Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Marvell Octeon EP (EndPoint) Ethernet Driver
   3 *
   4 * Copyright (C) 2020 Marvell.
   5 *
   6 */
   7
   8#include <linux/types.h>
   9#include <linux/module.h>
  10#include <linux/pci.h>
  11#include <linux/netdevice.h>
  12#include <linux/etherdevice.h>
  13#include <linux/rtnetlink.h>
  14#include <linux/vmalloc.h>
  15
  16#include "octep_config.h"
  17#include "octep_main.h"
  18#include "octep_ctrl_net.h"
  19#include "octep_pfvf_mbox.h"
  20
  21#define OCTEP_INTR_POLL_TIME_MSECS    100
  22struct workqueue_struct *octep_wq;
  23
  24/* Supported Devices */
  25static const struct pci_device_id octep_pci_id_tbl[] = {
  26	{PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CN98_PF)},
  27	{PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CN93_PF)},
  28	{PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CNF95N_PF)},
  29	{PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CN10KA_PF)},
  30	{PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CNF10KA_PF)},
  31	{PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CNF10KB_PF)},
  32	{PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CN10KB_PF)},
  33	{0, },
  34};
  35MODULE_DEVICE_TABLE(pci, octep_pci_id_tbl);
  36
  37MODULE_AUTHOR("Veerasenareddy Burru <vburru@marvell.com>");
  38MODULE_DESCRIPTION(OCTEP_DRV_STRING);
  39MODULE_LICENSE("GPL");
  40
  41/**
  42 * octep_alloc_ioq_vectors() - Allocate Tx/Rx Queue interrupt info.
  43 *
  44 * @oct: Octeon device private data structure.
  45 *
  46 * Allocate resources to hold per Tx/Rx queue interrupt info.
  47 * This is the information passed to interrupt handler, from which napi poll
  48 * is scheduled and includes quick access to private data of Tx/Rx queue
  49 * corresponding to the interrupt being handled.
  50 *
  51 * Return: 0, on successful allocation of resources for all queue interrupts.
  52 *         -1, if failed to allocate any resource.
  53 */
  54static int octep_alloc_ioq_vectors(struct octep_device *oct)
  55{
  56	int i;
  57	struct octep_ioq_vector *ioq_vector;
  58
  59	for (i = 0; i < oct->num_oqs; i++) {
  60		oct->ioq_vector[i] = vzalloc(sizeof(*oct->ioq_vector[i]));
  61		if (!oct->ioq_vector[i])
  62			goto free_ioq_vector;
  63
  64		ioq_vector = oct->ioq_vector[i];
  65		ioq_vector->iq = oct->iq[i];
  66		ioq_vector->oq = oct->oq[i];
  67		ioq_vector->octep_dev = oct;
  68	}
  69
  70	dev_info(&oct->pdev->dev, "Allocated %d IOQ vectors\n", oct->num_oqs);
  71	return 0;
  72
  73free_ioq_vector:
  74	while (i) {
  75		i--;
  76		vfree(oct->ioq_vector[i]);
  77		oct->ioq_vector[i] = NULL;
  78	}
  79	return -1;
  80}
  81
  82/**
  83 * octep_free_ioq_vectors() - Free Tx/Rx Queue interrupt vector info.
  84 *
  85 * @oct: Octeon device private data structure.
  86 */
  87static void octep_free_ioq_vectors(struct octep_device *oct)
  88{
  89	int i;
  90
  91	for (i = 0; i < oct->num_oqs; i++) {
  92		if (oct->ioq_vector[i]) {
  93			vfree(oct->ioq_vector[i]);
  94			oct->ioq_vector[i] = NULL;
  95		}
  96	}
  97	netdev_info(oct->netdev, "Freed IOQ Vectors\n");
  98}
  99
 100/**
 101 * octep_enable_msix_range() - enable MSI-x interrupts.
 102 *
 103 * @oct: Octeon device private data structure.
 104 *
 105 * Allocate and enable all MSI-x interrupts (queue and non-queue interrupts)
 106 * for the Octeon device.
 107 *
 108 * Return: 0, on successfully enabling all MSI-x interrupts.
 109 *         -1, if failed to enable any MSI-x interrupt.
 110 */
 111static int octep_enable_msix_range(struct octep_device *oct)
 112{
 113	int num_msix, msix_allocated;
 114	int i;
 115
 116	/* Generic interrupts apart from input/output queues */
 117	num_msix = oct->num_oqs + CFG_GET_NON_IOQ_MSIX(oct->conf);
 118	oct->msix_entries = kcalloc(num_msix,
 119				    sizeof(struct msix_entry), GFP_KERNEL);
 120	if (!oct->msix_entries)
 121		goto msix_alloc_err;
 122
 123	for (i = 0; i < num_msix; i++)
 124		oct->msix_entries[i].entry = i;
 125
 126	msix_allocated = pci_enable_msix_range(oct->pdev, oct->msix_entries,
 127					       num_msix, num_msix);
 128	if (msix_allocated != num_msix) {
 129		dev_err(&oct->pdev->dev,
 130			"Failed to enable %d msix irqs; got only %d\n",
 131			num_msix, msix_allocated);
 132		goto enable_msix_err;
 133	}
 134	oct->num_irqs = msix_allocated;
 135	dev_info(&oct->pdev->dev, "MSI-X enabled successfully\n");
 136
 137	return 0;
 138
 139enable_msix_err:
 140	if (msix_allocated > 0)
 141		pci_disable_msix(oct->pdev);
 142	kfree(oct->msix_entries);
 143	oct->msix_entries = NULL;
 144msix_alloc_err:
 145	return -1;
 146}
 147
 148/**
 149 * octep_disable_msix() - disable MSI-x interrupts.
 150 *
 151 * @oct: Octeon device private data structure.
 152 *
 153 * Disable MSI-x on the Octeon device.
 154 */
 155static void octep_disable_msix(struct octep_device *oct)
 156{
 157	pci_disable_msix(oct->pdev);
 158	kfree(oct->msix_entries);
 159	oct->msix_entries = NULL;
 160	dev_info(&oct->pdev->dev, "Disabled MSI-X\n");
 161}
 162
 163/**
 164 * octep_mbox_intr_handler() - common handler for pfvf mbox interrupts.
 165 *
 166 * @irq: Interrupt number.
 167 * @data: interrupt data.
 168 *
 169 * this is common handler for pfvf mbox interrupts.
 170 */
 171static irqreturn_t octep_mbox_intr_handler(int irq, void *data)
 172{
 173	struct octep_device *oct = data;
 174
 175	return oct->hw_ops.mbox_intr_handler(oct);
 176}
 177
 178/**
 179 * octep_oei_intr_handler() - common handler for output endpoint interrupts.
 180 *
 181 * @irq: Interrupt number.
 182 * @data: interrupt data.
 183 *
 184 * this is common handler for all output endpoint interrupts.
 185 */
 186static irqreturn_t octep_oei_intr_handler(int irq, void *data)
 187{
 188	struct octep_device *oct = data;
 189
 190	return oct->hw_ops.oei_intr_handler(oct);
 191}
 192
 193/**
 194 * octep_ire_intr_handler() - common handler for input ring error interrupts.
 195 *
 196 * @irq: Interrupt number.
 197 * @data: interrupt data.
 198 *
 199 * this is common handler for input ring error interrupts.
 200 */
 201static irqreturn_t octep_ire_intr_handler(int irq, void *data)
 202{
 203	struct octep_device *oct = data;
 204
 205	return oct->hw_ops.ire_intr_handler(oct);
 206}
 207
 208/**
 209 * octep_ore_intr_handler() - common handler for output ring error interrupts.
 210 *
 211 * @irq: Interrupt number.
 212 * @data: interrupt data.
 213 *
 214 * this is common handler for output ring error interrupts.
 215 */
 216static irqreturn_t octep_ore_intr_handler(int irq, void *data)
 217{
 218	struct octep_device *oct = data;
 219
 220	return oct->hw_ops.ore_intr_handler(oct);
 221}
 222
 223/**
 224 * octep_vfire_intr_handler() - common handler for vf input ring error interrupts.
