Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1// SPDX-License-Identifier: Apache-2.0 OR MIT
  2
  3//! Utilities for the slice primitive type.
  4//!
  5//! *[See also the slice primitive type](slice).*
  6//!
  7//! Most of the structs in this module are iterator types which can only be created
  8//! using a certain function. For example, `slice.iter()` yields an [`Iter`].
  9//!
 10//! A few functions are provided to create a slice from a value reference
 11//! or from a raw pointer.
 12#![stable(feature = "rust1", since = "1.0.0")]
 13// Many of the usings in this module are only used in the test configuration.
 14// It's cleaner to just turn off the unused_imports warning than to fix them.
 15#![cfg_attr(test, allow(unused_imports, dead_code))]
 16
 17use core::borrow::{Borrow, BorrowMut};
 18#[cfg(not(no_global_oom_handling))]
 19use core::cmp::Ordering::{self, Less};
 20#[cfg(not(no_global_oom_handling))]
 21use core::mem::{self, SizedTypeProperties};
 22#[cfg(not(no_global_oom_handling))]
 23use core::ptr;
 24#[cfg(not(no_global_oom_handling))]
 25use core::slice::sort;
 26
 27use crate::alloc::Allocator;
 28#[cfg(not(no_global_oom_handling))]
 29use crate::alloc::{self, Global};
 30#[cfg(not(no_global_oom_handling))]
 31use crate::borrow::ToOwned;
 32use crate::boxed::Box;
 33use crate::vec::Vec;
 34
 35#[cfg(test)]
 36mod tests;
 37
 38#[unstable(feature = "slice_range", issue = "76393")]
 39pub use core::slice::range;
 40#[unstable(feature = "array_chunks", issue = "74985")]
 41pub use core::slice::ArrayChunks;
 42#[unstable(feature = "array_chunks", issue = "74985")]
 43pub use core::slice::ArrayChunksMut;
 44#[unstable(feature = "array_windows", issue = "75027")]
 45pub use core::slice::ArrayWindows;
 46#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
 47pub use core::slice::EscapeAscii;
 48#[stable(feature = "slice_get_slice", since = "1.28.0")]
 49pub use core::slice::SliceIndex;
 50#[stable(feature = "from_ref", since = "1.28.0")]
 51pub use core::slice::{from_mut, from_ref};
 52#[unstable(feature = "slice_from_ptr_range", issue = "89792")]
 53pub use core::slice::{from_mut_ptr_range, from_ptr_range};
 54#[stable(feature = "rust1", since = "1.0.0")]
 55pub use core::slice::{from_raw_parts, from_raw_parts_mut};
 56#[stable(feature = "rust1", since = "1.0.0")]
 57pub use core::slice::{Chunks, Windows};
 58#[stable(feature = "chunks_exact", since = "1.31.0")]
 59pub use core::slice::{ChunksExact, ChunksExactMut};
 60#[stable(feature = "rust1", since = "1.0.0")]
 61pub use core::slice::{ChunksMut, Split, SplitMut};
 62#[unstable(feature = "slice_group_by", issue = "80552")]
 63pub use core::slice::{GroupBy, GroupByMut};
 64#[stable(feature = "rust1", since = "1.0.0")]
 65pub use core::slice::{Iter, IterMut};
 66#[stable(feature = "rchunks", since = "1.31.0")]
 67pub use core::slice::{RChunks, RChunksExact, RChunksExactMut, RChunksMut};
 68#[stable(feature = "slice_rsplit", since = "1.27.0")]
 69pub use core::slice::{RSplit, RSplitMut};
 70#[stable(feature = "rust1", since = "1.0.0")]
 71pub use core::slice::{RSplitN, RSplitNMut, SplitN, SplitNMut};
 72#[stable(feature = "split_inclusive", since = "1.51.0")]
 73pub use core::slice::{SplitInclusive, SplitInclusiveMut};
 74
 75////////////////////////////////////////////////////////////////////////////////
 76// Basic slice extension methods
 77////////////////////////////////////////////////////////////////////////////////
 78
 79// HACK(japaric) needed for the implementation of `vec!` macro during testing
 80// N.B., see the `hack` module in this file for more details.
 81#[cfg(test)]
 82pub use hack::into_vec;
 83
 84// HACK(japaric) needed for the implementation of `Vec::clone` during testing
 85// N.B., see the `hack` module in this file for more details.
