Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * S390 kdump implementation
  4 *
  5 * Copyright IBM Corp. 2011
  6 * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
  7 */
  8
  9#include <linux/crash_dump.h>
 10#include <asm/lowcore.h>
 11#include <linux/kernel.h>
 12#include <linux/init.h>
 13#include <linux/mm.h>
 14#include <linux/gfp.h>
 15#include <linux/slab.h>
 16#include <linux/memblock.h>
 17#include <linux/elf.h>
 18#include <linux/uio.h>
 19#include <asm/asm-offsets.h>
 20#include <asm/os_info.h>
 21#include <asm/elf.h>
 22#include <asm/ipl.h>
 23#include <asm/sclp.h>
 24#include <asm/maccess.h>
 25#include <asm/fpu/api.h>
 26
 27#define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
 28#define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
 29#define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
 30
 31static struct memblock_region oldmem_region;
 32
 33static struct memblock_type oldmem_type = {
 34	.cnt = 1,
 35	.max = 1,
 36	.total_size = 0,
 37	.regions = &oldmem_region,
 38	.name = "oldmem",
 39};
 40
 41struct save_area {
 42	struct list_head list;
 43	u64 psw[2];
 44	u64 ctrs[16];
 45	u64 gprs[16];
 46	u32 acrs[16];
 47	u64 fprs[16];
 48	u32 fpc;
 49	u32 prefix;
 50	u32 todpreg;
 51	u64 timer;
 52	u64 todcmp;
 53	u64 vxrs_low[16];
 54	__vector128 vxrs_high[16];
 55};
 56
 57static LIST_HEAD(dump_save_areas);
 58
 59/*
 60 * Allocate a save area
 61 */
 62struct save_area * __init save_area_alloc(bool is_boot_cpu)
 63{
 64	struct save_area *sa;
 65
 66	sa = memblock_alloc(sizeof(*sa), 8);
 67	if (!sa)
 68		return NULL;
 69
 70	if (is_boot_cpu)
 71		list_add(&sa->list, &dump_save_areas);
 72	else
 73		list_add_tail(&sa->list, &dump_save_areas);
 74	return sa;
 
 
 
 
 
 
 
 75}
 76
 77/*
 78 * Return the address of the save area for the boot CPU
 79 */
 80struct save_area * __init save_area_boot_cpu(void)
 81{
 82	return list_first_entry_or_null(&dump_save_areas, struct save_area, list);
 
 
 
 
 
 
 
 
 83}
 84
 85/*
 86 * Copy CPU registers into the save area
 87 */
 88void __init save_area_add_regs(struct save_area *sa, void *regs)
 89{
 90	struct lowcore *lc;
 91
 92	lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
 93	memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
 94	memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
 95	memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
 96	memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
 97	memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
 98	memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
 99	memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
100	memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
101	memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
102	memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
 
 
103}
104
105/*
106 * Copy vector registers into the save area
 
 
 
 
 
 
 
 
107 */
108void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
 
109{
110	int i;
111
112	/* Copy lower halves of vector registers 0-15 */
113	for (i = 0; i < 16; i++)
114		sa->vxrs_low[i] = vxrs[i].low;
115	/* Copy vector registers 16-31 */
116	memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
117}
118
119static size_t copy_oldmem_iter(struct iov_iter *iter, unsigned long src, size_t count)
120{
121	size_t len, copied, res = 0;
122
123	while (count) {
124		if (!oldmem_data.start && src < sclp.hsa_size) {
125			/* Copy from zfcp/nvme dump HSA area */
126			len = min(count, sclp.hsa_size - src);
127			copied = memcpy_hsa_iter(iter, src, len);
128		} else {
129			/* Check for swapped kdump oldmem areas */
130			if (oldmem_data.start && src - oldmem_data.start < oldmem_data.size) {
131				src -= oldmem_data.start;
132				len = min(count, oldmem_data.size - src);
133			} else if (oldmem_data.start && src < oldmem_data.size) {
134				len = min(count, oldmem_data.size - src);
135				src += oldmem_data.start;
136			} else {
137				len = count;
138			}
139			copied = memcpy_real_iter(iter, src, len);
140		}
141		count -= copied;
142		src += copied;
143		res += copied;
144		if (copied < len)
145			break;
146	}
147	return res;
148}
149
150int copy_oldmem_kernel(void *dst, unsigned long src, size_t count)
 
 
 
 
 
 
 
 
 
151{
152	struct iov_iter iter;
153	struct kvec kvec;
154
155	kvec.iov_base = dst;
156	kvec.iov_len = count;
157	iov_iter_kvec(&iter, ITER_DEST, &kvec, 1, count);
158	if (copy_oldmem_iter(&iter, src, count) < count)
159		return -EFAULT;
160	return 0;
 
 
 
 
 
161}
162
163/*
164 * Copy one page from "oldmem"
165 */
166ssize_t copy_oldmem_page(struct iov_iter *iter, unsigned long pfn, size_t csize,
167			 unsigned long offset)
168{
169	unsigned long src;
170
171	src = pfn_to_phys(pfn) + offset;
172	return copy_oldmem_iter(iter, src, csize);
 
 
 
 
 
