Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
4 * monitoring
5 * Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
6 * Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
7 * Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de>
8 * Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com>
9 * Copyright (C) 2007--2014 Jean Delvare <jdelvare@suse.de>
10 *
11 * Chip details at <http://www.national.com/ds/LM/LM85.pdf>
12 */
13
14#include <linux/module.h>
15#include <linux/of.h>
16#include <linux/init.h>
17#include <linux/slab.h>
18#include <linux/jiffies.h>
19#include <linux/i2c.h>
20#include <linux/hwmon.h>
21#include <linux/hwmon-vid.h>
22#include <linux/hwmon-sysfs.h>
23#include <linux/err.h>
24#include <linux/mutex.h>
25#include <linux/util_macros.h>
26
27/* Addresses to scan */
28static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
29
30enum chips {
31 lm85, lm96000,
32 adm1027, adt7463, adt7468,
33 emc6d100, emc6d102, emc6d103, emc6d103s
34};
35
36/* The LM85 registers */
37
38#define LM85_REG_IN(nr) (0x20 + (nr))
39#define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
40#define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
41
42#define LM85_REG_TEMP(nr) (0x25 + (nr))
43#define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
44#define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
45
46/* Fan speeds are LSB, MSB (2 bytes) */
47#define LM85_REG_FAN(nr) (0x28 + (nr) * 2)
48#define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2)
49
50#define LM85_REG_PWM(nr) (0x30 + (nr))
51
52#define LM85_REG_COMPANY 0x3e
53#define LM85_REG_VERSTEP 0x3f
54
55#define ADT7468_REG_CFG5 0x7c
56#define ADT7468_OFF64 (1 << 0)
57#define ADT7468_HFPWM (1 << 1)
58#define IS_ADT7468_OFF64(data) \
59 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
60#define IS_ADT7468_HFPWM(data) \
61 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
62
63/* These are the recognized values for the above regs */
64#define LM85_COMPANY_NATIONAL 0x01
65#define LM85_COMPANY_ANALOG_DEV 0x41
66#define LM85_COMPANY_SMSC 0x5c
67#define LM85_VERSTEP_LM85C 0x60
68#define LM85_VERSTEP_LM85B 0x62
69#define LM85_VERSTEP_LM96000_1 0x68
70#define LM85_VERSTEP_LM96000_2 0x69
71#define LM85_VERSTEP_ADM1027 0x60
72#define LM85_VERSTEP_ADT7463 0x62
73#define LM85_VERSTEP_ADT7463C 0x6A
74#define LM85_VERSTEP_ADT7468_1 0x71
75#define LM85_VERSTEP_ADT7468_2 0x72
76#define LM85_VERSTEP_EMC6D100_A0 0x60
77#define LM85_VERSTEP_EMC6D100_A1 0x61
78#define LM85_VERSTEP_EMC6D102 0x65
79#define LM85_VERSTEP_EMC6D103_A0 0x68
80#define LM85_VERSTEP_EMC6D103_A1 0x69
81#define LM85_VERSTEP_EMC6D103S 0x6A /* Also known as EMC6D103:A2 */
82
83#define LM85_REG_CONFIG 0x40
84
85#define LM85_REG_ALARM1 0x41
86#define LM85_REG_ALARM2 0x42
87
88#define LM85_REG_VID 0x43
89
90/* Automated FAN control */
91#define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
92#define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
93#define LM85_REG_AFAN_SPIKE1 0x62
94#define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
95#define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
96#define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
97#define LM85_REG_AFAN_HYST1 0x6d
98#define LM85_REG_AFAN_HYST2 0x6e
99
100#define ADM1027_REG_EXTEND_ADC1 0x76
101#define ADM1027_REG_EXTEND_ADC2 0x77
102
103#define EMC6D100_REG_ALARM3 0x7d
104/* IN5, IN6 and IN7 */
105#define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5))
106#define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2)
107#define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2)
108#define EMC6D102_REG_EXTEND_ADC1 0x85
109#define EMC6D102_REG_EXTEND_ADC2 0x86
110#define EMC6D102_REG_EXTEND_ADC3 0x87
111#define EMC6D102_REG_EXTEND_ADC4 0x88
112
113/*
114 * Conversions. Rounding and limit checking is only done on the TO_REG
115 * variants. Note that you should be a bit careful with which arguments
116 * these macros are called: arguments may be evaluated more than once.
117 */
118
119/* IN are scaled according to built-in resistors */
120static const int lm85_scaling[] = { /* .001 Volts */
121 2500, 2250, 3300, 5000, 12000,
122 3300, 1500, 1800 /*EMC6D100*/
123};
124#define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from))
125
126#define INS_TO_REG(n, val) \
127 SCALE(clamp_val(val, 0, 255 * lm85_scaling[n] / 192), \
128 lm85_scaling[n], 192)
129
130#define INSEXT_FROM_REG(n, val, ext) \
131 SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
132
133#define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n])
134
135/* FAN speed is measured using 90kHz clock */
136static inline u16 FAN_TO_REG(unsigned long val)
137{
138 if (!val)
139 return 0xffff;
140 return clamp_val(5400000 / val, 1, 0xfffe);
141}
142#define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
143 5400000 / (val))
144
145/* Temperature is reported in .001 degC increments */
146#define TEMP_TO_REG(val) \
147 DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
148#define TEMPEXT_FROM_REG(val, ext) \
149 SCALE(((val) << 4) + (ext), 16, 1000)
150#define TEMP_FROM_REG(val) ((val) * 1000)
151
152#define PWM_TO_REG(val) clamp_val(val, 0, 255)
153#define PWM_FROM_REG(val) (val)
154
155/*
156 * ZONEs have the following parameters:
157 * Limit (low) temp, 1. degC
158 * Hysteresis (below limit), 1. degC (0-15)
159 * Range of speed control, .1 degC (2-80)
160 * Critical (high) temp, 1. degC
161 *
162 * FAN PWMs have the following parameters:
163 * Reference Zone, 1, 2, 3, etc.
164 * Spinup time, .05 sec
165 * PWM value at limit/low temp, 1 count
166 * PWM Frequency, 1. Hz
167 * PWM is Min or OFF below limit, flag
168 * Invert PWM output, flag
169 *
170 * Some chips filter the temp, others the fan.
171 * Filter constant (or disabled) .1 seconds
172 */
173
174/* These are the zone temperature range encodings in .001 degree C */
175static const int lm85_range_map[] = {
176 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
177 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
178};
179
180static int RANGE_TO_REG(long range)
181{
182 return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
183}
184#define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f]
185
186/* These are the PWM frequency encodings */
187static const int lm85_freq_map[] = { /* 1 Hz */
188 10, 15, 23, 30, 38, 47, 61, 94
189};
190
191static const int lm96000_freq_map[] = { /* 1 Hz */
192 10, 15, 23, 30, 38, 47, 61, 94,
193 22500, 24000, 25700, 25700, 27700, 27700, 30000, 30000
194};
195
196static const int adm1027_freq_map[] = { /* 1 Hz */
197 11, 15, 22, 29, 35, 44, 59, 88
198};
199
200static int FREQ_TO_REG(const int *map,
201 unsigned int map_size, unsigned long freq)
202{
203 return find_closest(freq, map, map_size);
204}
205
206static int FREQ_FROM_REG(const int *map, unsigned int map_size, u8 reg)
207{
208 return map[reg % map_size];
209}
210
211/*
212 * Since we can't use strings, I'm abusing these numbers
213 * to stand in for the following meanings:
214 * 1 -- PWM responds to Zone 1
215 * 2 -- PWM responds to Zone 2
216 * 3 -- PWM responds to Zone 3
217 * 23 -- PWM responds to the higher temp of Zone 2 or 3
218 * 123 -- PWM responds to highest of Zone 1, 2, or 3
219 * 0 -- PWM is always at 0% (ie, off)
220 * -1 -- PWM is always at 100%
221 * -2 -- PWM responds to manual control
222 */
223
224static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
225#define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5]
226
227static int ZONE_TO_REG(int zone)
228{
229 int i;
230
231 for (i = 0; i <= 7; ++i)
232 if (zone == lm85_zone_map[i])
233 break;
234 if (i > 7) /* Not found. */
235 i = 3; /* Always 100% */
236 return i << 5;
237}
238
239#define HYST_TO_REG(val) clamp_val(((val) + 500) / 1000, 0, 15)
240#define HYST_FROM_REG(val) ((val) * 1000)
241
242/*
243 * Chip sampling rates
244 *
245 * Some sensors are not updated more frequently than once per second
246 * so it doesn't make sense to read them more often than that.
247 * We cache the results and return the saved data if the driver
248 * is called again before a second has elapsed.
249 *
250 * Also, there is significant configuration data for this chip
251 * given the automatic PWM fan control that is possible. There
252 * are about 47 bytes of config data to only 22 bytes of actual
253 * readings. So, we keep the config data up to date in the cache
254 * when it is written and only sample it once every 1 *minute*
255 */
256#define LM85_DATA_INTERVAL (HZ + HZ / 2)
257#define LM85_CONFIG_INTERVAL (1 * 60 * HZ)
258
259/*
260 * LM85 can automatically adjust fan speeds based on temperature
261 * This structure encapsulates an entire Zone config. There are
262 * three zones (one for each temperature input) on the lm85
263 */
264struct lm85_zone {
265 s8 limit; /* Low temp limit */
266 u8 hyst; /* Low limit hysteresis. (0-15) */
267 u8 range; /* Temp range, encoded */
268 s8 critical; /* "All fans ON" temp limit */
269 u8 max_desired; /*
270 * Actual "max" temperature specified. Preserved
271 * to prevent "drift" as other autofan control
272 * values change.
273 */
274};
275
276struct lm85_autofan {
277 u8 config; /* Register value */
278 u8 min_pwm; /* Minimum PWM value, encoded */
279 u8 min_off; /* Min PWM or OFF below "limit", flag */
280};
281
282/*
283 * For each registered chip, we need to keep some data in memory.
284 * The structure is dynamically allocated.
285 */
286struct lm85_data {
287 struct i2c_client *client;
288 const struct attribute_group *groups[6];
289 const int *freq_map;
290 unsigned int freq_map_size;
291
292 enum chips type;
293
294 bool has_vid5; /* true if VID5 is configured for ADT7463 or ADT7468 */
295
296 struct mutex update_lock;
297 bool valid; /* true if following fields are valid */
298 unsigned long last_reading; /* In jiffies */
299 unsigned long last_config; /* In jiffies */
300
301 u8 in[8]; /* Register value */
302 u8 in_max[8]; /* Register value */
303 u8 in_min[8]; /* Register value */
304 s8 temp[3]; /* Register value */
305 s8 temp_min[3]; /* Register value */
306 s8 temp_max[3]; /* Register value */
307 u16 fan[4]; /* Register value */
308 u16 fan_min[4]; /* Register value */
309 u8 pwm[3]; /* Register value */
310 u8 pwm_freq[3]; /* Register encoding */
311 u8 temp_ext[3]; /* Decoded values */
312 u8 in_ext[8]; /* Decoded values */
313 u8 vid; /* Register value */
314 u8 vrm; /* VRM version */
315 u32 alarms; /* Register encoding, combined */
316 u8 cfg5; /* Config Register 5 on ADT7468 */
317 struct lm85_autofan autofan[3];
318 struct lm85_zone zone[3];
319};
320
321static int lm85_read_value(struct i2c_client *client, u8 reg)
322{
323 int res;
324
325 /* What size location is it? */
326 switch (reg) {
327 case LM85_REG_FAN(0): /* Read WORD data */
328 case LM85_REG_FAN(1):
329 case LM85_REG_FAN(2):
330 case LM85_REG_FAN(3):
331 case LM85_REG_FAN_MIN(0):
332 case LM85_REG_FAN_MIN(1):
333 case LM85_REG_FAN_MIN(2):
334 case LM85_REG_FAN_MIN(3):
335 case LM85_REG_ALARM1: /* Read both bytes at once */
336 res = i2c_smbus_read_byte_data(client, reg) & 0xff;
337 res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
338 break;
339 default: /* Read BYTE data */
340 res = i2c_smbus_read_byte_data(client, reg);
341 break;
342 }
343
344 return res;
345}
346
347static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
348{
349 switch (reg) {
350 case LM85_REG_FAN(0): /* Write WORD data */
351 case LM85_REG_FAN(1):
352 case LM85_REG_FAN(2):
353 case LM85_REG_FAN(3):
354 case LM85_REG_FAN_MIN(0):
355 case LM85_REG_FAN_MIN(1):
356 case LM85_REG_FAN_MIN(2):
357 case LM85_REG_FAN_MIN(3):
358 /* NOTE: ALARM is read only, so not included here */
359 i2c_smbus_write_byte_data(client, reg, value & 0xff);
360 i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
361 break;
362 default: /* Write BYTE data */
363 i2c_smbus_write_byte_data(client, reg, value);
364 break;
365 }
366}
367
368static struct lm85_data *lm85_update_device(struct device *dev)
369{
370 struct lm85_data *data = dev_get_drvdata(dev);
371 struct i2c_client *client = data->client;
372 int i;
373
374 mutex_lock(&data->update_lock);
375
376 if (!data->valid ||
377 time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
378 /* Things that change quickly */
379 dev_dbg(&client->dev, "Reading sensor values\n");
380
381 /*
382 * Have to read extended bits first to "freeze" the
383 * more significant bits that are read later.
384 * There are 2 additional resolution bits per channel and we
385 * have room for 4, so we shift them to the left.
