Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Generation of main entry point for the guest, exception handling.
  7 *
  8 * Copyright (C) 2012  MIPS Technologies, Inc.
  9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
 10 *
 11 * Copyright (C) 2016 Imagination Technologies Ltd.
 12 */
 13
 14#include <linux/kvm_host.h>
 15#include <linux/log2.h>
 16#include <asm/mmu_context.h>
 17#include <asm/msa.h>
 18#include <asm/setup.h>
 19#include <asm/tlbex.h>
 20#include <asm/uasm.h>
 21
 22/* Register names */
 23#define ZERO		0
 24#define AT		1
 25#define V0		2
 26#define V1		3
 27#define A0		4
 28#define A1		5
 29
 30#if _MIPS_SIM == _MIPS_SIM_ABI32
 31#define T0		8
 32#define T1		9
 33#define T2		10
 34#define T3		11
 35#endif /* _MIPS_SIM == _MIPS_SIM_ABI32 */
 36
 37#if _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32
 38#define T0		12
 39#define T1		13
 40#define T2		14
 41#define T3		15
 42#endif /* _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 */
 43
 44#define S0		16
 45#define S1		17
 46#define T9		25
 47#define K0		26
 48#define K1		27
 49#define GP		28
 50#define SP		29
 51#define RA		31
 52
 53/* Some CP0 registers */
 54#define C0_PWBASE	5, 5
 55#define C0_HWRENA	7, 0
 56#define C0_BADVADDR	8, 0
 57#define C0_BADINSTR	8, 1
 58#define C0_BADINSTRP	8, 2
 59#define C0_PGD		9, 7
 60#define C0_ENTRYHI	10, 0
 61#define C0_GUESTCTL1	10, 4
 62#define C0_STATUS	12, 0
 63#define C0_GUESTCTL0	12, 6
 64#define C0_CAUSE	13, 0
 65#define C0_EPC		14, 0
 66#define C0_EBASE	15, 1
 67#define C0_CONFIG5	16, 5
 68#define C0_DDATA_LO	28, 3
 69#define C0_ERROREPC	30, 0
 70
 71#define CALLFRAME_SIZ   32
 72
 73#ifdef CONFIG_64BIT
 74#define ST0_KX_IF_64	ST0_KX
 75#else
 76#define ST0_KX_IF_64	0
 77#endif
 78
 79static unsigned int scratch_vcpu[2] = { C0_DDATA_LO };
 80static unsigned int scratch_tmp[2] = { C0_ERROREPC };
 81
 82enum label_id {
 83	label_fpu_1 = 1,
 84	label_msa_1,
 85	label_return_to_host,
 86	label_kernel_asid,
 87	label_exit_common,
 88};
 89
 90UASM_L_LA(_fpu_1)
 91UASM_L_LA(_msa_1)
 92UASM_L_LA(_return_to_host)
 93UASM_L_LA(_kernel_asid)
 94UASM_L_LA(_exit_common)
 95
 96static void *kvm_mips_build_enter_guest(void *addr);
 97static void *kvm_mips_build_ret_from_exit(void *addr);
 98static void *kvm_mips_build_ret_to_guest(void *addr);
 99static void *kvm_mips_build_ret_to_host(void *addr);
100
101/*
102 * The version of this function in tlbex.c uses current_cpu_type(), but for KVM
103 * we assume symmetry.
104 */
105static int c0_kscratch(void)
106{
107	return 31;
108}
109
110/**
111 * kvm_mips_entry_setup() - Perform global setup for entry code.
112 *
113 * Perform global setup for entry code, such as choosing a scratch register.
114 *
115 * Returns:	0 on success.
116 *		-errno on failure.
117 */
118int kvm_mips_entry_setup(void)
119{
120	/*
121	 * We prefer to use KScratchN registers if they are available over the
122	 * defaults above, which may not work on all cores.
