Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *
  4 * Copyright (c) 2009, Microsoft Corporation.
  5 *
 
 
 
 
 
 
 
 
 
 
 
 
 
  6 * Authors:
  7 *   Haiyang Zhang <haiyangz@microsoft.com>
  8 *   Hank Janssen  <hjanssen@microsoft.com>
  9 *   K. Y. Srinivasan <kys@microsoft.com>
 
 10 */
 11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 12
 13#include <linux/kernel.h>
 14#include <linux/mm.h>
 15#include <linux/hyperv.h>
 16#include <linux/uio.h>
 17#include <linux/vmalloc.h>
 18#include <linux/slab.h>
 19#include <linux/prefetch.h>
 20#include <linux/io.h>
 21#include <asm/mshyperv.h>
 22
 23#include "hyperv_vmbus.h"
 24
 25#define VMBUS_PKT_TRAILER	8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 26
 27/*
 28 * When we write to the ring buffer, check if the host needs to
 29 * be signaled. Here is the details of this protocol:
 30 *
 31 *	1. The host guarantees that while it is draining the
 32 *	   ring buffer, it will set the interrupt_mask to
 33 *	   indicate it does not need to be interrupted when
 34 *	   new data is placed.
 35 *
 36 *	2. The host guarantees that it will completely drain
 37 *	   the ring buffer before exiting the read loop. Further,
 38 *	   once the ring buffer is empty, it will clear the
 39 *	   interrupt_mask and re-check to see if new data has
 40 *	   arrived.
 41 *
 42 * KYS: Oct. 30, 2016:
 43 * It looks like Windows hosts have logic to deal with DOS attacks that
 44 * can be triggered if it receives interrupts when it is not expecting
 45 * the interrupt. The host expects interrupts only when the ring
 46 * transitions from empty to non-empty (or full to non full on the guest
 47 * to host ring).
 48 * So, base the signaling decision solely on the ring state until the
 49 * host logic is fixed.
 50 */
 51
 52static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
 53{
 54	struct hv_ring_buffer_info *rbi = &channel->outbound;
 55
 56	virt_mb();
 57	if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
 58		return;
 59
 60	/* check interrupt_mask before read_index */
 61	virt_rmb();
 62	/*
 63	 * This is the only case we need to signal when the
 64	 * ring transitions from being empty to non-empty.
 65	 */
 66	if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
 67		++channel->intr_out_empty;
 68		vmbus_setevent(channel);
 69	}
 70}
 71
 72/* Get the next write location for the specified ring buffer. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 73static inline u32
 74hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
 75{
 76	u32 next = ring_info->ring_buffer->write_index;
 77
 78	return next;
 79}
 80
 81/* Set the next write location for the specified ring buffer. */
 
 
 
 
 
 82static inline void
 83hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
 84		     u32 next_write_location)
 85{
 86	ring_info->ring_buffer->write_index = next_write_location;
 87}
 88
 89/* Get the size of the ring buffer. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 90static inline u32
 91hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
 92{
 93	return ring_info->ring_datasize;
 94}
 95
 96/* Get the read and write indices as u64 of the specified ring buffer. */
 
 
 
 
 
 
 97static inline u64
 98hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
 99{
100	return (u64)ring_info->ring_buffer->write_index << 32;
101}
102
103/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104 * Helper routine to copy from source to ring buffer.
105 * Assume there is enough room. Handles wrap-around in dest case only!!
 
106 */
107static u32 hv_copyto_ringbuffer(
108	struct hv_ring_buffer_info	*ring_info,
109	u32				start_write_offset,
110	const void			*src,
111	u32				srclen)
112{
113	void *ring_buffer = hv_get_ring_buffer(ring_info);
114	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
 
115
116	memcpy(ring_buffer + start_write_offset, src, srclen);
 
 
 
 
 
 
117
118	start_write_offset += srclen;
119	if (start_write_offset >= ring_buffer_size)
120		start_write_offset -= ring_buffer_size;
121
122	return start_write_offset;
123}
124
125/*
126 *
127 * hv_get_ringbuffer_availbytes()
 
 
128 *
129 * Get number of bytes available to read and to write to
130 * for the specified ring buffer
131 */
132static void
133hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
134			     u32 *read, u32 *write)
135{
136	u32 read_loc, write_loc, dsize;
137
138	/* Capture the read/write indices before they changed */
139	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
140	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
141	dsize = rbi->ring_datasize;
142
143	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
144		read_loc - write_loc;
145	*read = dsize - *write;
146}
147
148/* Get various debug metrics for the specified ring buffer. */
149int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
150				struct hv_ring_buffer_debug_info *debug_info)
151{
152	u32 bytes_avail_towrite;
153	u32 bytes_avail_toread;
154
155	mutex_lock(&ring_info->ring_buffer_mutex);
156
157	if (!ring_info->ring_buffer) {
158		mutex_unlock(&ring_info->ring_buffer_mutex);
159		return -EINVAL;
 
 
 
 
 
 
 
