Linux Audio

Check our new training course

Loading...
v6.8
   1/* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
   2/*
   3	Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
   4
   5	Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
   6	Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
   7	Copyright 2001 Manfred Spraul				    [natsemi.c]
   8	Copyright 1999-2001 by Donald Becker.			    [natsemi.c]
   9	Written 1997-2001 by Donald Becker.			    [8139too.c]
  10	Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
  11
  12	This software may be used and distributed according to the terms of
  13	the GNU General Public License (GPL), incorporated herein by reference.
  14	Drivers based on or derived from this code fall under the GPL and must
  15	retain the authorship, copyright and license notice.  This file is not
  16	a complete program and may only be used when the entire operating
  17	system is licensed under the GPL.
  18
  19	See the file COPYING in this distribution for more information.
  20
  21	Contributors:
  22
  23		Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
  24		PCI suspend/resume  - Felipe Damasio <felipewd@terra.com.br>
  25		LinkChg interrupt   - Felipe Damasio <felipewd@terra.com.br>
  26
  27	TODO:
  28	* Test Tx checksumming thoroughly
  29
  30	Low priority TODO:
  31	* Complete reset on PciErr
  32	* Consider Rx interrupt mitigation using TimerIntr
  33	* Investigate using skb->priority with h/w VLAN priority
  34	* Investigate using High Priority Tx Queue with skb->priority
  35	* Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
  36	* Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
  37	* Implement Tx software interrupt mitigation via
  38	  Tx descriptor bit
  39	* The real minimum of CP_MIN_MTU is 4 bytes.  However,
  40	  for this to be supported, one must(?) turn on packet padding.
  41	* Support external MII transceivers (patch available)
  42
  43	NOTES:
  44	* TX checksumming is considered experimental.  It is off by
  45	  default, use ethtool to turn it on.
  46
  47 */
  48
  49#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  50
  51#define DRV_NAME		"8139cp"
  52#define DRV_VERSION		"1.3"
  53#define DRV_RELDATE		"Mar 22, 2004"
  54
  55
  56#include <linux/module.h>
  57#include <linux/moduleparam.h>
  58#include <linux/kernel.h>
  59#include <linux/compiler.h>
  60#include <linux/netdevice.h>
  61#include <linux/etherdevice.h>
  62#include <linux/init.h>
  63#include <linux/interrupt.h>
  64#include <linux/pci.h>
  65#include <linux/dma-mapping.h>
  66#include <linux/delay.h>
  67#include <linux/ethtool.h>
  68#include <linux/gfp.h>
  69#include <linux/mii.h>
  70#include <linux/if_vlan.h>
  71#include <linux/crc32.h>
  72#include <linux/in.h>
  73#include <linux/ip.h>
  74#include <linux/tcp.h>
  75#include <linux/udp.h>
  76#include <linux/cache.h>
  77#include <asm/io.h>
  78#include <asm/irq.h>
  79#include <linux/uaccess.h>
  80
  81/* These identify the driver base version and may not be removed. */
  82static char version[] =
  83DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
  84
  85MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
  86MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
  87MODULE_VERSION(DRV_VERSION);
  88MODULE_LICENSE("GPL");
  89
  90static int debug = -1;
  91module_param(debug, int, 0);
  92MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
  93
  94/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
  95   The RTL chips use a 64 element hash table based on the Ethernet CRC.  */
  96static int multicast_filter_limit = 32;
  97module_param(multicast_filter_limit, int, 0);
  98MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
  99
 100#define CP_DEF_MSG_ENABLE	(NETIF_MSG_DRV		| \
 101				 NETIF_MSG_PROBE 	| \
 102				 NETIF_MSG_LINK)
 103#define CP_NUM_STATS		14	/* struct cp_dma_stats, plus one */
 104#define CP_STATS_SIZE		64	/* size in bytes of DMA stats block */
 105#define CP_REGS_SIZE		(0xff + 1)
 106#define CP_REGS_VER		1		/* version 1 */
 107#define CP_RX_RING_SIZE		64
 108#define CP_TX_RING_SIZE		64
 109#define CP_RING_BYTES		\
 110		((sizeof(struct cp_desc) * CP_RX_RING_SIZE) +	\
 111		 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) +	\
 112		 CP_STATS_SIZE)
 113#define NEXT_TX(N)		(((N) + 1) & (CP_TX_RING_SIZE - 1))
 114#define NEXT_RX(N)		(((N) + 1) & (CP_RX_RING_SIZE - 1))
 115#define TX_BUFFS_AVAIL(CP)					\
 116	(((CP)->tx_tail <= (CP)->tx_head) ?			\
 117	  (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head :	\
 118	  (CP)->tx_tail - (CP)->tx_head - 1)
 119
 120#define PKT_BUF_SZ		1536	/* Size of each temporary Rx buffer.*/
 121#define CP_INTERNAL_PHY		32
 122
 123/* The following settings are log_2(bytes)-4:  0 == 16 bytes .. 6==1024, 7==end of packet. */
 124#define RX_FIFO_THRESH		5	/* Rx buffer level before first PCI xfer.  */
 125#define RX_DMA_BURST		4	/* Maximum PCI burst, '4' is 256 */
 126#define TX_DMA_BURST		6	/* Maximum PCI burst, '6' is 1024 */
 127#define TX_EARLY_THRESH		256	/* Early Tx threshold, in bytes */
 128
 129/* Time in jiffies before concluding the transmitter is hung. */
 130#define TX_TIMEOUT		(6*HZ)
 131
 132/* hardware minimum and maximum for a single frame's data payload */
 133#define CP_MIN_MTU		60	/* TODO: allow lower, but pad */
 134#define CP_MAX_MTU		4096
 135
 136enum {
 137	/* NIC register offsets */
 138	MAC0		= 0x00,	/* Ethernet hardware address. */
 139	MAR0		= 0x08,	/* Multicast filter. */
 140	StatsAddr	= 0x10,	/* 64-bit start addr of 64-byte DMA stats blk */
 141	TxRingAddr	= 0x20, /* 64-bit start addr of Tx ring */
 142	HiTxRingAddr	= 0x28, /* 64-bit start addr of high priority Tx ring */
 143	Cmd		= 0x37, /* Command register */
 144	IntrMask	= 0x3C, /* Interrupt mask */
 145	IntrStatus	= 0x3E, /* Interrupt status */
 146	TxConfig	= 0x40, /* Tx configuration */
 147	ChipVersion	= 0x43, /* 8-bit chip version, inside TxConfig */
 148	RxConfig	= 0x44, /* Rx configuration */
 149	RxMissed	= 0x4C,	/* 24 bits valid, write clears */
 150	Cfg9346		= 0x50, /* EEPROM select/control; Cfg reg [un]lock */
 151	Config1		= 0x52, /* Config1 */
 152	Config3		= 0x59, /* Config3 */
 153	Config4		= 0x5A, /* Config4 */
 154	MultiIntr	= 0x5C, /* Multiple interrupt select */
 155	BasicModeCtrl	= 0x62,	/* MII BMCR */
 156	BasicModeStatus	= 0x64, /* MII BMSR */
 157	NWayAdvert	= 0x66, /* MII ADVERTISE */
 158	NWayLPAR	= 0x68, /* MII LPA */
 159	NWayExpansion	= 0x6A, /* MII Expansion */
 160	TxDmaOkLowDesc  = 0x82, /* Low 16 bit address of a Tx descriptor. */
 161	Config5		= 0xD8,	/* Config5 */
 162	TxPoll		= 0xD9,	/* Tell chip to check Tx descriptors for work */
 163	RxMaxSize	= 0xDA, /* Max size of an Rx packet (8169 only) */
 164	CpCmd		= 0xE0, /* C+ Command register (C+ mode only) */
 165	IntrMitigate	= 0xE2,	/* rx/tx interrupt mitigation control */
 166	RxRingAddr	= 0xE4, /* 64-bit start addr of Rx ring */
 167	TxThresh	= 0xEC, /* Early Tx threshold */
 168	OldRxBufAddr	= 0x30, /* DMA address of Rx ring buffer (C mode) */
 169	OldTSD0		= 0x10, /* DMA address of first Tx desc (C mode) */
 170
 171	/* Tx and Rx status descriptors */
 172	DescOwn		= (1 << 31), /* Descriptor is owned by NIC */
 173	RingEnd		= (1 << 30), /* End of descriptor ring */
 174	FirstFrag	= (1 << 29), /* First segment of a packet */
 175	LastFrag	= (1 << 28), /* Final segment of a packet */
 176	LargeSend	= (1 << 27), /* TCP Large Send Offload (TSO) */
 177	MSSShift	= 16,	     /* MSS value position */
 178	MSSMask		= 0x7ff,     /* MSS value: 11 bits */
 179	TxError		= (1 << 23), /* Tx error summary */
 180	RxError		= (1 << 20), /* Rx error summary */
 181	IPCS		= (1 << 18), /* Calculate IP checksum */
 182	UDPCS		= (1 << 17), /* Calculate UDP/IP checksum */
 183	TCPCS		= (1 << 16), /* Calculate TCP/IP checksum */
 184	TxVlanTag	= (1 << 17), /* Add VLAN tag */
 185	RxVlanTagged	= (1 << 16), /* Rx VLAN tag available */
 186	IPFail		= (1 << 15), /* IP checksum failed */
 187	UDPFail		= (1 << 14), /* UDP/IP checksum failed */
 188	TCPFail		= (1 << 13), /* TCP/IP checksum failed */
 189	NormalTxPoll	= (1 << 6),  /* One or more normal Tx packets to send */
 190	PID1		= (1 << 17), /* 2 protocol id bits:  0==non-IP, */
 191	PID0		= (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
 192	RxProtoTCP	= 1,
 193	RxProtoUDP	= 2,
 194	RxProtoIP	= 3,
 195	TxFIFOUnder	= (1 << 25), /* Tx FIFO underrun */
 196	TxOWC		= (1 << 22), /* Tx Out-of-window collision */
 197	TxLinkFail	= (1 << 21), /* Link failed during Tx of packet */
 198	TxMaxCol	= (1 << 20), /* Tx aborted due to excessive collisions */
 199	TxColCntShift	= 16,	     /* Shift, to get 4-bit Tx collision cnt */
 200	TxColCntMask	= 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
 201	RxErrFrame	= (1 << 27), /* Rx frame alignment error */
 202	RxMcast		= (1 << 26), /* Rx multicast packet rcv'd */
 203	RxErrCRC	= (1 << 18), /* Rx CRC error */
 204	RxErrRunt	= (1 << 19), /* Rx error, packet < 64 bytes */
 205	RxErrLong	= (1 << 21), /* Rx error, packet > 4096 bytes */
 206	RxErrFIFO	= (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
 207
 208	/* StatsAddr register */
 209	DumpStats	= (1 << 3),  /* Begin stats dump */
 210
 211	/* RxConfig register */
 212	RxCfgFIFOShift	= 13,	     /* Shift, to get Rx FIFO thresh value */
 213	RxCfgDMAShift	= 8,	     /* Shift, to get Rx Max DMA value */
 214	AcceptErr	= 0x20,	     /* Accept packets with CRC errors */
 215	AcceptRunt	= 0x10,	     /* Accept runt (<64 bytes) packets */
 216	AcceptBroadcast	= 0x08,	     /* Accept broadcast packets */
 217	AcceptMulticast	= 0x04,	     /* Accept multicast packets */
 218	AcceptMyPhys	= 0x02,	     /* Accept pkts with our MAC as dest */
 219	AcceptAllPhys	= 0x01,	     /* Accept all pkts w/ physical dest */
 220
 221	/* IntrMask / IntrStatus registers */
 222	PciErr		= (1 << 15), /* System error on the PCI bus */
 223	TimerIntr	= (1 << 14), /* Asserted when TCTR reaches TimerInt value */
 224	LenChg		= (1 << 13), /* Cable length change */
 225	SWInt		= (1 << 8),  /* Software-requested interrupt */
 226	TxEmpty		= (1 << 7),  /* No Tx descriptors available */
 227	RxFIFOOvr	= (1 << 6),  /* Rx FIFO Overflow */
 228	LinkChg		= (1 << 5),  /* Packet underrun, or link change */
 229	RxEmpty		= (1 << 4),  /* No Rx descriptors available */
 230	TxErr		= (1 << 3),  /* Tx error */
 231	TxOK		= (1 << 2),  /* Tx packet sent */
 232	RxErr		= (1 << 1),  /* Rx error */
 233	RxOK		= (1 << 0),  /* Rx packet received */
 234	IntrResvd	= (1 << 10), /* reserved, according to RealTek engineers,
 235					but hardware likes to raise it */
 236
 237	IntrAll		= PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
 238			  RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
 239			  RxErr | RxOK | IntrResvd,
 240
 241	/* C mode command register */
 242	CmdReset	= (1 << 4),  /* Enable to reset; self-clearing */
 243	RxOn		= (1 << 3),  /* Rx mode enable */
 244	TxOn		= (1 << 2),  /* Tx mode enable */
 245
 246	/* C+ mode command register */
 247	RxVlanOn	= (1 << 6),  /* Rx VLAN de-tagging enable */
 248	RxChkSum	= (1 << 5),  /* Rx checksum offload enable */
 249	PCIDAC		= (1 << 4),  /* PCI Dual Address Cycle (64-bit PCI) */
 250	PCIMulRW	= (1 << 3),  /* Enable PCI read/write multiple */
 251	CpRxOn		= (1 << 1),  /* Rx mode enable */
 252	CpTxOn		= (1 << 0),  /* Tx mode enable */
 253
 254	/* Cfg9436 EEPROM control register */
 255	Cfg9346_Lock	= 0x00,	     /* Lock ConfigX/MII register access */
 256	Cfg9346_Unlock	= 0xC0,	     /* Unlock ConfigX/MII register access */
 257
 258	/* TxConfig register */
 259	IFG		= (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
 260	TxDMAShift	= 8,	     /* DMA burst value (0-7) is shift this many bits */
 261
 262	/* Early Tx Threshold register */
 263	TxThreshMask	= 0x3f,	     /* Mask bits 5-0 */
 264	TxThreshMax	= 2048,	     /* Max early Tx threshold */
 265
 266	/* Config1 register */
 267	DriverLoaded	= (1 << 5),  /* Software marker, driver is loaded */
 268	LWACT           = (1 << 4),  /* LWAKE active mode */
 269	PMEnable	= (1 << 0),  /* Enable various PM features of chip */
 270
 271	/* Config3 register */
 272	PARMEnable	= (1 << 6),  /* Enable auto-loading of PHY parms */
 273	MagicPacket     = (1 << 5),  /* Wake up when receives a Magic Packet */
 274	LinkUp          = (1 << 4),  /* Wake up when the cable connection is re-established */
 275
 276	/* Config4 register */
 277	LWPTN           = (1 << 1),  /* LWAKE Pattern */
 278	LWPME           = (1 << 4),  /* LANWAKE vs PMEB */
 279
 280	/* Config5 register */
 281	BWF             = (1 << 6),  /* Accept Broadcast wakeup frame */
 282	MWF             = (1 << 5),  /* Accept Multicast wakeup frame */
 283	UWF             = (1 << 4),  /* Accept Unicast wakeup frame */
 284	LANWake         = (1 << 1),  /* Enable LANWake signal */
 285	PMEStatus	= (1 << 0),  /* PME status can be reset by PCI RST# */
 286
 287	cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
 288	cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
 289	cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
 290};
 291
 292static const unsigned int cp_rx_config =
 293	  (RX_FIFO_THRESH << RxCfgFIFOShift) |
 294	  (RX_DMA_BURST << RxCfgDMAShift);
 295
 296struct cp_desc {
 297	__le32		opts1;
 298	__le32		opts2;
 299	__le64		addr;
 300};
 301
 302struct cp_dma_stats {
 303	__le64			tx_ok;
 304	__le64			rx_ok;
 305	__le64			tx_err;
 306	__le32			rx_err;
 307	__le16			rx_fifo;
 308	__le16			frame_align;
 309	__le32			tx_ok_1col;
 310	__le32			tx_ok_mcol;
 311	__le64			rx_ok_phys;
 312	__le64			rx_ok_bcast;
 313	__le32			rx_ok_mcast;
 314	__le16			tx_abort;
 315	__le16			tx_underrun;
 316} __packed;
 317
 318struct cp_extra_stats {
 319	unsigned long		rx_frags;
 320};
 321
 322struct cp_private {
 323	void			__iomem *regs;
 324	struct net_device	*dev;
 325	spinlock_t		lock;
 326	u32			msg_enable;
 327
 328	struct napi_struct	napi;
 329
 330	struct pci_dev		*pdev;
 331	u32			rx_config;
 332	u16			cpcmd;
 333
 334	struct cp_extra_stats	cp_stats;
 335
 336	unsigned		rx_head		____cacheline_aligned;
 337	unsigned		rx_tail;
 338	struct cp_desc		*rx_ring;
 339	struct sk_buff		*rx_skb[CP_RX_RING_SIZE];
 340
 341	unsigned		tx_head		____cacheline_aligned;
 342	unsigned		tx_tail;
 343	struct cp_desc		*tx_ring;
 344	struct sk_buff		*tx_skb[CP_TX_RING_SIZE];
 345	u32			tx_opts[CP_TX_RING_SIZE];
 346
 347	unsigned		rx_buf_sz;
 348	unsigned		wol_enabled : 1; /* Is Wake-on-LAN enabled? */
 349
 350	dma_addr_t		ring_dma;
 351
 352	struct mii_if_info	mii_if;
 353};
 354
 355#define cpr8(reg)	readb(cp->regs + (reg))
 356#define cpr16(reg)	readw(cp->regs + (reg))
 357#define cpr32(reg)	readl(cp->regs + (reg))
 358#define cpw8(reg,val)	writeb((val), cp->regs + (reg))
 359#define cpw16(reg,val)	writew((val), cp->regs + (reg))
 360#define cpw32(reg,val)	writel((val), cp->regs + (reg))
 361#define cpw8_f(reg,val) do {			\
 362	writeb((val), cp->regs + (reg));	\
 363	readb(cp->regs + (reg));		\
 364	} while (0)
 365#define cpw16_f(reg,val) do {			\
 366	writew((val), cp->regs + (reg));	\
 367	readw(cp->regs + (reg));		\
 368	} while (0)
 369#define cpw32_f(reg,val) do {			\
 370	writel((val), cp->regs + (reg));	\
 371	readl(cp->regs + (reg));		\
 372	} while (0)
 373
 374
 375static void __cp_set_rx_mode (struct net_device *dev);
 376static void cp_tx (struct cp_private *cp);
 377static void cp_clean_rings (struct cp_private *cp);
 378#ifdef CONFIG_NET_POLL_CONTROLLER
 379static void cp_poll_controller(struct net_device *dev);
 380#endif
 381static int cp_get_eeprom_len(struct net_device *dev);
 382static int cp_get_eeprom(struct net_device *dev,
 383			 struct ethtool_eeprom *eeprom, u8 *data);
 384static int cp_set_eeprom(struct net_device *dev,
 385			 struct ethtool_eeprom *eeprom, u8 *data);
 386
 
 
 
 
 
 
 
