
 75#define RX_FIFO_SIZE 144 /* From datasheet */
 76#define SET_CHANNEL_DELAY_US 192 /* From datasheet */
 77
 
 
 78/* Device Private Data */
 79struct mrf24j40 {
 80	struct spi_device *spi;
 81	struct ieee802154_dev *dev;
 
 
 
 82
 83	struct mutex buffer_mutex; /* only used to protect buf */
 84	struct completion tx_complete;
 85	u8 *buf; /* 3 bytes. Used for SPI single-register transfers. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 86};
 87
 
 
 
 
 
 
 
 
 
 88/* Read/Write SPI Commands for Short and Long Address registers. */
 89#define MRF24J40_READSHORT(reg) ((reg) << 1)
 90#define MRF24J40_WRITESHORT(reg) ((reg) << 1 | 1)
 91#define MRF24J40_READLONG(reg) (1 << 15 | (reg) << 5)
 92#define MRF24J40_WRITELONG(reg) (1 << 15 | (reg) << 5 | 1 << 4)
 93
 94/* The datasheet indicates the theoretical maximum for SCK to be 10MHz */
 95#define MAX_SPI_SPEED_HZ 10000000
 96
 97#define printdev(X) (&X->spi->dev)
 98
 99static int write_short_reg(struct mrf24j40 *devrec, u8 reg, u8 value)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100{
101	int ret;
102	struct spi_message msg;
103	struct spi_transfer xfer = {
104		.len = 2,
105		.tx_buf = devrec->buf,
106		.rx_buf = devrec->buf,
107	};
108
109	spi_message_init(&msg);
110	spi_message_add_tail(&xfer, &msg);
111
112	mutex_lock(&devrec->buffer_mutex);
113	devrec->buf[0] = MRF24J40_WRITESHORT(reg);
114	devrec->buf[1] = value;
115
116	ret = spi_sync(devrec->spi, &msg);
117	if (ret)
118		dev_err(printdev(devrec),
119			"SPI write Failed for short register 0x%hhx\n", reg);
 
 
 
 
 
 
 
 
 
 
 
 
120
121	mutex_unlock(&devrec->buffer_mutex);
122	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
123}
124
125static int read_short_reg(struct mrf24j40 *devrec, u8 reg, u8 *val)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126{
127	int ret = -1;
128	struct spi_message msg;
129	struct spi_transfer xfer = {
130		.len = 2,
131		.tx_buf = devrec->buf,
132		.rx_buf = devrec->buf,
133	};
134
135	spi_message_init(&msg);
136	spi_message_add_tail(&xfer, &msg);
137
138	mutex_lock(&devrec->buffer_mutex);
139	devrec->buf[0] = MRF24J40_READSHORT(reg);
140	devrec->buf[1] = 0;
141
142	ret = spi_sync(devrec->spi, &msg);
143	if (ret)
144		dev_err(printdev(devrec),
145			"SPI read Failed for short register 0x%hhx\n", reg);
146	else
147		*val = devrec->buf[1];
148
149	mutex_unlock(&devrec->buffer_mutex);
150	return ret;
 
 
 
 
 
 
151}
152
153static int read_long_reg(struct mrf24j40 *devrec, u16 reg, u8 *value)
 
 
154{
155	int ret;
156	u16 cmd;
157	struct spi_message msg;
158	struct spi_transfer xfer = {
159		.len = 3,
160		.tx_buf = devrec->buf,
161		.rx_buf = devrec->buf,
162	};
163
164	spi_message_init(&msg);
165	spi_message_add_tail(&xfer, &msg);
166
167	cmd = MRF24J40_READLONG(reg);
168	mutex_lock(&devrec->buffer_mutex);
169	devrec->buf[0] = cmd >> 8 & 0xff;
170	devrec->buf[1] = cmd & 0xff;
171	devrec->buf[2] = 0;
172
173	ret = spi_sync(devrec->spi, &msg);
174	if (ret)
175		dev_err(printdev(devrec),
176			"SPI read Failed for long register 0x%hx\n", reg);
177	else
178		*value = devrec->buf[2];
179
180	mutex_unlock(&devrec->buffer_mutex);
181	return ret;
182}
183
184static int write_long_reg(struct mrf24j40 *devrec, u16 reg, u8 val)
 