 86#[cfg(test)]
 87pub use hack::to_vec;
 88
 89// HACK(japaric): With cfg(test) `impl [T]` is not available, these three
 90// functions are actually methods that are in `impl [T]` but not in
 91// `core::slice::SliceExt` - we need to supply these functions for the
 92// `test_permutations` test
 93pub(crate) mod hack {
 94    use core::alloc::Allocator;
 95
 96    use crate::boxed::Box;
 97    use crate::vec::Vec;
 98
 99    // We shouldn't add inline attribute to this since this is used in
100    // `vec!` macro mostly and causes perf regression. See #71204 for
101    // discussion and perf results.
102    pub fn into_vec<T, A: Allocator>(b: Box<[T], A>) -> Vec<T, A> {
103        unsafe {
104            let len = b.len();
105            let (b, alloc) = Box::into_raw_with_allocator(b);
106            Vec::from_raw_parts_in(b as *mut T, len, len, alloc)
107        }
108    }
109
110    #[cfg(not(no_global_oom_handling))]
111    #[inline]
112    pub fn to_vec<T: ConvertVec, A: Allocator>(s: &[T], alloc: A) -> Vec<T, A> {
113        T::to_vec(s, alloc)
114    }
115
116    #[cfg(not(no_global_oom_handling))]
117    pub trait ConvertVec {
118        fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A>
119        where
120            Self: Sized;
121    }
122
123    #[cfg(not(no_global_oom_handling))]
124    impl<T: Clone> ConvertVec for T {
125        #[inline]
126        default fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> {
127            struct DropGuard<'a, T, A: Allocator> {
128                vec: &'a mut Vec<T, A>,
129                num_init: usize,
130            }
131            impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> {
132                #[inline]
133                fn drop(&mut self) {
134                    // SAFETY:
135                    // items were marked initialized in the loop below
136                    unsafe {
137                        self.vec.set_len(self.num_init);
138                    }
139                }
140            }
141            let mut vec = Vec::with_capacity_in(s.len(), alloc);
142            let mut guard = DropGuard { vec: &mut vec, num_init: 0 };
143            let slots = guard.vec.spare_capacity_mut();
144            // .take(slots.len()) is necessary for LLVM to remove bounds checks
145            // and has better codegen than zip.
146            for (i, b) in s.iter().enumerate().take(slots.len()) {
147                guard.num_init = i;
148                slots[i].write(b.clone());
149            }
150            core::mem::forget(guard);
151            // SAFETY:
152            // the vec was allocated and initialized above to at least this length.
153            unsafe {
154                vec.set_len(s.len());
155            }
156            vec
157        }
158    }
159
160    #[cfg(not(no_global_oom_handling))]
161    impl<T: Copy> ConvertVec for T {
162        #[inline]
163        fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> {
164            let mut v = Vec::with_capacity_in(s.len(), alloc);
165            // SAFETY:
166            // allocated above with the capacity of `s`, and initialize to `s.len()` in
167            // ptr::copy_to_non_overlapping below.
168            unsafe {
169                s.as_ptr().copy_to_nonoverlapping(v.as_mut_ptr(), s.len());
170                v.set_len(s.len());
171            }
172            v
173        }
174    }
175}
176
177#[cfg(not(test))]
178impl<T> [T] {
179    /// Sorts the slice.
180    ///
181    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case.
182    ///
183    /// When applicable, unstable sorting is preferred because it is generally faster than stable
184    /// sorting and it doesn't allocate auxiliary memory.
185    /// See [`sort_unstable`](slice::sort_unstable).
186    ///
187    /// # Current implementation
188    ///
189    /// The current algorithm is an adaptive, iterative merge sort inspired by
190    /// [timsort](https://en.wikipedia.org/wiki/Timsort).
191    /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
192    /// two or more sorted sequences concatenated one after another.
193    ///
194    /// Also, it allocates temporary storage half the size of `self`, but for short slices a
195    /// non-allocating insertion sort is used instead.
196    ///
197    /// # Examples
198    ///
199    /// ```
200    /// let mut v = [-5, 4, 1, -3, 2];
201    ///
202    /// v.sort();
203    /// assert!(v == [-5, -3, 1, 2, 4]);
204    /// ```
205    #[cfg(not(no_global_oom_handling))]
206    #[rustc_allow_incoherent_impl]
207    #[stable(feature = "rust1", since = "1.0.0")]
208    #[inline]
209    pub fn sort(&mut self)
210    where
211        T: Ord,
212    {
213        stable_sort(self, T::lt);
214    }
215
216    /// Sorts the slice with a comparator function.