173}
174
175/*
176 * Remap "oldmem" for kdump
177 *
178 * For the kdump reserved memory this functions performs a swap operation:
179 * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
180 */
181static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
182					unsigned long from, unsigned long pfn,
183					unsigned long size, pgprot_t prot)
184{
185	unsigned long size_old;
186	int rc;
187
188	if (pfn < oldmem_data.size >> PAGE_SHIFT) {
189		size_old = min(size, oldmem_data.size - (pfn << PAGE_SHIFT));
190		rc = remap_pfn_range(vma, from,
191				     pfn + (oldmem_data.start >> PAGE_SHIFT),
192				     size_old, prot);
193		if (rc || size == size_old)
194			return rc;
195		size -= size_old;
196		from += size_old;
197		pfn += size_old >> PAGE_SHIFT;
198	}
199	return remap_pfn_range(vma, from, pfn, size, prot);
200}
201
202/*
203 * Remap "oldmem" for zfcp/nvme dump
204 *
205 * We only map available memory above HSA size. Memory below HSA size
206 * is read on demand using the copy_oldmem_page() function.
207 */
208static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
209					   unsigned long from,
210					   unsigned long pfn,
211					   unsigned long size, pgprot_t prot)
212{
213	unsigned long hsa_end = sclp.hsa_size;
214	unsigned long size_hsa;
215
216	if (pfn < hsa_end >> PAGE_SHIFT) {
217		size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
218		if (size == size_hsa)
219			return 0;
220		size -= size_hsa;
221		from += size_hsa;
222		pfn += size_hsa >> PAGE_SHIFT;
223	}
224	return remap_pfn_range(vma, from, pfn, size, prot);
225}
226
227/*
228 * Remap "oldmem" for kdump or zfcp/nvme dump
229 */
230int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
231			   unsigned long pfn, unsigned long size, pgprot_t prot)
232{
233	if (oldmem_data.start)
234		return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
235	else
236		return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
237						       prot);
238}
239
240static const char *nt_name(Elf64_Word type)
 
 
 
241{
242	const char *name = "LINUX";
 
243
244	if (type == NT_PRPSINFO || type == NT_PRSTATUS || type == NT_PRFPREG)
245		name = KEXEC_CORE_NOTE_NAME;
246	return name;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
247}
248
249/*
250 * Initialize ELF note
251 */
252static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
253			  const char *name)
254{
255	Elf64_Nhdr *note;
256	u64 len;
257
258	note = (Elf64_Nhdr *)buf;
259	note->n_namesz = strlen(name) + 1;
260	note->n_descsz = d_len;
261	note->n_type = type;
262	len = sizeof(Elf64_Nhdr);
263
264	memcpy(buf + len, name, note->n_namesz);
265	len = roundup(len + note->n_namesz, 4);
266
267	memcpy(buf + len, desc, note->n_descsz);
268	len = roundup(len + note->n_descsz, 4);
269
270	return PTR_ADD(buf, len);
271}
272
273static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len)
 
 
 
274{
275	return nt_init_name(buf, type, desc, d_len, nt_name(type));
 
 
 
 
 
 
 
 
 
 
 
276}
277
278/*
279 * Calculate the size of ELF note
280 */
281static size_t nt_size_name(int d_len, const char *name)
282{
283	size_t size;
284
285	size = sizeof(Elf64_Nhdr);
286	size += roundup(strlen(name) + 1, 4);
287	size += roundup(d_len, 4);
288
289	return size;
 
290}
291
292static inline size_t nt_size(Elf64_Word type, int d_len)
 
 
 
293{
294	return nt_size_name(d_len, nt_name(type));
 
295}
296
297/*
298 * Fill ELF notes for one CPU with save area registers
299 */
300static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
301{
302	struct elf_prstatus nt_prstatus;
303	elf_fpregset_t nt_fpregset;
 
304
305	/* Prepare prstatus note */
306	memset(&nt_prstatus, 0, sizeof(nt_prstatus));
307	memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
308	memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
309	memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
310	nt_prstatus.common.pr_pid = cpu;
311	/* Prepare fpregset (floating point) note */
312	memset(&nt_fpregset, 0, sizeof(nt_fpregset));
313	memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
314	memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
315	/* Create ELF notes for the CPU */
316	ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus));
317	ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset));
318	ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer));
319	ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp));
320	ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg));
321	ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs));
322	ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix));
323	if (cpu_has_vx()) {
324		ptr = nt_init(ptr, NT_S390_VXRS_HIGH,
325			      &sa->vxrs_high, sizeof(sa->vxrs_high));
326		ptr = nt_init(ptr, NT_S390_VXRS_LOW,
327			      &sa->vxrs_low, sizeof(sa->vxrs_low));
328	}
329	return ptr;
330}
331
332/*
333 * Calculate size of ELF notes per cpu
334 */
335static size_t get_cpu_elf_notes_size(void)
336{
337	struct save_area *sa = NULL;
338	size_t size;
 