 
 
 
 
 
 
185{
 
 
 
186	int ret;
187	u16 cmd;
188	struct spi_message msg;
189	struct spi_transfer xfer = {
190		.len = 3,
191		.tx_buf = devrec->buf,
192		.rx_buf = devrec->buf,
193	};
194
195	spi_message_init(&msg);
196	spi_message_add_tail(&xfer, &msg);
 
 
 
197
198	cmd = MRF24J40_WRITELONG(reg);
199	mutex_lock(&devrec->buffer_mutex);
200	devrec->buf[0] = cmd >> 8 & 0xff;
201	devrec->buf[1] = cmd & 0xff;
202	devrec->buf[2] = val;
203
204	ret = spi_sync(devrec->spi, &msg);
205	if (ret)
206		dev_err(printdev(devrec),
207			"SPI write Failed for long register 0x%hx\n", reg);
208
209	mutex_unlock(&devrec->buffer_mutex);
210	return ret;
211}
212
213/* This function relies on an undocumented write method. Once a write command
214   and address is set, as many bytes of data as desired can be clocked into
215   the device. The datasheet only shows setting one byte at a time. */
216static int write_tx_buf(struct mrf24j40 *devrec, u16 reg,
217			const u8 *data, size_t length)
218{
 
219	int ret;
220	u16 cmd;
221	u8 lengths[2];
222	struct spi_message msg;
223	struct spi_transfer addr_xfer = {
224		.len = 2,
225		.tx_buf = devrec->buf,
226	};
227	struct spi_transfer lengths_xfer = {
228		.len = 2,
229		.tx_buf = &lengths, /* TODO: Is DMA really required for SPI? */
230	};
231	struct spi_transfer data_xfer = {
232		.len = length,
233		.tx_buf = data,
234	};
235
236	/* Range check the length. 2 bytes are used for the length fields.*/
237	if (length > TX_FIFO_SIZE-2) {
238		dev_err(printdev(devrec), "write_tx_buf() was passed too large a buffer. Performing short write.\n");
239		length = TX_FIFO_SIZE-2;
240	}
241
242	spi_message_init(&msg);
243	spi_message_add_tail(&addr_xfer, &msg);
244	spi_message_add_tail(&lengths_xfer, &msg);
245	spi_message_add_tail(&data_xfer, &msg);
246
247	cmd = MRF24J40_WRITELONG(reg);
248	mutex_lock(&devrec->buffer_mutex);
249	devrec->buf[0] = cmd >> 8 & 0xff;
250	devrec->buf[1] = cmd & 0xff;
251	lengths[0] = 0x0; /* Header Length. Set to 0 for now. TODO */
252	lengths[1] = length; /* Total length */
 