217    ///
218    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case.
219    ///
220    /// The comparator function must define a total ordering for the elements in the slice. If
221    /// the ordering is not total, the order of the elements is unspecified. An order is a
222    /// total order if it is (for all `a`, `b` and `c`):
223    ///
224    /// * total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is true, and
225    /// * transitive, `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`.
226    ///
227    /// For example, while [`f64`] doesn't implement [`Ord`] because `NaN != NaN`, we can use
228    /// `partial_cmp` as our sort function when we know the slice doesn't contain a `NaN`.
229    ///
230    /// ```
231    /// let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0];
232    /// floats.sort_by(|a, b| a.partial_cmp(b).unwrap());
233    /// assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]);
234    /// ```
235    ///
236    /// When applicable, unstable sorting is preferred because it is generally faster than stable
237    /// sorting and it doesn't allocate auxiliary memory.
238    /// See [`sort_unstable_by`](slice::sort_unstable_by).
239    ///
240    /// # Current implementation
241    ///
242    /// The current algorithm is an adaptive, iterative merge sort inspired by
243    /// [timsort](https://en.wikipedia.org/wiki/Timsort).
244    /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
245    /// two or more sorted sequences concatenated one after another.
246    ///
247    /// Also, it allocates temporary storage half the size of `self`, but for short slices a
248    /// non-allocating insertion sort is used instead.
249    ///
250    /// # Examples
251    ///
252    /// ```
253    /// let mut v = [5, 4, 1, 3, 2];
254    /// v.sort_by(|a, b| a.cmp(b));
255    /// assert!(v == [1, 2, 3, 4, 5]);
256    ///
257    /// // reverse sorting
258    /// v.sort_by(|a, b| b.cmp(a));
259    /// assert!(v == [5, 4, 3, 2, 1]);
260    /// ```
261    #[cfg(not(no_global_oom_handling))]
262    #[rustc_allow_incoherent_impl]
263    #[stable(feature = "rust1", since = "1.0.0")]
264    #[inline]
265    pub fn sort_by<F>(&mut self, mut compare: F)
266    where
267        F: FnMut(&T, &T) -> Ordering,
268    {
269        stable_sort(self, |a, b| compare(a, b) == Less);
270    }
271
272    /// Sorts the slice with a key extraction function.
273    ///
274    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* \* log(*n*))
275    /// worst-case, where the key function is *O*(*m*).
276    ///
277    /// For expensive key functions (e.g. functions that are not simple property accesses or
278    /// basic operations), [`sort_by_cached_key`](slice::sort_by_cached_key) is likely to be
279    /// significantly faster, as it does not recompute element keys.
280    ///
281    /// When applicable, unstable sorting is preferred because it is generally faster than stable
282    /// sorting and it doesn't allocate auxiliary memory.
283    /// See [`sort_unstable_by_key`](slice::sort_unstable_by_key).
284    ///
285    /// # Current implementation
286    ///
287    /// The current algorithm is an adaptive, iterative merge sort inspired by
288    /// [timsort](https://en.wikipedia.org/wiki/Timsort).
289    /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
290    /// two or more sorted sequences concatenated one after another.
291    ///
292    /// Also, it allocates temporary storage half the size of `self`, but for short slices a
293    /// non-allocating insertion sort is used instead.
294    ///
295    /// # Examples
296    ///
297    /// ```
298    /// let mut v = [-5i32, 4, 1, -3, 2];
299    ///
300    /// v.sort_by_key(|k| k.abs());
301    /// assert!(v == [1, 2, -3, 4, -5]);
302    /// ```
303    #[cfg(not(no_global_oom_handling))]
304    #[rustc_allow_incoherent_impl]
305    #[stable(feature = "slice_sort_by_key", since = "1.7.0")]
306    #[inline]
307    pub fn sort_by_key<K, F>(&mut self, mut f: F)
308    where
309        F: FnMut(&T) -> K,
310        K: Ord,
311    {
312        stable_sort(self, |a, b| f(a).lt(&f(b)));
313    }
314
315    /// Sorts the slice with a key extraction function.
