Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
7 */
8
9#include <linux/kernel.h>
10#include <linux/slab.h>
11#include <linux/init.h>
12#include <linux/bitops.h>
13#include <linux/poison.h>
14#include <linux/pfn.h>
15#include <linux/debugfs.h>
16#include <linux/kmemleak.h>
17#include <linux/seq_file.h>
18#include <linux/memblock.h>
19
20#include <asm/sections.h>
21#include <linux/io.h>
22
23#include "internal.h"
24
25#define INIT_MEMBLOCK_REGIONS 128
26#define INIT_PHYSMEM_REGIONS 4
27
28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29# define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30#endif
31
32#ifndef INIT_MEMBLOCK_MEMORY_REGIONS
33#define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS
34#endif
35
36/**
37 * DOC: memblock overview
38 *
39 * Memblock is a method of managing memory regions during the early
40 * boot period when the usual kernel memory allocators are not up and
41 * running.
42 *
43 * Memblock views the system memory as collections of contiguous
44 * regions. There are several types of these collections:
45 *
46 * * ``memory`` - describes the physical memory available to the
47 * kernel; this may differ from the actual physical memory installed
48 * in the system, for instance when the memory is restricted with
49 * ``mem=`` command line parameter
50 * * ``reserved`` - describes the regions that were allocated
51 * * ``physmem`` - describes the actual physical memory available during
52 * boot regardless of the possible restrictions and memory hot(un)plug;
53 * the ``physmem`` type is only available on some architectures.
54 *
55 * Each region is represented by struct memblock_region that
56 * defines the region extents, its attributes and NUMA node id on NUMA
57 * systems. Every memory type is described by the struct memblock_type
58 * which contains an array of memory regions along with
59 * the allocator metadata. The "memory" and "reserved" types are nicely
60 * wrapped with struct memblock. This structure is statically
61 * initialized at build time. The region arrays are initially sized to
62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
65 * The memblock_allow_resize() enables automatic resizing of the region
66 * arrays during addition of new regions. This feature should be used
67 * with care so that memory allocated for the region array will not
68 * overlap with areas that should be reserved, for example initrd.
69 *
70 * The early architecture setup should tell memblock what the physical
71 * memory layout is by using memblock_add() or memblock_add_node()
72 * functions. The first function does not assign the region to a NUMA
73 * node and it is appropriate for UMA systems. Yet, it is possible to
74 * use it on NUMA systems as well and assign the region to a NUMA node
75 * later in the setup process using memblock_set_node(). The
76 * memblock_add_node() performs such an assignment directly.
77 *
78 * Once memblock is setup the memory can be allocated using one of the
79 * API variants:
80 *
81 * * memblock_phys_alloc*() - these functions return the **physical**
82 * address of the allocated memory
83 * * memblock_alloc*() - these functions return the **virtual** address
84 * of the allocated memory.
85 *
86 * Note, that both API variants use implicit assumptions about allowed
87 * memory ranges and the fallback methods. Consult the documentation
88 * of memblock_alloc_internal() and memblock_alloc_range_nid()
89 * functions for more elaborate description.
90 *
91 * As the system boot progresses, the architecture specific mem_init()
92 * function frees all the memory to the buddy page allocator.
93 *
94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
95 * memblock data structures (except "physmem") will be discarded after the
96 * system initialization completes.
97 */
98
99#ifndef CONFIG_NUMA
100struct pglist_data __refdata contig_page_data;
101EXPORT_SYMBOL(contig_page_data);
102#endif
103
104unsigned long max_low_pfn;
105unsigned long min_low_pfn;
106unsigned long max_pfn;
107unsigned long long max_possible_pfn;
108
109static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
110static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
111#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
112static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
113#endif
114
115struct memblock memblock __initdata_memblock = {
116 .memory.regions = memblock_memory_init_regions,
117 .memory.cnt = 1, /* empty dummy entry */
118 .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS,
119 .memory.name = "memory",
120
121 .reserved.regions = memblock_reserved_init_regions,
122 .reserved.cnt = 1, /* empty dummy entry */
123 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
124 .reserved.name = "reserved",
125
126 .bottom_up = false,
127 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
128};
129
130#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
131struct memblock_type physmem = {
132 .regions = memblock_physmem_init_regions,
133 .cnt = 1, /* empty dummy entry */
134 .max = INIT_PHYSMEM_REGIONS,
135 .name = "physmem",
136};
137#endif
138
139/*
140 * keep a pointer to &memblock.memory in the text section to use it in
141 * __next_mem_range() and its helpers.
