Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * CAN bus driver for Bosch C_CAN controller
   3 *
   4 * Copyright (C) 2010 ST Microelectronics
   5 * Bhupesh Sharma <bhupesh.sharma@st.com>
   6 *
   7 * Borrowed heavily from the C_CAN driver originally written by:
   8 * Copyright (C) 2007
   9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
  10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
  11 *
  12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
  13 * written by:
  14 * Copyright
  15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
  16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
  17 *
  18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
  19 * Bosch C_CAN user manual can be obtained from:
  20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
  21 * users_manual_c_can.pdf
  22 *
  23 * This file is licensed under the terms of the GNU General Public
  24 * License version 2. This program is licensed "as is" without any
  25 * warranty of any kind, whether express or implied.
  26 */
  27
  28#include <linux/kernel.h>
  29#include <linux/module.h>
  30#include <linux/interrupt.h>
  31#include <linux/delay.h>
  32#include <linux/netdevice.h>
  33#include <linux/if_arp.h>
  34#include <linux/if_ether.h>
  35#include <linux/list.h>
  36#include <linux/io.h>
  37#include <linux/pm_runtime.h>
  38
  39#include <linux/can.h>
  40#include <linux/can/dev.h>
  41#include <linux/can/error.h>
  42#include <linux/can/led.h>
  43
  44#include "c_can.h"
  45
  46/* Number of interface registers */
  47#define IF_ENUM_REG_LEN		11
  48#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
  49
  50/* control extension register D_CAN specific */
  51#define CONTROL_EX_PDR		BIT(8)
  52
  53/* control register */
  54#define CONTROL_TEST		BIT(7)
  55#define CONTROL_CCE		BIT(6)
  56#define CONTROL_DISABLE_AR	BIT(5)
  57#define CONTROL_ENABLE_AR	(0 << 5)
  58#define CONTROL_EIE		BIT(3)
  59#define CONTROL_SIE		BIT(2)
  60#define CONTROL_IE		BIT(1)
  61#define CONTROL_INIT		BIT(0)
  62
  63#define CONTROL_IRQMSK		(CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
  64
  65/* test register */
  66#define TEST_RX			BIT(7)
  67#define TEST_TX1		BIT(6)
  68#define TEST_TX2		BIT(5)
  69#define TEST_LBACK		BIT(4)
  70#define TEST_SILENT		BIT(3)
  71#define TEST_BASIC		BIT(2)
  72
  73/* status register */
  74#define STATUS_PDA		BIT(10)
  75#define STATUS_BOFF		BIT(7)
  76#define STATUS_EWARN		BIT(6)
  77#define STATUS_EPASS		BIT(5)
  78#define STATUS_RXOK		BIT(4)
  79#define STATUS_TXOK		BIT(3)
  80
  81/* error counter register */
  82#define ERR_CNT_TEC_MASK	0xff
  83#define ERR_CNT_TEC_SHIFT	0
  84#define ERR_CNT_REC_SHIFT	8
  85#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
  86#define ERR_CNT_RP_SHIFT	15
  87#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
  88
  89/* bit-timing register */
  90#define BTR_BRP_MASK		0x3f
  91#define BTR_BRP_SHIFT		0
  92#define BTR_SJW_SHIFT		6
  93#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
  94#define BTR_TSEG1_SHIFT		8
  95#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
  96#define BTR_TSEG2_SHIFT		12
  97#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
  98
  99/* brp extension register */
 100#define BRP_EXT_BRPE_MASK	0x0f
 101#define BRP_EXT_BRPE_SHIFT	0
 102
 103/* IFx command request */
 104#define IF_COMR_BUSY		BIT(15)
 105
 106/* IFx command mask */
 107#define IF_COMM_WR		BIT(7)
 108#define IF_COMM_MASK		BIT(6)
 109#define IF_COMM_ARB		BIT(5)
 110#define IF_COMM_CONTROL		BIT(4)
 111#define IF_COMM_CLR_INT_PND	BIT(3)
 112#define IF_COMM_TXRQST		BIT(2)
 113#define IF_COMM_CLR_NEWDAT	IF_COMM_TXRQST
 114#define IF_COMM_DATAA		BIT(1)
 115#define IF_COMM_DATAB		BIT(0)
 116
 117/* TX buffer setup */
 118#define IF_COMM_TX		(IF_COMM_ARB | IF_COMM_CONTROL | \
 119				 IF_COMM_TXRQST |		 \
 120				 IF_COMM_DATAA | IF_COMM_DATAB)
 121
 122/* For the low buffers we clear the interrupt bit, but keep newdat */
 123#define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
 124				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
 125				 IF_COMM_DATAA | IF_COMM_DATAB)
 126
 127/* For the high buffers we clear the interrupt bit and newdat */
 128#define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