 
160	}
161
162	hv_get_ringbuffer_availbytes(ring_info,
163				     &bytes_avail_toread,
164				     &bytes_avail_towrite);
165	debug_info->bytes_avail_toread = bytes_avail_toread;
166	debug_info->bytes_avail_towrite = bytes_avail_towrite;
167	debug_info->current_read_index = ring_info->ring_buffer->read_index;
168	debug_info->current_write_index = ring_info->ring_buffer->write_index;
169	debug_info->current_interrupt_mask
170		= ring_info->ring_buffer->interrupt_mask;
171	mutex_unlock(&ring_info->ring_buffer_mutex);
172
173	return 0;
174}
175EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
176
177/* Initialize a channel's ring buffer info mutex locks */
178void hv_ringbuffer_pre_init(struct vmbus_channel *channel)
179{
180	mutex_init(&channel->inbound.ring_buffer_mutex);
181	mutex_init(&channel->outbound.ring_buffer_mutex);
182}
183
184/* Initialize the ring buffer. */
 
 
 
 
 
 
185int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
186		       struct page *pages, u32 page_cnt, u32 max_pkt_size)
187{
188	struct page **pages_wraparound;
189	int i;
190
191	BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
192
193	/*
194	 * First page holds struct hv_ring_buffer, do wraparound mapping for
195	 * the rest.
196	 */
197	pages_wraparound = kcalloc(page_cnt * 2 - 1,
198				   sizeof(struct page *),
199				   GFP_KERNEL);
200	if (!pages_wraparound)
201		return -ENOMEM;
202
203	pages_wraparound[0] = pages;
204	for (i = 0; i < 2 * (page_cnt - 1); i++)
205		pages_wraparound[i + 1] =
206			&pages[i % (page_cnt - 1) + 1];
207
208	ring_info->ring_buffer = (struct hv_ring_buffer *)
209		vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP,
210			pgprot_decrypted(PAGE_KERNEL));
211
212	kfree(pages_wraparound);
213	if (!ring_info->ring_buffer)
214		return -ENOMEM;
215
216	/*
217	 * Ensure the header page is zero'ed since
218	 * encryption status may have changed.
219	 */
220	memset(ring_info->ring_buffer, 0, HV_HYP_PAGE_SIZE);
221
 
222	ring_info->ring_buffer->read_index =
223		ring_info->ring_buffer->write_index = 0;
224
225	/* Set the feature bit for enabling flow control. */
226	ring_info->ring_buffer->feature_bits.value = 1;
227
228	ring_info->ring_size = page_cnt << PAGE_SHIFT;
229	ring_info->ring_size_div10_reciprocal =
230		reciprocal_value(ring_info->ring_size / 10);
231	ring_info->ring_datasize = ring_info->ring_size -
232		sizeof(struct hv_ring_buffer);
233	ring_info->priv_read_index = 0;
234
235	/* Initialize buffer that holds copies of incoming packets */
236	if (max_pkt_size) {
237		ring_info->pkt_buffer = kzalloc(max_pkt_size, GFP_KERNEL);
238		if (!ring_info->pkt_buffer)
239			return -ENOMEM;
240		ring_info->pkt_buffer_size = max_pkt_size;
241	}
242
243	spin_lock_init(&ring_info->ring_lock);
244
245	return 0;
246}
247
248/* Cleanup the ring buffer. */
 
 
 
 
 
 
249void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
250{
251	mutex_lock(&ring_info->ring_buffer_mutex);
252	vunmap(ring_info->ring_buffer);
253	ring_info->ring_buffer = NULL;
254	mutex_unlock(&ring_info->ring_buffer_mutex);
255
256	kfree(ring_info->pkt_buffer);
257	ring_info->pkt_buffer = NULL;
258	ring_info->pkt_buffer_size = 0;
259}
260
261/*
262 * Check if the ring buffer spinlock is available to take or not; used on
263 * atomic contexts, like panic path (see the Hyper-V framebuffer driver).
 
 
 
264 */
265
266bool hv_ringbuffer_spinlock_busy(struct vmbus_channel *channel)
267{
268	struct hv_ring_buffer_info *rinfo = &channel->outbound;
269
270	return spin_is_locked(&rinfo->ring_lock);
271}
272EXPORT_SYMBOL_GPL(hv_ringbuffer_spinlock_busy);
273
274/* Write to the ring buffer. */
275int hv_ringbuffer_write(struct vmbus_channel *channel,
276			const struct kvec *kv_list, u32 kv_count,
277			u64 requestid, u64 *trans_id)
278{
279	int i;
280	u32 bytes_avail_towrite;
281	u32 totalbytes_towrite = sizeof(u64);
 