253
254	ret = spi_sync(devrec->spi, &msg);
255	if (ret)
256		dev_err(printdev(devrec), "SPI write Failed for TX buf\n");
257
258	mutex_unlock(&devrec->buffer_mutex);
259	return ret;
260}
261
262static int mrf24j40_read_rx_buf(struct mrf24j40 *devrec,
263				u8 *data, u8 *len, u8 *lqi)
264{
265	u8 rx_len;
266	u8 addr[2];
267	u8 lqi_rssi[2];
268	u16 cmd;
269	int ret;
270	struct spi_message msg;
271	struct spi_transfer addr_xfer = {
272		.len = 2,
273		.tx_buf = &addr,
274	};
275	struct spi_transfer data_xfer = {
276		.len = 0x0, /* set below */
277		.rx_buf = data,
278	};
279	struct spi_transfer status_xfer = {
280		.len = 2,
281		.rx_buf = &lqi_rssi,
282	};
283
284	/* Get the length of the data in the RX FIFO. The length in this
285	 * register exclues the 1-byte length field at the beginning. */
286	ret = read_long_reg(devrec, REG_RX_FIFO, &rx_len);
287	if (ret)
288		goto out;
289
290	/* Range check the RX FIFO length, accounting for the one-byte
291	 * length field at the begining. */
292	if (rx_len > RX_FIFO_SIZE-1) {
293		dev_err(printdev(devrec), "Invalid length read from device. Performing short read.\n");
294		rx_len = RX_FIFO_SIZE-1;
295	}
296
297	if (rx_len > *len) {
298		/* Passed in buffer wasn't big enough. Should never happen. */
299		dev_err(printdev(devrec), "Buffer not big enough. Performing short read\n");
300		rx_len = *len;
301	}
302
303	/* Set up the commands to read the data. */
304	cmd = MRF24J40_READLONG(REG_RX_FIFO+1);
305	addr[0] = cmd >> 8 & 0xff;
306	addr[1] = cmd & 0xff;
307	data_xfer.len = rx_len;
308
309	spi_message_init(&msg);
310	spi_message_add_tail(&addr_xfer, &msg);
311	spi_message_add_tail(&data_xfer, &msg);
312	spi_message_add_tail(&status_xfer, &msg);
313
314	ret = spi_sync(devrec->spi, &msg);
315	if (ret) {
316		dev_err(printdev(devrec), "SPI RX Buffer Read Failed.\n");
317		goto out;
318	}
319
320	*lqi = lqi_rssi[0];
321	*len = rx_len;
322
323#ifdef DEBUG
324	print_hex_dump(KERN_DEBUG, "mrf24j40 rx: ",
325		DUMP_PREFIX_OFFSET, 16, 1, data, *len, 0);
326	printk(KERN_DEBUG "mrf24j40 rx: lqi: %02hhx rssi: %02hhx\n",
327		lqi_rssi[0], lqi_rssi[1]);
328#endif
329
330out:
331	return ret;
332}
333
334static int mrf24j40_tx(struct ieee802154_dev *dev, struct sk_buff *skb)
335{
336	struct mrf24j40 *devrec = dev->priv;
337	u8 val;
338	int ret = 0;
339
340	dev_dbg(printdev(devrec), "tx packet of %d bytes\n", skb->len);
 
341
342	ret = write_tx_buf(devrec, 0x000, skb->data, skb->len);
343	if (ret)
344		goto err;
345
346	reinit_completion(&devrec->tx_complete);
347
348	/* Set TXNTRIG bit of TXNCON to send packet */
349	ret = read_short_reg(devrec, REG_TXNCON, &val);
350	if (ret)
351		goto err;
352	val |= 0x1;
353	/* Set TXNACKREQ if the ACK bit is set in the packet. */
354	if (skb->data[0] & IEEE802154_FC_ACK_REQ)
355		val |= 0x4;
356	write_short_reg(devrec, REG_TXNCON, val);
357
358	/* Wait for the device to send the TX complete interrupt. */
359	ret = wait_for_completion_interruptible_timeout(
360						&devrec->tx_complete,
361						5 * HZ);
362	if (ret == -ERESTARTSYS)
363		goto err;
364	if (ret == 0) {
365		dev_warn(printdev(devrec), "Timeout waiting for TX interrupt\n");
366		ret = -ETIMEDOUT;
367		goto err;
368	}
369
370	/* Check for send error from the device. */
371	ret = read_short_reg(devrec, REG_TXSTAT, &val);
372	if (ret)
373		goto err;
374	if (val & 0x1) {
375		dev_dbg(printdev(devrec), "Error Sending. Retry count exceeded\n");
376		ret = -ECOMM; /* TODO: Better error code ? */
377	} else
378		dev_dbg(printdev(devrec), "Packet Sent\n");
379
380err:
381
382	return ret;
383}
384
385static int mrf24j40_ed(struct ieee802154_dev *dev, u8 *level)
386{
387	/* TODO: */
388	printk(KERN_WARNING "mrf24j40: ed not implemented\n");
389	*level = 0;
390	return 0;
391}
392
393static int mrf24j40_start(struct ieee802154_dev *dev)
394{
395	struct mrf24j40 *devrec = dev->priv;
396	u8 val;
397	int ret;
398
399	dev_dbg(printdev(devrec), "start\n");
400
401	ret = read_short_reg(devrec, REG_INTCON, &val);
402	if (ret)
403		return ret;
404	val &= ~(0x1|0x8); /* Clear TXNIE and RXIE. Enable interrupts */
405	write_short_reg(devrec, REG_INTCON, val);
406
407	return 0;
408}
409
410static void mrf24j40_stop(struct ieee802154_dev *dev)
411{
412	struct mrf24j40 *devrec = dev->priv;
413	u8 val;
414	int ret;
415	dev_dbg(printdev(devrec), "stop\n");
416
417	ret = read_short_reg(devrec, REG_INTCON, &val);
418	if (ret)
419		return;
420	val |= 0x1|0x8; /* Set TXNIE and RXIE. Disable Interrupts */
421	write_short_reg(devrec, REG_INTCON, val);
422
423	return;
424}
425
426static int mrf24j40_set_channel(struct ieee802154_dev *dev,
427				int page, int channel)
428{
429	struct mrf24j40 *devrec = dev->priv;
430	u8 val;
431	int ret;
432
433	dev_dbg(printdev(devrec), "Set Channel %d\n", channel);
434
435	WARN_ON(page != 0);
436	WARN_ON(channel < MRF24J40_CHAN_MIN);
437	WARN_ON(channel > MRF24J40_CHAN_MAX);
438
439	/* Set Channel TODO */
440	val = (channel-11) << 4 | 0x03;
441	write_long_reg(devrec, REG_RFCON0, val);
 