 387static struct {
 388	const char str[ETH_GSTRING_LEN];
 389} ethtool_stats_keys[] = {
 390	{ "tx_ok" },
 391	{ "rx_ok" },
 392	{ "tx_err" },
 393	{ "rx_err" },
 394	{ "rx_fifo" },
 395	{ "frame_align" },
 396	{ "tx_ok_1col" },
 397	{ "tx_ok_mcol" },
 398	{ "rx_ok_phys" },
 399	{ "rx_ok_bcast" },
 400	{ "rx_ok_mcast" },
 401	{ "tx_abort" },
 402	{ "tx_underrun" },
 403	{ "rx_frags" },
 404};
 405
 406
 407static inline void cp_set_rxbufsize (struct cp_private *cp)
 408{
 409	unsigned int mtu = cp->dev->mtu;
 410
 411	if (mtu > ETH_DATA_LEN)
 412		/* MTU + ethernet header + FCS + optional VLAN tag */
 413		cp->rx_buf_sz = mtu + ETH_HLEN + 8;
 414	else
 415		cp->rx_buf_sz = PKT_BUF_SZ;
 416}
 417
 418static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
 419			      struct cp_desc *desc)
 420{
 421	u32 opts2 = le32_to_cpu(desc->opts2);
 422
 423	skb->protocol = eth_type_trans (skb, cp->dev);
 424
 425	cp->dev->stats.rx_packets++;
 426	cp->dev->stats.rx_bytes += skb->len;
 427
 428	if (opts2 & RxVlanTagged)
 429		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff));
 430
 431	napi_gro_receive(&cp->napi, skb);
 432}
 433
 434static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
 435			    u32 status, u32 len)
 436{
 437	netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
 438		  rx_tail, status, len);
 439	cp->dev->stats.rx_errors++;
 440	if (status & RxErrFrame)
 441		cp->dev->stats.rx_frame_errors++;
 442	if (status & RxErrCRC)
 443		cp->dev->stats.rx_crc_errors++;
 444	if ((status & RxErrRunt) || (status & RxErrLong))
 445		cp->dev->stats.rx_length_errors++;
 446	if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
 447		cp->dev->stats.rx_length_errors++;
 448	if (status & RxErrFIFO)
 449		cp->dev->stats.rx_fifo_errors++;
 450}
 451
 452static inline unsigned int cp_rx_csum_ok (u32 status)
 453{
 454	unsigned int protocol = (status >> 16) & 0x3;
 455
 456	if (((protocol == RxProtoTCP) && !(status & TCPFail)) ||
 457	    ((protocol == RxProtoUDP) && !(status & UDPFail)))
 458		return 1;
 459	else
 460		return 0;
 461}
 462
 463static int cp_rx_poll(struct napi_struct *napi, int budget)
 464{
 465	struct cp_private *cp = container_of(napi, struct cp_private, napi);
 466	struct net_device *dev = cp->dev;
 467	unsigned int rx_tail = cp->rx_tail;
 468	int rx = 0;
 469
 
 
 470	cpw16(IntrStatus, cp_rx_intr_mask);
 471
 472	while (rx < budget) {
 473		u32 status, len;
 474		dma_addr_t mapping, new_mapping;
 475		struct sk_buff *skb, *new_skb;
 476		struct cp_desc *desc;
 477		const unsigned buflen = cp->rx_buf_sz;
 478
 479		skb = cp->rx_skb[rx_tail];
 480		BUG_ON(!skb);
 481
 482		desc = &cp->rx_ring[rx_tail];
 483		status = le32_to_cpu(desc->opts1);
 484		if (status & DescOwn)
 485			break;
 486
 487		len = (status & 0x1fff) - 4;
 488		mapping = le64_to_cpu(desc->addr);
 489
 490		if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
 491			/* we don't support incoming fragmented frames.
 492			 * instead, we attempt to ensure that the
 493			 * pre-allocated RX skbs are properly sized such
 494			 * that RX fragments are never encountered
 495			 */
 496			cp_rx_err_acct(cp, rx_tail, status, len);
 497			dev->stats.rx_dropped++;
 498			cp->cp_stats.rx_frags++;
 499			goto rx_next;
 500		}
 501
 502		if (status & (RxError | RxErrFIFO)) {
 503			cp_rx_err_acct(cp, rx_tail, status, len);
 504			goto rx_next;
 505		}
 506
 507		netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
 508			  rx_tail, status, len);
 509
 510		new_skb = napi_alloc_skb(napi, buflen);
 511		if (!new_skb) {
 512			dev->stats.rx_dropped++;
 513			goto rx_next;
 514		}
 515
 516		new_mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
 517					 DMA_FROM_DEVICE);
 518		if (dma_mapping_error(&cp->pdev->dev, new_mapping)) {
 519			dev->stats.rx_dropped++;
 520			kfree_skb(new_skb);
 521			goto rx_next;
 522		}
 523
 524		dma_unmap_single(&cp->pdev->dev, mapping,
 525				 buflen, DMA_FROM_DEVICE);
 526
 527		/* Handle checksum offloading for incoming packets. */
 528		if (cp_rx_csum_ok(status))
 529			skb->ip_summed = CHECKSUM_UNNECESSARY;
 530		else
 531			skb_checksum_none_assert(skb);
 532
 533		skb_put(skb, len);
 534
 535		cp->rx_skb[rx_tail] = new_skb;
 536
 537		cp_rx_skb(cp, skb, desc);
 538		rx++;
 539		mapping = new_mapping;
 540
 541rx_next:
 542		cp->rx_ring[rx_tail].opts2 = 0;
 543		cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
 544		if (rx_tail == (CP_RX_RING_SIZE - 1))
 545			desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
 546						  cp->rx_buf_sz);
 547		else
 548			desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
 549		rx_tail = NEXT_RX(rx_tail);
 550	}
 551
 552	cp->rx_tail = rx_tail;
 553
 554	/* if we did not reach work limit, then we're done with
 555	 * this round of polling
 556	 */
 557	if (rx < budget && napi_complete_done(napi, rx)) {
 558		unsigned long flags;
 559
 
 
 
 
 560		spin_lock_irqsave(&cp->lock, flags);
 
 561		cpw16_f(IntrMask, cp_intr_mask);
 562		spin_unlock_irqrestore(&cp->lock, flags);
 563	}
 564
 565	return rx;
 566}
 567
 568static irqreturn_t cp_interrupt (int irq, void *dev_instance)
 569{
 570	struct net_device *dev = dev_instance;
 571	struct cp_private *cp;
 572	int handled = 0;
 573	u16 status;
 574	u16 mask;
 575
 576	if (unlikely(dev == NULL))
 577		return IRQ_NONE;
 578	cp = netdev_priv(dev);
 579
 580	spin_lock(&cp->lock);
 581
 582	mask = cpr16(IntrMask);
 583	if (!mask)
 584		goto out_unlock;
 585
 586	status = cpr16(IntrStatus);
 587	if (!status || (status == 0xFFFF))
 588		goto out_unlock;
 589
 590	handled = 1;
 591
 592	netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
 593		  status, cpr8(Cmd), cpr16(CpCmd));
 594
 595	cpw16(IntrStatus, status & ~cp_rx_intr_mask);
 596
 597	/* close possible race's with dev_close */
 598	if (unlikely(!netif_running(dev))) {
 599		cpw16(IntrMask, 0);
 600		goto out_unlock;
 601	}
 602
 603	if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
 604		if (napi_schedule_prep(&cp->napi)) {
 605			cpw16_f(IntrMask, cp_norx_intr_mask);
 606			__napi_schedule(&cp->napi);
 607		}
 608
 609	if (status & (TxOK | TxErr | TxEmpty | SWInt))
 610		cp_tx(cp);
 611	if (status & LinkChg)
 612		mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
 613
 614
 615	if (status & PciErr) {
 616		u16 pci_status;
 617
 618		pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
 619		pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
 620		netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
 621			   status, pci_status);
 622
 623		/* TODO: reset hardware */
 624	}
 625
 626out_unlock:
 627	spin_unlock(&cp->lock);
 628
 629	return IRQ_RETVAL(handled);
 630}
 631
 632#ifdef CONFIG_NET_POLL_CONTROLLER
 633/*
 634 * Polling receive - used by netconsole and other diagnostic tools
 635 * to allow network i/o with interrupts disabled.
 636 */
 637static void cp_poll_controller(struct net_device *dev)
 638{
 639	struct cp_private *cp = netdev_priv(dev);
 640	const int irq = cp->pdev->irq;
 641
 642	disable_irq(irq);
 643	cp_interrupt(irq, dev);
 644	enable_irq(irq);
 645}
 646#endif
 647
 648static void cp_tx (struct cp_private *cp)
 649{
 650	unsigned tx_head = cp->tx_head;
 651	unsigned tx_tail = cp->tx_tail;
 652	unsigned bytes_compl = 0, pkts_compl = 0;
 653
 654	while (tx_tail != tx_head) {
 655		struct cp_desc *txd = cp->tx_ring + tx_tail;
 656		struct sk_buff *skb;
 657		u32 status;
 658
 659		rmb();
 660		status = le32_to_cpu(txd->opts1);
 661		if (status & DescOwn)
 662			break;
 663
 664		skb = cp->tx_skb[tx_tail];
 665		BUG_ON(!skb);
 666
 667		dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
 668				 cp->tx_opts[tx_tail] & 0xffff,
 669				 DMA_TO_DEVICE);
 670
 671		if (status & LastFrag) {
 672			if (status & (TxError | TxFIFOUnder)) {
 673				netif_dbg(cp, tx_err, cp->dev,
 674					  "tx err, status 0x%x\n", status);
 675				cp->dev->stats.tx_errors++;
 676				if (status & TxOWC)
 677					cp->dev->stats.tx_window_errors++;
 678				if (status & TxMaxCol)
 679					cp->dev->stats.tx_aborted_errors++;
 680				if (status & TxLinkFail)
 681					cp->dev->stats.tx_carrier_errors++;
 682				if (status & TxFIFOUnder)
 683					cp->dev->stats.tx_fifo_errors++;
 684			} else {
 685				cp->dev->stats.collisions +=
 686					((status >> TxColCntShift) & TxColCntMask);
 687				cp->dev->stats.tx_packets++;
 688				cp->dev->stats.tx_bytes += skb->len;
 689				netif_dbg(cp, tx_done, cp->dev,
 690					  "tx done, slot %d\n", tx_tail);
 691			}
 692			bytes_compl += skb->len;
 693			pkts_compl++;
 694			dev_consume_skb_irq(skb);
 695		}
 696
 697		cp->tx_skb[tx_tail] = NULL;
 698
 699		tx_tail = NEXT_TX(tx_tail);
 700	}
 701
 702	cp->tx_tail = tx_tail;
 703
 704	netdev_completed_queue(cp->dev, pkts_compl, bytes_compl);
 705	if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
 706		netif_wake_queue(cp->dev);
 707}
 708
 709static inline u32 cp_tx_vlan_tag(struct sk_buff *skb)
 710{
 711	return skb_vlan_tag_present(skb) ?
 712		TxVlanTag | swab16(skb_vlan_tag_get(skb)) : 0x00;
 713}
 714
 715static void unwind_tx_frag_mapping(struct cp_private *cp, struct sk_buff *skb,
 716				   int first, int entry_last)
 717{
 718	int frag, index;
 719	struct cp_desc *txd;
 720	skb_frag_t *this_frag;
 721	for (frag = 0; frag+first < entry_last; frag++) {
 722		index = first+frag;
 723		cp->tx_skb[index] = NULL;
 724		txd = &cp->tx_ring[index];
 725		this_frag = &skb_shinfo(skb)->frags[frag];
 726		dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
 727				 skb_frag_size(this_frag), DMA_TO_DEVICE);
 728	}
 729}
 730
 731static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
 732					struct net_device *dev)
 733{
 734	struct cp_private *cp = netdev_priv(dev);
 735	unsigned entry;
 736	u32 eor, opts1;
 737	unsigned long intr_flags;
 738	__le32 opts2;
 739	int mss = 0;
 740
 741	spin_lock_irqsave(&cp->lock, intr_flags);
 742
 743	/* This is a hard error, log it. */
 744	if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
 745		netif_stop_queue(dev);
 746		spin_unlock_irqrestore(&cp->lock, intr_flags);
 747		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
 748		return NETDEV_TX_BUSY;
 749	}
 750
 751	entry = cp->tx_head;
 752	eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
 753	mss = skb_shinfo(skb)->gso_size;
 754
 755	if (mss > MSSMask) {
 756		netdev_WARN_ONCE(dev, "Net bug: GSO size %d too large for 8139CP\n",
 757				 mss);
 758		goto out_dma_error;
 759	}
 760
 761	opts2 = cpu_to_le32(cp_tx_vlan_tag(skb));
 762	opts1 = DescOwn;
 763	if (mss)
 764		opts1 |= LargeSend | (mss << MSSShift);
 765	else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 766		const struct iphdr *ip = ip_hdr(skb);
 767		if (ip->protocol == IPPROTO_TCP)
 768			opts1 |= IPCS | TCPCS;
 769		else if (ip->protocol == IPPROTO_UDP)
 770			opts1 |= IPCS | UDPCS;
 771		else {
 772			WARN_ONCE(1,
 773				  "Net bug: asked to checksum invalid Legacy IP packet\n");
 774			goto out_dma_error;
 775		}
 776	}
 777
 778	if (skb_shinfo(skb)->nr_frags == 0) {
 779		struct cp_desc *txd = &cp->tx_ring[entry];
 780		u32 len;
 781		dma_addr_t mapping;
 782
 783		len = skb->len;
 784		mapping = dma_map_single(&cp->pdev->dev, skb->data, len, DMA_TO_DEVICE);
 785		if (dma_mapping_error(&cp->pdev->dev, mapping))
 786			goto out_dma_error;
 787
 788		txd->opts2 = opts2;
 789		txd->addr = cpu_to_le64(mapping);
 790		wmb();
 791
 792		opts1 |= eor | len | FirstFrag | LastFrag;
 793
 794		txd->opts1 = cpu_to_le32(opts1);
 
 
 
 
 
 
 
 
 
 
 
 
 795		wmb();
 796
 797		cp->tx_skb[entry] = skb;
 798		cp->tx_opts[entry] = opts1;
 799		netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
 800			  entry, skb->len);
 801	} else {
 802		struct cp_desc *txd;
 803		u32 first_len, first_eor, ctrl;
 804		dma_addr_t first_mapping;
 805		int frag, first_entry = entry;
 
 806
 807		/* We must give this initial chunk to the device last.
 808		 * Otherwise we could race with the device.
 809		 */
 810		first_eor = eor;
 811		first_len = skb_headlen(skb);
 812		first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
 813					       first_len, DMA_TO_DEVICE);
 814		if (dma_mapping_error(&cp->pdev->dev, first_mapping))
 815			goto out_dma_error;
 816
 817		cp->tx_skb[entry] = skb;
 
 818
 819		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
 820			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
 821			u32 len;
 
 822			dma_addr_t mapping;
 823
 824			entry = NEXT_TX(entry);
 825
 826			len = skb_frag_size(this_frag);
 827			mapping = dma_map_single(&cp->pdev->dev,
 828						 skb_frag_address(this_frag),
 829						 len, DMA_TO_DEVICE);
 830			if (dma_mapping_error(&cp->pdev->dev, mapping)) {
 831				unwind_tx_frag_mapping(cp, skb, first_entry, entry);
 832				goto out_dma_error;
 833			}
 834
 835			eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
 836
 837			ctrl = opts1 | eor | len;
 
 
 
 
 
 
 
 
 
 
 
 
 838
 839			if (frag == skb_shinfo(skb)->nr_frags - 1)
 840				ctrl |= LastFrag;
 841
 842			txd = &cp->tx_ring[entry];
 843			txd->opts2 = opts2;
 844			txd->addr = cpu_to_le64(mapping);
 845			wmb();
 846
 847			txd->opts1 = cpu_to_le32(ctrl);
 848			wmb();
 849
 850			cp->tx_opts[entry] = ctrl;
 851			cp->tx_skb[entry] = skb;
 
 852		}
 853
 854		txd = &cp->tx_ring[first_entry];
 855		txd->opts2 = opts2;
 856		txd->addr = cpu_to_le64(first_mapping);
 857		wmb();
 858
 859		ctrl = opts1 | first_eor | first_len | FirstFrag;
 860		txd->opts1 = cpu_to_le32(ctrl);
 
 
 
 
 
 
 
 
 
 
 
 
 861		wmb();
 862
 863		cp->tx_opts[first_entry] = ctrl;
 864		netif_dbg(cp, tx_queued, cp->dev, "tx queued, slots %d-%d, skblen %d\n",
 865			  first_entry, entry, skb->len);
 866	}
 867	cp->tx_head = NEXT_TX(entry);
 868
 869	netdev_sent_queue(dev, skb->len);
 