 
282	u32 next_write_location;
283	u32 old_write;
284	u64 prev_indices;
285	unsigned long flags;
286	struct hv_ring_buffer_info *outring_info = &channel->outbound;
287	struct vmpacket_descriptor *desc = kv_list[0].iov_base;
288	u64 __trans_id, rqst_id = VMBUS_NO_RQSTOR;
289
290	if (channel->rescind)
291		return -ENODEV;
292
293	for (i = 0; i < kv_count; i++)
294		totalbytes_towrite += kv_list[i].iov_len;
295
296	spin_lock_irqsave(&outring_info->ring_lock, flags);
297
298	bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
299
300	/*
301	 * If there is only room for the packet, assume it is full.
302	 * Otherwise, the next time around, we think the ring buffer
303	 * is empty since the read index == write index.
304	 */
305	if (bytes_avail_towrite <= totalbytes_towrite) {
306		++channel->out_full_total;
307
308		if (!channel->out_full_flag) {
309			++channel->out_full_first;
310			channel->out_full_flag = true;
311		}
312
 
 
 
 
313		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
314		return -EAGAIN;
315	}
316
317	channel->out_full_flag = false;
318
319	/* Write to the ring buffer */
320	next_write_location = hv_get_next_write_location(outring_info);
321
322	old_write = next_write_location;
323
324	for (i = 0; i < kv_count; i++) {
325		next_write_location = hv_copyto_ringbuffer(outring_info,
326						     next_write_location,
327						     kv_list[i].iov_base,
328						     kv_list[i].iov_len);
329	}
330
331	/*
332	 * Allocate the request ID after the data has been copied into the
333	 * ring buffer.  Once this request ID is allocated, the completion
334	 * path could find the data and free it.
335	 */
336
337	if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) {
338		if (channel->next_request_id_callback != NULL) {
339			rqst_id = channel->next_request_id_callback(channel, requestid);
340			if (rqst_id == VMBUS_RQST_ERROR) {
341				spin_unlock_irqrestore(&outring_info->ring_lock, flags);
342				return -EAGAIN;
343			}
344		}
345	}
346	desc = hv_get_ring_buffer(outring_info) + old_write;
347	__trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id;
348	/*
349	 * Ensure the compiler doesn't generate code that reads the value of
350	 * the transaction ID from the ring buffer, which is shared with the
351	 * Hyper-V host and subject to being changed at any time.
352	 */
353	WRITE_ONCE(desc->trans_id, __trans_id);
354	if (trans_id)
355		*trans_id = __trans_id;
356
357	/* Set previous packet start */
358	prev_indices = hv_get_ring_bufferindices(outring_info);
359
360	next_write_location = hv_copyto_ringbuffer(outring_info,
361					     next_write_location,
362					     &prev_indices,
363					     sizeof(u64));
364
365	/* Issue a full memory barrier before updating the write index */
366	virt_mb();
367
368	/* Now, update the write location */
369	hv_set_next_write_location(outring_info, next_write_location);
370
371
372	spin_unlock_irqrestore(&outring_info->ring_lock, flags);
373
374	hv_signal_on_write(old_write, channel);
375
376	if (channel->rescind) {
377		if (rqst_id != VMBUS_NO_RQSTOR) {
378			/* Reclaim request ID to avoid leak of IDs */
379			if (channel->request_addr_callback != NULL)
380				channel->request_addr_callback(channel, rqst_id);
381		}
382		return -ENODEV;
383	}
384
385	return 0;
386}
387
388int hv_ringbuffer_read(struct vmbus_channel *channel,
389		       void *buffer, u32 buflen, u32 *buffer_actual_len,
390		       u64 *requestid, bool raw)
391{
392	struct vmpacket_descriptor *desc;
393	u32 packetlen, offset;
394
395	if (unlikely(buflen == 0))
396		return -EINVAL;
397
398	*buffer_actual_len = 0;
399	*requestid = 0;
400
401	/* Make sure there is something to read */
402	desc = hv_pkt_iter_first(channel);
403	if (desc == NULL) {
404		/*
405		 * No error is set when there is even no header, drivers are
406		 * supposed to analyze buffer_actual_len.
407		 */
408		return 0;
409	}
410
411	offset = raw ? 0 : (desc->offset8 << 3);
412	packetlen = (desc->len8 << 3) - offset;
413	*buffer_actual_len = packetlen;
414	*requestid = desc->trans_id;
415
416	if (unlikely(packetlen > buflen))
417		return -ENOBUFS;
418
419	/* since ring is double mapped, only one copy is necessary */
420	memcpy(buffer, (const char *)desc + offset, packetlen);
421
422	/* Advance ring index to next packet descriptor */
423	__hv_pkt_iter_next(channel, desc);
424
425	/* Notify host of update */
426	hv_pkt_iter_close(channel);
427
428	return 0;
429}
430
431/*
432 * Determine number of bytes available in ring buffer after
433 * the current iterator (priv_read_index) location.
434 *
435 * This is similar to hv_get_bytes_to_read but with private
436 * read index instead.
437 */
438static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
439{
440	u32 priv_read_loc = rbi->priv_read_index;
441	u32 write_loc;
442
443	/*
444	 * The Hyper-V host writes the packet data, then uses
445	 * store_release() to update the write_index.  Use load_acquire()
446	 * here to prevent loads of the packet data from being re-ordered
447	 * before the read of the write_index and potentially getting
448	 * stale data.
449	 */
450	write_loc = virt_load_acquire(&rbi->ring_buffer->write_index);
451
452	if (write_loc >= priv_read_loc)
453		return write_loc - priv_read_loc;
454	else
455		return (rbi->ring_datasize - priv_read_loc) + write_loc;
456}
457
458/*
459 * Get first vmbus packet from ring buffer after read_index
460 *
461 * If ring buffer is empty, returns NULL and no other action needed.
462 */
463struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
 