123	 */
124	unsigned int kscratch_mask = cpu_data[0].kscratch_mask;
125
126	if (pgd_reg != -1)
127		kscratch_mask &= ~BIT(pgd_reg);
128
129	/* Pick a scratch register for storing VCPU */
130	if (kscratch_mask) {
131		scratch_vcpu[0] = c0_kscratch();
132		scratch_vcpu[1] = ffs(kscratch_mask) - 1;
133		kscratch_mask &= ~BIT(scratch_vcpu[1]);
134	}
135
136	/* Pick a scratch register to use as a temp for saving state */
137	if (kscratch_mask) {
138		scratch_tmp[0] = c0_kscratch();
139		scratch_tmp[1] = ffs(kscratch_mask) - 1;
140		kscratch_mask &= ~BIT(scratch_tmp[1]);
141	}
142
143	return 0;
144}
145
146static void kvm_mips_build_save_scratch(u32 **p, unsigned int tmp,
147					unsigned int frame)
148{
149	/* Save the VCPU scratch register value in cp0_epc of the stack frame */
150	UASM_i_MFC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
151	UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
152
153	/* Save the temp scratch register value in cp0_cause of stack frame */
154	if (scratch_tmp[0] == c0_kscratch()) {
155		UASM_i_MFC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
156		UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
157	}
158}
159
160static void kvm_mips_build_restore_scratch(u32 **p, unsigned int tmp,
161					   unsigned int frame)
162{
163	/*
164	 * Restore host scratch register values saved by
165	 * kvm_mips_build_save_scratch().
166	 */
167	UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
168	UASM_i_MTC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
169
170	if (scratch_tmp[0] == c0_kscratch()) {
171		UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
172		UASM_i_MTC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
173	}
174}
175
176/**
177 * build_set_exc_base() - Assemble code to write exception base address.
178 * @p:		Code buffer pointer.
179 * @reg:	Source register (generated code may set WG bit in @reg).
180 *
181 * Assemble code to modify the exception base address in the EBase register,
182 * using the appropriately sized access and setting the WG bit if necessary.
183 */
184static inline void build_set_exc_base(u32 **p, unsigned int reg)
185{
186	if (cpu_has_ebase_wg) {
187		/* Set WG so that all the bits get written */
188		uasm_i_ori(p, reg, reg, MIPS_EBASE_WG);
189		UASM_i_MTC0(p, reg, C0_EBASE);
190	} else {
191		uasm_i_mtc0(p, reg, C0_EBASE);
192	}
193}
194
195/**
196 * kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU.
197 * @addr:	Address to start writing code.
198 *
199 * Assemble the start of the vcpu_run function to run a guest VCPU. The function
200 * conforms to the following prototype:
201 *
202 * int vcpu_run(struct kvm_vcpu *vcpu);
203 *
204 * The exit from the guest and return to the caller is handled by the code
205 * generated by kvm_mips_build_ret_to_host().
206 *
207 * Returns:	Next address after end of written function.
208 */
209void *kvm_mips_build_vcpu_run(void *addr)
210{
211	u32 *p = addr;
212	unsigned int i;
213
214	/*
215	 * A0: vcpu
216	 */
217
218	/* k0/k1 not being used in host kernel context */
219	UASM_i_ADDIU(&p, K1, SP, -(int)sizeof(struct pt_regs));
220	for (i = 16; i < 32; ++i) {
221		if (i == 24)
222			i = 28;
223		UASM_i_SW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
224	}
225
226	/* Save host status */
227	uasm_i_mfc0(&p, V0, C0_STATUS);
228	UASM_i_SW(&p, V0, offsetof(struct pt_regs, cp0_status), K1);
229
230	/* Save scratch registers, will be used to store pointer to vcpu etc */
231	kvm_mips_build_save_scratch(&p, V1, K1);
232
233	/* VCPU scratch register has pointer to vcpu */
234	UASM_i_MTC0(&p, A0, scratch_vcpu[0], scratch_vcpu[1]);
235
236	/* Offset into vcpu->arch */
237	UASM_i_ADDIU(&p, K1, A0, offsetof(struct kvm_vcpu, arch));
238
239	/*
240	 * Save the host stack to VCPU, used for exception processing
241	 * when we exit from the Guest
242	 */
243	UASM_i_SW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
244
245	/* Save the kernel gp as well */
246	UASM_i_SW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
247
248	/*
249	 * Setup status register for running the guest in UM, interrupts
250	 * are disabled
251	 */
252	UASM_i_LA(&p, K0, ST0_EXL | KSU_USER | ST0_BEV | ST0_KX_IF_64);
253	uasm_i_mtc0(&p, K0, C0_STATUS);
254	uasm_i_ehb(&p);
255
256	/* load up the new EBASE */
257	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
258	build_set_exc_base(&p, K0);
259
260	/*
261	 * Now that the new EBASE has been loaded, unset BEV, set
262	 * interrupt mask as it was but make sure that timer interrupts
263	 * are enabled
264	 */
265	uasm_i_addiu(&p, K0, ZERO, ST0_EXL | KSU_USER | ST0_IE | ST0_KX_IF_64);
266	uasm_i_andi(&p, V0, V0, ST0_IM);
267	uasm_i_or(&p, K0, K0, V0);
268	uasm_i_mtc0(&p, K0, C0_STATUS);
269	uasm_i_ehb(&p);
270
271	p = kvm_mips_build_enter_guest(p);
272
273	return p;
274}
275
276/**
277 * kvm_mips_build_enter_guest() - Assemble code to resume guest execution.