 129
 130
 131/* Receive setup of message objects */
 132#define IF_COMM_RCV_SETUP	(IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
 133
 134/* Invalidation of message objects */
 135#define IF_COMM_INVAL		(IF_COMM_ARB | IF_COMM_CONTROL)
 136
 137/* IFx arbitration */
 138#define IF_ARB_MSGVAL		BIT(31)
 139#define IF_ARB_MSGXTD		BIT(30)
 140#define IF_ARB_TRANSMIT		BIT(29)
 141
 142/* IFx message control */
 143#define IF_MCONT_NEWDAT		BIT(15)
 144#define IF_MCONT_MSGLST		BIT(14)
 145#define IF_MCONT_INTPND		BIT(13)
 146#define IF_MCONT_UMASK		BIT(12)
 147#define IF_MCONT_TXIE		BIT(11)
 148#define IF_MCONT_RXIE		BIT(10)
 149#define IF_MCONT_RMTEN		BIT(9)
 150#define IF_MCONT_TXRQST		BIT(8)
 151#define IF_MCONT_EOB		BIT(7)
 152#define IF_MCONT_DLC_MASK	0xf
 153
 154#define IF_MCONT_RCV		(IF_MCONT_RXIE | IF_MCONT_UMASK)
 155#define IF_MCONT_RCV_EOB	(IF_MCONT_RCV | IF_MCONT_EOB)
 156
 157#define IF_MCONT_TX		(IF_MCONT_TXIE | IF_MCONT_EOB)
 158
 159/*
 160 * Use IF1 for RX and IF2 for TX
 161 */
 162#define IF_RX			0
 163#define IF_TX			1
 164
 165/* minimum timeout for checking BUSY status */
 166#define MIN_TIMEOUT_VALUE	6
 167
 168/* Wait for ~1 sec for INIT bit */
 169#define INIT_WAIT_MS		1000
 170
 171/* napi related */
 172#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
 173
 174/* c_can lec values */
 175enum c_can_lec_type {
 176	LEC_NO_ERROR = 0,
 177	LEC_STUFF_ERROR,
 178	LEC_FORM_ERROR,
 179	LEC_ACK_ERROR,
 180	LEC_BIT1_ERROR,
 181	LEC_BIT0_ERROR,
 182	LEC_CRC_ERROR,
 183	LEC_UNUSED,
 184	LEC_MASK = LEC_UNUSED,
 185};
 186
 187/*
 188 * c_can error types:
 189 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
 190 */
 191enum c_can_bus_error_types {
 192	C_CAN_NO_ERROR = 0,
 193	C_CAN_BUS_OFF,
 194	C_CAN_ERROR_WARNING,
 195	C_CAN_ERROR_PASSIVE,
 196};
 197
 198static const struct can_bittiming_const c_can_bittiming_const = {
 199	.name = KBUILD_MODNAME,
 200	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
 201	.tseg1_max = 16,
 202	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
 203	.tseg2_max = 8,
 204	.sjw_max = 4,
 205	.brp_min = 1,
 206	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
 207	.brp_inc = 1,
 208};
 209
 210static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
 211{
 212	if (priv->device)
 213		pm_runtime_enable(priv->device);
 214}
 215
 216static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
 217{
 218	if (priv->device)
 219		pm_runtime_disable(priv->device);
 220}
 221
 222static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
 223{
 224	if (priv->device)
 225		pm_runtime_get_sync(priv->device);
 226}
 227
 228static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
 229{
 230	if (priv->device)
 231		pm_runtime_put_sync(priv->device);
 232}
 233
 234static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
 235{
 236	if (priv->raminit)
 237		priv->raminit(priv, enable);
 238}
 239
 240static void c_can_irq_control(struct c_can_priv *priv, bool enable)
 241{
 242	u32 ctrl = priv->read_reg(priv,	C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
 243
 244	if (enable)
 245		ctrl |= CONTROL_IRQMSK;
 246
 247	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
 248}
 249
 250static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
 251{
 252	struct c_can_priv *priv = netdev_priv(dev);
 253	int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
 254
 255	priv->write_reg(priv, reg + 1, cmd);
 256	priv->write_reg(priv, reg, obj);
 257
 258	for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
 259		if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
 260			return;
 261		udelay(1);
 262	}
 263	netdev_err(dev, "Updating object timed out\n");
 264
 265}
 266
 267static inline void c_can_object_get(struct net_device *dev, int iface,
 268				    u32 obj, u32 cmd)
 269{
 270	c_can_obj_update(dev, iface, cmd, obj);
 271}
 272
 273static inline void c_can_object_put(struct net_device *dev, int iface,
 274				    u32 obj, u32 cmd)
 275{
 276	c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
 277}
 278
 279/*
 280 * Note: According to documentation clearing TXIE while MSGVAL is set
 281 * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
 282 * load significantly.
