Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2011 Red Hat, Inc.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-btree-internal.h"
   9#include "dm-space-map.h"
  10#include "dm-transaction-manager.h"
  11
  12#include <linux/export.h>
  13#include <linux/device-mapper.h>
  14
  15#define DM_MSG_PREFIX "btree"
  16
  17/*
  18 *--------------------------------------------------------------
  19 * Array manipulation
  20 *--------------------------------------------------------------
  21 */
  22static void memcpy_disk(void *dest, const void *src, size_t len)
  23	__dm_written_to_disk(src)
  24{
  25	memcpy(dest, src, len);
  26	__dm_unbless_for_disk(src);
  27}
  28
  29static void array_insert(void *base, size_t elt_size, unsigned int nr_elts,
  30			 unsigned int index, void *elt)
  31	__dm_written_to_disk(elt)
  32{
  33	if (index < nr_elts)
  34		memmove(base + (elt_size * (index + 1)),
  35			base + (elt_size * index),
  36			(nr_elts - index) * elt_size);
  37
  38	memcpy_disk(base + (elt_size * index), elt, elt_size);
  39}
  40
  41/*----------------------------------------------------------------*/
  42
  43/* makes the assumption that no two keys are the same. */
  44static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
  45{
  46	int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
  47
  48	while (hi - lo > 1) {
  49		int mid = lo + ((hi - lo) / 2);
  50		uint64_t mid_key = le64_to_cpu(n->keys[mid]);
  51
  52		if (mid_key == key)
  53			return mid;
  54
  55		if (mid_key < key)
  56			lo = mid;
  57		else
  58			hi = mid;
  59	}
  60
  61	return want_hi ? hi : lo;
  62}
  63
  64int lower_bound(struct btree_node *n, uint64_t key)
  65{
  66	return bsearch(n, key, 0);
  67}
  68
  69static int upper_bound(struct btree_node *n, uint64_t key)
  70{
  71	return bsearch(n, key, 1);
  72}
  73
  74void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
  75		  struct dm_btree_value_type *vt)
  76{
 
  77	uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
  78
  79	if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
  80		dm_tm_with_runs(tm, value_ptr(n, 0), nr_entries, dm_tm_inc_range);
  81
  82	else if (vt->inc)
  83		vt->inc(vt->context, value_ptr(n, 0), nr_entries);
 
  84}
  85
  86static int insert_at(size_t value_size, struct btree_node *node, unsigned int index,
  87		     uint64_t key, void *value)
  88	__dm_written_to_disk(value)
  89{
  90	uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
  91	uint32_t max_entries = le32_to_cpu(node->header.max_entries);
  92	__le64 key_le = cpu_to_le64(key);
  93
  94	if (index > nr_entries ||
  95	    index >= max_entries ||
  96	    nr_entries >= max_entries) {
  97		DMERR("too many entries in btree node for insert");
  98		__dm_unbless_for_disk(value);
  99		return -ENOMEM;
 100	}
 101
 102	__dm_bless_for_disk(&key_le);
 103
 104	array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
 105	array_insert(value_base(node), value_size, nr_entries, index, value);
 106	node->header.nr_entries = cpu_to_le32(nr_entries + 1);
 107
 108	return 0;
 109}
 110
 111/*----------------------------------------------------------------*/
 112
 113/*
 114 * We want 3n entries (for some n).  This works more nicely for repeated
 115 * insert remove loops than (2n + 1).
 116 */
 117static uint32_t calc_max_entries(size_t value_size, size_t block_size)
 118{
 119	uint32_t total, n;
 120	size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
 121
 122	block_size -= sizeof(struct node_header);
 123	total = block_size / elt_size;
 124	n = total / 3;		/* rounds down */
 125
 126	return 3 * n;
 127}
 128
 129int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
 130{
 131	int r;
 132	struct dm_block *b;
 133	struct btree_node *n;
 134	size_t block_size;
 135	uint32_t max_entries;
 136
 137	r = new_block(info, &b);
 138	if (r < 0)
 139		return r;
 140
 141	block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
 142	max_entries = calc_max_entries(info->value_type.size, block_size);
 143
 144	n = dm_block_data(b);
 145	memset(n, 0, block_size);
 146	n->header.flags = cpu_to_le32(LEAF_NODE);
 147	n->header.nr_entries = cpu_to_le32(0);
 148	n->header.max_entries = cpu_to_le32(max_entries);
 149	n->header.value_size = cpu_to_le32(info->value_type.size);
 150
 151	*root = dm_block_location(b);
 152	unlock_block(info, b);
 153
 154	return 0;
 155}
 156EXPORT_SYMBOL_GPL(dm_btree_empty);
 157
 158/*----------------------------------------------------------------*/
 159
 160/*
 161 * Deletion uses a recursive algorithm, since we have limited stack space
 162 * we explicitly manage our own stack on the heap.
 163 */
 164#define MAX_SPINE_DEPTH 64
 165struct frame {
 166	struct dm_block *b;
 167	struct btree_node *n;
 168	unsigned int level;
 169	unsigned int nr_children;
 170	unsigned int current_child;
 171};
 172
 173struct del_stack {
 174	struct dm_btree_info *info;
 175	struct dm_transaction_manager *tm;
 176	int top;
 177	struct frame spine[MAX_SPINE_DEPTH];
 178};
 179
 180static int top_frame(struct del_stack *s, struct frame **f)
 181{
 182	if (s->top < 0) {
 183		DMERR("btree deletion stack empty");
 184		return -EINVAL;
 185	}
 186
 187	*f = s->spine + s->top;
 188
 189	return 0;
 190}
 191
 192static int unprocessed_frames(struct del_stack *s)
 193{
 194	return s->top >= 0;
 195}
 196
 197static void prefetch_children(struct del_stack *s, struct frame *f)
 198{
 199	unsigned int i;
 200	struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
 201
 202	for (i = 0; i < f->nr_children; i++)
 203		dm_bm_prefetch(bm, value64(f->n, i));
 204}
 205
 206static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
 207{
 208	return f->level < (info->levels - 1);
 209}
 210
 211static int push_frame(struct del_stack *s, dm_block_t b, unsigned int level)
 212{
 213	int r;
 214	uint32_t ref_count;
 215
 216	if (s->top >= MAX_SPINE_DEPTH - 1) {
 217		DMERR("btree deletion stack out of memory");
 218		return -ENOMEM;
 219	}
 220
 221	r = dm_tm_ref(s->tm, b, &ref_count);
 222	if (r)
 223		return r;
 224
 225	if (ref_count > 1)
 226		/*
 227		 * This is a shared node, so we can just decrement it's
 228		 * reference counter and leave the children.
 229		 */
 230		dm_tm_dec(s->tm, b);
 231
 232	else {
 233		uint32_t flags;
 234		struct frame *f = s->spine + ++s->top;
 235
 236		r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
 237		if (r) {
 238			s->top--;
 239			return r;
 240		}
 241
 242		f->n = dm_block_data(f->b);
 243		f->level = level;
 244		f->nr_children = le32_to_cpu(f->n->header.nr_entries);
 245		f->current_child = 0;
 246
 247		flags = le32_to_cpu(f->n->header.flags);
 248		if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
 249			prefetch_children(s, f);
 250	}
 251
 252	return 0;
 253}
 254
 255static void pop_frame(struct del_stack *s)
 256{
 257	struct frame *f = s->spine + s->top--;
 258
 259	dm_tm_dec(s->tm, dm_block_location(f->b));
 260	dm_tm_unlock(s->tm, f->b);
 261}
 262
 263static void unlock_all_frames(struct del_stack *s)
 264{
 265	struct frame *f;
 266
 267	while (unprocessed_frames(s)) {
 268		f = s->spine + s->top--;
 269		dm_tm_unlock(s->tm, f->b);
 270	}
 271}
 272
 273int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
 274{
 275	int r;
 276	struct del_stack *s;
 277
 278	/*
 279	 * dm_btree_del() is called via an ioctl, as such should be
 280	 * considered an FS op.  We can't recurse back into the FS, so we
 281	 * allocate GFP_NOFS.
 282	 */
 283	s = kmalloc(sizeof(*s), GFP_NOFS);
 284	if (!s)
 285		return -ENOMEM;
 286	s->info = info;
 287	s->tm = info->tm;
 288	s->top = -1;
 289
 290	r = push_frame(s, root, 0);
 291	if (r)
 292		goto out;
 293
 294	while (unprocessed_frames(s)) {
 295		uint32_t flags;
 296		struct frame *f;
 297		dm_block_t b;
 298
 299		r = top_frame(s, &f);
 300		if (r)
 301			goto out;
 302
 303		if (f->current_child >= f->nr_children) {
 304			pop_frame(s);
 305			continue;
 306		}
 307
 308		flags = le32_to_cpu(f->n->header.flags);
 309		if (flags & INTERNAL_NODE) {
 310			b = value64(f->n, f->current_child);
 311			f->current_child++;
 312			r = push_frame(s, b, f->level);
 313			if (r)
 314				goto out;
 315
 316		} else if (is_internal_level(info, f)) {
 317			b = value64(f->n, f->current_child);
 318			f->current_child++;
 319			r = push_frame(s, b, f->level + 1);
 320			if (r)
 321				goto out;
 322
 323		} else {
 324			if (info->value_type.dec)
 325				info->value_type.dec(info->value_type.context,
 326						     value_ptr(f->n, 0), f->nr_children);
 