278 * @addr:	Address to start writing code.
279 *
280 * Assemble the code to resume guest execution. This code is common between the
281 * initial entry into the guest from the host, and returning from the exit
282 * handler back to the guest.
283 *
284 * Returns:	Next address after end of written function.
285 */
286static void *kvm_mips_build_enter_guest(void *addr)
287{
288	u32 *p = addr;
289	unsigned int i;
290	struct uasm_label labels[2];
291	struct uasm_reloc relocs[2];
292	struct uasm_label __maybe_unused *l = labels;
293	struct uasm_reloc __maybe_unused *r = relocs;
294
295	memset(labels, 0, sizeof(labels));
296	memset(relocs, 0, sizeof(relocs));
297
298	/* Set Guest EPC */
299	UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, pc), K1);
300	UASM_i_MTC0(&p, T0, C0_EPC);
301
302	/* Save normal linux process pgd (VZ guarantees pgd_reg is set) */
303	if (cpu_has_ldpte)
304		UASM_i_MFC0(&p, K0, C0_PWBASE);
305	else
306		UASM_i_MFC0(&p, K0, c0_kscratch(), pgd_reg);
307	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_pgd), K1);
308
309	/*
310	 * Set up KVM GPA pgd.
311	 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
312	 * - call tlbmiss_handler_setup_pgd(mm->pgd)
313	 * - write mm->pgd into CP0_PWBase
314	 *
315	 * We keep S0 pointing at struct kvm so we can load the ASID below.
316	 */
317	UASM_i_LW(&p, S0, (int)offsetof(struct kvm_vcpu, kvm) -
318			  (int)offsetof(struct kvm_vcpu, arch), K1);
319	UASM_i_LW(&p, A0, offsetof(struct kvm, arch.gpa_mm.pgd), S0);
320	UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
321	uasm_i_jalr(&p, RA, T9);
322	/* delay slot */
323	if (cpu_has_htw)
324		UASM_i_MTC0(&p, A0, C0_PWBASE);
325	else
326		uasm_i_nop(&p);
327
328	/* Set GM bit to setup eret to VZ guest context */
329	uasm_i_addiu(&p, V1, ZERO, 1);
330	uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
331	uasm_i_ins(&p, K0, V1, MIPS_GCTL0_GM_SHIFT, 1);
332	uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
333
334	if (cpu_has_guestid) {
335		/*
336		 * Set root mode GuestID, so that root TLB refill handler can
337		 * use the correct GuestID in the root TLB.