 
 870	if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
 871		netif_stop_queue(dev);
 872
 873out_unlock:
 874	spin_unlock_irqrestore(&cp->lock, intr_flags);
 875
 876	cpw8(TxPoll, NormalTxPoll);
 877
 878	return NETDEV_TX_OK;
 879out_dma_error:
 880	dev_kfree_skb_any(skb);
 881	cp->dev->stats.tx_dropped++;
 882	goto out_unlock;
 883}
 884
 885/* Set or clear the multicast filter for this adaptor.
 886   This routine is not state sensitive and need not be SMP locked. */
 887
 888static void __cp_set_rx_mode (struct net_device *dev)
 889{
 890	struct cp_private *cp = netdev_priv(dev);
 891	u32 mc_filter[2];	/* Multicast hash filter */
 892	int rx_mode;
 893
 894	/* Note: do not reorder, GCC is clever about common statements. */
 895	if (dev->flags & IFF_PROMISC) {
 896		/* Unconditionally log net taps. */
 897		rx_mode =
 898		    AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
 899		    AcceptAllPhys;
 900		mc_filter[1] = mc_filter[0] = 0xffffffff;
 901	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
 902		   (dev->flags & IFF_ALLMULTI)) {
 903		/* Too many to filter perfectly -- accept all multicasts. */
 904		rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
 905		mc_filter[1] = mc_filter[0] = 0xffffffff;
 906	} else {
 907		struct netdev_hw_addr *ha;
 908		rx_mode = AcceptBroadcast | AcceptMyPhys;
 909		mc_filter[1] = mc_filter[0] = 0;
 910		netdev_for_each_mc_addr(ha, dev) {
 911			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
 912
 913			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
 914			rx_mode |= AcceptMulticast;
 915		}
 916	}
 917
 918	/* We can safely update without stopping the chip. */
 919	cp->rx_config = cp_rx_config | rx_mode;
 920	cpw32_f(RxConfig, cp->rx_config);
 921
 922	cpw32_f (MAR0 + 0, mc_filter[0]);
 923	cpw32_f (MAR0 + 4, mc_filter[1]);
 924}
 925
 926static void cp_set_rx_mode (struct net_device *dev)
 927{
 928	unsigned long flags;
 929	struct cp_private *cp = netdev_priv(dev);
 930
 931	spin_lock_irqsave (&cp->lock, flags);
 932	__cp_set_rx_mode(dev);
 933	spin_unlock_irqrestore (&cp->lock, flags);
 934}
 935
 936static void __cp_get_stats(struct cp_private *cp)
 937{
 938	/* only lower 24 bits valid; write any value to clear */
 939	cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
 940	cpw32 (RxMissed, 0);
 941}
 942
 943static struct net_device_stats *cp_get_stats(struct net_device *dev)
 944{
 945	struct cp_private *cp = netdev_priv(dev);
 946	unsigned long flags;
 947
 948	/* The chip only need report frame silently dropped. */
 949	spin_lock_irqsave(&cp->lock, flags);
 950	if (netif_running(dev) && netif_device_present(dev))
 951		__cp_get_stats(cp);
 952	spin_unlock_irqrestore(&cp->lock, flags);
 953
 954	return &dev->stats;
 955}
 956
 957static void cp_stop_hw (struct cp_private *cp)
 958{
 959	cpw16(IntrStatus, ~(cpr16(IntrStatus)));
 960	cpw16_f(IntrMask, 0);
 961	cpw8(Cmd, 0);
 962	cpw16_f(CpCmd, 0);
 963	cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
 964
 965	cp->rx_tail = 0;
 966	cp->tx_head = cp->tx_tail = 0;
 967
 968	netdev_reset_queue(cp->dev);
 969}
 970
 971static void cp_reset_hw (struct cp_private *cp)
 972{
 973	unsigned work = 1000;
 974
 975	cpw8(Cmd, CmdReset);
 976
 977	while (work--) {
 978		if (!(cpr8(Cmd) & CmdReset))
 979			return;
 980
 981		schedule_timeout_uninterruptible(10);
 982	}
 983
 984	netdev_err(cp->dev, "hardware reset timeout\n");
 985}
 986
 987static inline void cp_start_hw (struct cp_private *cp)
 988{
 989	dma_addr_t ring_dma;
 990
 991	cpw16(CpCmd, cp->cpcmd);
 992
 993	/*
 994	 * These (at least TxRingAddr) need to be configured after the
 995	 * corresponding bits in CpCmd are enabled. Datasheet v1.6 §6.33
 996	 * (C+ Command Register) recommends that these and more be configured
 997	 * *after* the [RT]xEnable bits in CpCmd are set. And on some hardware
 998	 * it's been observed that the TxRingAddr is actually reset to garbage
 999	 * when C+ mode Tx is enabled in CpCmd.
1000	 */
1001	cpw32_f(HiTxRingAddr, 0);
1002	cpw32_f(HiTxRingAddr + 4, 0);
1003
1004	ring_dma = cp->ring_dma;
1005	cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1006	cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1007
1008	ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1009	cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1010	cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1011
1012	/*
1013	 * Strictly speaking, the datasheet says this should be enabled
1014	 * *before* setting the descriptor addresses. But what, then, would
1015	 * prevent it from doing DMA to random unconfigured addresses?
1016	 * This variant appears to work fine.
1017	 */
1018	cpw8(Cmd, RxOn | TxOn);
1019
1020	netdev_reset_queue(cp->dev);
1021}
1022
1023static void cp_enable_irq(struct cp_private *cp)
1024{
1025	cpw16_f(IntrMask, cp_intr_mask);
1026}
1027
1028static void cp_init_hw (struct cp_private *cp)
1029{
1030	struct net_device *dev = cp->dev;
1031
1032	cp_reset_hw(cp);
1033
1034	cpw8_f (Cfg9346, Cfg9346_Unlock);
1035
1036	/* Restore our idea of the MAC address. */
1037	cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1038	cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1039
1040	cp_start_hw(cp);
1041	cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1042
1043	__cp_set_rx_mode(dev);
1044	cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1045
1046	cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1047	/* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1048	cpw8(Config3, PARMEnable);
1049	cp->wol_enabled = 0;
1050
1051	cpw8(Config5, cpr8(Config5) & PMEStatus);
1052
1053	cpw16(MultiIntr, 0);
1054
1055	cpw8_f(Cfg9346, Cfg9346_Lock);
1056}
1057
1058static int cp_refill_rx(struct cp_private *cp)
1059{
1060	struct net_device *dev = cp->dev;
1061	unsigned i;
1062
1063	for (i = 0; i < CP_RX_RING_SIZE; i++) {
1064		struct sk_buff *skb;
1065		dma_addr_t mapping;
1066
1067		skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1068		if (!skb)
1069			goto err_out;
1070
1071		mapping = dma_map_single(&cp->pdev->dev, skb->data,
1072					 cp->rx_buf_sz, DMA_FROM_DEVICE);
1073		if (dma_mapping_error(&cp->pdev->dev, mapping)) {
1074			kfree_skb(skb);
1075			goto err_out;
1076		}
1077		cp->rx_skb[i] = skb;
1078
1079		cp->rx_ring[i].opts2 = 0;
1080		cp->rx_ring[i].addr = cpu_to_le64(mapping);
1081		if (i == (CP_RX_RING_SIZE - 1))
1082			cp->rx_ring[i].opts1 =
1083				cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1084		else
1085			cp->rx_ring[i].opts1 =
1086				cpu_to_le32(DescOwn | cp->rx_buf_sz);
1087	}
1088
1089	return 0;
1090
1091err_out:
1092	cp_clean_rings(cp);
1093	return -ENOMEM;
1094}
1095
1096static void cp_init_rings_index (struct cp_private *cp)
1097{
1098	cp->rx_tail = 0;
1099	cp->tx_head = cp->tx_tail = 0;
1100}
1101
1102static int cp_init_rings (struct cp_private *cp)
1103{
1104	memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1105	cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1106	memset(cp->tx_opts, 0, sizeof(cp->tx_opts));
1107
1108	cp_init_rings_index(cp);
1109
1110	return cp_refill_rx (cp);
1111}
1112
1113static int cp_alloc_rings (struct cp_private *cp)
1114{
1115	struct device *d = &cp->pdev->dev;
1116	void *mem;
1117	int rc;
1118
1119	mem = dma_alloc_coherent(d, CP_RING_BYTES, &cp->ring_dma, GFP_KERNEL);
1120	if (!mem)
1121		return -ENOMEM;
1122
1123	cp->rx_ring = mem;
1124	cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1125
1126	rc = cp_init_rings(cp);
1127	if (rc < 0)
1128		dma_free_coherent(d, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1129
1130	return rc;
1131}
1132
1133static void cp_clean_rings (struct cp_private *cp)
1134{
1135	struct cp_desc *desc;
1136	unsigned i;
1137
1138	for (i = 0; i < CP_RX_RING_SIZE; i++) {
1139		if (cp->rx_skb[i]) {
1140			desc = cp->rx_ring + i;
1141			dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1142					 cp->rx_buf_sz, DMA_FROM_DEVICE);
1143			dev_kfree_skb_any(cp->rx_skb[i]);
1144		}
1145	}
1146
1147	for (i = 0; i < CP_TX_RING_SIZE; i++) {
1148		if (cp->tx_skb[i]) {
1149			struct sk_buff *skb = cp->tx_skb[i];
1150
1151			desc = cp->tx_ring + i;
1152			dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1153					 le32_to_cpu(desc->opts1) & 0xffff,
1154					 DMA_TO_DEVICE);
1155			if (le32_to_cpu(desc->opts1) & LastFrag)
1156				dev_kfree_skb_any(skb);
1157			cp->dev->stats.tx_dropped++;
1158		}
1159	}
1160	netdev_reset_queue(cp->dev);
1161
1162	memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1163	memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1164	memset(cp->tx_opts, 0, sizeof(cp->tx_opts));
1165
1166	memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1167	memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1168}
1169
1170static void cp_free_rings (struct cp_private *cp)
1171{
1172	cp_clean_rings(cp);
1173	dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1174			  cp->ring_dma);
1175	cp->rx_ring = NULL;
1176	cp->tx_ring = NULL;
1177}
1178
1179static int cp_open (struct net_device *dev)
1180{
1181	struct cp_private *cp = netdev_priv(dev);
1182	const int irq = cp->pdev->irq;
1183	int rc;
1184
1185	netif_dbg(cp, ifup, dev, "enabling interface\n");
1186
1187	rc = cp_alloc_rings(cp);
1188	if (rc)
1189		return rc;
1190
1191	napi_enable(&cp->napi);
1192
1193	cp_init_hw(cp);
1194
1195	rc = request_irq(irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1196	if (rc)
1197		goto err_out_hw;
1198
1199	cp_enable_irq(cp);
1200
1201	netif_carrier_off(dev);
1202	mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1203	netif_start_queue(dev);
1204
1205	return 0;
1206
1207err_out_hw:
1208	napi_disable(&cp->napi);
1209	cp_stop_hw(cp);
1210	cp_free_rings(cp);
1211	return rc;
1212}
1213
1214static int cp_close (struct net_device *dev)
1215{
1216	struct cp_private *cp = netdev_priv(dev);
1217	unsigned long flags;
1218
1219	napi_disable(&cp->napi);
1220
1221	netif_dbg(cp, ifdown, dev, "disabling interface\n");
1222
1223	spin_lock_irqsave(&cp->lock, flags);
1224
1225	netif_stop_queue(dev);
1226	netif_carrier_off(dev);
1227
1228	cp_stop_hw(cp);
1229
1230	spin_unlock_irqrestore(&cp->lock, flags);
1231
1232	free_irq(cp->pdev->irq, dev);
1233
1234	cp_free_rings(cp);
1235	return 0;
1236}
1237
1238static void cp_tx_timeout(struct net_device *dev, unsigned int txqueue)
1239{
1240	struct cp_private *cp = netdev_priv(dev);
1241	unsigned long flags;
1242	int i;
1243
1244	netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1245		    cpr8(Cmd), cpr16(CpCmd),
1246		    cpr16(IntrStatus), cpr16(IntrMask));
1247
1248	spin_lock_irqsave(&cp->lock, flags);
1249
1250	netif_dbg(cp, tx_err, cp->dev, "TX ring head %d tail %d desc %x\n",
1251		  cp->tx_head, cp->tx_tail, cpr16(TxDmaOkLowDesc));
1252	for (i = 0; i < CP_TX_RING_SIZE; i++) {
1253		netif_dbg(cp, tx_err, cp->dev,
1254			  "TX slot %d @%p: %08x (%08x) %08x %llx %p\n",
1255			  i, &cp->tx_ring[i], le32_to_cpu(cp->tx_ring[i].opts1),
1256			  cp->tx_opts[i], le32_to_cpu(cp->tx_ring[i].opts2),
1257			  le64_to_cpu(cp->tx_ring[i].addr),
1258			  cp->tx_skb[i]);
1259	}
1260
1261	cp_stop_hw(cp);
1262	cp_clean_rings(cp);
1263	cp_init_rings(cp);
1264	cp_start_hw(cp);
1265	__cp_set_rx_mode(dev);
1266	cpw16_f(IntrMask, cp_norx_intr_mask);
1267
1268	netif_wake_queue(dev);
1269	napi_schedule_irqoff(&cp->napi);
1270
1271	spin_unlock_irqrestore(&cp->lock, flags);
1272}
1273
1274static int cp_change_mtu(struct net_device *dev, int new_mtu)
1275{
1276	struct cp_private *cp = netdev_priv(dev);
1277
 
 
 
 
1278	/* if network interface not up, no need for complexity */
1279	if (!netif_running(dev)) {
1280		dev->mtu = new_mtu;
1281		cp_set_rxbufsize(cp);	/* set new rx buf size */
1282		return 0;
1283	}
1284
1285	/* network IS up, close it, reset MTU, and come up again. */
1286	cp_close(dev);
1287	dev->mtu = new_mtu;
1288	cp_set_rxbufsize(cp);
1289	return cp_open(dev);
1290}
1291
1292static const char mii_2_8139_map[8] = {
1293	BasicModeCtrl,
1294	BasicModeStatus,
1295	0,
1296	0,
1297	NWayAdvert,
1298	NWayLPAR,
1299	NWayExpansion,
1300	0
1301};
1302
1303static int mdio_read(struct net_device *dev, int phy_id, int location)
1304{
1305	struct cp_private *cp = netdev_priv(dev);
1306
1307	return location < 8 && mii_2_8139_map[location] ?
1308	       readw(cp->regs + mii_2_8139_map[location]) : 0;
1309}
1310
1311
1312static void mdio_write(struct net_device *dev, int phy_id, int location,
1313		       int value)
1314{
1315	struct cp_private *cp = netdev_priv(dev);
1316
1317	if (location == 0) {
1318		cpw8(Cfg9346, Cfg9346_Unlock);
1319		cpw16(BasicModeCtrl, value);
1320		cpw8(Cfg9346, Cfg9346_Lock);
1321	} else if (location < 8 && mii_2_8139_map[location])
1322		cpw16(mii_2_8139_map[location], value);
1323}
1324
1325/* Set the ethtool Wake-on-LAN settings */
1326static int netdev_set_wol (struct cp_private *cp,
1327			   const struct ethtool_wolinfo *wol)
1328{
1329	u8 options;
1330
1331	options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1332	/* If WOL is being disabled, no need for complexity */
1333	if (wol->wolopts) {
1334		if (wol->wolopts & WAKE_PHY)	options |= LinkUp;
1335		if (wol->wolopts & WAKE_MAGIC)	options |= MagicPacket;
1336	}
1337
1338	cpw8 (Cfg9346, Cfg9346_Unlock);
1339	cpw8 (Config3, options);
1340	cpw8 (Cfg9346, Cfg9346_Lock);
1341
1342	options = 0; /* Paranoia setting */
1343	options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1344	/* If WOL is being disabled, no need for complexity */
1345	if (wol->wolopts) {
1346		if (wol->wolopts & WAKE_UCAST)  options |= UWF;
1347		if (wol->wolopts & WAKE_BCAST)	options |= BWF;
1348		if (wol->wolopts & WAKE_MCAST)	options |= MWF;
1349	}
1350
1351	cpw8 (Config5, options);
1352
1353	cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1354
1355	return 0;
1356}
1357
1358/* Get the ethtool Wake-on-LAN settings */
1359static void netdev_get_wol (struct cp_private *cp,
1360	             struct ethtool_wolinfo *wol)
1361{
1362	u8 options;
1363
1364	wol->wolopts   = 0; /* Start from scratch */
1365	wol->supported = WAKE_PHY   | WAKE_BCAST | WAKE_MAGIC |
1366		         WAKE_MCAST | WAKE_UCAST;
1367	/* We don't need to go on if WOL is disabled */
1368	if (!cp->wol_enabled) return;
1369
1370	options        = cpr8 (Config3);
1371	if (options & LinkUp)        wol->wolopts |= WAKE_PHY;
1372	if (options & MagicPacket)   wol->wolopts |= WAKE_MAGIC;
1373
1374	options        = 0; /* Paranoia setting */
1375	options        = cpr8 (Config5);
1376	if (options & UWF)           wol->wolopts |= WAKE_UCAST;
1377	if (options & BWF)           wol->wolopts |= WAKE_BCAST;
1378	if (options & MWF)           wol->wolopts |= WAKE_MCAST;
1379}
1380
1381static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1382{
1383	struct cp_private *cp = netdev_priv(dev);
1384
1385	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1386	strscpy(info->version, DRV_VERSION, sizeof(info->version));
1387	strscpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
1388}
1389
1390static void cp_get_ringparam(struct net_device *dev,
1391			     struct ethtool_ringparam *ring,
1392			     struct kernel_ethtool_ringparam *kernel_ring,
1393			     struct netlink_ext_ack *extack)
1394{
1395	ring->rx_max_pending = CP_RX_RING_SIZE;
1396	ring->tx_max_pending = CP_TX_RING_SIZE;
1397	ring->rx_pending = CP_RX_RING_SIZE;
1398	ring->tx_pending = CP_TX_RING_SIZE;
1399}
1400
1401static int cp_get_regs_len(struct net_device *dev)
1402{
1403	return CP_REGS_SIZE;
1404}
1405
1406static int cp_get_sset_count (struct net_device *dev, int sset)
1407{
1408	switch (sset) {
1409	case ETH_SS_STATS:
1410		return CP_NUM_STATS;
1411	default:
1412		return -EOPNOTSUPP;
1413	}
1414}
1415
1416static int cp_get_link_ksettings(struct net_device *dev,
1417				 struct ethtool_link_ksettings *cmd)
1418{
1419	struct cp_private *cp = netdev_priv(dev);
 
1420	unsigned long flags;
1421
1422	spin_lock_irqsave(&cp->lock, flags);
1423	mii_ethtool_get_link_ksettings(&cp->mii_if, cmd);
1424	spin_unlock_irqrestore(&cp->lock, flags);
1425
1426	return 0;
1427}
1428
1429static int cp_set_link_ksettings(struct net_device *dev,
1430				 const struct ethtool_link_ksettings *cmd)
1431{
1432	struct cp_private *cp = netdev_priv(dev);
1433	int rc;
1434	unsigned long flags;
1435
1436	spin_lock_irqsave(&cp->lock, flags);
1437	rc = mii_ethtool_set_link_ksettings(&cp->mii_if, cmd);
1438	spin_unlock_irqrestore(&cp->lock, flags);
1439
1440	return rc;
1441}
1442
1443static int cp_nway_reset(struct net_device *dev)
1444{
1445	struct cp_private *cp = netdev_priv(dev);
1446	return mii_nway_restart(&cp->mii_if);
1447}
1448
1449static u32 cp_get_msglevel(struct net_device *dev)
1450{
1451	struct cp_private *cp = netdev_priv(dev);
1452	return cp->msg_enable;
1453}
1454
1455static void cp_set_msglevel(struct net_device *dev, u32 value)
1456{
1457	struct cp_private *cp = netdev_priv(dev);
1458	cp->msg_enable = value;
1459}
1460
1461static int cp_set_features(struct net_device *dev, netdev_features_t features)
1462{
1463	struct cp_private *cp = netdev_priv(dev);
1464	unsigned long flags;
1465
1466	if (!((dev->features ^ features) & NETIF_F_RXCSUM))
1467		return 0;
1468
1469	spin_lock_irqsave(&cp->lock, flags);
1470
1471	if (features & NETIF_F_RXCSUM)
1472		cp->cpcmd |= RxChkSum;
1473	else
1474		cp->cpcmd &= ~RxChkSum;
1475
1476	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1477		cp->cpcmd |= RxVlanOn;
1478	else
1479		cp->cpcmd &= ~RxVlanOn;
1480
1481	cpw16_f(CpCmd, cp->cpcmd);
1482	spin_unlock_irqrestore(&cp->lock, flags);
1483
1484	return 0;
1485}
1486
1487static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1488		        void *p)
1489{
1490	struct cp_private *cp = netdev_priv(dev);
1491	unsigned long flags;
1492
1493	if (regs->len < CP_REGS_SIZE)
1494		return /* -EINVAL */;
1495
1496	regs->version = CP_REGS_VER;
1497
1498	spin_lock_irqsave(&cp->lock, flags);
1499	memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1500	spin_unlock_irqrestore(&cp->lock, flags);
1501}
1502
1503static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1504{
1505	struct cp_private *cp = netdev_priv(dev);
1506	unsigned long flags;
1507
1508	spin_lock_irqsave (&cp->lock, flags);
1509	netdev_get_wol (cp, wol);
1510	spin_unlock_irqrestore (&cp->lock, flags);
1511}
1512
1513static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1514{
1515	struct cp_private *cp = netdev_priv(dev);
1516	unsigned long flags;
1517	int rc;
1518
1519	spin_lock_irqsave (&cp->lock, flags);
1520	rc = netdev_set_wol (cp, wol);
1521	spin_unlock_irqrestore (&cp->lock, flags);
1522
1523	return rc;
1524}
1525
1526static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1527{
1528	switch (stringset) {
1529	case ETH_SS_STATS:
1530		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1531		break;
1532	default:
1533		BUG();
1534		break;
1535	}
1536}
1537
1538static void cp_get_ethtool_stats (struct net_device *dev,
1539				  struct ethtool_stats *estats, u64 *tmp_stats)
1540{
1541	struct cp_private *cp = netdev_priv(dev);
1542	struct cp_dma_stats *nic_stats;
1543	dma_addr_t dma;
1544	int i;
1545
1546	nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1547				       &dma, GFP_KERNEL);
1548	if (!nic_stats)
1549		return;
1550
1551	/* begin NIC statistics dump */
1552	cpw32(StatsAddr + 4, (u64)dma >> 32);
1553	cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1554	cpr32(StatsAddr);
1555
1556	for (i = 0; i < 1000; i++) {
1557		if ((cpr32(StatsAddr) & DumpStats) == 0)
1558			break;
1559		udelay(10);
1560	}
1561	cpw32(StatsAddr, 0);
1562	cpw32(StatsAddr + 4, 0);
1563	cpr32(StatsAddr);
1564
1565	i = 0;
1566	tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1567	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1568	tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1569	tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1570	tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1571	tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1572	tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1573	tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1574	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1575	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1576	tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1577	tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1578	tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1579	tmp_stats[i++] = cp->cp_stats.rx_frags;
1580	BUG_ON(i != CP_NUM_STATS);
1581
1582	dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1583}
1584
1585static const struct ethtool_ops cp_ethtool_ops = {
1586	.get_drvinfo		= cp_get_drvinfo,
1587	.get_regs_len		= cp_get_regs_len,
1588	.get_sset_count		= cp_get_sset_count,
 