 225 *
 226 * @irq: Interrupt number.
 227 * @data: interrupt data.
 228 *
 229 * this is common handler for vf input ring error interrupts.
 230 */
 231static irqreturn_t octep_vfire_intr_handler(int irq, void *data)
 232{
 233	struct octep_device *oct = data;
 234
 235	return oct->hw_ops.vfire_intr_handler(oct);
 236}
 237
 238/**
 239 * octep_vfore_intr_handler() - common handler for vf output ring error interrupts.
 240 *
 241 * @irq: Interrupt number.
 242 * @data: interrupt data.
 243 *
 244 * this is common handler for vf output ring error interrupts.
 245 */
 246static irqreturn_t octep_vfore_intr_handler(int irq, void *data)
 247{
 248	struct octep_device *oct = data;
 249
 250	return oct->hw_ops.vfore_intr_handler(oct);
 251}
 252
 253/**
 254 * octep_dma_intr_handler() - common handler for dpi dma related interrupts.
 255 *
 256 * @irq: Interrupt number.
 257 * @data: interrupt data.
 258 *
 259 * this is common handler for dpi dma related interrupts.
 260 */
 261static irqreturn_t octep_dma_intr_handler(int irq, void *data)
 262{
 263	struct octep_device *oct = data;
 264
 265	return oct->hw_ops.dma_intr_handler(oct);
 266}
 267
 268/**
 269 * octep_dma_vf_intr_handler() - common handler for dpi dma transaction error interrupts for VFs.
 270 *
 271 * @irq: Interrupt number.
 272 * @data: interrupt data.
 273 *
 274 * this is common handler for dpi dma transaction error interrupts for VFs.
 275 */
 276static irqreturn_t octep_dma_vf_intr_handler(int irq, void *data)
 277{
 278	struct octep_device *oct = data;
 279
 280	return oct->hw_ops.dma_vf_intr_handler(oct);
 281}
 282
 283/**
 284 * octep_pp_vf_intr_handler() - common handler for pp transaction error interrupts for VFs.
 285 *
 286 * @irq: Interrupt number.
 287 * @data: interrupt data.
 288 *
 289 * this is common handler for pp transaction error interrupts for VFs.
 290 */
 291static irqreturn_t octep_pp_vf_intr_handler(int irq, void *data)
 292{
 293	struct octep_device *oct = data;
 294
 295	return oct->hw_ops.pp_vf_intr_handler(oct);
 296}
 297
 298/**
 299 * octep_misc_intr_handler() - common handler for mac related interrupts.
 300 *
 301 * @irq: Interrupt number.
 302 * @data: interrupt data.
 303 *
 304 * this is common handler for mac related interrupts.
 305 */
 306static irqreturn_t octep_misc_intr_handler(int irq, void *data)
 307{
 308	struct octep_device *oct = data;
 309
 310	return oct->hw_ops.misc_intr_handler(oct);
 311}
 312
 313/**
 314 * octep_rsvd_intr_handler() - common handler for reserved interrupts (future use).
 315 *
 316 * @irq: Interrupt number.
 317 * @data: interrupt data.
 318 *
 319 * this is common handler for all reserved interrupts.
 320 */
 321static irqreturn_t octep_rsvd_intr_handler(int irq, void *data)
 322{
 323	struct octep_device *oct = data;
 324
 325	return oct->hw_ops.rsvd_intr_handler(oct);
 326}
 327
 328/**
 329 * octep_ioq_intr_handler() - handler for all Tx/Rx queue interrupts.
 330 *
 331 * @irq: Interrupt number.
 332 * @data: interrupt data contains pointers to Tx/Rx queue private data
 333 *         and correspong NAPI context.
 334 *
 335 * this is common handler for all non-queue (generic) interrupts.
 336 */
 337static irqreturn_t octep_ioq_intr_handler(int irq, void *data)
 338{
 339	struct octep_ioq_vector *ioq_vector = data;
 340	struct octep_device *oct = ioq_vector->octep_dev;
 341
 342	return oct->hw_ops.ioq_intr_handler(ioq_vector);
 343}
 344
 345/**
 346 * octep_request_irqs() - Register interrupt handlers.
 347 *
 348 * @oct: Octeon device private data structure.
 349 *
 350 * Register handlers for all queue and non-queue interrupts.
 351 *
 352 * Return: 0, on successful registration of all interrupt handlers.
 353 *         -1, on any error.
 354 */
 355static int octep_request_irqs(struct octep_device *oct)
 356{
 357	struct net_device *netdev = oct->netdev;
 358	struct octep_ioq_vector *ioq_vector;
 359	struct msix_entry *msix_entry;
 360	char **non_ioq_msix_names;
 361	int num_non_ioq_msix;
 362	int ret, i, j;
 363
 364	num_non_ioq_msix = CFG_GET_NON_IOQ_MSIX(oct->conf);
 365	non_ioq_msix_names = CFG_GET_NON_IOQ_MSIX_NAMES(oct->conf);
 366
 367	oct->non_ioq_irq_names = kcalloc(num_non_ioq_msix,
 368					 OCTEP_MSIX_NAME_SIZE, GFP_KERNEL);
 369	if (!oct->non_ioq_irq_names)
 370		goto alloc_err;
 371
 372	/* First few MSI-X interrupts are non-queue interrupts */
 373	for (i = 0; i < num_non_ioq_msix; i++) {
 374		char *irq_name;
 375
 376		irq_name = &oct->non_ioq_irq_names[i * OCTEP_MSIX_NAME_SIZE];
 377		msix_entry = &oct->msix_entries[i];
 378
 379		snprintf(irq_name, OCTEP_MSIX_NAME_SIZE,
 380			 "%s-%s", netdev->name, non_ioq_msix_names[i]);
 381		if (!strncmp(non_ioq_msix_names[i], "epf_mbox_rint", strlen("epf_mbox_rint"))) {
 382			ret = request_irq(msix_entry->vector,
 383					  octep_mbox_intr_handler, 0,
 384					  irq_name, oct);
 385		} else if (!strncmp(non_ioq_msix_names[i], "epf_oei_rint",
 386			   strlen("epf_oei_rint"))) {
 387			ret = request_irq(msix_entry->vector,
 388					  octep_oei_intr_handler, 0,
 389					  irq_name, oct);
 390		} else if (!strncmp(non_ioq_msix_names[i], "epf_ire_rint",
 391			   strlen("epf_ire_rint"))) {
 392			ret = request_irq(msix_entry->vector,
 393					  octep_ire_intr_handler, 0,
 394					  irq_name, oct);
 395		} else if (!strncmp(non_ioq_msix_names[i], "epf_ore_rint",
 396			   strlen("epf_ore_rint"))) {
 397			ret = request_irq(msix_entry->vector,
 398					  octep_ore_intr_handler, 0,
 399					  irq_name, oct);
 400		} else if (!strncmp(non_ioq_msix_names[i], "epf_vfire_rint",
 401			   strlen("epf_vfire_rint"))) {
 402			ret = request_irq(msix_entry->vector,
 403					  octep_vfire_intr_handler, 0,
 404					  irq_name, oct);
 405		} else if (!strncmp(non_ioq_msix_names[i], "epf_vfore_rint",
 406			   strlen("epf_vfore_rint"))) {
 407			ret = request_irq(msix_entry->vector,
 408					  octep_vfore_intr_handler, 0,
 409					  irq_name, oct);
 410		} else if (!strncmp(non_ioq_msix_names[i], "epf_dma_rint",
 411			   strlen("epf_dma_rint"))) {
 412			ret = request_irq(msix_entry->vector,
 413					  octep_dma_intr_handler, 0,
 414					  irq_name, oct);
 415		} else if (!strncmp(non_ioq_msix_names[i], "epf_dma_vf_rint",
 416			   strlen("epf_dma_vf_rint"))) {
 417			ret = request_irq(msix_entry->vector,
 418					  octep_dma_vf_intr_handler, 0,
 419					  irq_name, oct);