142 * For architectures that do not keep memblock data after init, this
143 * pointer will be reset to NULL at memblock_discard()
144 */
145static __refdata struct memblock_type *memblock_memory = &memblock.memory;
146
147#define for_each_memblock_type(i, memblock_type, rgn) \
148 for (i = 0, rgn = &memblock_type->regions[0]; \
149 i < memblock_type->cnt; \
150 i++, rgn = &memblock_type->regions[i])
151
152#define memblock_dbg(fmt, ...) \
153 do { \
154 if (memblock_debug) \
155 pr_info(fmt, ##__VA_ARGS__); \
156 } while (0)
157
158static int memblock_debug __initdata_memblock;
159static bool system_has_some_mirror __initdata_memblock;
160static int memblock_can_resize __initdata_memblock;
161static int memblock_memory_in_slab __initdata_memblock;
162static int memblock_reserved_in_slab __initdata_memblock;
163
164bool __init_memblock memblock_has_mirror(void)
165{
166 return system_has_some_mirror;
167}
168
169static enum memblock_flags __init_memblock choose_memblock_flags(void)
170{
171 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
172}
173
174/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
175static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
176{
177 return *size = min(*size, PHYS_ADDR_MAX - base);
178}
179
180/*
181 * Address comparison utilities
182 */
183unsigned long __init_memblock
184memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2,
185 phys_addr_t size2)
186{
187 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
188}
189
190bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
191 phys_addr_t base, phys_addr_t size)
192{
193 unsigned long i;
194
195 memblock_cap_size(base, &size);
196
197 for (i = 0; i < type->cnt; i++)
198 if (memblock_addrs_overlap(base, size, type->regions[i].base,
199 type->regions[i].size))
200 break;
201 return i < type->cnt;
202}
203
204/**
205 * __memblock_find_range_bottom_up - find free area utility in bottom-up
206 * @start: start of candidate range
207 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
208 * %MEMBLOCK_ALLOC_ACCESSIBLE
209 * @size: size of free area to find
210 * @align: alignment of free area to find
211 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
212 * @flags: pick from blocks based on memory attributes
213 *
214 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
215 *
216 * Return:
217 * Found address on success, 0 on failure.
218 */
219static phys_addr_t __init_memblock
220__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
221 phys_addr_t size, phys_addr_t align, int nid,
222 enum memblock_flags flags)
223{
224 phys_addr_t this_start, this_end, cand;
225 u64 i;
226
227 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
228 this_start = clamp(this_start, start, end);
229 this_end = clamp(this_end, start, end);
230
231 cand = round_up(this_start, align);
232 if (cand < this_end && this_end - cand >= size)
233 return cand;
234 }
235
236 return 0;
237}
238
239/**
240 * __memblock_find_range_top_down - find free area utility, in top-down
241 * @start: start of candidate range
242 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
243 * %MEMBLOCK_ALLOC_ACCESSIBLE
244 * @size: size of free area to find
245 * @align: alignment of free area to find
246 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
247 * @flags: pick from blocks based on memory attributes
248 *
249 * Utility called from memblock_find_in_range_node(), find free area top-down.
250 *
251 * Return:
252 * Found address on success, 0 on failure.
253 */
254static phys_addr_t __init_memblock
255__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
256 phys_addr_t size, phys_addr_t align, int nid,
257 enum memblock_flags flags)
258{
259 phys_addr_t this_start, this_end, cand;
260 u64 i;
261
262 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
263 NULL) {
264 this_start = clamp(this_start, start, end);
265 this_end = clamp(this_end, start, end);
266
267 if (this_end < size)
268 continue;
269
270 cand = round_down(this_end - size, align);
271 if (cand >= this_start)
272 return cand;
273 }
274
275 return 0;
276}
277
278/**
279 * memblock_find_in_range_node - find free area in given range and node
280 * @size: size of free area to find
281 * @align: alignment of free area to find
282 * @start: start of candidate range
283 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
284 * %MEMBLOCK_ALLOC_ACCESSIBLE
285 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
286 * @flags: pick from blocks based on memory attributes
287 *
288 * Find @size free area aligned to @align in the specified range and node.
