Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * The file intends to implement PE based on the information from
  4 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
  5 * All the PEs should be organized as hierarchy tree. The first level
  6 * of the tree will be associated to existing PHBs since the particular
  7 * PE is only meaningful in one PHB domain.
  8 *
  9 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 10 */
 11
 12#include <linux/delay.h>
 13#include <linux/export.h>
 14#include <linux/gfp.h>
 15#include <linux/kernel.h>
 16#include <linux/of.h>
 17#include <linux/pci.h>
 18#include <linux/string.h>
 19
 20#include <asm/pci-bridge.h>
 21#include <asm/ppc-pci.h>
 22
 23static int eeh_pe_aux_size = 0;
 24static LIST_HEAD(eeh_phb_pe);
 25
 26/**
 27 * eeh_set_pe_aux_size - Set PE auxillary data size
 28 * @size: PE auxillary data size
 29 *
 30 * Set PE auxillary data size
 31 */
 32void eeh_set_pe_aux_size(int size)
 33{
 34	if (size < 0)
 35		return;
 36
 37	eeh_pe_aux_size = size;
 38}
 39
 40/**
 41 * eeh_pe_alloc - Allocate PE
 42 * @phb: PCI controller
 43 * @type: PE type
 44 *
 45 * Allocate PE instance dynamically.
 46 */
 47static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
 48{
 49	struct eeh_pe *pe;
 50	size_t alloc_size;
 51
 52	alloc_size = sizeof(struct eeh_pe);
 53	if (eeh_pe_aux_size) {
 54		alloc_size = ALIGN(alloc_size, cache_line_size());
 55		alloc_size += eeh_pe_aux_size;
 56	}
 57
 58	/* Allocate PHB PE */
 59	pe = kzalloc(alloc_size, GFP_KERNEL);
 60	if (!pe) return NULL;
 61
 62	/* Initialize PHB PE */
 63	pe->type = type;
 64	pe->phb = phb;
 65	INIT_LIST_HEAD(&pe->child_list);
 
 66	INIT_LIST_HEAD(&pe->edevs);
 67
 68	pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
 69				      cache_line_size());
 70	return pe;
 71}
 72
 73/**
 74 * eeh_phb_pe_create - Create PHB PE
 75 * @phb: PCI controller
 76 *
 77 * The function should be called while the PHB is detected during
 78 * system boot or PCI hotplug in order to create PHB PE.
 79 */
 80int eeh_phb_pe_create(struct pci_controller *phb)
 81{
 82	struct eeh_pe *pe;
 83
 84	/* Allocate PHB PE */
 85	pe = eeh_pe_alloc(phb, EEH_PE_PHB);
 86	if (!pe) {
 87		pr_err("%s: out of memory!\n", __func__);
 88		return -ENOMEM;
 89	}
 90
 91	/* Put it into the list */
 92	list_add_tail(&pe->child, &eeh_phb_pe);
 93
 94	pr_debug("EEH: Add PE for PHB#%x\n", phb->global_number);
 95
 96	return 0;
 97}
 98
 99/**
100 * eeh_wait_state - Wait for PE state
101 * @pe: EEH PE
102 * @max_wait: maximal period in millisecond
103 *
104 * Wait for the state of associated PE. It might take some time
105 * to retrieve the PE's state.
106 */
107int eeh_wait_state(struct eeh_pe *pe, int max_wait)
108{
109	int ret;
110	int mwait;
111
112	/*
113	 * According to PAPR, the state of PE might be temporarily
114	 * unavailable. Under the circumstance, we have to wait
115	 * for indicated time determined by firmware. The maximal
116	 * wait time is 5 minutes, which is acquired from the original
117	 * EEH implementation. Also, the original implementation
118	 * also defined the minimal wait time as 1 second.
119	 */
120#define EEH_STATE_MIN_WAIT_TIME	(1000)
121#define EEH_STATE_MAX_WAIT_TIME	(300 * 1000)
122
123	while (1) {
124		ret = eeh_ops->get_state(pe, &mwait);
125
126		if (ret != EEH_STATE_UNAVAILABLE)
127			return ret;
128
129		if (max_wait <= 0) {
130			pr_warn("%s: Timeout when getting PE's state (%d)\n",
131				__func__, max_wait);
132			return EEH_STATE_NOT_SUPPORT;
133		}
134
135		if (mwait < EEH_STATE_MIN_WAIT_TIME) {
136			pr_warn("%s: Firmware returned bad wait value %d\n",
137				__func__, mwait);
138			mwait = EEH_STATE_MIN_WAIT_TIME;
139		} else if (mwait > EEH_STATE_MAX_WAIT_TIME) {
140			pr_warn("%s: Firmware returned too long wait value %d\n",
141				__func__, mwait);
142			mwait = EEH_STATE_MAX_WAIT_TIME;
143		}
144
145		msleep(min(mwait, max_wait));
146		max_wait -= mwait;
147	}
148}
149
150/**
151 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
152 * @phb: PCI controller
153 *
154 * The overall PEs form hierarchy tree. The first layer of the
155 * hierarchy tree is composed of PHB PEs. The function is used
156 * to retrieve the corresponding PHB PE according to the given PHB.
157 */
158struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
159{
160	struct eeh_pe *pe;
161
162	list_for_each_entry(pe, &eeh_phb_pe, child) {
163		/*
164		 * Actually, we needn't check the type since
165		 * the PE for PHB has been determined when that
166		 * was created.
167		 */
168		if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
169			return pe;
170	}
171
172	return NULL;
173}
174
175/**
176 * eeh_pe_next - Retrieve the next PE in the tree
177 * @pe: current PE
178 * @root: root PE
179 *
180 * The function is used to retrieve the next PE in the
181 * hierarchy PE tree.
182 */
183struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, struct eeh_pe *root)
 
184{
185	struct list_head *next = pe->child_list.next;
186
187	if (next == &pe->child_list) {
188		while (1) {
189			if (pe == root)
190				return NULL;
191			next = pe->child.next;
192			if (next != &pe->parent->child_list)
193				break;
194			pe = pe->parent;
195		}
196	}
197
198	return list_entry(next, struct eeh_pe, child);
199}
200
201/**
202 * eeh_pe_traverse - Traverse PEs in the specified PHB
203 * @root: root PE
204 * @fn: callback
205 * @flag: extra parameter to callback
206 *
207 * The function is used to traverse the specified PE and its
208 * child PEs. The traversing is to be terminated once the
209 * callback returns something other than NULL, or no more PEs
210 * to be traversed.
211 */
212void *eeh_pe_traverse(struct eeh_pe *root,
213		      eeh_pe_traverse_func fn, void *flag)
214{
215	struct eeh_pe *pe;
216	void *ret;
217
218	eeh_for_each_pe(root, pe) {
219		ret = fn(pe, flag);
220		if (ret) return ret;
221	}
222
223	return NULL;
224}
225
226/**
227 * eeh_pe_dev_traverse - Traverse the devices from the PE
228 * @root: EEH PE
229 * @fn: function callback
230 * @flag: extra parameter to callback
231 *
232 * The function is used to traverse the devices of the specified
233 * PE and its child PEs.
234 */
235void eeh_pe_dev_traverse(struct eeh_pe *root,
236			  eeh_edev_traverse_func fn, void *flag)
237{
238	struct eeh_pe *pe;
239	struct eeh_dev *edev, *tmp;
 