339
340	size =	nt_size(NT_PRSTATUS, sizeof(struct elf_prstatus));
341	size +=  nt_size(NT_PRFPREG, sizeof(elf_fpregset_t));
342	size +=  nt_size(NT_S390_TIMER, sizeof(sa->timer));
343	size +=  nt_size(NT_S390_TODCMP, sizeof(sa->todcmp));
344	size +=  nt_size(NT_S390_TODPREG, sizeof(sa->todpreg));
345	size +=  nt_size(NT_S390_CTRS, sizeof(sa->ctrs));
346	size +=  nt_size(NT_S390_PREFIX, sizeof(sa->prefix));
347	if (cpu_has_vx()) {
348		size += nt_size(NT_S390_VXRS_HIGH, sizeof(sa->vxrs_high));
349		size += nt_size(NT_S390_VXRS_LOW, sizeof(sa->vxrs_low));
350	}
351
352	return size;
 
 
 
 
 
 
 
 
 
 
 
 
353}
354
355/*
356 * Initialize prpsinfo note (new kernel)
357 */
358static void *nt_prpsinfo(void *ptr)
359{
360	struct elf_prpsinfo prpsinfo;
361
362	memset(&prpsinfo, 0, sizeof(prpsinfo));
363	prpsinfo.pr_sname = 'R';
364	strcpy(prpsinfo.pr_fname, "vmlinux");
365	return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo));
 
366}
367
368/*
369 * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
370 */
371static void *get_vmcoreinfo_old(unsigned long *size)
372{
373	char nt_name[11], *vmcoreinfo;
374	unsigned long addr;
375	Elf64_Nhdr note;
 
376
377	if (copy_oldmem_kernel(&addr, __LC_VMCORE_INFO, sizeof(addr)))
378		return NULL;
379	memset(nt_name, 0, sizeof(nt_name));
380	if (copy_oldmem_kernel(&note, addr, sizeof(note)))
381		return NULL;
382	if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
383			       sizeof(nt_name) - 1))
384		return NULL;
385	if (strcmp(nt_name, VMCOREINFO_NOTE_NAME) != 0)
386		return NULL;
387	vmcoreinfo = kzalloc(note.n_descsz, GFP_KERNEL);
388	if (!vmcoreinfo)
389		return NULL;
390	if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz)) {
391		kfree(vmcoreinfo);
392		return NULL;
393	}
394	*size = note.n_descsz;
395	return vmcoreinfo;
396}
397
398/*
399 * Initialize vmcoreinfo note (new kernel)
400 */
401static void *nt_vmcoreinfo(void *ptr)
402{
403	const char *name = VMCOREINFO_NOTE_NAME;
404	unsigned long size;
405	void *vmcoreinfo;
406
407	vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
408	if (vmcoreinfo)
409		return nt_init_name(ptr, 0, vmcoreinfo, size, name);
410
411	vmcoreinfo = get_vmcoreinfo_old(&size);
412	if (!vmcoreinfo)
413		return ptr;
414	ptr = nt_init_name(ptr, 0, vmcoreinfo, size, name);
415	kfree(vmcoreinfo);
416	return ptr;
417}
418
419static size_t nt_vmcoreinfo_size(void)
420{
421	const char *name = VMCOREINFO_NOTE_NAME;
422	unsigned long size;
423	void *vmcoreinfo;
424
425	vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
426	if (vmcoreinfo)
427		return nt_size_name(size, name);
428
429	vmcoreinfo = get_vmcoreinfo_old(&size);
430	if (!vmcoreinfo)
431		return 0;
432
433	kfree(vmcoreinfo);
434	return nt_size_name(size, name);
435}
436
437/*
438 * Initialize final note (needed for /proc/vmcore code)
439 */
440static void *nt_final(void *ptr)
441{
442	Elf64_Nhdr *note;
443
444	note = (Elf64_Nhdr *) ptr;
445	note->n_namesz = 0;
446	note->n_descsz = 0;
447	note->n_type = 0;
448	return PTR_ADD(ptr, sizeof(Elf64_Nhdr));
449}
450
451/*
452 * Initialize ELF header (new kernel)
453 */
454static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
455{
456	memset(ehdr, 0, sizeof(*ehdr));
457	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
458	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
459	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
460	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
461	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
462	ehdr->e_type = ET_CORE;
463	ehdr->e_machine = EM_S390;
464	ehdr->e_version = EV_CURRENT;
465	ehdr->e_phoff = sizeof(Elf64_Ehdr);
466	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
467	ehdr->e_phentsize = sizeof(Elf64_Phdr);
468	ehdr->e_phnum = mem_chunk_cnt + 1;
469	return ehdr + 1;
470}
471
472/*
473 * Return CPU count for ELF header (new kernel)
474 */
475static int get_cpu_cnt(void)
476{
477	struct save_area *sa;
478	int cpus = 0;
479
480	list_for_each_entry(sa, &dump_save_areas, list)
481		if (sa->prefix != 0)
482			cpus++;
 
 
483	return cpus;
484}
485
486/*
487 * Return memory chunk count for ELF header (new kernel)
488 */
489static int get_mem_chunk_cnt(void)
490{
491	int cnt = 0;
492	u64 idx;
493
494	for_each_physmem_range(idx, &oldmem_type, NULL, NULL)
 
 
 
 
 
 
 
495		cnt++;
 