386 */
387 if (data->type == adm1027 || data->type == adt7463 ||
388 data->type == adt7468) {
389 int ext1 = lm85_read_value(client,
390 ADM1027_REG_EXTEND_ADC1);
391 int ext2 = lm85_read_value(client,
392 ADM1027_REG_EXTEND_ADC2);
393 int val = (ext1 << 8) + ext2;
394
395 for (i = 0; i <= 4; i++)
396 data->in_ext[i] =
397 ((val >> (i * 2)) & 0x03) << 2;
398
399 for (i = 0; i <= 2; i++)
400 data->temp_ext[i] =
401 (val >> ((i + 4) * 2)) & 0x0c;
402 }
403
404 data->vid = lm85_read_value(client, LM85_REG_VID);
405
406 for (i = 0; i <= 3; ++i) {
407 data->in[i] =
408 lm85_read_value(client, LM85_REG_IN(i));
409 data->fan[i] =
410 lm85_read_value(client, LM85_REG_FAN(i));
411 }
412
413 if (!data->has_vid5)
414 data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
415
416 if (data->type == adt7468)
417 data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
418
419 for (i = 0; i <= 2; ++i) {
420 data->temp[i] =
421 lm85_read_value(client, LM85_REG_TEMP(i));
422 data->pwm[i] =
423 lm85_read_value(client, LM85_REG_PWM(i));
424
425 if (IS_ADT7468_OFF64(data))
426 data->temp[i] -= 64;
427 }
428
429 data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
430
431 if (data->type == emc6d100) {
432 /* Three more voltage sensors */
433 for (i = 5; i <= 7; ++i) {
434 data->in[i] = lm85_read_value(client,
435 EMC6D100_REG_IN(i));
436 }
437 /* More alarm bits */
438 data->alarms |= lm85_read_value(client,
439 EMC6D100_REG_ALARM3) << 16;
440 } else if (data->type == emc6d102 || data->type == emc6d103 ||
441 data->type == emc6d103s) {
442 /*
443 * Have to read LSB bits after the MSB ones because
444 * the reading of the MSB bits has frozen the
445 * LSBs (backward from the ADM1027).
446 */
447 int ext1 = lm85_read_value(client,
448 EMC6D102_REG_EXTEND_ADC1);
449 int ext2 = lm85_read_value(client,
450 EMC6D102_REG_EXTEND_ADC2);
451 int ext3 = lm85_read_value(client,
452 EMC6D102_REG_EXTEND_ADC3);
453 int ext4 = lm85_read_value(client,
454 EMC6D102_REG_EXTEND_ADC4);
455 data->in_ext[0] = ext3 & 0x0f;
456 data->in_ext[1] = ext4 & 0x0f;
457 data->in_ext[2] = ext4 >> 4;
458 data->in_ext[3] = ext3 >> 4;
459 data->in_ext[4] = ext2 >> 4;
460
461 data->temp_ext[0] = ext1 & 0x0f;
462 data->temp_ext[1] = ext2 & 0x0f;
463 data->temp_ext[2] = ext1 >> 4;
464 }
465
466 data->last_reading = jiffies;
467 } /* last_reading */
468
469 if (!data->valid ||
470 time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
471 /* Things that don't change often */
472 dev_dbg(&client->dev, "Reading config values\n");
473
474 for (i = 0; i <= 3; ++i) {
475 data->in_min[i] =
476 lm85_read_value(client, LM85_REG_IN_MIN(i));
477 data->in_max[i] =
478 lm85_read_value(client, LM85_REG_IN_MAX(i));
479 data->fan_min[i] =
480 lm85_read_value(client, LM85_REG_FAN_MIN(i));
481 }
482
483 if (!data->has_vid5) {
484 data->in_min[4] = lm85_read_value(client,
485 LM85_REG_IN_MIN(4));
486 data->in_max[4] = lm85_read_value(client,
487 LM85_REG_IN_MAX(4));
488 }
489
490 if (data->type == emc6d100) {
491 for (i = 5; i <= 7; ++i) {
492 data->in_min[i] = lm85_read_value(client,
493 EMC6D100_REG_IN_MIN(i));
494 data->in_max[i] = lm85_read_value(client,
495 EMC6D100_REG_IN_MAX(i));
496 }
497 }
498
499 for (i = 0; i <= 2; ++i) {
500 int val;
501
502 data->temp_min[i] =
503 lm85_read_value(client, LM85_REG_TEMP_MIN(i));
504 data->temp_max[i] =
505 lm85_read_value(client, LM85_REG_TEMP_MAX(i));
506
507 data->autofan[i].config =
508 lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
509 val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
510 data->pwm_freq[i] = val % data->freq_map_size;
511 data->zone[i].range = val >> 4;
512 data->autofan[i].min_pwm =
513 lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
514 data->zone[i].limit =
515 lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
516 data->zone[i].critical =
517 lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
518
519 if (IS_ADT7468_OFF64(data)) {
520 data->temp_min[i] -= 64;
521 data->temp_max[i] -= 64;
522 data->zone[i].limit -= 64;
523 data->zone[i].critical -= 64;
524 }
525 }
526
527 if (data->type != emc6d103s) {
528 i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
529 data->autofan[0].min_off = (i & 0x20) != 0;
530 data->autofan[1].min_off = (i & 0x40) != 0;
531 data->autofan[2].min_off = (i & 0x80) != 0;
532
533 i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
534 data->zone[0].hyst = i >> 4;
535 data->zone[1].hyst = i & 0x0f;
536
537 i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
538 data->zone[2].hyst = i >> 4;
539 }
540
541 data->last_config = jiffies;
542 } /* last_config */
543
544 data->valid = true;
545
546 mutex_unlock(&data->update_lock);
547
548 return data;
549}
550
551/* 4 Fans */
552static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
553 char *buf)
554{
555 int nr = to_sensor_dev_attr(attr)->index;
556 struct lm85_data *data = lm85_update_device(dev);
557 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
558}
559
560static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
561 char *buf)
562{
563 int nr = to_sensor_dev_attr(attr)->index;
564 struct lm85_data *data = lm85_update_device(dev);
565 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
566}
567
568static ssize_t fan_min_store(struct device *dev,
569 struct device_attribute *attr, const char *buf,
570 size_t count)
571{
572 int nr = to_sensor_dev_attr(attr)->index;
573 struct lm85_data *data = dev_get_drvdata(dev);
574 struct i2c_client *client = data->client;
575 unsigned long val;
576 int err;
577
578 err = kstrtoul(buf, 10, &val);
579 if (err)
580 return err;
581
582 mutex_lock(&data->update_lock);
583 data->fan_min[nr] = FAN_TO_REG(val);
584 lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
585 mutex_unlock(&data->update_lock);
586 return count;
587}
588
589static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
590static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
591static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
592static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
593static SENSOR_DEVICE_ATTR_RO(fan3_input, fan, 2);
594static SENSOR_DEVICE_ATTR_RW(fan3_min, fan_min, 2);
595static SENSOR_DEVICE_ATTR_RO(fan4_input, fan, 3);
596static SENSOR_DEVICE_ATTR_RW(fan4_min, fan_min, 3);
597
598/* vid, vrm, alarms */
599
600static ssize_t cpu0_vid_show(struct device *dev,
601 struct device_attribute *attr, char *buf)
602{
603 struct lm85_data *data = lm85_update_device(dev);
604 int vid;
605
606 if (data->has_vid5) {
607 /* 6-pin VID (VRM 10) */
608 vid = vid_from_reg(data->vid & 0x3f, data->vrm);
609 } else {
610 /* 5-pin VID (VRM 9) */
611 vid = vid_from_reg(data->vid & 0x1f, data->vrm);
612 }
613
614 return sprintf(buf, "%d\n", vid);
615}
616
617static DEVICE_ATTR_RO(cpu0_vid);
618
619static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
620 char *buf)
621{
622 struct lm85_data *data = dev_get_drvdata(dev);
623 return sprintf(buf, "%ld\n", (long) data->vrm);
624}
625
626static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
627 const char *buf, size_t count)
628{
629 struct lm85_data *data = dev_get_drvdata(dev);
630 unsigned long val;
631 int err;
632
633 err = kstrtoul(buf, 10, &val);
634 if (err)
635 return err;
636
637 if (val > 255)
638 return -EINVAL;
639
640 data->vrm = val;
641 return count;
642}
643
644static DEVICE_ATTR_RW(vrm);
645
646static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
647 char *buf)
648{
649 struct lm85_data *data = lm85_update_device(dev);
650 return sprintf(buf, "%u\n", data->alarms);
651}
652
653static DEVICE_ATTR_RO(alarms);
654
655static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
656 char *buf)
657{
658 int nr = to_sensor_dev_attr(attr)->index;
659 struct lm85_data *data = lm85_update_device(dev);
660 return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
661}
662
663static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
664static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
665static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
666static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
667static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8);
668static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 18);
669static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm, 16);
670static SENSOR_DEVICE_ATTR_RO(in7_alarm, alarm, 17);
671static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 4);
672static SENSOR_DEVICE_ATTR_RO(temp1_fault, alarm, 14);
673static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 5);
674static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm, 6);
675static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 15);
676static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 10);
677static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 11);
678static SENSOR_DEVICE_ATTR_RO(fan3_alarm, alarm, 12);
679static SENSOR_DEVICE_ATTR_RO(fan4_alarm, alarm, 13);
680
681/* pwm */
682
683static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
684 char *buf)
685{
686 int nr = to_sensor_dev_attr(attr)->index;
687 struct lm85_data *data = lm85_update_device(dev);
688 return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
689}
690
691static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
692 const char *buf, size_t count)
693{
694 int nr = to_sensor_dev_attr(attr)->index;
695 struct lm85_data *data = dev_get_drvdata(dev);
696 struct i2c_client *client = data->client;
697 unsigned long val;
698 int err;
699
700 err = kstrtoul(buf, 10, &val);
701 if (err)
702 return err;
703
704 mutex_lock(&data->update_lock);
705 data->pwm[nr] = PWM_TO_REG(val);
706 lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
707 mutex_unlock(&data->update_lock);
708 return count;
709}
710
711static ssize_t pwm_enable_show(struct device *dev,
712 struct device_attribute *attr, char *buf)
713{
714 int nr = to_sensor_dev_attr(attr)->index;
715 struct lm85_data *data = lm85_update_device(dev);
716 int pwm_zone, enable;
717
718 pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
719 switch (pwm_zone) {
720 case -1: /* PWM is always at 100% */
721 enable = 0;
722 break;
723 case 0: /* PWM is always at 0% */
724 case -2: /* PWM responds to manual control */
725 enable = 1;
726 break;
727 default: /* PWM in automatic mode */
728 enable = 2;
729 }
730 return sprintf(buf, "%d\n", enable);
731}
732
733static ssize_t pwm_enable_store(struct device *dev,
734 struct device_attribute *attr,
735 const char *buf, size_t count)
736{
737 int nr = to_sensor_dev_attr(attr)->index;
738 struct lm85_data *data = dev_get_drvdata(dev);
739 struct i2c_client *client = data->client;
740 u8 config;
741 unsigned long val;
742 int err;
743
744 err = kstrtoul(buf, 10, &val);
745 if (err)
746 return err;
747
748 switch (val) {
749 case 0:
750 config = 3;
751 break;
752 case 1:
753 config = 7;
754 break;
755 case 2:
756 /*
757 * Here we have to choose arbitrarily one of the 5 possible
758 * configurations; I go for the safest
759 */
760 config = 6;
761 break;
762 default:
763 return -EINVAL;
764 }
765
766 mutex_lock(&data->update_lock);
767 data->autofan[nr].config = lm85_read_value(client,
768 LM85_REG_AFAN_CONFIG(nr));
769 data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
770 | (config << 5);
771 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
772 data->autofan[nr].config);
773 mutex_unlock(&data->update_lock);
774 return count;
775}
776
777static ssize_t pwm_freq_show(struct device *dev,
778 struct device_attribute *attr, char *buf)
779{
780 int nr = to_sensor_dev_attr(attr)->index;
781 struct lm85_data *data = lm85_update_device(dev);
782 int freq;
783
784 if (IS_ADT7468_HFPWM(data))
785 freq = 22500;
786 else
787 freq = FREQ_FROM_REG(data->freq_map, data->freq_map_size,
788 data->pwm_freq[nr]);
789
790 return sprintf(buf, "%d\n", freq);
791}
792
793static ssize_t pwm_freq_store(struct device *dev,
794 struct device_attribute *attr, const char *buf,
795 size_t count)
796{
797 int nr = to_sensor_dev_attr(attr)->index;
798 struct lm85_data *data = dev_get_drvdata(dev);
799 struct i2c_client *client = data->client;
800 unsigned long val;
801 int err;
802
803 err = kstrtoul(buf, 10, &val);
804 if (err)
805 return err;
806
807 mutex_lock(&data->update_lock);
808 /*
809 * The ADT7468 has a special high-frequency PWM output mode,
810 * where all PWM outputs are driven by a 22.5 kHz clock.
811 * This might confuse the user, but there's not much we can do.