240
241	if (!root) {
242		pr_warn("%s: Invalid PE %p\n",
243			__func__, root);
244		return;
245	}
246
247	/* Traverse root PE */
248	eeh_for_each_pe(root, pe)
249		eeh_pe_for_each_dev(pe, edev, tmp)
250			fn(edev, flag);
 
 
 
 
 
 
251}
252
253/**
254 * __eeh_pe_get - Check the PE address
 
 
255 *
256 * For one particular PE, it can be identified by PE address
257 * or tranditional BDF address. BDF address is composed of
258 * Bus/Device/Function number. The extra data referred by flag
259 * indicates which type of address should be used.
260 */
261static void *__eeh_pe_get(struct eeh_pe *pe, void *flag)
262{
263	int *target_pe = flag;
 
264
265	/* PHB PEs are special and should be ignored */
266	if (pe->type & EEH_PE_PHB)
267		return NULL;
268
269	if (*target_pe == pe->addr)
 
 
 
 
 
 
 
270		return pe;
271
272	return NULL;
273}
274
275/**
276 * eeh_pe_get - Search PE based on the given address
277 * @phb: PCI controller
278 * @pe_no: PE number
279 *
280 * Search the corresponding PE based on the specified address which
281 * is included in the eeh device. The function is used to check if
282 * the associated PE has been created against the PE address. It's
283 * notable that the PE address has 2 format: traditional PE address
284 * which is composed of PCI bus/device/function number, or unified
285 * PE address.
286 */
287struct eeh_pe *eeh_pe_get(struct pci_controller *phb, int pe_no)
288{
289	struct eeh_pe *root = eeh_phb_pe_get(phb);
 
 
 
290
291	return eeh_pe_traverse(root, __eeh_pe_get, &pe_no);
292}
293
294/**
295 * eeh_pe_tree_insert - Add EEH device to parent PE
296 * @edev: EEH device
297 * @new_pe_parent: PE to create additional PEs under
298 *
299 * Add EEH device to the PE in edev->pe_config_addr. If a PE already
300 * exists with that address then @edev is added to that PE. Otherwise
301 * a new PE is created and inserted into the PE tree as a child of
302 * @new_pe_parent.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303 *
304 * If @new_pe_parent is NULL then the new PE will be inserted under
305 * directly under the PHB.
 
 
306 */
307int eeh_pe_tree_insert(struct eeh_dev *edev, struct eeh_pe *new_pe_parent)
308{
309	struct pci_controller *hose = edev->controller;
310	struct eeh_pe *pe, *parent;
311
312	/*
313	 * Search the PE has been existing or not according
314	 * to the PE address. If that has been existing, the
315	 * PE should be composed of PCI bus and its subordinate
316	 * components.
317	 */
318	pe = eeh_pe_get(hose, edev->pe_config_addr);
319	if (pe) {
320		if (pe->type & EEH_PE_INVALID) {
321			list_add_tail(&edev->entry, &pe->edevs);
322			edev->pe = pe;
323			/*
324			 * We're running to here because of PCI hotplug caused by
325			 * EEH recovery. We need clear EEH_PE_INVALID until the top.
326			 */
327			parent = pe;
328			while (parent) {
329				if (!(parent->type & EEH_PE_INVALID))
330					break;
331				parent->type &= ~EEH_PE_INVALID;
332				parent = parent->parent;
333			}
334
335			eeh_edev_dbg(edev, "Added to existing PE (parent: PE#%x)\n",
336				     pe->parent->addr);
337		} else {
338			/* Mark the PE as type of PCI bus */
339			pe->type = EEH_PE_BUS;
340			edev->pe = pe;
341
342			/* Put the edev to PE */
343			list_add_tail(&edev->entry, &pe->edevs);
344			eeh_edev_dbg(edev, "Added to bus PE\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
345		}
 
 
 
346		return 0;
347	}
348
349	/* Create a new EEH PE */
350	if (edev->physfn)
351		pe = eeh_pe_alloc(hose, EEH_PE_VF);
352	else
353		pe = eeh_pe_alloc(hose, EEH_PE_DEVICE);
354	if (!pe) {
355		pr_err("%s: out of memory!\n", __func__);
356		return -ENOMEM;
357	}
 
 
358
359	pe->addr = edev->pe_config_addr;
 
 
 
 
 
 
 
 
 
360
361	/*
362	 * Put the new EEH PE into hierarchy tree. If the parent
363	 * can't be found, the newly created PE will be attached
364	 * to PHB directly. Otherwise, we have to associate the
365	 * PE with its parent.
366	 */
367	if (!new_pe_parent) {
368		new_pe_parent = eeh_phb_pe_get(hose);
369		if (!new_pe_parent) {
 
370			pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
371				__func__, hose->global_number);
372			edev->pe = NULL;
373			kfree(pe);
374			return -EEXIST;
375		}
376	}
377
378	/* link new PE into the tree */
379	pe->parent = new_pe_parent;
380	list_add_tail(&pe->child, &new_pe_parent->child_list);
381
382	/*
383	 * Put the newly created PE into the child list and
384	 * link the EEH device accordingly.
385	 */
386	list_add_tail(&edev->entry, &pe->edevs);
 
387	edev->pe = pe;
388	eeh_edev_dbg(edev, "Added to new (parent: PE#%x)\n",
389		     new_pe_parent->addr);
390
391	return 0;
392}
393
394/**
395 * eeh_pe_tree_remove - Remove one EEH device from the associated PE
396 * @edev: EEH device
397 *
398 * The PE hierarchy tree might be changed when doing PCI hotplug.
399 * Also, the PCI devices or buses could be removed from the system
400 * during EEH recovery. So we have to call the function remove the
401 * corresponding PE accordingly if necessary.
402 */
403int eeh_pe_tree_remove(struct eeh_dev *edev)
404{
405	struct eeh_pe *pe, *parent, *child;
406	bool keep, recover;
407	int cnt;
408
409	pe = eeh_dev_to_pe(edev);
410	if (!pe) {
411		eeh_edev_dbg(edev, "No PE found for device.\n");
412		return -EEXIST;
413	}
414
415	/* Remove the EEH device */
 