 420		} else if (!strncmp(non_ioq_msix_names[i], "epf_pp_vf_rint",
 421			   strlen("epf_pp_vf_rint"))) {
 422			ret = request_irq(msix_entry->vector,
 423					  octep_pp_vf_intr_handler, 0,
 424					  irq_name, oct);
 425		} else if (!strncmp(non_ioq_msix_names[i], "epf_misc_rint",
 426			   strlen("epf_misc_rint"))) {
 427			ret = request_irq(msix_entry->vector,
 428					  octep_misc_intr_handler, 0,
 429					  irq_name, oct);
 430		} else {
 431			ret = request_irq(msix_entry->vector,
 432					  octep_rsvd_intr_handler, 0,
 433					  irq_name, oct);
 434		}
 435
 436		if (ret) {
 437			netdev_err(netdev,
 438				   "request_irq failed for %s; err=%d",
 439				   irq_name, ret);
 440			goto non_ioq_irq_err;
 441		}
 442	}
 443
 444	/* Request IRQs for Tx/Rx queues */
 445	for (j = 0; j < oct->num_oqs; j++) {
 446		ioq_vector = oct->ioq_vector[j];
 447		msix_entry = &oct->msix_entries[j + num_non_ioq_msix];
 448
 449		snprintf(ioq_vector->name, sizeof(ioq_vector->name),
 450			 "%s-q%d", netdev->name, j);
 451		ret = request_irq(msix_entry->vector,
 452				  octep_ioq_intr_handler, 0,
 453				  ioq_vector->name, ioq_vector);
 454		if (ret) {
 455			netdev_err(netdev,
 456				   "request_irq failed for Q-%d; err=%d",
 457				   j, ret);
 458			goto ioq_irq_err;
 459		}
 460
 461		cpumask_set_cpu(j % num_online_cpus(),
 462				&ioq_vector->affinity_mask);
 463		irq_set_affinity_hint(msix_entry->vector,
 464				      &ioq_vector->affinity_mask);
 465	}
 466
 467	return 0;
 468ioq_irq_err:
 469	while (j) {
 470		--j;
 471		ioq_vector = oct->ioq_vector[j];
 472		msix_entry = &oct->msix_entries[j + num_non_ioq_msix];
 473
 474		irq_set_affinity_hint(msix_entry->vector, NULL);
 475		free_irq(msix_entry->vector, ioq_vector);
 476	}
 477non_ioq_irq_err:
 478	while (i) {
 479		--i;
 480		free_irq(oct->msix_entries[i].vector, oct);
 481	}
 482	kfree(oct->non_ioq_irq_names);
 483	oct->non_ioq_irq_names = NULL;
 484alloc_err:
 485	return -1;
 486}
 487
 488/**
 489 * octep_free_irqs() - free all registered interrupts.
 490 *
 491 * @oct: Octeon device private data structure.
 492 *
 493 * Free all queue and non-queue interrupts of the Octeon device.
 494 */
 495static void octep_free_irqs(struct octep_device *oct)
 496{
 497	int i;
 498
 499	/* First few MSI-X interrupts are non queue interrupts; free them */
 500	for (i = 0; i < CFG_GET_NON_IOQ_MSIX(oct->conf); i++)
 501		free_irq(oct->msix_entries[i].vector, oct);
 502	kfree(oct->non_ioq_irq_names);
 503
 504	/* Free IRQs for Input/Output (Tx/Rx) queues */
 505	for (i = CFG_GET_NON_IOQ_MSIX(oct->conf); i < oct->num_irqs; i++) {
 506		irq_set_affinity_hint(oct->msix_entries[i].vector, NULL);
 507		free_irq(oct->msix_entries[i].vector,
 508			 oct->ioq_vector[i - CFG_GET_NON_IOQ_MSIX(oct->conf)]);
 509	}
 510	netdev_info(oct->netdev, "IRQs freed\n");
 511}
 512
 513/**
 514 * octep_setup_irqs() - setup interrupts for the Octeon device.
 515 *
 516 * @oct: Octeon device private data structure.
 517 *
 518 * Allocate data structures to hold per interrupt information, allocate/enable
 519 * MSI-x interrupt and register interrupt handlers.
 520 *
 521 * Return: 0, on successful allocation and registration of all interrupts.
 522 *         -1, on any error.
 523 */
 524static int octep_setup_irqs(struct octep_device *oct)
 525{
 526	if (octep_alloc_ioq_vectors(oct))
 527		goto ioq_vector_err;
 528
 529	if (octep_enable_msix_range(oct))
 530		goto enable_msix_err;
 531
 532	if (octep_request_irqs(oct))
 533		goto request_irq_err;
 534
 535	return 0;
 536
 537request_irq_err:
 538	octep_disable_msix(oct);
 539enable_msix_err:
 540	octep_free_ioq_vectors(oct);
 541ioq_vector_err:
 542	return -1;
 543}
 544
 545/**
 546 * octep_clean_irqs() - free all interrupts and its resources.
 547 *
 548 * @oct: Octeon device private data structure.
 549 */
 550static void octep_clean_irqs(struct octep_device *oct)
 551{
 552	octep_free_irqs(oct);
 553	octep_disable_msix(oct);
 554	octep_free_ioq_vectors(oct);
 555}
 556
 557/**
 558 * octep_enable_ioq_irq() - Enable MSI-x interrupt of a Tx/Rx queue.
 559 *
 560 * @iq: Octeon Tx queue data structure.
 561 * @oq: Octeon Rx queue data structure.
 562 */
 563static void octep_enable_ioq_irq(struct octep_iq *iq, struct octep_oq *oq)
 564{
 565	u32 pkts_pend = oq->pkts_pending;
 566
 567	netdev_dbg(iq->netdev, "enabling intr for Q-%u\n", iq->q_no);
 568	if (iq->pkts_processed) {
 569		writel(iq->pkts_processed, iq->inst_cnt_reg);
 570		iq->pkt_in_done -= iq->pkts_processed;
 571		iq->pkts_processed = 0;
 572	}
 573	if (oq->last_pkt_count - pkts_pend) {
 574		writel(oq->last_pkt_count - pkts_pend, oq->pkts_sent_reg);
 575		oq->last_pkt_count = pkts_pend;
 576	}
 577
 578	/* Flush the previous wrties before writing to RESEND bit */
 579	wmb();
 580	writeq(1UL << OCTEP_OQ_INTR_RESEND_BIT, oq->pkts_sent_reg);
 581	writeq(1UL << OCTEP_IQ_INTR_RESEND_BIT, iq->inst_cnt_reg);
 582}
 583
 584/**
 585 * octep_napi_poll() - NAPI poll function for Tx/Rx.
 586 *
 587 * @napi: pointer to napi context.
 588 * @budget: max number of packets to be processed in single invocation.
 589 */
 590static int octep_napi_poll(struct napi_struct *napi, int budget)
 591{
 592	struct octep_ioq_vector *ioq_vector =
 593		container_of(napi, struct octep_ioq_vector, napi);
 594	u32 tx_pending, rx_done;
 595
 596	tx_pending = octep_iq_process_completions(ioq_vector->iq, budget);
 597	rx_done = octep_oq_process_rx(ioq_vector->oq, budget);
 598
 599	/* need more polling if tx completion processing is still pending or
 600	 * processed at least 'budget' number of rx packets.
 601	 */
 602	if (tx_pending || rx_done >= budget)
 603		return budget;
 604
 605	napi_complete(napi);
 606	octep_enable_ioq_irq(ioq_vector->iq, ioq_vector->oq);
 607	return rx_done;
 608}
 609
 610/**
 611 * octep_napi_add() - Add NAPI poll for all Tx/Rx queues.
 612 *
 613 * @oct: Octeon device private data structure.
 614 */
 615static void octep_napi_add(struct octep_device *oct)
 616{
 617	int i;
 618
 619	for (i = 0; i < oct->num_oqs; i++) {
 620		netdev_dbg(oct->netdev, "Adding NAPI on Q-%d\n", i);
 621		netif_napi_add(oct->netdev, &oct->ioq_vector[i]->napi,
 622			       octep_napi_poll);
 623		oct->oq[i]->napi = &oct->ioq_vector[i]->napi;
 624	}
 625}
 626
 627/**
 628 * octep_napi_delete() - delete NAPI poll callback for all Tx/Rx queues.