 283 */
 284static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
 285{
 286	struct c_can_priv *priv = netdev_priv(dev);
 287
 288	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
 289	c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
 290}
 291
 292static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
 293{
 294	struct c_can_priv *priv = netdev_priv(dev);
 295
 296	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
 297	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
 298	c_can_inval_tx_object(dev, iface, obj);
 299}
 300
 301static void c_can_setup_tx_object(struct net_device *dev, int iface,
 302				  struct can_frame *frame, int idx)
 303{
 304	struct c_can_priv *priv = netdev_priv(dev);
 305	u16 ctrl = IF_MCONT_TX | frame->can_dlc;
 306	bool rtr = frame->can_id & CAN_RTR_FLAG;
 307	u32 arb = IF_ARB_MSGVAL;
 308	int i;
 309
 310	if (frame->can_id & CAN_EFF_FLAG) {
 311		arb |= frame->can_id & CAN_EFF_MASK;
 312		arb |= IF_ARB_MSGXTD;
 313	} else {
 314		arb |= (frame->can_id & CAN_SFF_MASK) << 18;
 315	}
 316
 317	if (!rtr)
 318		arb |= IF_ARB_TRANSMIT;
 319
 320	/*
 321	 * If we change the DIR bit, we need to invalidate the buffer
 322	 * first, i.e. clear the MSGVAL flag in the arbiter.
 323	 */
 324	if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
 325		u32 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
 326
 327		c_can_inval_msg_object(dev, iface, obj);
 328		change_bit(idx, &priv->tx_dir);
 329	}
 330
 331	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
 332	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), arb >> 16);
 333
 334	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
 335
 336	for (i = 0; i < frame->can_dlc; i += 2) {
 337		priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
 338				frame->data[i] | (frame->data[i + 1] << 8));
 339	}
 340}
 341
 342static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
 343						       int iface)
 344{
 345	int i;
 346
 347	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++)
 348		c_can_object_get(dev, iface, i, IF_COMM_CLR_NEWDAT);
 349}
 350
 351static int c_can_handle_lost_msg_obj(struct net_device *dev,
 352				     int iface, int objno, u32 ctrl)
 353{
 354	struct net_device_stats *stats = &dev->stats;
 355	struct c_can_priv *priv = netdev_priv(dev);
 356	struct can_frame *frame;
 357	struct sk_buff *skb;
 358
 359	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
 360	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
 361	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
 362
 363	stats->rx_errors++;
 364	stats->rx_over_errors++;
 365
 366	/* create an error msg */
 367	skb = alloc_can_err_skb(dev, &frame);
 368	if (unlikely(!skb))
 369		return 0;
 370
 371	frame->can_id |= CAN_ERR_CRTL;
 372	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
 373
 374	netif_receive_skb(skb);
 375	return 1;
 376}
 377
 378static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
 379{
 380	struct net_device_stats *stats = &dev->stats;
 381	struct c_can_priv *priv = netdev_priv(dev);
 382	struct can_frame *frame;
 383	struct sk_buff *skb;
 384	u32 arb, data;
 385
 386	skb = alloc_can_skb(dev, &frame);
 387	if (!skb) {
 388		stats->rx_dropped++;
 389		return -ENOMEM;
 390	}
 391
 392	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
 393
 394	arb = priv->read_reg(priv, C_CAN_IFACE(ARB1_REG, iface));
 395	arb |= priv->read_reg(priv, C_CAN_IFACE(ARB2_REG, iface)) << 16;
 396
 397	if (arb & IF_ARB_MSGXTD)
 398		frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
 399	else
 400		frame->can_id = (arb >> 18) & CAN_SFF_MASK;
 401
 402	if (arb & IF_ARB_TRANSMIT) {
 403		frame->can_id |= CAN_RTR_FLAG;
 404	} else {
 405		int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
 406
 407		for (i = 0; i < frame->can_dlc; i += 2, dreg ++) {
 408			data = priv->read_reg(priv, dreg);
 409			frame->data[i] = data;
 410			frame->data[i + 1] = data >> 8;
 411		}
 412	}
 413
 414	stats->rx_packets++;
 415	stats->rx_bytes += frame->can_dlc;
 416
 417	netif_receive_skb(skb);
 418	return 0;
 419}
 420
 421static void c_can_setup_receive_object(struct net_device *dev, int iface,
 422				       u32 obj, u32 mask, u32 id, u32 mcont)
 423{
 424	struct c_can_priv *priv = netdev_priv(dev);
 425
 426	mask |= BIT(29);
 427	priv->write_reg(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
 428	priv->write_reg(priv, C_CAN_IFACE(MASK2_REG, iface), mask >> 16);
 429
 430	id |= IF_ARB_MSGVAL;
 431	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), id);
 432	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), id >> 16);
 433
 434	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
 435	c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
 436}
 437
 438static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
 439				    struct net_device *dev)
 440{
 441	struct can_frame *frame = (struct can_frame *)skb->data;
 442	struct c_can_priv *priv = netdev_priv(dev);
 443	u32 idx, obj;
 444
 445	if (can_dropped_invalid_skb(dev, skb))
 446		return NETDEV_TX_OK;
 447	/*
 448	 * This is not a FIFO. C/D_CAN sends out the buffers
 449	 * prioritized. The lowest buffer number wins.
 450	 */
 451	idx = fls(atomic_read(&priv->tx_active));
 452	obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
 453
 454	/* If this is the last buffer, stop the xmit queue */
 455	if (idx == C_CAN_MSG_OBJ_TX_NUM - 1)
 456		netif_stop_queue(dev);
 457	/*
 458	 * Store the message in the interface so we can call
 459	 * can_put_echo_skb(). We must do this before we enable
 460	 * transmit as we might race against do_tx().