 
1589	.nway_reset		= cp_nway_reset,
1590	.get_link		= ethtool_op_get_link,
1591	.get_msglevel		= cp_get_msglevel,
1592	.set_msglevel		= cp_set_msglevel,
1593	.get_regs		= cp_get_regs,
1594	.get_wol		= cp_get_wol,
1595	.set_wol		= cp_set_wol,
1596	.get_strings		= cp_get_strings,
1597	.get_ethtool_stats	= cp_get_ethtool_stats,
1598	.get_eeprom_len		= cp_get_eeprom_len,
1599	.get_eeprom		= cp_get_eeprom,
1600	.set_eeprom		= cp_set_eeprom,
1601	.get_ringparam		= cp_get_ringparam,
1602	.get_link_ksettings	= cp_get_link_ksettings,
1603	.set_link_ksettings	= cp_set_link_ksettings,
1604};
1605
1606static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1607{
1608	struct cp_private *cp = netdev_priv(dev);
1609	int rc;
1610	unsigned long flags;
1611
1612	if (!netif_running(dev))
1613		return -EINVAL;
1614
1615	spin_lock_irqsave(&cp->lock, flags);
1616	rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1617	spin_unlock_irqrestore(&cp->lock, flags);
1618	return rc;
1619}
1620
1621static int cp_set_mac_address(struct net_device *dev, void *p)
1622{
1623	struct cp_private *cp = netdev_priv(dev);
1624	struct sockaddr *addr = p;
1625
1626	if (!is_valid_ether_addr(addr->sa_data))
1627		return -EADDRNOTAVAIL;
1628
1629	eth_hw_addr_set(dev, addr->sa_data);
1630
1631	spin_lock_irq(&cp->lock);
1632
1633	cpw8_f(Cfg9346, Cfg9346_Unlock);
1634	cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1635	cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1636	cpw8_f(Cfg9346, Cfg9346_Lock);
1637
1638	spin_unlock_irq(&cp->lock);
1639
1640	return 0;
1641}
1642
1643/* Serial EEPROM section. */
1644
1645/*  EEPROM_Ctrl bits. */
1646#define EE_SHIFT_CLK	0x04	/* EEPROM shift clock. */
1647#define EE_CS			0x08	/* EEPROM chip select. */
1648#define EE_DATA_WRITE	0x02	/* EEPROM chip data in. */
1649#define EE_WRITE_0		0x00
1650#define EE_WRITE_1		0x02
1651#define EE_DATA_READ	0x01	/* EEPROM chip data out. */
1652#define EE_ENB			(0x80 | EE_CS)
1653
1654/* Delay between EEPROM clock transitions.
1655   No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1656 */
1657
1658#define eeprom_delay()	readb(ee_addr)
1659
1660/* The EEPROM commands include the alway-set leading bit. */
1661#define EE_EXTEND_CMD	(4)
1662#define EE_WRITE_CMD	(5)
1663#define EE_READ_CMD		(6)
1664#define EE_ERASE_CMD	(7)
1665
1666#define EE_EWDS_ADDR	(0)
1667#define EE_WRAL_ADDR	(1)
1668#define EE_ERAL_ADDR	(2)
1669#define EE_EWEN_ADDR	(3)
1670
1671#define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1672
1673static void eeprom_cmd_start(void __iomem *ee_addr)
1674{
1675	writeb (EE_ENB & ~EE_CS, ee_addr);
1676	writeb (EE_ENB, ee_addr);
1677	eeprom_delay ();
1678}
1679
1680static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1681{
1682	int i;
1683
1684	/* Shift the command bits out. */
1685	for (i = cmd_len - 1; i >= 0; i--) {
1686		int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1687		writeb (EE_ENB | dataval, ee_addr);
1688		eeprom_delay ();
1689		writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1690		eeprom_delay ();
1691	}
1692	writeb (EE_ENB, ee_addr);
1693	eeprom_delay ();
1694}
1695
1696static void eeprom_cmd_end(void __iomem *ee_addr)
1697{
1698	writeb(0, ee_addr);
1699	eeprom_delay ();
1700}
1701
1702static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1703			      int addr_len)
1704{
1705	int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1706
1707	eeprom_cmd_start(ee_addr);
1708	eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1709	eeprom_cmd_end(ee_addr);
1710}
1711
1712static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1713{
1714	int i;
1715	u16 retval = 0;
1716	void __iomem *ee_addr = ioaddr + Cfg9346;
1717	int read_cmd = location | (EE_READ_CMD << addr_len);
1718
1719	eeprom_cmd_start(ee_addr);
1720	eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1721
1722	for (i = 16; i > 0; i--) {
1723		writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1724		eeprom_delay ();
1725		retval =
1726		    (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1727				     0);
1728		writeb (EE_ENB, ee_addr);
1729		eeprom_delay ();
1730	}
1731
1732	eeprom_cmd_end(ee_addr);
1733
1734	return retval;
1735}
1736
1737static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1738			 int addr_len)
1739{
1740	int i;
1741	void __iomem *ee_addr = ioaddr + Cfg9346;
1742	int write_cmd = location | (EE_WRITE_CMD << addr_len);
1743
1744	eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1745
1746	eeprom_cmd_start(ee_addr);
1747	eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1748	eeprom_cmd(ee_addr, val, 16);
1749	eeprom_cmd_end(ee_addr);
1750
1751	eeprom_cmd_start(ee_addr);
1752	for (i = 0; i < 20000; i++)
1753		if (readb(ee_addr) & EE_DATA_READ)
1754			break;
1755	eeprom_cmd_end(ee_addr);
1756
1757	eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1758}
1759
1760static int cp_get_eeprom_len(struct net_device *dev)
1761{
1762	struct cp_private *cp = netdev_priv(dev);
1763	int size;
1764
1765	spin_lock_irq(&cp->lock);
1766	size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1767	spin_unlock_irq(&cp->lock);
1768
1769	return size;
1770}
1771
1772static int cp_get_eeprom(struct net_device *dev,
1773			 struct ethtool_eeprom *eeprom, u8 *data)
1774{
1775	struct cp_private *cp = netdev_priv(dev);
1776	unsigned int addr_len;
1777	u16 val;
1778	u32 offset = eeprom->offset >> 1;
1779	u32 len = eeprom->len;
1780	u32 i = 0;
1781
1782	eeprom->magic = CP_EEPROM_MAGIC;
1783
1784	spin_lock_irq(&cp->lock);
1785
1786	addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1787
1788	if (eeprom->offset & 1) {
1789		val = read_eeprom(cp->regs, offset, addr_len);
1790		data[i++] = (u8)(val >> 8);
1791		offset++;
1792	}
1793
1794	while (i < len - 1) {
1795		val = read_eeprom(cp->regs, offset, addr_len);
1796		data[i++] = (u8)val;
1797		data[i++] = (u8)(val >> 8);
1798		offset++;
1799	}
1800
1801	if (i < len) {
1802		val = read_eeprom(cp->regs, offset, addr_len);
1803		data[i] = (u8)val;
1804	}
1805
1806	spin_unlock_irq(&cp->lock);
1807	return 0;
1808}
1809
1810static int cp_set_eeprom(struct net_device *dev,
1811			 struct ethtool_eeprom *eeprom, u8 *data)
1812{
1813	struct cp_private *cp = netdev_priv(dev);
1814	unsigned int addr_len;
1815	u16 val;
1816	u32 offset = eeprom->offset >> 1;
1817	u32 len = eeprom->len;
1818	u32 i = 0;
1819
1820	if (eeprom->magic != CP_EEPROM_MAGIC)
1821		return -EINVAL;
1822
1823	spin_lock_irq(&cp->lock);
1824
1825	addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1826
1827	if (eeprom->offset & 1) {
1828		val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1829		val |= (u16)data[i++] << 8;
1830		write_eeprom(cp->regs, offset, val, addr_len);
1831		offset++;
1832	}
1833
1834	while (i < len - 1) {
1835		val = (u16)data[i++];
1836		val |= (u16)data[i++] << 8;
1837		write_eeprom(cp->regs, offset, val, addr_len);
1838		offset++;
1839	}
1840
1841	if (i < len) {
1842		val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1843		val |= (u16)data[i];
1844		write_eeprom(cp->regs, offset, val, addr_len);
1845	}
1846
1847	spin_unlock_irq(&cp->lock);
1848	return 0;
1849}
1850
1851/* Put the board into D3cold state and wait for WakeUp signal */
1852static void cp_set_d3_state (struct cp_private *cp)
1853{
1854	pci_enable_wake(cp->pdev, PCI_D0, 1); /* Enable PME# generation */
1855	pci_set_power_state (cp->pdev, PCI_D3hot);
1856}
1857
1858static netdev_features_t cp_features_check(struct sk_buff *skb,
1859					   struct net_device *dev,
1860					   netdev_features_t features)
1861{
1862	if (skb_shinfo(skb)->gso_size > MSSMask)
1863		features &= ~NETIF_F_TSO;
1864
1865	return vlan_features_check(skb, features);
1866}
1867static const struct net_device_ops cp_netdev_ops = {
1868	.ndo_open		= cp_open,
1869	.ndo_stop		= cp_close,
1870	.ndo_validate_addr	= eth_validate_addr,
1871	.ndo_set_mac_address 	= cp_set_mac_address,
1872	.ndo_set_rx_mode	= cp_set_rx_mode,
1873	.ndo_get_stats		= cp_get_stats,
1874	.ndo_eth_ioctl		= cp_ioctl,
1875	.ndo_start_xmit		= cp_start_xmit,
1876	.ndo_tx_timeout		= cp_tx_timeout,
1877	.ndo_set_features	= cp_set_features,
1878	.ndo_change_mtu		= cp_change_mtu,
1879	.ndo_features_check	= cp_features_check,
1880
1881#ifdef CONFIG_NET_POLL_CONTROLLER
1882	.ndo_poll_controller	= cp_poll_controller,
1883#endif
1884};
1885
1886static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1887{
1888	struct net_device *dev;
1889	struct cp_private *cp;
1890	int rc;
1891	void __iomem *regs;
1892	resource_size_t pciaddr;
1893	unsigned int addr_len, i, pci_using_dac;
1894	__le16 addr[ETH_ALEN / 2];
1895
1896	pr_info_once("%s", version);
 
 
 
 
1897
1898	if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1899	    pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1900		dev_info(&pdev->dev,
1901			 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1902			 pdev->vendor, pdev->device, pdev->revision);
1903		return -ENODEV;
1904	}
1905
1906	dev = alloc_etherdev(sizeof(struct cp_private));
1907	if (!dev)
1908		return -ENOMEM;
1909	SET_NETDEV_DEV(dev, &pdev->dev);
1910
1911	cp = netdev_priv(dev);
1912	cp->pdev = pdev;
1913	cp->dev = dev;
1914	cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1915	spin_lock_init (&cp->lock);
1916	cp->mii_if.dev = dev;
1917	cp->mii_if.mdio_read = mdio_read;
1918	cp->mii_if.mdio_write = mdio_write;
1919	cp->mii_if.phy_id = CP_INTERNAL_PHY;
1920	cp->mii_if.phy_id_mask = 0x1f;
1921	cp->mii_if.reg_num_mask = 0x1f;
1922	cp_set_rxbufsize(cp);
1923
1924	rc = pci_enable_device(pdev);
1925	if (rc)
1926		goto err_out_free;
1927
1928	rc = pci_set_mwi(pdev);
1929	if (rc)
1930		goto err_out_disable;
1931
1932	rc = pci_request_regions(pdev, DRV_NAME);
1933	if (rc)
1934		goto err_out_mwi;
1935
1936	pciaddr = pci_resource_start(pdev, 1);
1937	if (!pciaddr) {
1938		rc = -EIO;
1939		dev_err(&pdev->dev, "no MMIO resource\n");
1940		goto err_out_res;
1941	}
1942	if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1943		rc = -EIO;
1944		dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1945		       (unsigned long long)pci_resource_len(pdev, 1));
1946		goto err_out_res;
1947	}
1948
1949	/* Configure DMA attributes. */
1950	if ((sizeof(dma_addr_t) > 4) &&
1951	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
 
1952		pci_using_dac = 1;
1953	} else {
1954		pci_using_dac = 0;
1955
1956		rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1957		if (rc) {
1958			dev_err(&pdev->dev,
1959				"No usable DMA configuration, aborting\n");
1960			goto err_out_res;
1961		}
 
 
 
 
 
 
1962	}
1963
1964	cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1965		    PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1966
1967	dev->features |= NETIF_F_RXCSUM;
1968	dev->hw_features |= NETIF_F_RXCSUM;
1969
1970	regs = ioremap(pciaddr, CP_REGS_SIZE);
1971	if (!regs) {
1972		rc = -EIO;
1973		dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1974			(unsigned long long)pci_resource_len(pdev, 1),
1975		       (unsigned long long)pciaddr);
1976		goto err_out_res;
1977	}
1978	cp->regs = regs;
1979
1980	cp_stop_hw(cp);
1981
1982	/* read MAC address from EEPROM */
1983	addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1984	for (i = 0; i < 3; i++)
1985		addr[i] = cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1986	eth_hw_addr_set(dev, (u8 *)addr);
1987
1988	dev->netdev_ops = &cp_netdev_ops;
1989	netif_napi_add_weight(dev, &cp->napi, cp_rx_poll, 16);
1990	dev->ethtool_ops = &cp_ethtool_ops;
1991	dev->watchdog_timeo = TX_TIMEOUT;
1992
1993	dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
1994		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
1995
1996	if (pci_using_dac)
1997		dev->features |= NETIF_F_HIGHDMA;
1998
 
1999	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2000		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2001	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2002		NETIF_F_HIGHDMA;
2003
2004	/* MTU range: 60 - 4096 */
2005	dev->min_mtu = CP_MIN_MTU;
2006	dev->max_mtu = CP_MAX_MTU;
2007
2008	rc = register_netdev(dev);
2009	if (rc)
2010		goto err_out_iomap;
2011
2012	netdev_info(dev, "RTL-8139C+ at 0x%p, %pM, IRQ %d\n",
2013		    regs, dev->dev_addr, pdev->irq);
2014
2015	pci_set_drvdata(pdev, dev);
2016
2017	/* enable busmastering and memory-write-invalidate */
2018	pci_set_master(pdev);
2019
2020	if (cp->wol_enabled)
2021		cp_set_d3_state (cp);
2022
2023	return 0;
2024
2025err_out_iomap:
2026	iounmap(regs);
2027err_out_res:
2028	pci_release_regions(pdev);
2029err_out_mwi:
2030	pci_clear_mwi(pdev);
2031err_out_disable:
2032	pci_disable_device(pdev);
2033err_out_free:
2034	free_netdev(dev);
2035	return rc;
2036}
2037
2038static void cp_remove_one (struct pci_dev *pdev)
2039{
2040	struct net_device *dev = pci_get_drvdata(pdev);
2041	struct cp_private *cp = netdev_priv(dev);
2042
2043	unregister_netdev(dev);
2044	iounmap(cp->regs);
2045	if (cp->wol_enabled)
2046		pci_set_power_state (pdev, PCI_D0);
2047	pci_release_regions(pdev);
2048	pci_clear_mwi(pdev);
2049	pci_disable_device(pdev);
2050	free_netdev(dev);
2051}
2052
2053static int __maybe_unused cp_suspend(struct device *device)
 
2054{
2055	struct net_device *dev = dev_get_drvdata(device);
2056	struct cp_private *cp = netdev_priv(dev);
2057	unsigned long flags;
2058
2059	if (!netif_running(dev))
2060		return 0;
2061
2062	netif_device_detach (dev);
2063	netif_stop_queue (dev);
2064
2065	spin_lock_irqsave (&cp->lock, flags);
2066
2067	/* Disable Rx and Tx */
2068	cpw16 (IntrMask, 0);
2069	cpw8  (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2070
2071	spin_unlock_irqrestore (&cp->lock, flags);
2072
2073	device_set_wakeup_enable(device, cp->wol_enabled);
 
 
2074
2075	return 0;
2076}
2077
2078static int __maybe_unused cp_resume(struct device *device)
2079{
2080	struct net_device *dev = dev_get_drvdata(device);
2081	struct cp_private *cp = netdev_priv(dev);
2082	unsigned long flags;
2083
2084	if (!netif_running(dev))
2085		return 0;
2086
2087	netif_device_attach (dev);
2088
 
 
 