 629 *
 630 * @oct: Octeon device private data structure.
 631 */
 632static void octep_napi_delete(struct octep_device *oct)
 633{
 634	int i;
 635
 636	for (i = 0; i < oct->num_oqs; i++) {
 637		netdev_dbg(oct->netdev, "Deleting NAPI on Q-%d\n", i);
 638		netif_napi_del(&oct->ioq_vector[i]->napi);
 639		oct->oq[i]->napi = NULL;
 640	}
 641}
 642
 643/**
 644 * octep_napi_enable() - enable NAPI for all Tx/Rx queues.
 645 *
 646 * @oct: Octeon device private data structure.
 647 */
 648static void octep_napi_enable(struct octep_device *oct)
 649{
 650	int i;
 651
 652	for (i = 0; i < oct->num_oqs; i++) {
 653		netdev_dbg(oct->netdev, "Enabling NAPI on Q-%d\n", i);
 654		napi_enable(&oct->ioq_vector[i]->napi);
 655	}
 656}
 657
 658/**
 659 * octep_napi_disable() - disable NAPI for all Tx/Rx queues.
 660 *
 661 * @oct: Octeon device private data structure.
 662 */
 663static void octep_napi_disable(struct octep_device *oct)
 664{
 665	int i;
 666
 667	for (i = 0; i < oct->num_oqs; i++) {
 668		netdev_dbg(oct->netdev, "Disabling NAPI on Q-%d\n", i);
 669		napi_disable(&oct->ioq_vector[i]->napi);
 670	}
 671}
 672
 673static void octep_link_up(struct net_device *netdev)
 674{
 675	netif_carrier_on(netdev);
 676	netif_tx_start_all_queues(netdev);
 677}
 678
 679/**
 680 * octep_open() - start the octeon network device.
 681 *
 682 * @netdev: pointer to kernel network device.
 683 *
 684 * setup Tx/Rx queues, interrupts and enable hardware operation of Tx/Rx queues
 685 * and interrupts..
 686 *
 687 * Return: 0, on successfully setting up device and bring it up.
 688 *         -1, on any error.
 689 */
 690static int octep_open(struct net_device *netdev)
 691{
 692	struct octep_device *oct = netdev_priv(netdev);
 693	int err, ret;
 694
 695	netdev_info(netdev, "Starting netdev ...\n");
 696	netif_carrier_off(netdev);
 697
 698	oct->hw_ops.reset_io_queues(oct);
 699
 700	if (octep_setup_iqs(oct))
 701		goto setup_iq_err;
 702	if (octep_setup_oqs(oct))
 703		goto setup_oq_err;
 704	if (octep_setup_irqs(oct))
 705		goto setup_irq_err;
 706
 707	err = netif_set_real_num_tx_queues(netdev, oct->num_oqs);
 708	if (err)
 709		goto set_queues_err;
 710	err = netif_set_real_num_rx_queues(netdev, oct->num_iqs);
 711	if (err)
 712		goto set_queues_err;
 713
 714	octep_napi_add(oct);
 715	octep_napi_enable(oct);
 716
 717	oct->link_info.admin_up = 1;
 718	octep_ctrl_net_set_rx_state(oct, OCTEP_CTRL_NET_INVALID_VFID, true,
 719				    false);
 720	octep_ctrl_net_set_link_status(oct, OCTEP_CTRL_NET_INVALID_VFID, true,
 721				       false);
 722	oct->poll_non_ioq_intr = false;
 723
 724	/* Enable the input and output queues for this Octeon device */
 725	oct->hw_ops.enable_io_queues(oct);
 726
 727	/* Enable Octeon device interrupts */
 728	oct->hw_ops.enable_interrupts(oct);
 729
 730	octep_oq_dbell_init(oct);
 731
 732	ret = octep_ctrl_net_get_link_status(oct, OCTEP_CTRL_NET_INVALID_VFID);
 733	if (ret > 0)
 734		octep_link_up(netdev);
 735
 736	return 0;
 737
 738set_queues_err:
 739	octep_clean_irqs(oct);
 740setup_irq_err:
 741	octep_free_oqs(oct);
 742setup_oq_err:
 743	octep_free_iqs(oct);
 744setup_iq_err:
 745	return -1;
 746}
 747
 748/**
 749 * octep_stop() - stop the octeon network device.
 750 *
 751 * @netdev: pointer to kernel network device.
 752 *
 753 * stop the device Tx/Rx operations, bring down the link and
 754 * free up all resources allocated for Tx/Rx queues and interrupts.
 755 */
 756static int octep_stop(struct net_device *netdev)
 757{
 758	struct octep_device *oct = netdev_priv(netdev);
 759
 760	netdev_info(netdev, "Stopping the device ...\n");
 761
 762	octep_ctrl_net_set_link_status(oct, OCTEP_CTRL_NET_INVALID_VFID, false,
 763				       false);
 764	octep_ctrl_net_set_rx_state(oct, OCTEP_CTRL_NET_INVALID_VFID, false,
 765				    false);
 766
 767	/* Stop Tx from stack */
 768	netif_tx_stop_all_queues(netdev);
 769	netif_carrier_off(netdev);
 770	netif_tx_disable(netdev);
 771
 772	oct->link_info.admin_up = 0;
 773	oct->link_info.oper_up = 0;
 774
 775	oct->hw_ops.disable_interrupts(oct);
 776	octep_napi_disable(oct);
 777	octep_napi_delete(oct);
 778
 779	octep_clean_irqs(oct);
 780	octep_clean_iqs(oct);
 781
 782	oct->hw_ops.disable_io_queues(oct);
 783	oct->hw_ops.reset_io_queues(oct);
 784	octep_free_oqs(oct);
 785	octep_free_iqs(oct);
 786
 787	oct->poll_non_ioq_intr = true;
 788	queue_delayed_work(octep_wq, &oct->intr_poll_task,
 789			   msecs_to_jiffies(OCTEP_INTR_POLL_TIME_MSECS));
 790
 791	netdev_info(netdev, "Device stopped !!\n");
 792	return 0;
 793}
 794
 795/**
 796 * octep_iq_full_check() - check if a Tx queue is full.
 797 *
 798 * @iq: Octeon Tx queue data structure.
 799 *
 800 * Return: 0, if the Tx queue is not full.
 801 *         1, if the Tx queue is full.
 802 */
 803static inline int octep_iq_full_check(struct octep_iq *iq)
 804{
 805	if (likely((IQ_INSTR_SPACE(iq)) >
 806		   OCTEP_WAKE_QUEUE_THRESHOLD))
 807		return 0;
 808
 809	/* Stop the queue if unable to send */
 810	netif_stop_subqueue(iq->netdev, iq->q_no);
 811
 812	/* Allow for pending updates in write index
 813	 * from iq_process_completion in other cpus
 814	 * to reflect, in case queue gets free
 815	 * entries.
 816	 */
 817	smp_mb();
 818
 819	/* check again and restart the queue, in case NAPI has just freed
 820	 * enough Tx ring entries.
 821	 */
 822	if (unlikely(IQ_INSTR_SPACE(iq) >
 823		     OCTEP_WAKE_QUEUE_THRESHOLD)) {
 824		netif_start_subqueue(iq->netdev, iq->q_no);
 825		iq->stats.restart_cnt++;
 826		return 0;
 827	}
 828
 829	return 1;
 830}
 831
 832/**
 833 * octep_start_xmit() - Enqueue packet to Octoen hardware Tx Queue.
 834 *
 835 * @skb: packet skbuff pointer.
 836 * @netdev: kernel network device.
 837 *
 838 * Return: NETDEV_TX_BUSY, if Tx Queue is full.
 839 *         NETDEV_TX_OK, if successfully enqueued to hardware Tx queue.