 
496	return cnt;
497}
498
499/*
500 * Initialize ELF loads (new kernel)
501 */
502static void loads_init(Elf64_Phdr *phdr)
503{
504	phys_addr_t start, end;
505	u64 idx;
506
507	for_each_physmem_range(idx, &oldmem_type, &start, &end) {
508		phdr->p_filesz = end - start;
 
 
 
 
 
 
 
 
509		phdr->p_type = PT_LOAD;
510		phdr->p_offset = start;
511		phdr->p_vaddr = (unsigned long)__va(start);
512		phdr->p_paddr = start;
513		phdr->p_memsz = end - start;
514		phdr->p_flags = PF_R | PF_W | PF_X;
515		phdr->p_align = PAGE_SIZE;
516		phdr++;
517	}
 
 
518}
519
520/*
521 * Initialize notes (new kernel)
522 */
523static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
524{
525	struct save_area *sa;
526	void *ptr_start = ptr;
527	int cpu;
528
529	ptr = nt_prpsinfo(ptr);
530
531	cpu = 1;
532	list_for_each_entry(sa, &dump_save_areas, list)
533		if (sa->prefix != 0)
534			ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
 
 
535	ptr = nt_vmcoreinfo(ptr);
536	ptr = nt_final(ptr);
537	memset(phdr, 0, sizeof(*phdr));
538	phdr->p_type = PT_NOTE;
539	phdr->p_offset = notes_offset;
540	phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
541	phdr->p_memsz = phdr->p_filesz;
542	return ptr;
543}
544
545static size_t get_elfcorehdr_size(int mem_chunk_cnt)
546{
547	size_t size;
548
549	size = sizeof(Elf64_Ehdr);
550	/* PT_NOTES */
551	size += sizeof(Elf64_Phdr);
552	/* nt_prpsinfo */
553	size += nt_size(NT_PRPSINFO, sizeof(struct elf_prpsinfo));
554	/* regsets */
555	size += get_cpu_cnt() * get_cpu_elf_notes_size();
556	/* nt_vmcoreinfo */
557	size += nt_vmcoreinfo_size();
558	/* nt_final */
559	size += sizeof(Elf64_Nhdr);
560	/* PT_LOADS */
561	size += mem_chunk_cnt * sizeof(Elf64_Phdr);
562
563	return size;
564}
565
566/*
567 * Create ELF core header (new kernel)
568 */
569int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
570{
571	Elf64_Phdr *phdr_notes, *phdr_loads;
572	size_t alloc_size;
573	int mem_chunk_cnt;
574	void *ptr, *hdr;
 
575	u64 hdr_off;
576
577	/* If we are not in kdump or zfcp/nvme dump mode return */
578	if (!oldmem_data.start && !is_ipl_type_dump())
579		return 0;
580	/* If we cannot get HSA size for zfcp/nvme dump return error */
581	if (is_ipl_type_dump() && !sclp.hsa_size)
 
 
 
582		return -ENODEV;
583
584	/* For kdump, exclude previous crashkernel memory */
585	if (oldmem_data.start) {
586		oldmem_region.base = oldmem_data.start;
587		oldmem_region.size = oldmem_data.size;
588		oldmem_type.total_size = oldmem_data.size;
589	}
590
591	mem_chunk_cnt = get_mem_chunk_cnt();
592
593	alloc_size = get_elfcorehdr_size(mem_chunk_cnt);
594
595	hdr = kzalloc(alloc_size, GFP_KERNEL);
596
597	/* Without elfcorehdr /proc/vmcore cannot be created. Thus creating
598	 * a dump with this crash kernel will fail. Panic now to allow other
599	 * dump mechanisms to take over.
600	 */
601	if (!hdr)
602		panic("s390 kdump allocating elfcorehdr failed");
603
604	/* Init elf header */
605	ptr = ehdr_init(hdr, mem_chunk_cnt);
606	/* Init program headers */
607	phdr_notes = ptr;
608	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
609	phdr_loads = ptr;
610	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
611	/* Init notes */
612	hdr_off = PTR_DIFF(ptr, hdr);
613	ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
614	/* Init loads */
615	hdr_off = PTR_DIFF(ptr, hdr);
616	loads_init(phdr_loads);
617	*addr = (unsigned long long) hdr;
 
618	*size = (unsigned long long) hdr_off;
619	BUG_ON(elfcorehdr_size > alloc_size);
620	return 0;
621}
622
623/*
624 * Free ELF core header (new kernel)
625 */
626void elfcorehdr_free(unsigned long long addr)
627{
 
 
628	kfree((void *)(unsigned long)addr);
629}
630
631/*
632 * Read from ELF header
633 */
634ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
635{
636	void *src = (void *)(unsigned long)*ppos;
637
 
638	memcpy(buf, src, count);
639	*ppos += count;
640	return count;
641}
642
643/*
644 * Read from ELF notes data
645 */
646ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
647{
648	void *src = (void *)(unsigned long)*ppos;
 
649
650	memcpy(buf, src, count);
 
 
 
 
 
 
651	*ppos += count;
652	return count;
653}
v3.15
 
  1/*
  2 * S390 kdump implementation
  3 *
  4 * Copyright IBM Corp. 2011
  5 * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
  6 */
  7
  8#include <linux/crash_dump.h>
  9#include <asm/lowcore.h>
 10#include <linux/kernel.h>
 11#include <linux/module.h>
 