416	edev->pe = NULL;
417	list_del(&edev->entry);
418
419	/*
420	 * Check if the parent PE includes any EEH devices.
421	 * If not, we should delete that. Also, we should
422	 * delete the parent PE if it doesn't have associated
423	 * child PEs and EEH devices.
424	 */
425	while (1) {
426		parent = pe->parent;
427
428		/* PHB PEs should never be removed */
429		if (pe->type & EEH_PE_PHB)
430			break;
431
432		/*
433		 * XXX: KEEP is set while resetting a PE. I don't think it's
434		 * ever set without RECOVERING also being set. I could
435		 * be wrong though so catch that with a WARN.
436		 */
437		keep = !!(pe->state & EEH_PE_KEEP);
438		recover = !!(pe->state & EEH_PE_RECOVERING);
439		WARN_ON(keep && !recover);
440
441		if (!keep && !recover) {
442			if (list_empty(&pe->edevs) &&
443			    list_empty(&pe->child_list)) {
444				list_del(&pe->child);
445				kfree(pe);
446			} else {
447				break;
448			}
449		} else {
450			/*
451			 * Mark the PE as invalid. At the end of the recovery
452			 * process any invalid PEs will be garbage collected.
453			 *
454			 * We need to delay the free()ing of them since we can
455			 * remove edev's while traversing the PE tree which
456			 * might trigger the removal of a PE and we can't
457			 * deal with that (yet).
458			 */
459			if (list_empty(&pe->edevs)) {
460				cnt = 0;
461				list_for_each_entry(child, &pe->child_list, child) {
462					if (!(child->type & EEH_PE_INVALID)) {
463						cnt++;
464						break;
465					}
466				}
467
468				if (!cnt)
469					pe->type |= EEH_PE_INVALID;
470				else
471					break;
472			}
473		}
474
475		pe = parent;
476	}
477
478	return 0;
479}
480
481/**
482 * eeh_pe_update_time_stamp - Update PE's frozen time stamp
483 * @pe: EEH PE
484 *
485 * We have time stamp for each PE to trace its time of getting
486 * frozen in last hour. The function should be called to update
487 * the time stamp on first error of the specific PE. On the other
488 * handle, we needn't account for errors happened in last hour.
489 */
490void eeh_pe_update_time_stamp(struct eeh_pe *pe)
491{
492	time64_t tstamp;
493
494	if (!pe) return;
495
496	if (pe->freeze_count <= 0) {
497		pe->freeze_count = 0;
498		pe->tstamp = ktime_get_seconds();
499	} else {
500		tstamp = ktime_get_seconds();
501		if (tstamp - pe->tstamp > 3600) {
502			pe->tstamp = tstamp;
503			pe->freeze_count = 0;
504		}
505	}
506}
507
508/**
509 * eeh_pe_state_mark - Mark specified state for PE and its associated device
510 * @pe: EEH PE
511 *
512 * EEH error affects the current PE and its child PEs. The function
513 * is used to mark appropriate state for the affected PEs and the
514 * associated devices.
515 */
516void eeh_pe_state_mark(struct eeh_pe *root, int state)
517{
518	struct eeh_pe *pe;
519
520	eeh_for_each_pe(root, pe)
521		if (!(pe->state & EEH_PE_REMOVED))
522			pe->state |= state;
523}
524EXPORT_SYMBOL_GPL(eeh_pe_state_mark);
525
526/**
527 * eeh_pe_mark_isolated
528 * @pe: EEH PE
529 *
530 * Record that a PE has been isolated by marking the PE and it's children as
531 * EEH_PE_ISOLATED (and EEH_PE_CFG_BLOCKED, if required) and their PCI devices
532 * as pci_channel_io_frozen.
533 */
534void eeh_pe_mark_isolated(struct eeh_pe *root)
535{
536	struct eeh_pe *pe;
537	struct eeh_dev *edev;
 
538	struct pci_dev *pdev;
539
540	eeh_pe_state_mark(root, EEH_PE_ISOLATED);
541	eeh_for_each_pe(root, pe) {
542		list_for_each_entry(edev, &pe->edevs, entry) {
543			pdev = eeh_dev_to_pci_dev(edev);
544			if (pdev)
545				pdev->error_state = pci_channel_io_frozen;
546		}
547		/* Block PCI config access if required */
548		if (pe->state & EEH_PE_CFG_RESTRICTED)
549			pe->state |= EEH_PE_CFG_BLOCKED;
 
550	}
551}
552EXPORT_SYMBOL_GPL(eeh_pe_mark_isolated);
553
554static void __eeh_pe_dev_mode_mark(struct eeh_dev *edev, void *flag)
555{
556	int mode = *((int *)flag);
557
558	edev->mode |= mode;
559}
560
561/**
562 * eeh_pe_dev_state_mark - Mark state for all device under the PE
563 * @pe: EEH PE
564 *
565 * Mark specific state for all child devices of the PE.
 
 
566 */
567void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
568{
569	eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
570}
571
572/**
573 * eeh_pe_state_clear - Clear state for the PE
574 * @data: EEH PE
575 * @state: state
576 * @include_passed: include passed-through devices?
577 *
578 * The function is used to clear the indicated state from the
579 * given PE. Besides, we also clear the check count of the PE
580 * as well.
581 */
582void eeh_pe_state_clear(struct eeh_pe *root, int state, bool include_passed)
583{
584	struct eeh_pe *pe;
585	struct eeh_dev *edev, *tmp;
586	struct pci_dev *pdev;
587
588	eeh_for_each_pe(root, pe) {
589		/* Keep the state of permanently removed PE intact */
590		if (pe->state & EEH_PE_REMOVED)
591			continue;
592
593		if (!include_passed && eeh_pe_passed(pe))
594			continue;
595
596		pe->state &= ~state;
597
598		/*
599		 * Special treatment on clearing isolated state. Clear
600		 * check count since last isolation and put all affected
601		 * devices to normal state.
602		 */
603		if (!(state & EEH_PE_ISOLATED))
604			continue;
605
606		pe->check_count = 0;
607		eeh_pe_for_each_dev(pe, edev, tmp) {
608			pdev = eeh_dev_to_pci_dev(edev);
609			if (!pdev)
610				continue;
611
612			pdev->error_state = pci_channel_io_normal;
613		}
614
615		/* Unblock PCI config access if required */
616		if (pe->state & EEH_PE_CFG_RESTRICTED)
617			pe->state &= ~EEH_PE_CFG_BLOCKED;
618	}
 
 
 
 
 
 
 