812 */
813 if (data->type == adt7468 && val >= 11300) { /* High freq. mode */
814 data->cfg5 &= ~ADT7468_HFPWM;
815 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
816 } else { /* Low freq. mode */
817 data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
818 data->freq_map_size, val);
819 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
820 (data->zone[nr].range << 4)
821 | data->pwm_freq[nr]);
822 if (data->type == adt7468) {
823 data->cfg5 |= ADT7468_HFPWM;
824 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
825 }
826 }
827 mutex_unlock(&data->update_lock);
828 return count;
829}
830
831static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
832static SENSOR_DEVICE_ATTR_RW(pwm1_enable, pwm_enable, 0);
833static SENSOR_DEVICE_ATTR_RW(pwm1_freq, pwm_freq, 0);
834static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
835static SENSOR_DEVICE_ATTR_RW(pwm2_enable, pwm_enable, 1);
836static SENSOR_DEVICE_ATTR_RW(pwm2_freq, pwm_freq, 1);
837static SENSOR_DEVICE_ATTR_RW(pwm3, pwm, 2);
838static SENSOR_DEVICE_ATTR_RW(pwm3_enable, pwm_enable, 2);
839static SENSOR_DEVICE_ATTR_RW(pwm3_freq, pwm_freq, 2);
840
841/* Voltages */
842
843static ssize_t in_show(struct device *dev, struct device_attribute *attr,
844 char *buf)
845{
846 int nr = to_sensor_dev_attr(attr)->index;
847 struct lm85_data *data = lm85_update_device(dev);
848 return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
849 data->in_ext[nr]));
850}
851
852static ssize_t in_min_show(struct device *dev, struct device_attribute *attr,
853 char *buf)
854{
855 int nr = to_sensor_dev_attr(attr)->index;
856 struct lm85_data *data = lm85_update_device(dev);
857 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
858}
859
860static ssize_t in_min_store(struct device *dev, struct device_attribute *attr,
861 const char *buf, size_t count)
862{
863 int nr = to_sensor_dev_attr(attr)->index;
864 struct lm85_data *data = dev_get_drvdata(dev);
865 struct i2c_client *client = data->client;
866 long val;
867 int err;
868
869 err = kstrtol(buf, 10, &val);
870 if (err)
871 return err;
872
873 mutex_lock(&data->update_lock);
874 data->in_min[nr] = INS_TO_REG(nr, val);
875 lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
876 mutex_unlock(&data->update_lock);
877 return count;
878}
879
880static ssize_t in_max_show(struct device *dev, struct device_attribute *attr,
881 char *buf)
882{
883 int nr = to_sensor_dev_attr(attr)->index;
884 struct lm85_data *data = lm85_update_device(dev);
885 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
886}
887
888static ssize_t in_max_store(struct device *dev, struct device_attribute *attr,
889 const char *buf, size_t count)
890{
891 int nr = to_sensor_dev_attr(attr)->index;
892 struct lm85_data *data = dev_get_drvdata(dev);
893 struct i2c_client *client = data->client;
894 long val;
895 int err;
896
897 err = kstrtol(buf, 10, &val);
898 if (err)
899 return err;
900
901 mutex_lock(&data->update_lock);
902 data->in_max[nr] = INS_TO_REG(nr, val);
903 lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
904 mutex_unlock(&data->update_lock);
905 return count;
906}
907
908static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0);
909static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0);
910static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0);
911static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1);
912static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1);
913static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1);
914static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2);
915static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2);
916static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2);
917static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3);
918static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3);
919static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3);
920static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4);
921static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4);
922static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4);
923static SENSOR_DEVICE_ATTR_RO(in5_input, in, 5);
924static SENSOR_DEVICE_ATTR_RW(in5_min, in_min, 5);
925static SENSOR_DEVICE_ATTR_RW(in5_max, in_max, 5);
926static SENSOR_DEVICE_ATTR_RO(in6_input, in, 6);
927static SENSOR_DEVICE_ATTR_RW(in6_min, in_min, 6);
928static SENSOR_DEVICE_ATTR_RW(in6_max, in_max, 6);
929static SENSOR_DEVICE_ATTR_RO(in7_input, in, 7);
930static SENSOR_DEVICE_ATTR_RW(in7_min, in_min, 7);
931static SENSOR_DEVICE_ATTR_RW(in7_max, in_max, 7);
932
933/* Temps */
934
935static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
936 char *buf)
937{
938 int nr = to_sensor_dev_attr(attr)->index;
939 struct lm85_data *data = lm85_update_device(dev);
940 return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
941 data->temp_ext[nr]));
942}
943
944static ssize_t temp_min_show(struct device *dev,
945 struct device_attribute *attr, char *buf)
946{
947 int nr = to_sensor_dev_attr(attr)->index;
948 struct lm85_data *data = lm85_update_device(dev);
949 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
950}
951
952static ssize_t temp_min_store(struct device *dev,
953 struct device_attribute *attr, const char *buf,
954 size_t count)
955{
956 int nr = to_sensor_dev_attr(attr)->index;
957 struct lm85_data *data = dev_get_drvdata(dev);
958 struct i2c_client *client = data->client;
959 long val;
960 int err;
961
962 err = kstrtol(buf, 10, &val);
963 if (err)
964 return err;
965
966 if (IS_ADT7468_OFF64(data))
967 val += 64;
968
969 mutex_lock(&data->update_lock);
970 data->temp_min[nr] = TEMP_TO_REG(val);
971 lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
972 mutex_unlock(&data->update_lock);
973 return count;
974}
975
976static ssize_t temp_max_show(struct device *dev,
977 struct device_attribute *attr, char *buf)
978{
979 int nr = to_sensor_dev_attr(attr)->index;
980 struct lm85_data *data = lm85_update_device(dev);
981 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
982}
983
984static ssize_t temp_max_store(struct device *dev,
985 struct device_attribute *attr, const char *buf,
986 size_t count)
987{
988 int nr = to_sensor_dev_attr(attr)->index;
989 struct lm85_data *data = dev_get_drvdata(dev);
990 struct i2c_client *client = data->client;
991 long val;
992 int err;
993
994 err = kstrtol(buf, 10, &val);
995 if (err)
996 return err;
997
998 if (IS_ADT7468_OFF64(data))
999 val += 64;
1000
1001 mutex_lock(&data->update_lock);
1002 data->temp_max[nr] = TEMP_TO_REG(val);
1003 lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
1004 mutex_unlock(&data->update_lock);
1005 return count;
1006}
1007
1008static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
1009static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
1010static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
1011static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
1012static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
1013static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
1014static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
1015static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
1016static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
1017
1018/* Automatic PWM control */
1019
1020static ssize_t pwm_auto_channels_show(struct device *dev,
1021 struct device_attribute *attr,
1022 char *buf)
1023{
1024 int nr = to_sensor_dev_attr(attr)->index;
1025 struct lm85_data *data = lm85_update_device(dev);
1026 return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
1027}
1028
1029static ssize_t pwm_auto_channels_store(struct device *dev,
1030 struct device_attribute *attr,
1031 const char *buf, size_t count)
1032{
1033 int nr = to_sensor_dev_attr(attr)->index;
1034 struct lm85_data *data = dev_get_drvdata(dev);
1035 struct i2c_client *client = data->client;
1036 long val;
1037 int err;
1038
1039 err = kstrtol(buf, 10, &val);
1040 if (err)
1041 return err;
1042
1043 mutex_lock(&data->update_lock);
1044 data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
1045 | ZONE_TO_REG(val);
1046 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
1047 data->autofan[nr].config);
1048 mutex_unlock(&data->update_lock);
1049 return count;
1050}
1051
1052static ssize_t pwm_auto_pwm_min_show(struct device *dev,
1053 struct device_attribute *attr, char *buf)
1054{
1055 int nr = to_sensor_dev_attr(attr)->index;
1056 struct lm85_data *data = lm85_update_device(dev);
1057 return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
1058}
1059
1060static ssize_t pwm_auto_pwm_min_store(struct device *dev,
1061 struct device_attribute *attr,
1062 const char *buf, size_t count)
1063{
1064 int nr = to_sensor_dev_attr(attr)->index;
1065 struct lm85_data *data = dev_get_drvdata(dev);
1066 struct i2c_client *client = data->client;
1067 unsigned long val;
1068 int err;
1069
1070 err = kstrtoul(buf, 10, &val);
1071 if (err)
1072 return err;
1073
1074 mutex_lock(&data->update_lock);
1075 data->autofan[nr].min_pwm = PWM_TO_REG(val);
1076 lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
1077 data->autofan[nr].min_pwm);
1078 mutex_unlock(&data->update_lock);
1079 return count;
1080}
1081
1082static ssize_t pwm_auto_pwm_minctl_show(struct device *dev,
1083 struct device_attribute *attr,
1084 char *buf)
1085{
1086 int nr = to_sensor_dev_attr(attr)->index;
1087 struct lm85_data *data = lm85_update_device(dev);
1088 return sprintf(buf, "%d\n", data->autofan[nr].min_off);
1089}
1090
1091static ssize_t pwm_auto_pwm_minctl_store(struct device *dev,
1092 struct device_attribute *attr,
1093 const char *buf, size_t count)
1094{
1095 int nr = to_sensor_dev_attr(attr)->index;
1096 struct lm85_data *data = dev_get_drvdata(dev);
1097 struct i2c_client *client = data->client;
1098 u8 tmp;
1099 long val;
1100 int err;
1101
1102 err = kstrtol(buf, 10, &val);
1103 if (err)
1104 return err;
1105
1106 mutex_lock(&data->update_lock);
1107 data->autofan[nr].min_off = val;
1108 tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1109 tmp &= ~(0x20 << nr);
1110 if (data->autofan[nr].min_off)
1111 tmp |= 0x20 << nr;
1112 lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
1113 mutex_unlock(&data->update_lock);
1114 return count;
1115}
1116
1117static SENSOR_DEVICE_ATTR_RW(pwm1_auto_channels, pwm_auto_channels, 0);
1118static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_min, pwm_auto_pwm_min, 0);
1119static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_minctl, pwm_auto_pwm_minctl, 0);
1120static SENSOR_DEVICE_ATTR_RW(pwm2_auto_channels, pwm_auto_channels, 1);
1121static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_min, pwm_auto_pwm_min, 1);
1122static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_minctl, pwm_auto_pwm_minctl, 1);
1123static SENSOR_DEVICE_ATTR_RW(pwm3_auto_channels, pwm_auto_channels, 2);
1124static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_min, pwm_auto_pwm_min, 2);
1125static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_minctl, pwm_auto_pwm_minctl, 2);
1126
1127/* Temperature settings for automatic PWM control */
1128
1129static ssize_t temp_auto_temp_off_show(struct device *dev,
1130 struct device_attribute *attr,
1131 char *buf)
1132{
1133 int nr = to_sensor_dev_attr(attr)->index;
1134 struct lm85_data *data = lm85_update_device(dev);
1135 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
1136 HYST_FROM_REG(data->zone[nr].hyst));
1137}
1138
1139static ssize_t temp_auto_temp_off_store(struct device *dev,
1140 struct device_attribute *attr,
1141 const char *buf, size_t count)
1142{
1143 int nr = to_sensor_dev_attr(attr)->index;
1144 struct lm85_data *data = dev_get_drvdata(dev);
1145 struct i2c_client *client = data->client;
1146 int min;
1147 long val;
1148 int err;
1149
1150 err = kstrtol(buf, 10, &val);
1151 if (err)
1152 return err;
1153
1154 mutex_lock(&data->update_lock);
1155 min = TEMP_FROM_REG(data->zone[nr].limit);
1156 data->zone[nr].hyst = HYST_TO_REG(min - val);
1157 if (nr == 0 || nr == 1) {
1158 lm85_write_value(client, LM85_REG_AFAN_HYST1,
1159 (data->zone[0].hyst << 4)
1160 | data->zone[1].hyst);
1161 } else {
1162 lm85_write_value(client, LM85_REG_AFAN_HYST2,
1163 (data->zone[2].hyst << 4));
1164 }
1165 mutex_unlock(&data->update_lock);
1166 return count;
1167}
1168
1169static ssize_t temp_auto_temp_min_show(struct device *dev,
1170 struct device_attribute *attr,
1171 char *buf)
1172{
1173 int nr = to_sensor_dev_attr(attr)->index;
1174 struct lm85_data *data = lm85_update_device(dev);
1175 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
1176}
1177
1178static ssize_t temp_auto_temp_min_store(struct device *dev,
1179 struct device_attribute *attr,
1180 const char *buf, size_t count)
1181{
1182 int nr = to_sensor_dev_attr(attr)->index;
1183 struct lm85_data *data = dev_get_drvdata(dev);
1184 struct i2c_client *client = data->client;
1185 long val;
1186 int err;
1187
1188 err = kstrtol(buf, 10, &val);
1189 if (err)
1190 return err;
1191
1192 mutex_lock(&data->update_lock);
1193 data->zone[nr].limit = TEMP_TO_REG(val);
1194 lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
1195 data->zone[nr].limit);
1196
1197/* Update temp_auto_max and temp_auto_range */
1198 data->zone[nr].range = RANGE_TO_REG(
1199 TEMP_FROM_REG(data->zone[nr].max_desired) -
1200 TEMP_FROM_REG(data->zone[nr].limit));
1201 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1202 ((data->zone[nr].range & 0x0f) << 4)
1203 | data->pwm_freq[nr]);
1204
1205 mutex_unlock(&data->update_lock);
1206 return count;
1207}
1208
1209static ssize_t temp_auto_temp_max_show(struct device *dev,