 
 
 
 327			pop_frame(s);
 328		}
 329	}
 
 330out:
 331	if (r) {
 332		/* cleanup all frames of del_stack */
 333		unlock_all_frames(s);
 334	}
 335	kfree(s);
 336
 337	return r;
 338}
 339EXPORT_SYMBOL_GPL(dm_btree_del);
 340
 341/*----------------------------------------------------------------*/
 342
 343static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
 344			    int (*search_fn)(struct btree_node *, uint64_t),
 345			    uint64_t *result_key, void *v, size_t value_size)
 346{
 347	int i, r;
 348	uint32_t flags, nr_entries;
 349
 350	do {
 351		r = ro_step(s, block);
 352		if (r < 0)
 353			return r;
 354
 355		i = search_fn(ro_node(s), key);
 356
 357		flags = le32_to_cpu(ro_node(s)->header.flags);
 358		nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
 359		if (i < 0 || i >= nr_entries)
 360			return -ENODATA;
 361
 362		if (flags & INTERNAL_NODE)
 363			block = value64(ro_node(s), i);
 364
 365	} while (!(flags & LEAF_NODE));
 366
 367	*result_key = le64_to_cpu(ro_node(s)->keys[i]);
 368	if (v)
 369		memcpy(v, value_ptr(ro_node(s), i), value_size);
 370
 371	return 0;
 372}
 373
 374int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
 375		    uint64_t *keys, void *value_le)
 376{
 377	unsigned int level, last_level = info->levels - 1;
 378	int r = -ENODATA;
 379	uint64_t rkey;
 380	__le64 internal_value_le;
 381	struct ro_spine spine;
 382
 383	init_ro_spine(&spine, info);
 384	for (level = 0; level < info->levels; level++) {
 385		size_t size;
 386		void *value_p;
 387
 388		if (level == last_level) {
 389			value_p = value_le;
 390			size = info->value_type.size;
 391
 392		} else {
 393			value_p = &internal_value_le;
 394			size = sizeof(uint64_t);
 395		}
 396
 397		r = btree_lookup_raw(&spine, root, keys[level],
 398				     lower_bound, &rkey,
 399				     value_p, size);
 400
 401		if (!r) {
 402			if (rkey != keys[level]) {
 403				exit_ro_spine(&spine);
 404				return -ENODATA;
 405			}
 406		} else {
 407			exit_ro_spine(&spine);
 408			return r;
 409		}
 410
 411		root = le64_to_cpu(internal_value_le);
 412	}
 413	exit_ro_spine(&spine);
 414
 415	return r;
 416}
 417EXPORT_SYMBOL_GPL(dm_btree_lookup);
 418
 419static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
 420				       uint64_t key, uint64_t *rkey, void *value_le)
 421{
 422	int r, i;
 423	uint32_t flags, nr_entries;
 424	struct dm_block *node;
 425	struct btree_node *n;
 426
 427	r = bn_read_lock(info, root, &node);
 428	if (r)
 429		return r;
 430
 431	n = dm_block_data(node);
 432	flags = le32_to_cpu(n->header.flags);
 433	nr_entries = le32_to_cpu(n->header.nr_entries);
 434
 435	if (flags & INTERNAL_NODE) {
 436		i = lower_bound(n, key);
 437		if (i < 0) {
 438			/*
 439			 * avoid early -ENODATA return when all entries are
 440			 * higher than the search @key.
 441			 */
 442			i = 0;
 443		}
 444		if (i >= nr_entries) {
 445			r = -ENODATA;
 446			goto out;
 447		}
 448
 449		r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
 450		if (r == -ENODATA && i < (nr_entries - 1)) {
 451			i++;
 452			r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
 453		}
 454
 455	} else {
 456		i = upper_bound(n, key);
 457		if (i < 0 || i >= nr_entries) {
 458			r = -ENODATA;
 459			goto out;
 460		}
 461
 462		*rkey = le64_to_cpu(n->keys[i]);
 463		memcpy(value_le, value_ptr(n, i), info->value_type.size);
 464	}
 465out:
 466	dm_tm_unlock(info->tm, node);
 467	return r;
 468}
 469
 470int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
 471			 uint64_t *keys, uint64_t *rkey, void *value_le)
 472{
 473	unsigned int level;
 474	int r = -ENODATA;
 475	__le64 internal_value_le;
 476	struct ro_spine spine;
 477
 478	init_ro_spine(&spine, info);
 479	for (level = 0; level < info->levels - 1u; level++) {
 480		r = btree_lookup_raw(&spine, root, keys[level],
 481				     lower_bound, rkey,
 482				     &internal_value_le, sizeof(uint64_t));
 483		if (r)
 484			goto out;
 485
 486		if (*rkey != keys[level]) {
 487			r = -ENODATA;
 488			goto out;
 489		}
 490
 491		root = le64_to_cpu(internal_value_le);
 492	}
 493
 494	r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
 495out:
 496	exit_ro_spine(&spine);
 497	return r;
 498}
 499EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
 500
 501/*----------------------------------------------------------------*/
 502
 503/*
 504 * Copies entries from one region of a btree node to another.  The regions
 505 * must not overlap.
 506 */
 507static void copy_entries(struct btree_node *dest, unsigned int dest_offset,
 508			 struct btree_node *src, unsigned int src_offset,
 509			 unsigned int count)
 510{
 511	size_t value_size = le32_to_cpu(dest->header.value_size);
 512
 513	memcpy(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t));
 514	memcpy(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size);
 515}
 516
 517/*
 518 * Moves entries from one region fo a btree node to another.  The regions
 519 * may overlap.
 520 */
 521static void move_entries(struct btree_node *dest, unsigned int dest_offset,
 522			 struct btree_node *src, unsigned int src_offset,
 523			 unsigned int count)
 524{
 525	size_t value_size = le32_to_cpu(dest->header.value_size);
 526
 527	memmove(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t));
 528	memmove(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size);
 529}
 530
 531/*
 532 * Erases the first 'count' entries of a btree node, shifting following
 533 * entries down into their place.
 534 */
 535static void shift_down(struct btree_node *n, unsigned int count)
 536{
 537	move_entries(n, 0, n, count, le32_to_cpu(n->header.nr_entries) - count);
 538}
 539
 540/*
 541 * Moves entries in a btree node up 'count' places, making space for
 542 * new entries at the start of the node.
 543 */
 544static void shift_up(struct btree_node *n, unsigned int count)
 545{
 546	move_entries(n, count, n, 0, le32_to_cpu(n->header.nr_entries));
 547}
 548
 549/*
 550 * Redistributes entries between two btree nodes to make them
 551 * have similar numbers of entries.
 552 */
 553static void redistribute2(struct btree_node *left, struct btree_node *right)
 554{
 555	unsigned int nr_left = le32_to_cpu(left->header.nr_entries);
 556	unsigned int nr_right = le32_to_cpu(right->header.nr_entries);
 557	unsigned int total = nr_left + nr_right;
 558	unsigned int target_left = total / 2;
 559	unsigned int target_right = total - target_left;
 560
 561	if (nr_left < target_left) {
 562		unsigned int delta = target_left - nr_left;
 563
 564		copy_entries(left, nr_left, right, 0, delta);
 565		shift_down(right, delta);
 566	} else if (nr_left > target_left) {
 567		unsigned int delta = nr_left - target_left;
 568
 569		if (nr_right)
 570			shift_up(right, delta);
 571		copy_entries(right, 0, left, target_left, delta);
 572	}
 573
 574	left->header.nr_entries = cpu_to_le32(target_left);
 575	right->header.nr_entries = cpu_to_le32(target_right);
 576}
 577
 578/*
 579 * Redistribute entries between three nodes.  Assumes the central
 580 * node is empty.
 581 */
 582static void redistribute3(struct btree_node *left, struct btree_node *center,
 583			  struct btree_node *right)
 584{
 585	unsigned int nr_left = le32_to_cpu(left->header.nr_entries);
 586	unsigned int nr_center = le32_to_cpu(center->header.nr_entries);
 587	unsigned int nr_right = le32_to_cpu(right->header.nr_entries);
 588	unsigned int total, target_left, target_center, target_right;
 589
 590	BUG_ON(nr_center);
 591
 592	total = nr_left + nr_right;
 593	target_left = total / 3;
 594	target_center = (total - target_left) / 2;
 595	target_right = (total - target_left - target_center);
 596
 597	if (nr_left < target_left) {
 598		unsigned int left_short = target_left - nr_left;
 599
 600		copy_entries(left, nr_left, right, 0, left_short);
 601		copy_entries(center, 0, right, left_short, target_center);
 602		shift_down(right, nr_right - target_right);
 603
 604	} else if (nr_left < (target_left + target_center)) {
 605		unsigned int left_to_center = nr_left - target_left;
 606
 607		copy_entries(center, 0, left, target_left, left_to_center);
 608		copy_entries(center, left_to_center, right, 0, target_center - left_to_center);
 609		shift_down(right, nr_right - target_right);
 610
 611	} else {
 612		unsigned int right_short = target_right - nr_right;
 613
 614		shift_up(right, right_short);
 615		copy_entries(right, 0, left, nr_left - right_short, right_short);
 616		copy_entries(center, 0, left, target_left, nr_left - target_left);
 617	}
 618
 619	left->header.nr_entries = cpu_to_le32(target_left);
 620	center->header.nr_entries = cpu_to_le32(target_center);
 621	right->header.nr_entries = cpu_to_le32(target_right);
 622}
 623
 624/*
 625 * Splits a node by creating a sibling node and shifting half the nodes
 626 * contents across.  Assumes there is a parent node, and it has room for
 627 * another child.
 628 *
 629 * Before:
 630 *	  +--------+
 631 *	  | Parent |
 632 *	  +--------+
 633 *	     |
 634 *	     v
 635 *	+----------+
 636 *	| A ++++++ |
 637 *	+----------+
 638 *
 639 *
 640 * After:
 641 *		+--------+
 642 *		| Parent |
 643 *		+--------+
 644 *		  |	|
 645 *		  v	+------+
 646 *	    +---------+	       |
 647 *	    | A* +++  |	       v
 648 *	    +---------+	  +-------+
 649 *			  | B +++ |
 650 *			  +-------+
 651 *
 652 * Where A* is a shadow of A.
 653 */
 654static int split_one_into_two(struct shadow_spine *s, unsigned int parent_index,
 655			      struct dm_btree_value_type *vt, uint64_t key)
 656{
 657	int r;
 