289 *
290 * Return:
291 * Found address on success, 0 on failure.
292 */
293static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
294 phys_addr_t align, phys_addr_t start,
295 phys_addr_t end, int nid,
296 enum memblock_flags flags)
297{
298 /* pump up @end */
299 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
300 end == MEMBLOCK_ALLOC_NOLEAKTRACE)
301 end = memblock.current_limit;
302
303 /* avoid allocating the first page */
304 start = max_t(phys_addr_t, start, PAGE_SIZE);
305 end = max(start, end);
306
307 if (memblock_bottom_up())
308 return __memblock_find_range_bottom_up(start, end, size, align,
309 nid, flags);
310 else
311 return __memblock_find_range_top_down(start, end, size, align,
312 nid, flags);
313}
314
315/**
316 * memblock_find_in_range - find free area in given range
317 * @start: start of candidate range
318 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
319 * %MEMBLOCK_ALLOC_ACCESSIBLE
320 * @size: size of free area to find
321 * @align: alignment of free area to find
322 *
323 * Find @size free area aligned to @align in the specified range.
324 *
325 * Return:
326 * Found address on success, 0 on failure.
327 */
328static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
329 phys_addr_t end, phys_addr_t size,
330 phys_addr_t align)
331{
332 phys_addr_t ret;
333 enum memblock_flags flags = choose_memblock_flags();
334
335again:
336 ret = memblock_find_in_range_node(size, align, start, end,
337 NUMA_NO_NODE, flags);
338
339 if (!ret && (flags & MEMBLOCK_MIRROR)) {
340 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
341 &size);
342 flags &= ~MEMBLOCK_MIRROR;
343 goto again;
344 }
345
346 return ret;
347}
348
349static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
350{
351 type->total_size -= type->regions[r].size;
352 memmove(&type->regions[r], &type->regions[r + 1],
353 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
354 type->cnt--;
355
356 /* Special case for empty arrays */
357 if (type->cnt == 0) {
358 WARN_ON(type->total_size != 0);
359 type->cnt = 1;
360 type->regions[0].base = 0;
361 type->regions[0].size = 0;
362 type->regions[0].flags = 0;
363 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
364 }
365}
366
367#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
368/**
369 * memblock_discard - discard memory and reserved arrays if they were allocated
370 */
371void __init memblock_discard(void)
372{
373 phys_addr_t addr, size;
374
375 if (memblock.reserved.regions != memblock_reserved_init_regions) {
376 addr = __pa(memblock.reserved.regions);
377 size = PAGE_ALIGN(sizeof(struct memblock_region) *
378 memblock.reserved.max);
379 if (memblock_reserved_in_slab)
380 kfree(memblock.reserved.regions);
381 else
382 memblock_free_late(addr, size);
383 }
384
385 if (memblock.memory.regions != memblock_memory_init_regions) {
386 addr = __pa(memblock.memory.regions);
387 size = PAGE_ALIGN(sizeof(struct memblock_region) *
388 memblock.memory.max);
389 if (memblock_memory_in_slab)
390 kfree(memblock.memory.regions);
391 else
392 memblock_free_late(addr, size);
393 }
394
395 memblock_memory = NULL;
396}
397#endif
398
399/**
400 * memblock_double_array - double the size of the memblock regions array
401 * @type: memblock type of the regions array being doubled
402 * @new_area_start: starting address of memory range to avoid overlap with
403 * @new_area_size: size of memory range to avoid overlap with
404 *
405 * Double the size of the @type regions array. If memblock is being used to
406 * allocate memory for a new reserved regions array and there is a previously
407 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
408 * waiting to be reserved, ensure the memory used by the new array does
409 * not overlap.
410 *
411 * Return:
412 * 0 on success, -1 on failure.
413 */
414static int __init_memblock memblock_double_array(struct memblock_type *type,
415 phys_addr_t new_area_start,
416 phys_addr_t new_area_size)
417{
418 struct memblock_region *new_array, *old_array;
419 phys_addr_t old_alloc_size, new_alloc_size;
420 phys_addr_t old_size, new_size, addr, new_end;
421 int use_slab = slab_is_available();
422 int *in_slab;
423
424 /* We don't allow resizing until we know about the reserved regions
425 * of memory that aren't suitable for allocation
426 */
427 if (!memblock_can_resize)
428 panic("memblock: cannot resize %s array\n", type->name);
429
430 /* Calculate new doubled size */
431 old_size = type->max * sizeof(struct memblock_region);
432 new_size = old_size << 1;
433 /*
434 * We need to allocated new one align to PAGE_SIZE,
435 * so we can free them completely later.