316    ///
317    /// During sorting, the key function is called at most once per element, by using
318    /// temporary storage to remember the results of key evaluation.
319    /// The order of calls to the key function is unspecified and may change in future versions
320    /// of the standard library.
321    ///
322    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* + *n* \* log(*n*))
323    /// worst-case, where the key function is *O*(*m*).
324    ///
325    /// For simple key functions (e.g., functions that are property accesses or
326    /// basic operations), [`sort_by_key`](slice::sort_by_key) is likely to be
327    /// faster.
328    ///
329    /// # Current implementation
330    ///
331    /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
332    /// which combines the fast average case of randomized quicksort with the fast worst case of
333    /// heapsort, while achieving linear time on slices with certain patterns. It uses some
334    /// randomization to avoid degenerate cases, but with a fixed seed to always provide
335    /// deterministic behavior.
336    ///
337    /// In the worst case, the algorithm allocates temporary storage in a `Vec<(K, usize)>` the
338    /// length of the slice.
339    ///
340    /// # Examples
341    ///
342    /// ```
343    /// let mut v = [-5i32, 4, 32, -3, 2];
344    ///
345    /// v.sort_by_cached_key(|k| k.to_string());
346    /// assert!(v == [-3, -5, 2, 32, 4]);
347    /// ```
348    ///
349    /// [pdqsort]: https://github.com/orlp/pdqsort
350    #[cfg(not(no_global_oom_handling))]
351    #[rustc_allow_incoherent_impl]
352    #[stable(feature = "slice_sort_by_cached_key", since = "1.34.0")]
353    #[inline]
354    pub fn sort_by_cached_key<K, F>(&mut self, f: F)
355    where
356        F: FnMut(&T) -> K,
357        K: Ord,
358    {
359        // Helper macro for indexing our vector by the smallest possible type, to reduce allocation.
360        macro_rules! sort_by_key {
361            ($t:ty, $slice:ident, $f:ident) => {{
362                let mut indices: Vec<_> =
363                    $slice.iter().map($f).enumerate().map(|(i, k)| (k, i as $t)).collect();
364                // The elements of `indices` are unique, as they are indexed, so any sort will be
365                // stable with respect to the original slice. We use `sort_unstable` here because
366                // it requires less memory allocation.
367                indices.sort_unstable();
368                for i in 0..$slice.len() {
369                    let mut index = indices[i].1;
370                    while (index as usize) < i {
371                        index = indices[index as usize].1;
372                    }
373                    indices[i].1 = index;
374                    $slice.swap(i, index as usize);
375                }
376            }};
377        }
378
379        let sz_u8 = mem::size_of::<(K, u8)>();
380        let sz_u16 = mem::size_of::<(K, u16)>();
381        let sz_u32 = mem::size_of::<(K, u32)>();
382        let sz_usize = mem::size_of::<(K, usize)>();
383
384        let len = self.len();
385        if len < 2 {
386            return;
387        }
388        if sz_u8 < sz_u16 && len <= (u8::MAX as usize) {
389            return sort_by_key!(u8, self, f);
390        }
391        if sz_u16 < sz_u32 && len <= (u16::MAX as usize) {
392            return sort_by_key!(u16, self, f);
393        }
394        if sz_u32 < sz_usize && len <= (u32::MAX as usize) {
395            return sort_by_key!(u32, self, f);
396        }
397        sort_by_key!(usize, self, f)
398    }
399
400    /// Copies `self` into a new `Vec`.
401    ///
402    /// # Examples
403    ///
404    /// ```
405    /// let s = [10, 40, 30];
406    /// let x = s.to_vec();
407    /// // Here, `s` and `x` can be modified independently.
408    /// ```
409    #[cfg(not(no_global_oom_handling))]
410    #[rustc_allow_incoherent_impl]
411    #[rustc_conversion_suggestion]
412    #[stable(feature = "rust1", since = "1.0.0")]
413    #[inline]
414    pub fn to_vec(&self) -> Vec<T>
415    where
416        T: Clone,
417    {
418        self.to_vec_in(Global)
419    }
420
421    /// Copies `self` into a new `Vec` with an allocator.
422    ///
423    /// # Examples
424    ///
425    /// ```
426    /// #![feature(allocator_api)]
427    ///
428    /// use std::alloc::System;
429    ///
430    /// let s = [10, 40, 30];
431    /// let x = s.to_vec_in(System);
432    /// // Here, `s` and `x` can be modified independently.