 
619}
620
621/*
622 * Some PCI bridges (e.g. PLX bridges) have primary/secondary
623 * buses assigned explicitly by firmware, and we probably have
624 * lost that after reset. So we have to delay the check until
625 * the PCI-CFG registers have been restored for the parent
626 * bridge.
627 *
628 * Don't use normal PCI-CFG accessors, which probably has been
629 * blocked on normal path during the stage. So we need utilize
630 * eeh operations, which is always permitted.
631 */
632static void eeh_bridge_check_link(struct eeh_dev *edev)
 
633{
634	int cap;
635	uint32_t val;
636	int timeout = 0;
637
638	/*
639	 * We only check root port and downstream ports of
640	 * PCIe switches
641	 */
642	if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
643		return;
644
645	eeh_edev_dbg(edev, "Checking PCIe link...\n");
 
 
 
 
646
647	/* Check slot status */
648	cap = edev->pcie_cap;
649	eeh_ops->read_config(edev, cap + PCI_EXP_SLTSTA, 2, &val);
650	if (!(val & PCI_EXP_SLTSTA_PDS)) {
651		eeh_edev_dbg(edev, "No card in the slot (0x%04x) !\n", val);
652		return;
653	}
654
655	/* Check power status if we have the capability */
656	eeh_ops->read_config(edev, cap + PCI_EXP_SLTCAP, 2, &val);
657	if (val & PCI_EXP_SLTCAP_PCP) {
658		eeh_ops->read_config(edev, cap + PCI_EXP_SLTCTL, 2, &val);
659		if (val & PCI_EXP_SLTCTL_PCC) {
660			eeh_edev_dbg(edev, "In power-off state, power it on ...\n");
661			val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
662			val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
663			eeh_ops->write_config(edev, cap + PCI_EXP_SLTCTL, 2, val);
664			msleep(2 * 1000);
665		}
666	}
667
668	/* Enable link */
669	eeh_ops->read_config(edev, cap + PCI_EXP_LNKCTL, 2, &val);
670	val &= ~PCI_EXP_LNKCTL_LD;
671	eeh_ops->write_config(edev, cap + PCI_EXP_LNKCTL, 2, val);
672
673	/* Check link */
674	if (!edev->pdev->link_active_reporting) {
675		eeh_edev_dbg(edev, "No link reporting capability\n");
 
676		msleep(1000);
677		return;
678	}
679
680	/* Wait the link is up until timeout (5s) */
681	timeout = 0;
682	while (timeout < 5000) {
683		msleep(20);
684		timeout += 20;
685
686		eeh_ops->read_config(edev, cap + PCI_EXP_LNKSTA, 2, &val);
687		if (val & PCI_EXP_LNKSTA_DLLLA)
688			break;
689	}
690
691	if (val & PCI_EXP_LNKSTA_DLLLA)
692		eeh_edev_dbg(edev, "Link up (%s)\n",
693			 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
694	else
695		eeh_edev_dbg(edev, "Link not ready (0x%04x)\n", val);
696}
697
698#define BYTE_SWAP(OFF)	(8*((OFF)/4)+3-(OFF))
699#define SAVED_BYTE(OFF)	(((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
700
701static void eeh_restore_bridge_bars(struct eeh_dev *edev)
 
702{
703	int i;
704
705	/*
706	 * Device BARs: 0x10 - 0x18
707	 * Bus numbers and windows: 0x18 - 0x30
708	 */
709	for (i = 4; i < 13; i++)
710		eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]);
711	/* Rom: 0x38 */
712	eeh_ops->write_config(edev, 14*4, 4, edev->config_space[14]);
713
714	/* Cache line & Latency timer: 0xC 0xD */
715	eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1,
716                SAVED_BYTE(PCI_CACHE_LINE_SIZE));
717	eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1,
718		SAVED_BYTE(PCI_LATENCY_TIMER));
719	/* Max latency, min grant, interrupt ping and line: 0x3C */
720	eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]);
721
722	/* PCI Command: 0x4 */
723	eeh_ops->write_config(edev, PCI_COMMAND, 4, edev->config_space[1] |
724			      PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
725
726	/* Check the PCIe link is ready */
727	eeh_bridge_check_link(edev);
728}
729
730static void eeh_restore_device_bars(struct eeh_dev *edev)
 
731{
732	int i;
733	u32 cmd;
734
735	for (i = 4; i < 10; i++)
736		eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]);
737	/* 12 == Expansion ROM Address */
738	eeh_ops->write_config(edev, 12*4, 4, edev->config_space[12]);
739
740	eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1,
741		SAVED_BYTE(PCI_CACHE_LINE_SIZE));
742	eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1,
743		SAVED_BYTE(PCI_LATENCY_TIMER));
744
745	/* max latency, min grant, interrupt pin and line */
746	eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]);
747
748	/*
749	 * Restore PERR & SERR bits, some devices require it,
750	 * don't touch the other command bits
751	 */
752	eeh_ops->read_config(edev, PCI_COMMAND, 4, &cmd);
753	if (edev->config_space[1] & PCI_COMMAND_PARITY)
754		cmd |= PCI_COMMAND_PARITY;
755	else
756		cmd &= ~PCI_COMMAND_PARITY;
757	if (edev->config_space[1] & PCI_COMMAND_SERR)
758		cmd |= PCI_COMMAND_SERR;
759	else
760		cmd &= ~PCI_COMMAND_SERR;
761	eeh_ops->write_config(edev, PCI_COMMAND, 4, cmd);
762}
763
764/**
765 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
766 * @data: EEH device
767 * @flag: Unused
768 *
769 * Loads the PCI configuration space base address registers,
770 * the expansion ROM base address, the latency timer, and etc.
771 * from the saved values in the device node.
772 */
773static void eeh_restore_one_device_bars(struct eeh_dev *edev, void *flag)
774{
 
 
 
775	/* Do special restore for bridges */
776	if (edev->mode & EEH_DEV_BRIDGE)
777		eeh_restore_bridge_bars(edev);
778	else
779		eeh_restore_device_bars(edev);
780
781	if (eeh_ops->restore_config)
782		eeh_ops->restore_config(edev);
 