 
2089	/* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2090	cp_init_rings_index (cp);
2091	cp_init_hw (cp);
2092	cp_enable_irq(cp);
2093	netif_start_queue (dev);
2094
2095	spin_lock_irqsave (&cp->lock, flags);
2096
2097	mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2098
2099	spin_unlock_irqrestore (&cp->lock, flags);
2100
2101	return 0;
2102}
2103
2104static const struct pci_device_id cp_pci_tbl[] = {
2105        { PCI_DEVICE(PCI_VENDOR_ID_REALTEK,     PCI_DEVICE_ID_REALTEK_8139), },
2106        { PCI_DEVICE(PCI_VENDOR_ID_TTTECH,      PCI_DEVICE_ID_TTTECH_MC322), },
2107        { },
2108};
2109MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
2110
2111static SIMPLE_DEV_PM_OPS(cp_pm_ops, cp_suspend, cp_resume);
2112
2113static struct pci_driver cp_driver = {
2114	.name         = DRV_NAME,
2115	.id_table     = cp_pci_tbl,
2116	.probe        =	cp_init_one,
2117	.remove       = cp_remove_one,
2118	.driver.pm    = &cp_pm_ops,
 
 
 
2119};
2120
2121module_pci_driver(cp_driver);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v3.15
   1/* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
   2/*
   3	Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
   4
   5	Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
   6	Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
   7	Copyright 2001 Manfred Spraul				    [natsemi.c]
   8	Copyright 1999-2001 by Donald Becker.			    [natsemi.c]
   9       	Written 1997-2001 by Donald Becker.			    [8139too.c]
  10	Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
  11
  12	This software may be used and distributed according to the terms of
  13	the GNU General Public License (GPL), incorporated herein by reference.
  14	Drivers based on or derived from this code fall under the GPL and must
  15	retain the authorship, copyright and license notice.  This file is not
  16	a complete program and may only be used when the entire operating
  17	system is licensed under the GPL.
  18
  19	See the file COPYING in this distribution for more information.
  20
  21	Contributors:
  22
  23		Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
  24		PCI suspend/resume  - Felipe Damasio <felipewd@terra.com.br>
  25		LinkChg interrupt   - Felipe Damasio <felipewd@terra.com.br>
  26
  27	TODO:
  28	* Test Tx checksumming thoroughly
  29
  30	Low priority TODO:
  31	* Complete reset on PciErr
  32	* Consider Rx interrupt mitigation using TimerIntr
  33	* Investigate using skb->priority with h/w VLAN priority
  34	* Investigate using High Priority Tx Queue with skb->priority
  35	* Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
  36	* Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
  37	* Implement Tx software interrupt mitigation via
  38	  Tx descriptor bit
  39	* The real minimum of CP_MIN_MTU is 4 bytes.  However,
  40	  for this to be supported, one must(?) turn on packet padding.
  41	* Support external MII transceivers (patch available)
  42
  43	NOTES:
  44	* TX checksumming is considered experimental.  It is off by
  45	  default, use ethtool to turn it on.
  46
  47 */
  48
  49#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  50
  51#define DRV_NAME		"8139cp"
  52#define DRV_VERSION		"1.3"
  53#define DRV_RELDATE		"Mar 22, 2004"
  54
  55
  56#include <linux/module.h>
  57#include <linux/moduleparam.h>
  58#include <linux/kernel.h>
  59#include <linux/compiler.h>
  60#include <linux/netdevice.h>
  61#include <linux/etherdevice.h>
  62#include <linux/init.h>
  63#include <linux/interrupt.h>
  64#include <linux/pci.h>
  65#include <linux/dma-mapping.h>
  66#include <linux/delay.h>
  67#include <linux/ethtool.h>
  68#include <linux/gfp.h>
  69#include <linux/mii.h>
  70#include <linux/if_vlan.h>
  71#include <linux/crc32.h>
  72#include <linux/in.h>
  73#include <linux/ip.h>
  74#include <linux/tcp.h>
  75#include <linux/udp.h>
  76#include <linux/cache.h>
  77#include <asm/io.h>
  78#include <asm/irq.h>
  79#include <asm/uaccess.h>
  80
  81/* These identify the driver base version and may not be removed. */
  82static char version[] =
  83DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
  84
  85MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
  86MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
  87MODULE_VERSION(DRV_VERSION);
  88MODULE_LICENSE("GPL");
  89
  90static int debug = -1;
  91module_param(debug, int, 0);
  92MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
  93
  94/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
  95   The RTL chips use a 64 element hash table based on the Ethernet CRC.  */
  96static int multicast_filter_limit = 32;
  97module_param(multicast_filter_limit, int, 0);
  98MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
  99
 100#define CP_DEF_MSG_ENABLE	(NETIF_MSG_DRV		| \
 101				 NETIF_MSG_PROBE 	| \
 102				 NETIF_MSG_LINK)
 103#define CP_NUM_STATS		14	/* struct cp_dma_stats, plus one */
 104#define CP_STATS_SIZE		64	/* size in bytes of DMA stats block */
 105#define CP_REGS_SIZE		(0xff + 1)
 106#define CP_REGS_VER		1		/* version 1 */
 107#define CP_RX_RING_SIZE		64
 108#define CP_TX_RING_SIZE		64
 109#define CP_RING_BYTES		\
 110		((sizeof(struct cp_desc) * CP_RX_RING_SIZE) +	\
 111		 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) +	\
 112		 CP_STATS_SIZE)
 113#define NEXT_TX(N)		(((N) + 1) & (CP_TX_RING_SIZE - 1))
 114#define NEXT_RX(N)		(((N) + 1) & (CP_RX_RING_SIZE - 1))
 115#define TX_BUFFS_AVAIL(CP)					\
 116	(((CP)->tx_tail <= (CP)->tx_head) ?			\
 117	  (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head :	\
 118	  (CP)->tx_tail - (CP)->tx_head - 1)
 119
 120#define PKT_BUF_SZ		1536	/* Size of each temporary Rx buffer.*/
 121#define CP_INTERNAL_PHY		32
 122
 123/* The following settings are log_2(bytes)-4:  0 == 16 bytes .. 6==1024, 7==end of packet. */
 124#define RX_FIFO_THRESH		5	/* Rx buffer level before first PCI xfer.  */
 125#define RX_DMA_BURST		4	/* Maximum PCI burst, '4' is 256 */
 126#define TX_DMA_BURST		6	/* Maximum PCI burst, '6' is 1024 */
 127#define TX_EARLY_THRESH		256	/* Early Tx threshold, in bytes */
 128
 129/* Time in jiffies before concluding the transmitter is hung. */
 130#define TX_TIMEOUT		(6*HZ)
 131
 132/* hardware minimum and maximum for a single frame's data payload */
 133#define CP_MIN_MTU		60	/* TODO: allow lower, but pad */
 134#define CP_MAX_MTU		4096
 135
 136enum {
 137	/* NIC register offsets */
 138	MAC0		= 0x00,	/* Ethernet hardware address. */
 139	MAR0		= 0x08,	/* Multicast filter. */
 140	StatsAddr	= 0x10,	/* 64-bit start addr of 64-byte DMA stats blk */
 141	TxRingAddr	= 0x20, /* 64-bit start addr of Tx ring */
 142	HiTxRingAddr	= 0x28, /* 64-bit start addr of high priority Tx ring */
 143	Cmd		= 0x37, /* Command register */
 144	IntrMask	= 0x3C, /* Interrupt mask */
 145	IntrStatus	= 0x3E, /* Interrupt status */
 146	TxConfig	= 0x40, /* Tx configuration */
 147	ChipVersion	= 0x43, /* 8-bit chip version, inside TxConfig */
 148	RxConfig	= 0x44, /* Rx configuration */
 149	RxMissed	= 0x4C,	/* 24 bits valid, write clears */
 150	Cfg9346		= 0x50, /* EEPROM select/control; Cfg reg [un]lock */
 151	Config1		= 0x52, /* Config1 */
 152	Config3		= 0x59, /* Config3 */
 153	Config4		= 0x5A, /* Config4 */
 154	MultiIntr	= 0x5C, /* Multiple interrupt select */
 155	BasicModeCtrl	= 0x62,	/* MII BMCR */
 156	BasicModeStatus	= 0x64, /* MII BMSR */
 157	NWayAdvert	= 0x66, /* MII ADVERTISE */
 158	NWayLPAR	= 0x68, /* MII LPA */
 159	NWayExpansion	= 0x6A, /* MII Expansion */
 
 160	Config5		= 0xD8,	/* Config5 */
 161	TxPoll		= 0xD9,	/* Tell chip to check Tx descriptors for work */
 162	RxMaxSize	= 0xDA, /* Max size of an Rx packet (8169 only) */
 163	CpCmd		= 0xE0, /* C+ Command register (C+ mode only) */
 164	IntrMitigate	= 0xE2,	/* rx/tx interrupt mitigation control */
 165	RxRingAddr	= 0xE4, /* 64-bit start addr of Rx ring */
 166	TxThresh	= 0xEC, /* Early Tx threshold */
 167	OldRxBufAddr	= 0x30, /* DMA address of Rx ring buffer (C mode) */
 168	OldTSD0		= 0x10, /* DMA address of first Tx desc (C mode) */
 169
 170	/* Tx and Rx status descriptors */
 171	DescOwn		= (1 << 31), /* Descriptor is owned by NIC */
 172	RingEnd		= (1 << 30), /* End of descriptor ring */
 173	FirstFrag	= (1 << 29), /* First segment of a packet */
 174	LastFrag	= (1 << 28), /* Final segment of a packet */
 175	LargeSend	= (1 << 27), /* TCP Large Send Offload (TSO) */
 176	MSSShift	= 16,	     /* MSS value position */
 177	MSSMask		= 0xfff,     /* MSS value: 11 bits */
 178	TxError		= (1 << 23), /* Tx error summary */
 179	RxError		= (1 << 20), /* Rx error summary */
 180	IPCS		= (1 << 18), /* Calculate IP checksum */
 181	UDPCS		= (1 << 17), /* Calculate UDP/IP checksum */
 182	TCPCS		= (1 << 16), /* Calculate TCP/IP checksum */
 183	TxVlanTag	= (1 << 17), /* Add VLAN tag */
 184	RxVlanTagged	= (1 << 16), /* Rx VLAN tag available */
 185	IPFail		= (1 << 15), /* IP checksum failed */
 186	UDPFail		= (1 << 14), /* UDP/IP checksum failed */
 187	TCPFail		= (1 << 13), /* TCP/IP checksum failed */
 188	NormalTxPoll	= (1 << 6),  /* One or more normal Tx packets to send */
 189	PID1		= (1 << 17), /* 2 protocol id bits:  0==non-IP, */
 190	PID0		= (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
 191	RxProtoTCP	= 1,
 192	RxProtoUDP	= 2,
 193	RxProtoIP	= 3,
 194	TxFIFOUnder	= (1 << 25), /* Tx FIFO underrun */
 195	TxOWC		= (1 << 22), /* Tx Out-of-window collision */
 196	TxLinkFail	= (1 << 21), /* Link failed during Tx of packet */
 197	TxMaxCol	= (1 << 20), /* Tx aborted due to excessive collisions */
 198	TxColCntShift	= 16,	     /* Shift, to get 4-bit Tx collision cnt */
 199	TxColCntMask	= 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
 200	RxErrFrame	= (1 << 27), /* Rx frame alignment error */
 201	RxMcast		= (1 << 26), /* Rx multicast packet rcv'd */
 202	RxErrCRC	= (1 << 18), /* Rx CRC error */
 203	RxErrRunt	= (1 << 19), /* Rx error, packet < 64 bytes */
 204	RxErrLong	= (1 << 21), /* Rx error, packet > 4096 bytes */
 205	RxErrFIFO	= (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
 206
 207	/* StatsAddr register */
 208	DumpStats	= (1 << 3),  /* Begin stats dump */
 209
 210	/* RxConfig register */
 211	RxCfgFIFOShift	= 13,	     /* Shift, to get Rx FIFO thresh value */
 212	RxCfgDMAShift	= 8,	     /* Shift, to get Rx Max DMA value */
 213	AcceptErr	= 0x20,	     /* Accept packets with CRC errors */
 214	AcceptRunt	= 0x10,	     /* Accept runt (<64 bytes) packets */
 215	AcceptBroadcast	= 0x08,	     /* Accept broadcast packets */
 216	AcceptMulticast	= 0x04,	     /* Accept multicast packets */
 217	AcceptMyPhys	= 0x02,	     /* Accept pkts with our MAC as dest */
 218	AcceptAllPhys	= 0x01,	     /* Accept all pkts w/ physical dest */
 219
 220	/* IntrMask / IntrStatus registers */
 221	PciErr		= (1 << 15), /* System error on the PCI bus */
 222	TimerIntr	= (1 << 14), /* Asserted when TCTR reaches TimerInt value */
 223	LenChg		= (1 << 13), /* Cable length change */
 224	SWInt		= (1 << 8),  /* Software-requested interrupt */
 225	TxEmpty		= (1 << 7),  /* No Tx descriptors available */
 226	RxFIFOOvr	= (1 << 6),  /* Rx FIFO Overflow */
 227	LinkChg		= (1 << 5),  /* Packet underrun, or link change */
 228	RxEmpty		= (1 << 4),  /* No Rx descriptors available */
 229	TxErr		= (1 << 3),  /* Tx error */
 230	TxOK		= (1 << 2),  /* Tx packet sent */
 231	RxErr		= (1 << 1),  /* Rx error */
 232	RxOK		= (1 << 0),  /* Rx packet received */
 233	IntrResvd	= (1 << 10), /* reserved, according to RealTek engineers,
 234					but hardware likes to raise it */
 235
 236	IntrAll		= PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
 237			  RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
 238			  RxErr | RxOK | IntrResvd,
 239
 240	/* C mode command register */
 241	CmdReset	= (1 << 4),  /* Enable to reset; self-clearing */
 242	RxOn		= (1 << 3),  /* Rx mode enable */
 243	TxOn		= (1 << 2),  /* Tx mode enable */
 244
 245	/* C+ mode command register */
 246	RxVlanOn	= (1 << 6),  /* Rx VLAN de-tagging enable */
 247	RxChkSum	= (1 << 5),  /* Rx checksum offload enable */
 248	PCIDAC		= (1 << 4),  /* PCI Dual Address Cycle (64-bit PCI) */
 249	PCIMulRW	= (1 << 3),  /* Enable PCI read/write multiple */
 250	CpRxOn		= (1 << 1),  /* Rx mode enable */
 251	CpTxOn		= (1 << 0),  /* Tx mode enable */
 252
 253	/* Cfg9436 EEPROM control register */
 254	Cfg9346_Lock	= 0x00,	     /* Lock ConfigX/MII register access */
 255	Cfg9346_Unlock	= 0xC0,	     /* Unlock ConfigX/MII register access */
 256
 257	/* TxConfig register */
 258	IFG		= (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
 259	TxDMAShift	= 8,	     /* DMA burst value (0-7) is shift this many bits */
 260
 261	/* Early Tx Threshold register */
 262	TxThreshMask	= 0x3f,	     /* Mask bits 5-0 */
 263	TxThreshMax	= 2048,	     /* Max early Tx threshold */
 264
 265	/* Config1 register */
 266	DriverLoaded	= (1 << 5),  /* Software marker, driver is loaded */
 267	LWACT           = (1 << 4),  /* LWAKE active mode */
 268	PMEnable	= (1 << 0),  /* Enable various PM features of chip */
 269
 270	/* Config3 register */
 271	PARMEnable	= (1 << 6),  /* Enable auto-loading of PHY parms */
 272	MagicPacket     = (1 << 5),  /* Wake up when receives a Magic Packet */
 273	LinkUp          = (1 << 4),  /* Wake up when the cable connection is re-established */
 274
 275	/* Config4 register */
 276	LWPTN           = (1 << 1),  /* LWAKE Pattern */
 277	LWPME           = (1 << 4),  /* LANWAKE vs PMEB */
 278
 279	/* Config5 register */
 280	BWF             = (1 << 6),  /* Accept Broadcast wakeup frame */
 281	MWF             = (1 << 5),  /* Accept Multicast wakeup frame */
 282	UWF             = (1 << 4),  /* Accept Unicast wakeup frame */
 283	LANWake         = (1 << 1),  /* Enable LANWake signal */
 284	PMEStatus	= (1 << 0),  /* PME status can be reset by PCI RST# */
 285
 286	cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
 287	cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
 288	cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
 289};
 290
 291static const unsigned int cp_rx_config =
 292	  (RX_FIFO_THRESH << RxCfgFIFOShift) |
 293	  (RX_DMA_BURST << RxCfgDMAShift);
 294
 295struct cp_desc {
 296	__le32		opts1;
 297	__le32		opts2;
 298	__le64		addr;
 299};
 300
 301struct cp_dma_stats {
 302	__le64			tx_ok;
 303	__le64			rx_ok;
 304	__le64			tx_err;
 305	__le32			rx_err;
 306	__le16			rx_fifo;
 307	__le16			frame_align;
 308	__le32			tx_ok_1col;
 309	__le32			tx_ok_mcol;
 310	__le64			rx_ok_phys;
 311	__le64			rx_ok_bcast;
 312	__le32			rx_ok_mcast;
 313	__le16			tx_abort;
 314	__le16			tx_underrun;
 315} __packed;
 316
 317struct cp_extra_stats {
 318	unsigned long		rx_frags;
 319};
 320
 321struct cp_private {
 322	void			__iomem *regs;
 323	struct net_device	*dev;
 324	spinlock_t		lock;
 325	u32			msg_enable;
 326
 327	struct napi_struct	napi;
 328
 329	struct pci_dev		*pdev;
 330	u32			rx_config;
 331	u16			cpcmd;
 332
 333	struct cp_extra_stats	cp_stats;
 334
 335	unsigned		rx_head		____cacheline_aligned;
 336	unsigned		rx_tail;
 337	struct cp_desc		*rx_ring;
 338	struct sk_buff		*rx_skb[CP_RX_RING_SIZE];
 339
 340	unsigned		tx_head		____cacheline_aligned;
 341	unsigned		tx_tail;
 342	struct cp_desc		*tx_ring;
 343	struct sk_buff		*tx_skb[CP_TX_RING_SIZE];
 