338		 */
339
340		/* Get current GuestID */
341		uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
342		/* Set GuestCtl1.RID = GuestCtl1.ID */
343		uasm_i_ext(&p, T1, T0, MIPS_GCTL1_ID_SHIFT,
344			   MIPS_GCTL1_ID_WIDTH);
345		uasm_i_ins(&p, T0, T1, MIPS_GCTL1_RID_SHIFT,
346			   MIPS_GCTL1_RID_WIDTH);
347		uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
348
349		/* GuestID handles dealiasing so we don't need to touch ASID */
350		goto skip_asid_restore;
351	}
352
353	/* Root ASID Dealias (RAD) */
354
355	/* Save host ASID */
356	UASM_i_MFC0(&p, K0, C0_ENTRYHI);
357	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
358		  K1);
359
360	/* Set the root ASID for the Guest */
361	UASM_i_ADDIU(&p, T1, S0,
362		     offsetof(struct kvm, arch.gpa_mm.context.asid));
363
364	/* t1: contains the base of the ASID array, need to get the cpu id  */
365	/* smp_processor_id */
366	uasm_i_lw(&p, T2, offsetof(struct thread_info, cpu), GP);
367	/* index the ASID array */
368	uasm_i_sll(&p, T2, T2, ilog2(sizeof(long)));
369	UASM_i_ADDU(&p, T3, T1, T2);
370	UASM_i_LW(&p, K0, 0, T3);
371#ifdef CONFIG_MIPS_ASID_BITS_VARIABLE
372	/*
373	 * reuse ASID array offset
374	 * cpuinfo_mips is a multiple of sizeof(long)
375	 */
376	uasm_i_addiu(&p, T3, ZERO, sizeof(struct cpuinfo_mips)/sizeof(long));
377	uasm_i_mul(&p, T2, T2, T3);
378
379	UASM_i_LA_mostly(&p, AT, (long)&cpu_data[0].asid_mask);
380	UASM_i_ADDU(&p, AT, AT, T2);
381	UASM_i_LW(&p, T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), AT);
382	uasm_i_and(&p, K0, K0, T2);
383#else
384	uasm_i_andi(&p, K0, K0, MIPS_ENTRYHI_ASID);
385#endif
386
387	/* Set up KVM VZ root ASID (!guestid) */
388	uasm_i_mtc0(&p, K0, C0_ENTRYHI);
389skip_asid_restore:
390	uasm_i_ehb(&p);
391
392	/* Disable RDHWR access */
393	uasm_i_mtc0(&p, ZERO, C0_HWRENA);
394
395	/* load the guest context from VCPU and return */
396	for (i = 1; i < 32; ++i) {
397		/* Guest k0/k1 loaded later */
398		if (i == K0 || i == K1)
399			continue;
400		UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
401	}
402
403#ifndef CONFIG_CPU_MIPSR6
404	/* Restore hi/lo */
405	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, hi), K1);
406	uasm_i_mthi(&p, K0);
407
408	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, lo), K1);
409	uasm_i_mtlo(&p, K0);
410#endif
411
412	/* Restore the guest's k0/k1 registers */
413	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
414	UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
415
416	/* Jump to guest */
417	uasm_i_eret(&p);
418
419	uasm_resolve_relocs(relocs, labels);
420
421	return p;
422}
423
424/**
425 * kvm_mips_build_tlb_refill_exception() - Assemble TLB refill handler.
426 * @addr:	Address to start writing code.
427 * @handler:	Address of common handler (within range of @addr).
428 *
429 * Assemble TLB refill exception fast path handler for guest execution.
430 *
431 * Returns:	Next address after end of written function.
432 */
433void *kvm_mips_build_tlb_refill_exception(void *addr, void *handler)
434{
435	u32 *p = addr;
436	struct uasm_label labels[2];
437	struct uasm_reloc relocs[2];
438#ifndef CONFIG_CPU_LOONGSON64
439	struct uasm_label *l = labels;
440	struct uasm_reloc *r = relocs;
441#endif
442
443	memset(labels, 0, sizeof(labels));
444	memset(relocs, 0, sizeof(relocs));
445
446	/* Save guest k1 into scratch register */
447	UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
448
449	/* Get the VCPU pointer from the VCPU scratch register */
450	UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
451
452	/* Save guest k0 into VCPU structure */
453	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
454
455	/*
456	 * Some of the common tlbex code uses current_cpu_type(). For KVM we
457	 * assume symmetry and just disable preemption to silence the warning.