 12#include <linux/gfp.h>
 13#include <linux/slab.h>
 14#include <linux/bootmem.h>
 15#include <linux/elf.h>
 
 
 16#include <asm/os_info.h>
 17#include <asm/elf.h>
 18#include <asm/ipl.h>
 19#include <asm/sclp.h>
 
 
 20
 21#define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
 22#define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
 23#define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
 24
 25struct dump_save_areas dump_save_areas;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 26
 27/*
 28 * Allocate and add a save area for a CPU
 29 */
 30struct save_area *dump_save_area_create(int cpu)
 31{
 32	struct save_area **save_areas, *save_area;
 33
 34	save_area = kmalloc(sizeof(*save_area), GFP_KERNEL);
 35	if (!save_area)
 36		return NULL;
 37	if (cpu + 1 > dump_save_areas.count) {
 38		dump_save_areas.count = cpu + 1;
 39		save_areas = krealloc(dump_save_areas.areas,
 40				      dump_save_areas.count * sizeof(void *),
 41				      GFP_KERNEL | __GFP_ZERO);
 42		if (!save_areas) {
 43			kfree(save_area);
 44			return NULL;
 45		}
 46		dump_save_areas.areas = save_areas;
 47	}
 48	dump_save_areas.areas[cpu] = save_area;
 49	return save_area;
 50}
 51
 52/*
 53 * Return physical address for virtual address
 54 */
 55static inline void *load_real_addr(void *addr)
 56{
 57	unsigned long real_addr;
 58
 59	asm volatile(
 60		   "	lra     %0,0(%1)\n"
 61		   "	jz	0f\n"
 62		   "	la	%0,0\n"
 63		   "0:"
 64		   : "=a" (real_addr) : "a" (addr) : "cc");
 65	return (void *)real_addr;
 66}
 67
 68/*
 69 * Copy real to virtual or real memory
 70 */
 71static int copy_from_realmem(void *dest, void *src, size_t count)
 72{
 73	unsigned long size;
 74
 75	if (!count)
 76		return 0;
 77	if (!is_vmalloc_or_module_addr(dest))
 78		return memcpy_real(dest, src, count);
 79	do {
 80		size = min(count, PAGE_SIZE - (__pa(dest) & ~PAGE_MASK));
 81		if (memcpy_real(load_real_addr(dest), src, size))
 82			return -EFAULT;
 83		count -= size;
 84		dest += size;
 85		src += size;
 86	} while (count);
 87	return 0;
 88}
 89
 90/*
 91 * Pointer to ELF header in new kernel
 92 */
 93static void *elfcorehdr_newmem;
 94
 95/*
 96 * Copy one page from zfcpdump "oldmem"
 97 *
 98 * For pages below HSA size memory from the HSA is copied. Otherwise
 99 * real memory copy is used.
100 */
101static ssize_t copy_oldmem_page_zfcpdump(char *buf, size_t csize,
102					 unsigned long src, int userbuf)
103{
104	int rc;
105
106	if (src < sclp_get_hsa_size()) {
107		rc = memcpy_hsa(buf, src, csize, userbuf);
108	} else {
109		if (userbuf)
110			rc = copy_to_user_real((void __force __user *) buf,
111					       (void *) src, csize);
112		else
113			rc = memcpy_real(buf, (void *) src, csize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114	}
115	return rc ? rc : csize;
116}
117
118/*
119 * Copy one page from kdump "oldmem"
120 *
121 * For the kdump reserved memory this functions performs a swap operation:
122 *  - [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE] is mapped to [0 - OLDMEM_SIZE].
123 *  - [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
124 */
125static ssize_t copy_oldmem_page_kdump(char *buf, size_t csize,
126				      unsigned long src, int userbuf)
127
128{
129	int rc;
 