 461	 */
 462	c_can_setup_tx_object(dev, IF_TX, frame, idx);
 463	priv->dlc[idx] = frame->can_dlc;
 464	can_put_echo_skb(skb, dev, idx);
 465
 466	/* Update the active bits */
 467	atomic_add((1 << idx), &priv->tx_active);
 468	/* Start transmission */
 469	c_can_object_put(dev, IF_TX, obj, IF_COMM_TX);
 470
 471	return NETDEV_TX_OK;
 472}
 473
 474static int c_can_wait_for_ctrl_init(struct net_device *dev,
 475				    struct c_can_priv *priv, u32 init)
 476{
 477	int retry = 0;
 478
 479	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
 480		udelay(10);
 481		if (retry++ > 1000) {
 482			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
 483			return -EIO;
 484		}
 485	}
 486	return 0;
 487}
 488
 489static int c_can_set_bittiming(struct net_device *dev)
 490{
 491	unsigned int reg_btr, reg_brpe, ctrl_save;
 492	u8 brp, brpe, sjw, tseg1, tseg2;
 493	u32 ten_bit_brp;
 494	struct c_can_priv *priv = netdev_priv(dev);
 495	const struct can_bittiming *bt = &priv->can.bittiming;
 496	int res;
 497
 498	/* c_can provides a 6-bit brp and 4-bit brpe fields */
 499	ten_bit_brp = bt->brp - 1;
 500	brp = ten_bit_brp & BTR_BRP_MASK;
 501	brpe = ten_bit_brp >> 6;
 502
 503	sjw = bt->sjw - 1;
 504	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
 505	tseg2 = bt->phase_seg2 - 1;
 506	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
 507			(tseg2 << BTR_TSEG2_SHIFT);
 508	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
 509
 510	netdev_info(dev,
 511		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
 512
 513	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
 514	ctrl_save &= ~CONTROL_INIT;
 515	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
 516	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
 517	if (res)
 518		return res;
 519
 520	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
 521	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
 522	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
 523
 524	return c_can_wait_for_ctrl_init(dev, priv, 0);
 525}
 526
 527/*
 528 * Configure C_CAN message objects for Tx and Rx purposes:
 529 * C_CAN provides a total of 32 message objects that can be configured
 530 * either for Tx or Rx purposes. Here the first 16 message objects are used as
 531 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
 532 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
 533 * See user guide document for further details on configuring message
 534 * objects.
 535 */
 536static void c_can_configure_msg_objects(struct net_device *dev)
 537{
 538	int i;
 539
 540	/* first invalidate all message objects */
 541	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
 542		c_can_inval_msg_object(dev, IF_RX, i);
 543
 544	/* setup receive message objects */
 545	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
 546		c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
 547
 548	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
 549				   IF_MCONT_RCV_EOB);
 550}
 551
 552/*
 553 * Configure C_CAN chip:
 554 * - enable/disable auto-retransmission
 555 * - set operating mode
 556 * - configure message objects
 557 */
 558static int c_can_chip_config(struct net_device *dev)
 559{
 560	struct c_can_priv *priv = netdev_priv(dev);
 561
 562	/* enable automatic retransmission */
 563	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
 564
 565	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
 566	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
 567		/* loopback + silent mode : useful for hot self-test */
 568		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
 569		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
 570	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
 571		/* loopback mode : useful for self-test function */
 572		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
 573		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
 574	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
 575		/* silent mode : bus-monitoring mode */
 576		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
 577		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
 578	}
 579
 580	/* configure message objects */
 581	c_can_configure_msg_objects(dev);
 582
 583	/* set a `lec` value so that we can check for updates later */
 584	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
 585
 586	/* Clear all internal status */
 587	atomic_set(&priv->tx_active, 0);
 588	priv->rxmasked = 0;
 589	priv->tx_dir = 0;
 590
 591	/* set bittiming params */
 592	return c_can_set_bittiming(dev);
 593}
 594
 595static int c_can_start(struct net_device *dev)
 596{
 597	struct c_can_priv *priv = netdev_priv(dev);
 598	int err;
 599
 600	/* basic c_can configuration */
 601	err = c_can_chip_config(dev);
 602	if (err)
 603		return err;
 604
 605	/* Setup the command for new messages */
 606	priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
 607		IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
 608
 609	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 610
 611	return 0;
 612}
 613