 
 658	struct dm_block *left, *right, *parent;
 659	struct btree_node *ln, *rn, *pn;
 660	__le64 location;
 661
 662	left = shadow_current(s);
 663
 664	r = new_block(s->info, &right);
 665	if (r < 0)
 666		return r;
 667
 668	ln = dm_block_data(left);
 669	rn = dm_block_data(right);
 670
 
 
 
 
 
 671	rn->header.flags = ln->header.flags;
 672	rn->header.nr_entries = cpu_to_le32(0);
 673	rn->header.max_entries = ln->header.max_entries;
 674	rn->header.value_size = ln->header.value_size;
 675	redistribute2(ln, rn);
 676
 677	/* patch up the parent */
 
 
 
 
 
 
 
 678	parent = shadow_parent(s);
 
 679	pn = dm_block_data(parent);
 
 
 
 
 680
 681	location = cpu_to_le64(dm_block_location(right));
 682	__dm_bless_for_disk(&location);
 
 683	r = insert_at(sizeof(__le64), pn, parent_index + 1,
 684		      le64_to_cpu(rn->keys[0]), &location);
 685	if (r) {
 686		unlock_block(s->info, right);
 687		return r;
 688	}
 689
 690	/* patch up the spine */
 691	if (key < le64_to_cpu(rn->keys[0])) {
 692		unlock_block(s->info, right);
 693		s->nodes[1] = left;
 694	} else {
 695		unlock_block(s->info, left);
 696		s->nodes[1] = right;
 697	}
 698
 699	return 0;
 700}
 701
 702/*
 703 * We often need to modify a sibling node.  This function shadows a particular
 704 * child of the given parent node.  Making sure to update the parent to point
 705 * to the new shadow.
 706 */
 707static int shadow_child(struct dm_btree_info *info, struct dm_btree_value_type *vt,
 708			struct btree_node *parent, unsigned int index,
 709			struct dm_block **result)
 710{
 711	int r, inc;
 712	dm_block_t root;
 713	struct btree_node *node;
 714
 715	root = value64(parent, index);
 716
 717	r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
 718			       result, &inc);
 719	if (r)
 720		return r;
 721
 722	node = dm_block_data(*result);
 723
 724	if (inc)
 725		inc_children(info->tm, node, vt);
 726
 727	*((__le64 *) value_ptr(parent, index)) =
 728		cpu_to_le64(dm_block_location(*result));
 729
 730	return 0;
 731}
 732
 733/*
 734 * Splits two nodes into three.  This is more work, but results in fuller
 735 * nodes, so saves metadata space.
 736 */
 737static int split_two_into_three(struct shadow_spine *s, unsigned int parent_index,
 738				struct dm_btree_value_type *vt, uint64_t key)
 739{
 740	int r;
 741	unsigned int middle_index;
 742	struct dm_block *left, *middle, *right, *parent;
 743	struct btree_node *ln, *rn, *mn, *pn;
 744	__le64 location;
 745
 746	parent = shadow_parent(s);
 747	pn = dm_block_data(parent);
 748
 749	if (parent_index == 0) {
 750		middle_index = 1;
 751		left = shadow_current(s);
 752		r = shadow_child(s->info, vt, pn, parent_index + 1, &right);
 753		if (r)
 754			return r;
 755	} else {
 756		middle_index = parent_index;
 757		right = shadow_current(s);
 758		r = shadow_child(s->info, vt, pn, parent_index - 1, &left);
 759		if (r)
 760			return r;
 761	}
 762
 763	r = new_block(s->info, &middle);
 764	if (r < 0)
 765		return r;
 766
 767	ln = dm_block_data(left);
 768	mn = dm_block_data(middle);
 769	rn = dm_block_data(right);
 770
 771	mn->header.nr_entries = cpu_to_le32(0);
 772	mn->header.flags = ln->header.flags;
 773	mn->header.max_entries = ln->header.max_entries;
 774	mn->header.value_size = ln->header.value_size;
 775
 776	redistribute3(ln, mn, rn);
 777
 778	/* patch up the parent */
 779	pn->keys[middle_index] = rn->keys[0];
 780	location = cpu_to_le64(dm_block_location(middle));
 781	__dm_bless_for_disk(&location);
 782	r = insert_at(sizeof(__le64), pn, middle_index,
 783		      le64_to_cpu(mn->keys[0]), &location);
 784	if (r) {
 785		if (shadow_current(s) != left)
 786			unlock_block(s->info, left);
 787
 788		unlock_block(s->info, middle);
 789
 790		if (shadow_current(s) != right)
 791			unlock_block(s->info, right);
 792
 793		return r;
 794	}
 795
 796
 797	/* patch up the spine */
 798	if (key < le64_to_cpu(mn->keys[0])) {
 799		unlock_block(s->info, middle);
 800		unlock_block(s->info, right);
 801		s->nodes[1] = left;
 802	} else if (key < le64_to_cpu(rn->keys[0])) {
 803		unlock_block(s->info, left);
 804		unlock_block(s->info, right);
 805		s->nodes[1] = middle;
 806	} else {
 807		unlock_block(s->info, left);
 808		unlock_block(s->info, middle);
 809		s->nodes[1] = right;
 810	}
 811
 812	return 0;
 813}
 814
 815/*----------------------------------------------------------------*/
 816
 817/*
 818 * Splits a node by creating two new children beneath the given node.
 819 *
 820 * Before:
 821 *	  +----------+
 822 *	  | A ++++++ |
 823 *	  +----------+
 824 *
 825 *
 826 * After:
 827 *	+------------+
 828 *	| A (shadow) |
 829 *	+------------+
 830 *	    |	|
 831 *   +------+	+----+
 832 *   |		     |
 833 *   v		     v
 834 * +-------+	 +-------+
 835 * | B +++ |	 | C +++ |
 836 * +-------+	 +-------+
 837 */
 838static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
 839{
 840	int r;
 841	size_t size;
 842	unsigned int nr_left, nr_right;
 843	struct dm_block *left, *right, *new_parent;
 844	struct btree_node *pn, *ln, *rn;
 845	__le64 val;
 846
 847	new_parent = shadow_current(s);
 848
 849	pn = dm_block_data(new_parent);
 850	size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
 851		sizeof(__le64) : s->info->value_type.size;
 852
 853	/* create & init the left block */
 854	r = new_block(s->info, &left);
 855	if (r < 0)
 856		return r;
 857
 858	ln = dm_block_data(left);
 859	nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
 860
 861	ln->header.flags = pn->header.flags;
 862	ln->header.nr_entries = cpu_to_le32(nr_left);
 863	ln->header.max_entries = pn->header.max_entries;
 864	ln->header.value_size = pn->header.value_size;
 865	memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
 866	memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
 867
 868	/* create & init the right block */
 869	r = new_block(s->info, &right);
 870	if (r < 0) {
 871		unlock_block(s->info, left);
 872		return r;
 873	}
 874
 
 
 875	rn = dm_block_data(right);
 
 
 876	nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
 877
 
 
 
 
 
 878	rn->header.flags = pn->header.flags;
 879	rn->header.nr_entries = cpu_to_le32(nr_right);
 880	rn->header.max_entries = pn->header.max_entries;
 881	rn->header.value_size = pn->header.value_size;
 
 
 882	memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
 
 
 