436 */
437 old_alloc_size = PAGE_ALIGN(old_size);
438 new_alloc_size = PAGE_ALIGN(new_size);
439
440 /* Retrieve the slab flag */
441 if (type == &memblock.memory)
442 in_slab = &memblock_memory_in_slab;
443 else
444 in_slab = &memblock_reserved_in_slab;
445
446 /* Try to find some space for it */
447 if (use_slab) {
448 new_array = kmalloc(new_size, GFP_KERNEL);
449 addr = new_array ? __pa(new_array) : 0;
450 } else {
451 /* only exclude range when trying to double reserved.regions */
452 if (type != &memblock.reserved)
453 new_area_start = new_area_size = 0;
454
455 addr = memblock_find_in_range(new_area_start + new_area_size,
456 memblock.current_limit,
457 new_alloc_size, PAGE_SIZE);
458 if (!addr && new_area_size)
459 addr = memblock_find_in_range(0,
460 min(new_area_start, memblock.current_limit),
461 new_alloc_size, PAGE_SIZE);
462
463 new_array = addr ? __va(addr) : NULL;
464 }
465 if (!addr) {
466 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
467 type->name, type->max, type->max * 2);
468 return -1;
469 }
470
471 new_end = addr + new_size - 1;
472 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
473 type->name, type->max * 2, &addr, &new_end);
474
475 /*
476 * Found space, we now need to move the array over before we add the
477 * reserved region since it may be our reserved array itself that is
478 * full.
479 */
480 memcpy(new_array, type->regions, old_size);
481 memset(new_array + type->max, 0, old_size);
482 old_array = type->regions;
483 type->regions = new_array;
484 type->max <<= 1;
485
486 /* Free old array. We needn't free it if the array is the static one */
487 if (*in_slab)
488 kfree(old_array);
489 else if (old_array != memblock_memory_init_regions &&
490 old_array != memblock_reserved_init_regions)
491 memblock_free(old_array, old_alloc_size);
492
493 /*
494 * Reserve the new array if that comes from the memblock. Otherwise, we
495 * needn't do it
496 */
497 if (!use_slab)
498 BUG_ON(memblock_reserve(addr, new_alloc_size));
499
500 /* Update slab flag */
501 *in_slab = use_slab;
502
503 return 0;
504}
505
506/**
507 * memblock_merge_regions - merge neighboring compatible regions
508 * @type: memblock type to scan
509 * @start_rgn: start scanning from (@start_rgn - 1)
510 * @end_rgn: end scanning at (@end_rgn - 1)
511 * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
512 */
513static void __init_memblock memblock_merge_regions(struct memblock_type *type,
514 unsigned long start_rgn,
515 unsigned long end_rgn)
516{
517 int i = 0;
518 if (start_rgn)
519 i = start_rgn - 1;
520 end_rgn = min(end_rgn, type->cnt - 1);
521 while (i < end_rgn) {
522 struct memblock_region *this = &type->regions[i];
523 struct memblock_region *next = &type->regions[i + 1];
524
525 if (this->base + this->size != next->base ||
526 memblock_get_region_node(this) !=
527 memblock_get_region_node(next) ||
528 this->flags != next->flags) {
529 BUG_ON(this->base + this->size > next->base);
530 i++;
531 continue;
532 }
533
534 this->size += next->size;
535 /* move forward from next + 1, index of which is i + 2 */
536 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
537 type->cnt--;
538 end_rgn--;
539 }
540}
541
542/**
543 * memblock_insert_region - insert new memblock region
544 * @type: memblock type to insert into
545 * @idx: index for the insertion point
546 * @base: base address of the new region
547 * @size: size of the new region
548 * @nid: node id of the new region
549 * @flags: flags of the new region
550 *
551 * Insert new memblock region [@base, @base + @size) into @type at @idx.
552 * @type must already have extra room to accommodate the new region.