 614static void c_can_stop(struct net_device *dev)
 615{
 616	struct c_can_priv *priv = netdev_priv(dev);
 617
 618	c_can_irq_control(priv, false);
 619	priv->can.state = CAN_STATE_STOPPED;
 620}
 621
 622static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
 623{
 624	struct c_can_priv *priv = netdev_priv(dev);
 625	int err;
 626
 627	switch (mode) {
 628	case CAN_MODE_START:
 629		err = c_can_start(dev);
 630		if (err)
 631			return err;
 632		netif_wake_queue(dev);
 633		c_can_irq_control(priv, true);
 634		break;
 635	default:
 636		return -EOPNOTSUPP;
 637	}
 638
 639	return 0;
 640}
 641
 642static int __c_can_get_berr_counter(const struct net_device *dev,
 643				    struct can_berr_counter *bec)
 644{
 645	unsigned int reg_err_counter;
 646	struct c_can_priv *priv = netdev_priv(dev);
 647
 648	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
 649	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
 650				ERR_CNT_REC_SHIFT;
 651	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
 652
 653	return 0;
 654}
 655
 656static int c_can_get_berr_counter(const struct net_device *dev,
 657				  struct can_berr_counter *bec)
 658{
 659	struct c_can_priv *priv = netdev_priv(dev);
 660	int err;
 661
 662	c_can_pm_runtime_get_sync(priv);
 663	err = __c_can_get_berr_counter(dev, bec);
 664	c_can_pm_runtime_put_sync(priv);
 665
 666	return err;
 667}
 668
 669static void c_can_do_tx(struct net_device *dev)
 670{
 671	struct c_can_priv *priv = netdev_priv(dev);
 672	struct net_device_stats *stats = &dev->stats;
 673	u32 idx, obj, pkts = 0, bytes = 0, pend, clr;
 674
 675	clr = pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
 676
 677	while ((idx = ffs(pend))) {
 678		idx--;
 679		pend &= ~(1 << idx);
 680		obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
 681		c_can_inval_tx_object(dev, IF_RX, obj);
 682		can_get_echo_skb(dev, idx);
 683		bytes += priv->dlc[idx];
 684		pkts++;
 685	}
 686
 687	/* Clear the bits in the tx_active mask */
 688	atomic_sub(clr, &priv->tx_active);
 689
 690	if (clr & (1 << (C_CAN_MSG_OBJ_TX_NUM - 1)))
 691		netif_wake_queue(dev);
 692
 693	if (pkts) {
 694		stats->tx_bytes += bytes;
 695		stats->tx_packets += pkts;
 696		can_led_event(dev, CAN_LED_EVENT_TX);
 697	}
 698}
 699
 700/*
 701 * If we have a gap in the pending bits, that means we either
 702 * raced with the hardware or failed to readout all upper
 703 * objects in the last run due to quota limit.
 704 */
 705static u32 c_can_adjust_pending(u32 pend)
 706{
 707	u32 weight, lasts;
 708
 709	if (pend == RECEIVE_OBJECT_BITS)
 710		return pend;
 711
 712	/*
 713	 * If the last set bit is larger than the number of pending
 714	 * bits we have a gap.
 715	 */
 716	weight = hweight32(pend);
 717	lasts = fls(pend);
 718
 719	/* If the bits are linear, nothing to do */
 720	if (lasts == weight)
 721		return pend;
 722
 723	/*
 724	 * Find the first set bit after the gap. We walk backwards
 725	 * from the last set bit.
 726	 */
 727	for (lasts--; pend & (1 << (lasts - 1)); lasts--);
 728
 729	return pend & ~((1 << lasts) - 1);
 730}
 731
 732static inline void c_can_rx_object_get(struct net_device *dev,
 733				       struct c_can_priv *priv, u32 obj)
 734{
 735		c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
 736}
 737
 738static inline void c_can_rx_finalize(struct net_device *dev,
 739				     struct c_can_priv *priv, u32 obj)
 740{
 741	if (priv->type != BOSCH_D_CAN)
 742		c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
 743}
 744
 745static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
 746			      u32 pend, int quota)
 747{
 748	u32 pkts = 0, ctrl, obj;
 749
 750	while ((obj = ffs(pend)) && quota > 0) {
 751		pend &= ~BIT(obj - 1);
 752
 753		c_can_rx_object_get(dev, priv, obj);
 754		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
 755
 756		if (ctrl & IF_MCONT_MSGLST) {
 757			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
 758
 759			pkts += n;
 760			quota -= n;
 761			continue;
 762		}
 763
 764		/*
 765		 * This really should not happen, but this covers some
 766		 * odd HW behaviour. Do not remove that unless you
 767		 * want to brick your machine.
 768		 */
 769		if (!(ctrl & IF_MCONT_NEWDAT))
 770			continue;
 771
 772		/* read the data from the message object */
 773		c_can_read_msg_object(dev, IF_RX, ctrl);
 774
 775		c_can_rx_finalize(dev, priv, obj);
 776
 777		pkts++;
 778		quota--;
 779	}
 780
 781	return pkts;
 782}
 783
 784static inline u32 c_can_get_pending(struct c_can_priv *priv)
 785{
 786	u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
 787
 788	return pend;
 789}
 790
 791/*
 792 * theory of operation:
 793 *
 794 * c_can core saves a received CAN message into the first free message
 795 * object it finds free (starting with the lowest). Bits NEWDAT and
 796 * INTPND are set for this message object indicating that a new message
 797 * has arrived. To work-around this issue, we keep two groups of message
 798 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
 799 *
 800 * We clear the newdat bit right away.