 
 883	memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
 884	       nr_right * size);
 885
 886	/* new_parent should just point to l and r now */
 887	pn->header.flags = cpu_to_le32(INTERNAL_NODE);
 888	pn->header.nr_entries = cpu_to_le32(2);
 889	pn->header.max_entries = cpu_to_le32(
 890		calc_max_entries(sizeof(__le64),
 891				 dm_bm_block_size(
 892					 dm_tm_get_bm(s->info->tm))));
 893	pn->header.value_size = cpu_to_le32(sizeof(__le64));
 894
 895	val = cpu_to_le64(dm_block_location(left));
 896	__dm_bless_for_disk(&val);
 897	pn->keys[0] = ln->keys[0];
 898	memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
 899
 900	val = cpu_to_le64(dm_block_location(right));
 901	__dm_bless_for_disk(&val);
 902	pn->keys[1] = rn->keys[0];
 903	memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
 904
 905	unlock_block(s->info, left);
 906	unlock_block(s->info, right);
 907	return 0;
 908}
 909
 910/*----------------------------------------------------------------*/
 911
 912/*
 913 * Redistributes a node's entries with its left sibling.
 914 */
 915static int rebalance_left(struct shadow_spine *s, struct dm_btree_value_type *vt,
 916			  unsigned int parent_index, uint64_t key)
 917{
 918	int r;
 919	struct dm_block *sib;
 920	struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s));
 921
 922	r = shadow_child(s->info, vt, parent, parent_index - 1, &sib);
 923	if (r)
 924		return r;
 925
 926	left = dm_block_data(sib);
 927	right = dm_block_data(shadow_current(s));
 928	redistribute2(left, right);
 929	*key_ptr(parent, parent_index) = right->keys[0];
 930
 931	if (key < le64_to_cpu(right->keys[0])) {
 932		unlock_block(s->info, s->nodes[1]);
 933		s->nodes[1] = sib;
 934	} else {
 935		unlock_block(s->info, sib);
 936	}
 937
 938	return 0;
 939}
 940
 941/*
 942 * Redistributes a nodes entries with its right sibling.
 943 */
 944static int rebalance_right(struct shadow_spine *s, struct dm_btree_value_type *vt,
 945			   unsigned int parent_index, uint64_t key)
 946{
 947	int r;
 948	struct dm_block *sib;
 949	struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s));
 950
 951	r = shadow_child(s->info, vt, parent, parent_index + 1, &sib);
 952	if (r)
 953		return r;
 954
 955	left = dm_block_data(shadow_current(s));
 956	right = dm_block_data(sib);
 957	redistribute2(left, right);
 958	*key_ptr(parent, parent_index + 1) = right->keys[0];
 959
 960	if (key < le64_to_cpu(right->keys[0])) {
 961		unlock_block(s->info, sib);
 962	} else {
 963		unlock_block(s->info, s->nodes[1]);
 964		s->nodes[1] = sib;
 965	}
 966
 967	return 0;
 968}
 969
 970/*
 971 * Returns the number of spare entries in a node.
 972 */
 973static int get_node_free_space(struct dm_btree_info *info, dm_block_t b, unsigned int *space)
 974{
 975	int r;
 976	unsigned int nr_entries;
 977	struct dm_block *block;
 978	struct btree_node *node;
 979
 980	r = bn_read_lock(info, b, &block);
 981	if (r)
 982		return r;
 983
 984	node = dm_block_data(block);
 985	nr_entries = le32_to_cpu(node->header.nr_entries);
 986	*space = le32_to_cpu(node->header.max_entries) - nr_entries;
 987
 988	unlock_block(info, block);
 989	return 0;
 990}
 991
 992/*
 993 * Make space in a node, either by moving some entries to a sibling,
 994 * or creating a new sibling node.  SPACE_THRESHOLD defines the minimum
 995 * number of free entries that must be in the sibling to make the move
 996 * worth while.  If the siblings are shared (eg, part of a snapshot),
 997 * then they are not touched, since this break sharing and so consume
 998 * more space than we save.
 999 */
1000#define SPACE_THRESHOLD 8
1001static int rebalance_or_split(struct shadow_spine *s, struct dm_btree_value_type *vt,
1002			      unsigned int parent_index, uint64_t key)
1003{
1004	int r;
1005	struct btree_node *parent = dm_block_data(shadow_parent(s));
1006	unsigned int nr_parent = le32_to_cpu(parent->header.nr_entries);
1007	unsigned int free_space;
1008	int left_shared = 0, right_shared = 0;
1009
1010	/* Should we move entries to the left sibling? */
1011	if (parent_index > 0) {
1012		dm_block_t left_b = value64(parent, parent_index - 1);
1013
1014		r = dm_tm_block_is_shared(s->info->tm, left_b, &left_shared);
1015		if (r)
1016			return r;
1017
1018		if (!left_shared) {
1019			r = get_node_free_space(s->info, left_b, &free_space);
1020			if (r)
1021				return r;
1022
1023			if (free_space >= SPACE_THRESHOLD)
1024				return rebalance_left(s, vt, parent_index, key);
1025		}
1026	}
1027
1028	/* Should we move entries to the right sibling? */
1029	if (parent_index < (nr_parent - 1)) {
1030		dm_block_t right_b = value64(parent, parent_index + 1);
1031
1032		r = dm_tm_block_is_shared(s->info->tm, right_b, &right_shared);
1033		if (r)
1034			return r;
1035
1036		if (!right_shared) {
1037			r = get_node_free_space(s->info, right_b, &free_space);
1038			if (r)
1039				return r;
1040
1041			if (free_space >= SPACE_THRESHOLD)
1042				return rebalance_right(s, vt, parent_index, key);
1043		}
1044	}
1045
1046	/*
1047	 * We need to split the node, normally we split two nodes
1048	 * into three.	But when inserting a sequence that is either
1049	 * monotonically increasing or decreasing it's better to split
1050	 * a single node into two.
1051	 */
1052	if (left_shared || right_shared || (nr_parent <= 2) ||
1053	    (parent_index == 0) || (parent_index + 1 == nr_parent)) {
1054		return split_one_into_two(s, parent_index, vt, key);
1055	} else {
1056		return split_two_into_three(s, parent_index, vt, key);
1057	}
1058}
1059
1060/*
1061 * Does the node contain a particular key?
1062 */
1063static bool contains_key(struct btree_node *node, uint64_t key)
1064{
1065	int i = lower_bound(node, key);
1066
1067	if (i >= 0 && le64_to_cpu(node->keys[i]) == key)
1068		return true;
1069
1070	return false;
1071}
1072
1073/*
1074 * In general we preemptively make sure there's a free entry in every
1075 * node on the spine when doing an insert.  But we can avoid that with
1076 * leaf nodes if we know it's an overwrite.
1077 */
1078static bool has_space_for_insert(struct btree_node *node, uint64_t key)
1079{
1080	if (node->header.nr_entries == node->header.max_entries) {
1081		if (le32_to_cpu(node->header.flags) & LEAF_NODE) {
1082			/* we don't need space if it's an overwrite */
1083			return contains_key(node, key);
1084		}
1085
1086		return false;
1087	}
 
1088
1089	return true;
1090}
1091
1092static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
1093			    struct dm_btree_value_type *vt,
1094			    uint64_t key, unsigned int *index)
1095{
1096	int r, i = *index, top = 1;
1097	struct btree_node *node;
1098
1099	for (;;) {
1100		r = shadow_step(s, root, vt);
1101		if (r < 0)
1102			return r;
1103
1104		node = dm_block_data(shadow_current(s));
1105
1106		/*
1107		 * We have to patch up the parent node, ugly, but I don't
1108		 * see a way to do this automatically as part of the spine
1109		 * op.
1110		 */
1111		if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
1112			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
1113
1114			__dm_bless_for_disk(&location);
1115			memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
1116				    &location, sizeof(__le64));
1117		}
1118
1119		node = dm_block_data(shadow_current(s));
1120
1121		if (!has_space_for_insert(node, key)) {
1122			if (top)
1123				r = btree_split_beneath(s, key);
1124			else
1125				r = rebalance_or_split(s, vt, i, key);
1126
1127			if (r < 0)
1128				return r;
1129
1130			/* making space can cause the current node to change */
1131			node = dm_block_data(shadow_current(s));
1132		}
1133
 
 
1134		i = lower_bound(node, key);
1135
1136		if (le32_to_cpu(node->header.flags) & LEAF_NODE)
1137			break;
1138
1139		if (i < 0) {
1140			/* change the bounds on the lowest key */
1141			node->keys[0] = cpu_to_le64(key);
1142			i = 0;
1143		}
1144
1145		root = value64(node, i);
1146		top = 0;
1147	}
1148
1149	if (i < 0 || le64_to_cpu(node->keys[i]) != key)
1150		i++;
1151
1152	*index = i;
1153	return 0;
1154}
1155
1156static int __btree_get_overwrite_leaf(struct shadow_spine *s, dm_block_t root,
1157				      uint64_t key, int *index)
1158{
1159	int r, i = -1;
1160	struct btree_node *node;
1161
1162	*index = 0;
1163	for (;;) {
1164		r = shadow_step(s, root, &s->info->value_type);
1165		if (r < 0)
1166			return r;
1167
1168		node = dm_block_data(shadow_current(s));
1169
1170		/*
1171		 * We have to patch up the parent node, ugly, but I don't
1172		 * see a way to do this automatically as part of the spine
1173		 * op.
1174		 */
1175		if (shadow_has_parent(s) && i >= 0) {
1176			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
1177
1178			__dm_bless_for_disk(&location);
1179			memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
1180				    &location, sizeof(__le64));
1181		}
1182
1183		node = dm_block_data(shadow_current(s));
1184		i = lower_bound(node, key);
1185
1186		BUG_ON(i < 0);
1187		BUG_ON(i >= le32_to_cpu(node->header.nr_entries));
1188
1189		if (le32_to_cpu(node->header.flags) & LEAF_NODE) {
1190			if (key != le64_to_cpu(node->keys[i]))
1191				return -EINVAL;
1192			break;
1193		}
1194
1195		root = value64(node, i);
1196	}
1197
1198	*index = i;
1199	return 0;
1200}
1201
1202int btree_get_overwrite_leaf(struct dm_btree_info *info, dm_block_t root,
1203			     uint64_t key, int *index,
1204			     dm_block_t *new_root, struct dm_block **leaf)
1205{
1206	int r;
1207	struct shadow_spine spine;
1208
1209	BUG_ON(info->levels > 1);
1210	init_shadow_spine(&spine, info);
1211	r = __btree_get_overwrite_leaf(&spine, root, key, index);
1212	if (!r) {
1213		*new_root = shadow_root(&spine);
1214		*leaf = shadow_current(&spine);
1215
1216		/*
1217		 * Decrement the count so exit_shadow_spine() doesn't
1218		 * unlock the leaf.
1219		 */
1220		spine.count--;
1221	}
1222	exit_shadow_spine(&spine);
1223
1224	return r;
1225}
1226
1227static bool need_insert(struct btree_node *node, uint64_t *keys,
1228			unsigned int level, unsigned int index)
1229{
1230	return ((index >= le32_to_cpu(node->header.nr_entries)) ||
1231		(le64_to_cpu(node->keys[index]) != keys[level]));
1232}
1233
1234static int insert(struct dm_btree_info *info, dm_block_t root,
1235		  uint64_t *keys, void *value, dm_block_t *new_root,
1236		  int *inserted)
1237		  __dm_written_to_disk(value)
1238{
1239	int r;
1240	unsigned int level, index = -1, last_level = info->levels - 1;
1241	dm_block_t block = root;
1242	struct shadow_spine spine;
1243	struct btree_node *n;
1244	struct dm_btree_value_type le64_type;
1245
1246	init_le64_type(info->tm, &le64_type);
 