1210 struct device_attribute *attr,
1211 char *buf)
1212{
1213 int nr = to_sensor_dev_attr(attr)->index;
1214 struct lm85_data *data = lm85_update_device(dev);
1215 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
1216 RANGE_FROM_REG(data->zone[nr].range));
1217}
1218
1219static ssize_t temp_auto_temp_max_store(struct device *dev,
1220 struct device_attribute *attr,
1221 const char *buf, size_t count)
1222{
1223 int nr = to_sensor_dev_attr(attr)->index;
1224 struct lm85_data *data = dev_get_drvdata(dev);
1225 struct i2c_client *client = data->client;
1226 int min;
1227 long val;
1228 int err;
1229
1230 err = kstrtol(buf, 10, &val);
1231 if (err)
1232 return err;
1233
1234 mutex_lock(&data->update_lock);
1235 min = TEMP_FROM_REG(data->zone[nr].limit);
1236 data->zone[nr].max_desired = TEMP_TO_REG(val);
1237 data->zone[nr].range = RANGE_TO_REG(
1238 val - min);
1239 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1240 ((data->zone[nr].range & 0x0f) << 4)
1241 | data->pwm_freq[nr]);
1242 mutex_unlock(&data->update_lock);
1243 return count;
1244}
1245
1246static ssize_t temp_auto_temp_crit_show(struct device *dev,
1247 struct device_attribute *attr,
1248 char *buf)
1249{
1250 int nr = to_sensor_dev_attr(attr)->index;
1251 struct lm85_data *data = lm85_update_device(dev);
1252 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
1253}
1254
1255static ssize_t temp_auto_temp_crit_store(struct device *dev,
1256 struct device_attribute *attr,
1257 const char *buf, size_t count)
1258{
1259 int nr = to_sensor_dev_attr(attr)->index;
1260 struct lm85_data *data = dev_get_drvdata(dev);
1261 struct i2c_client *client = data->client;
1262 long val;
1263 int err;
1264
1265 err = kstrtol(buf, 10, &val);
1266 if (err)
1267 return err;
1268
1269 mutex_lock(&data->update_lock);
1270 data->zone[nr].critical = TEMP_TO_REG(val);
1271 lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
1272 data->zone[nr].critical);
1273 mutex_unlock(&data->update_lock);
1274 return count;
1275}
1276
1277static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_off, temp_auto_temp_off, 0);
1278static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_min, temp_auto_temp_min, 0);
1279static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_max, temp_auto_temp_max, 0);
1280static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_crit, temp_auto_temp_crit, 0);
1281static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_off, temp_auto_temp_off, 1);
1282static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_min, temp_auto_temp_min, 1);
1283static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_max, temp_auto_temp_max, 1);
1284static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_crit, temp_auto_temp_crit, 1);
1285static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_off, temp_auto_temp_off, 2);
1286static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_min, temp_auto_temp_min, 2);
1287static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_max, temp_auto_temp_max, 2);
1288static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_crit, temp_auto_temp_crit, 2);
1289
1290static struct attribute *lm85_attributes[] = {
1291 &sensor_dev_attr_fan1_input.dev_attr.attr,
1292 &sensor_dev_attr_fan2_input.dev_attr.attr,
1293 &sensor_dev_attr_fan3_input.dev_attr.attr,
1294 &sensor_dev_attr_fan4_input.dev_attr.attr,
1295 &sensor_dev_attr_fan1_min.dev_attr.attr,
1296 &sensor_dev_attr_fan2_min.dev_attr.attr,
1297 &sensor_dev_attr_fan3_min.dev_attr.attr,
1298 &sensor_dev_attr_fan4_min.dev_attr.attr,
1299 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
1300 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
1301 &sensor_dev_attr_fan3_alarm.dev_attr.attr,
1302 &sensor_dev_attr_fan4_alarm.dev_attr.attr,
1303
1304 &sensor_dev_attr_pwm1.dev_attr.attr,
1305 &sensor_dev_attr_pwm2.dev_attr.attr,
1306 &sensor_dev_attr_pwm3.dev_attr.attr,
1307 &sensor_dev_attr_pwm1_enable.dev_attr.attr,
1308 &sensor_dev_attr_pwm2_enable.dev_attr.attr,
1309 &sensor_dev_attr_pwm3_enable.dev_attr.attr,
1310 &sensor_dev_attr_pwm1_freq.dev_attr.attr,
1311 &sensor_dev_attr_pwm2_freq.dev_attr.attr,
1312 &sensor_dev_attr_pwm3_freq.dev_attr.attr,
1313
1314 &sensor_dev_attr_in0_input.dev_attr.attr,
1315 &sensor_dev_attr_in1_input.dev_attr.attr,
1316 &sensor_dev_attr_in2_input.dev_attr.attr,
1317 &sensor_dev_attr_in3_input.dev_attr.attr,
1318 &sensor_dev_attr_in0_min.dev_attr.attr,
1319 &sensor_dev_attr_in1_min.dev_attr.attr,
1320 &sensor_dev_attr_in2_min.dev_attr.attr,
1321 &sensor_dev_attr_in3_min.dev_attr.attr,
1322 &sensor_dev_attr_in0_max.dev_attr.attr,
1323 &sensor_dev_attr_in1_max.dev_attr.attr,
1324 &sensor_dev_attr_in2_max.dev_attr.attr,
1325 &sensor_dev_attr_in3_max.dev_attr.attr,
1326 &sensor_dev_attr_in0_alarm.dev_attr.attr,
1327 &sensor_dev_attr_in1_alarm.dev_attr.attr,
1328 &sensor_dev_attr_in2_alarm.dev_attr.attr,
1329 &sensor_dev_attr_in3_alarm.dev_attr.attr,
1330
1331 &sensor_dev_attr_temp1_input.dev_attr.attr,
1332 &sensor_dev_attr_temp2_input.dev_attr.attr,
1333 &sensor_dev_attr_temp3_input.dev_attr.attr,
1334 &sensor_dev_attr_temp1_min.dev_attr.attr,
1335 &sensor_dev_attr_temp2_min.dev_attr.attr,
1336 &sensor_dev_attr_temp3_min.dev_attr.attr,
1337 &sensor_dev_attr_temp1_max.dev_attr.attr,
1338 &sensor_dev_attr_temp2_max.dev_attr.attr,
1339 &sensor_dev_attr_temp3_max.dev_attr.attr,
1340 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
1341 &sensor_dev_attr_temp2_alarm.dev_attr.attr,
1342 &sensor_dev_attr_temp3_alarm.dev_attr.attr,
1343 &sensor_dev_attr_temp1_fault.dev_attr.attr,
1344 &sensor_dev_attr_temp3_fault.dev_attr.attr,
1345
1346 &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1347 &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1348 &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1349 &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1350 &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1351 &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1352
1353 &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1354 &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1355 &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1356 &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1357 &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1358 &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1359 &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1360 &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1361 &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1362
1363 &dev_attr_vrm.attr,
1364 &dev_attr_cpu0_vid.attr,
1365 &dev_attr_alarms.attr,
1366 NULL
1367};
1368
1369static const struct attribute_group lm85_group = {
1370 .attrs = lm85_attributes,
1371};
1372
1373static struct attribute *lm85_attributes_minctl[] = {
1374 &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1375 &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1376 &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1377 NULL
1378};
1379
1380static const struct attribute_group lm85_group_minctl = {
1381 .attrs = lm85_attributes_minctl,
1382};
1383
1384static struct attribute *lm85_attributes_temp_off[] = {
1385 &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1386 &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1387 &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1388 NULL
1389};
1390
1391static const struct attribute_group lm85_group_temp_off = {
1392 .attrs = lm85_attributes_temp_off,
1393};
1394
1395static struct attribute *lm85_attributes_in4[] = {
1396 &sensor_dev_attr_in4_input.dev_attr.attr,
1397 &sensor_dev_attr_in4_min.dev_attr.attr,
1398 &sensor_dev_attr_in4_max.dev_attr.attr,
1399 &sensor_dev_attr_in4_alarm.dev_attr.attr,
1400 NULL
1401};
1402
1403static const struct attribute_group lm85_group_in4 = {
1404 .attrs = lm85_attributes_in4,
1405};
1406
1407static struct attribute *lm85_attributes_in567[] = {
1408 &sensor_dev_attr_in5_input.dev_attr.attr,
1409 &sensor_dev_attr_in6_input.dev_attr.attr,
1410 &sensor_dev_attr_in7_input.dev_attr.attr,
1411 &sensor_dev_attr_in5_min.dev_attr.attr,
1412 &sensor_dev_attr_in6_min.dev_attr.attr,
1413 &sensor_dev_attr_in7_min.dev_attr.attr,
1414 &sensor_dev_attr_in5_max.dev_attr.attr,
1415 &sensor_dev_attr_in6_max.dev_attr.attr,
1416 &sensor_dev_attr_in7_max.dev_attr.attr,
1417 &sensor_dev_attr_in5_alarm.dev_attr.attr,
1418 &sensor_dev_attr_in6_alarm.dev_attr.attr,
1419 &sensor_dev_attr_in7_alarm.dev_attr.attr,
1420 NULL
1421};
1422
1423static const struct attribute_group lm85_group_in567 = {
1424 .attrs = lm85_attributes_in567,
1425};
1426
1427static void lm85_init_client(struct i2c_client *client)
1428{
1429 int value;
1430
1431 /* Start monitoring if needed */
1432 value = lm85_read_value(client, LM85_REG_CONFIG);
1433 if (!(value & 0x01)) {
1434 dev_info(&client->dev, "Starting monitoring\n");
1435 lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1436 }
1437
1438 /* Warn about unusual configuration bits */
1439 if (value & 0x02)
1440 dev_warn(&client->dev, "Device configuration is locked\n");
1441 if (!(value & 0x04))
1442 dev_warn(&client->dev, "Device is not ready\n");
1443}
1444
1445static int lm85_is_fake(struct i2c_client *client)
1446{
1447 /*
1448 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1449 * emulate the former except that it has no hardware monitoring function
1450 * so the readings are always 0.
1451 */
1452 int i;
1453 u8 in_temp, fan;
1454
1455 for (i = 0; i < 8; i++) {
1456 in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1457 fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1458 if (in_temp != 0x00 || fan != 0xff)
1459 return 0;
1460 }
1461
1462 return 1;
1463}
1464
1465/* Return 0 if detection is successful, -ENODEV otherwise */
1466static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1467{
1468 struct i2c_adapter *adapter = client->adapter;
1469 int address = client->addr;
1470 const char *type_name = NULL;
1471 int company, verstep;
1472
1473 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1474 /* We need to be able to do byte I/O */
1475 return -ENODEV;
1476 }
1477
1478 /* Determine the chip type */
1479 company = lm85_read_value(client, LM85_REG_COMPANY);
1480 verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1481
1482 dev_dbg(&adapter->dev,
1483 "Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1484 address, company, verstep);
1485
1486 if (company == LM85_COMPANY_NATIONAL) {
1487 switch (verstep) {
1488 case LM85_VERSTEP_LM85C:
1489 type_name = "lm85c";
1490 break;
1491 case LM85_VERSTEP_LM85B:
1492 type_name = "lm85b";
1493 break;
1494 case LM85_VERSTEP_LM96000_1:
1495 case LM85_VERSTEP_LM96000_2:
1496 /* Check for Winbond WPCD377I */
1497 if (lm85_is_fake(client)) {
1498 dev_dbg(&adapter->dev,
1499 "Found Winbond WPCD377I, ignoring\n");
1500 return -ENODEV;
1501 }
1502 type_name = "lm96000";
1503 break;
1504 }
1505 } else if (company == LM85_COMPANY_ANALOG_DEV) {
1506 switch (verstep) {
1507 case LM85_VERSTEP_ADM1027:
1508 type_name = "adm1027";
1509 break;
1510 case LM85_VERSTEP_ADT7463:
1511 case LM85_VERSTEP_ADT7463C:
1512 type_name = "adt7463";
1513 break;
1514 case LM85_VERSTEP_ADT7468_1:
1515 case LM85_VERSTEP_ADT7468_2:
1516 type_name = "adt7468";
1517 break;
1518 }
1519 } else if (company == LM85_COMPANY_SMSC) {
1520 switch (verstep) {
1521 case LM85_VERSTEP_EMC6D100_A0:
1522 case LM85_VERSTEP_EMC6D100_A1:
1523 /* Note: we can't tell a '100 from a '101 */
1524 type_name = "emc6d100";
1525 break;
1526 case LM85_VERSTEP_EMC6D102:
1527 type_name = "emc6d102";
1528 break;
1529 case LM85_VERSTEP_EMC6D103_A0:
1530 case LM85_VERSTEP_EMC6D103_A1:
1531 type_name = "emc6d103";
1532 break;
1533 case LM85_VERSTEP_EMC6D103S:
1534 type_name = "emc6d103s";
1535 break;
1536 }
1537 }
1538
1539 if (!type_name)
1540 return -ENODEV;
1541
1542 strscpy(info->type, type_name, I2C_NAME_SIZE);
1543
1544 return 0;
1545}
1546
1547static const struct i2c_device_id lm85_id[];
1548
1549static int lm85_probe(struct i2c_client *client)
1550{
1551 struct device *dev = &client->dev;
1552 struct device *hwmon_dev;
1553 struct lm85_data *data;
1554 int idx = 0;
1555
1556 data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
1557 if (!data)
1558 return -ENOMEM;
1559
1560 data->client = client;
1561 if (client->dev.of_node)
1562 data->type = (uintptr_t)of_device_get_match_data(&client->dev);
1563 else
1564 data->type = i2c_match_id(lm85_id, client)->driver_data;
1565 mutex_init(&data->update_lock);
1566
1567 /* Fill in the chip specific driver values */
1568 switch (data->type) {
1569 case adm1027:
1570 case adt7463:
1571 case adt7468:
1572 case emc6d100:
1573 case emc6d102:
1574 case emc6d103:
1575 case emc6d103s:
1576 data->freq_map = adm1027_freq_map;
1577 data->freq_map_size = ARRAY_SIZE(adm1027_freq_map);
1578 break;
1579 case lm96000:
1580 data->freq_map = lm96000_freq_map;
1581 data->freq_map_size = ARRAY_SIZE(lm96000_freq_map);
1582 break;
1583 default:
1584 data->freq_map = lm85_freq_map;
1585 data->freq_map_size = ARRAY_SIZE(lm85_freq_map);
1586 }
1587
1588 /* Set the VRM version */
1589 data->vrm = vid_which_vrm();
1590
1591 /* Initialize the LM85 chip */
1592 lm85_init_client(client);
1593
1594 /* sysfs hooks */
1595 data->groups[idx++] = &lm85_group;
1596
1597 /* minctl and temp_off exist on all chips except emc6d103s */
1598 if (data->type != emc6d103s) {
1599 data->groups[idx++] = &lm85_group_minctl;
1600 data->groups[idx++] = &lm85_group_temp_off;
1601 }
1602
1603 /*
1604 * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1605 * as a sixth digital VID input rather than an analog input.