130
131	if (src < OLDMEM_SIZE)
132		src += OLDMEM_BASE;
133	else if (src > OLDMEM_BASE &&
134		 src < OLDMEM_BASE + OLDMEM_SIZE)
135		src -= OLDMEM_BASE;
136	if (userbuf)
137		rc = copy_to_user_real((void __force __user *) buf,
138				       (void *) src, csize);
139	else
140		rc = copy_from_realmem(buf, (void *) src, csize);
141	return (rc == 0) ? rc : csize;
142}
143
144/*
145 * Copy one page from "oldmem"
146 */
147ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
148			 unsigned long offset, int userbuf)
149{
150	unsigned long src;
151
152	if (!csize)
153		return 0;
154	src = (pfn << PAGE_SHIFT) + offset;
155	if (OLDMEM_BASE)
156		return copy_oldmem_page_kdump(buf, csize, src, userbuf);
157	else
158		return copy_oldmem_page_zfcpdump(buf, csize, src, userbuf);
159}
160
161/*
162 * Remap "oldmem" for kdump
163 *
164 * For the kdump reserved memory this functions performs a swap operation:
165 * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
166 */
167static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
168					unsigned long from, unsigned long pfn,
169					unsigned long size, pgprot_t prot)
170{
171	unsigned long size_old;
172	int rc;
173
174	if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
175		size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
176		rc = remap_pfn_range(vma, from,
177				     pfn + (OLDMEM_BASE >> PAGE_SHIFT),
178				     size_old, prot);
179		if (rc || size == size_old)
180			return rc;
181		size -= size_old;
182		from += size_old;
183		pfn += size_old >> PAGE_SHIFT;
184	}
185	return remap_pfn_range(vma, from, pfn, size, prot);
186}
187
188/*
189 * Remap "oldmem" for zfcpdump
190 *
191 * We only map available memory above HSA size. Memory below HSA size
192 * is read on demand using the copy_oldmem_page() function.
193 */
194static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
195					   unsigned long from,
196					   unsigned long pfn,
197					   unsigned long size, pgprot_t prot)
198{
199	unsigned long hsa_end = sclp_get_hsa_size();
200	unsigned long size_hsa;
201
202	if (pfn < hsa_end >> PAGE_SHIFT) {
203		size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
204		if (size == size_hsa)
205			return 0;
206		size -= size_hsa;
207		from += size_hsa;
208		pfn += size_hsa >> PAGE_SHIFT;
209	}
210	return remap_pfn_range(vma, from, pfn, size, prot);
211}
212
213/*
214 * Remap "oldmem" for kdump or zfcpdump
215 */
216int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
217			   unsigned long pfn, unsigned long size, pgprot_t prot)
218{
219	if (OLDMEM_BASE)
220		return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
221	else
222		return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
223						       prot);
224}
225
226/*
227 * Copy memory from old kernel
228 */
229int copy_from_oldmem(void *dest, void *src, size_t count)
230{
231	unsigned long copied = 0;
232	int rc;
233
234	if (OLDMEM_BASE) {
235		if ((unsigned long) src < OLDMEM_SIZE) {
236			copied = min(count, OLDMEM_SIZE - (unsigned long) src);
237			rc = copy_from_realmem(dest, src + OLDMEM_BASE, copied);
238			if (rc)
239				return rc;
240		}
241	} else {
242		unsigned long hsa_end = sclp_get_hsa_size();
243		if ((unsigned long) src < hsa_end) {
244			copied = min(count, hsa_end - (unsigned long) src);
245			rc = memcpy_hsa(dest, (unsigned long) src, copied, 0);
246			if (rc)
247				return rc;
248		}
249	}
250	return copy_from_realmem(dest + copied, src + copied, count - copied);
251}
252
253/*
254 * Alloc memory and panic in case of ENOMEM
255 */
256static void *kzalloc_panic(int len)
257{
258	void *rc;
259
260	rc = kzalloc(len, GFP_KERNEL);
261	if (!rc)
262		panic("s390 kdump kzalloc (%d) failed", len);
263	return rc;
264}
265
266/*
267 * Get memory layout and create hole for oldmem
268 */
269static struct mem_chunk *get_memory_layout(void)
270{
271	struct mem_chunk *chunk_array;
272
273	chunk_array = kzalloc_panic(MEMORY_CHUNKS * sizeof(struct mem_chunk));
274	detect_memory_layout(chunk_array, 0);
275	create_mem_hole(chunk_array, OLDMEM_BASE, OLDMEM_SIZE);
276	return chunk_array;
277}
278
279/*
280 * Initialize ELF note
281 */
282static void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len,
283		     const char *name)
284{
285	Elf64_Nhdr *note;
286	u64 len;
287
288	note = (Elf64_Nhdr *)buf;
289	note->n_namesz = strlen(name) + 1;
290	note->n_descsz = d_len;
291	note->n_type = type;
292	len = sizeof(Elf64_Nhdr);
293
294	memcpy(buf + len, name, note->n_namesz);
295	len = roundup(len + note->n_namesz, 4);
296
297	memcpy(buf + len, desc, note->n_descsz);
298	len = roundup(len + note->n_descsz, 4);
299
300	return PTR_ADD(buf, len);
301}
302
303/*
304 * Initialize prstatus note
305 */
306static void *nt_prstatus(void *ptr, struct save_area *sa)
307{
308	struct elf_prstatus nt_prstatus;
309	static int cpu_nr = 1;
310
311	memset(&nt_prstatus, 0, sizeof(nt_prstatus));
312	memcpy(&nt_prstatus.pr_reg.gprs, sa->gp_regs, sizeof(sa->gp_regs));
313	memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
314	memcpy(&nt_prstatus.pr_reg.acrs, sa->acc_regs, sizeof(sa->acc_regs));
315	nt_prstatus.pr_pid = cpu_nr;
316	cpu_nr++;
317
318	return nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus),
319			 "CORE");
320}
321
322/*
323 * Initialize fpregset (floating point) note
324 */
325static void *nt_fpregset(void *ptr, struct save_area *sa)
326{
327	elf_fpregset_t nt_fpregset;
328
329	memset(&nt_fpregset, 0, sizeof(nt_fpregset));
330	memcpy(&nt_fpregset.fpc, &sa->fp_ctrl_reg, sizeof(sa->fp_ctrl_reg));
331	memcpy(&nt_fpregset.fprs, &sa->fp_regs, sizeof(sa->fp_regs));
332
333	return nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset),
334		       "CORE");
335}
336
337/*
338 * Initialize timer note
339 */
340static void *nt_s390_timer(void *ptr, struct save_area *sa)
341{
342	return nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer),
343			 KEXEC_CORE_NOTE_NAME);
344}
345
346/*
347 * Initialize TOD clock comparator note
348 */
349static void *nt_s390_tod_cmp(void *ptr, struct save_area *sa)
350{
351	return nt_init(ptr, NT_S390_TODCMP, &sa->clk_cmp,
352		       sizeof(sa->clk_cmp), KEXEC_CORE_NOTE_NAME);
353}
354
355/*
356 * Initialize TOD programmable register note
357 */
358static void *nt_s390_tod_preg(void *ptr, struct save_area *sa)
359{
360	return nt_init(ptr, NT_S390_TODPREG, &sa->tod_reg,
361		       sizeof(sa->tod_reg), KEXEC_CORE_NOTE_NAME);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
362}
363
364/*
365 * Initialize control register note
366 */
367static void *nt_s390_ctrs(void *ptr, struct save_area *sa)
368{
369	return nt_init(ptr, NT_S390_CTRS, &sa->ctrl_regs,
370		       sizeof(sa->ctrl_regs), KEXEC_CORE_NOTE_NAME);
371}
372
373/*
374 * Initialize prefix register note
375 */
376static void *nt_s390_prefix(void *ptr, struct save_area *sa)
377{
378	return nt_init(ptr, NT_S390_PREFIX, &sa->pref_reg,
379			 sizeof(sa->pref_reg), KEXEC_CORE_NOTE_NAME);
380}
 