 
 
 
 
1247	init_shadow_spine(&spine, info);
1248
1249	for (level = 0; level < (info->levels - 1); level++) {
1250		r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
1251		if (r < 0)
1252			goto bad;
1253
1254		n = dm_block_data(shadow_current(&spine));
 
 
1255
1256		if (need_insert(n, keys, level, index)) {
1257			dm_block_t new_tree;
1258			__le64 new_le;
1259
1260			r = dm_btree_empty(info, &new_tree);
1261			if (r < 0)
1262				goto bad;
1263
1264			new_le = cpu_to_le64(new_tree);
1265			__dm_bless_for_disk(&new_le);
1266
1267			r = insert_at(sizeof(uint64_t), n, index,
1268				      keys[level], &new_le);
1269			if (r)
1270				goto bad;
1271		}
1272
1273		if (level < last_level)
1274			block = value64(n, index);
1275	}
1276
1277	r = btree_insert_raw(&spine, block, &info->value_type,
1278			     keys[level], &index);
1279	if (r < 0)
1280		goto bad;
1281
1282	n = dm_block_data(shadow_current(&spine));
 
 
1283
1284	if (need_insert(n, keys, level, index)) {
1285		if (inserted)
1286			*inserted = 1;
1287
1288		r = insert_at(info->value_type.size, n, index,
1289			      keys[level], value);
1290		if (r)
1291			goto bad_unblessed;
1292	} else {
1293		if (inserted)
1294			*inserted = 0;
1295
1296		if (info->value_type.dec &&
1297		    (!info->value_type.equal ||
1298		     !info->value_type.equal(
1299			     info->value_type.context,
1300			     value_ptr(n, index),
1301			     value))) {
1302			info->value_type.dec(info->value_type.context,
1303					     value_ptr(n, index), 1);
1304		}
1305		memcpy_disk(value_ptr(n, index),
1306			    value, info->value_type.size);
1307	}
1308
1309	*new_root = shadow_root(&spine);
1310	exit_shadow_spine(&spine);
1311
1312	return 0;
1313
1314bad:
1315	__dm_unbless_for_disk(value);
1316bad_unblessed:
1317	exit_shadow_spine(&spine);
1318	return r;
1319}
1320
1321int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
1322		    uint64_t *keys, void *value, dm_block_t *new_root)
1323	__dm_written_to_disk(value)
1324{
1325	return insert(info, root, keys, value, new_root, NULL);
1326}
1327EXPORT_SYMBOL_GPL(dm_btree_insert);
1328
1329int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
1330			   uint64_t *keys, void *value, dm_block_t *new_root,
1331			   int *inserted)
1332	__dm_written_to_disk(value)
1333{
1334	return insert(info, root, keys, value, new_root, inserted);
1335}
1336EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
1337
1338/*----------------------------------------------------------------*/
1339
1340static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
1341		    uint64_t *result_key, dm_block_t *next_block)
1342{
1343	int i, r;
1344	uint32_t flags;
1345
1346	do {
1347		r = ro_step(s, block);
1348		if (r < 0)
1349			return r;
1350
1351		flags = le32_to_cpu(ro_node(s)->header.flags);
1352		i = le32_to_cpu(ro_node(s)->header.nr_entries);
1353		if (!i)
1354			return -ENODATA;
1355
1356		i--;
1357
1358		if (find_highest)
1359			*result_key = le64_to_cpu(ro_node(s)->keys[i]);
1360		else
1361			*result_key = le64_to_cpu(ro_node(s)->keys[0]);
1362
1363		if (next_block || flags & INTERNAL_NODE) {
1364			if (find_highest)
1365				block = value64(ro_node(s), i);
1366			else
1367				block = value64(ro_node(s), 0);
1368		}
1369
1370	} while (flags & INTERNAL_NODE);
1371
1372	if (next_block)
1373		*next_block = block;
1374	return 0;
1375}
1376
1377static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
1378			     bool find_highest, uint64_t *result_keys)
1379{
1380	int r = 0, count = 0, level;
1381	struct ro_spine spine;
1382
1383	init_ro_spine(&spine, info);
1384	for (level = 0; level < info->levels; level++) {
1385		r = find_key(&spine, root, find_highest, result_keys + level,
1386			     level == info->levels - 1 ? NULL : &root);
1387		if (r == -ENODATA) {
1388			r = 0;
1389			break;
1390
1391		} else if (r)
1392			break;
1393
1394		count++;
1395	}
1396	exit_ro_spine(&spine);
1397
1398	return r ? r : count;
1399}
1400
1401int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
1402			      uint64_t *result_keys)
1403{
1404	return dm_btree_find_key(info, root, true, result_keys);
1405}
1406EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
1407
1408int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
1409			     uint64_t *result_keys)
1410{
1411	return dm_btree_find_key(info, root, false, result_keys);
1412}
1413EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
1414
1415/*----------------------------------------------------------------*/
1416
1417/*
1418 * FIXME: We shouldn't use a recursive algorithm when we have limited stack
1419 * space.  Also this only works for single level trees.
1420 */
1421static int walk_node(struct dm_btree_info *info, dm_block_t block,
1422		     int (*fn)(void *context, uint64_t *keys, void *leaf),
1423		     void *context)
1424{
1425	int r;
1426	unsigned int i, nr;
1427	struct dm_block *node;
1428	struct btree_node *n;
1429	uint64_t keys;
1430
1431	r = bn_read_lock(info, block, &node);
1432	if (r)
1433		return r;
1434
1435	n = dm_block_data(node);
1436
1437	nr = le32_to_cpu(n->header.nr_entries);
1438	for (i = 0; i < nr; i++) {
1439		if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
1440			r = walk_node(info, value64(n, i), fn, context);
1441			if (r)
1442				goto out;
1443		} else {
1444			keys = le64_to_cpu(*key_ptr(n, i));
1445			r = fn(context, &keys, value_ptr(n, i));
1446			if (r)
1447				goto out;
1448		}
1449	}
1450
1451out:
1452	dm_tm_unlock(info->tm, node);
1453	return r;
1454}
1455
1456int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
1457		  int (*fn)(void *context, uint64_t *keys, void *leaf),
1458		  void *context)
1459{
1460	BUG_ON(info->levels > 1);
1461	return walk_node(info, root, fn, context);
1462}
1463EXPORT_SYMBOL_GPL(dm_btree_walk);
1464
1465/*----------------------------------------------------------------*/
1466
1467static void prefetch_values(struct dm_btree_cursor *c)
1468{
1469	unsigned int i, nr;
1470	__le64 value_le;
1471	struct cursor_node *n = c->nodes + c->depth - 1;
1472	struct btree_node *bn = dm_block_data(n->b);
1473	struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm);
1474
1475	BUG_ON(c->info->value_type.size != sizeof(value_le));
1476
1477	nr = le32_to_cpu(bn->header.nr_entries);
1478	for (i = 0; i < nr; i++) {
1479		memcpy(&value_le, value_ptr(bn, i), sizeof(value_le));
1480		dm_bm_prefetch(bm, le64_to_cpu(value_le));
1481	}
1482}
1483
1484static bool leaf_node(struct dm_btree_cursor *c)
1485{
1486	struct cursor_node *n = c->nodes + c->depth - 1;
1487	struct btree_node *bn = dm_block_data(n->b);
1488
1489	return le32_to_cpu(bn->header.flags) & LEAF_NODE;
1490}
1491
1492static int push_node(struct dm_btree_cursor *c, dm_block_t b)
1493{
1494	int r;
1495	struct cursor_node *n = c->nodes + c->depth;
1496
1497	if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) {
1498		DMERR("couldn't push cursor node, stack depth too high");
1499		return -EINVAL;
1500	}
1501
1502	r = bn_read_lock(c->info, b, &n->b);
1503	if (r)
1504		return r;
1505
1506	n->index = 0;
1507	c->depth++;
1508
1509	if (c->prefetch_leaves || !leaf_node(c))
1510		prefetch_values(c);
1511
1512	return 0;
1513}
1514
1515static void pop_node(struct dm_btree_cursor *c)
1516{
1517	c->depth--;
1518	unlock_block(c->info, c->nodes[c->depth].b);
1519}
1520
1521static int inc_or_backtrack(struct dm_btree_cursor *c)
1522{
1523	struct cursor_node *n;
1524	struct btree_node *bn;
1525
1526	for (;;) {
1527		if (!c->depth)
1528			return -ENODATA;
1529
1530		n = c->nodes + c->depth - 1;
1531		bn = dm_block_data(n->b);
1532
1533		n->index++;
1534		if (n->index < le32_to_cpu(bn->header.nr_entries))
1535			break;
1536
1537		pop_node(c);
1538	}
1539
1540	return 0;
1541}
1542
1543static int find_leaf(struct dm_btree_cursor *c)
1544{
1545	int r = 0;
1546	struct cursor_node *n;
1547	struct btree_node *bn;
1548	__le64 value_le;
1549
1550	for (;;) {
1551		n = c->nodes + c->depth - 1;
1552		bn = dm_block_data(n->b);
1553
1554		if (le32_to_cpu(bn->header.flags) & LEAF_NODE)
1555			break;
1556
1557		memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le));
1558		r = push_node(c, le64_to_cpu(value_le));
1559		if (r) {
1560			DMERR("push_node failed");
1561			break;
1562		}
1563	}
1564
1565	if (!r && (le32_to_cpu(bn->header.nr_entries) == 0))
1566		return -ENODATA;
1567
1568	return r;
1569}
1570
1571int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
1572			  bool prefetch_leaves, struct dm_btree_cursor *c)
1573{
1574	int r;
1575
1576	c->info = info;
1577	c->root = root;
1578	c->depth = 0;
1579	c->prefetch_leaves = prefetch_leaves;
1580
1581	r = push_node(c, root);
1582	if (r)
1583		return r;
1584
1585	return find_leaf(c);
1586}
1587EXPORT_SYMBOL_GPL(dm_btree_cursor_begin);
1588
1589void dm_btree_cursor_end(struct dm_btree_cursor *c)
1590{
1591	while (c->depth)
1592		pop_node(c);
1593}
1594EXPORT_SYMBOL_GPL(dm_btree_cursor_end);
1595
1596int dm_btree_cursor_next(struct dm_btree_cursor *c)
1597{
1598	int r = inc_or_backtrack(c);
1599
1600	if (!r) {
1601		r = find_leaf(c);
1602		if (r)
1603			DMERR("find_leaf failed");
1604	}
1605
1606	return r;
1607}
1608EXPORT_SYMBOL_GPL(dm_btree_cursor_next);
1609
1610int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count)
1611{
1612	int r = 0;
1613
1614	while (count-- && !r)
1615		r = dm_btree_cursor_next(c);
 