1606 */
1607 if (data->type == adt7463 || data->type == adt7468) {
1608 u8 vid = lm85_read_value(client, LM85_REG_VID);
1609 if (vid & 0x80)
1610 data->has_vid5 = true;
1611 }
1612
1613 if (!data->has_vid5)
1614 data->groups[idx++] = &lm85_group_in4;
1615
1616 /* The EMC6D100 has 3 additional voltage inputs */
1617 if (data->type == emc6d100)
1618 data->groups[idx++] = &lm85_group_in567;
1619
1620 hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1621 data, data->groups);
1622 return PTR_ERR_OR_ZERO(hwmon_dev);
1623}
1624
1625static const struct i2c_device_id lm85_id[] = {
1626 { "adm1027", adm1027 },
1627 { "adt7463", adt7463 },
1628 { "adt7468", adt7468 },
1629 { "lm85", lm85 },
1630 { "lm85b", lm85 },
1631 { "lm85c", lm85 },
1632 { "lm96000", lm96000 },
1633 { "emc6d100", emc6d100 },
1634 { "emc6d101", emc6d100 },
1635 { "emc6d102", emc6d102 },
1636 { "emc6d103", emc6d103 },
1637 { "emc6d103s", emc6d103s },
1638 { }
1639};
1640MODULE_DEVICE_TABLE(i2c, lm85_id);
1641
1642static const struct of_device_id __maybe_unused lm85_of_match[] = {
1643 {
1644 .compatible = "adi,adm1027",
1645 .data = (void *)adm1027
1646 },
1647 {
1648 .compatible = "adi,adt7463",
1649 .data = (void *)adt7463
1650 },
1651 {
1652 .compatible = "adi,adt7468",
1653 .data = (void *)adt7468
1654 },
1655 {
1656 .compatible = "national,lm85",
1657 .data = (void *)lm85
1658 },
1659 {
1660 .compatible = "national,lm85b",
1661 .data = (void *)lm85
1662 },
1663 {
1664 .compatible = "national,lm85c",
1665 .data = (void *)lm85
1666 },
1667 {
1668 .compatible = "ti,lm96000",
1669 .data = (void *)lm96000
1670 },
1671 {
1672 .compatible = "smsc,emc6d100",
1673 .data = (void *)emc6d100
1674 },
1675 {
1676 .compatible = "smsc,emc6d101",
1677 .data = (void *)emc6d100
1678 },
1679 {
1680 .compatible = "smsc,emc6d102",
1681 .data = (void *)emc6d102
1682 },
1683 {
1684 .compatible = "smsc,emc6d103",
1685 .data = (void *)emc6d103
1686 },
1687 {
1688 .compatible = "smsc,emc6d103s",
1689 .data = (void *)emc6d103s
1690 },
1691 { },
1692};
1693MODULE_DEVICE_TABLE(of, lm85_of_match);
1694
1695static struct i2c_driver lm85_driver = {
1696 .class = I2C_CLASS_HWMON,
1697 .driver = {
1698 .name = "lm85",
1699 .of_match_table = of_match_ptr(lm85_of_match),
1700 },
1701 .probe = lm85_probe,
1702 .id_table = lm85_id,
1703 .detect = lm85_detect,
1704 .address_list = normal_i2c,
1705};
1706
1707module_i2c_driver(lm85_driver);
1708
1709MODULE_LICENSE("GPL");
1710MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1711 "Margit Schubert-While <margitsw@t-online.de>, "
1712 "Justin Thiessen <jthiessen@penguincomputing.com>");
1713MODULE_DESCRIPTION("LM85-B, LM85-C driver");
1/*
2 * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
3 * monitoring
4 * Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
5 * Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
6 * Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de>
7 * Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com>
8 * Copyright (C) 2007--2009 Jean Delvare <jdelvare@suse.de>
9 *
10 * Chip details at <http://www.national.com/ds/LM/LM85.pdf>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27#include <linux/module.h>
28#include <linux/init.h>
29#include <linux/slab.h>
30#include <linux/jiffies.h>
31#include <linux/i2c.h>
32#include <linux/hwmon.h>
33#include <linux/hwmon-vid.h>
34#include <linux/hwmon-sysfs.h>
35#include <linux/err.h>
36#include <linux/mutex.h>
37
38/* Addresses to scan */
39static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
40
41enum chips {
42 any_chip, lm85b, lm85c,
43 adm1027, adt7463, adt7468,
44 emc6d100, emc6d102, emc6d103, emc6d103s
45};
46
47/* The LM85 registers */
48
49#define LM85_REG_IN(nr) (0x20 + (nr))
50#define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
51#define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
52
53#define LM85_REG_TEMP(nr) (0x25 + (nr))
54#define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
55#define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
56
57/* Fan speeds are LSB, MSB (2 bytes) */
58#define LM85_REG_FAN(nr) (0x28 + (nr) * 2)
59#define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2)
60
61#define LM85_REG_PWM(nr) (0x30 + (nr))
62
63#define LM85_REG_COMPANY 0x3e
64#define LM85_REG_VERSTEP 0x3f
65
66#define ADT7468_REG_CFG5 0x7c
67#define ADT7468_OFF64 (1 << 0)
68#define ADT7468_HFPWM (1 << 1)
69#define IS_ADT7468_OFF64(data) \
70 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
71#define IS_ADT7468_HFPWM(data) \
72 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
73
74/* These are the recognized values for the above regs */
75#define LM85_COMPANY_NATIONAL 0x01
76#define LM85_COMPANY_ANALOG_DEV 0x41
77#define LM85_COMPANY_SMSC 0x5c
78#define LM85_VERSTEP_VMASK 0xf0
79#define LM85_VERSTEP_GENERIC 0x60
80#define LM85_VERSTEP_GENERIC2 0x70
81#define LM85_VERSTEP_LM85C 0x60
82#define LM85_VERSTEP_LM85B 0x62
83#define LM85_VERSTEP_LM96000_1 0x68
84#define LM85_VERSTEP_LM96000_2 0x69
85#define LM85_VERSTEP_ADM1027 0x60
86#define LM85_VERSTEP_ADT7463 0x62
87#define LM85_VERSTEP_ADT7463C 0x6A
88#define LM85_VERSTEP_ADT7468_1 0x71
89#define LM85_VERSTEP_ADT7468_2 0x72
90#define LM85_VERSTEP_EMC6D100_A0 0x60
91#define LM85_VERSTEP_EMC6D100_A1 0x61
92#define LM85_VERSTEP_EMC6D102 0x65
93#define LM85_VERSTEP_EMC6D103_A0 0x68
94#define LM85_VERSTEP_EMC6D103_A1 0x69
95#define LM85_VERSTEP_EMC6D103S 0x6A /* Also known as EMC6D103:A2 */
96
97#define LM85_REG_CONFIG 0x40
98
99#define LM85_REG_ALARM1 0x41
100#define LM85_REG_ALARM2 0x42
101
102#define LM85_REG_VID 0x43
103
104/* Automated FAN control */
105#define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
106#define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
107#define LM85_REG_AFAN_SPIKE1 0x62
108#define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
109#define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
110#define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
111#define LM85_REG_AFAN_HYST1 0x6d
112#define LM85_REG_AFAN_HYST2 0x6e
113
114#define ADM1027_REG_EXTEND_ADC1 0x76
115#define ADM1027_REG_EXTEND_ADC2 0x77
116
117#define EMC6D100_REG_ALARM3 0x7d
118/* IN5, IN6 and IN7 */
119#define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5))
120#define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2)
121#define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2)
122#define EMC6D102_REG_EXTEND_ADC1 0x85
123#define EMC6D102_REG_EXTEND_ADC2 0x86
124#define EMC6D102_REG_EXTEND_ADC3 0x87
125#define EMC6D102_REG_EXTEND_ADC4 0x88
126
127
128/*
129 * Conversions. Rounding and limit checking is only done on the TO_REG
130 * variants. Note that you should be a bit careful with which arguments
131 * these macros are called: arguments may be evaluated more than once.
132 */
133
134/* IN are scaled according to built-in resistors */
135static const int lm85_scaling[] = { /* .001 Volts */
136 2500, 2250, 3300, 5000, 12000,
137 3300, 1500, 1800 /*EMC6D100*/
138};
139#define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from))
140
141#define INS_TO_REG(n, val) \
142 clamp_val(SCALE(val, lm85_scaling[n], 192), 0, 255)
143
144#define INSEXT_FROM_REG(n, val, ext) \
145 SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
146
147#define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n])
148
149/* FAN speed is measured using 90kHz clock */
150static inline u16 FAN_TO_REG(unsigned long val)
151{
152 if (!val)
153 return 0xffff;
154 return clamp_val(5400000 / val, 1, 0xfffe);
155}
156#define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
157 5400000 / (val))
158
159/* Temperature is reported in .001 degC increments */
160#define TEMP_TO_REG(val) \
161 clamp_val(SCALE(val, 1000, 1), -127, 127)
162#define TEMPEXT_FROM_REG(val, ext) \
163 SCALE(((val) << 4) + (ext), 16, 1000)
164#define TEMP_FROM_REG(val) ((val) * 1000)
165
166#define PWM_TO_REG(val) clamp_val(val, 0, 255)
167#define PWM_FROM_REG(val) (val)
168
169
170/*
171 * ZONEs have the following parameters:
172 * Limit (low) temp, 1. degC
173 * Hysteresis (below limit), 1. degC (0-15)
174 * Range of speed control, .1 degC (2-80)
175 * Critical (high) temp, 1. degC
176 *
177 * FAN PWMs have the following parameters:
178 * Reference Zone, 1, 2, 3, etc.
179 * Spinup time, .05 sec
180 * PWM value at limit/low temp, 1 count
181 * PWM Frequency, 1. Hz
182 * PWM is Min or OFF below limit, flag
183 * Invert PWM output, flag
184 *
185 * Some chips filter the temp, others the fan.
186 * Filter constant (or disabled) .1 seconds
187 */
188
189/* These are the zone temperature range encodings in .001 degree C */
190static const int lm85_range_map[] = {
191 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
192 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
193};
194
195static int RANGE_TO_REG(int range)
196{
197 int i;
198
199 /* Find the closest match */
200 for (i = 0; i < 15; ++i) {
201 if (range <= (lm85_range_map[i] + lm85_range_map[i + 1]) / 2)
202 break;
203 }
204
205 return i;
206}
207#define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f]
208
209/* These are the PWM frequency encodings */
210static const int lm85_freq_map[8] = { /* 1 Hz */
211 10, 15, 23, 30, 38, 47, 61, 94
212};
213static const int adm1027_freq_map[8] = { /* 1 Hz */
214 11, 15, 22, 29, 35, 44, 59, 88
215};
216
217static int FREQ_TO_REG(const int *map, int freq)
218{
219 int i;
220
221 /* Find the closest match */
222 for (i = 0; i < 7; ++i)
223 if (freq <= (map[i] + map[i + 1]) / 2)
224 break;
225 return i;
226}
227
228static int FREQ_FROM_REG(const int *map, u8 reg)
229{
230 return map[reg & 0x07];
231}
232
233/*
234 * Since we can't use strings, I'm abusing these numbers
235 * to stand in for the following meanings:
236 * 1 -- PWM responds to Zone 1
237 * 2 -- PWM responds to Zone 2
238 * 3 -- PWM responds to Zone 3
239 * 23 -- PWM responds to the higher temp of Zone 2 or 3
240 * 123 -- PWM responds to highest of Zone 1, 2, or 3
241 * 0 -- PWM is always at 0% (ie, off)
242 * -1 -- PWM is always at 100%
243 * -2 -- PWM responds to manual control
244 */
245
246static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
247#define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5]
248
249static int ZONE_TO_REG(int zone)
250{
251 int i;
252
253 for (i = 0; i <= 7; ++i)
254 if (zone == lm85_zone_map[i])
255 break;
256 if (i > 7) /* Not found. */
257 i = 3; /* Always 100% */
258 return i << 5;
259}
260
261#define HYST_TO_REG(val) clamp_val(((val) + 500) / 1000, 0, 15)
262#define HYST_FROM_REG(val) ((val) * 1000)
263
264/*
265 * Chip sampling rates
266 *
267 * Some sensors are not updated more frequently than once per second
268 * so it doesn't make sense to read them more often than that.
269 * We cache the results and return the saved data if the driver
270 * is called again before a second has elapsed.
271 *
272 * Also, there is significant configuration data for this chip
273 * given the automatic PWM fan control that is possible. There
274 * are about 47 bytes of config data to only 22 bytes of actual
275 * readings. So, we keep the config data up to date in the cache
276 * when it is written and only sample it once every 1 *minute*
277 */
278#define LM85_DATA_INTERVAL (HZ + HZ / 2)
279#define LM85_CONFIG_INTERVAL (1 * 60 * HZ)
280
281/*
282 * LM85 can automatically adjust fan speeds based on temperature
283 * This structure encapsulates an entire Zone config. There are
284 * three zones (one for each temperature input) on the lm85
285 */
286struct lm85_zone {
287 s8 limit; /* Low temp limit */
288 u8 hyst; /* Low limit hysteresis. (0-15) */
289 u8 range; /* Temp range, encoded */
290 s8 critical; /* "All fans ON" temp limit */
291 u8 max_desired; /*
292 * Actual "max" temperature specified. Preserved
293 * to prevent "drift" as other autofan control
294 * values change.
295 */
296};
297
298struct lm85_autofan {
299 u8 config; /* Register value */
300 u8 min_pwm; /* Minimum PWM value, encoded */
301 u8 min_off; /* Min PWM or OFF below "limit", flag */
302};
303
304/*
305 * For each registered chip, we need to keep some data in memory.
306 * The structure is dynamically allocated.