 
 
442
443	/* RF Reset */
444	ret = read_short_reg(devrec, REG_RFCTL, &val);
 
445	if (ret)
446		return ret;
447	val |= 0x04;
448	write_short_reg(devrec, REG_RFCTL, val);
449	val &= ~0x04;
450	write_short_reg(devrec, REG_RFCTL, val);
451
452	udelay(SET_CHANNEL_DELAY_US); /* per datasheet */
 
 
453
454	return 0;
455}
456
457static int mrf24j40_filter(struct ieee802154_dev *dev,
458			   struct ieee802154_hw_addr_filt *filt,
459			   unsigned long changed)
460{
461	struct mrf24j40 *devrec = dev->priv;
462
463	dev_dbg(printdev(devrec), "filter\n");
464
465	if (changed & IEEE802515_AFILT_SADDR_CHANGED) {
466		/* Short Addr */
467		u8 addrh, addrl;
 
468		addrh = le16_to_cpu(filt->short_addr) >> 8 & 0xff;
469		addrl = le16_to_cpu(filt->short_addr) & 0xff;
470
471		write_short_reg(devrec, REG_SADRH, addrh);
472		write_short_reg(devrec, REG_SADRL, addrl);
473		dev_dbg(printdev(devrec),
474			"Set short addr to %04hx\n", filt->short_addr);
475	}
476
477	if (changed & IEEE802515_AFILT_IEEEADDR_CHANGED) {
478		/* Device Address */
479		u8 i, addr[8];
480
481		memcpy(addr, &filt->ieee_addr, 8);
482		for (i = 0; i < 8; i++)
483			write_short_reg(devrec, REG_EADR0 + i, addr[i]);
 
484
485#ifdef DEBUG
486		printk(KERN_DEBUG "Set long addr to: ");
487		for (i = 0; i < 8; i++)
488			printk("%02hhx ", addr[7 - i]);
489		printk(KERN_DEBUG "\n");
490#endif
491	}
492
493	if (changed & IEEE802515_AFILT_PANID_CHANGED) {
494		/* PAN ID */
495		u8 panidl, panidh;
 
496		panidh = le16_to_cpu(filt->pan_id) >> 8 & 0xff;
497		panidl = le16_to_cpu(filt->pan_id) & 0xff;
498		write_short_reg(devrec, REG_PANIDH, panidh);
499		write_short_reg(devrec, REG_PANIDL, panidl);
500
501		dev_dbg(printdev(devrec), "Set PANID to %04hx\n", filt->pan_id);
502	}
503
504	if (changed & IEEE802515_AFILT_PANC_CHANGED) {
505		/* Pan Coordinator */
506		u8 val;
507		int ret;
508
509		ret = read_short_reg(devrec, REG_RXMCR, &val);
 
 
 
 
 