553 */
554static void __init_memblock memblock_insert_region(struct memblock_type *type,
555 int idx, phys_addr_t base,
556 phys_addr_t size,
557 int nid,
558 enum memblock_flags flags)
559{
560 struct memblock_region *rgn = &type->regions[idx];
561
562 BUG_ON(type->cnt >= type->max);
563 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
564 rgn->base = base;
565 rgn->size = size;
566 rgn->flags = flags;
567 memblock_set_region_node(rgn, nid);
568 type->cnt++;
569 type->total_size += size;
570}
571
572/**
573 * memblock_add_range - add new memblock region
574 * @type: memblock type to add new region into
575 * @base: base address of the new region
576 * @size: size of the new region
577 * @nid: nid of the new region
578 * @flags: flags of the new region
579 *
580 * Add new memblock region [@base, @base + @size) into @type. The new region
581 * is allowed to overlap with existing ones - overlaps don't affect already
582 * existing regions. @type is guaranteed to be minimal (all neighbouring
583 * compatible regions are merged) after the addition.
584 *
585 * Return:
586 * 0 on success, -errno on failure.
587 */
588static int __init_memblock memblock_add_range(struct memblock_type *type,
589 phys_addr_t base, phys_addr_t size,
590 int nid, enum memblock_flags flags)
591{
592 bool insert = false;
593 phys_addr_t obase = base;
594 phys_addr_t end = base + memblock_cap_size(base, &size);
595 int idx, nr_new, start_rgn = -1, end_rgn;
596 struct memblock_region *rgn;
597
598 if (!size)
599 return 0;
600
601 /* special case for empty array */
602 if (type->regions[0].size == 0) {
603 WARN_ON(type->cnt != 1 || type->total_size);
604 type->regions[0].base = base;
605 type->regions[0].size = size;
606 type->regions[0].flags = flags;
607 memblock_set_region_node(&type->regions[0], nid);
608 type->total_size = size;
609 return 0;
610 }
611
612 /*
613 * The worst case is when new range overlaps all existing regions,
614 * then we'll need type->cnt + 1 empty regions in @type. So if
615 * type->cnt * 2 + 1 is less than or equal to type->max, we know
616 * that there is enough empty regions in @type, and we can insert
617 * regions directly.
618 */
619 if (type->cnt * 2 + 1 <= type->max)
620 insert = true;
621
622repeat:
623 /*
624 * The following is executed twice. Once with %false @insert and
625 * then with %true. The first counts the number of regions needed
626 * to accommodate the new area. The second actually inserts them.
627 */
628 base = obase;
629 nr_new = 0;
630
631 for_each_memblock_type(idx, type, rgn) {
632 phys_addr_t rbase = rgn->base;
633 phys_addr_t rend = rbase + rgn->size;
634
635 if (rbase >= end)
636 break;
637 if (rend <= base)
638 continue;
639 /*
640 * @rgn overlaps. If it separates the lower part of new
641 * area, insert that portion.
642 */
643 if (rbase > base) {
644#ifdef CONFIG_NUMA
645 WARN_ON(nid != memblock_get_region_node(rgn));
646#endif
647 WARN_ON(flags != rgn->flags);
648 nr_new++;
649 if (insert) {
650 if (start_rgn == -1)
651 start_rgn = idx;
652 end_rgn = idx + 1;
653 memblock_insert_region(type, idx++, base,
654 rbase - base, nid,
655 flags);
656 }
657 }
658 /* area below @rend is dealt with, forget about it */
659 base = min(rend, end);
660 }
661
662 /* insert the remaining portion */
663 if (base < end) {
664 nr_new++;
665 if (insert) {
666 if (start_rgn == -1)
667 start_rgn = idx;
668 end_rgn = idx + 1;
669 memblock_insert_region(type, idx, base, end - base,
670 nid, flags);
671 }
672 }
673
674 if (!nr_new)
675 return 0;
676
677 /*
678 * If this was the first round, resize array and repeat for actual
679 * insertions; otherwise, merge and return.