 801 *
 802 * This can result in packet reordering when the readout is slow.
 803 */
 804static int c_can_do_rx_poll(struct net_device *dev, int quota)
 805{
 806	struct c_can_priv *priv = netdev_priv(dev);
 807	u32 pkts = 0, pend = 0, toread, n;
 808
 809	/*
 810	 * It is faster to read only one 16bit register. This is only possible
 811	 * for a maximum number of 16 objects.
 812	 */
 813	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
 814			"Implementation does not support more message objects than 16");
 815
 816	while (quota > 0) {
 817		if (!pend) {
 818			pend = c_can_get_pending(priv);
 819			if (!pend)
 820				break;
 821			/*
 822			 * If the pending field has a gap, handle the
 823			 * bits above the gap first.
 824			 */
 825			toread = c_can_adjust_pending(pend);
 826		} else {
 827			toread = pend;
 828		}
 829		/* Remove the bits from pend */
 830		pend &= ~toread;
 831		/* Read the objects */
 832		n = c_can_read_objects(dev, priv, toread, quota);
 833		pkts += n;
 834		quota -= n;
 835	}
 836
 837	if (pkts)
 838		can_led_event(dev, CAN_LED_EVENT_RX);
 839
 840	return pkts;
 841}
 842
 843static int c_can_handle_state_change(struct net_device *dev,
 844				enum c_can_bus_error_types error_type)
 845{
 846	unsigned int reg_err_counter;
 847	unsigned int rx_err_passive;
 848	struct c_can_priv *priv = netdev_priv(dev);
 849	struct net_device_stats *stats = &dev->stats;
 850	struct can_frame *cf;
 851	struct sk_buff *skb;
 852	struct can_berr_counter bec;
 853
 854	switch (error_type) {
 855	case C_CAN_ERROR_WARNING:
 856		/* error warning state */
 857		priv->can.can_stats.error_warning++;
 858		priv->can.state = CAN_STATE_ERROR_WARNING;
 859		break;
 860	case C_CAN_ERROR_PASSIVE:
 861		/* error passive state */
 862		priv->can.can_stats.error_passive++;
 863		priv->can.state = CAN_STATE_ERROR_PASSIVE;
 864		break;
 865	case C_CAN_BUS_OFF:
 866		/* bus-off state */
 867		priv->can.state = CAN_STATE_BUS_OFF;
 868		can_bus_off(dev);
 869		break;
 870	default:
 871		break;
 872	}
 873
 874	/* propagate the error condition to the CAN stack */
 875	skb = alloc_can_err_skb(dev, &cf);
 876	if (unlikely(!skb))
 877		return 0;
 878
 879	__c_can_get_berr_counter(dev, &bec);
 880	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
 881	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
 882				ERR_CNT_RP_SHIFT;
 883
 884	switch (error_type) {
 885	case C_CAN_ERROR_WARNING:
 886		/* error warning state */
 887		cf->can_id |= CAN_ERR_CRTL;
 888		cf->data[1] = (bec.txerr > bec.rxerr) ?
 889			CAN_ERR_CRTL_TX_WARNING :
 890			CAN_ERR_CRTL_RX_WARNING;
 891		cf->data[6] = bec.txerr;
 892		cf->data[7] = bec.rxerr;
 893
 894		break;
 895	case C_CAN_ERROR_PASSIVE:
 896		/* error passive state */
 897		cf->can_id |= CAN_ERR_CRTL;
 898		if (rx_err_passive)
 899			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
 900		if (bec.txerr > 127)
 901			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
 902
 903		cf->data[6] = bec.txerr;
 904		cf->data[7] = bec.rxerr;
 905		break;
 906	case C_CAN_BUS_OFF:
 907		/* bus-off state */
 908		cf->can_id |= CAN_ERR_BUSOFF;
 909		can_bus_off(dev);
 910		break;
 911	default:
 912		break;
 913	}
 914
 915	stats->rx_packets++;
 916	stats->rx_bytes += cf->can_dlc;
 917	netif_receive_skb(skb);
 918
 919	return 1;
 920}
 921
 922static int c_can_handle_bus_err(struct net_device *dev,
 923				enum c_can_lec_type lec_type)
 924{
 925	struct c_can_priv *priv = netdev_priv(dev);
 926	struct net_device_stats *stats = &dev->stats;
 927	struct can_frame *cf;
 928	struct sk_buff *skb;
 929
 930	/*
 931	 * early exit if no lec update or no error.
 932	 * no lec update means that no CAN bus event has been detected
 933	 * since CPU wrote 0x7 value to status reg.