464{
465	struct hv_ring_buffer_info *rbi = &channel->inbound;
466	struct vmpacket_descriptor *desc, *desc_copy;
467	u32 bytes_avail, pkt_len, pkt_offset;
 
468
469	hv_debug_delay_test(channel, MESSAGE_DELAY);
470
471	bytes_avail = hv_pkt_iter_avail(rbi);
472	if (bytes_avail < sizeof(struct vmpacket_descriptor))
473		return NULL;
474	bytes_avail = min(rbi->pkt_buffer_size, bytes_avail);
475
476	desc = (struct vmpacket_descriptor *)(hv_get_ring_buffer(rbi) + rbi->priv_read_index);
 
477
478	/*
479	 * Ensure the compiler does not use references to incoming Hyper-V values (which
480	 * could change at any moment) when reading local variables later in the code
481	 */
482	pkt_len = READ_ONCE(desc->len8) << 3;
483	pkt_offset = READ_ONCE(desc->offset8) << 3;
484
485	/*
486	 * If pkt_len is invalid, set it to the smaller of hv_pkt_iter_avail() and
487	 * rbi->pkt_buffer_size
488	 */
489	if (pkt_len < sizeof(struct vmpacket_descriptor) || pkt_len > bytes_avail)
490		pkt_len = bytes_avail;
491
492	/*
493	 * If pkt_offset is invalid, arbitrarily set it to
494	 * the size of vmpacket_descriptor
495	 */
496	if (pkt_offset < sizeof(struct vmpacket_descriptor) || pkt_offset > pkt_len)
497		pkt_offset = sizeof(struct vmpacket_descriptor);
498
499	/* Copy the Hyper-V packet out of the ring buffer */
500	desc_copy = (struct vmpacket_descriptor *)rbi->pkt_buffer;
501	memcpy(desc_copy, desc, pkt_len);
 
502
503	/*
504	 * Hyper-V could still change len8 and offset8 after the earlier read.
505	 * Ensure that desc_copy has legal values for len8 and offset8 that
506	 * are consistent with the copy we just made
507	 */
508	desc_copy->len8 = pkt_len >> 3;
509	desc_copy->offset8 = pkt_offset >> 3;
510
511	return desc_copy;
512}
513EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
514
515/*
516 * Get next vmbus packet from ring buffer.
517 *
518 * Advances the current location (priv_read_index) and checks for more
519 * data. If the end of the ring buffer is reached, then return NULL.
 
 
520 */
521struct vmpacket_descriptor *
522__hv_pkt_iter_next(struct vmbus_channel *channel,
523		   const struct vmpacket_descriptor *desc)
524{
525	struct hv_ring_buffer_info *rbi = &channel->inbound;
526	u32 packetlen = desc->len8 << 3;
527	u32 dsize = rbi->ring_datasize;
 
 
 
528
529	hv_debug_delay_test(channel, MESSAGE_DELAY);
530	/* bump offset to next potential packet */
531	rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
532	if (rbi->priv_read_index >= dsize)
533		rbi->priv_read_index -= dsize;
534
535	/* more data? */
536	return hv_pkt_iter_first(channel);
537}
538EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
539
540/* How many bytes were read in this iterator cycle */
541static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
542					u32 start_read_index)
543{
544	if (rbi->priv_read_index >= start_read_index)
545		return rbi->priv_read_index - start_read_index;
546	else
547		return rbi->ring_datasize - start_read_index +
548			rbi->priv_read_index;
549}
550
551/*
552 * Update host ring buffer after iterating over packets. If the host has
553 * stopped queuing new entries because it found the ring buffer full, and
554 * sufficient space is being freed up, signal the host. But be careful to
555 * only signal the host when necessary, both for performance reasons and
556 * because Hyper-V protects itself by throttling guests that signal
557 * inappropriately.
558 *
559 * Determining when to signal is tricky. There are three key data inputs
560 * that must be handled in this order to avoid race conditions:
561 *
562 * 1. Update the read_index
563 * 2. Read the pending_send_sz
564 * 3. Read the current write_index
565 *
566 * The interrupt_mask is not used to determine when to signal. The
567 * interrupt_mask is used only on the guest->host ring buffer when
568 * sending requests to the host. The host does not use it on the host->
569 * guest ring buffer to indicate whether it should be signaled.
570 */
571void hv_pkt_iter_close(struct vmbus_channel *channel)
572{
573	struct hv_ring_buffer_info *rbi = &channel->inbound;
574	u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
575
576	/*
577	 * Make sure all reads are done before we update the read index since
578	 * the writer may start writing to the read area once the read index
579	 * is updated.
580	 */
581	virt_rmb();
582	start_read_index = rbi->ring_buffer->read_index;
583	rbi->ring_buffer->read_index = rbi->priv_read_index;
584
585	/*
586	 * Older versions of Hyper-V (before WS2102 and Win8) do not
587	 * implement pending_send_sz and simply poll if the host->guest
588	 * ring buffer is full.  No signaling is needed or expected.
589	 */
590	if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
591		return;
592
593	/*
594	 * Issue a full memory barrier before making the signaling decision.
595	 * If reading pending_send_sz were to be reordered and happen
596	 * before we commit the new read_index, a race could occur.  If the
597	 * host were to set the pending_send_sz after we have sampled
598	 * pending_send_sz, and the ring buffer blocks before we commit the
599	 * read index, we could miss sending the interrupt. Issue a full
600	 * memory barrier to address this.
601	 */
602	virt_mb();
603
604	/*
605	 * If the pending_send_sz is zero, then the ring buffer is not
606	 * blocked and there is no need to signal.  This is far by the
607	 * most common case, so exit quickly for best performance.
608	 */
609	pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
610	if (!pending_sz)
611		return;
 