510		if (ret)
511			return ret;
512		if (filt->pan_coord)
513			val |= 0x8;
514		else
515			val &= ~0x8;
516		write_short_reg(devrec, REG_RXMCR, val);
517
518		/* REG_SLOTTED is maintained as default (unslotted/CSMA-CA).
519		 * REG_ORDER is maintained as default (no beacon/superframe).
520		 */
521
522		dev_dbg(printdev(devrec), "Set Pan Coord to %s\n",
523					filt->pan_coord ? "on" : "off");
524	}
525
526	return 0;
527}
528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
529static int mrf24j40_handle_rx(struct mrf24j40 *devrec)
530{
531	u8 len = RX_FIFO_SIZE;
532	u8 lqi = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
533	u8 val;
534	int ret = 0;
535	struct sk_buff *skb;
536
537	/* Turn off reception of packets off the air. This prevents the
538	 * device from overwriting the buffer while we're reading it. */
539	ret = read_short_reg(devrec, REG_BBREG1, &val);
540	if (ret)
541		goto out;
542	val |= 4; /* SET RXDECINV */
543	write_short_reg(devrec, REG_BBREG1, val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
544
545	skb = alloc_skb(len, GFP_KERNEL);
546	if (!skb) {
547		ret = -ENOMEM;
548		goto out;
549	}
550
551	ret = mrf24j40_read_rx_buf(devrec, skb_put(skb, len), &len, &lqi);
552	if (ret < 0) {
553		dev_err(printdev(devrec), "Failure reading RX FIFO\n");
554		kfree_skb(skb);
555		ret = -EINVAL;
556		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
557	}
558
559	/* Cut off the checksum */
560	skb_trim(skb, len-2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
561
562	/* TODO: Other drivers call ieee20154_rx_irqsafe() here (eg: cc2040,
563	 * also from a workqueue).  I think irqsafe is not necessary here.
564	 * Can someone confirm? */
565	ieee802154_rx_irqsafe(devrec->dev, skb, lqi);
566
567	dev_dbg(printdev(devrec), "RX Handled\n");
 
 
 
568
569out:
570	/* Turn back on reception of packets off the air. */
571	ret = read_short_reg(devrec, REG_BBREG1, &val);
572	if (ret)
573		return ret;
574	val &= ~0x4; /* Clear RXDECINV */
575	write_short_reg(devrec, REG_BBREG1, val);
 
 
 
 
576
577	return ret;
578}
579
580static struct ieee802154_ops mrf24j40_ops = {
581	.owner = THIS_MODULE,
582	.xmit = mrf24j40_tx,
583	.ed = mrf24j40_ed,
584	.start = mrf24j40_start,
585	.stop = mrf24j40_stop,
586	.set_channel = mrf24j40_set_channel,
587	.set_hw_addr_filt = mrf24j40_filter,
 
 
 
 
 
588};
589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
590static irqreturn_t mrf24j40_isr(int irq, void *data)
591{
592	struct mrf24j40 *devrec = data;
593	u8 intstat;
594	int ret;
595
 
 
 
 
 
596	/* Read the interrupt status */
597	ret = read_short_reg(devrec, REG_INTSTAT, &intstat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
598	if (ret)
599		goto out;
600
601	/* Check for TX complete */
602	if (intstat & 0x1)
603		complete(&devrec->tx_complete);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
604
605	/* Check for Rx */
606	if (intstat & 0x8)
607		mrf24j40_handle_rx(devrec);
 
608
609out:
610	return IRQ_HANDLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
611}
612
613static int mrf24j40_probe(struct spi_device *spi)
614{
615	int ret = -ENOMEM;
616	u8 val;
617	struct mrf24j40 *devrec;
618
619	printk(KERN_INFO "mrf24j40: probe(). IRQ: %d\n", spi->irq);
620
621	devrec = kzalloc(sizeof(struct mrf24j40), GFP_KERNEL);
622	if (!devrec)
623		goto err_devrec;
624	devrec->buf = kzalloc(3, GFP_KERNEL);
625	if (!devrec->buf)
626		goto err_buf;
627
628	spi->mode = SPI_MODE_0; /* TODO: Is this appropriate for right here? */
629	if (spi->max_speed_hz > MAX_SPI_SPEED_HZ)
630		spi->max_speed_hz = MAX_SPI_SPEED_HZ;
631
632	mutex_init(&devrec->buffer_mutex);
633	init_completion(&devrec->tx_complete);
634	devrec->spi = spi;
635	spi_set_drvdata(spi, devrec);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
636
637	/* Register with the 802154 subsystem */
 
 
 
 
 
 
 