1616
1617	return r;
1618}
1619EXPORT_SYMBOL_GPL(dm_btree_cursor_skip);
1620
1621int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le)
1622{
1623	if (c->depth) {
1624		struct cursor_node *n = c->nodes + c->depth - 1;
1625		struct btree_node *bn = dm_block_data(n->b);
1626
1627		if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE)
1628			return -EINVAL;
1629
1630		*key = le64_to_cpu(*key_ptr(bn, n->index));
1631		memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size);
1632		return 0;
1633
1634	} else
1635		return -ENODATA;
1636}
1637EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value);
v3.15
 
  1/*
  2 * Copyright (C) 2011 Red Hat, Inc.
  3 *
  4 * This file is released under the GPL.
  5 */
  6
  7#include "dm-btree-internal.h"
  8#include "dm-space-map.h"
  9#include "dm-transaction-manager.h"
 10
 11#include <linux/export.h>
 12#include <linux/device-mapper.h>
 13
 14#define DM_MSG_PREFIX "btree"
 15
 16/*----------------------------------------------------------------
 
 17 * Array manipulation
 18 *--------------------------------------------------------------*/
 
 19static void memcpy_disk(void *dest, const void *src, size_t len)
 20	__dm_written_to_disk(src)
 21{
 22	memcpy(dest, src, len);
 23	__dm_unbless_for_disk(src);
 24}
 25
 26static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
 27			 unsigned index, void *elt)
 28	__dm_written_to_disk(elt)
 29{
 30	if (index < nr_elts)
 31		memmove(base + (elt_size * (index + 1)),
 32			base + (elt_size * index),
 33			(nr_elts - index) * elt_size);
 34
 35	memcpy_disk(base + (elt_size * index), elt, elt_size);
 36}
 37
 38/*----------------------------------------------------------------*/
 39
 40/* makes the assumption that no two keys are the same. */
 41static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
 42{
 43	int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
 44
 45	while (hi - lo > 1) {
 46		int mid = lo + ((hi - lo) / 2);
 47		uint64_t mid_key = le64_to_cpu(n->keys[mid]);
 48
 49		if (mid_key == key)
 50			return mid;
 51
 52		if (mid_key < key)
 53			lo = mid;
 54		else
 55			hi = mid;
 56	}
 57
 58	return want_hi ? hi : lo;
 59}
 60
 61int lower_bound(struct btree_node *n, uint64_t key)
 62{
 63	return bsearch(n, key, 0);
 64}
 65
 
 
 
 
 
 66void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
 67		  struct dm_btree_value_type *vt)
 68{
 69	unsigned i;
 70	uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
 71
 72	if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
 73		for (i = 0; i < nr_entries; i++)
 74			dm_tm_inc(tm, value64(n, i));
 75	else if (vt->inc)
 76		for (i = 0; i < nr_entries; i++)
 77			vt->inc(vt->context, value_ptr(n, i));
 78}
 79
 80static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
 81		      uint64_t key, void *value)
 82		      __dm_written_to_disk(value)
 83{
 84	uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
 
 85	__le64 key_le = cpu_to_le64(key);
 86
 87	if (index > nr_entries ||
 88	    index >= le32_to_cpu(node->header.max_entries)) {
 
 89		DMERR("too many entries in btree node for insert");
 90		__dm_unbless_for_disk(value);
 91		return -ENOMEM;
 92	}
 93
 94	__dm_bless_for_disk(&key_le);
 95
 96	array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
 97	array_insert(value_base(node), value_size, nr_entries, index, value);
 98	node->header.nr_entries = cpu_to_le32(nr_entries + 1);
 99
100	return 0;
101}
102
103/*----------------------------------------------------------------*/
104
105/*
106 * We want 3n entries (for some n).  This works more nicely for repeated
107 * insert remove loops than (2n + 1).
108 */
109static uint32_t calc_max_entries(size_t value_size, size_t block_size)
110{
111	uint32_t total, n;
112	size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
113
114	block_size -= sizeof(struct node_header);
115	total = block_size / elt_size;
116	n = total / 3;		/* rounds down */
117
118	return 3 * n;
119}
120
121int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
122{
123	int r;
124	struct dm_block *b;
125	struct btree_node *n;
126	size_t block_size;
127	uint32_t max_entries;
128
129	r = new_block(info, &b);
130	if (r < 0)
131		return r;
132
133	block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
134	max_entries = calc_max_entries(info->value_type.size, block_size);
135
136	n = dm_block_data(b);
137	memset(n, 0, block_size);
138	n->header.flags = cpu_to_le32(LEAF_NODE);
139	n->header.nr_entries = cpu_to_le32(0);
140	n->header.max_entries = cpu_to_le32(max_entries);
141	n->header.value_size = cpu_to_le32(info->value_type.size);
142
143	*root = dm_block_location(b);
144	return unlock_block(info, b);
 
 
145}
146EXPORT_SYMBOL_GPL(dm_btree_empty);
147
148/*----------------------------------------------------------------*/
149
150/*
151 * Deletion uses a recursive algorithm, since we have limited stack space
152 * we explicitly manage our own stack on the heap.
153 */
154#define MAX_SPINE_DEPTH 64
155struct frame {
156	struct dm_block *b;
157	struct btree_node *n;
158	unsigned level;
159	unsigned nr_children;
160	unsigned current_child;
161};
162
163struct del_stack {
164	struct dm_btree_info *info;
165	struct dm_transaction_manager *tm;
166	int top;
167	struct frame spine[MAX_SPINE_DEPTH];
168};
169
170static int top_frame(struct del_stack *s, struct frame **f)
171{
172	if (s->top < 0) {
173		DMERR("btree deletion stack empty");
174		return -EINVAL;
175	}
176
177	*f = s->spine + s->top;
178
179	return 0;
180}
181
182static int unprocessed_frames(struct del_stack *s)
183{
184	return s->top >= 0;
185}
186
187static void prefetch_children(struct del_stack *s, struct frame *f)
188{
189	unsigned i;
190	struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
191
192	for (i = 0; i < f->nr_children; i++)
193		dm_bm_prefetch(bm, value64(f->n, i));
194}
195
196static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
197{
198	return f->level < (info->levels - 1);
199}
200
201static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
202{
203	int r;
204	uint32_t ref_count;
205
206	if (s->top >= MAX_SPINE_DEPTH - 1) {
207		DMERR("btree deletion stack out of memory");
208		return -ENOMEM;
209	}
210
211	r = dm_tm_ref(s->tm, b, &ref_count);
212	if (r)
213		return r;
214
215	if (ref_count > 1)
216		/*
217		 * This is a shared node, so we can just decrement it's
218		 * reference counter and leave the children.
219		 */
220		dm_tm_dec(s->tm, b);
221
222	else {
223		uint32_t flags;
224		struct frame *f = s->spine + ++s->top;
225
226		r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
227		if (r) {
228			s->top--;
229			return r;
230		}
231
232		f->n = dm_block_data(f->b);
233		f->level = level;
234		f->nr_children = le32_to_cpu(f->n->header.nr_entries);
235		f->current_child = 0;
236
237		flags = le32_to_cpu(f->n->header.flags);
238		if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
239			prefetch_children(s, f);
240	}
241
242	return 0;
243}
244
245static void pop_frame(struct del_stack *s)
246{
247	struct frame *f = s->spine + s->top--;
248
249	dm_tm_dec(s->tm, dm_block_location(f->b));
250	dm_tm_unlock(s->tm, f->b);
251}
252
 