 840 */
 841static netdev_tx_t octep_start_xmit(struct sk_buff *skb,
 842				    struct net_device *netdev)
 843{
 844	struct octep_device *oct = netdev_priv(netdev);
 845	netdev_features_t feat  = netdev->features;
 846	struct octep_tx_sglist_desc *sglist;
 847	struct octep_tx_buffer *tx_buffer;
 848	struct octep_tx_desc_hw *hw_desc;
 849	struct skb_shared_info *shinfo;
 850	struct octep_instr_hdr *ih;
 851	struct octep_iq *iq;
 852	skb_frag_t *frag;
 853	u16 nr_frags, si;
 854	int xmit_more;
 855	u16 q_no, wi;
 856
 857	if (skb_put_padto(skb, ETH_ZLEN))
 858		return NETDEV_TX_OK;
 859
 860	q_no = skb_get_queue_mapping(skb);
 861	if (q_no >= oct->num_iqs) {
 862		netdev_err(netdev, "Invalid Tx skb->queue_mapping=%d\n", q_no);
 863		q_no = q_no % oct->num_iqs;
 864	}
 865
 866	iq = oct->iq[q_no];
 867
 868	shinfo = skb_shinfo(skb);
 869	nr_frags = shinfo->nr_frags;
 870
 871	wi = iq->host_write_index;
 872	hw_desc = &iq->desc_ring[wi];
 873	hw_desc->ih64 = 0;
 874
 875	tx_buffer = iq->buff_info + wi;
 876	tx_buffer->skb = skb;
 877
 878	ih = &hw_desc->ih;
 879	ih->pkind = oct->conf->fw_info.pkind;
 880	ih->fsz = oct->conf->fw_info.fsz;
 881	ih->tlen = skb->len + ih->fsz;
 882
 883	if (!nr_frags) {
 884		tx_buffer->gather = 0;
 885		tx_buffer->dma = dma_map_single(iq->dev, skb->data,
 886						skb->len, DMA_TO_DEVICE);
 887		if (dma_mapping_error(iq->dev, tx_buffer->dma))
 888			goto dma_map_err;
 889		hw_desc->dptr = tx_buffer->dma;
 890	} else {
 891		/* Scatter/Gather */
 892		dma_addr_t dma;
 893		u16 len;
 894
 895		sglist = tx_buffer->sglist;
 896
 897		ih->gsz = nr_frags + 1;
 898		ih->gather = 1;
 899		tx_buffer->gather = 1;
 900
 901		len = skb_headlen(skb);
 902		dma = dma_map_single(iq->dev, skb->data, len, DMA_TO_DEVICE);
 903		if (dma_mapping_error(iq->dev, dma))
 904			goto dma_map_err;
 905
 906		memset(sglist, 0, OCTEP_SGLIST_SIZE_PER_PKT);
 907		sglist[0].len[3] = len;
 908		sglist[0].dma_ptr[0] = dma;
 909
 910		si = 1; /* entry 0 is main skb, mapped above */
 911		frag = &shinfo->frags[0];
 912		while (nr_frags--) {
 913			len = skb_frag_size(frag);
 914			dma = skb_frag_dma_map(iq->dev, frag, 0,
 915					       len, DMA_TO_DEVICE);
 916			if (dma_mapping_error(iq->dev, dma))
 917				goto dma_map_sg_err;
 918
 919			sglist[si >> 2].len[3 - (si & 3)] = len;
 920			sglist[si >> 2].dma_ptr[si & 3] = dma;
 921
 922			frag++;
 923			si++;
 924		}
 925		hw_desc->dptr = tx_buffer->sglist_dma;
 926	}
 927
 928	if (oct->conf->fw_info.tx_ol_flags) {
 929		if ((feat & (NETIF_F_TSO)) && (skb_is_gso(skb))) {
 930			hw_desc->txm.ol_flags = OCTEP_TX_OFFLOAD_CKSUM;
 931			hw_desc->txm.ol_flags |= OCTEP_TX_OFFLOAD_TSO;
 932			hw_desc->txm.gso_size =  skb_shinfo(skb)->gso_size;
 933			hw_desc->txm.gso_segs =  skb_shinfo(skb)->gso_segs;
 934		} else if (feat & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
 935			hw_desc->txm.ol_flags = OCTEP_TX_OFFLOAD_CKSUM;
 936		}
 937		/* due to ESR txm will be swapped by hw */
 938		hw_desc->txm64[0] = (__force u64)cpu_to_be64(hw_desc->txm64[0]);
 939	}
 940
 941	xmit_more = netdev_xmit_more();
 942
 943	__netdev_tx_sent_queue(iq->netdev_q, skb->len, xmit_more);
 944
 945	skb_tx_timestamp(skb);
 946	iq->fill_cnt++;
 947	wi++;
 948	iq->host_write_index = wi & iq->ring_size_mask;
 949
 950	/* octep_iq_full_check stops the queue and returns
 951	 * true if so, in case the queue has become full
 952	 * by inserting current packet. If so, we can
 953	 * go ahead and ring doorbell.
 954	 */
 955	if (!octep_iq_full_check(iq) && xmit_more &&
 956	    iq->fill_cnt < iq->fill_threshold)
 957		return NETDEV_TX_OK;
 958
 959	/* Flush the hw descriptor before writing to doorbell */
 960	wmb();
 961	/* Ring Doorbell to notify the NIC of new packets */
 962	writel(iq->fill_cnt, iq->doorbell_reg);
 963	iq->stats.instr_posted += iq->fill_cnt;
 964	iq->fill_cnt = 0;
 965	return NETDEV_TX_OK;
 966
 967dma_map_sg_err:
 968	if (si > 0) {
 969		dma_unmap_single(iq->dev, sglist[0].dma_ptr[0],
 970				 sglist[0].len[3], DMA_TO_DEVICE);
 971		sglist[0].len[3] = 0;
 972	}
 973	while (si > 1) {
 974		dma_unmap_page(iq->dev, sglist[si >> 2].dma_ptr[si & 3],
 975			       sglist[si >> 2].len[3 - (si & 3)], DMA_TO_DEVICE);
 976		sglist[si >> 2].len[3 - (si & 3)] = 0;
 977		si--;
 978	}
 979	tx_buffer->gather = 0;
 980dma_map_err:
 981	dev_kfree_skb_any(skb);
 982	return NETDEV_TX_OK;
 983}
 984
 985/**
 986 * octep_get_stats64() - Get Octeon network device statistics.
 987 *
 988 * @netdev: kernel network device.
 989 * @stats: pointer to stats structure to be filled in.
 990 */
 991static void octep_get_stats64(struct net_device *netdev,
 992			      struct rtnl_link_stats64 *stats)
 993{
 994	u64 tx_packets, tx_bytes, rx_packets, rx_bytes;
 995	struct octep_device *oct = netdev_priv(netdev);
 996	int q;
 997
 998	if (netif_running(netdev))
 999		octep_ctrl_net_get_if_stats(oct,
1000					    OCTEP_CTRL_NET_INVALID_VFID,
1001					    &oct->iface_rx_stats,
1002					    &oct->iface_tx_stats);
1003
1004	tx_packets = 0;
1005	tx_bytes = 0;
1006	rx_packets = 0;
1007	rx_bytes = 0;
1008	for (q = 0; q < oct->num_oqs; q++) {
1009		struct octep_iq *iq = oct->iq[q];
1010		struct octep_oq *oq = oct->oq[q];
1011
1012		tx_packets += iq->stats.instr_completed;
1013		tx_bytes += iq->stats.bytes_sent;
1014		rx_packets += oq->stats.packets;
1015		rx_bytes += oq->stats.bytes;
1016	}
1017	stats->tx_packets = tx_packets;
1018	stats->tx_bytes = tx_bytes;
1019	stats->rx_packets = rx_packets;
1020	stats->rx_bytes = rx_bytes;
1021	stats->multicast = oct->iface_rx_stats.mcast_pkts;
1022	stats->rx_errors = oct->iface_rx_stats.err_pkts;
1023	stats->collisions = oct->iface_tx_stats.xscol;
1024	stats->tx_fifo_errors = oct->iface_tx_stats.undflw;
1025}
1026
1027/**
1028 * octep_tx_timeout_task - work queue task to Handle Tx queue timeout.
1029 *
1030 * @work: pointer to Tx queue timeout work_struct
1031 *
1032 * Stop and start the device so that it frees up all queue resources
1033 * and restarts the queues, that potentially clears a Tx queue timeout
1034 * condition.