 344
 345	unsigned		rx_buf_sz;
 346	unsigned		wol_enabled : 1; /* Is Wake-on-LAN enabled? */
 347
 348	dma_addr_t		ring_dma;
 349
 350	struct mii_if_info	mii_if;
 351};
 352
 353#define cpr8(reg)	readb(cp->regs + (reg))
 354#define cpr16(reg)	readw(cp->regs + (reg))
 355#define cpr32(reg)	readl(cp->regs + (reg))
 356#define cpw8(reg,val)	writeb((val), cp->regs + (reg))
 357#define cpw16(reg,val)	writew((val), cp->regs + (reg))
 358#define cpw32(reg,val)	writel((val), cp->regs + (reg))
 359#define cpw8_f(reg,val) do {			\
 360	writeb((val), cp->regs + (reg));	\
 361	readb(cp->regs + (reg));		\
 362	} while (0)
 363#define cpw16_f(reg,val) do {			\
 364	writew((val), cp->regs + (reg));	\
 365	readw(cp->regs + (reg));		\
 366	} while (0)
 367#define cpw32_f(reg,val) do {			\
 368	writel((val), cp->regs + (reg));	\
 369	readl(cp->regs + (reg));		\
 370	} while (0)
 371
 372
 373static void __cp_set_rx_mode (struct net_device *dev);
 374static void cp_tx (struct cp_private *cp);
 375static void cp_clean_rings (struct cp_private *cp);
 376#ifdef CONFIG_NET_POLL_CONTROLLER
 377static void cp_poll_controller(struct net_device *dev);
 378#endif
 379static int cp_get_eeprom_len(struct net_device *dev);
 380static int cp_get_eeprom(struct net_device *dev,
 381			 struct ethtool_eeprom *eeprom, u8 *data);
 382static int cp_set_eeprom(struct net_device *dev,
 383			 struct ethtool_eeprom *eeprom, u8 *data);
 384
 385static DEFINE_PCI_DEVICE_TABLE(cp_pci_tbl) = {
 386	{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK,	PCI_DEVICE_ID_REALTEK_8139), },
 387	{ PCI_DEVICE(PCI_VENDOR_ID_TTTECH,	PCI_DEVICE_ID_TTTECH_MC322), },
 388	{ },
 389};
 390MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
 391
 392static struct {
 393	const char str[ETH_GSTRING_LEN];
 394} ethtool_stats_keys[] = {
 395	{ "tx_ok" },
 396	{ "rx_ok" },
 397	{ "tx_err" },
 398	{ "rx_err" },
 399	{ "rx_fifo" },
 400	{ "frame_align" },
 401	{ "tx_ok_1col" },
 402	{ "tx_ok_mcol" },
 403	{ "rx_ok_phys" },
 404	{ "rx_ok_bcast" },
 405	{ "rx_ok_mcast" },
 406	{ "tx_abort" },
 407	{ "tx_underrun" },
 408	{ "rx_frags" },
 409};
 410
 411
 412static inline void cp_set_rxbufsize (struct cp_private *cp)
 413{
 414	unsigned int mtu = cp->dev->mtu;
 415
 416	if (mtu > ETH_DATA_LEN)
 417		/* MTU + ethernet header + FCS + optional VLAN tag */
 418		cp->rx_buf_sz = mtu + ETH_HLEN + 8;
 419	else
 420		cp->rx_buf_sz = PKT_BUF_SZ;
 421}
 422
 423static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
 424			      struct cp_desc *desc)
 425{
 426	u32 opts2 = le32_to_cpu(desc->opts2);
 427
 428	skb->protocol = eth_type_trans (skb, cp->dev);
 429
 430	cp->dev->stats.rx_packets++;
 431	cp->dev->stats.rx_bytes += skb->len;
 432
 433	if (opts2 & RxVlanTagged)
 434		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff));
 435
 436	napi_gro_receive(&cp->napi, skb);
 437}
 438
 439static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
 440			    u32 status, u32 len)
 441{
 442	netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
 443		  rx_tail, status, len);
 444	cp->dev->stats.rx_errors++;
 445	if (status & RxErrFrame)
 446		cp->dev->stats.rx_frame_errors++;
 447	if (status & RxErrCRC)
 448		cp->dev->stats.rx_crc_errors++;
 449	if ((status & RxErrRunt) || (status & RxErrLong))
 450		cp->dev->stats.rx_length_errors++;
 451	if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
 452		cp->dev->stats.rx_length_errors++;
 453	if (status & RxErrFIFO)
 454		cp->dev->stats.rx_fifo_errors++;
 455}
 456
 457static inline unsigned int cp_rx_csum_ok (u32 status)
 458{
 459	unsigned int protocol = (status >> 16) & 0x3;
 460
 461	if (((protocol == RxProtoTCP) && !(status & TCPFail)) ||
 462	    ((protocol == RxProtoUDP) && !(status & UDPFail)))
 463		return 1;
 464	else
 465		return 0;
 466}
 467
 468static int cp_rx_poll(struct napi_struct *napi, int budget)
 469{
 470	struct cp_private *cp = container_of(napi, struct cp_private, napi);
 471	struct net_device *dev = cp->dev;
 472	unsigned int rx_tail = cp->rx_tail;
 473	int rx;
 474
 475rx_status_loop:
 476	rx = 0;
 477	cpw16(IntrStatus, cp_rx_intr_mask);
 478
 479	while (rx < budget) {
 480		u32 status, len;
 481		dma_addr_t mapping, new_mapping;
 482		struct sk_buff *skb, *new_skb;
 483		struct cp_desc *desc;
 484		const unsigned buflen = cp->rx_buf_sz;
 485
 486		skb = cp->rx_skb[rx_tail];
 487		BUG_ON(!skb);
 488
 489		desc = &cp->rx_ring[rx_tail];
 490		status = le32_to_cpu(desc->opts1);
 491		if (status & DescOwn)
 492			break;
 493
 494		len = (status & 0x1fff) - 4;
 495		mapping = le64_to_cpu(desc->addr);
 496
 497		if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
 498			/* we don't support incoming fragmented frames.
 499			 * instead, we attempt to ensure that the
 500			 * pre-allocated RX skbs are properly sized such
 501			 * that RX fragments are never encountered
 502			 */
 503			cp_rx_err_acct(cp, rx_tail, status, len);
 504			dev->stats.rx_dropped++;
 505			cp->cp_stats.rx_frags++;
 506			goto rx_next;
 507		}
 508
 509		if (status & (RxError | RxErrFIFO)) {
 510			cp_rx_err_acct(cp, rx_tail, status, len);
 511			goto rx_next;
 512		}
 513
 514		netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
 515			  rx_tail, status, len);
 516
 517		new_skb = netdev_alloc_skb_ip_align(dev, buflen);
 518		if (!new_skb) {
 519			dev->stats.rx_dropped++;
 520			goto rx_next;
 521		}
 522
 523		new_mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
 524					 PCI_DMA_FROMDEVICE);
 525		if (dma_mapping_error(&cp->pdev->dev, new_mapping)) {
 526			dev->stats.rx_dropped++;
 527			kfree_skb(new_skb);
 528			goto rx_next;
 529		}
 530
 531		dma_unmap_single(&cp->pdev->dev, mapping,
 532				 buflen, PCI_DMA_FROMDEVICE);
 533
 534		/* Handle checksum offloading for incoming packets. */
 535		if (cp_rx_csum_ok(status))
 536			skb->ip_summed = CHECKSUM_UNNECESSARY;
 537		else
 538			skb_checksum_none_assert(skb);
 539
 540		skb_put(skb, len);
 541
 542		cp->rx_skb[rx_tail] = new_skb;
 543
 544		cp_rx_skb(cp, skb, desc);
 545		rx++;
 546		mapping = new_mapping;
 547
 548rx_next:
 549		cp->rx_ring[rx_tail].opts2 = 0;
 550		cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
 551		if (rx_tail == (CP_RX_RING_SIZE - 1))
 552			desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
 553						  cp->rx_buf_sz);
 554		else
 555			desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
 556		rx_tail = NEXT_RX(rx_tail);
 557	}
 558
 559	cp->rx_tail = rx_tail;
 560
 561	/* if we did not reach work limit, then we're done with
 562	 * this round of polling
 563	 */
 564	if (rx < budget) {
 565		unsigned long flags;
 566
 567		if (cpr16(IntrStatus) & cp_rx_intr_mask)
 568			goto rx_status_loop;
 569
 570		napi_gro_flush(napi, false);
 571		spin_lock_irqsave(&cp->lock, flags);
 572		__napi_complete(napi);
 573		cpw16_f(IntrMask, cp_intr_mask);
 574		spin_unlock_irqrestore(&cp->lock, flags);
 575	}
 576
 577	return rx;
 578}
 579
 580static irqreturn_t cp_interrupt (int irq, void *dev_instance)
 581{
 582	struct net_device *dev = dev_instance;
 583	struct cp_private *cp;
 584	int handled = 0;
 585	u16 status;
 
 586
 587	if (unlikely(dev == NULL))
 588		return IRQ_NONE;
 589	cp = netdev_priv(dev);
 590
 591	spin_lock(&cp->lock);
 592
 
 
 
 
 593	status = cpr16(IntrStatus);
 594	if (!status || (status == 0xFFFF))
 595		goto out_unlock;
 596
 597	handled = 1;
 598
 599	netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
 600		  status, cpr8(Cmd), cpr16(CpCmd));
 601
 602	cpw16(IntrStatus, status & ~cp_rx_intr_mask);
 603
 604	/* close possible race's with dev_close */
 605	if (unlikely(!netif_running(dev))) {
 606		cpw16(IntrMask, 0);
 607		goto out_unlock;
 608	}
 609
 610	if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
 611		if (napi_schedule_prep(&cp->napi)) {
 612			cpw16_f(IntrMask, cp_norx_intr_mask);
 613			__napi_schedule(&cp->napi);
 614		}
 615
 616	if (status & (TxOK | TxErr | TxEmpty | SWInt))
 617		cp_tx(cp);
 618	if (status & LinkChg)
 619		mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
 620
 621
 622	if (status & PciErr) {
 623		u16 pci_status;
 624
 625		pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
 626		pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
 627		netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
 628			   status, pci_status);
 629
 630		/* TODO: reset hardware */
 631	}
 632
 633out_unlock:
 634	spin_unlock(&cp->lock);
 635
 636	return IRQ_RETVAL(handled);
 637}
 638
 639#ifdef CONFIG_NET_POLL_CONTROLLER
 640/*
 641 * Polling receive - used by netconsole and other diagnostic tools
 642 * to allow network i/o with interrupts disabled.
 643 */
 644static void cp_poll_controller(struct net_device *dev)
 645{
 646	struct cp_private *cp = netdev_priv(dev);
 647	const int irq = cp->pdev->irq;
 648
 649	disable_irq(irq);
 650	cp_interrupt(irq, dev);
 651	enable_irq(irq);
 652}
 653#endif
 654
 655static void cp_tx (struct cp_private *cp)
 656{
 657	unsigned tx_head = cp->tx_head;
 658	unsigned tx_tail = cp->tx_tail;
 659	unsigned bytes_compl = 0, pkts_compl = 0;
 660
 661	while (tx_tail != tx_head) {
 662		struct cp_desc *txd = cp->tx_ring + tx_tail;
 663		struct sk_buff *skb;
 664		u32 status;
 665
 666		rmb();
 667		status = le32_to_cpu(txd->opts1);
 668		if (status & DescOwn)
 669			break;
 670
 671		skb = cp->tx_skb[tx_tail];
 672		BUG_ON(!skb);
 673
 674		dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
 675				 le32_to_cpu(txd->opts1) & 0xffff,
 676				 PCI_DMA_TODEVICE);
 677
 678		if (status & LastFrag) {
 679			if (status & (TxError | TxFIFOUnder)) {
 680				netif_dbg(cp, tx_err, cp->dev,
 681					  "tx err, status 0x%x\n", status);
 682				cp->dev->stats.tx_errors++;
 683				if (status & TxOWC)
 684					cp->dev->stats.tx_window_errors++;
 685				if (status & TxMaxCol)
 686					cp->dev->stats.tx_aborted_errors++;
 687				if (status & TxLinkFail)
 688					cp->dev->stats.tx_carrier_errors++;
 689				if (status & TxFIFOUnder)
 690					cp->dev->stats.tx_fifo_errors++;
 691			} else {
 692				cp->dev->stats.collisions +=
 693					((status >> TxColCntShift) & TxColCntMask);
 694				cp->dev->stats.tx_packets++;
 695				cp->dev->stats.tx_bytes += skb->len;
 696				netif_dbg(cp, tx_done, cp->dev,
 697					  "tx done, slot %d\n", tx_tail);
 698			}
 699			bytes_compl += skb->len;
 700			pkts_compl++;
 701			dev_kfree_skb_irq(skb);
 702		}
 703
 704		cp->tx_skb[tx_tail] = NULL;
 705
 706		tx_tail = NEXT_TX(tx_tail);
 707	}
 708
 709	cp->tx_tail = tx_tail;
 710
 711	netdev_completed_queue(cp->dev, pkts_compl, bytes_compl);
 712	if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
 713		netif_wake_queue(cp->dev);
 714}
 715
 716static inline u32 cp_tx_vlan_tag(struct sk_buff *skb)
 717{
 718	return vlan_tx_tag_present(skb) ?
 719		TxVlanTag | swab16(vlan_tx_tag_get(skb)) : 0x00;
 720}
 721
 722static void unwind_tx_frag_mapping(struct cp_private *cp, struct sk_buff *skb,
 723				   int first, int entry_last)
 724{
 725	int frag, index;
 726	struct cp_desc *txd;
 727	skb_frag_t *this_frag;
 728	for (frag = 0; frag+first < entry_last; frag++) {
 729		index = first+frag;
 730		cp->tx_skb[index] = NULL;
 731		txd = &cp->tx_ring[index];
 732		this_frag = &skb_shinfo(skb)->frags[frag];
 733		dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
 734				 skb_frag_size(this_frag), PCI_DMA_TODEVICE);
 735	}
 736}
 737
 738static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
 739					struct net_device *dev)
 740{
 741	struct cp_private *cp = netdev_priv(dev);
 742	unsigned entry;
 743	u32 eor, flags;
 744	unsigned long intr_flags;
 745	__le32 opts2;
 746	int mss = 0;
 747
 748	spin_lock_irqsave(&cp->lock, intr_flags);
 749
 750	/* This is a hard error, log it. */
 751	if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
 752		netif_stop_queue(dev);
 753		spin_unlock_irqrestore(&cp->lock, intr_flags);
 754		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
 755		return NETDEV_TX_BUSY;
 756	}
 757
 758	entry = cp->tx_head;
 759	eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
 760	mss = skb_shinfo(skb)->gso_size;
 761
 
 
 
 
 
 
 762	opts2 = cpu_to_le32(cp_tx_vlan_tag(skb));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 763
 764	if (skb_shinfo(skb)->nr_frags == 0) {
 765		struct cp_desc *txd = &cp->tx_ring[entry];
 766		u32 len;
 767		dma_addr_t mapping;
 768
 769		len = skb->len;
 770		mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
 771		if (dma_mapping_error(&cp->pdev->dev, mapping))
 772			goto out_dma_error;
 773
 774		txd->opts2 = opts2;
 775		txd->addr = cpu_to_le64(mapping);
 776		wmb();
 777
 778		flags = eor | len | DescOwn | FirstFrag | LastFrag;
 779
 780		if (mss)
 781			flags |= LargeSend | ((mss & MSSMask) << MSSShift);
 782		else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 783			const struct iphdr *ip = ip_hdr(skb);
 784			if (ip->protocol == IPPROTO_TCP)
 785				flags |= IPCS | TCPCS;
 786			else if (ip->protocol == IPPROTO_UDP)
 787				flags |= IPCS | UDPCS;
 788			else
 789				WARN_ON(1);	/* we need a WARN() */
 790		}
 791
 792		txd->opts1 = cpu_to_le32(flags);
 793		wmb();
 794
 795		cp->tx_skb[entry] = skb;
 796		entry = NEXT_TX(entry);
 
 
 797	} else {
 798		struct cp_desc *txd;
 799		u32 first_len, first_eor;
 800		dma_addr_t first_mapping;
 801		int frag, first_entry = entry;
 802		const struct iphdr *ip = ip_hdr(skb);
 803
 804		/* We must give this initial chunk to the device last.
 805		 * Otherwise we could race with the device.
 806		 */
 807		first_eor = eor;
 808		first_len = skb_headlen(skb);
 809		first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
 810					       first_len, PCI_DMA_TODEVICE);
 811		if (dma_mapping_error(&cp->pdev->dev, first_mapping))
 812			goto out_dma_error;
 813
 814		cp->tx_skb[entry] = skb;
 815		entry = NEXT_TX(entry);
 816
 817		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
 818			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
 819			u32 len;
 820			u32 ctrl;
 821			dma_addr_t mapping;
 822
 
 
 823			len = skb_frag_size(this_frag);
 824			mapping = dma_map_single(&cp->pdev->dev,
 825						 skb_frag_address(this_frag),
 826						 len, PCI_DMA_TODEVICE);
 827			if (dma_mapping_error(&cp->pdev->dev, mapping)) {
 828				unwind_tx_frag_mapping(cp, skb, first_entry, entry);
 829				goto out_dma_error;
 830			}
 831
 832			eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
 833
 834			ctrl = eor | len | DescOwn;
 835
 836			if (mss)
 837				ctrl |= LargeSend |
 838					((mss & MSSMask) << MSSShift);
 839			else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 840				if (ip->protocol == IPPROTO_TCP)
 841					ctrl |= IPCS | TCPCS;
 842				else if (ip->protocol == IPPROTO_UDP)
 843					ctrl |= IPCS | UDPCS;
 844				else
 845					BUG();
 846			}
 847
 848			if (frag == skb_shinfo(skb)->nr_frags - 1)
 849				ctrl |= LastFrag;
 850
 851			txd = &cp->tx_ring[entry];
 852			txd->opts2 = opts2;
 853			txd->addr = cpu_to_le64(mapping);
 854			wmb();
 855
 856			txd->opts1 = cpu_to_le32(ctrl);
 857			wmb();
 858
 
 859			cp->tx_skb[entry] = skb;
 860			entry = NEXT_TX(entry);
 861		}
 862
 863		txd = &cp->tx_ring[first_entry];
 864		txd->opts2 = opts2;
 865		txd->addr = cpu_to_le64(first_mapping);
 866		wmb();
 867
 868		if (skb->ip_summed == CHECKSUM_PARTIAL) {
 869			if (ip->protocol == IPPROTO_TCP)
 870				txd->opts1 = cpu_to_le32(first_eor | first_len |
 871							 FirstFrag | DescOwn |
 872							 IPCS | TCPCS);
 873			else if (ip->protocol == IPPROTO_UDP)
 874				txd->opts1 = cpu_to_le32(first_eor | first_len |
 875							 FirstFrag | DescOwn |
 876							 IPCS | UDPCS);
 877			else
 878				BUG();
 879		} else
 880			txd->opts1 = cpu_to_le32(first_eor | first_len |
 881						 FirstFrag | DescOwn);
 882		wmb();
 
 
 