433    /// ```
434    #[cfg(not(no_global_oom_handling))]
435    #[rustc_allow_incoherent_impl]
436    #[inline]
437    #[unstable(feature = "allocator_api", issue = "32838")]
438    pub fn to_vec_in<A: Allocator>(&self, alloc: A) -> Vec<T, A>
439    where
440        T: Clone,
441    {
442        // N.B., see the `hack` module in this file for more details.
443        hack::to_vec(self, alloc)
444    }
445
446    /// Converts `self` into a vector without clones or allocation.
447    ///
448    /// The resulting vector can be converted back into a box via
449    /// `Vec<T>`'s `into_boxed_slice` method.
450    ///
451    /// # Examples
452    ///
453    /// ```
454    /// let s: Box<[i32]> = Box::new([10, 40, 30]);
455    /// let x = s.into_vec();
456    /// // `s` cannot be used anymore because it has been converted into `x`.
457    ///
458    /// assert_eq!(x, vec![10, 40, 30]);
459    /// ```
460    #[rustc_allow_incoherent_impl]
461    #[stable(feature = "rust1", since = "1.0.0")]
462    #[inline]
463    pub fn into_vec<A: Allocator>(self: Box<Self, A>) -> Vec<T, A> {
464        // N.B., see the `hack` module in this file for more details.
465        hack::into_vec(self)
466    }
467
468    /// Creates a vector by copying a slice `n` times.
469    ///
470    /// # Panics
471    ///
472    /// This function will panic if the capacity would overflow.
473    ///
474    /// # Examples
475    ///
476    /// Basic usage:
477    ///
478    /// ```
479    /// assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]);
480    /// ```
481    ///
482    /// A panic upon overflow:
483    ///
484    /// ```should_panic
485    /// // this will panic at runtime
486    /// b"0123456789abcdef".repeat(usize::MAX);
487    /// ```
488    #[rustc_allow_incoherent_impl]
489    #[cfg(not(no_global_oom_handling))]
490    #[stable(feature = "repeat_generic_slice", since = "1.40.0")]
491    pub fn repeat(&self, n: usize) -> Vec<T>
492    where
493        T: Copy,
494    {
495        if n == 0 {
496            return Vec::new();
497        }
498
499        // If `n` is larger than zero, it can be split as
500        // `n = 2^expn + rem (2^expn > rem, expn >= 0, rem >= 0)`.
501        // `2^expn` is the number represented by the leftmost '1' bit of `n`,
502        // and `rem` is the remaining part of `n`.
503
504        // Using `Vec` to access `set_len()`.
505        let capacity = self.len().checked_mul(n).expect("capacity overflow");
506        let mut buf = Vec::with_capacity(capacity);
507
508        // `2^expn` repetition is done by doubling `buf` `expn`-times.
509        buf.extend(self);
510        {
511            let mut m = n >> 1;
512            // If `m > 0`, there are remaining bits up to the leftmost '1'.
513            while m > 0 {
514                // `buf.extend(buf)`:
515                unsafe {
516                    ptr::copy_nonoverlapping(
517                        buf.as_ptr(),
518                        (buf.as_mut_ptr() as *mut T).add(buf.len()),
519                        buf.len(),
520                    );
521                    // `buf` has capacity of `self.len() * n`.
522                    let buf_len = buf.len();
523                    buf.set_len(buf_len * 2);
524                }
525
526                m >>= 1;
527            }
528        }
529
530        // `rem` (`= n - 2^expn`) repetition is done by copying
531        // first `rem` repetitions from `buf` itself.
532        let rem_len = capacity - buf.len(); // `self.len() * rem`
533        if rem_len > 0 {
534            // `buf.extend(buf[0 .. rem_len])`:
535            unsafe {
536                // This is non-overlapping since `2^expn > rem`.
537                ptr::copy_nonoverlapping(
538                    buf.as_ptr(),
539                    (buf.as_mut_ptr() as *mut T).add(buf.len()),
540                    rem_len,
541                );
542                // `buf.len() + rem_len` equals to `buf.capacity()` (`= self.len() * n`).
543                buf.set_len(capacity);
544            }
545        }
546        buf
547    }
548
549    /// Flattens a slice of `T` into a single value `Self::Output`.