 
 
 
 
 
 
 
 
 
253int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
254{
255	int r;
256	struct del_stack *s;
257
258	s = kmalloc(sizeof(*s), GFP_KERNEL);
 
 
 
 
 
259	if (!s)
260		return -ENOMEM;
261	s->info = info;
262	s->tm = info->tm;
263	s->top = -1;
264
265	r = push_frame(s, root, 0);
266	if (r)
267		goto out;
268
269	while (unprocessed_frames(s)) {
270		uint32_t flags;
271		struct frame *f;
272		dm_block_t b;
273
274		r = top_frame(s, &f);
275		if (r)
276			goto out;
277
278		if (f->current_child >= f->nr_children) {
279			pop_frame(s);
280			continue;
281		}
282
283		flags = le32_to_cpu(f->n->header.flags);
284		if (flags & INTERNAL_NODE) {
285			b = value64(f->n, f->current_child);
286			f->current_child++;
287			r = push_frame(s, b, f->level);
288			if (r)
289				goto out;
290
291		} else if (is_internal_level(info, f)) {
292			b = value64(f->n, f->current_child);
293			f->current_child++;
294			r = push_frame(s, b, f->level + 1);
295			if (r)
296				goto out;
297
298		} else {
299			if (info->value_type.dec) {
300				unsigned i;
301
302				for (i = 0; i < f->nr_children; i++)
303					info->value_type.dec(info->value_type.context,
304							     value_ptr(f->n, i));
305			}
306			pop_frame(s);
307		}
308	}
309
310out:
 
 
 
 
311	kfree(s);
 
312	return r;
313}
314EXPORT_SYMBOL_GPL(dm_btree_del);
315
316/*----------------------------------------------------------------*/
317
318static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
319			    int (*search_fn)(struct btree_node *, uint64_t),
320			    uint64_t *result_key, void *v, size_t value_size)
321{
322	int i, r;
323	uint32_t flags, nr_entries;
324
325	do {
326		r = ro_step(s, block);
327		if (r < 0)
328			return r;
329
330		i = search_fn(ro_node(s), key);
331
332		flags = le32_to_cpu(ro_node(s)->header.flags);
333		nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
334		if (i < 0 || i >= nr_entries)
335			return -ENODATA;
336
337		if (flags & INTERNAL_NODE)
338			block = value64(ro_node(s), i);
339
340	} while (!(flags & LEAF_NODE));
341
342	*result_key = le64_to_cpu(ro_node(s)->keys[i]);
343	memcpy(v, value_ptr(ro_node(s), i), value_size);
 
344
345	return 0;
346}
347
348int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
349		    uint64_t *keys, void *value_le)
350{
351	unsigned level, last_level = info->levels - 1;
352	int r = -ENODATA;
353	uint64_t rkey;
354	__le64 internal_value_le;
355	struct ro_spine spine;
356
357	init_ro_spine(&spine, info);
358	for (level = 0; level < info->levels; level++) {
359		size_t size;
360		void *value_p;
361
362		if (level == last_level) {
363			value_p = value_le;
364			size = info->value_type.size;
365
366		} else {
367			value_p = &internal_value_le;
368			size = sizeof(uint64_t);
369		}
370
371		r = btree_lookup_raw(&spine, root, keys[level],
372				     lower_bound, &rkey,
373				     value_p, size);
374
375		if (!r) {
376			if (rkey != keys[level]) {
377				exit_ro_spine(&spine);
378				return -ENODATA;
379			}
380		} else {
381			exit_ro_spine(&spine);
382			return r;
383		}
384
385		root = le64_to_cpu(internal_value_le);
386	}
387	exit_ro_spine(&spine);
388
389	return r;
390}
391EXPORT_SYMBOL_GPL(dm_btree_lookup);
392
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
393/*
394 * Splits a node by creating a sibling node and shifting half the nodes
395 * contents across.  Assumes there is a parent node, and it has room for
396 * another child.
397 *
398 * Before:
399 *	  +--------+
400 *	  | Parent |
401 *	  +--------+
402 *	     |
403 *	     v
404 *	+----------+
405 *	| A ++++++ |
406 *	+----------+
407 *
408 *
409 * After:
410 *		+--------+
411 *		| Parent |
412 *		+--------+
413 *		  |	|
414 *		  v	+------+
415 *	    +---------+	       |
416 *	    | A* +++  |	       v
417 *	    +---------+	  +-------+
418 *			  | B +++ |
419 *			  +-------+
420 *
421 * Where A* is a shadow of A.
422 */
423static int btree_split_sibling(struct shadow_spine *s, dm_block_t root,
424			       unsigned parent_index, uint64_t key)
425{
426	int r;
427	size_t size;
428	unsigned nr_left, nr_right;
429	struct dm_block *left, *right, *parent;
430	struct btree_node *ln, *rn, *pn;
431	__le64 location;
432
433	left = shadow_current(s);
434
435	r = new_block(s->info, &right);
436	if (r < 0)
437		return r;
438
439	ln = dm_block_data(left);
440	rn = dm_block_data(right);
441
442	nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
443	nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
444
445	ln->header.nr_entries = cpu_to_le32(nr_left);
446
447	rn->header.flags = ln->header.flags;
448	rn->header.nr_entries = cpu_to_le32(nr_right);
449	rn->header.max_entries = ln->header.max_entries;
450	rn->header.value_size = ln->header.value_size;
451	memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
452
453	size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
454		sizeof(uint64_t) : s->info->value_type.size;
455	memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
456	       size * nr_right);
457
458	/*
459	 * Patch up the parent
460	 */
461	parent = shadow_parent(s);
462
463	pn = dm_block_data(parent);
464	location = cpu_to_le64(dm_block_location(left));
465	__dm_bless_for_disk(&location);
466	memcpy_disk(value_ptr(pn, parent_index),
467		    &location, sizeof(__le64));
468
469	location = cpu_to_le64(dm_block_location(right));
470	__dm_bless_for_disk(&location);
471
472	r = insert_at(sizeof(__le64), pn, parent_index + 1,
473		      le64_to_cpu(rn->keys[0]), &location);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
474	if (r)
475		return r;
476
477	if (key < le64_to_cpu(rn->keys[0])) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
478		unlock_block(s->info, right);
479		s->nodes[1] = left;
 
 
 
 
480	} else {
481		unlock_block(s->info, left);
 
482		s->nodes[1] = right;
483	}
484
485	return 0;
486}
487
 
 
488/*
489 * Splits a node by creating two new children beneath the given node.
490 *
491 * Before:
492 *	  +----------+
493 *	  | A ++++++ |
494 *	  +----------+
495 *
496 *
497 * After:
498 *	+------------+
499 *	| A (shadow) |
500 *	+------------+
501 *	    |	|
502 *   +------+	+----+
503 *   |		     |
504 *   v		     v
505 * +-------+	 +-------+
506 * | B +++ |	 | C +++ |
507 * +-------+	 +-------+
508 */
509static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
510{
511	int r;
512	size_t size;
513	unsigned nr_left, nr_right;
514	struct dm_block *left, *right, *new_parent;
515	struct btree_node *pn, *ln, *rn;
516	__le64 val;
517
518	new_parent = shadow_current(s);
519
 
 
 
 
 
520	r = new_block(s->info, &left);
521	if (r < 0)
522		return r;
523
 
 
 
 
 
 
 
 
 
 
 
524	r = new_block(s->info, &right);
525	if (r < 0) {
526		/* FIXME: put left */
527		return r;
528	}
529
530	pn = dm_block_data(new_parent);
531	ln = dm_block_data(left);
532	rn = dm_block_data(right);
533
534	nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
535	nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
536
537	ln->header.flags = pn->header.flags;
538	ln->header.nr_entries = cpu_to_le32(nr_left);
539	ln->header.max_entries = pn->header.max_entries;
540	ln->header.value_size = pn->header.value_size;
541
542	rn->header.flags = pn->header.flags;
543	rn->header.nr_entries = cpu_to_le32(nr_right);
544	rn->header.max_entries = pn->header.max_entries;
545	rn->header.value_size = pn->header.value_size;
546
547	memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
548	memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
549
550	size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
551		sizeof(__le64) : s->info->value_type.size;
552	memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
553	memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
554	       nr_right * size);
555
556	/* new_parent should just point to l and r now */
557	pn->header.flags = cpu_to_le32(INTERNAL_NODE);
558	pn->header.nr_entries = cpu_to_le32(2);
559	pn->header.max_entries = cpu_to_le32(
560		calc_max_entries(sizeof(__le64),
561				 dm_bm_block_size(
562					 dm_tm_get_bm(s->info->tm))));
563	pn->header.value_size = cpu_to_le32(sizeof(__le64));
564
565	val = cpu_to_le64(dm_block_location(left));
566	__dm_bless_for_disk(&val);
567	pn->keys[0] = ln->keys[0];
568	memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
569
570	val = cpu_to_le64(dm_block_location(right));
571	__dm_bless_for_disk(&val);
572	pn->keys[1] = rn->keys[0];
573	memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
575	/*
576	 * rejig the spine.  This is ugly, since it knows too
577	 * much about the spine
 