 934	 */
 935	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
 936		return 0;
 937
 938	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
 939		return 0;
 940
 941	/* common for all type of bus errors */
 942	priv->can.can_stats.bus_error++;
 943	stats->rx_errors++;
 944
 945	/* propagate the error condition to the CAN stack */
 946	skb = alloc_can_err_skb(dev, &cf);
 947	if (unlikely(!skb))
 948		return 0;
 949
 950	/*
 951	 * check for 'last error code' which tells us the
 952	 * type of the last error to occur on the CAN bus
 953	 */
 954	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
 955	cf->data[2] |= CAN_ERR_PROT_UNSPEC;
 956
 957	switch (lec_type) {
 958	case LEC_STUFF_ERROR:
 959		netdev_dbg(dev, "stuff error\n");
 960		cf->data[2] |= CAN_ERR_PROT_STUFF;
 961		break;
 962	case LEC_FORM_ERROR:
 963		netdev_dbg(dev, "form error\n");
 964		cf->data[2] |= CAN_ERR_PROT_FORM;
 965		break;
 966	case LEC_ACK_ERROR:
 967		netdev_dbg(dev, "ack error\n");
 968		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
 969				CAN_ERR_PROT_LOC_ACK_DEL);
 970		break;
 971	case LEC_BIT1_ERROR:
 972		netdev_dbg(dev, "bit1 error\n");
 973		cf->data[2] |= CAN_ERR_PROT_BIT1;
 974		break;
 975	case LEC_BIT0_ERROR:
 976		netdev_dbg(dev, "bit0 error\n");
 977		cf->data[2] |= CAN_ERR_PROT_BIT0;
 978		break;
 979	case LEC_CRC_ERROR:
 980		netdev_dbg(dev, "CRC error\n");
 981		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
 982				CAN_ERR_PROT_LOC_CRC_DEL);
 983		break;
 984	default:
 985		break;
 986	}
 987
 988	stats->rx_packets++;
 989	stats->rx_bytes += cf->can_dlc;
 990	netif_receive_skb(skb);
 991	return 1;
 992}
 993
 994static int c_can_poll(struct napi_struct *napi, int quota)
 995{
 996	struct net_device *dev = napi->dev;
 997	struct c_can_priv *priv = netdev_priv(dev);
 998	u16 curr, last = priv->last_status;
 999	int work_done = 0;
1000
1001	priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
1002	/* Ack status on C_CAN. D_CAN is self clearing */
1003	if (priv->type != BOSCH_D_CAN)
1004		priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1005
1006	/* handle state changes */
1007	if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1008		netdev_dbg(dev, "entered error warning state\n");
1009		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1010	}
1011
1012	if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1013		netdev_dbg(dev, "entered error passive state\n");
1014		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1015	}
1016
1017	if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1018		netdev_dbg(dev, "entered bus off state\n");
1019		work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1020		goto end;
1021	}
1022
1023	/* handle bus recovery events */
1024	if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1025		netdev_dbg(dev, "left bus off state\n");
1026		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1027	}
1028	if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1029		netdev_dbg(dev, "left error passive state\n");
1030		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1031	}
1032
1033	/* handle lec errors on the bus */
1034	work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1035
1036	/* Handle Tx/Rx events. We do this unconditionally */
1037	work_done += c_can_do_rx_poll(dev, (quota - work_done));
1038	c_can_do_tx(dev);
1039
1040end:
1041	if (work_done < quota) {
1042		napi_complete(napi);
1043		/* enable all IRQs if we are not in bus off state */
1044		if (priv->can.state != CAN_STATE_BUS_OFF)
1045			c_can_irq_control(priv, true);
1046	}
1047
1048	return work_done;
1049}
1050
1051static irqreturn_t c_can_isr(int irq, void *dev_id)
1052{
1053	struct net_device *dev = (struct net_device *)dev_id;
1054	struct c_can_priv *priv = netdev_priv(dev);
1055
1056	if (!priv->read_reg(priv, C_CAN_INT_REG))
1057		return IRQ_NONE;
1058
1059	/* disable all interrupts and schedule the NAPI */
1060	c_can_irq_control(priv, false);
1061	napi_schedule(&priv->napi);
1062
1063	return IRQ_HANDLED;
1064}
1065
1066static int c_can_open(struct net_device *dev)
1067{
1068	int err;
1069	struct c_can_priv *priv = netdev_priv(dev);
1070
1071	c_can_pm_runtime_get_sync(priv);
1072	c_can_reset_ram(priv, true);
1073
1074	/* open the can device */
1075	err = open_candev(dev);
1076	if (err) {
1077		netdev_err(dev, "failed to open can device\n");
1078		goto exit_open_fail;
1079	}
1080
1081	/* register interrupt handler */
1082	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1083				dev);
1084	if (err < 0) {
1085		netdev_err(dev, "failed to request interrupt\n");
1086		goto exit_irq_fail;
1087	}
1088
1089	/* start the c_can controller */
1090	err = c_can_start(dev);
1091	if (err)
1092		goto exit_start_fail;
1093
1094	can_led_event(dev, CAN_LED_EVENT_OPEN);
1095
1096	napi_enable(&priv->napi);