1035 **/
1036static void octep_tx_timeout_task(struct work_struct *work)
1037{
1038	struct octep_device *oct = container_of(work, struct octep_device,
1039						tx_timeout_task);
1040	struct net_device *netdev = oct->netdev;
1041
1042	rtnl_lock();
1043	if (netif_running(netdev)) {
1044		octep_stop(netdev);
1045		octep_open(netdev);
1046	}
1047	rtnl_unlock();
1048}
1049
1050/**
1051 * octep_tx_timeout() - Handle Tx Queue timeout.
1052 *
1053 * @netdev: pointer to kernel network device.
1054 * @txqueue: Timed out Tx queue number.
1055 *
1056 * Schedule a work to handle Tx queue timeout.
1057 */
1058static void octep_tx_timeout(struct net_device *netdev, unsigned int txqueue)
1059{
1060	struct octep_device *oct = netdev_priv(netdev);
1061
1062	queue_work(octep_wq, &oct->tx_timeout_task);
1063}
1064
1065static int octep_set_mac(struct net_device *netdev, void *p)
1066{
1067	struct octep_device *oct = netdev_priv(netdev);
1068	struct sockaddr *addr = (struct sockaddr *)p;
1069	int err;
1070
1071	if (!is_valid_ether_addr(addr->sa_data))
1072		return -EADDRNOTAVAIL;
1073
1074	err = octep_ctrl_net_set_mac_addr(oct, OCTEP_CTRL_NET_INVALID_VFID,
1075					  addr->sa_data, true);
1076	if (err)
1077		return err;
1078
1079	memcpy(oct->mac_addr, addr->sa_data, ETH_ALEN);
1080	eth_hw_addr_set(netdev, addr->sa_data);
1081
1082	return 0;
1083}
1084
1085static int octep_change_mtu(struct net_device *netdev, int new_mtu)
1086{
1087	struct octep_device *oct = netdev_priv(netdev);
1088	struct octep_iface_link_info *link_info;
1089	int err = 0;
1090
1091	link_info = &oct->link_info;
1092	if (link_info->mtu == new_mtu)
1093		return 0;
1094
1095	err = octep_ctrl_net_set_mtu(oct, OCTEP_CTRL_NET_INVALID_VFID, new_mtu,
1096				     true);
1097	if (!err) {
1098		oct->link_info.mtu = new_mtu;
1099		netdev->mtu = new_mtu;
1100	}
1101
1102	return err;
1103}
1104
1105static int octep_set_features(struct net_device *dev, netdev_features_t features)
1106{
1107	struct octep_ctrl_net_offloads offloads = { 0 };
1108	struct octep_device *oct = netdev_priv(dev);
1109	int err;
1110
1111	/* We only support features received from firmware */
1112	if ((features & dev->hw_features) != features)
1113		return -EINVAL;
1114
1115	if (features & NETIF_F_TSO)
1116		offloads.tx_offloads |= OCTEP_TX_OFFLOAD_TSO;
1117
1118	if (features & NETIF_F_TSO6)
1119		offloads.tx_offloads |= OCTEP_TX_OFFLOAD_TSO;
1120
1121	if (features & NETIF_F_IP_CSUM)
1122		offloads.tx_offloads |= OCTEP_TX_OFFLOAD_CKSUM;
1123
1124	if (features & NETIF_F_IPV6_CSUM)
1125		offloads.tx_offloads |= OCTEP_TX_OFFLOAD_CKSUM;
1126
1127	if (features & NETIF_F_RXCSUM)
1128		offloads.rx_offloads |= OCTEP_RX_OFFLOAD_CKSUM;
1129
1130	err = octep_ctrl_net_set_offloads(oct,
1131					  OCTEP_CTRL_NET_INVALID_VFID,
1132					  &offloads,
1133					  true);
1134	if (!err)
1135		dev->features = features;
1136
1137	return err;
1138}
1139
1140static const struct net_device_ops octep_netdev_ops = {
1141	.ndo_open                = octep_open,
1142	.ndo_stop                = octep_stop,
1143	.ndo_start_xmit          = octep_start_xmit,
1144	.ndo_get_stats64         = octep_get_stats64,
1145	.ndo_tx_timeout          = octep_tx_timeout,
1146	.ndo_set_mac_address     = octep_set_mac,
1147	.ndo_change_mtu          = octep_change_mtu,
1148	.ndo_set_features        = octep_set_features,
1149};
1150
1151/**
1152 * octep_intr_poll_task - work queue task to process non-ioq interrupts.
1153 *
1154 * @work: pointer to mbox work_struct
1155 *
1156 * Process non-ioq interrupts to handle control mailbox, pfvf mailbox.
1157 **/
1158static void octep_intr_poll_task(struct work_struct *work)
1159{
1160	struct octep_device *oct = container_of(work, struct octep_device,
1161						intr_poll_task.work);
1162
1163	if (!oct->poll_non_ioq_intr) {
1164		dev_info(&oct->pdev->dev, "Interrupt poll task stopped.\n");
1165		return;
1166	}
1167
1168	oct->hw_ops.poll_non_ioq_interrupts(oct);
1169	queue_delayed_work(octep_wq, &oct->intr_poll_task,
1170			   msecs_to_jiffies(OCTEP_INTR_POLL_TIME_MSECS));
1171}
1172
1173/**
1174 * octep_hb_timeout_task - work queue task to check firmware heartbeat.
1175 *
1176 * @work: pointer to hb work_struct
1177 *
1178 * Check for heartbeat miss count. Uninitialize oct device if miss count
1179 * exceeds configured max heartbeat miss count.
1180 *
1181 **/
1182static void octep_hb_timeout_task(struct work_struct *work)
1183{
1184	struct octep_device *oct = container_of(work, struct octep_device,
1185						hb_task.work);
1186
1187	int miss_cnt;
1188
1189	miss_cnt = atomic_inc_return(&oct->hb_miss_cnt);
1190	if (miss_cnt < oct->conf->fw_info.hb_miss_count) {
1191		queue_delayed_work(octep_wq, &oct->hb_task,
1192				   msecs_to_jiffies(oct->conf->fw_info.hb_interval));
1193		return;
1194	}
1195
1196	dev_err(&oct->pdev->dev, "Missed %u heartbeats. Uninitializing\n",
1197		miss_cnt);
1198	rtnl_lock();
1199	if (netif_running(oct->netdev))
1200		octep_stop(oct->netdev);
1201	rtnl_unlock();
1202}
1203
1204/**
1205 * octep_ctrl_mbox_task - work queue task to handle ctrl mbox messages.
1206 *
1207 * @work: pointer to ctrl mbox work_struct
1208 *
1209 * Poll ctrl mbox message queue and handle control messages from firmware.
1210 **/
1211static void octep_ctrl_mbox_task(struct work_struct *work)
1212{
1213	struct octep_device *oct = container_of(work, struct octep_device,
1214						ctrl_mbox_task);
1215
1216	octep_ctrl_net_recv_fw_messages(oct);
1217}
1218
1219static const char *octep_devid_to_str(struct octep_device *oct)
1220{
1221	switch (oct->chip_id) {
1222	case OCTEP_PCI_DEVICE_ID_CN98_PF:
1223		return "CN98XX";
1224	case OCTEP_PCI_DEVICE_ID_CN93_PF:
1225		return "CN93XX";
1226	case OCTEP_PCI_DEVICE_ID_CNF95N_PF:
1227		return "CNF95N";
1228	case OCTEP_PCI_DEVICE_ID_CN10KA_PF:
1229		return "CN10KA";
1230	case OCTEP_PCI_DEVICE_ID_CNF10KA_PF:
1231		return "CNF10KA";
1232	case OCTEP_PCI_DEVICE_ID_CNF10KB_PF:
1233		return "CNF10KB";
1234	case OCTEP_PCI_DEVICE_ID_CN10KB_PF:
1235		return "CN10KB";
1236	default:
1237		return "Unsupported";
1238	}
1239}
1240
1241/**
1242 * octep_device_setup() - Setup Octeon Device.
1243 *
1244 * @oct: Octeon device private data structure.
1245 *
1246 * Setup Octeon device hardware operations, configuration, etc ...