 
 
381
382/*
383 * Fill ELF notes for one CPU with save area registers
384 */
385void *fill_cpu_elf_notes(void *ptr, struct save_area *sa)
386{
387	ptr = nt_prstatus(ptr, sa);
388	ptr = nt_fpregset(ptr, sa);
389	ptr = nt_s390_timer(ptr, sa);
390	ptr = nt_s390_tod_cmp(ptr, sa);
391	ptr = nt_s390_tod_preg(ptr, sa);
392	ptr = nt_s390_ctrs(ptr, sa);
393	ptr = nt_s390_prefix(ptr, sa);
394	return ptr;
395}
396
397/*
398 * Initialize prpsinfo note (new kernel)
399 */
400static void *nt_prpsinfo(void *ptr)
401{
402	struct elf_prpsinfo prpsinfo;
403
404	memset(&prpsinfo, 0, sizeof(prpsinfo));
405	prpsinfo.pr_sname = 'R';
406	strcpy(prpsinfo.pr_fname, "vmlinux");
407	return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo),
408		       KEXEC_CORE_NOTE_NAME);
409}
410
411/*
412 * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
413 */
414static void *get_vmcoreinfo_old(unsigned long *size)
415{
416	char nt_name[11], *vmcoreinfo;
 
417	Elf64_Nhdr note;
418	void *addr;
419
420	if (copy_from_oldmem(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
421		return NULL;
422	memset(nt_name, 0, sizeof(nt_name));
423	if (copy_from_oldmem(&note, addr, sizeof(note)))
 
 
 
424		return NULL;
425	if (copy_from_oldmem(nt_name, addr + sizeof(note), sizeof(nt_name) - 1))
426		return NULL;
427	if (strcmp(nt_name, "VMCOREINFO") != 0)
 
428		return NULL;
429	vmcoreinfo = kzalloc_panic(note.n_descsz);
430	if (copy_from_oldmem(vmcoreinfo, addr + 24, note.n_descsz))
431		return NULL;
 
432	*size = note.n_descsz;
433	return vmcoreinfo;
434}
435
436/*
437 * Initialize vmcoreinfo note (new kernel)
438 */
439static void *nt_vmcoreinfo(void *ptr)
440{
 
441	unsigned long size;
442	void *vmcoreinfo;
443
444	vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
 
 
 
 
445	if (!vmcoreinfo)
446		vmcoreinfo = get_vmcoreinfo_old(&size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
447	if (!vmcoreinfo)
448		return ptr;
449	return nt_init(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
450}
451
452/*
453 * Initialize ELF header (new kernel)
454 */
455static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
456{
457	memset(ehdr, 0, sizeof(*ehdr));
458	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
459	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
460	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
461	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
462	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
463	ehdr->e_type = ET_CORE;
464	ehdr->e_machine = EM_S390;
465	ehdr->e_version = EV_CURRENT;
466	ehdr->e_phoff = sizeof(Elf64_Ehdr);
467	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
468	ehdr->e_phentsize = sizeof(Elf64_Phdr);
469	ehdr->e_phnum = mem_chunk_cnt + 1;
470	return ehdr + 1;
471}
472
473/*
474 * Return CPU count for ELF header (new kernel)
475 */
476static int get_cpu_cnt(void)
477{
478	int i, cpus = 0;
 