458	 */
459	preempt_disable();
460
461#ifdef CONFIG_CPU_LOONGSON64
462	UASM_i_MFC0(&p, K1, C0_PGD);
463	uasm_i_lddir(&p, K0, K1, 3);  /* global page dir */
464#ifndef __PAGETABLE_PMD_FOLDED
465	uasm_i_lddir(&p, K1, K0, 1);  /* middle page dir */
466#endif
467	uasm_i_ldpte(&p, K1, 0);      /* even */
468	uasm_i_ldpte(&p, K1, 1);      /* odd */
469	uasm_i_tlbwr(&p);
470#else
471	/*
472	 * Now for the actual refill bit. A lot of this can be common with the
473	 * Linux TLB refill handler, however we don't need to handle so many
474	 * cases. We only need to handle user mode refills, and user mode runs
475	 * with 32-bit addressing.
476	 *
477	 * Therefore the branch to label_vmalloc generated by build_get_pmde64()
478	 * that isn't resolved should never actually get taken and is harmless
479	 * to leave in place for now.
480	 */
481
482#ifdef CONFIG_64BIT
483	build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
484#else
485	build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
486#endif
487
488	/* we don't support huge pages yet */
489
490	build_get_ptep(&p, K0, K1);
491	build_update_entries(&p, K0, K1);
492	build_tlb_write_entry(&p, &l, &r, tlb_random);
493#endif
494
495	preempt_enable();
496
497	/* Get the VCPU pointer from the VCPU scratch register again */
498	UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
499
500	/* Restore the guest's k0/k1 registers */
501	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
502	uasm_i_ehb(&p);
503	UASM_i_MFC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
504
505	/* Jump to guest */
506	uasm_i_eret(&p);
507
508	return p;
509}
510
511/**
512 * kvm_mips_build_exception() - Assemble first level guest exception handler.
513 * @addr:	Address to start writing code.
514 * @handler:	Address of common handler (within range of @addr).
515 *
516 * Assemble exception vector code for guest execution. The generated vector will
517 * branch to the common exception handler generated by kvm_mips_build_exit().
518 *
519 * Returns:	Next address after end of written function.
520 */
521void *kvm_mips_build_exception(void *addr, void *handler)
522{
523	u32 *p = addr;
524	struct uasm_label labels[2];
525	struct uasm_reloc relocs[2];
526	struct uasm_label *l = labels;
527	struct uasm_reloc *r = relocs;
528
529	memset(labels, 0, sizeof(labels));
530	memset(relocs, 0, sizeof(relocs));
531
532	/* Save guest k1 into scratch register */
533	UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
534
535	/* Get the VCPU pointer from the VCPU scratch register */
536	UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
537	UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
538
539	/* Save guest k0 into VCPU structure */
540	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
541
542	/* Branch to the common handler */
543	uasm_il_b(&p, &r, label_exit_common);
544	 uasm_i_nop(&p);
545
546	uasm_l_exit_common(&l, handler);
547	uasm_resolve_relocs(relocs, labels);
548
549	return p;
550}
551
552/**
553 * kvm_mips_build_exit() - Assemble common guest exit handler.
554 * @addr:	Address to start writing code.
555 *
556 * Assemble the generic guest exit handling code. This is called by the
557 * exception vectors (generated by kvm_mips_build_exception()), and calls
558 * kvm_mips_handle_exit(), then either resumes the guest or returns to the host
559 * depending on the return value.
560 *
561 * Returns:	Next address after end of written function.
562 */
563void *kvm_mips_build_exit(void *addr)
564{
565	u32 *p = addr;
566	unsigned int i;
567	struct uasm_label labels[3];
568	struct uasm_reloc relocs[3];
569	struct uasm_label *l = labels;
570	struct uasm_reloc *r = relocs;
571
572	memset(labels, 0, sizeof(labels));
573	memset(relocs, 0, sizeof(relocs));
574
575	/*
576	 * Generic Guest exception handler. We end up here when the guest
577	 * does something that causes a trap to kernel mode.
578	 *
579	 * Both k0/k1 registers will have already been saved (k0 into the vcpu
580	 * structure, and k1 into the scratch_tmp register).
581	 *
582	 * The k1 register will already contain the kvm_vcpu_arch pointer.