 
578	 */
579	if (s->nodes[0] != new_parent) {
580		unlock_block(s->info, s->nodes[0]);
581		s->nodes[0] = new_parent;
 
 
582	}
583	if (key < le64_to_cpu(rn->keys[0])) {
584		unlock_block(s->info, right);
585		s->nodes[1] = left;
586	} else {
587		unlock_block(s->info, left);
588		s->nodes[1] = right;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
589	}
590	s->count = 2;
591
592	return 0;
593}
594
595static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
596			    struct dm_btree_value_type *vt,
597			    uint64_t key, unsigned *index)
598{
599	int r, i = *index, top = 1;
600	struct btree_node *node;
601
602	for (;;) {
603		r = shadow_step(s, root, vt);
604		if (r < 0)
605			return r;
606
607		node = dm_block_data(shadow_current(s));
608
609		/*
610		 * We have to patch up the parent node, ugly, but I don't
611		 * see a way to do this automatically as part of the spine
612		 * op.
613		 */
614		if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
615			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
616
617			__dm_bless_for_disk(&location);
618			memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
619				    &location, sizeof(__le64));
620		}
621
622		node = dm_block_data(shadow_current(s));
623
624		if (node->header.nr_entries == node->header.max_entries) {
625			if (top)
626				r = btree_split_beneath(s, key);
627			else
628				r = btree_split_sibling(s, root, i, key);
629
630			if (r < 0)
631				return r;
 
 
 
632		}
633
634		node = dm_block_data(shadow_current(s));
635
636		i = lower_bound(node, key);
637
638		if (le32_to_cpu(node->header.flags) & LEAF_NODE)
639			break;
640
641		if (i < 0) {
642			/* change the bounds on the lowest key */
643			node->keys[0] = cpu_to_le64(key);
644			i = 0;
645		}
646
647		root = value64(node, i);
648		top = 0;
649	}
650
651	if (i < 0 || le64_to_cpu(node->keys[i]) != key)
652		i++;
653
654	*index = i;
655	return 0;
656}
657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
658static int insert(struct dm_btree_info *info, dm_block_t root,
659		  uint64_t *keys, void *value, dm_block_t *new_root,
660		  int *inserted)
661		  __dm_written_to_disk(value)
662{
663	int r, need_insert;
664	unsigned level, index = -1, last_level = info->levels - 1;
665	dm_block_t block = root;
666	struct shadow_spine spine;
667	struct btree_node *n;
668	struct dm_btree_value_type le64_type;
669
670	le64_type.context = NULL;
671	le64_type.size = sizeof(__le64);
672	le64_type.inc = NULL;
673	le64_type.dec = NULL;
674	le64_type.equal = NULL;
675
676	init_shadow_spine(&spine, info);
677
678	for (level = 0; level < (info->levels - 1); level++) {
679		r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
680		if (r < 0)
681			goto bad;
682
683		n = dm_block_data(shadow_current(&spine));
684		need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
685			       (le64_to_cpu(n->keys[index]) != keys[level]));
686
687		if (need_insert) {
688			dm_block_t new_tree;
689			__le64 new_le;
690
691			r = dm_btree_empty(info, &new_tree);
692			if (r < 0)
693				goto bad;
694
695			new_le = cpu_to_le64(new_tree);
696			__dm_bless_for_disk(&new_le);
697
698			r = insert_at(sizeof(uint64_t), n, index,
699				      keys[level], &new_le);
700			if (r)
701				goto bad;
702		}
703
704		if (level < last_level)
705			block = value64(n, index);
706	}
707
708	r = btree_insert_raw(&spine, block, &info->value_type,
709			     keys[level], &index);
710	if (r < 0)
711		goto bad;
712
713	n = dm_block_data(shadow_current(&spine));
714	need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
715		       (le64_to_cpu(n->keys[index]) != keys[level]));
716
717	if (need_insert) {
718		if (inserted)
719			*inserted = 1;
720
721		r = insert_at(info->value_type.size, n, index,
722			      keys[level], value);
723		if (r)
724			goto bad_unblessed;
725	} else {
726		if (inserted)
727			*inserted = 0;
728
729		if (info->value_type.dec &&
730		    (!info->value_type.equal ||
731		     !info->value_type.equal(
732			     info->value_type.context,
733			     value_ptr(n, index),
734			     value))) {
735			info->value_type.dec(info->value_type.context,
736					     value_ptr(n, index));
737		}
738		memcpy_disk(value_ptr(n, index),
739			    value, info->value_type.size);
740	}
741
742	*new_root = shadow_root(&spine);
743	exit_shadow_spine(&spine);
744
745	return 0;
746
747bad:
748	__dm_unbless_for_disk(value);
749bad_unblessed:
750	exit_shadow_spine(&spine);
751	return r;
752}
753
754int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
755		    uint64_t *keys, void *value, dm_block_t *new_root)
756		    __dm_written_to_disk(value)
757{
758	return insert(info, root, keys, value, new_root, NULL);
759}
760EXPORT_SYMBOL_GPL(dm_btree_insert);
761
762int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
763			   uint64_t *keys, void *value, dm_block_t *new_root,
764			   int *inserted)
765			   __dm_written_to_disk(value)
766{
767	return insert(info, root, keys, value, new_root, inserted);
768}
769EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
770
771/*----------------------------------------------------------------*/
772
773static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
774		    uint64_t *result_key, dm_block_t *next_block)
775{
776	int i, r;
777	uint32_t flags;
778
779	do {
780		r = ro_step(s, block);
781		if (r < 0)
782			return r;
783
784		flags = le32_to_cpu(ro_node(s)->header.flags);
785		i = le32_to_cpu(ro_node(s)->header.nr_entries);
786		if (!i)
787			return -ENODATA;
788		else
789			i--;
790
791		if (find_highest)
792			*result_key = le64_to_cpu(ro_node(s)->keys[i]);
793		else
794			*result_key = le64_to_cpu(ro_node(s)->keys[0]);
795
796		if (next_block || flags & INTERNAL_NODE)
797			block = value64(ro_node(s), i);
 
 
 
 
798
799	} while (flags & INTERNAL_NODE);
800
801	if (next_block)
802		*next_block = block;
803	return 0;
804}
805
806static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
807			     bool find_highest, uint64_t *result_keys)
808{
809	int r = 0, count = 0, level;
810	struct ro_spine spine;
811
812	init_ro_spine(&spine, info);
813	for (level = 0; level < info->levels; level++) {
814		r = find_key(&spine, root, find_highest, result_keys + level,
815			     level == info->levels - 1 ? NULL : &root);
816		if (r == -ENODATA) {
817			r = 0;
818			break;
819
820		} else if (r)
821			break;
822
823		count++;
824	}
825	exit_ro_spine(&spine);
826
827	return r ? r : count;
828}
829
830int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
831			      uint64_t *result_keys)
832{
833	return dm_btree_find_key(info, root, true, result_keys);
834}
835EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
836
837int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
838			     uint64_t *result_keys)
839{
840	return dm_btree_find_key(info, root, false, result_keys);
841}
842EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
843
844/*----------------------------------------------------------------*/
845
846/*
847 * FIXME: We shouldn't use a recursive algorithm when we have limited stack
848 * space.  Also this only works for single level trees.
849 */
850static int walk_node(struct ro_spine *s, dm_block_t block,
851		     int (*fn)(void *context, uint64_t *keys, void *leaf),
852		     void *context)
853{
854	int r;
855	unsigned i, nr;
 
856	struct btree_node *n;
857	uint64_t keys;
858
859	r = ro_step(s, block);
860	n = ro_node(s);
 
 
 
861
862	nr = le32_to_cpu(n->header.nr_entries);
863	for (i = 0; i < nr; i++) {
864		if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
865			r = walk_node(s, value64(n, i), fn, context);
866			if (r)
867				goto out;
868		} else {
869			keys = le64_to_cpu(*key_ptr(n, i));
870			r = fn(context, &keys, value_ptr(n, i));
871			if (r)
872				goto out;
873		}
874	}
875
876out:
877	ro_pop(s);
878	return r;
879}
880
881int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
882		  int (*fn)(void *context, uint64_t *keys, void *leaf),
883		  void *context)
884{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
885	int r;
886	struct ro_spine spine;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
887
888	BUG_ON(info->levels > 1);
 
 
889
890	init_ro_spine(&spine, info);
891	r = walk_node(&spine, root, fn, context);
892	exit_ro_spine(&spine);
893
894	return r;
895}
896EXPORT_SYMBOL_GPL(dm_btree_walk);