307 */
308struct lm85_data {
309 struct device *hwmon_dev;
310 const int *freq_map;
311 enum chips type;
312
313 bool has_vid5; /* true if VID5 is configured for ADT7463 or ADT7468 */
314
315 struct mutex update_lock;
316 int valid; /* !=0 if following fields are valid */
317 unsigned long last_reading; /* In jiffies */
318 unsigned long last_config; /* In jiffies */
319
320 u8 in[8]; /* Register value */
321 u8 in_max[8]; /* Register value */
322 u8 in_min[8]; /* Register value */
323 s8 temp[3]; /* Register value */
324 s8 temp_min[3]; /* Register value */
325 s8 temp_max[3]; /* Register value */
326 u16 fan[4]; /* Register value */
327 u16 fan_min[4]; /* Register value */
328 u8 pwm[3]; /* Register value */
329 u8 pwm_freq[3]; /* Register encoding */
330 u8 temp_ext[3]; /* Decoded values */
331 u8 in_ext[8]; /* Decoded values */
332 u8 vid; /* Register value */
333 u8 vrm; /* VRM version */
334 u32 alarms; /* Register encoding, combined */
335 u8 cfg5; /* Config Register 5 on ADT7468 */
336 struct lm85_autofan autofan[3];
337 struct lm85_zone zone[3];
338};
339
340static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info);
341static int lm85_probe(struct i2c_client *client,
342 const struct i2c_device_id *id);
343static int lm85_remove(struct i2c_client *client);
344
345static int lm85_read_value(struct i2c_client *client, u8 reg);
346static void lm85_write_value(struct i2c_client *client, u8 reg, int value);
347static struct lm85_data *lm85_update_device(struct device *dev);
348
349
350static const struct i2c_device_id lm85_id[] = {
351 { "adm1027", adm1027 },
352 { "adt7463", adt7463 },
353 { "adt7468", adt7468 },
354 { "lm85", any_chip },
355 { "lm85b", lm85b },
356 { "lm85c", lm85c },
357 { "emc6d100", emc6d100 },
358 { "emc6d101", emc6d100 },
359 { "emc6d102", emc6d102 },
360 { "emc6d103", emc6d103 },
361 { "emc6d103s", emc6d103s },
362 { }
363};
364MODULE_DEVICE_TABLE(i2c, lm85_id);
365
366static struct i2c_driver lm85_driver = {
367 .class = I2C_CLASS_HWMON,
368 .driver = {
369 .name = "lm85",
370 },
371 .probe = lm85_probe,
372 .remove = lm85_remove,
373 .id_table = lm85_id,
374 .detect = lm85_detect,
375 .address_list = normal_i2c,
376};
377
378
379/* 4 Fans */
380static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
381 char *buf)
382{
383 int nr = to_sensor_dev_attr(attr)->index;
384 struct lm85_data *data = lm85_update_device(dev);
385 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
386}
387
388static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
389 char *buf)
390{
391 int nr = to_sensor_dev_attr(attr)->index;
392 struct lm85_data *data = lm85_update_device(dev);
393 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
394}
395
396static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
397 const char *buf, size_t count)
398{
399 int nr = to_sensor_dev_attr(attr)->index;
400 struct i2c_client *client = to_i2c_client(dev);
401 struct lm85_data *data = i2c_get_clientdata(client);
402 unsigned long val;
403 int err;
404
405 err = kstrtoul(buf, 10, &val);
406 if (err)
407 return err;
408
409 mutex_lock(&data->update_lock);
410 data->fan_min[nr] = FAN_TO_REG(val);
411 lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
412 mutex_unlock(&data->update_lock);
413 return count;
414}
415
416#define show_fan_offset(offset) \
417static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
418 show_fan, NULL, offset - 1); \
419static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
420 show_fan_min, set_fan_min, offset - 1)
421
422show_fan_offset(1);
423show_fan_offset(2);
424show_fan_offset(3);
425show_fan_offset(4);
426
427/* vid, vrm, alarms */
428
429static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr,
430 char *buf)
431{
432 struct lm85_data *data = lm85_update_device(dev);
433 int vid;
434
435 if (data->has_vid5) {
436 /* 6-pin VID (VRM 10) */
437 vid = vid_from_reg(data->vid & 0x3f, data->vrm);
438 } else {
439 /* 5-pin VID (VRM 9) */
440 vid = vid_from_reg(data->vid & 0x1f, data->vrm);
441 }
442
443 return sprintf(buf, "%d\n", vid);
444}
445
446static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
447
448static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr,
449 char *buf)
450{
451 struct lm85_data *data = dev_get_drvdata(dev);
452 return sprintf(buf, "%ld\n", (long) data->vrm);
453}
454
455static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr,
456 const char *buf, size_t count)
457{
458 struct lm85_data *data = dev_get_drvdata(dev);
459 unsigned long val;
460 int err;
461
462 err = kstrtoul(buf, 10, &val);
463 if (err)
464 return err;
465
466 data->vrm = val;
467 return count;
468}
469
470static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
471
472static ssize_t show_alarms_reg(struct device *dev, struct device_attribute
473 *attr, char *buf)
474{
475 struct lm85_data *data = lm85_update_device(dev);
476 return sprintf(buf, "%u\n", data->alarms);
477}
478
479static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
480
481static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
482 char *buf)
483{
484 int nr = to_sensor_dev_attr(attr)->index;
485 struct lm85_data *data = lm85_update_device(dev);
486 return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
487}
488
489static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
490static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
491static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
492static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
493static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
494static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
495static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
496static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
497static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
498static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
499static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
500static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
501static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
502static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
503static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
504static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
505static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
506
507/* pwm */
508
509static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
510 char *buf)
511{
512 int nr = to_sensor_dev_attr(attr)->index;
513 struct lm85_data *data = lm85_update_device(dev);
514 return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
515}
516
517static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
518 const char *buf, size_t count)
519{
520 int nr = to_sensor_dev_attr(attr)->index;
521 struct i2c_client *client = to_i2c_client(dev);
522 struct lm85_data *data = i2c_get_clientdata(client);
523 unsigned long val;
524 int err;
525
526 err = kstrtoul(buf, 10, &val);
527 if (err)
528 return err;
529
530 mutex_lock(&data->update_lock);
531 data->pwm[nr] = PWM_TO_REG(val);
532 lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
533 mutex_unlock(&data->update_lock);
534 return count;
535}
536
537static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
538 *attr, char *buf)
539{
540 int nr = to_sensor_dev_attr(attr)->index;
541 struct lm85_data *data = lm85_update_device(dev);
542 int pwm_zone, enable;
543
544 pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
545 switch (pwm_zone) {
546 case -1: /* PWM is always at 100% */
547 enable = 0;
548 break;
549 case 0: /* PWM is always at 0% */
550 case -2: /* PWM responds to manual control */
551 enable = 1;
552 break;
553 default: /* PWM in automatic mode */
554 enable = 2;
555 }
556 return sprintf(buf, "%d\n", enable);
557}
558
559static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
560 *attr, const char *buf, size_t count)
561{
562 int nr = to_sensor_dev_attr(attr)->index;
563 struct i2c_client *client = to_i2c_client(dev);
564 struct lm85_data *data = i2c_get_clientdata(client);
565 u8 config;
566 unsigned long val;
567 int err;
568
569 err = kstrtoul(buf, 10, &val);
570 if (err)
571 return err;
572
573 switch (val) {
574 case 0:
575 config = 3;
576 break;
577 case 1:
578 config = 7;
579 break;
580 case 2:
581 /*
582 * Here we have to choose arbitrarily one of the 5 possible
583 * configurations; I go for the safest
584 */
585 config = 6;
586 break;
587 default:
588 return -EINVAL;
589 }
590
591 mutex_lock(&data->update_lock);
592 data->autofan[nr].config = lm85_read_value(client,
593 LM85_REG_AFAN_CONFIG(nr));
594 data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
595 | (config << 5);
596 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
597 data->autofan[nr].config);
598 mutex_unlock(&data->update_lock);
599 return count;
600}
601
602static ssize_t show_pwm_freq(struct device *dev,
603 struct device_attribute *attr, char *buf)
604{
605 int nr = to_sensor_dev_attr(attr)->index;
606 struct lm85_data *data = lm85_update_device(dev);
607 int freq;
608
609 if (IS_ADT7468_HFPWM(data))
610 freq = 22500;
611 else
612 freq = FREQ_FROM_REG(data->freq_map, data->pwm_freq[nr]);
613
614 return sprintf(buf, "%d\n", freq);
615}
616
617static ssize_t set_pwm_freq(struct device *dev,
618 struct device_attribute *attr, const char *buf, size_t count)
619{
620 int nr = to_sensor_dev_attr(attr)->index;
621 struct i2c_client *client = to_i2c_client(dev);
622 struct lm85_data *data = i2c_get_clientdata(client);
623 unsigned long val;
624 int err;
625
626 err = kstrtoul(buf, 10, &val);
627 if (err)
628 return err;
629
630 mutex_lock(&data->update_lock);
631 /*
632 * The ADT7468 has a special high-frequency PWM output mode,
633 * where all PWM outputs are driven by a 22.5 kHz clock.
634 * This might confuse the user, but there's not much we can do.
635 */
636 if (data->type == adt7468 && val >= 11300) { /* High freq. mode */
637 data->cfg5 &= ~ADT7468_HFPWM;
638 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
639 } else { /* Low freq. mode */
640 data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map, val);
641 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
642 (data->zone[nr].range << 4)
643 | data->pwm_freq[nr]);
644 if (data->type == adt7468) {
645 data->cfg5 |= ADT7468_HFPWM;
646 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
647 }
648 }
649 mutex_unlock(&data->update_lock);
650 return count;
651}
652
653#define show_pwm_reg(offset) \
654static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR, \
655 show_pwm, set_pwm, offset - 1); \
656static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR, \
657 show_pwm_enable, set_pwm_enable, offset - 1); \
658static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR, \
659 show_pwm_freq, set_pwm_freq, offset - 1)
660
661show_pwm_reg(1);
662show_pwm_reg(2);
663show_pwm_reg(3);
664
665/* Voltages */
666
667static ssize_t show_in(struct device *dev, struct device_attribute *attr,
668 char *buf)
669{
670 int nr = to_sensor_dev_attr(attr)->index;
671 struct lm85_data *data = lm85_update_device(dev);
672 return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
673 data->in_ext[nr]));
674}
675
676static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
677 char *buf)
678{
679 int nr = to_sensor_dev_attr(attr)->index;
680 struct lm85_data *data = lm85_update_device(dev);
681 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
682}
683
684static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
685 const char *buf, size_t count)
686{
687 int nr = to_sensor_dev_attr(attr)->index;
688 struct i2c_client *client = to_i2c_client(dev);
689 struct lm85_data *data = i2c_get_clientdata(client);
690 long val;
691 int err;
692
693 err = kstrtol(buf, 10, &val);
694 if (err)
695 return err;
696
697 mutex_lock(&data->update_lock);
698 data->in_min[nr] = INS_TO_REG(nr, val);
699 lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
700 mutex_unlock(&data->update_lock);
701 return count;
702}
703
704static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
705 char *buf)
706{
707 int nr = to_sensor_dev_attr(attr)->index;
708 struct lm85_data *data = lm85_update_device(dev);
709 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
710}
711
712static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
713 const char *buf, size_t count)
714{
715 int nr = to_sensor_dev_attr(attr)->index;
716 struct i2c_client *client = to_i2c_client(dev);
717 struct lm85_data *data = i2c_get_clientdata(client);
718 long val;
719 int err;
720
721 err = kstrtol(buf, 10, &val);
722 if (err)
723 return err;
724
725 mutex_lock(&data->update_lock);
726 data->in_max[nr] = INS_TO_REG(nr, val);
727 lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
728 mutex_unlock(&data->update_lock);
729 return count;
730}
731
732#define show_in_reg(offset) \
733static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
734 show_in, NULL, offset); \
735static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
736 show_in_min, set_in_min, offset); \
737static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
738 show_in_max, set_in_max, offset)
739
740show_in_reg(0);
741show_in_reg(1);
742show_in_reg(2);
743show_in_reg(3);
744show_in_reg(4);
745show_in_reg(5);
746show_in_reg(6);
747show_in_reg(7);
748
749/* Temps */
750
751static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
752 char *buf)
753{
754 int nr = to_sensor_dev_attr(attr)->index;
755 struct lm85_data *data = lm85_update_device(dev);
756 return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
757 data->temp_ext[nr]));
758}
759
760static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
761 char *buf)
762{
763 int nr = to_sensor_dev_attr(attr)->index;
764 struct lm85_data *data = lm85_update_device(dev);
765 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
766}
767
768static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
769 const char *buf, size_t count)
770{
771 int nr = to_sensor_dev_attr(attr)->index;
772 struct i2c_client *client = to_i2c_client(dev);
773 struct lm85_data *data = i2c_get_clientdata(client);
774 long val;
775 int err;
776
777 err = kstrtol(buf, 10, &val);
778 if (err)
779 return err;
780
781 if (IS_ADT7468_OFF64(data))
782 val += 64;
783
784 mutex_lock(&data->update_lock);
785 data->temp_min[nr] = TEMP_TO_REG(val);
786 lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
787 mutex_unlock(&data->update_lock);
788 return count;
789}
790
791static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
792 char *buf)
793{
794 int nr = to_sensor_dev_attr(attr)->index;
795 struct lm85_data *data = lm85_update_device(dev);
796 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
797}
798
799static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
800 const char *buf, size_t count)
801{
802 int nr = to_sensor_dev_attr(attr)->index;
803 struct i2c_client *client = to_i2c_client(dev);
804 struct lm85_data *data = i2c_get_clientdata(client);
805 long val;
806 int err;
807
808 err = kstrtol(buf, 10, &val);
809 if (err)
810 return err;
811
812 if (IS_ADT7468_OFF64(data))
813 val += 64;
814
815 mutex_lock(&data->update_lock);
816 data->temp_max[nr] = TEMP_TO_REG(val);
817 lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
818 mutex_unlock(&data->update_lock);
819 return count;
820}
821
822#define show_temp_reg(offset) \
823static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