583	 */
584
585	/* Start saving Guest context to VCPU */
586	for (i = 0; i < 32; ++i) {
587		/* Guest k0/k1 saved later */
588		if (i == K0 || i == K1)
589			continue;
590		UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
591	}
592
593#ifndef CONFIG_CPU_MIPSR6
594	/* We need to save hi/lo and restore them on the way out */
595	uasm_i_mfhi(&p, T0);
596	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, hi), K1);
597
598	uasm_i_mflo(&p, T0);
599	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, lo), K1);
600#endif
601
602	/* Finally save guest k1 to VCPU */
603	uasm_i_ehb(&p);
604	UASM_i_MFC0(&p, T0, scratch_tmp[0], scratch_tmp[1]);
605	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
606
607	/* Now that context has been saved, we can use other registers */
608
609	/* Restore vcpu */
610	UASM_i_MFC0(&p, S0, scratch_vcpu[0], scratch_vcpu[1]);
611
612	/*
613	 * Save Host level EPC, BadVaddr and Cause to VCPU, useful to process
614	 * the exception
615	 */
616	UASM_i_MFC0(&p, K0, C0_EPC);
617	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, pc), K1);
618
619	UASM_i_MFC0(&p, K0, C0_BADVADDR);
620	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr),
621		  K1);
622
623	uasm_i_mfc0(&p, K0, C0_CAUSE);
624	uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), K1);
625
626	if (cpu_has_badinstr) {
627		uasm_i_mfc0(&p, K0, C0_BADINSTR);
628		uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
629					   host_cp0_badinstr), K1);
630	}
631
632	if (cpu_has_badinstrp) {
633		uasm_i_mfc0(&p, K0, C0_BADINSTRP);
634		uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
635					   host_cp0_badinstrp), K1);
636	}
637
638	/* Now restore the host state just enough to run the handlers */
639
640	/* Switch EBASE to the one used by Linux */
641	/* load up the host EBASE */
642	uasm_i_mfc0(&p, V0, C0_STATUS);
643
644	uasm_i_lui(&p, AT, ST0_BEV >> 16);
645	uasm_i_or(&p, K0, V0, AT);
646
647	uasm_i_mtc0(&p, K0, C0_STATUS);
648	uasm_i_ehb(&p);
649
650	UASM_i_LA_mostly(&p, K0, (long)&ebase);
651	UASM_i_LW(&p, K0, uasm_rel_lo((long)&ebase), K0);
652	build_set_exc_base(&p, K0);
653
654	if (raw_cpu_has_fpu) {
655		/*
656		 * If FPU is enabled, save FCR31 and clear it so that later
657		 * ctc1's don't trigger FPE for pending exceptions.
658		 */
659		uasm_i_lui(&p, AT, ST0_CU1 >> 16);
660		uasm_i_and(&p, V1, V0, AT);
661		uasm_il_beqz(&p, &r, V1, label_fpu_1);
662		 uasm_i_nop(&p);
663		uasm_i_cfc1(&p, T0, 31);
664		uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31),
665			  K1);
666		uasm_i_ctc1(&p, ZERO, 31);
667		uasm_l_fpu_1(&l, p);
668	}
669
670	if (cpu_has_msa) {
671		/*
672		 * If MSA is enabled, save MSACSR and clear it so that later
673		 * instructions don't trigger MSAFPE for pending exceptions.
674		 */
675		uasm_i_mfc0(&p, T0, C0_CONFIG5);
676		uasm_i_ext(&p, T0, T0, 27, 1); /* MIPS_CONF5_MSAEN */
677		uasm_il_beqz(&p, &r, T0, label_msa_1);
678		 uasm_i_nop(&p);
679		uasm_i_cfcmsa(&p, T0, MSA_CSR);
680		uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr),
681			  K1);
682		uasm_i_ctcmsa(&p, MSA_CSR, ZERO);
683		uasm_l_msa_1(&l, p);
684	}
685
686	/* Restore host ASID */
687	if (!cpu_has_guestid) {
688		UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
689			  K1);
690		UASM_i_MTC0(&p, K0, C0_ENTRYHI);
691	}
692
693	/*
694	 * Set up normal Linux process pgd.