 
783}
784
785/**
786 * eeh_pe_restore_bars - Restore the PCI config space info
787 * @pe: EEH PE
788 *
789 * This routine performs a recursive walk to the children
790 * of this device as well.
791 */
792void eeh_pe_restore_bars(struct eeh_pe *pe)
793{
794	/*
795	 * We needn't take the EEH lock since eeh_pe_dev_traverse()
796	 * will take that.
797	 */
798	eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
799}
800
801/**
802 * eeh_pe_loc_get - Retrieve location code binding to the given PE
803 * @pe: EEH PE
804 *
805 * Retrieve the location code of the given PE. If the primary PE bus
806 * is root bus, we will grab location code from PHB device tree node
807 * or root port. Otherwise, the upstream bridge's device tree node
808 * of the primary PE bus will be checked for the location code.
809 */
810const char *eeh_pe_loc_get(struct eeh_pe *pe)
811{
812	struct pci_bus *bus = eeh_pe_bus_get(pe);
813	struct device_node *dn;
814	const char *loc = NULL;
815
816	while (bus) {
817		dn = pci_bus_to_OF_node(bus);
818		if (!dn) {
819			bus = bus->parent;
820			continue;
821		}
822
823		if (pci_is_root_bus(bus))
824			loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
825		else
826			loc = of_get_property(dn, "ibm,slot-location-code",
827					      NULL);
828
829		if (loc)
830			return loc;
831
832		bus = bus->parent;
833	}
834
835	return "N/A";
836}
837
838/**
839 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
840 * @pe: EEH PE
841 *
842 * Retrieve the PCI bus according to the given PE. Basically,
843 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
844 * primary PCI bus will be retrieved. The parent bus will be
845 * returned for BUS PE. However, we don't have associated PCI
846 * bus for DEVICE PE.
847 */
848struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
849{
 
850	struct eeh_dev *edev;
851	struct pci_dev *pdev;
852
853	if (pe->type & EEH_PE_PHB)
854		return pe->phb->bus;
855
856	/* The primary bus might be cached during probe time */
857	if (pe->state & EEH_PE_PRI_BUS)
858		return pe->bus;
859
860	/* Retrieve the parent PCI bus of first (top) PCI device */
861	edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry);
862	pdev = eeh_dev_to_pci_dev(edev);
863	if (pdev)
864		return pdev->bus;
 
 
865
866	return NULL;
 
867}
v3.15
 
  1/*
  2 * The file intends to implement PE based on the information from
  3 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
  4 * All the PEs should be organized as hierarchy tree. The first level
  5 * of the tree will be associated to existing PHBs since the particular
  6 * PE is only meaningful in one PHB domain.
  7 *
  8 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
  9 *
 10 * This program is free software; you can redistribute it and/or modify
 11 * it under the terms of the GNU General Public License as published by
 12 * the Free Software Foundation; either version 2 of the License, or
 13 * (at your option) any later version.
 14 *
 15 * This program is distributed in the hope that it will be useful,
 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 18 * GNU General Public License for more details.
 19 *
 20 * You should have received a copy of the GNU General Public License
 21 * along with this program; if not, write to the Free Software
 22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 23 */
 24
 25#include <linux/delay.h>
 26#include <linux/export.h>
 27#include <linux/gfp.h>
 28#include <linux/kernel.h>
 
 29#include <linux/pci.h>
 30#include <linux/string.h>
 31
 32#include <asm/pci-bridge.h>
 33#include <asm/ppc-pci.h>
 34
 
 35static LIST_HEAD(eeh_phb_pe);
 36
 37/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 38 * eeh_pe_alloc - Allocate PE
 39 * @phb: PCI controller
 40 * @type: PE type
 41 *
 42 * Allocate PE instance dynamically.
 43 */
 44static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
 45{
 46	struct eeh_pe *pe;
 
 
 
 
 
 
 
 47
 48	/* Allocate PHB PE */
 49	pe = kzalloc(sizeof(struct eeh_pe), GFP_KERNEL);
 50	if (!pe) return NULL;
 51
 52	/* Initialize PHB PE */
 53	pe->type = type;
 54	pe->phb = phb;
 55	INIT_LIST_HEAD(&pe->child_list);
 56	INIT_LIST_HEAD(&pe->child);
 57	INIT_LIST_HEAD(&pe->edevs);
 58
 
 
 59	return pe;
 60}
 61
 62/**
 63 * eeh_phb_pe_create - Create PHB PE
 64 * @phb: PCI controller
 65 *
 66 * The function should be called while the PHB is detected during
 67 * system boot or PCI hotplug in order to create PHB PE.
 68 */
 69int eeh_phb_pe_create(struct pci_controller *phb)
 70{
 71	struct eeh_pe *pe;
 72
 73	/* Allocate PHB PE */
 74	pe = eeh_pe_alloc(phb, EEH_PE_PHB);
 75	if (!pe) {
 76		pr_err("%s: out of memory!\n", __func__);
 77		return -ENOMEM;
 78	}
 79
 80	/* Put it into the list */
 81	list_add_tail(&pe->child, &eeh_phb_pe);
 82
 83	pr_debug("EEH: Add PE for PHB#%d\n", phb->global_number);
 84
 85	return 0;
 86}
 87
 88/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 89 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
 90 * @phb: PCI controller
 91 *
 92 * The overall PEs form hierarchy tree. The first layer of the
 93 * hierarchy tree is composed of PHB PEs. The function is used
 94 * to retrieve the corresponding PHB PE according to the given PHB.
 95 */
 96struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
 97{
 98	struct eeh_pe *pe;
 99
100	list_for_each_entry(pe, &eeh_phb_pe, child) {
101		/*
102		 * Actually, we needn't check the type since
103		 * the PE for PHB has been determined when that
104		 * was created.
105		 */
106		if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
107			return pe;
108	}
109
110	return NULL;
111}
112
113/**
114 * eeh_pe_next - Retrieve the next PE in the tree
115 * @pe: current PE
116 * @root: root PE
117 *
118 * The function is used to retrieve the next PE in the
119 * hierarchy PE tree.
120 */
121static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe,
122				  struct eeh_pe *root)
123{
124	struct list_head *next = pe->child_list.next;
125
126	if (next == &pe->child_list) {
127		while (1) {
128			if (pe == root)
129				return NULL;
130			next = pe->child.next;
131			if (next != &pe->parent->child_list)
132				break;
133			pe = pe->parent;
134		}
135	}
136
137	return list_entry(next, struct eeh_pe, child);
138}
139
140/**
141 * eeh_pe_traverse - Traverse PEs in the specified PHB
142 * @root: root PE
143 * @fn: callback
144 * @flag: extra parameter to callback
145 *
146 * The function is used to traverse the specified PE and its
147 * child PEs. The traversing is to be terminated once the
148 * callback returns something other than NULL, or no more PEs
149 * to be traversed.
150 */
151void *eeh_pe_traverse(struct eeh_pe *root,
152		      eeh_traverse_func fn, void *flag)
153{
154	struct eeh_pe *pe;
155	void *ret;
156
157	for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
158		ret = fn(pe, flag);
159		if (ret) return ret;
160	}
161
162	return NULL;
163}
164
165/**
166 * eeh_pe_dev_traverse - Traverse the devices from the PE
167 * @root: EEH PE
168 * @fn: function callback
169 * @flag: extra parameter to callback
170 *
171 * The function is used to traverse the devices of the specified
172 * PE and its child PEs.
173 */
174void *eeh_pe_dev_traverse(struct eeh_pe *root,
175		eeh_traverse_func fn, void *flag)
176{
177	struct eeh_pe *pe;
178	struct eeh_dev *edev, *tmp;
179	void *ret;
180
181	if (!root) {
182		pr_warning("%s: Invalid PE %p\n", __func__, root);
183		return NULL;
 