824 show_temp, NULL, offset - 1); \
825static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
826 show_temp_min, set_temp_min, offset - 1); \
827static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
828 show_temp_max, set_temp_max, offset - 1);
829
830show_temp_reg(1);
831show_temp_reg(2);
832show_temp_reg(3);
833
834
835/* Automatic PWM control */
836
837static ssize_t show_pwm_auto_channels(struct device *dev,
838 struct device_attribute *attr, char *buf)
839{
840 int nr = to_sensor_dev_attr(attr)->index;
841 struct lm85_data *data = lm85_update_device(dev);
842 return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
843}
844
845static ssize_t set_pwm_auto_channels(struct device *dev,
846 struct device_attribute *attr, const char *buf, size_t count)
847{
848 int nr = to_sensor_dev_attr(attr)->index;
849 struct i2c_client *client = to_i2c_client(dev);
850 struct lm85_data *data = i2c_get_clientdata(client);
851 long val;
852 int err;
853
854 err = kstrtol(buf, 10, &val);
855 if (err)
856 return err;
857
858 mutex_lock(&data->update_lock);
859 data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
860 | ZONE_TO_REG(val);
861 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
862 data->autofan[nr].config);
863 mutex_unlock(&data->update_lock);
864 return count;
865}
866
867static ssize_t show_pwm_auto_pwm_min(struct device *dev,
868 struct device_attribute *attr, char *buf)
869{
870 int nr = to_sensor_dev_attr(attr)->index;
871 struct lm85_data *data = lm85_update_device(dev);
872 return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
873}
874
875static ssize_t set_pwm_auto_pwm_min(struct device *dev,
876 struct device_attribute *attr, const char *buf, size_t count)
877{
878 int nr = to_sensor_dev_attr(attr)->index;
879 struct i2c_client *client = to_i2c_client(dev);
880 struct lm85_data *data = i2c_get_clientdata(client);
881 unsigned long val;
882 int err;
883
884 err = kstrtoul(buf, 10, &val);
885 if (err)
886 return err;
887
888 mutex_lock(&data->update_lock);
889 data->autofan[nr].min_pwm = PWM_TO_REG(val);
890 lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
891 data->autofan[nr].min_pwm);
892 mutex_unlock(&data->update_lock);
893 return count;
894}
895
896static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
897 struct device_attribute *attr, char *buf)
898{
899 int nr = to_sensor_dev_attr(attr)->index;
900 struct lm85_data *data = lm85_update_device(dev);
901 return sprintf(buf, "%d\n", data->autofan[nr].min_off);
902}
903
904static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
905 struct device_attribute *attr, const char *buf, size_t count)
906{
907 int nr = to_sensor_dev_attr(attr)->index;
908 struct i2c_client *client = to_i2c_client(dev);
909 struct lm85_data *data = i2c_get_clientdata(client);
910 u8 tmp;
911 long val;
912 int err;
913
914 err = kstrtol(buf, 10, &val);
915 if (err)
916 return err;
917
918 mutex_lock(&data->update_lock);
919 data->autofan[nr].min_off = val;
920 tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
921 tmp &= ~(0x20 << nr);
922 if (data->autofan[nr].min_off)
923 tmp |= 0x20 << nr;
924 lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
925 mutex_unlock(&data->update_lock);
926 return count;
927}
928
929#define pwm_auto(offset) \
930static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels, \
931 S_IRUGO | S_IWUSR, show_pwm_auto_channels, \
932 set_pwm_auto_channels, offset - 1); \
933static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min, \
934 S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min, \
935 set_pwm_auto_pwm_min, offset - 1); \
936static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl, \
937 S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl, \
938 set_pwm_auto_pwm_minctl, offset - 1)
939
940pwm_auto(1);
941pwm_auto(2);
942pwm_auto(3);
943
944/* Temperature settings for automatic PWM control */
945
946static ssize_t show_temp_auto_temp_off(struct device *dev,
947 struct device_attribute *attr, char *buf)
948{
949 int nr = to_sensor_dev_attr(attr)->index;
950 struct lm85_data *data = lm85_update_device(dev);
951 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
952 HYST_FROM_REG(data->zone[nr].hyst));
953}
954
955static ssize_t set_temp_auto_temp_off(struct device *dev,
956 struct device_attribute *attr, const char *buf, size_t count)
957{
958 int nr = to_sensor_dev_attr(attr)->index;
959 struct i2c_client *client = to_i2c_client(dev);
960 struct lm85_data *data = i2c_get_clientdata(client);
961 int min;
962 long val;
963 int err;
964
965 err = kstrtol(buf, 10, &val);
966 if (err)
967 return err;
968
969 mutex_lock(&data->update_lock);
970 min = TEMP_FROM_REG(data->zone[nr].limit);
971 data->zone[nr].hyst = HYST_TO_REG(min - val);
972 if (nr == 0 || nr == 1) {
973 lm85_write_value(client, LM85_REG_AFAN_HYST1,
974 (data->zone[0].hyst << 4)
975 | data->zone[1].hyst);
976 } else {
977 lm85_write_value(client, LM85_REG_AFAN_HYST2,
978 (data->zone[2].hyst << 4));
979 }
980 mutex_unlock(&data->update_lock);
981 return count;
982}
983
984static ssize_t show_temp_auto_temp_min(struct device *dev,
985 struct device_attribute *attr, char *buf)
986{
987 int nr = to_sensor_dev_attr(attr)->index;
988 struct lm85_data *data = lm85_update_device(dev);
989 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
990}
991
992static ssize_t set_temp_auto_temp_min(struct device *dev,
993 struct device_attribute *attr, const char *buf, size_t count)
994{
995 int nr = to_sensor_dev_attr(attr)->index;
996 struct i2c_client *client = to_i2c_client(dev);
997 struct lm85_data *data = i2c_get_clientdata(client);
998 long val;
999 int err;
1000
1001 err = kstrtol(buf, 10, &val);
1002 if (err)
1003 return err;
1004
1005 mutex_lock(&data->update_lock);
1006 data->zone[nr].limit = TEMP_TO_REG(val);
1007 lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
1008 data->zone[nr].limit);
1009
1010/* Update temp_auto_max and temp_auto_range */
1011 data->zone[nr].range = RANGE_TO_REG(
1012 TEMP_FROM_REG(data->zone[nr].max_desired) -
1013 TEMP_FROM_REG(data->zone[nr].limit));
1014 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1015 ((data->zone[nr].range & 0x0f) << 4)
1016 | (data->pwm_freq[nr] & 0x07));
1017
1018 mutex_unlock(&data->update_lock);
1019 return count;
1020}
1021
1022static ssize_t show_temp_auto_temp_max(struct device *dev,
1023 struct device_attribute *attr, char *buf)
1024{
1025 int nr = to_sensor_dev_attr(attr)->index;
1026 struct lm85_data *data = lm85_update_device(dev);
1027 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
1028 RANGE_FROM_REG(data->zone[nr].range));
1029}
1030
1031static ssize_t set_temp_auto_temp_max(struct device *dev,
1032 struct device_attribute *attr, const char *buf, size_t count)
1033{
1034 int nr = to_sensor_dev_attr(attr)->index;
1035 struct i2c_client *client = to_i2c_client(dev);
1036 struct lm85_data *data = i2c_get_clientdata(client);
1037 int min;
1038 long val;
1039 int err;
1040
1041 err = kstrtol(buf, 10, &val);
1042 if (err)
1043 return err;
1044
1045 mutex_lock(&data->update_lock);
1046 min = TEMP_FROM_REG(data->zone[nr].limit);
1047 data->zone[nr].max_desired = TEMP_TO_REG(val);
1048 data->zone[nr].range = RANGE_TO_REG(
1049 val - min);
1050 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1051 ((data->zone[nr].range & 0x0f) << 4)
1052 | (data->pwm_freq[nr] & 0x07));
1053 mutex_unlock(&data->update_lock);
1054 return count;
1055}
1056
1057static ssize_t show_temp_auto_temp_crit(struct device *dev,
1058 struct device_attribute *attr, char *buf)
1059{
1060 int nr = to_sensor_dev_attr(attr)->index;
1061 struct lm85_data *data = lm85_update_device(dev);
1062 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
1063}
1064
1065static ssize_t set_temp_auto_temp_crit(struct device *dev,
1066 struct device_attribute *attr, const char *buf, size_t count)
1067{
1068 int nr = to_sensor_dev_attr(attr)->index;
1069 struct i2c_client *client = to_i2c_client(dev);
1070 struct lm85_data *data = i2c_get_clientdata(client);
1071 long val;
1072 int err;
1073
1074 err = kstrtol(buf, 10, &val);
1075 if (err)
1076 return err;
1077
1078 mutex_lock(&data->update_lock);
1079 data->zone[nr].critical = TEMP_TO_REG(val);
1080 lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
1081 data->zone[nr].critical);
1082 mutex_unlock(&data->update_lock);
1083 return count;
1084}
1085
1086#define temp_auto(offset) \
1087static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off, \
1088 S_IRUGO | S_IWUSR, show_temp_auto_temp_off, \
1089 set_temp_auto_temp_off, offset - 1); \
1090static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min, \
1091 S_IRUGO | S_IWUSR, show_temp_auto_temp_min, \
1092 set_temp_auto_temp_min, offset - 1); \
1093static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max, \
1094 S_IRUGO | S_IWUSR, show_temp_auto_temp_max, \
1095 set_temp_auto_temp_max, offset - 1); \
1096static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit, \
1097 S_IRUGO | S_IWUSR, show_temp_auto_temp_crit, \
1098 set_temp_auto_temp_crit, offset - 1);
1099
1100temp_auto(1);
1101temp_auto(2);
1102temp_auto(3);
1103
1104static struct attribute *lm85_attributes[] = {
1105 &sensor_dev_attr_fan1_input.dev_attr.attr,
1106 &sensor_dev_attr_fan2_input.dev_attr.attr,
1107 &sensor_dev_attr_fan3_input.dev_attr.attr,
1108 &sensor_dev_attr_fan4_input.dev_attr.attr,
1109 &sensor_dev_attr_fan1_min.dev_attr.attr,
1110 &sensor_dev_attr_fan2_min.dev_attr.attr,
1111 &sensor_dev_attr_fan3_min.dev_attr.attr,
1112 &sensor_dev_attr_fan4_min.dev_attr.attr,
1113 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
1114 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
1115 &sensor_dev_attr_fan3_alarm.dev_attr.attr,
1116 &sensor_dev_attr_fan4_alarm.dev_attr.attr,
1117
1118 &sensor_dev_attr_pwm1.dev_attr.attr,
1119 &sensor_dev_attr_pwm2.dev_attr.attr,
1120 &sensor_dev_attr_pwm3.dev_attr.attr,
1121 &sensor_dev_attr_pwm1_enable.dev_attr.attr,
1122 &sensor_dev_attr_pwm2_enable.dev_attr.attr,
1123 &sensor_dev_attr_pwm3_enable.dev_attr.attr,
1124 &sensor_dev_attr_pwm1_freq.dev_attr.attr,
1125 &sensor_dev_attr_pwm2_freq.dev_attr.attr,
1126 &sensor_dev_attr_pwm3_freq.dev_attr.attr,
1127
1128 &sensor_dev_attr_in0_input.dev_attr.attr,
1129 &sensor_dev_attr_in1_input.dev_attr.attr,
1130 &sensor_dev_attr_in2_input.dev_attr.attr,
1131 &sensor_dev_attr_in3_input.dev_attr.attr,
1132 &sensor_dev_attr_in0_min.dev_attr.attr,
1133 &sensor_dev_attr_in1_min.dev_attr.attr,
1134 &sensor_dev_attr_in2_min.dev_attr.attr,
1135 &sensor_dev_attr_in3_min.dev_attr.attr,
1136 &sensor_dev_attr_in0_max.dev_attr.attr,
1137 &sensor_dev_attr_in1_max.dev_attr.attr,
1138 &sensor_dev_attr_in2_max.dev_attr.attr,
1139 &sensor_dev_attr_in3_max.dev_attr.attr,
1140 &sensor_dev_attr_in0_alarm.dev_attr.attr,
1141 &sensor_dev_attr_in1_alarm.dev_attr.attr,
1142 &sensor_dev_attr_in2_alarm.dev_attr.attr,
1143 &sensor_dev_attr_in3_alarm.dev_attr.attr,
1144
1145 &sensor_dev_attr_temp1_input.dev_attr.attr,
1146 &sensor_dev_attr_temp2_input.dev_attr.attr,
1147 &sensor_dev_attr_temp3_input.dev_attr.attr,
1148 &sensor_dev_attr_temp1_min.dev_attr.attr,
1149 &sensor_dev_attr_temp2_min.dev_attr.attr,
1150 &sensor_dev_attr_temp3_min.dev_attr.attr,
1151 &sensor_dev_attr_temp1_max.dev_attr.attr,
1152 &sensor_dev_attr_temp2_max.dev_attr.attr,
1153 &sensor_dev_attr_temp3_max.dev_attr.attr,
1154 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
1155 &sensor_dev_attr_temp2_alarm.dev_attr.attr,
1156 &sensor_dev_attr_temp3_alarm.dev_attr.attr,
1157 &sensor_dev_attr_temp1_fault.dev_attr.attr,
1158 &sensor_dev_attr_temp3_fault.dev_attr.attr,
1159
1160 &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1161 &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1162 &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1163 &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1164 &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1165 &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1166
1167 &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1168 &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1169 &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1170 &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1171 &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1172 &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1173 &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1174 &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1175 &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1176
1177 &dev_attr_vrm.attr,
1178 &dev_attr_cpu0_vid.attr,
1179 &dev_attr_alarms.attr,
1180 NULL
1181};
1182
1183static const struct attribute_group lm85_group = {
1184 .attrs = lm85_attributes,
1185};
1186
1187static struct attribute *lm85_attributes_minctl[] = {
1188 &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1189 &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1190 &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1191 NULL
1192};
1193
1194static const struct attribute_group lm85_group_minctl = {
1195 .attrs = lm85_attributes_minctl,
1196};
1197
1198static struct attribute *lm85_attributes_temp_off[] = {
1199 &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1200 &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1201 &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1202 NULL
1203};
1204
1205static const struct attribute_group lm85_group_temp_off = {
1206 .attrs = lm85_attributes_temp_off,
1207};
1208
1209static struct attribute *lm85_attributes_in4[] = {
1210 &sensor_dev_attr_in4_input.dev_attr.attr,
1211 &sensor_dev_attr_in4_min.dev_attr.attr,
1212 &sensor_dev_attr_in4_max.dev_attr.attr,
1213 &sensor_dev_attr_in4_alarm.dev_attr.attr,
1214 NULL
1215};
1216
1217static const struct attribute_group lm85_group_in4 = {
1218 .attrs = lm85_attributes_in4,
1219};
1220
1221static struct attribute *lm85_attributes_in567[] = {
1222 &sensor_dev_attr_in5_input.dev_attr.attr,
1223 &sensor_dev_attr_in6_input.dev_attr.attr,
1224 &sensor_dev_attr_in7_input.dev_attr.attr,
1225 &sensor_dev_attr_in5_min.dev_attr.attr,
1226 &sensor_dev_attr_in6_min.dev_attr.attr,
1227 &sensor_dev_attr_in7_min.dev_attr.attr,
1228 &sensor_dev_attr_in5_max.dev_attr.attr,
1229 &sensor_dev_attr_in6_max.dev_attr.attr,
1230 &sensor_dev_attr_in7_max.dev_attr.attr,
1231 &sensor_dev_attr_in5_alarm.dev_attr.attr,
1232 &sensor_dev_attr_in6_alarm.dev_attr.attr,
1233 &sensor_dev_attr_in7_alarm.dev_attr.attr,
1234 NULL
1235};
1236
1237static const struct attribute_group lm85_group_in567 = {
1238 .attrs = lm85_attributes_in567,
1239};
1240
1241static void lm85_init_client(struct i2c_client *client)
1242{
1243 int value;
1244
1245 /* Start monitoring if needed */
1246 value = lm85_read_value(client, LM85_REG_CONFIG);
1247 if (!(value & 0x01)) {
1248 dev_info(&client->dev, "Starting monitoring\n");
1249 lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1250 }
1251
1252 /* Warn about unusual configuration bits */
1253 if (value & 0x02)
1254 dev_warn(&client->dev, "Device configuration is locked\n");
1255 if (!(value & 0x04))
1256 dev_warn(&client->dev, "Device is not ready\n");
1257}
1258
1259static int lm85_is_fake(struct i2c_client *client)
1260{
1261 /*
1262 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1263 * emulate the former except that it has no hardware monitoring function
1264 * so the readings are always 0.