 
 
 
 
 
612
613	/*
614	 * Ensure the read of write_index in hv_get_bytes_to_write()
615	 * happens after the read of pending_send_sz.
616	 */
617	virt_rmb();
618	curr_write_sz = hv_get_bytes_to_write(rbi);
619	bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
620
621	/*
622	 * We want to signal the host only if we're transitioning
623	 * from a "not enough free space" state to a "enough free
624	 * space" state.  For example, it's possible that this function
625	 * could run and free up enough space to signal the host, and then
626	 * run again and free up additional space before the host has a
627	 * chance to clear the pending_send_sz.  The 2nd invocation would
628	 * be a null transition from "enough free space" to "enough free
629	 * space", which doesn't warrant a signal.
630	 *
631	 * Exactly filling the ring buffer is treated as "not enough
632	 * space". The ring buffer always must have at least one byte
633	 * empty so the empty and full conditions are distinguishable.
634	 * hv_get_bytes_to_write() doesn't fully tell the truth in
635	 * this regard.
636	 *
637	 * So first check if we were in the "enough free space" state
638	 * before we began the iteration. If so, the host was not
639	 * blocked, and there's no need to signal.
640	 */
641	if (curr_write_sz - bytes_read > pending_sz)
642		return;
643
644	/*
645	 * Similarly, if the new state is "not enough space", then
646	 * there's no need to signal.
647	 */
648	if (curr_write_sz <= pending_sz)
649		return;
650
651	++channel->intr_in_full;
652	vmbus_setevent(channel);
653}
654EXPORT_SYMBOL_GPL(hv_pkt_iter_close);
v3.15
 
  1/*
  2 *
  3 * Copyright (c) 2009, Microsoft Corporation.
  4 *
  5 * This program is free software; you can redistribute it and/or modify it
  6 * under the terms and conditions of the GNU General Public License,
  7 * version 2, as published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope it will be useful, but WITHOUT
 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 12 * more details.
 13 *
 14 * You should have received a copy of the GNU General Public License along with
 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 16 * Place - Suite 330, Boston, MA 02111-1307 USA.
 17 *
 18 * Authors:
 19 *   Haiyang Zhang <haiyangz@microsoft.com>
 20 *   Hank Janssen  <hjanssen@microsoft.com>
 21 *   K. Y. Srinivasan <kys@microsoft.com>
 22 *
 23 */
 24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 25
 26#include <linux/kernel.h>
 27#include <linux/mm.h>
 28#include <linux/hyperv.h>
 29#include <linux/uio.h>
 
 
 
 
 
 30
 31#include "hyperv_vmbus.h"
 32
 33void hv_begin_read(struct hv_ring_buffer_info *rbi)
 34{
 35	rbi->ring_buffer->interrupt_mask = 1;
 36	mb();
 37}
 38
 39u32 hv_end_read(struct hv_ring_buffer_info *rbi)
 40{
 41	u32 read;
 42	u32 write;
 43
 44	rbi->ring_buffer->interrupt_mask = 0;
 45	mb();
 46
 47	/*
 48	 * Now check to see if the ring buffer is still empty.
 49	 * If it is not, we raced and we need to process new
 50	 * incoming messages.
 51	 */
 52	hv_get_ringbuffer_availbytes(rbi, &read, &write);
 53
 54	return read;
 55}
 56
 57/*
 58 * When we write to the ring buffer, check if the host needs to
 59 * be signaled. Here is the details of this protocol:
 60 *
 61 *	1. The host guarantees that while it is draining the
 62 *	   ring buffer, it will set the interrupt_mask to
 63 *	   indicate it does not need to be interrupted when
 64 *	   new data is placed.
 65 *
 66 *	2. The host guarantees that it will completely drain
 67 *	   the ring buffer before exiting the read loop. Further,
 68 *	   once the ring buffer is empty, it will clear the
 69 *	   interrupt_mask and re-check to see if new data has
 70 *	   arrived.
 71 */
 72
 73static bool hv_need_to_signal(u32 old_write, struct hv_ring_buffer_info *rbi)
 74{
 75	mb();
 76	if (rbi->ring_buffer->interrupt_mask)
 77		return false;
 