 
 883	}
 884	cp->tx_head = entry;
 885
 886	netdev_sent_queue(dev, skb->len);
 887	netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
 888		  entry, skb->len);
 889	if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
 890		netif_stop_queue(dev);
 891
 892out_unlock:
 893	spin_unlock_irqrestore(&cp->lock, intr_flags);
 894
 895	cpw8(TxPoll, NormalTxPoll);
 896
 897	return NETDEV_TX_OK;
 898out_dma_error:
 899	dev_kfree_skb_any(skb);
 900	cp->dev->stats.tx_dropped++;
 901	goto out_unlock;
 902}
 903
 904/* Set or clear the multicast filter for this adaptor.
 905   This routine is not state sensitive and need not be SMP locked. */
 906
 907static void __cp_set_rx_mode (struct net_device *dev)
 908{
 909	struct cp_private *cp = netdev_priv(dev);
 910	u32 mc_filter[2];	/* Multicast hash filter */
 911	int rx_mode;
 912
 913	/* Note: do not reorder, GCC is clever about common statements. */
 914	if (dev->flags & IFF_PROMISC) {
 915		/* Unconditionally log net taps. */
 916		rx_mode =
 917		    AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
 918		    AcceptAllPhys;
 919		mc_filter[1] = mc_filter[0] = 0xffffffff;
 920	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
 921		   (dev->flags & IFF_ALLMULTI)) {
 922		/* Too many to filter perfectly -- accept all multicasts. */
 923		rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
 924		mc_filter[1] = mc_filter[0] = 0xffffffff;
 925	} else {
 926		struct netdev_hw_addr *ha;
 927		rx_mode = AcceptBroadcast | AcceptMyPhys;
 928		mc_filter[1] = mc_filter[0] = 0;
 929		netdev_for_each_mc_addr(ha, dev) {
 930			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
 931
 932			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
 933			rx_mode |= AcceptMulticast;
 934		}
 935	}
 936
 937	/* We can safely update without stopping the chip. */
 938	cp->rx_config = cp_rx_config | rx_mode;
 939	cpw32_f(RxConfig, cp->rx_config);
 940
 941	cpw32_f (MAR0 + 0, mc_filter[0]);
 942	cpw32_f (MAR0 + 4, mc_filter[1]);
 943}
 944
 945static void cp_set_rx_mode (struct net_device *dev)
 946{
 947	unsigned long flags;
 948	struct cp_private *cp = netdev_priv(dev);
 949
 950	spin_lock_irqsave (&cp->lock, flags);
 951	__cp_set_rx_mode(dev);
 952	spin_unlock_irqrestore (&cp->lock, flags);
 953}
 954
 955static void __cp_get_stats(struct cp_private *cp)
 956{
 957	/* only lower 24 bits valid; write any value to clear */
 958	cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
 959	cpw32 (RxMissed, 0);
 960}
 961
 962static struct net_device_stats *cp_get_stats(struct net_device *dev)
 963{
 964	struct cp_private *cp = netdev_priv(dev);
 965	unsigned long flags;
 966
 967	/* The chip only need report frame silently dropped. */
 968	spin_lock_irqsave(&cp->lock, flags);
 969 	if (netif_running(dev) && netif_device_present(dev))
 970 		__cp_get_stats(cp);
 971	spin_unlock_irqrestore(&cp->lock, flags);
 972
 973	return &dev->stats;
 974}
 975
 976static void cp_stop_hw (struct cp_private *cp)
 977{
 978	cpw16(IntrStatus, ~(cpr16(IntrStatus)));
 979	cpw16_f(IntrMask, 0);
 980	cpw8(Cmd, 0);
 981	cpw16_f(CpCmd, 0);
 982	cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
 983
 984	cp->rx_tail = 0;
 985	cp->tx_head = cp->tx_tail = 0;
 986
 987	netdev_reset_queue(cp->dev);
 988}
 989
 990static void cp_reset_hw (struct cp_private *cp)
 991{
 992	unsigned work = 1000;
 993
 994	cpw8(Cmd, CmdReset);
 995
 996	while (work--) {
 997		if (!(cpr8(Cmd) & CmdReset))
 998			return;
 999
1000		schedule_timeout_uninterruptible(10);
1001	}
1002
1003	netdev_err(cp->dev, "hardware reset timeout\n");
1004}
1005
1006static inline void cp_start_hw (struct cp_private *cp)
1007{
1008	dma_addr_t ring_dma;
1009
1010	cpw16(CpCmd, cp->cpcmd);
1011
1012	/*
1013	 * These (at least TxRingAddr) need to be configured after the
1014	 * corresponding bits in CpCmd are enabled. Datasheet v1.6 §6.33
1015	 * (C+ Command Register) recommends that these and more be configured
1016	 * *after* the [RT]xEnable bits in CpCmd are set. And on some hardware
1017	 * it's been observed that the TxRingAddr is actually reset to garbage
1018	 * when C+ mode Tx is enabled in CpCmd.
1019	 */
1020	cpw32_f(HiTxRingAddr, 0);
1021	cpw32_f(HiTxRingAddr + 4, 0);
1022
1023	ring_dma = cp->ring_dma;
1024	cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1025	cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1026
1027	ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1028	cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1029	cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1030
1031	/*
1032	 * Strictly speaking, the datasheet says this should be enabled
1033	 * *before* setting the descriptor addresses. But what, then, would
1034	 * prevent it from doing DMA to random unconfigured addresses?
1035	 * This variant appears to work fine.
1036	 */
1037	cpw8(Cmd, RxOn | TxOn);
1038
1039	netdev_reset_queue(cp->dev);
1040}
1041
1042static void cp_enable_irq(struct cp_private *cp)
1043{
1044	cpw16_f(IntrMask, cp_intr_mask);
1045}
1046
1047static void cp_init_hw (struct cp_private *cp)
1048{
1049	struct net_device *dev = cp->dev;
1050
1051	cp_reset_hw(cp);
1052
1053	cpw8_f (Cfg9346, Cfg9346_Unlock);
1054
1055	/* Restore our idea of the MAC address. */
1056	cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1057	cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1058
1059	cp_start_hw(cp);
1060	cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1061
1062	__cp_set_rx_mode(dev);
1063	cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1064
1065	cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1066	/* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1067	cpw8(Config3, PARMEnable);
1068	cp->wol_enabled = 0;
1069
1070	cpw8(Config5, cpr8(Config5) & PMEStatus);
1071
1072	cpw16(MultiIntr, 0);
1073
1074	cpw8_f(Cfg9346, Cfg9346_Lock);
1075}
1076
1077static int cp_refill_rx(struct cp_private *cp)
1078{
1079	struct net_device *dev = cp->dev;
1080	unsigned i;
1081
1082	for (i = 0; i < CP_RX_RING_SIZE; i++) {
1083		struct sk_buff *skb;
1084		dma_addr_t mapping;
1085
1086		skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1087		if (!skb)
1088			goto err_out;
1089
1090		mapping = dma_map_single(&cp->pdev->dev, skb->data,
1091					 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1092		if (dma_mapping_error(&cp->pdev->dev, mapping)) {
1093			kfree_skb(skb);
1094			goto err_out;
1095		}
1096		cp->rx_skb[i] = skb;
1097
1098		cp->rx_ring[i].opts2 = 0;
1099		cp->rx_ring[i].addr = cpu_to_le64(mapping);
1100		if (i == (CP_RX_RING_SIZE - 1))
1101			cp->rx_ring[i].opts1 =
1102				cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1103		else
1104			cp->rx_ring[i].opts1 =
1105				cpu_to_le32(DescOwn | cp->rx_buf_sz);
1106	}
1107
1108	return 0;
1109
1110err_out:
1111	cp_clean_rings(cp);
1112	return -ENOMEM;
1113}
1114
1115static void cp_init_rings_index (struct cp_private *cp)
1116{
1117	cp->rx_tail = 0;
1118	cp->tx_head = cp->tx_tail = 0;
1119}
1120
1121static int cp_init_rings (struct cp_private *cp)
1122{
1123	memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1124	cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
 
1125
1126	cp_init_rings_index(cp);
1127
1128	return cp_refill_rx (cp);
1129}
1130
1131static int cp_alloc_rings (struct cp_private *cp)
1132{
1133	struct device *d = &cp->pdev->dev;
1134	void *mem;
1135	int rc;
1136
1137	mem = dma_alloc_coherent(d, CP_RING_BYTES, &cp->ring_dma, GFP_KERNEL);
1138	if (!mem)
1139		return -ENOMEM;
1140
1141	cp->rx_ring = mem;
1142	cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1143
1144	rc = cp_init_rings(cp);
1145	if (rc < 0)
1146		dma_free_coherent(d, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1147
1148	return rc;
1149}
1150
1151static void cp_clean_rings (struct cp_private *cp)
1152{
1153	struct cp_desc *desc;
1154	unsigned i;
1155
1156	for (i = 0; i < CP_RX_RING_SIZE; i++) {
1157		if (cp->rx_skb[i]) {
1158			desc = cp->rx_ring + i;
1159			dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1160					 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1161			dev_kfree_skb(cp->rx_skb[i]);
1162		}
1163	}
1164
1165	for (i = 0; i < CP_TX_RING_SIZE; i++) {
1166		if (cp->tx_skb[i]) {
1167			struct sk_buff *skb = cp->tx_skb[i];
1168
1169			desc = cp->tx_ring + i;
1170			dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1171					 le32_to_cpu(desc->opts1) & 0xffff,
1172					 PCI_DMA_TODEVICE);
1173			if (le32_to_cpu(desc->opts1) & LastFrag)
1174				dev_kfree_skb(skb);
1175			cp->dev->stats.tx_dropped++;
1176		}
1177	}
1178	netdev_reset_queue(cp->dev);
1179
1180	memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1181	memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
 
1182
1183	memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1184	memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1185}
1186
1187static void cp_free_rings (struct cp_private *cp)
1188{
1189	cp_clean_rings(cp);
1190	dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1191			  cp->ring_dma);
1192	cp->rx_ring = NULL;
1193	cp->tx_ring = NULL;
1194}
1195
1196static int cp_open (struct net_device *dev)
1197{
1198	struct cp_private *cp = netdev_priv(dev);
1199	const int irq = cp->pdev->irq;
1200	int rc;
1201
1202	netif_dbg(cp, ifup, dev, "enabling interface\n");
1203
1204	rc = cp_alloc_rings(cp);
1205	if (rc)
1206		return rc;
1207
1208	napi_enable(&cp->napi);
1209
1210	cp_init_hw(cp);
1211
1212	rc = request_irq(irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1213	if (rc)
1214		goto err_out_hw;
1215
1216	cp_enable_irq(cp);
1217
1218	netif_carrier_off(dev);
1219	mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1220	netif_start_queue(dev);
1221
1222	return 0;
1223
1224err_out_hw:
1225	napi_disable(&cp->napi);
1226	cp_stop_hw(cp);
1227	cp_free_rings(cp);
1228	return rc;
1229}
1230
1231static int cp_close (struct net_device *dev)
1232{
1233	struct cp_private *cp = netdev_priv(dev);
1234	unsigned long flags;
1235
1236	napi_disable(&cp->napi);
1237
1238	netif_dbg(cp, ifdown, dev, "disabling interface\n");
1239
1240	spin_lock_irqsave(&cp->lock, flags);
1241
1242	netif_stop_queue(dev);
1243	netif_carrier_off(dev);
1244
1245	cp_stop_hw(cp);
1246
1247	spin_unlock_irqrestore(&cp->lock, flags);
1248
1249	free_irq(cp->pdev->irq, dev);
1250
1251	cp_free_rings(cp);
1252	return 0;
1253}
1254
1255static void cp_tx_timeout(struct net_device *dev)
1256{
1257	struct cp_private *cp = netdev_priv(dev);
1258	unsigned long flags;
1259	int rc;
1260
1261	netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1262		    cpr8(Cmd), cpr16(CpCmd),
1263		    cpr16(IntrStatus), cpr16(IntrMask));
1264
1265	spin_lock_irqsave(&cp->lock, flags);
1266
 
 
 
 
 
 
 
 
 
 
 
1267	cp_stop_hw(cp);
1268	cp_clean_rings(cp);
1269	rc = cp_init_rings(cp);
1270	cp_start_hw(cp);
1271	cp_enable_irq(cp);
 
1272
1273	netif_wake_queue(dev);
 
1274
1275	spin_unlock_irqrestore(&cp->lock, flags);
1276}
1277
1278static int cp_change_mtu(struct net_device *dev, int new_mtu)
1279{
1280	struct cp_private *cp = netdev_priv(dev);
1281
1282	/* check for invalid MTU, according to hardware limits */
1283	if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1284		return -EINVAL;
1285
1286	/* if network interface not up, no need for complexity */
1287	if (!netif_running(dev)) {
1288		dev->mtu = new_mtu;
1289		cp_set_rxbufsize(cp);	/* set new rx buf size */
1290		return 0;
1291	}
1292
1293	/* network IS up, close it, reset MTU, and come up again. */
1294	cp_close(dev);
1295	dev->mtu = new_mtu;
1296	cp_set_rxbufsize(cp);
1297	return cp_open(dev);
1298}
1299
1300static const char mii_2_8139_map[8] = {
1301	BasicModeCtrl,
1302	BasicModeStatus,
1303	0,
1304	0,
1305	NWayAdvert,
1306	NWayLPAR,
1307	NWayExpansion,
1308	0
1309};
1310
1311static int mdio_read(struct net_device *dev, int phy_id, int location)
1312{
1313	struct cp_private *cp = netdev_priv(dev);
1314
1315	return location < 8 && mii_2_8139_map[location] ?
1316	       readw(cp->regs + mii_2_8139_map[location]) : 0;
1317}
1318
1319
1320static void mdio_write(struct net_device *dev, int phy_id, int location,
1321		       int value)
1322{
1323	struct cp_private *cp = netdev_priv(dev);
1324
1325	if (location == 0) {
1326		cpw8(Cfg9346, Cfg9346_Unlock);
1327		cpw16(BasicModeCtrl, value);
1328		cpw8(Cfg9346, Cfg9346_Lock);
1329	} else if (location < 8 && mii_2_8139_map[location])
1330		cpw16(mii_2_8139_map[location], value);
1331}
1332
1333/* Set the ethtool Wake-on-LAN settings */
1334static int netdev_set_wol (struct cp_private *cp,
1335			   const struct ethtool_wolinfo *wol)
1336{
1337	u8 options;
1338
1339	options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1340	/* If WOL is being disabled, no need for complexity */
1341	if (wol->wolopts) {
1342		if (wol->wolopts & WAKE_PHY)	options |= LinkUp;
1343		if (wol->wolopts & WAKE_MAGIC)	options |= MagicPacket;
1344	}
1345
1346	cpw8 (Cfg9346, Cfg9346_Unlock);
1347	cpw8 (Config3, options);
1348	cpw8 (Cfg9346, Cfg9346_Lock);
1349
1350	options = 0; /* Paranoia setting */
1351	options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1352	/* If WOL is being disabled, no need for complexity */
1353	if (wol->wolopts) {
1354		if (wol->wolopts & WAKE_UCAST)  options |= UWF;
1355		if (wol->wolopts & WAKE_BCAST)	options |= BWF;
1356		if (wol->wolopts & WAKE_MCAST)	options |= MWF;
1357	}
1358
1359	cpw8 (Config5, options);
1360
1361	cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1362
1363	return 0;
1364}
1365
1366/* Get the ethtool Wake-on-LAN settings */
1367static void netdev_get_wol (struct cp_private *cp,
1368	             struct ethtool_wolinfo *wol)
1369{
1370	u8 options;
1371
1372	wol->wolopts   = 0; /* Start from scratch */
1373	wol->supported = WAKE_PHY   | WAKE_BCAST | WAKE_MAGIC |
1374		         WAKE_MCAST | WAKE_UCAST;
1375	/* We don't need to go on if WOL is disabled */
1376	if (!cp->wol_enabled) return;
1377
1378	options        = cpr8 (Config3);
1379	if (options & LinkUp)        wol->wolopts |= WAKE_PHY;
1380	if (options & MagicPacket)   wol->wolopts |= WAKE_MAGIC;
1381
1382	options        = 0; /* Paranoia setting */
1383	options        = cpr8 (Config5);
1384	if (options & UWF)           wol->wolopts |= WAKE_UCAST;
1385	if (options & BWF)           wol->wolopts |= WAKE_BCAST;
1386	if (options & MWF)           wol->wolopts |= WAKE_MCAST;
1387}
1388
1389static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1390{
1391	struct cp_private *cp = netdev_priv(dev);
1392
1393	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1394	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1395	strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
1396}
1397
1398static void cp_get_ringparam(struct net_device *dev,
1399				struct ethtool_ringparam *ring)
 
 
1400{
1401	ring->rx_max_pending = CP_RX_RING_SIZE;
1402	ring->tx_max_pending = CP_TX_RING_SIZE;
1403	ring->rx_pending = CP_RX_RING_SIZE;
1404	ring->tx_pending = CP_TX_RING_SIZE;
1405}
1406
1407static int cp_get_regs_len(struct net_device *dev)
1408{
1409	return CP_REGS_SIZE;
1410}
1411
1412static int cp_get_sset_count (struct net_device *dev, int sset)
1413{
1414	switch (sset) {
1415	case ETH_SS_STATS:
1416		return CP_NUM_STATS;
1417	default:
1418		return -EOPNOTSUPP;
1419	}
1420}
1421
1422static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 
1423{
1424	struct cp_private *cp = netdev_priv(dev);
1425	int rc;
1426	unsigned long flags;
1427
1428	spin_lock_irqsave(&cp->lock, flags);
1429	rc = mii_ethtool_gset(&cp->mii_if, cmd);
1430	spin_unlock_irqrestore(&cp->lock, flags);
1431
1432	return rc;
1433}
1434
1435static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 
1436{
1437	struct cp_private *cp = netdev_priv(dev);
1438	int rc;
1439	unsigned long flags;
1440
1441	spin_lock_irqsave(&cp->lock, flags);
1442	rc = mii_ethtool_sset(&cp->mii_if, cmd);
1443	spin_unlock_irqrestore(&cp->lock, flags);
1444
1445	return rc;
1446}
1447
1448static int cp_nway_reset(struct net_device *dev)
1449{
1450	struct cp_private *cp = netdev_priv(dev);
1451	return mii_nway_restart(&cp->mii_if);
1452}
1453
1454static u32 cp_get_msglevel(struct net_device *dev)
1455{
1456	struct cp_private *cp = netdev_priv(dev);
1457	return cp->msg_enable;
1458}
1459
1460static void cp_set_msglevel(struct net_device *dev, u32 value)
1461{
1462	struct cp_private *cp = netdev_priv(dev);
1463	cp->msg_enable = value;
1464}
1465
1466static int cp_set_features(struct net_device *dev, netdev_features_t features)
1467{
1468	struct cp_private *cp = netdev_priv(dev);
1469	unsigned long flags;
1470
1471	if (!((dev->features ^ features) & NETIF_F_RXCSUM))
1472		return 0;
1473
1474	spin_lock_irqsave(&cp->lock, flags);
1475
1476	if (features & NETIF_F_RXCSUM)
1477		cp->cpcmd |= RxChkSum;
1478	else
1479		cp->cpcmd &= ~RxChkSum;
1480
1481	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1482		cp->cpcmd |= RxVlanOn;
1483	else
1484		cp->cpcmd &= ~RxVlanOn;
1485
1486	cpw16_f(CpCmd, cp->cpcmd);
1487	spin_unlock_irqrestore(&cp->lock, flags);
1488
1489	return 0;
1490}
1491
1492static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1493		        void *p)
1494{
1495	struct cp_private *cp = netdev_priv(dev);
1496	unsigned long flags;
1497
1498	if (regs->len < CP_REGS_SIZE)
1499		return /* -EINVAL */;
1500
1501	regs->version = CP_REGS_VER;
1502
1503	spin_lock_irqsave(&cp->lock, flags);
1504	memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1505	spin_unlock_irqrestore(&cp->lock, flags);
1506}
1507
1508static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1509{
1510	struct cp_private *cp = netdev_priv(dev);
1511	unsigned long flags;
1512
1513	spin_lock_irqsave (&cp->lock, flags);
1514	netdev_get_wol (cp, wol);
1515	spin_unlock_irqrestore (&cp->lock, flags);
1516}
1517
1518static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1519{
1520	struct cp_private *cp = netdev_priv(dev);
1521	unsigned long flags;
1522	int rc;
1523
1524	spin_lock_irqsave (&cp->lock, flags);
1525	rc = netdev_set_wol (cp, wol);
1526	spin_unlock_irqrestore (&cp->lock, flags);
1527
1528	return rc;
1529}
1530
1531static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1532{
1533	switch (stringset) {
1534	case ETH_SS_STATS:
1535		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1536		break;
1537	default:
1538		BUG();
1539		break;
1540	}
1541}
1542
1543static void cp_get_ethtool_stats (struct net_device *dev,
1544				  struct ethtool_stats *estats, u64 *tmp_stats)
1545{
1546	struct cp_private *cp = netdev_priv(dev);
1547	struct cp_dma_stats *nic_stats;
1548	dma_addr_t dma;
1549	int i;
1550
1551	nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1552				       &dma, GFP_KERNEL);
1553	if (!nic_stats)
1554		return;
1555
1556	/* begin NIC statistics dump */
1557	cpw32(StatsAddr + 4, (u64)dma >> 32);
1558	cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1559	cpr32(StatsAddr);
1560
1561	for (i = 0; i < 1000; i++) {
1562		if ((cpr32(StatsAddr) & DumpStats) == 0)
1563			break;
1564		udelay(10);
1565	}
1566	cpw32(StatsAddr, 0);
1567	cpw32(StatsAddr + 4, 0);
1568	cpr32(StatsAddr);
1569
1570	i = 0;
1571	tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1572	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1573	tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1574	tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1575	tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1576	tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1577	tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1578	tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1579	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1580	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1581	tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1582	tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1583	tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1584	tmp_stats[i++] = cp->cp_stats.rx_frags;
1585	BUG_ON(i != CP_NUM_STATS);
1586
1587	dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1588}
1589
1590static const struct ethtool_ops cp_ethtool_ops = {
1591	.get_drvinfo		= cp_get_drvinfo,
1592	.get_regs_len		= cp_get_regs_len,
1593	.get_sset_count		= cp_get_sset_count,
1594	.get_settings		= cp_get_settings,
1595	.set_settings		= cp_set_settings,
1596	.nway_reset		= cp_nway_reset,
1597	.get_link		= ethtool_op_get_link,
1598	.get_msglevel		= cp_get_msglevel,
1599	.set_msglevel		= cp_set_msglevel,
1600	.get_regs		= cp_get_regs,
1601	.get_wol		= cp_get_wol,
1602	.set_wol		= cp_set_wol,
1603	.get_strings		= cp_get_strings,
1604	.get_ethtool_stats	= cp_get_ethtool_stats,
1605	.get_eeprom_len		= cp_get_eeprom_len,
1606	.get_eeprom		= cp_get_eeprom,
1607	.set_eeprom		= cp_set_eeprom,
1608	.get_ringparam		= cp_get_ringparam,
 