680 */
681 if (!insert) {
682 while (type->cnt + nr_new > type->max)
683 if (memblock_double_array(type, obase, size) < 0)
684 return -ENOMEM;
685 insert = true;
686 goto repeat;
687 } else {
688 memblock_merge_regions(type, start_rgn, end_rgn);
689 return 0;
690 }
691}
692
693/**
694 * memblock_add_node - add new memblock region within a NUMA node
695 * @base: base address of the new region
696 * @size: size of the new region
697 * @nid: nid of the new region
698 * @flags: flags of the new region
699 *
700 * Add new memblock region [@base, @base + @size) to the "memory"
701 * type. See memblock_add_range() description for mode details
702 *
703 * Return:
704 * 0 on success, -errno on failure.
705 */
706int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
707 int nid, enum memblock_flags flags)
708{
709 phys_addr_t end = base + size - 1;
710
711 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
712 &base, &end, nid, flags, (void *)_RET_IP_);
713
714 return memblock_add_range(&memblock.memory, base, size, nid, flags);
715}
716
717/**
718 * memblock_add - add new memblock region
719 * @base: base address of the new region
720 * @size: size of the new region
721 *
722 * Add new memblock region [@base, @base + @size) to the "memory"
723 * type. See memblock_add_range() description for mode details
724 *
725 * Return:
726 * 0 on success, -errno on failure.
727 */
728int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
729{
730 phys_addr_t end = base + size - 1;
731
732 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
733 &base, &end, (void *)_RET_IP_);
734
735 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
736}
737
738/**
739 * memblock_validate_numa_coverage - check if amount of memory with
740 * no node ID assigned is less than a threshold
741 * @threshold_bytes: maximal number of pages that can have unassigned node
742 * ID (in bytes).
743 *
744 * A buggy firmware may report memory that does not belong to any node.
745 * Check if amount of such memory is below @threshold_bytes.
746 *
747 * Return: true on success, false on failure.
748 */
749bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes)
750{
751 unsigned long nr_pages = 0;
752 unsigned long start_pfn, end_pfn, mem_size_mb;
753 int nid, i;
754
755 /* calculate lose page */
756 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
757 if (nid == NUMA_NO_NODE)
758 nr_pages += end_pfn - start_pfn;
759 }
760
761 if ((nr_pages << PAGE_SHIFT) >= threshold_bytes) {
762 mem_size_mb = memblock_phys_mem_size() >> 20;
763 pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n",
764 (nr_pages << PAGE_SHIFT) >> 20, mem_size_mb);
765 return false;
766 }
767
768 return true;
769}
770
771
772/**
773 * memblock_isolate_range - isolate given range into disjoint memblocks
774 * @type: memblock type to isolate range for
775 * @base: base of range to isolate
776 * @size: size of range to isolate
777 * @start_rgn: out parameter for the start of isolated region
778 * @end_rgn: out parameter for the end of isolated region
779 *
780 * Walk @type and ensure that regions don't cross the boundaries defined by
781 * [@base, @base + @size). Crossing regions are split at the boundaries,
782 * which may create at most two more regions. The index of the first
783 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
784 *
785 * Return:
786 * 0 on success, -errno on failure.
787 */
788static int __init_memblock memblock_isolate_range(struct memblock_type *type,
789 phys_addr_t base, phys_addr_t size,
790 int *start_rgn, int *end_rgn)
791{
792 phys_addr_t end = base + memblock_cap_size(base, &size);
793 int idx;
794 struct memblock_region *rgn;
795
796 *start_rgn = *end_rgn = 0;
797
798 if (!size)
799 return 0;
800
801 /* we'll create at most two more regions */
802 while (type->cnt + 2 > type->max)
803 if (memblock_double_array(type, base, size) < 0)
804 return -ENOMEM;
805
806 for_each_memblock_type(idx, type, rgn) {
807 phys_addr_t rbase = rgn->base;
808 phys_addr_t rend = rbase + rgn->size;
809
810 if (rbase >= end)
811 break;
812 if (rend <= base)
813 continue;
814
815 if (rbase < base) {
816 /*
817 * @rgn intersects from below. Split and continue
818 * to process the next region - the new top half.
819 */
820 rgn->base = base;
821 rgn->size -= base - rbase;
822 type->total_size -= base - rbase;
823 memblock_insert_region(type, idx, rbase, base - rbase,
824 memblock_get_region_node(rgn),
825 rgn->flags);
826 } else if (rend > end) {
827 /*
828 * @rgn intersects from above. Split and redo the
829 * current region - the new bottom half.