550    ///
551    /// # Examples
552    ///
553    /// ```
554    /// assert_eq!(["hello", "world"].concat(), "helloworld");
555    /// assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]);
556    /// ```
557    #[rustc_allow_incoherent_impl]
558    #[stable(feature = "rust1", since = "1.0.0")]
559    pub fn concat<Item: ?Sized>(&self) -> <Self as Concat<Item>>::Output
560    where
561        Self: Concat<Item>,
562    {
563        Concat::concat(self)
564    }
565
566    /// Flattens a slice of `T` into a single value `Self::Output`, placing a
567    /// given separator between each.
568    ///
569    /// # Examples
570    ///
571    /// ```
572    /// assert_eq!(["hello", "world"].join(" "), "hello world");
573    /// assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]);
574    /// assert_eq!([[1, 2], [3, 4]].join(&[0, 0][..]), [1, 2, 0, 0, 3, 4]);
575    /// ```
576    #[rustc_allow_incoherent_impl]
577    #[stable(feature = "rename_connect_to_join", since = "1.3.0")]
578    pub fn join<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output
579    where
580        Self: Join<Separator>,
581    {
582        Join::join(self, sep)
583    }
584
585    /// Flattens a slice of `T` into a single value `Self::Output`, placing a
586    /// given separator between each.
587    ///
588    /// # Examples
589    ///
590    /// ```
591    /// # #![allow(deprecated)]
592    /// assert_eq!(["hello", "world"].connect(" "), "hello world");
593    /// assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]);
594    /// ```
595    #[rustc_allow_incoherent_impl]
596    #[stable(feature = "rust1", since = "1.0.0")]
597    #[deprecated(since = "1.3.0", note = "renamed to join", suggestion = "join")]
598    pub fn connect<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output
599    where
600        Self: Join<Separator>,
601    {
602        Join::join(self, sep)
603    }
604}
605
606#[cfg(not(test))]
607impl [u8] {
608    /// Returns a vector containing a copy of this slice where each byte
609    /// is mapped to its ASCII upper case equivalent.
610    ///
611    /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
612    /// but non-ASCII letters are unchanged.
613    ///
614    /// To uppercase the value in-place, use [`make_ascii_uppercase`].
615    ///
616    /// [`make_ascii_uppercase`]: slice::make_ascii_uppercase
617    #[cfg(not(no_global_oom_handling))]
618    #[rustc_allow_incoherent_impl]
619    #[must_use = "this returns the uppercase bytes as a new Vec, \
620                  without modifying the original"]
621    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
622    #[inline]
623    pub fn to_ascii_uppercase(&self) -> Vec<u8> {
624        let mut me = self.to_vec();
625        me.make_ascii_uppercase();
626        me
627    }
628
629    /// Returns a vector containing a copy of this slice where each byte
630    /// is mapped to its ASCII lower case equivalent.
631    ///
632    /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
633    /// but non-ASCII letters are unchanged.
634    ///
635    /// To lowercase the value in-place, use [`make_ascii_lowercase`].
636    ///
637    /// [`make_ascii_lowercase`]: slice::make_ascii_lowercase
638    #[cfg(not(no_global_oom_handling))]
639    #[rustc_allow_incoherent_impl]
640    #[must_use = "this returns the lowercase bytes as a new Vec, \
641                  without modifying the original"]
642    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
643    #[inline]
644    pub fn to_ascii_lowercase(&self) -> Vec<u8> {
645        let mut me = self.to_vec();
646        me.make_ascii_lowercase();
647        me
648    }
649}
650
651////////////////////////////////////////////////////////////////////////////////
652// Extension traits for slices over specific kinds of data
653////////////////////////////////////////////////////////////////////////////////
654
655/// Helper trait for [`[T]::concat`](slice::concat).
656///
657/// Note: the `Item` type parameter is not used in this trait,
658/// but it allows impls to be more generic.