1247 */
1248int octep_device_setup(struct octep_device *oct)
1249{
1250	struct pci_dev *pdev = oct->pdev;
1251	int i, ret;
1252
1253	/* allocate memory for oct->conf */
1254	oct->conf = kzalloc(sizeof(*oct->conf), GFP_KERNEL);
1255	if (!oct->conf)
1256		return -ENOMEM;
1257
1258	/* Map BAR regions */
1259	for (i = 0; i < OCTEP_MMIO_REGIONS; i++) {
1260		oct->mmio[i].hw_addr =
1261			ioremap(pci_resource_start(oct->pdev, i * 2),
1262				pci_resource_len(oct->pdev, i * 2));
1263		if (!oct->mmio[i].hw_addr)
1264			goto unmap_prev;
1265
1266		oct->mmio[i].mapped = 1;
1267	}
1268
1269	oct->chip_id = pdev->device;
1270	oct->rev_id = pdev->revision;
1271	dev_info(&pdev->dev, "chip_id = 0x%x\n", pdev->device);
1272
1273	switch (oct->chip_id) {
1274	case OCTEP_PCI_DEVICE_ID_CN98_PF:
1275	case OCTEP_PCI_DEVICE_ID_CN93_PF:
1276	case OCTEP_PCI_DEVICE_ID_CNF95N_PF:
1277		dev_info(&pdev->dev, "Setting up OCTEON %s PF PASS%d.%d\n",
1278			 octep_devid_to_str(oct), OCTEP_MAJOR_REV(oct),
1279			 OCTEP_MINOR_REV(oct));
1280		octep_device_setup_cn93_pf(oct);
1281		break;
1282	case OCTEP_PCI_DEVICE_ID_CNF10KA_PF:
1283	case OCTEP_PCI_DEVICE_ID_CN10KA_PF:
1284	case OCTEP_PCI_DEVICE_ID_CNF10KB_PF:
1285	case OCTEP_PCI_DEVICE_ID_CN10KB_PF:
1286		dev_info(&pdev->dev, "Setting up OCTEON %s PF PASS%d.%d\n",
1287			 octep_devid_to_str(oct), OCTEP_MAJOR_REV(oct), OCTEP_MINOR_REV(oct));
1288		octep_device_setup_cnxk_pf(oct);
1289		break;
1290	default:
1291		dev_err(&pdev->dev,
1292			"%s: unsupported device\n", __func__);
1293		goto unsupported_dev;
1294	}
1295
1296
1297	ret = octep_ctrl_net_init(oct);
1298	if (ret)
1299		return ret;
1300
1301	INIT_WORK(&oct->tx_timeout_task, octep_tx_timeout_task);
1302	INIT_WORK(&oct->ctrl_mbox_task, octep_ctrl_mbox_task);
1303	INIT_DELAYED_WORK(&oct->intr_poll_task, octep_intr_poll_task);
1304	oct->poll_non_ioq_intr = true;
1305	queue_delayed_work(octep_wq, &oct->intr_poll_task,
1306			   msecs_to_jiffies(OCTEP_INTR_POLL_TIME_MSECS));
1307
1308	atomic_set(&oct->hb_miss_cnt, 0);
1309	INIT_DELAYED_WORK(&oct->hb_task, octep_hb_timeout_task);
1310
1311	return 0;
1312
1313unsupported_dev:
1314	i = OCTEP_MMIO_REGIONS;
1315unmap_prev:
1316	while (i--)
1317		iounmap(oct->mmio[i].hw_addr);
1318
1319	kfree(oct->conf);
1320	return -1;
1321}
1322
1323/**
1324 * octep_device_cleanup() - Cleanup Octeon Device.
1325 *
1326 * @oct: Octeon device private data structure.
1327 *
1328 * Cleanup Octeon device allocated resources.
1329 */
1330static void octep_device_cleanup(struct octep_device *oct)
1331{
1332	int i;
1333
1334	oct->poll_non_ioq_intr = false;
1335	cancel_delayed_work_sync(&oct->intr_poll_task);
1336	cancel_work_sync(&oct->ctrl_mbox_task);
1337
1338	dev_info(&oct->pdev->dev, "Cleaning up Octeon Device ...\n");
1339
1340	for (i = 0; i < OCTEP_MAX_VF; i++) {
1341		vfree(oct->mbox[i]);
1342		oct->mbox[i] = NULL;
1343	}
1344
1345	octep_delete_pfvf_mbox(oct);
1346	octep_ctrl_net_uninit(oct);
1347	cancel_delayed_work_sync(&oct->hb_task);
1348
1349	oct->hw_ops.soft_reset(oct);
1350	for (i = 0; i < OCTEP_MMIO_REGIONS; i++) {
1351		if (oct->mmio[i].mapped)
1352			iounmap(oct->mmio[i].hw_addr);
1353	}
1354
1355	kfree(oct->conf);
1356	oct->conf = NULL;
1357}
1358
1359static bool get_fw_ready_status(struct pci_dev *pdev)
1360{
1361	u32 pos = 0;
1362	u16 vsec_id;
1363	u8 status;
1364
1365	while ((pos = pci_find_next_ext_capability(pdev, pos,
1366						   PCI_EXT_CAP_ID_VNDR))) {
1367		pci_read_config_word(pdev, pos + 4, &vsec_id);
1368#define FW_STATUS_VSEC_ID  0xA3
1369		if (vsec_id != FW_STATUS_VSEC_ID)
1370			continue;
1371
1372		pci_read_config_byte(pdev, (pos + 8), &status);
1373		dev_info(&pdev->dev, "Firmware ready status = %u\n", status);
1374#define FW_STATUS_READY 1ULL
1375		return status == FW_STATUS_READY;
1376	}
1377	return false;
1378}
1379
1380/**
1381 * octep_probe() - Octeon PCI device probe handler.
1382 *
1383 * @pdev: PCI device structure.
1384 * @ent: entry in Octeon PCI device ID table.
1385 *
1386 * Initializes and enables the Octeon PCI device for network operations.
1387 * Initializes Octeon private data structure and registers a network device.