 
 
 
 
 
 
 
 
 
 
 78
 79	/* check interrupt_mask before read_index */
 80	rmb();
 81	/*
 82	 * This is the only case we need to signal when the
 83	 * ring transitions from being empty to non-empty.
 84	 */
 85	if (old_write == rbi->ring_buffer->read_index)
 86		return true;
 87
 88	return false;
 89}
 90
 91/*
 92 * To optimize the flow management on the send-side,
 93 * when the sender is blocked because of lack of
 94 * sufficient space in the ring buffer, potential the
 95 * consumer of the ring buffer can signal the producer.
 96 * This is controlled by the following parameters:
 97 *
 98 * 1. pending_send_sz: This is the size in bytes that the
 99 *    producer is trying to send.
100 * 2. The feature bit feat_pending_send_sz set to indicate if
101 *    the consumer of the ring will signal when the ring
102 *    state transitions from being full to a state where
103 *    there is room for the producer to send the pending packet.
104 */
105
106static bool hv_need_to_signal_on_read(u32 old_rd,
107					 struct hv_ring_buffer_info *rbi)
108{
109	u32 prev_write_sz;
110	u32 cur_write_sz;
111	u32 r_size;
112	u32 write_loc = rbi->ring_buffer->write_index;
113	u32 read_loc = rbi->ring_buffer->read_index;
114	u32 pending_sz = rbi->ring_buffer->pending_send_sz;
115
116	/*
117	 * If the other end is not blocked on write don't bother.
118	 */
119	if (pending_sz == 0)
120		return false;
121
122	r_size = rbi->ring_datasize;
123	cur_write_sz = write_loc >= read_loc ? r_size - (write_loc - read_loc) :
124			read_loc - write_loc;
125
126	prev_write_sz = write_loc >= old_rd ? r_size - (write_loc - old_rd) :
127			old_rd - write_loc;
128
129
130	if ((prev_write_sz < pending_sz) && (cur_write_sz >= pending_sz))
131		return true;
132
133	return false;
134}
135
136/*
137 * hv_get_next_write_location()
138 *
139 * Get the next write location for the specified ring buffer
140 *
141 */
142static inline u32
143hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
144{
145	u32 next = ring_info->ring_buffer->write_index;
146
147	return next;
148}
149
150/*
151 * hv_set_next_write_location()
152 *
153 * Set the next write location for the specified ring buffer
154 *
155 */
156static inline void
157hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
158		     u32 next_write_location)
159{
160	ring_info->ring_buffer->write_index = next_write_location;
161}
162
163/*
164 * hv_get_next_read_location()
165 *
166 * Get the next read location for the specified ring buffer
167 */
168static inline u32
169hv_get_next_read_location(struct hv_ring_buffer_info *ring_info)
170{
171	u32 next = ring_info->ring_buffer->read_index;
172
173	return next;
174}
175
176/*
177 * hv_get_next_readlocation_withoffset()
178 *
179 * Get the next read location + offset for the specified ring buffer.
180 * This allows the caller to skip
181 */
182static inline u32
183hv_get_next_readlocation_withoffset(struct hv_ring_buffer_info *ring_info,
184				 u32 offset)
185{
186	u32 next = ring_info->ring_buffer->read_index;
187
188	next += offset;
189	next %= ring_info->ring_datasize;
190
191	return next;
192}
193
194/*
195 *
196 * hv_set_next_read_location()
197 *
198 * Set the next read location for the specified ring buffer
199 *
200 */
201static inline void
202hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
203		    u32 next_read_location)
204{
205	ring_info->ring_buffer->read_index = next_read_location;
206}
207
208
209/*
210 *
211 * hv_get_ring_buffer()
212 *
213 * Get the start of the ring buffer
214 */
215static inline void *
216hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info)
217{
218	return (void *)ring_info->ring_buffer->buffer;
219}
220
221
222/*
223 *
224 * hv_get_ring_buffersize()
225 *
226 * Get the size of the ring buffer
227 */
228static inline u32
229hv_get_ring_buffersize(struct hv_ring_buffer_info *ring_info)
230{
231	return ring_info->ring_datasize;
232}
233
234/*
235 *
236 * hv_get_ring_bufferindices()
237 *
238 * Get the read and write indices as u64 of the specified ring buffer
239 *
240 */
241static inline u64
242hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
243{
244	return (u64)ring_info->ring_buffer->write_index << 32;
245}
246
247/*
248 *
249 * hv_copyfrom_ringbuffer()
250 *
251 * Helper routine to copy to source from ring buffer.
252 * Assume there is enough room. Handles wrap-around in src case only!!
253 *
254 */
255static u32 hv_copyfrom_ringbuffer(
256	struct hv_ring_buffer_info	*ring_info,
257	void				*dest,
258	u32				destlen,
259	u32				start_read_offset)
260{
261	void *ring_buffer = hv_get_ring_buffer(ring_info);
262	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
263
264	u32 frag_len;
265
266	/* wrap-around detected at the src */
267	if (destlen > ring_buffer_size - start_read_offset) {
268		frag_len = ring_buffer_size - start_read_offset;
269
270		memcpy(dest, ring_buffer + start_read_offset, frag_len);
271		memcpy(dest + frag_len, ring_buffer, destlen - frag_len);
272	} else
273
274		memcpy(dest, ring_buffer + start_read_offset, destlen);
275
276
277	start_read_offset += destlen;
278	start_read_offset %= ring_buffer_size;
279
280	return start_read_offset;
281}
282
283
284/*
285 *
286 * hv_copyto_ringbuffer()
287 *
288 * Helper routine to copy from source to ring buffer.
289 * Assume there is enough room. Handles wrap-around in dest case only!!
290 *
291 */
292static u32 hv_copyto_ringbuffer(
293	struct hv_ring_buffer_info	*ring_info,
294	u32				start_write_offset,
295	void				*src,
296	u32				srclen)
297{
298	void *ring_buffer = hv_get_ring_buffer(ring_info);
299	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
300	u32 frag_len;
301
302	/* wrap-around detected! */
303	if (srclen > ring_buffer_size - start_write_offset) {
304		frag_len = ring_buffer_size - start_write_offset;
305		memcpy(ring_buffer + start_write_offset, src, frag_len);
306		memcpy(ring_buffer, src + frag_len, srclen - frag_len);
307	} else
308		memcpy(ring_buffer + start_write_offset, src, srclen);
309
310	start_write_offset += srclen;
311	start_write_offset %= ring_buffer_size;
 