659/// Without it, we get this error:
660///
661/// ```error
662/// error[E0207]: the type parameter `T` is not constrained by the impl trait, self type, or predica
663///    --> library/alloc/src/slice.rs:608:6
664///     |
665/// 608 | impl<T: Clone, V: Borrow<[T]>> Concat for [V] {
666///     |      ^ unconstrained type parameter
667/// ```
668///
669/// This is because there could exist `V` types with multiple `Borrow<[_]>` impls,
670/// such that multiple `T` types would apply:
671///
672/// ```
673/// # #[allow(dead_code)]
674/// pub struct Foo(Vec<u32>, Vec<String>);
675///
676/// impl std::borrow::Borrow<[u32]> for Foo {
677///     fn borrow(&self) -> &[u32] { &self.0 }
678/// }
679///
680/// impl std::borrow::Borrow<[String]> for Foo {
681///     fn borrow(&self) -> &[String] { &self.1 }
682/// }
683/// ```
684#[unstable(feature = "slice_concat_trait", issue = "27747")]
685pub trait Concat<Item: ?Sized> {
686    #[unstable(feature = "slice_concat_trait", issue = "27747")]
687    /// The resulting type after concatenation
688    type Output;
689
690    /// Implementation of [`[T]::concat`](slice::concat)
691    #[unstable(feature = "slice_concat_trait", issue = "27747")]
692    fn concat(slice: &Self) -> Self::Output;
693}
694
695/// Helper trait for [`[T]::join`](slice::join)
696#[unstable(feature = "slice_concat_trait", issue = "27747")]
697pub trait Join<Separator> {
698    #[unstable(feature = "slice_concat_trait", issue = "27747")]
699    /// The resulting type after concatenation
700    type Output;
701
702    /// Implementation of [`[T]::join`](slice::join)
703    #[unstable(feature = "slice_concat_trait", issue = "27747")]
704    fn join(slice: &Self, sep: Separator) -> Self::Output;
705}
706
707#[cfg(not(no_global_oom_handling))]
708#[unstable(feature = "slice_concat_ext", issue = "27747")]
709impl<T: Clone, V: Borrow<[T]>> Concat<T> for [V] {
710    type Output = Vec<T>;
711
712    fn concat(slice: &Self) -> Vec<T> {
713        let size = slice.iter().map(|slice| slice.borrow().len()).sum();
714        let mut result = Vec::with_capacity(size);
715        for v in slice {
716            result.extend_from_slice(v.borrow())
717        }
718        result
719    }
720}
721
722#[cfg(not(no_global_oom_handling))]
723#[unstable(feature = "slice_concat_ext", issue = "27747")]
724impl<T: Clone, V: Borrow<[T]>> Join<&T> for [V] {
725    type Output = Vec<T>;
726
727    fn join(slice: &Self, sep: &T) -> Vec<T> {
728        let mut iter = slice.iter();
729        let first = match iter.next() {
730            Some(first) => first,
731            None => return vec![],
732        };
733        let size = slice.iter().map(|v| v.borrow().len()).sum::<usize>() + slice.len() - 1;
734        let mut result = Vec::with_capacity(size);
735        result.extend_from_slice(first.borrow());
736
737        for v in iter {
738            result.push(sep.clone());
739            result.extend_from_slice(v.borrow())
740        }
741        result
742    }
743}
744
745#[cfg(not(no_global_oom_handling))]
746#[unstable(feature = "slice_concat_ext", issue = "27747")]
747impl<T: Clone, V: Borrow<[T]>> Join<&[T]> for [V] {
748    type Output = Vec<T>;
749
750    fn join(slice: &Self, sep: &[T]) -> Vec<T> {
751        let mut iter = slice.iter();
752        let first = match iter.next() {
753            Some(first) => first,
754            None => return vec![],
755        };
756        let size =
757            slice.iter().map(|v| v.borrow().len()).sum::<usize>() + sep.len() * (slice.len() - 1);
758        let mut result = Vec::with_capacity(size);
759        result.extend_from_slice(first.borrow());
760
761        for v in iter {
762            result.extend_from_slice(sep);
763            result.extend_from_slice(v.borrow())
764        }
765        result
766    }
767}
768
769////////////////////////////////////////////////////////////////////////////////
770// Standard trait implementations for slices
771////////////////////////////////////////////////////////////////////////////////
772
773#[stable(feature = "rust1", since = "1.0.0")]
774impl<T, A: Allocator> Borrow<[T]> for Vec<T, A> {
775    fn borrow(&self) -> &[T] {
776        &self[..]
777    }
778}
779
780#[stable(feature = "rust1", since = "1.0.0")]
781impl<T, A: Allocator> BorrowMut<[T]> for Vec<T, A> {
782    fn borrow_mut(&mut self) -> &mut [T] {
783        &mut self[..]