184	}
185
186	/* Traverse root PE */
187	for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
188		eeh_pe_for_each_dev(pe, edev, tmp) {
189			ret = fn(edev, flag);
190			if (ret)
191				return ret;
192		}
193	}
194
195	return NULL;
196}
197
198/**
199 * __eeh_pe_get - Check the PE address
200 * @data: EEH PE
201 * @flag: EEH device
202 *
203 * For one particular PE, it can be identified by PE address
204 * or tranditional BDF address. BDF address is composed of
205 * Bus/Device/Function number. The extra data referred by flag
206 * indicates which type of address should be used.
207 */
208static void *__eeh_pe_get(void *data, void *flag)
209{
210	struct eeh_pe *pe = (struct eeh_pe *)data;
211	struct eeh_dev *edev = (struct eeh_dev *)flag;
212
213	/* Unexpected PHB PE */
214	if (pe->type & EEH_PE_PHB)
215		return NULL;
216
217	/* We prefer PE address */
218	if (edev->pe_config_addr &&
219	   (edev->pe_config_addr == pe->addr))
220		return pe;
221
222	/* Try BDF address */
223	if (edev->config_addr &&
224	   (edev->config_addr == pe->config_addr))
225		return pe;
226
227	return NULL;
228}
229
230/**
231 * eeh_pe_get - Search PE based on the given address
232 * @edev: EEH device
 
233 *
234 * Search the corresponding PE based on the specified address which
235 * is included in the eeh device. The function is used to check if
236 * the associated PE has been created against the PE address. It's
237 * notable that the PE address has 2 format: traditional PE address
238 * which is composed of PCI bus/device/function number, or unified
239 * PE address.
240 */
241struct eeh_pe *eeh_pe_get(struct eeh_dev *edev)
242{
243	struct eeh_pe *root = eeh_phb_pe_get(edev->phb);
244	struct eeh_pe *pe;
245
246	pe = eeh_pe_traverse(root, __eeh_pe_get, edev);
247
248	return pe;
249}
250
251/**
252 * eeh_pe_get_parent - Retrieve the parent PE
253 * @edev: EEH device
 
254 *
255 * The whole PEs existing in the system are organized as hierarchy
256 * tree. The function is used to retrieve the parent PE according
257 * to the parent EEH device.
258 */
259static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev)
260{
261	struct device_node *dn;
262	struct eeh_dev *parent;
263
264	/*
265	 * It might have the case for the indirect parent
266	 * EEH device already having associated PE, but
267	 * the direct parent EEH device doesn't have yet.
268	 */
269	dn = edev->dn->parent;
270	while (dn) {
271		/* We're poking out of PCI territory */
272		if (!PCI_DN(dn)) return NULL;
273
274		parent = of_node_to_eeh_dev(dn);
275		/* We're poking out of PCI territory */
276		if (!parent) return NULL;
277
278		if (parent->pe)
279			return parent->pe;
280
281		dn = dn->parent;
282	}
283
284	return NULL;
285}
286
287/**
288 * eeh_add_to_parent_pe - Add EEH device to parent PE
289 * @edev: EEH device
290 *
291 * Add EEH device to the parent PE. If the parent PE already
292 * exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
293 * we have to create new PE to hold the EEH device and the new
294 * PE will be linked to its parent PE as well.
295 */
296int eeh_add_to_parent_pe(struct eeh_dev *edev)
297{
 
298	struct eeh_pe *pe, *parent;
299
300	/*
301	 * Search the PE has been existing or not according
302	 * to the PE address. If that has been existing, the
303	 * PE should be composed of PCI bus and its subordinate
304	 * components.
305	 */
306	pe = eeh_pe_get(edev);
307	if (pe && !(pe->type & EEH_PE_INVALID)) {
308		if (!edev->pe_config_addr) {
309			pr_err("%s: PE with addr 0x%x already exists\n",
310				__func__, edev->config_addr);
311			return -EEXIST;
312		}
 
 
 
 
 
 
 
 
 
313
314		/* Mark the PE as type of PCI bus */
315		pe->type = EEH_PE_BUS;
316		edev->pe = pe;
317
318		/* Put the edev to PE */
319		list_add_tail(&edev->list, &pe->edevs);
320		pr_debug("EEH: Add %s to Bus PE#%x\n",
321			edev->dn->full_name, pe->addr);
322
323		return 0;
324	} else if (pe && (pe->type & EEH_PE_INVALID)) {
325		list_add_tail(&edev->list, &pe->edevs);
326		edev->pe = pe;
327		/*
328		 * We're running to here because of PCI hotplug caused by
329		 * EEH recovery. We need clear EEH_PE_INVALID until the top.
330		 */
331		parent = pe;
332		while (parent) {
333			if (!(parent->type & EEH_PE_INVALID))
334				break;
335			parent->type &= ~(EEH_PE_INVALID | EEH_PE_KEEP);
336			parent = parent->parent;
337		}
338		pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n",
339			edev->dn->full_name, pe->addr, pe->parent->addr);
340
341		return 0;
342	}
343
344	/* Create a new EEH PE */
345	pe = eeh_pe_alloc(edev->phb, EEH_PE_DEVICE);
 
 
 
346	if (!pe) {
347		pr_err("%s: out of memory!\n", __func__);
348		return -ENOMEM;
349	}
350	pe->addr	= edev->pe_config_addr;
351	pe->config_addr	= edev->config_addr;
352
353	/*
354	 * While doing PE reset, we probably hot-reset the
355	 * upstream bridge. However, the PCI devices including
356	 * the associated EEH devices might be removed when EEH
357	 * core is doing recovery. So that won't safe to retrieve
358	 * the bridge through downstream EEH device. We have to
359	 * trace the parent PCI bus, then the upstream bridge.
360	 */
361	if (eeh_probe_mode_dev())
362		pe->bus = eeh_dev_to_pci_dev(edev)->bus;
363
364	/*
365	 * Put the new EEH PE into hierarchy tree. If the parent
366	 * can't be found, the newly created PE will be attached
367	 * to PHB directly. Otherwise, we have to associate the
368	 * PE with its parent.
369	 */
370	parent = eeh_pe_get_parent(edev);
371	if (!parent) {
372		parent = eeh_phb_pe_get(edev->phb);
373		if (!parent) {
374			pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
375				__func__, edev->phb->global_number);
376			edev->pe = NULL;
377			kfree(pe);
378			return -EEXIST;
379		}
380	}
381	pe->parent = parent;
 
 
 