312
313	return start_write_offset;
314}
315
316/*
317 *
318 * hv_ringbuffer_get_debuginfo()
319 *
320 * Get various debug metrics for the specified ring buffer
321 *
 
 
322 */
323void hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
324			    struct hv_ring_buffer_debug_info *debug_info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325{
326	u32 bytes_avail_towrite;
327	u32 bytes_avail_toread;
328
329	if (ring_info->ring_buffer) {
330		hv_get_ringbuffer_availbytes(ring_info,
331					&bytes_avail_toread,
332					&bytes_avail_towrite);
333
334		debug_info->bytes_avail_toread = bytes_avail_toread;
335		debug_info->bytes_avail_towrite = bytes_avail_towrite;
336		debug_info->current_read_index =
337			ring_info->ring_buffer->read_index;
338		debug_info->current_write_index =
339			ring_info->ring_buffer->write_index;
340		debug_info->current_interrupt_mask =
341			ring_info->ring_buffer->interrupt_mask;
342	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
343}
344
345/*
346 *
347 * hv_ringbuffer_init()
348 *
349 *Initialize the ring buffer
350 *
351 */
352int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
353		   void *buffer, u32 buflen)
354{
355	if (sizeof(struct hv_ring_buffer) != PAGE_SIZE)
356		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
357
358	memset(ring_info, 0, sizeof(struct hv_ring_buffer_info));
 
 
 
 
359
360	ring_info->ring_buffer = (struct hv_ring_buffer *)buffer;
361	ring_info->ring_buffer->read_index =
362		ring_info->ring_buffer->write_index = 0;
363
364	ring_info->ring_size = buflen;
365	ring_info->ring_datasize = buflen - sizeof(struct hv_ring_buffer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
366
367	spin_lock_init(&ring_info->ring_lock);
368
369	return 0;
370}
371
372/*
373 *
374 * hv_ringbuffer_cleanup()
375 *
376 * Cleanup the ring buffer
377 *
378 */
379void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
380{
 
 
 
 
 
 
 
 
381}
382
383/*
384 *
385 * hv_ringbuffer_write()
386 *
387 * Write to the ring buffer
388 *
389 */
390int hv_ringbuffer_write(struct hv_ring_buffer_info *outring_info,
391		    struct kvec *kv_list, u32 kv_count, bool *signal)
392{
393	int i = 0;
 
 
 
 
 
 
 
 
 
 
 
394	u32 bytes_avail_towrite;
395	u32 bytes_avail_toread;
396	u32 totalbytes_towrite = 0;
397
398	u32 next_write_location;
399	u32 old_write;
400	u64 prev_indices = 0;
401	unsigned long flags;
 
 
 
 
 
 
402
403	for (i = 0; i < kv_count; i++)
404		totalbytes_towrite += kv_list[i].iov_len;
405
406	totalbytes_towrite += sizeof(u64);
407
408	spin_lock_irqsave(&outring_info->ring_lock, flags);
409
410	hv_get_ringbuffer_availbytes(outring_info,
411				&bytes_avail_toread,
412				&bytes_avail_towrite);
 