695	 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
696	 * - call tlbmiss_handler_setup_pgd(mm->pgd)
697	 * - write mm->pgd into CP0_PWBase
698	 */
699	UASM_i_LW(&p, A0,
700		  offsetof(struct kvm_vcpu_arch, host_pgd), K1);
701	UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
702	uasm_i_jalr(&p, RA, T9);
703	/* delay slot */
704	if (cpu_has_htw)
705		UASM_i_MTC0(&p, A0, C0_PWBASE);
706	else
707		uasm_i_nop(&p);
708
709	/* Clear GM bit so we don't enter guest mode when EXL is cleared */
710	uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
711	uasm_i_ins(&p, K0, ZERO, MIPS_GCTL0_GM_SHIFT, 1);
712	uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
713
714	/* Save GuestCtl0 so we can access GExcCode after CPU migration */
715	uasm_i_sw(&p, K0,
716		  offsetof(struct kvm_vcpu_arch, host_cp0_guestctl0), K1);
717
718	if (cpu_has_guestid) {
719		/*
720		 * Clear root mode GuestID, so that root TLB operations use the
721		 * root GuestID in the root TLB.
722		 */
723		uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
724		/* Set GuestCtl1.RID = MIPS_GCTL1_ROOT_GUESTID (i.e. 0) */
725		uasm_i_ins(&p, T0, ZERO, MIPS_GCTL1_RID_SHIFT,
726			   MIPS_GCTL1_RID_WIDTH);
727		uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
728	}
729
730	/* Now that the new EBASE has been loaded, unset BEV and KSU_USER */
731	uasm_i_addiu(&p, AT, ZERO, ~(ST0_EXL | KSU_USER | ST0_IE));
732	uasm_i_and(&p, V0, V0, AT);
733	uasm_i_lui(&p, AT, ST0_CU0 >> 16);
734	uasm_i_or(&p, V0, V0, AT);
735#ifdef CONFIG_64BIT
736	uasm_i_ori(&p, V0, V0, ST0_SX | ST0_UX);
737#endif
738	uasm_i_mtc0(&p, V0, C0_STATUS);
739	uasm_i_ehb(&p);
740
741	/* Load up host GP */
742	UASM_i_LW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
743
744	/* Need a stack before we can jump to "C" */
745	UASM_i_LW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
746
747	/* Saved host state */
748	UASM_i_ADDIU(&p, SP, SP, -(int)sizeof(struct pt_regs));
749
750	/*
751	 * XXXKYMA do we need to load the host ASID, maybe not because the
752	 * kernel entries are marked GLOBAL, need to verify
753	 */
754
755	/* Restore host scratch registers, as we'll have clobbered them */
756	kvm_mips_build_restore_scratch(&p, K0, SP);
757
758	/* Restore RDHWR access */
759	UASM_i_LA_mostly(&p, K0, (long)&hwrena);
760	uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
761	uasm_i_mtc0(&p, K0, C0_HWRENA);
762
763	/* Jump to handler */
764	/*
765	 * XXXKYMA: not sure if this is safe, how large is the stack??
766	 * Now jump to the kvm_mips_handle_exit() to see if we can deal
767	 * with this in the kernel
768	 */
769	uasm_i_move(&p, A0, S0);
770	UASM_i_LA(&p, T9, (unsigned long)kvm_mips_handle_exit);
771	uasm_i_jalr(&p, RA, T9);
772	 UASM_i_ADDIU(&p, SP, SP, -CALLFRAME_SIZ);
773
774	uasm_resolve_relocs(relocs, labels);
775
776	p = kvm_mips_build_ret_from_exit(p);
777
778	return p;
779}
780
781/**
782 * kvm_mips_build_ret_from_exit() - Assemble guest exit return handler.
783 * @addr:	Address to start writing code.
784 *
785 * Assemble the code to handle the return from kvm_mips_handle_exit(), either
786 * resuming the guest or returning to the host depending on the return value.
787 *
788 * Returns:	Next address after end of written function.