 
638
639	devrec->dev = ieee802154_alloc_device(0, &mrf24j40_ops);
640	if (!devrec->dev)
641		goto err_alloc_dev;
642
643	devrec->dev->priv = devrec;
644	devrec->dev->parent = &devrec->spi->dev;
645	devrec->dev->phy->channels_supported[0] = CHANNEL_MASK;
646	devrec->dev->flags = IEEE802154_HW_OMIT_CKSUM|IEEE802154_HW_AACK;
647
648	dev_dbg(printdev(devrec), "registered mrf24j40\n");
649	ret = ieee802154_register_device(devrec->dev);
650	if (ret)
651		goto err_register_device;
652
653	/* Initialize the device.
654		From datasheet section 3.2: Initialization. */
655	write_short_reg(devrec, REG_SOFTRST, 0x07);
656	write_short_reg(devrec, REG_PACON2, 0x98);
657	write_short_reg(devrec, REG_TXSTBL, 0x95);
658	write_long_reg(devrec, REG_RFCON0, 0x03);
659	write_long_reg(devrec, REG_RFCON1, 0x01);
660	write_long_reg(devrec, REG_RFCON2, 0x80);
661	write_long_reg(devrec, REG_RFCON6, 0x90);
662	write_long_reg(devrec, REG_RFCON7, 0x80);
663	write_long_reg(devrec, REG_RFCON8, 0x10);
664	write_long_reg(devrec, REG_SLPCON1, 0x21);
665	write_short_reg(devrec, REG_BBREG2, 0x80);
666	write_short_reg(devrec, REG_CCAEDTH, 0x60);
667	write_short_reg(devrec, REG_BBREG6, 0x40);
668	write_short_reg(devrec, REG_RFCTL, 0x04);
669	write_short_reg(devrec, REG_RFCTL, 0x0);
670	udelay(192);
671
672	/* Set RX Mode. RXMCR<1:0>: 0x0 normal, 0x1 promisc, 0x2 error */
673	ret = read_short_reg(devrec, REG_RXMCR, &val);
674	if (ret)
675		goto err_read_reg;
676	val &= ~0x3; /* Clear RX mode (normal) */
677	write_short_reg(devrec, REG_RXMCR, val);
678
679	ret = request_threaded_irq(spi->irq,
680				   NULL,
681				   mrf24j40_isr,
682				   IRQF_TRIGGER_LOW|IRQF_ONESHOT,
683				   dev_name(&spi->dev),
684				   devrec);
685
 
 
686	if (ret) {
687		dev_err(printdev(devrec), "Unable to get IRQ");
688		goto err_irq;
689	}
690
 
 
 
 
 
691	return 0;
692
693err_irq:
694err_read_reg:
695	ieee802154_unregister_device(devrec->dev);
696err_register_device:
697	ieee802154_free_device(devrec->dev);
698err_alloc_dev:
699	kfree(devrec->buf);
700err_buf:
701	kfree(devrec);
702err_devrec:
703	return ret;
704}
705
706static int mrf24j40_remove(struct spi_device *spi)
707{
708	struct mrf24j40 *devrec = spi_get_drvdata(spi);
709
710	dev_dbg(printdev(devrec), "remove\n");
711
712	free_irq(spi->irq, devrec);
713	ieee802154_unregister_device(devrec->dev);
714	ieee802154_free_device(devrec->dev);
715	/* TODO: Will ieee802154_free_device() wait until ->xmit() is
716	 * complete? */
 
717
718	/* Clean up the SPI stuff. */
719	kfree(devrec->buf);
720	kfree(devrec);
721	return 0;
722}
 
 
723
724static const struct spi_device_id mrf24j40_ids[] = {
725	{ "mrf24j40", 0 },
726	{ "mrf24j40ma", 0 },
 
727	{ },
728};
729MODULE_DEVICE_TABLE(spi, mrf24j40_ids);
730
731static struct spi_driver mrf24j40_driver = {
732	.driver = {
 
733		.name = "mrf24j40",
734		.bus = &spi_bus_type,
735		.owner = THIS_MODULE,
736	},
737	.id_table = mrf24j40_ids,
738	.probe = mrf24j40_probe,
739	.remove = mrf24j40_remove,
740};
741
742module_spi_driver(mrf24j40_driver);
743
744MODULE_LICENSE("GPL");
745MODULE_AUTHOR("Alan Ott");
746MODULE_DESCRIPTION("MRF24J40 SPI 802.15.4 Controller Driver");