784    }
785}
786
787// Specializable trait for implementing ToOwned::clone_into. This is
788// public in the crate and has the Allocator parameter so that
789// vec::clone_from use it too.
790#[cfg(not(no_global_oom_handling))]
791pub(crate) trait SpecCloneIntoVec<T, A: Allocator> {
792    fn clone_into(&self, target: &mut Vec<T, A>);
793}
794
795#[cfg(not(no_global_oom_handling))]
796impl<T: Clone, A: Allocator> SpecCloneIntoVec<T, A> for [T] {
797    default fn clone_into(&self, target: &mut Vec<T, A>) {
798        // drop anything in target that will not be overwritten
799        target.truncate(self.len());
800
801        // target.len <= self.len due to the truncate above, so the
802        // slices here are always in-bounds.
803        let (init, tail) = self.split_at(target.len());
804
805        // reuse the contained values' allocations/resources.
806        target.clone_from_slice(init);
807        target.extend_from_slice(tail);
808    }
809}
810
811#[cfg(not(no_global_oom_handling))]
812impl<T: Copy, A: Allocator> SpecCloneIntoVec<T, A> for [T] {
813    fn clone_into(&self, target: &mut Vec<T, A>) {
814        target.clear();
815        target.extend_from_slice(self);
816    }
817}
818
819#[cfg(not(no_global_oom_handling))]
820#[stable(feature = "rust1", since = "1.0.0")]
821impl<T: Clone> ToOwned for [T] {
822    type Owned = Vec<T>;
823    #[cfg(not(test))]
824    fn to_owned(&self) -> Vec<T> {
825        self.to_vec()
826    }
827
828    #[cfg(test)]
829    fn to_owned(&self) -> Vec<T> {
830        hack::to_vec(self, Global)
831    }
832
833    fn clone_into(&self, target: &mut Vec<T>) {
834        SpecCloneIntoVec::clone_into(self, target);
835    }
836}
837
838////////////////////////////////////////////////////////////////////////////////
839// Sorting
840////////////////////////////////////////////////////////////////////////////////
841
842#[inline]
843#[cfg(not(no_global_oom_handling))]
844fn stable_sort<T, F>(v: &mut [T], mut is_less: F)
845where
846    F: FnMut(&T, &T) -> bool,
847{
848    if T::IS_ZST {
849        // Sorting has no meaningful behavior on zero-sized types. Do nothing.
850        return;
851    }
852
853    let elem_alloc_fn = |len: usize| -> *mut T {
854        // SAFETY: Creating the layout is safe as long as merge_sort never calls this with len >
855        // v.len(). Alloc in general will only be used as 'shadow-region' to store temporary swap
856        // elements.
857        unsafe { alloc::alloc(alloc::Layout::array::<T>(len).unwrap_unchecked()) as *mut T }
858    };
859
860    let elem_dealloc_fn = |buf_ptr: *mut T, len: usize| {
861        // SAFETY: Creating the layout is safe as long as merge_sort never calls this with len >
862        // v.len(). The caller must ensure that buf_ptr was created by elem_alloc_fn with the same
863        // len.
864        unsafe {
865            alloc::dealloc(buf_ptr as *mut u8, alloc::Layout::array::<T>(len).unwrap_unchecked());
866        }
867    };
868
869    let run_alloc_fn = |len: usize| -> *mut sort::TimSortRun {
870        // SAFETY: Creating the layout is safe as long as merge_sort never calls this with an
871        // obscene length or 0.
872        unsafe {
873            alloc::alloc(alloc::Layout::array::<sort::TimSortRun>(len).unwrap_unchecked())
874                as *mut sort::TimSortRun
875        }
876    };
877
878    let run_dealloc_fn = |buf_ptr: *mut sort::TimSortRun, len: usize| {
879        // SAFETY: The caller must ensure that buf_ptr was created by elem_alloc_fn with the same
880        // len.
881        unsafe {
882            alloc::dealloc(
883                buf_ptr as *mut u8,
884                alloc::Layout::array::<sort::TimSortRun>(len).unwrap_unchecked(),
885            );
886        }
887    };
888
889    sort::merge_sort(v, &mut is_less, elem_alloc_fn, elem_dealloc_fn, run_alloc_fn, run_dealloc_fn);
890}