479
480	for (i = 0; i < dump_save_areas.count; i++) {
481		if (dump_save_areas.areas[i]->pref_reg == 0)
482			continue;
483		cpus++;
484	}
485	return cpus;
486}
487
488/*
489 * Return memory chunk count for ELF header (new kernel)
490 */
491static int get_mem_chunk_cnt(void)
492{
493	struct mem_chunk *chunk_array, *mem_chunk;
494	int i, cnt = 0;
495
496	chunk_array = get_memory_layout();
497	for (i = 0; i < MEMORY_CHUNKS; i++) {
498		mem_chunk = &chunk_array[i];
499		if (chunk_array[i].type != CHUNK_READ_WRITE &&
500		    chunk_array[i].type != CHUNK_READ_ONLY)
501			continue;
502		if (mem_chunk->size == 0)
503			continue;
504		cnt++;
505	}
506	kfree(chunk_array);
507	return cnt;
508}
509
510/*
511 * Initialize ELF loads (new kernel)
512 */
513static int loads_init(Elf64_Phdr *phdr, u64 loads_offset)
514{
515	struct mem_chunk *chunk_array, *mem_chunk;
516	int i;
517
518	chunk_array = get_memory_layout();
519	for (i = 0; i < MEMORY_CHUNKS; i++) {
520		mem_chunk = &chunk_array[i];
521		if (mem_chunk->size == 0)
522			continue;
523		if (chunk_array[i].type != CHUNK_READ_WRITE &&
524		    chunk_array[i].type != CHUNK_READ_ONLY)
525			continue;
526		else
527			phdr->p_filesz = mem_chunk->size;
528		phdr->p_type = PT_LOAD;
529		phdr->p_offset = mem_chunk->addr;
530		phdr->p_vaddr = mem_chunk->addr;
531		phdr->p_paddr = mem_chunk->addr;
532		phdr->p_memsz = mem_chunk->size;
533		phdr->p_flags = PF_R | PF_W | PF_X;
534		phdr->p_align = PAGE_SIZE;
535		phdr++;
536	}
537	kfree(chunk_array);
538	return i;
539}
540
541/*
542 * Initialize notes (new kernel)
543 */
544static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
545{
546	struct save_area *sa;
547	void *ptr_start = ptr;
548	int i;
549
550	ptr = nt_prpsinfo(ptr);
551
552	for (i = 0; i < dump_save_areas.count; i++) {
553		sa = dump_save_areas.areas[i];
554		if (sa->pref_reg == 0)
555			continue;
556		ptr = fill_cpu_elf_notes(ptr, sa);
557	}
558	ptr = nt_vmcoreinfo(ptr);
 
559	memset(phdr, 0, sizeof(*phdr));
560	phdr->p_type = PT_NOTE;
561	phdr->p_offset = notes_offset;
562	phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
563	phdr->p_memsz = phdr->p_filesz;
564	return ptr;
565}
566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
567/*
568 * Create ELF core header (new kernel)
569 */
570int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
571{
572	Elf64_Phdr *phdr_notes, *phdr_loads;
 
573	int mem_chunk_cnt;
574	void *ptr, *hdr;
575	u32 alloc_size;
576	u64 hdr_off;
577
578	/* If we are not in kdump or zfcpdump mode return */
579	if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
580		return 0;
581	/* If elfcorehdr= has been passed via cmdline, we use that one */
582	if (elfcorehdr_addr != ELFCORE_ADDR_MAX)
583		return 0;
584	/* If we cannot get HSA size for zfcpdump return error */
585	if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp_get_hsa_size())
586		return -ENODEV;
 
 
 
 
 
 
 
 
587	mem_chunk_cnt = get_mem_chunk_cnt();
588
589	alloc_size = 0x1000 + get_cpu_cnt() * 0x300 +
590		mem_chunk_cnt * sizeof(Elf64_Phdr);
591	hdr = kzalloc_panic(alloc_size);
 
 
 
 
 
 
 
 
592	/* Init elf header */
593	ptr = ehdr_init(hdr, mem_chunk_cnt);
594	/* Init program headers */
595	phdr_notes = ptr;
596	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
597	phdr_loads = ptr;
598	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
599	/* Init notes */
600	hdr_off = PTR_DIFF(ptr, hdr);
601	ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
602	/* Init loads */
603	hdr_off = PTR_DIFF(ptr, hdr);
604	loads_init(phdr_loads, hdr_off);
605	*addr = (unsigned long long) hdr;
606	elfcorehdr_newmem = hdr;
607	*size = (unsigned long long) hdr_off;
608	BUG_ON(elfcorehdr_size > alloc_size);
609	return 0;
610}
611
612/*
613 * Free ELF core header (new kernel)
614 */
615void elfcorehdr_free(unsigned long long addr)
616{
617	if (!elfcorehdr_newmem)
618		return;
619	kfree((void *)(unsigned long)addr);
620}
621
622/*
623 * Read from ELF header
624 */
625ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
626{
627	void *src = (void *)(unsigned long)*ppos;
628
629	src = elfcorehdr_newmem ? src : src - OLDMEM_BASE;
630	memcpy(buf, src, count);
631	*ppos += count;
632	return count;
633}
634
635/*
636 * Read from ELF notes data
637 */
638ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
639{
640	void *src = (void *)(unsigned long)*ppos;
641	int rc;
642
643	if (elfcorehdr_newmem) {
644		memcpy(buf, src, count);
645	} else {
646		rc = copy_from_oldmem(buf, src, count);
647		if (rc)
648			return rc;
649	}
650	*ppos += count;
651	return count;
652}