1265 */
1266 int i;
1267 u8 in_temp, fan;
1268
1269 for (i = 0; i < 8; i++) {
1270 in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1271 fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1272 if (in_temp != 0x00 || fan != 0xff)
1273 return 0;
1274 }
1275
1276 return 1;
1277}
1278
1279/* Return 0 if detection is successful, -ENODEV otherwise */
1280static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1281{
1282 struct i2c_adapter *adapter = client->adapter;
1283 int address = client->addr;
1284 const char *type_name;
1285 int company, verstep;
1286
1287 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1288 /* We need to be able to do byte I/O */
1289 return -ENODEV;
1290 }
1291
1292 /* Determine the chip type */
1293 company = lm85_read_value(client, LM85_REG_COMPANY);
1294 verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1295
1296 dev_dbg(&adapter->dev,
1297 "Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1298 address, company, verstep);
1299
1300 /* All supported chips have the version in common */
1301 if ((verstep & LM85_VERSTEP_VMASK) != LM85_VERSTEP_GENERIC &&
1302 (verstep & LM85_VERSTEP_VMASK) != LM85_VERSTEP_GENERIC2) {
1303 dev_dbg(&adapter->dev,
1304 "Autodetection failed: unsupported version\n");
1305 return -ENODEV;
1306 }
1307 type_name = "lm85";
1308
1309 /* Now, refine the detection */
1310 if (company == LM85_COMPANY_NATIONAL) {
1311 switch (verstep) {
1312 case LM85_VERSTEP_LM85C:
1313 type_name = "lm85c";
1314 break;
1315 case LM85_VERSTEP_LM85B:
1316 type_name = "lm85b";
1317 break;
1318 case LM85_VERSTEP_LM96000_1:
1319 case LM85_VERSTEP_LM96000_2:
1320 /* Check for Winbond WPCD377I */
1321 if (lm85_is_fake(client)) {
1322 dev_dbg(&adapter->dev,
1323 "Found Winbond WPCD377I, ignoring\n");
1324 return -ENODEV;
1325 }
1326 break;
1327 }
1328 } else if (company == LM85_COMPANY_ANALOG_DEV) {
1329 switch (verstep) {
1330 case LM85_VERSTEP_ADM1027:
1331 type_name = "adm1027";
1332 break;
1333 case LM85_VERSTEP_ADT7463:
1334 case LM85_VERSTEP_ADT7463C:
1335 type_name = "adt7463";
1336 break;
1337 case LM85_VERSTEP_ADT7468_1:
1338 case LM85_VERSTEP_ADT7468_2:
1339 type_name = "adt7468";
1340 break;
1341 }
1342 } else if (company == LM85_COMPANY_SMSC) {
1343 switch (verstep) {
1344 case LM85_VERSTEP_EMC6D100_A0:
1345 case LM85_VERSTEP_EMC6D100_A1:
1346 /* Note: we can't tell a '100 from a '101 */
1347 type_name = "emc6d100";
1348 break;
1349 case LM85_VERSTEP_EMC6D102:
1350 type_name = "emc6d102";
1351 break;
1352 case LM85_VERSTEP_EMC6D103_A0:
1353 case LM85_VERSTEP_EMC6D103_A1:
1354 type_name = "emc6d103";
1355 break;
1356 case LM85_VERSTEP_EMC6D103S:
1357 type_name = "emc6d103s";
1358 break;
1359 }
1360 } else {
1361 dev_dbg(&adapter->dev,
1362 "Autodetection failed: unknown vendor\n");
1363 return -ENODEV;
1364 }
1365
1366 strlcpy(info->type, type_name, I2C_NAME_SIZE);
1367
1368 return 0;
1369}
1370
1371static void lm85_remove_files(struct i2c_client *client, struct lm85_data *data)
1372{
1373 sysfs_remove_group(&client->dev.kobj, &lm85_group);
1374 if (data->type != emc6d103s) {
1375 sysfs_remove_group(&client->dev.kobj, &lm85_group_minctl);
1376 sysfs_remove_group(&client->dev.kobj, &lm85_group_temp_off);
1377 }
1378 if (!data->has_vid5)
1379 sysfs_remove_group(&client->dev.kobj, &lm85_group_in4);
1380 if (data->type == emc6d100)
1381 sysfs_remove_group(&client->dev.kobj, &lm85_group_in567);
1382}
1383
1384static int lm85_probe(struct i2c_client *client,
1385 const struct i2c_device_id *id)
1386{
1387 struct lm85_data *data;
1388 int err;
1389
1390 data = devm_kzalloc(&client->dev, sizeof(struct lm85_data), GFP_KERNEL);
1391 if (!data)
1392 return -ENOMEM;
1393
1394 i2c_set_clientdata(client, data);
1395 data->type = id->driver_data;
1396 mutex_init(&data->update_lock);
1397
1398 /* Fill in the chip specific driver values */
1399 switch (data->type) {
1400 case adm1027:
1401 case adt7463:
1402 case adt7468:
1403 case emc6d100:
1404 case emc6d102:
1405 case emc6d103:
1406 case emc6d103s:
1407 data->freq_map = adm1027_freq_map;
1408 break;
1409 default:
1410 data->freq_map = lm85_freq_map;
1411 }
1412
1413 /* Set the VRM version */
1414 data->vrm = vid_which_vrm();
1415
1416 /* Initialize the LM85 chip */
1417 lm85_init_client(client);
1418
1419 /* Register sysfs hooks */
1420 err = sysfs_create_group(&client->dev.kobj, &lm85_group);
1421 if (err)
1422 return err;
1423
1424 /* minctl and temp_off exist on all chips except emc6d103s */
1425 if (data->type != emc6d103s) {
1426 err = sysfs_create_group(&client->dev.kobj, &lm85_group_minctl);
1427 if (err)
1428 goto err_remove_files;
1429 err = sysfs_create_group(&client->dev.kobj,
1430 &lm85_group_temp_off);
1431 if (err)
1432 goto err_remove_files;
1433 }
1434
1435 /*
1436 * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1437 * as a sixth digital VID input rather than an analog input.
1438 */
1439 if (data->type == adt7463 || data->type == adt7468) {
1440 u8 vid = lm85_read_value(client, LM85_REG_VID);
1441 if (vid & 0x80)
1442 data->has_vid5 = true;
1443 }
1444
1445 if (!data->has_vid5) {
1446 err = sysfs_create_group(&client->dev.kobj, &lm85_group_in4);
1447 if (err)
1448 goto err_remove_files;
1449 }
1450
1451 /* The EMC6D100 has 3 additional voltage inputs */
1452 if (data->type == emc6d100) {
1453 err = sysfs_create_group(&client->dev.kobj, &lm85_group_in567);
1454 if (err)
1455 goto err_remove_files;
1456 }
1457
1458 data->hwmon_dev = hwmon_device_register(&client->dev);
1459 if (IS_ERR(data->hwmon_dev)) {
1460 err = PTR_ERR(data->hwmon_dev);
1461 goto err_remove_files;
1462 }
1463
1464 return 0;
1465
1466 /* Error out and cleanup code */
1467 err_remove_files:
1468 lm85_remove_files(client, data);
1469 return err;
1470}
1471
1472static int lm85_remove(struct i2c_client *client)
1473{
1474 struct lm85_data *data = i2c_get_clientdata(client);
1475 hwmon_device_unregister(data->hwmon_dev);
1476 lm85_remove_files(client, data);
1477 return 0;
1478}
1479
1480
1481static int lm85_read_value(struct i2c_client *client, u8 reg)
1482{
1483 int res;
1484
1485 /* What size location is it? */
1486 switch (reg) {
1487 case LM85_REG_FAN(0): /* Read WORD data */
1488 case LM85_REG_FAN(1):
1489 case LM85_REG_FAN(2):
1490 case LM85_REG_FAN(3):
1491 case LM85_REG_FAN_MIN(0):
1492 case LM85_REG_FAN_MIN(1):
1493 case LM85_REG_FAN_MIN(2):
1494 case LM85_REG_FAN_MIN(3):
1495 case LM85_REG_ALARM1: /* Read both bytes at once */
1496 res = i2c_smbus_read_byte_data(client, reg) & 0xff;
1497 res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
1498 break;
1499 default: /* Read BYTE data */
1500 res = i2c_smbus_read_byte_data(client, reg);
1501 break;
1502 }
1503
1504 return res;
1505}
1506
1507static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
1508{
1509 switch (reg) {
1510 case LM85_REG_FAN(0): /* Write WORD data */
1511 case LM85_REG_FAN(1):
1512 case LM85_REG_FAN(2):
1513 case LM85_REG_FAN(3):
1514 case LM85_REG_FAN_MIN(0):
1515 case LM85_REG_FAN_MIN(1):
1516 case LM85_REG_FAN_MIN(2):
1517 case LM85_REG_FAN_MIN(3):
1518 /* NOTE: ALARM is read only, so not included here */
1519 i2c_smbus_write_byte_data(client, reg, value & 0xff);
1520 i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
1521 break;
1522 default: /* Write BYTE data */
1523 i2c_smbus_write_byte_data(client, reg, value);
1524 break;
1525 }
1526}
1527
1528static struct lm85_data *lm85_update_device(struct device *dev)
1529{
1530 struct i2c_client *client = to_i2c_client(dev);
1531 struct lm85_data *data = i2c_get_clientdata(client);
1532 int i;
1533
1534 mutex_lock(&data->update_lock);
1535
1536 if (!data->valid ||
1537 time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
1538 /* Things that change quickly */
1539 dev_dbg(&client->dev, "Reading sensor values\n");
1540
1541 /*
1542 * Have to read extended bits first to "freeze" the
1543 * more significant bits that are read later.
1544 * There are 2 additional resolution bits per channel and we
1545 * have room for 4, so we shift them to the left.
1546 */
1547 if (data->type == adm1027 || data->type == adt7463 ||
1548 data->type == adt7468) {
1549 int ext1 = lm85_read_value(client,
1550 ADM1027_REG_EXTEND_ADC1);
1551 int ext2 = lm85_read_value(client,
1552 ADM1027_REG_EXTEND_ADC2);
1553 int val = (ext1 << 8) + ext2;
1554
1555 for (i = 0; i <= 4; i++)
1556 data->in_ext[i] =
1557 ((val >> (i * 2)) & 0x03) << 2;
1558
1559 for (i = 0; i <= 2; i++)
1560 data->temp_ext[i] =
1561 (val >> ((i + 4) * 2)) & 0x0c;
1562 }
1563
1564 data->vid = lm85_read_value(client, LM85_REG_VID);
1565
1566 for (i = 0; i <= 3; ++i) {
1567 data->in[i] =
1568 lm85_read_value(client, LM85_REG_IN(i));
1569 data->fan[i] =
1570 lm85_read_value(client, LM85_REG_FAN(i));
1571 }
1572
1573 if (!data->has_vid5)
1574 data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
1575
1576 if (data->type == adt7468)
1577 data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
1578
1579 for (i = 0; i <= 2; ++i) {
1580 data->temp[i] =
1581 lm85_read_value(client, LM85_REG_TEMP(i));
1582 data->pwm[i] =
1583 lm85_read_value(client, LM85_REG_PWM(i));
1584
1585 if (IS_ADT7468_OFF64(data))
1586 data->temp[i] -= 64;
1587 }
1588
1589 data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
1590
1591 if (data->type == emc6d100) {
1592 /* Three more voltage sensors */
1593 for (i = 5; i <= 7; ++i) {
1594 data->in[i] = lm85_read_value(client,
1595 EMC6D100_REG_IN(i));
1596 }
1597 /* More alarm bits */
1598 data->alarms |= lm85_read_value(client,
1599 EMC6D100_REG_ALARM3) << 16;
1600 } else if (data->type == emc6d102 || data->type == emc6d103 ||
1601 data->type == emc6d103s) {
1602 /*
1603 * Have to read LSB bits after the MSB ones because
1604 * the reading of the MSB bits has frozen the
1605 * LSBs (backward from the ADM1027).
1606 */
1607 int ext1 = lm85_read_value(client,
1608 EMC6D102_REG_EXTEND_ADC1);
1609 int ext2 = lm85_read_value(client,
1610 EMC6D102_REG_EXTEND_ADC2);
1611 int ext3 = lm85_read_value(client,
1612 EMC6D102_REG_EXTEND_ADC3);
1613 int ext4 = lm85_read_value(client,
1614 EMC6D102_REG_EXTEND_ADC4);
1615 data->in_ext[0] = ext3 & 0x0f;
1616 data->in_ext[1] = ext4 & 0x0f;
1617 data->in_ext[2] = ext4 >> 4;
1618 data->in_ext[3] = ext3 >> 4;
1619 data->in_ext[4] = ext2 >> 4;
1620
1621 data->temp_ext[0] = ext1 & 0x0f;
1622 data->temp_ext[1] = ext2 & 0x0f;
1623 data->temp_ext[2] = ext1 >> 4;
1624 }
1625
1626 data->last_reading = jiffies;
1627 } /* last_reading */
1628
1629 if (!data->valid ||
1630 time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
1631 /* Things that don't change often */
1632 dev_dbg(&client->dev, "Reading config values\n");
1633
1634 for (i = 0; i <= 3; ++i) {
1635 data->in_min[i] =
1636 lm85_read_value(client, LM85_REG_IN_MIN(i));
1637 data->in_max[i] =
1638 lm85_read_value(client, LM85_REG_IN_MAX(i));
1639 data->fan_min[i] =
1640 lm85_read_value(client, LM85_REG_FAN_MIN(i));
1641 }
1642
1643 if (!data->has_vid5) {
1644 data->in_min[4] = lm85_read_value(client,
1645 LM85_REG_IN_MIN(4));
1646 data->in_max[4] = lm85_read_value(client,
1647 LM85_REG_IN_MAX(4));
1648 }
1649
1650 if (data->type == emc6d100) {
1651 for (i = 5; i <= 7; ++i) {
1652 data->in_min[i] = lm85_read_value(client,
1653 EMC6D100_REG_IN_MIN(i));
1654 data->in_max[i] = lm85_read_value(client,
1655 EMC6D100_REG_IN_MAX(i));
1656 }
1657 }
1658
1659 for (i = 0; i <= 2; ++i) {
1660 int val;
1661
1662 data->temp_min[i] =
1663 lm85_read_value(client, LM85_REG_TEMP_MIN(i));
1664 data->temp_max[i] =
1665 lm85_read_value(client, LM85_REG_TEMP_MAX(i));
1666
1667 data->autofan[i].config =
1668 lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
1669 val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
1670 data->pwm_freq[i] = val & 0x07;
1671 data->zone[i].range = val >> 4;
1672 data->autofan[i].min_pwm =
1673 lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
1674 data->zone[i].limit =
1675 lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
1676 data->zone[i].critical =
1677 lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
1678
1679 if (IS_ADT7468_OFF64(data)) {
1680 data->temp_min[i] -= 64;
1681 data->temp_max[i] -= 64;
1682 data->zone[i].limit -= 64;
1683 data->zone[i].critical -= 64;
1684 }
1685 }
1686
1687 if (data->type != emc6d103s) {
1688 i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1689 data->autofan[0].min_off = (i & 0x20) != 0;
1690 data->autofan[1].min_off = (i & 0x40) != 0;
1691 data->autofan[2].min_off = (i & 0x80) != 0;
1692
1693 i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
1694 data->zone[0].hyst = i >> 4;
1695 data->zone[1].hyst = i & 0x0f;
1696
1697 i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
1698 data->zone[2].hyst = i >> 4;
1699 }
1700
1701 data->last_config = jiffies;
1702 } /* last_config */
1703
1704 data->valid = 1;
1705
1706 mutex_unlock(&data->update_lock);
1707
1708 return data;
1709}
1710
1711module_i2c_driver(lm85_driver);
1712
1713MODULE_LICENSE("GPL");
1714MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1715 "Margit Schubert-While <margitsw@t-online.de>, "
1716 "Justin Thiessen <jthiessen@penguincomputing.com>");
1717MODULE_DESCRIPTION("LM85-B, LM85-C driver");