789 */
790static void *kvm_mips_build_ret_from_exit(void *addr)
791{
792	u32 *p = addr;
793	struct uasm_label labels[2];
794	struct uasm_reloc relocs[2];
795	struct uasm_label *l = labels;
796	struct uasm_reloc *r = relocs;
797
798	memset(labels, 0, sizeof(labels));
799	memset(relocs, 0, sizeof(relocs));
800
801	/* Return from handler Make sure interrupts are disabled */
802	uasm_i_di(&p, ZERO);
803	uasm_i_ehb(&p);
804
805	/*
806	 * XXXKYMA: k0/k1 could have been blown away if we processed
807	 * an exception while we were handling the exception from the
808	 * guest, reload k1
809	 */
810
811	uasm_i_move(&p, K1, S0);
812	UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
813
814	/*
815	 * Check return value, should tell us if we are returning to the
816	 * host (handle I/O etc)or resuming the guest
817	 */
818	uasm_i_andi(&p, T0, V0, RESUME_HOST);
819	uasm_il_bnez(&p, &r, T0, label_return_to_host);
820	 uasm_i_nop(&p);
821
822	p = kvm_mips_build_ret_to_guest(p);
823
824	uasm_l_return_to_host(&l, p);
825	p = kvm_mips_build_ret_to_host(p);
826
827	uasm_resolve_relocs(relocs, labels);
828
829	return p;
830}
831
832/**
833 * kvm_mips_build_ret_to_guest() - Assemble code to return to the guest.
834 * @addr:	Address to start writing code.
835 *
836 * Assemble the code to handle return from the guest exit handler
837 * (kvm_mips_handle_exit()) back to the guest.
838 *
839 * Returns:	Next address after end of written function.
840 */
841static void *kvm_mips_build_ret_to_guest(void *addr)
842{
843	u32 *p = addr;
844
845	/* Put the saved pointer to vcpu (s0) back into the scratch register */
846	UASM_i_MTC0(&p, S0, scratch_vcpu[0], scratch_vcpu[1]);
847
848	/* Load up the Guest EBASE to minimize the window where BEV is set */
849	UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
850
851	/* Switch EBASE back to the one used by KVM */
852	uasm_i_mfc0(&p, V1, C0_STATUS);
853	uasm_i_lui(&p, AT, ST0_BEV >> 16);
854	uasm_i_or(&p, K0, V1, AT);
855	uasm_i_mtc0(&p, K0, C0_STATUS);
856	uasm_i_ehb(&p);
857	build_set_exc_base(&p, T0);
858
859	/* Setup status register for running guest in UM */
860	uasm_i_ori(&p, V1, V1, ST0_EXL | KSU_USER | ST0_IE);
861	UASM_i_LA(&p, AT, ~(ST0_CU0 | ST0_MX | ST0_SX | ST0_UX));
862	uasm_i_and(&p, V1, V1, AT);
863	uasm_i_mtc0(&p, V1, C0_STATUS);
864	uasm_i_ehb(&p);
865
866	p = kvm_mips_build_enter_guest(p);
867
868	return p;
869}
870
871/**
872 * kvm_mips_build_ret_to_host() - Assemble code to return to the host.
873 * @addr:	Address to start writing code.
874 *
875 * Assemble the code to handle return from the guest exit handler
876 * (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run
877 * function generated by kvm_mips_build_vcpu_run().
878 *
879 * Returns:	Next address after end of written function.
880 */
881static void *kvm_mips_build_ret_to_host(void *addr)
882{
883	u32 *p = addr;
884	unsigned int i;
885
886	/* EBASE is already pointing to Linux */
887	UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, host_stack), K1);
888	UASM_i_ADDIU(&p, K1, K1, -(int)sizeof(struct pt_regs));
889
890	/*
891	 * r2/v0 is the return code, shift it down by 2 (arithmetic)
892	 * to recover the err code
893	 */
894	uasm_i_sra(&p, K0, V0, 2);
895	uasm_i_move(&p, V0, K0);
896
897	/* Load context saved on the host stack */
898	for (i = 16; i < 31; ++i) {
899		if (i == 24)
900			i = 28;
901		UASM_i_LW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
902	}
903
904	/* Restore RDHWR access */
905	UASM_i_LA_mostly(&p, K0, (long)&hwrena);
906	uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
907	uasm_i_mtc0(&p, K0, C0_HWRENA);
908
909	/* Restore RA, which is the address we will return to */
910	UASM_i_LW(&p, RA, offsetof(struct pt_regs, regs[RA]), K1);
911	uasm_i_jr(&p, RA);
912	 uasm_i_nop(&p);
913
914	return p;
915}
916