382
383	/*
384	 * Put the newly created PE into the child list and
385	 * link the EEH device accordingly.
386	 */
387	list_add_tail(&pe->child, &parent->child_list);
388	list_add_tail(&edev->list, &pe->edevs);
389	edev->pe = pe;
390	pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n",
391		edev->dn->full_name, pe->addr, pe->parent->addr);
392
393	return 0;
394}
395
396/**
397 * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
398 * @edev: EEH device
399 *
400 * The PE hierarchy tree might be changed when doing PCI hotplug.
401 * Also, the PCI devices or buses could be removed from the system
402 * during EEH recovery. So we have to call the function remove the
403 * corresponding PE accordingly if necessary.
404 */
405int eeh_rmv_from_parent_pe(struct eeh_dev *edev)
406{
407	struct eeh_pe *pe, *parent, *child;
 
408	int cnt;
409
410	if (!edev->pe) {
411		pr_debug("%s: No PE found for EEH device %s\n",
412			 __func__, edev->dn->full_name);
413		return -EEXIST;
414	}
415
416	/* Remove the EEH device */
417	pe = edev->pe;
418	edev->pe = NULL;
419	list_del(&edev->list);
420
421	/*
422	 * Check if the parent PE includes any EEH devices.
423	 * If not, we should delete that. Also, we should
424	 * delete the parent PE if it doesn't have associated
425	 * child PEs and EEH devices.
426	 */
427	while (1) {
428		parent = pe->parent;
 
 
429		if (pe->type & EEH_PE_PHB)
430			break;
431
432		if (!(pe->state & EEH_PE_KEEP)) {
 
 
 
 
 
 
 
 
 
433			if (list_empty(&pe->edevs) &&
434			    list_empty(&pe->child_list)) {
435				list_del(&pe->child);
436				kfree(pe);
437			} else {
438				break;
439			}
440		} else {
 
 
 
 
 
 
 
 
 
441			if (list_empty(&pe->edevs)) {
442				cnt = 0;
443				list_for_each_entry(child, &pe->child_list, child) {
444					if (!(child->type & EEH_PE_INVALID)) {
445						cnt++;
446						break;
447					}
448				}
449
450				if (!cnt)
451					pe->type |= EEH_PE_INVALID;
452				else
453					break;
454			}
455		}
456
457		pe = parent;
458	}
459
460	return 0;
461}
462
463/**
464 * eeh_pe_update_time_stamp - Update PE's frozen time stamp
465 * @pe: EEH PE
466 *
467 * We have time stamp for each PE to trace its time of getting
468 * frozen in last hour. The function should be called to update
469 * the time stamp on first error of the specific PE. On the other
470 * handle, we needn't account for errors happened in last hour.
471 */
472void eeh_pe_update_time_stamp(struct eeh_pe *pe)
473{
474	struct timeval tstamp;
475
476	if (!pe) return;
477
478	if (pe->freeze_count <= 0) {
479		pe->freeze_count = 0;
480		do_gettimeofday(&pe->tstamp);
481	} else {
482		do_gettimeofday(&tstamp);
483		if (tstamp.tv_sec - pe->tstamp.tv_sec > 3600) {
484			pe->tstamp = tstamp;
485			pe->freeze_count = 0;
486		}
487	}
488}
489
490/**
491 * __eeh_pe_state_mark - Mark the state for the PE
492 * @data: EEH PE
493 * @flag: state
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
494 *
495 * The function is used to mark the indicated state for the given
496 * PE. Also, the associated PCI devices will be put into IO frozen
497 * state as well.
498 */
499static void *__eeh_pe_state_mark(void *data, void *flag)
500{
501	struct eeh_pe *pe = (struct eeh_pe *)data;
502	int state = *((int *)flag);
503	struct eeh_dev *edev, *tmp;
504	struct pci_dev *pdev;
505
506	/*
507	 * Mark the PE with the indicated state. Also,
508	 * the associated PCI device will be put into
509	 * I/O frozen state to avoid I/O accesses from
510	 * the PCI device driver.
511	 */
512	pe->state |= state;
513	eeh_pe_for_each_dev(pe, edev, tmp) {
514		pdev = eeh_dev_to_pci_dev(edev);
515		if (pdev)
516			pdev->error_state = pci_channel_io_frozen;
517	}
 
 
 
 
 
 
518
519	return NULL;
520}
521
522/**
523 * eeh_pe_state_mark - Mark specified state for PE and its associated device
524 * @pe: EEH PE
525 *
526 * EEH error affects the current PE and its child PEs. The function
527 * is used to mark appropriate state for the affected PEs and the
528 * associated devices.
529 */
530void eeh_pe_state_mark(struct eeh_pe *pe, int state)
531{
532	eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
533}
534
535/**
536 * __eeh_pe_state_clear - Clear state for the PE
537 * @data: EEH PE
538 * @flag: state
 
539 *
540 * The function is used to clear the indicated state from the
541 * given PE. Besides, we also clear the check count of the PE
542 * as well.
543 */
544static void *__eeh_pe_state_clear(void *data, void *flag)
545{
546	struct eeh_pe *pe = (struct eeh_pe *)data;
547	int state = *((int *)flag);
 
 
 
 
 