 
1609};
1610
1611static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1612{
1613	struct cp_private *cp = netdev_priv(dev);
1614	int rc;
1615	unsigned long flags;
1616
1617	if (!netif_running(dev))
1618		return -EINVAL;
1619
1620	spin_lock_irqsave(&cp->lock, flags);
1621	rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1622	spin_unlock_irqrestore(&cp->lock, flags);
1623	return rc;
1624}
1625
1626static int cp_set_mac_address(struct net_device *dev, void *p)
1627{
1628	struct cp_private *cp = netdev_priv(dev);
1629	struct sockaddr *addr = p;
1630
1631	if (!is_valid_ether_addr(addr->sa_data))
1632		return -EADDRNOTAVAIL;
1633
1634	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1635
1636	spin_lock_irq(&cp->lock);
1637
1638	cpw8_f(Cfg9346, Cfg9346_Unlock);
1639	cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1640	cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1641	cpw8_f(Cfg9346, Cfg9346_Lock);
1642
1643	spin_unlock_irq(&cp->lock);
1644
1645	return 0;
1646}
1647
1648/* Serial EEPROM section. */
1649
1650/*  EEPROM_Ctrl bits. */
1651#define EE_SHIFT_CLK	0x04	/* EEPROM shift clock. */
1652#define EE_CS			0x08	/* EEPROM chip select. */
1653#define EE_DATA_WRITE	0x02	/* EEPROM chip data in. */
1654#define EE_WRITE_0		0x00
1655#define EE_WRITE_1		0x02
1656#define EE_DATA_READ	0x01	/* EEPROM chip data out. */
1657#define EE_ENB			(0x80 | EE_CS)
1658
1659/* Delay between EEPROM clock transitions.
1660   No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1661 */
1662
1663#define eeprom_delay()	readb(ee_addr)
1664
1665/* The EEPROM commands include the alway-set leading bit. */
1666#define EE_EXTEND_CMD	(4)
1667#define EE_WRITE_CMD	(5)
1668#define EE_READ_CMD		(6)
1669#define EE_ERASE_CMD	(7)
1670
1671#define EE_EWDS_ADDR	(0)
1672#define EE_WRAL_ADDR	(1)
1673#define EE_ERAL_ADDR	(2)
1674#define EE_EWEN_ADDR	(3)
1675
1676#define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1677
1678static void eeprom_cmd_start(void __iomem *ee_addr)
1679{
1680	writeb (EE_ENB & ~EE_CS, ee_addr);
1681	writeb (EE_ENB, ee_addr);
1682	eeprom_delay ();
1683}
1684
1685static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1686{
1687	int i;
1688
1689	/* Shift the command bits out. */
1690	for (i = cmd_len - 1; i >= 0; i--) {
1691		int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1692		writeb (EE_ENB | dataval, ee_addr);
1693		eeprom_delay ();
1694		writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1695		eeprom_delay ();
1696	}
1697	writeb (EE_ENB, ee_addr);
1698	eeprom_delay ();
1699}
1700
1701static void eeprom_cmd_end(void __iomem *ee_addr)
1702{
1703	writeb(0, ee_addr);
1704	eeprom_delay ();
1705}
1706
1707static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1708			      int addr_len)
1709{
1710	int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1711
1712	eeprom_cmd_start(ee_addr);
1713	eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1714	eeprom_cmd_end(ee_addr);
1715}
1716
1717static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1718{
1719	int i;
1720	u16 retval = 0;
1721	void __iomem *ee_addr = ioaddr + Cfg9346;
1722	int read_cmd = location | (EE_READ_CMD << addr_len);
1723
1724	eeprom_cmd_start(ee_addr);
1725	eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1726
1727	for (i = 16; i > 0; i--) {
1728		writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1729		eeprom_delay ();
1730		retval =
1731		    (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1732				     0);
1733		writeb (EE_ENB, ee_addr);
1734		eeprom_delay ();
1735	}
1736
1737	eeprom_cmd_end(ee_addr);
1738
1739	return retval;
1740}
1741
1742static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1743			 int addr_len)
1744{
1745	int i;
1746	void __iomem *ee_addr = ioaddr + Cfg9346;
1747	int write_cmd = location | (EE_WRITE_CMD << addr_len);
1748
1749	eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1750
1751	eeprom_cmd_start(ee_addr);
1752	eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1753	eeprom_cmd(ee_addr, val, 16);
1754	eeprom_cmd_end(ee_addr);
1755
1756	eeprom_cmd_start(ee_addr);
1757	for (i = 0; i < 20000; i++)
1758		if (readb(ee_addr) & EE_DATA_READ)
1759			break;
1760	eeprom_cmd_end(ee_addr);
1761
1762	eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1763}
1764
1765static int cp_get_eeprom_len(struct net_device *dev)
1766{
1767	struct cp_private *cp = netdev_priv(dev);
1768	int size;
1769
1770	spin_lock_irq(&cp->lock);
1771	size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1772	spin_unlock_irq(&cp->lock);
1773
1774	return size;
1775}
1776
1777static int cp_get_eeprom(struct net_device *dev,
1778			 struct ethtool_eeprom *eeprom, u8 *data)
1779{
1780	struct cp_private *cp = netdev_priv(dev);
1781	unsigned int addr_len;
1782	u16 val;
1783	u32 offset = eeprom->offset >> 1;
1784	u32 len = eeprom->len;
1785	u32 i = 0;
1786
1787	eeprom->magic = CP_EEPROM_MAGIC;
1788
1789	spin_lock_irq(&cp->lock);
1790
1791	addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1792
1793	if (eeprom->offset & 1) {
1794		val = read_eeprom(cp->regs, offset, addr_len);
1795		data[i++] = (u8)(val >> 8);
1796		offset++;
1797	}
1798
1799	while (i < len - 1) {
1800		val = read_eeprom(cp->regs, offset, addr_len);
1801		data[i++] = (u8)val;
1802		data[i++] = (u8)(val >> 8);
1803		offset++;
1804	}
1805
1806	if (i < len) {
1807		val = read_eeprom(cp->regs, offset, addr_len);
1808		data[i] = (u8)val;
1809	}
1810
1811	spin_unlock_irq(&cp->lock);
1812	return 0;
1813}
1814
1815static int cp_set_eeprom(struct net_device *dev,
1816			 struct ethtool_eeprom *eeprom, u8 *data)
1817{
1818	struct cp_private *cp = netdev_priv(dev);
1819	unsigned int addr_len;
1820	u16 val;
1821	u32 offset = eeprom->offset >> 1;
1822	u32 len = eeprom->len;
1823	u32 i = 0;
1824
1825	if (eeprom->magic != CP_EEPROM_MAGIC)
1826		return -EINVAL;
1827
1828	spin_lock_irq(&cp->lock);
1829
1830	addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1831
1832	if (eeprom->offset & 1) {
1833		val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1834		val |= (u16)data[i++] << 8;
1835		write_eeprom(cp->regs, offset, val, addr_len);
1836		offset++;
1837	}
1838
1839	while (i < len - 1) {
1840		val = (u16)data[i++];
1841		val |= (u16)data[i++] << 8;
1842		write_eeprom(cp->regs, offset, val, addr_len);
1843		offset++;
1844	}
1845
1846	if (i < len) {
1847		val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1848		val |= (u16)data[i];
1849		write_eeprom(cp->regs, offset, val, addr_len);
1850	}
1851
1852	spin_unlock_irq(&cp->lock);
1853	return 0;
1854}
1855
1856/* Put the board into D3cold state and wait for WakeUp signal */
1857static void cp_set_d3_state (struct cp_private *cp)
1858{
1859	pci_enable_wake(cp->pdev, PCI_D0, 1); /* Enable PME# generation */
1860	pci_set_power_state (cp->pdev, PCI_D3hot);
1861}
1862
 
 
 
 
 
 
 
 
 
1863static const struct net_device_ops cp_netdev_ops = {
1864	.ndo_open		= cp_open,
1865	.ndo_stop		= cp_close,
1866	.ndo_validate_addr	= eth_validate_addr,
1867	.ndo_set_mac_address 	= cp_set_mac_address,
1868	.ndo_set_rx_mode	= cp_set_rx_mode,
1869	.ndo_get_stats		= cp_get_stats,
1870	.ndo_do_ioctl		= cp_ioctl,
1871	.ndo_start_xmit		= cp_start_xmit,
1872	.ndo_tx_timeout		= cp_tx_timeout,
1873	.ndo_set_features	= cp_set_features,
1874	.ndo_change_mtu		= cp_change_mtu,
 
1875
1876#ifdef CONFIG_NET_POLL_CONTROLLER
1877	.ndo_poll_controller	= cp_poll_controller,
1878#endif
1879};
1880
1881static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1882{
1883	struct net_device *dev;
1884	struct cp_private *cp;
1885	int rc;
1886	void __iomem *regs;
1887	resource_size_t pciaddr;
1888	unsigned int addr_len, i, pci_using_dac;
 
1889
1890#ifndef MODULE
1891	static int version_printed;
1892	if (version_printed++ == 0)
1893		pr_info("%s", version);
1894#endif
1895
1896	if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1897	    pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1898		dev_info(&pdev->dev,
1899			 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1900			 pdev->vendor, pdev->device, pdev->revision);
1901		return -ENODEV;
1902	}
1903
1904	dev = alloc_etherdev(sizeof(struct cp_private));
1905	if (!dev)
1906		return -ENOMEM;
1907	SET_NETDEV_DEV(dev, &pdev->dev);
1908
1909	cp = netdev_priv(dev);
1910	cp->pdev = pdev;
1911	cp->dev = dev;
1912	cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1913	spin_lock_init (&cp->lock);
1914	cp->mii_if.dev = dev;
1915	cp->mii_if.mdio_read = mdio_read;
1916	cp->mii_if.mdio_write = mdio_write;
1917	cp->mii_if.phy_id = CP_INTERNAL_PHY;
1918	cp->mii_if.phy_id_mask = 0x1f;
1919	cp->mii_if.reg_num_mask = 0x1f;
1920	cp_set_rxbufsize(cp);
1921
1922	rc = pci_enable_device(pdev);
1923	if (rc)
1924		goto err_out_free;
1925
1926	rc = pci_set_mwi(pdev);
1927	if (rc)
1928		goto err_out_disable;
1929
1930	rc = pci_request_regions(pdev, DRV_NAME);
1931	if (rc)
1932		goto err_out_mwi;
1933
1934	pciaddr = pci_resource_start(pdev, 1);
1935	if (!pciaddr) {
1936		rc = -EIO;
1937		dev_err(&pdev->dev, "no MMIO resource\n");
1938		goto err_out_res;
1939	}
1940	if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1941		rc = -EIO;
1942		dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1943		       (unsigned long long)pci_resource_len(pdev, 1));
1944		goto err_out_res;
1945	}
1946
1947	/* Configure DMA attributes. */
1948	if ((sizeof(dma_addr_t) > 4) &&
1949	    !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1950	    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1951		pci_using_dac = 1;
1952	} else {
1953		pci_using_dac = 0;
1954
1955		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1956		if (rc) {
1957			dev_err(&pdev->dev,
1958				"No usable DMA configuration, aborting\n");
1959			goto err_out_res;
1960		}
1961		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1962		if (rc) {
1963			dev_err(&pdev->dev,
1964				"No usable consistent DMA configuration, aborting\n");
1965			goto err_out_res;
1966		}
1967	}
1968
1969	cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1970		    PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1971
1972	dev->features |= NETIF_F_RXCSUM;
1973	dev->hw_features |= NETIF_F_RXCSUM;
1974
1975	regs = ioremap(pciaddr, CP_REGS_SIZE);
1976	if (!regs) {
1977		rc = -EIO;
1978		dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1979			(unsigned long long)pci_resource_len(pdev, 1),
1980		       (unsigned long long)pciaddr);
1981		goto err_out_res;
1982	}
1983	cp->regs = regs;
1984
1985	cp_stop_hw(cp);
1986
1987	/* read MAC address from EEPROM */
1988	addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1989	for (i = 0; i < 3; i++)
1990		((__le16 *) (dev->dev_addr))[i] =
1991		    cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1992
1993	dev->netdev_ops = &cp_netdev_ops;
1994	netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1995	dev->ethtool_ops = &cp_ethtool_ops;
1996	dev->watchdog_timeo = TX_TIMEOUT;
1997
1998	dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
 
1999
2000	if (pci_using_dac)
2001		dev->features |= NETIF_F_HIGHDMA;
2002
2003	/* disabled by default until verified */
2004	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2005		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2006	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2007		NETIF_F_HIGHDMA;
2008
 
 
 
 
2009	rc = register_netdev(dev);
2010	if (rc)
2011		goto err_out_iomap;
2012
2013	netdev_info(dev, "RTL-8139C+ at 0x%p, %pM, IRQ %d\n",
2014		    regs, dev->dev_addr, pdev->irq);
2015
2016	pci_set_drvdata(pdev, dev);
2017
2018	/* enable busmastering and memory-write-invalidate */
2019	pci_set_master(pdev);
2020
2021	if (cp->wol_enabled)
2022		cp_set_d3_state (cp);
2023
2024	return 0;
2025
2026err_out_iomap:
2027	iounmap(regs);
2028err_out_res:
2029	pci_release_regions(pdev);
2030err_out_mwi:
2031	pci_clear_mwi(pdev);
2032err_out_disable:
2033	pci_disable_device(pdev);
2034err_out_free:
2035	free_netdev(dev);
2036	return rc;
2037}
2038
2039static void cp_remove_one (struct pci_dev *pdev)
2040{
2041	struct net_device *dev = pci_get_drvdata(pdev);
2042	struct cp_private *cp = netdev_priv(dev);
2043
2044	unregister_netdev(dev);
2045	iounmap(cp->regs);
2046	if (cp->wol_enabled)
2047		pci_set_power_state (pdev, PCI_D0);
2048	pci_release_regions(pdev);
2049	pci_clear_mwi(pdev);
2050	pci_disable_device(pdev);
2051	free_netdev(dev);
2052}
2053
2054#ifdef CONFIG_PM
2055static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2056{
2057	struct net_device *dev = pci_get_drvdata(pdev);
2058	struct cp_private *cp = netdev_priv(dev);
2059	unsigned long flags;
2060
2061	if (!netif_running(dev))
2062		return 0;
2063
2064	netif_device_detach (dev);
2065	netif_stop_queue (dev);
2066
2067	spin_lock_irqsave (&cp->lock, flags);
2068
2069	/* Disable Rx and Tx */
2070	cpw16 (IntrMask, 0);
2071	cpw8  (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2072
2073	spin_unlock_irqrestore (&cp->lock, flags);
2074
2075	pci_save_state(pdev);
2076	pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2077	pci_set_power_state(pdev, pci_choose_state(pdev, state));
2078
2079	return 0;
2080}
2081
2082static int cp_resume (struct pci_dev *pdev)
2083{
2084	struct net_device *dev = pci_get_drvdata (pdev);
2085	struct cp_private *cp = netdev_priv(dev);
2086	unsigned long flags;
2087
2088	if (!netif_running(dev))
2089		return 0;
2090
2091	netif_device_attach (dev);
2092
2093	pci_set_power_state(pdev, PCI_D0);
2094	pci_restore_state(pdev);
2095	pci_enable_wake(pdev, PCI_D0, 0);
2096
2097	/* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2098	cp_init_rings_index (cp);
2099	cp_init_hw (cp);
2100	cp_enable_irq(cp);
2101	netif_start_queue (dev);
2102
2103	spin_lock_irqsave (&cp->lock, flags);
2104
2105	mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2106
2107	spin_unlock_irqrestore (&cp->lock, flags);
2108
2109	return 0;
2110}
2111#endif /* CONFIG_PM */
 
 
 
 
 
 
 
 
2112
2113static struct pci_driver cp_driver = {
2114	.name         = DRV_NAME,
2115	.id_table     = cp_pci_tbl,
2116	.probe        =	cp_init_one,
2117	.remove       = cp_remove_one,
2118#ifdef CONFIG_PM
2119	.resume       = cp_resume,
2120	.suspend      = cp_suspend,
2121#endif
2122};
2123
2124static int __init cp_init (void)
2125{
2126#ifdef MODULE
2127	pr_info("%s", version);
2128#endif
2129	return pci_register_driver(&cp_driver);
2130}
2131
2132static void __exit cp_exit (void)
2133{
2134	pci_unregister_driver (&cp_driver);
2135}
2136
2137module_init(cp_init);
2138module_exit(cp_exit);