1388 */
1389static int octep_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1390{
1391	struct octep_device *octep_dev = NULL;
1392	struct net_device *netdev;
1393	int max_rx_pktlen;
1394	int err;
1395
1396	err = pci_enable_device(pdev);
1397	if (err) {
1398		dev_err(&pdev->dev, "Failed to enable PCI device\n");
1399		return  err;
1400	}
1401
1402	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1403	if (err) {
1404		dev_err(&pdev->dev, "Failed to set DMA mask !!\n");
1405		goto err_dma_mask;
1406	}
1407
1408	err = pci_request_mem_regions(pdev, OCTEP_DRV_NAME);
1409	if (err) {
1410		dev_err(&pdev->dev, "Failed to map PCI memory regions\n");
1411		goto err_pci_regions;
1412	}
1413
1414	pci_set_master(pdev);
1415
1416	if (!get_fw_ready_status(pdev)) {
1417		dev_notice(&pdev->dev, "Firmware not ready; defer probe.\n");
1418		err = -EPROBE_DEFER;
1419		goto err_alloc_netdev;
1420	}
1421
1422	netdev = alloc_etherdev_mq(sizeof(struct octep_device),
1423				   OCTEP_MAX_QUEUES);
1424	if (!netdev) {
1425		dev_err(&pdev->dev, "Failed to allocate netdev\n");
1426		err = -ENOMEM;
1427		goto err_alloc_netdev;
1428	}
1429	SET_NETDEV_DEV(netdev, &pdev->dev);
1430
1431	octep_dev = netdev_priv(netdev);
1432	octep_dev->netdev = netdev;
1433	octep_dev->pdev = pdev;
1434	octep_dev->dev = &pdev->dev;
1435	pci_set_drvdata(pdev, octep_dev);
1436
1437	err = octep_device_setup(octep_dev);
1438	if (err) {
1439		dev_err(&pdev->dev, "Device setup failed\n");
1440		goto err_octep_config;
1441	}
1442
1443	err = octep_setup_pfvf_mbox(octep_dev);
1444	if (err) {
1445		dev_err(&pdev->dev, "PF-VF mailbox setup failed\n");
1446		goto register_dev_err;
1447	}
1448
1449	err = octep_ctrl_net_get_info(octep_dev, OCTEP_CTRL_NET_INVALID_VFID,
1450				      &octep_dev->conf->fw_info);
1451	if (err) {
1452		dev_err(&pdev->dev, "Failed to get firmware info\n");
1453		goto register_dev_err;
1454	}
1455	dev_info(&octep_dev->pdev->dev, "Heartbeat interval %u msecs Heartbeat miss count %u\n",
1456		 octep_dev->conf->fw_info.hb_interval,
1457		 octep_dev->conf->fw_info.hb_miss_count);
1458	queue_delayed_work(octep_wq, &octep_dev->hb_task,
1459			   msecs_to_jiffies(octep_dev->conf->fw_info.hb_interval));
1460
1461	netdev->netdev_ops = &octep_netdev_ops;
1462	octep_set_ethtool_ops(netdev);
1463	netif_carrier_off(netdev);
1464
1465	netdev->hw_features = NETIF_F_SG;
1466	if (OCTEP_TX_IP_CSUM(octep_dev->conf->fw_info.tx_ol_flags))
1467		netdev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
1468
1469	if (OCTEP_RX_IP_CSUM(octep_dev->conf->fw_info.rx_ol_flags))
1470		netdev->hw_features |= NETIF_F_RXCSUM;
1471
1472	max_rx_pktlen = octep_ctrl_net_get_mtu(octep_dev, OCTEP_CTRL_NET_INVALID_VFID);
1473	if (max_rx_pktlen < 0) {
1474		dev_err(&octep_dev->pdev->dev,
1475			"Failed to get max receive packet size; err = %d\n", max_rx_pktlen);
1476		err = max_rx_pktlen;
1477		goto register_dev_err;
1478	}
1479	netdev->min_mtu = OCTEP_MIN_MTU;
1480	netdev->max_mtu = max_rx_pktlen - (ETH_HLEN + ETH_FCS_LEN);
1481	netdev->mtu = OCTEP_DEFAULT_MTU;
1482
1483	if (OCTEP_TX_TSO(octep_dev->conf->fw_info.tx_ol_flags)) {
1484		netdev->hw_features |= NETIF_F_TSO;
1485		netif_set_tso_max_size(netdev, netdev->max_mtu);
1486	}
1487
1488	netdev->features |= netdev->hw_features;
1489	err = octep_ctrl_net_get_mac_addr(octep_dev, OCTEP_CTRL_NET_INVALID_VFID,
1490					  octep_dev->mac_addr);
1491	if (err) {
1492		dev_err(&pdev->dev, "Failed to get mac address\n");
1493		goto register_dev_err;
1494	}
1495	eth_hw_addr_set(netdev, octep_dev->mac_addr);
1496
1497	err = register_netdev(netdev);
1498	if (err) {
1499		dev_err(&pdev->dev, "Failed to register netdev\n");
1500		goto register_dev_err;
1501	}
1502	dev_info(&pdev->dev, "Device probe successful\n");
1503	return 0;
1504
1505register_dev_err:
1506	octep_device_cleanup(octep_dev);
1507err_octep_config:
1508	free_netdev(netdev);
1509err_alloc_netdev:
1510	pci_release_mem_regions(pdev);
1511err_pci_regions:
1512err_dma_mask:
1513	pci_disable_device(pdev);
1514	return err;
1515}
1516
1517static int octep_sriov_disable(struct octep_device *oct)
1518{
1519	struct pci_dev *pdev = oct->pdev;
1520
1521	if (pci_vfs_assigned(oct->pdev)) {
1522		dev_warn(&pdev->dev, "Can't disable SRIOV while VFs are assigned\n");
1523		return -EPERM;
1524	}
1525
1526	pci_disable_sriov(pdev);
1527	CFG_GET_ACTIVE_VFS(oct->conf) = 0;
1528
1529	return 0;
1530}
1531
1532/**
1533 * octep_remove() - Remove Octeon PCI device from driver control.
1534 *
1535 * @pdev: PCI device structure of the Octeon device.
1536 *
1537 * Cleanup all resources allocated for the Octeon device.
1538 * Unregister from network device and disable the PCI device.
1539 */
1540static void octep_remove(struct pci_dev *pdev)
1541{
1542	struct octep_device *oct = pci_get_drvdata(pdev);
1543	struct net_device *netdev;
1544
1545	if (!oct)
1546		return;
1547
1548	netdev = oct->netdev;
1549	octep_sriov_disable(oct);
1550	if (netdev->reg_state == NETREG_REGISTERED)
1551		unregister_netdev(netdev);
1552
1553	cancel_work_sync(&oct->tx_timeout_task);
1554	octep_device_cleanup(oct);
1555	pci_release_mem_regions(pdev);
1556	free_netdev(netdev);
1557	pci_disable_device(pdev);
1558}
1559
1560static int octep_sriov_enable(struct octep_device *oct, int num_vfs)
1561{
1562	struct pci_dev *pdev = oct->pdev;
1563	int err;
1564
1565	CFG_GET_ACTIVE_VFS(oct->conf) = num_vfs;
1566	err = pci_enable_sriov(pdev, num_vfs);
1567	if (err) {
1568		dev_warn(&pdev->dev, "Failed to enable SRIOV err=%d\n", err);
1569		CFG_GET_ACTIVE_VFS(oct->conf) = 0;
1570		return err;
1571	}
1572
1573	return num_vfs;
1574}
1575
1576static int octep_sriov_configure(struct pci_dev *pdev, int num_vfs)
1577{
1578	struct octep_device *oct = pci_get_drvdata(pdev);
1579	int max_nvfs;
1580
1581	if (num_vfs == 0)
1582		return octep_sriov_disable(oct);
1583
1584	max_nvfs = CFG_GET_MAX_VFS(oct->conf);
1585
1586	if (num_vfs > max_nvfs) {
1587		dev_err(&pdev->dev, "Invalid VF count Max supported VFs = %d\n",
1588			max_nvfs);
1589		return -EINVAL;
1590	}
1591
1592	return octep_sriov_enable(oct, num_vfs);
1593}
1594
1595static struct pci_driver octep_driver = {
1596	.name = OCTEP_DRV_NAME,
1597	.id_table = octep_pci_id_tbl,
1598	.probe = octep_probe,
1599	.remove = octep_remove,
1600	.sriov_configure = octep_sriov_configure,
1601};
1602
1603/**
1604 * octep_init_module() - Module initialiation.
1605 *
1606 * create common resource for the driver and register PCI driver.
1607 */
1608static int __init octep_init_module(void)
1609{
1610	int ret;
1611
1612	pr_info("%s: Loading %s ...\n", OCTEP_DRV_NAME, OCTEP_DRV_STRING);
1613
1614	/* work queue for all deferred tasks */
1615	octep_wq = create_singlethread_workqueue(OCTEP_DRV_NAME);
1616	if (!octep_wq) {
1617		pr_err("%s: Failed to create common workqueue\n",
1618		       OCTEP_DRV_NAME);
1619		return -ENOMEM;
1620	}
1621
1622	ret = pci_register_driver(&octep_driver);
1623	if (ret < 0) {
1624		pr_err("%s: Failed to register PCI driver; err=%d\n",
1625		       OCTEP_DRV_NAME, ret);
1626		destroy_workqueue(octep_wq);
1627		return ret;
1628	}
1629
1630	pr_info("%s: Loaded successfully !\n", OCTEP_DRV_NAME);
1631
1632	return ret;
1633}
1634
1635/**
1636 * octep_exit_module() - Module exit routine.
1637 *
1638 * unregister the driver with PCI subsystem and cleanup common resources.
1639 */
1640static void __exit octep_exit_module(void)
1641{
1642	pr_info("%s: Unloading ...\n", OCTEP_DRV_NAME);
1643
1644	pci_unregister_driver(&octep_driver);
1645	destroy_workqueue(octep_wq);
1646
1647	pr_info("%s: Unloading complete\n", OCTEP_DRV_NAME);
1648}
1649
1650module_init(octep_init_module);
1651module_exit(octep_exit_module);