 
 
 
413
 
 
 
 
414
415	/* If there is only room for the packet, assume it is full. */
416	/* Otherwise, the next time around, we think the ring buffer */
417	/* is empty since the read index == write index */
418	if (bytes_avail_towrite <= totalbytes_towrite) {
419		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
420		return -EAGAIN;
421	}
422
 
 
423	/* Write to the ring buffer */
424	next_write_location = hv_get_next_write_location(outring_info);
425
426	old_write = next_write_location;
427
428	for (i = 0; i < kv_count; i++) {
429		next_write_location = hv_copyto_ringbuffer(outring_info,
430						     next_write_location,
431						     kv_list[i].iov_base,
432						     kv_list[i].iov_len);
433	}
434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
435	/* Set previous packet start */
436	prev_indices = hv_get_ring_bufferindices(outring_info);
437
438	next_write_location = hv_copyto_ringbuffer(outring_info,
439					     next_write_location,
440					     &prev_indices,
441					     sizeof(u64));
442
443	/* Issue a full memory barrier before updating the write index */
444	mb();
445
446	/* Now, update the write location */
447	hv_set_next_write_location(outring_info, next_write_location);
448
449
450	spin_unlock_irqrestore(&outring_info->ring_lock, flags);
451
452	*signal = hv_need_to_signal(old_write, outring_info);
 
 
 
 
 
 
 
 
 
 
453	return 0;
454}
455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
456
457/*
 
 
458 *
459 * hv_ringbuffer_peek()
460 *
461 * Read without advancing the read index
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
462 *
 
463 */
464int hv_ringbuffer_peek(struct hv_ring_buffer_info *Inring_info,
465		   void *Buffer, u32 buflen)
466{
467	u32 bytes_avail_towrite;
468	u32 bytes_avail_toread;
469	u32 next_read_location = 0;
470	unsigned long flags;
471
472	spin_lock_irqsave(&Inring_info->ring_lock, flags);
473
474	hv_get_ringbuffer_availbytes(Inring_info,
475				&bytes_avail_toread,
476				&bytes_avail_towrite);
 
477
478	/* Make sure there is something to read */
479	if (bytes_avail_toread < buflen) {
480
481		spin_unlock_irqrestore(&Inring_info->ring_lock, flags);
 
 
 
 
 
482
483		return -EAGAIN;
484	}
 
 
 
 
485
486	/* Convert to byte offset */
487	next_read_location = hv_get_next_read_location(Inring_info);
 
 
 
 
488
489	next_read_location = hv_copyfrom_ringbuffer(Inring_info,
490						Buffer,
491						buflen,
492						next_read_location);
493
494	spin_unlock_irqrestore(&Inring_info->ring_lock, flags);
 
 
 
 
 
 
495
496	return 0;
497}
498
499
500/*
 
501 *
502 * hv_ringbuffer_read()
503 *
504 * Read and advance the read index
505 *
506 */
507int hv_ringbuffer_read(struct hv_ring_buffer_info *inring_info, void *buffer,
508		   u32 buflen, u32 offset, bool *signal)
 
509{
510	u32 bytes_avail_towrite;
511	u32 bytes_avail_toread;
512	u32 next_read_location = 0;
513	u64 prev_indices = 0;
514	unsigned long flags;
515	u32 old_read;
516
517	if (buflen <= 0)
518		return -EINVAL;
 
 
 
519
520	spin_lock_irqsave(&inring_info->ring_lock, flags);
 
 
 
521
522	hv_get_ringbuffer_availbytes(inring_info,
523				&bytes_avail_toread,
524				&bytes_avail_towrite);
 
 
 
 
 
 
 
525
526	old_read = bytes_avail_toread;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
527
528	/* Make sure there is something to read */
529	if (bytes_avail_toread < buflen) {
530		spin_unlock_irqrestore(&inring_info->ring_lock, flags);
 
 
 
 
 
531
532		return -EAGAIN;
533	}
 
 
 
 
 
534
535	next_read_location =
536		hv_get_next_readlocation_withoffset(inring_info, offset);
 
 
 
 
 
 
 
 
537
538	next_read_location = hv_copyfrom_ringbuffer(inring_info,
539						buffer,
540						buflen,
541						next_read_location);
542
543	next_read_location = hv_copyfrom_ringbuffer(inring_info,
544						&prev_indices,
545						sizeof(u64),
546						next_read_location);
547
548	/* Make sure all reads are done before we update the read index since */
549	/* the writer may start writing to the read area once the read index */
550	/*is updated */
551	mb();
552
553	/* Update the read index */
554	hv_set_next_read_location(inring_info, next_read_location);
 
 
 
 
 
555
556	spin_unlock_irqrestore(&inring_info->ring_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
557
558	*signal = hv_need_to_signal_on_read(old_read, inring_info);
 
 
 
 
 
559
560	return 0;
 
561}