1097	/* enable status change, error and module interrupts */
1098	c_can_irq_control(priv, true);
1099	netif_start_queue(dev);
1100
1101	return 0;
1102
1103exit_start_fail:
1104	free_irq(dev->irq, dev);
1105exit_irq_fail:
1106	close_candev(dev);
1107exit_open_fail:
1108	c_can_reset_ram(priv, false);
1109	c_can_pm_runtime_put_sync(priv);
1110	return err;
1111}
1112
1113static int c_can_close(struct net_device *dev)
1114{
1115	struct c_can_priv *priv = netdev_priv(dev);
1116
1117	netif_stop_queue(dev);
1118	napi_disable(&priv->napi);
1119	c_can_stop(dev);
1120	free_irq(dev->irq, dev);
1121	close_candev(dev);
1122
1123	c_can_reset_ram(priv, false);
1124	c_can_pm_runtime_put_sync(priv);
1125
1126	can_led_event(dev, CAN_LED_EVENT_STOP);
1127
1128	return 0;
1129}
1130
1131struct net_device *alloc_c_can_dev(void)
1132{
1133	struct net_device *dev;
1134	struct c_can_priv *priv;
1135
1136	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1137	if (!dev)
1138		return NULL;
1139
1140	priv = netdev_priv(dev);
1141	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1142
1143	priv->dev = dev;
1144	priv->can.bittiming_const = &c_can_bittiming_const;
1145	priv->can.do_set_mode = c_can_set_mode;
1146	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1147	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1148					CAN_CTRLMODE_LISTENONLY |
1149					CAN_CTRLMODE_BERR_REPORTING;
1150
1151	return dev;
1152}
1153EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1154
1155#ifdef CONFIG_PM
1156int c_can_power_down(struct net_device *dev)
1157{
1158	u32 val;
1159	unsigned long time_out;
1160	struct c_can_priv *priv = netdev_priv(dev);
1161
1162	if (!(dev->flags & IFF_UP))
1163		return 0;
1164
1165	WARN_ON(priv->type != BOSCH_D_CAN);
1166
1167	/* set PDR value so the device goes to power down mode */
1168	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1169	val |= CONTROL_EX_PDR;
1170	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1171
1172	/* Wait for the PDA bit to get set */
1173	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1174	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1175				time_after(time_out, jiffies))
1176		cpu_relax();
1177
1178	if (time_after(jiffies, time_out))
1179		return -ETIMEDOUT;
1180
1181	c_can_stop(dev);
1182
1183	c_can_reset_ram(priv, false);
1184	c_can_pm_runtime_put_sync(priv);
1185
1186	return 0;
1187}
1188EXPORT_SYMBOL_GPL(c_can_power_down);
1189
1190int c_can_power_up(struct net_device *dev)
1191{
1192	u32 val;
1193	unsigned long time_out;
1194	struct c_can_priv *priv = netdev_priv(dev);
1195	int ret;
1196
1197	if (!(dev->flags & IFF_UP))
1198		return 0;
1199
1200	WARN_ON(priv->type != BOSCH_D_CAN);
1201
1202	c_can_pm_runtime_get_sync(priv);
1203	c_can_reset_ram(priv, true);
1204
1205	/* Clear PDR and INIT bits */
1206	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1207	val &= ~CONTROL_EX_PDR;
1208	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1209	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1210	val &= ~CONTROL_INIT;
1211	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1212
1213	/* Wait for the PDA bit to get clear */
1214	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1215	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1216				time_after(time_out, jiffies))
1217		cpu_relax();
1218
1219	if (time_after(jiffies, time_out))
1220		return -ETIMEDOUT;
1221
1222	ret = c_can_start(dev);
1223	if (!ret)
1224		c_can_irq_control(priv, true);
1225
1226	return ret;
1227}
1228EXPORT_SYMBOL_GPL(c_can_power_up);
1229#endif
1230
1231void free_c_can_dev(struct net_device *dev)
1232{
1233	struct c_can_priv *priv = netdev_priv(dev);
1234
1235	netif_napi_del(&priv->napi);
1236	free_candev(dev);
1237}
1238EXPORT_SYMBOL_GPL(free_c_can_dev);
1239
1240static const struct net_device_ops c_can_netdev_ops = {
1241	.ndo_open = c_can_open,
1242	.ndo_stop = c_can_close,
1243	.ndo_start_xmit = c_can_start_xmit,
1244	.ndo_change_mtu = can_change_mtu,
1245};
1246
1247int register_c_can_dev(struct net_device *dev)
1248{
1249	struct c_can_priv *priv = netdev_priv(dev);
1250	int err;
1251
1252	c_can_pm_runtime_enable(priv);
1253
1254	dev->flags |= IFF_ECHO;	/* we support local echo */
1255	dev->netdev_ops = &c_can_netdev_ops;
1256
1257	err = register_candev(dev);
1258	if (err)
1259		c_can_pm_runtime_disable(priv);
1260	else
1261		devm_can_led_init(dev);
1262
1263	return err;
1264}
1265EXPORT_SYMBOL_GPL(register_c_can_dev);
1266
1267void unregister_c_can_dev(struct net_device *dev)
1268{
1269	struct c_can_priv *priv = netdev_priv(dev);
1270
1271	unregister_candev(dev);
1272
1273	c_can_pm_runtime_disable(priv);
1274}
1275EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1276
1277MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1278MODULE_LICENSE("GPL v2");
1279MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");