830 */
831 rgn->base = end;
832 rgn->size -= end - rbase;
833 type->total_size -= end - rbase;
834 memblock_insert_region(type, idx--, rbase, end - rbase,
835 memblock_get_region_node(rgn),
836 rgn->flags);
837 } else {
838 /* @rgn is fully contained, record it */
839 if (!*end_rgn)
840 *start_rgn = idx;
841 *end_rgn = idx + 1;
842 }
843 }
844
845 return 0;
846}
847
848static int __init_memblock memblock_remove_range(struct memblock_type *type,
849 phys_addr_t base, phys_addr_t size)
850{
851 int start_rgn, end_rgn;
852 int i, ret;
853
854 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
855 if (ret)
856 return ret;
857
858 for (i = end_rgn - 1; i >= start_rgn; i--)
859 memblock_remove_region(type, i);
860 return 0;
861}
862
863int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
864{
865 phys_addr_t end = base + size - 1;
866
867 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
868 &base, &end, (void *)_RET_IP_);
869
870 return memblock_remove_range(&memblock.memory, base, size);
871}
872
873/**
874 * memblock_free - free boot memory allocation
875 * @ptr: starting address of the boot memory allocation
876 * @size: size of the boot memory block in bytes
877 *
878 * Free boot memory block previously allocated by memblock_alloc_xx() API.
879 * The freeing memory will not be released to the buddy allocator.
880 */
881void __init_memblock memblock_free(void *ptr, size_t size)
882{
883 if (ptr)
884 memblock_phys_free(__pa(ptr), size);
885}
886
887/**
888 * memblock_phys_free - free boot memory block
889 * @base: phys starting address of the boot memory block
890 * @size: size of the boot memory block in bytes
891 *
892 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
893 * The freeing memory will not be released to the buddy allocator.
894 */
895int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
896{
897 phys_addr_t end = base + size - 1;
898
899 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
900 &base, &end, (void *)_RET_IP_);
901
902 kmemleak_free_part_phys(base, size);
903 return memblock_remove_range(&memblock.reserved, base, size);
904}
905
906int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
907{
908 phys_addr_t end = base + size - 1;
909
910 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
911 &base, &end, (void *)_RET_IP_);
912
913 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
914}
915
916#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
917int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
918{
919 phys_addr_t end = base + size - 1;
920
921 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
922 &base, &end, (void *)_RET_IP_);
923
924 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
925}
926#endif
927
928/**
929 * memblock_setclr_flag - set or clear flag for a memory region
930 * @type: memblock type to set/clear flag for
931 * @base: base address of the region
932 * @size: size of the region
933 * @set: set or clear the flag
934 * @flag: the flag to update
935 *
936 * This function isolates region [@base, @base + @size), and sets/clears flag
937 *
938 * Return: 0 on success, -errno on failure.
939 */
940static int __init_memblock memblock_setclr_flag(struct memblock_type *type,
941 phys_addr_t base, phys_addr_t size, int set, int flag)
942{
943 int i, ret, start_rgn, end_rgn;
944
945 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
946 if (ret)
947 return ret;
948
949 for (i = start_rgn; i < end_rgn; i++) {
950 struct memblock_region *r = &type->regions[i];
951
952 if (set)
953 r->flags |= flag;
954 else
955 r->flags &= ~flag;
956 }
957
958 memblock_merge_regions(type, start_rgn, end_rgn);
959 return 0;
960}
961
962/**
963 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
964 * @base: the base phys addr of the region
965 * @size: the size of the region
966 *
967 * Return: 0 on success, -errno on failure.
968 */
969int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
970{
971 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG);
972}
973
974/**
975 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
976 * @base: the base phys addr of the region
977 * @size: the size of the region
978 *
979 * Return: 0 on success, -errno on failure.
980 */
981int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
982{
983 return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG);
984}
985
986/**
987 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
988 * @base: the base phys addr of the region
989 * @size: the size of the region
990 *
991 * Return: 0 on success, -errno on failure.
992 */
993int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
994{
995 if (!mirrored_kernelcore)
996 return 0;
997
998 system_has_some_mirror = true;
999
1000 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR);
1001}
1002
1003/**
1004 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
1005 * @base: the base phys addr of the region
1006 * @size: the size of the region
1007 *
1008 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
1009 * direct mapping of the physical memory. These regions will still be
1010 * covered by the memory map. The struct page representing NOMAP memory
1011 * frames in the memory map will be PageReserved()
1012 *
1013 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
1014 * memblock, the caller must inform kmemleak to ignore that memory
1015 *
1016 * Return: 0 on success, -errno on failure.