 
548
549	pe->state &= ~state;
550	pe->check_count = 0;
551
552	return NULL;
553}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
554
555/**
556 * eeh_pe_state_clear - Clear state for the PE and its children
557 * @pe: PE
558 * @state: state to be cleared
559 *
560 * When the PE and its children has been recovered from error,
561 * we need clear the error state for that. The function is used
562 * for the purpose.
563 */
564void eeh_pe_state_clear(struct eeh_pe *pe, int state)
565{
566	eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
567}
568
569/*
570 * Some PCI bridges (e.g. PLX bridges) have primary/secondary
571 * buses assigned explicitly by firmware, and we probably have
572 * lost that after reset. So we have to delay the check until
573 * the PCI-CFG registers have been restored for the parent
574 * bridge.
575 *
576 * Don't use normal PCI-CFG accessors, which probably has been
577 * blocked on normal path during the stage. So we need utilize
578 * eeh operations, which is always permitted.
579 */
580static void eeh_bridge_check_link(struct eeh_dev *edev,
581				  struct device_node *dn)
582{
583	int cap;
584	uint32_t val;
585	int timeout = 0;
586
587	/*
588	 * We only check root port and downstream ports of
589	 * PCIe switches
590	 */
591	if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
592		return;
593
594	pr_debug("%s: Check PCIe link for %04x:%02x:%02x.%01x ...\n",
595		 __func__, edev->phb->global_number,
596		 edev->config_addr >> 8,
597		 PCI_SLOT(edev->config_addr & 0xFF),
598		 PCI_FUNC(edev->config_addr & 0xFF));
599
600	/* Check slot status */
601	cap = edev->pcie_cap;
602	eeh_ops->read_config(dn, cap + PCI_EXP_SLTSTA, 2, &val);
603	if (!(val & PCI_EXP_SLTSTA_PDS)) {
604		pr_debug("  No card in the slot (0x%04x) !\n", val);
605		return;
606	}
607
608	/* Check power status if we have the capability */
609	eeh_ops->read_config(dn, cap + PCI_EXP_SLTCAP, 2, &val);
610	if (val & PCI_EXP_SLTCAP_PCP) {
611		eeh_ops->read_config(dn, cap + PCI_EXP_SLTCTL, 2, &val);
612		if (val & PCI_EXP_SLTCTL_PCC) {
613			pr_debug("  In power-off state, power it on ...\n");
614			val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
615			val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
616			eeh_ops->write_config(dn, cap + PCI_EXP_SLTCTL, 2, val);
617			msleep(2 * 1000);
618		}
619	}
620
621	/* Enable link */
622	eeh_ops->read_config(dn, cap + PCI_EXP_LNKCTL, 2, &val);
623	val &= ~PCI_EXP_LNKCTL_LD;
624	eeh_ops->write_config(dn, cap + PCI_EXP_LNKCTL, 2, val);
625
626	/* Check link */
627	eeh_ops->read_config(dn, cap + PCI_EXP_LNKCAP, 4, &val);
628	if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
629		pr_debug("  No link reporting capability (0x%08x) \n", val);
630		msleep(1000);
631		return;
632	}
633
634	/* Wait the link is up until timeout (5s) */
635	timeout = 0;
636	while (timeout < 5000) {
637		msleep(20);
638		timeout += 20;
639
640		eeh_ops->read_config(dn, cap + PCI_EXP_LNKSTA, 2, &val);
641		if (val & PCI_EXP_LNKSTA_DLLLA)
642			break;
643	}
644
645	if (val & PCI_EXP_LNKSTA_DLLLA)
646		pr_debug("  Link up (%s)\n",
647			 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
648	else
649		pr_debug("  Link not ready (0x%04x)\n", val);
650}
651
652#define BYTE_SWAP(OFF)	(8*((OFF)/4)+3-(OFF))
653#define SAVED_BYTE(OFF)	(((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
654
655static void eeh_restore_bridge_bars(struct eeh_dev *edev,
656				    struct device_node *dn)
657{
658	int i;
659
660	/*
661	 * Device BARs: 0x10 - 0x18
662	 * Bus numbers and windows: 0x18 - 0x30
663	 */
664	for (i = 4; i < 13; i++)
665		eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]);
666	/* Rom: 0x38 */
667	eeh_ops->write_config(dn, 14*4, 4, edev->config_space[14]);
668
669	/* Cache line & Latency timer: 0xC 0xD */
670	eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1,
671                SAVED_BYTE(PCI_CACHE_LINE_SIZE));
672        eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1,
673                SAVED_BYTE(PCI_LATENCY_TIMER));
674	/* Max latency, min grant, interrupt ping and line: 0x3C */
675	eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]);
676
677	/* PCI Command: 0x4 */
678	eeh_ops->write_config(dn, PCI_COMMAND, 4, edev->config_space[1]);
 
679
680	/* Check the PCIe link is ready */
681	eeh_bridge_check_link(edev, dn);
682}
683
684static void eeh_restore_device_bars(struct eeh_dev *edev,
685				    struct device_node *dn)
686{
687	int i;
688	u32 cmd;
689
690	for (i = 4; i < 10; i++)
691		eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]);
692	/* 12 == Expansion ROM Address */
693	eeh_ops->write_config(dn, 12*4, 4, edev->config_space[12]);
694
695	eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1,
696		SAVED_BYTE(PCI_CACHE_LINE_SIZE));
697	eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1,
698		SAVED_BYTE(PCI_LATENCY_TIMER));
699
700	/* max latency, min grant, interrupt pin and line */
701	eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]);
702
703	/*
704	 * Restore PERR & SERR bits, some devices require it,
705	 * don't touch the other command bits
706	 */
707	eeh_ops->read_config(dn, PCI_COMMAND, 4, &cmd);
708	if (edev->config_space[1] & PCI_COMMAND_PARITY)
709		cmd |= PCI_COMMAND_PARITY;
710	else
711		cmd &= ~PCI_COMMAND_PARITY;
712	if (edev->config_space[1] & PCI_COMMAND_SERR)
713		cmd |= PCI_COMMAND_SERR;
714	else
715		cmd &= ~PCI_COMMAND_SERR;
716	eeh_ops->write_config(dn, PCI_COMMAND, 4, cmd);
717}
718
719/**
720 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
721 * @data: EEH device
722 * @flag: Unused
723 *
724 * Loads the PCI configuration space base address registers,
725 * the expansion ROM base address, the latency timer, and etc.
726 * from the saved values in the device node.
727 */
728static void *eeh_restore_one_device_bars(void *data, void *flag)
729{
730	struct eeh_dev *edev = (struct eeh_dev *)data;
731	struct device_node *dn = eeh_dev_to_of_node(edev);
732
733	/* Do special restore for bridges */
734	if (edev->mode & EEH_DEV_BRIDGE)
735		eeh_restore_bridge_bars(edev, dn);
736	else
737		eeh_restore_device_bars(edev, dn);
738
739	if (eeh_ops->restore_config)
740		eeh_ops->restore_config(dn);
741
742	return NULL;
743}
744
745/**
746 * eeh_pe_restore_bars - Restore the PCI config space info
747 * @pe: EEH PE
748 *
749 * This routine performs a recursive walk to the children
750 * of this device as well.
751 */
752void eeh_pe_restore_bars(struct eeh_pe *pe)
753{
754	/*
755	 * We needn't take the EEH lock since eeh_pe_dev_traverse()
756	 * will take that.
757	 */
758	eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
759}
760
761/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
762 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
763 * @pe: EEH PE
764 *
765 * Retrieve the PCI bus according to the given PE. Basically,
766 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
767 * primary PCI bus will be retrieved. The parent bus will be
768 * returned for BUS PE. However, we don't have associated PCI
769 * bus for DEVICE PE.
770 */
771struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
772{
773	struct pci_bus *bus = NULL;
774	struct eeh_dev *edev;
775	struct pci_dev *pdev;
776
777	if (pe->type & EEH_PE_PHB) {
778		bus = pe->phb->bus;
779	} else if (pe->type & EEH_PE_BUS ||
780		   pe->type & EEH_PE_DEVICE) {
781		if (pe->bus) {
782			bus = pe->bus;
783			goto out;
784		}
785
786		edev = list_first_entry(&pe->edevs, struct eeh_dev, list);
787		pdev = eeh_dev_to_pci_dev(edev);
788		if (pdev)
789			bus = pdev->bus;
790	}
791
792out:
793	return bus;
794}