1017 */
1018int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
1019{
1020 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP);
1021}
1022
1023/**
1024 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
1025 * @base: the base phys addr of the region
1026 * @size: the size of the region
1027 *
1028 * Return: 0 on success, -errno on failure.
1029 */
1030int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
1031{
1032 return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP);
1033}
1034
1035/**
1036 * memblock_reserved_mark_noinit - Mark a reserved memory region with flag
1037 * MEMBLOCK_RSRV_NOINIT which results in the struct pages not being initialized
1038 * for this region.
1039 * @base: the base phys addr of the region
1040 * @size: the size of the region
1041 *
1042 * struct pages will not be initialized for reserved memory regions marked with
1043 * %MEMBLOCK_RSRV_NOINIT.
1044 *
1045 * Return: 0 on success, -errno on failure.
1046 */
1047int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size)
1048{
1049 return memblock_setclr_flag(&memblock.reserved, base, size, 1,
1050 MEMBLOCK_RSRV_NOINIT);
1051}
1052
1053static bool should_skip_region(struct memblock_type *type,
1054 struct memblock_region *m,
1055 int nid, int flags)
1056{
1057 int m_nid = memblock_get_region_node(m);
1058
1059 /* we never skip regions when iterating memblock.reserved or physmem */
1060 if (type != memblock_memory)
1061 return false;
1062
1063 /* only memory regions are associated with nodes, check it */
1064 if (nid != NUMA_NO_NODE && nid != m_nid)
1065 return true;
1066
1067 /* skip hotpluggable memory regions if needed */
1068 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1069 !(flags & MEMBLOCK_HOTPLUG))
1070 return true;
1071
1072 /* if we want mirror memory skip non-mirror memory regions */
1073 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1074 return true;
1075
1076 /* skip nomap memory unless we were asked for it explicitly */
1077 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1078 return true;
1079
1080 /* skip driver-managed memory unless we were asked for it explicitly */
1081 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1082 return true;
1083
1084 return false;
1085}
1086
1087/**
1088 * __next_mem_range - next function for for_each_free_mem_range() etc.
1089 * @idx: pointer to u64 loop variable
1090 * @nid: node selector, %NUMA_NO_NODE for all nodes
1091 * @flags: pick from blocks based on memory attributes
1092 * @type_a: pointer to memblock_type from where the range is taken
1093 * @type_b: pointer to memblock_type which excludes memory from being taken
1094 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1095 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1096 * @out_nid: ptr to int for nid of the range, can be %NULL
1097 *
1098 * Find the first area from *@idx which matches @nid, fill the out
1099 * parameters, and update *@idx for the next iteration. The lower 32bit of
1100 * *@idx contains index into type_a and the upper 32bit indexes the
1101 * areas before each region in type_b. For example, if type_b regions
1102 * look like the following,
1103 *
1104 * 0:[0-16), 1:[32-48), 2:[128-130)
1105 *
1106 * The upper 32bit indexes the following regions.
1107 *
1108 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1109 *
1110 * As both region arrays are sorted, the function advances the two indices
1111 * in lockstep and returns each intersection.
1112 */
1113void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1114 struct memblock_type *type_a,
1115 struct memblock_type *type_b, phys_addr_t *out_start,
1116 phys_addr_t *out_end, int *out_nid)
1117{
1118 int idx_a = *idx & 0xffffffff;
1119 int idx_b = *idx >> 32;
1120
1121 if (WARN_ONCE(nid == MAX_NUMNODES,
1122 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1123 nid = NUMA_NO_NODE;
1124
1125 for (; idx_a < type_a->cnt; idx_a++) {
1126 struct memblock_region *m = &type_a->regions[idx_a];
1127
1128 phys_addr_t m_start = m->base;
1129 phys_addr_t m_end = m->base + m->size;
1130 int m_nid = memblock_get_region_node(m);
1131
1132 if (should_skip_region(type_a, m, nid, flags))
1133 continue;
1134
1135 if (!type_b) {
1136 if (out_start)
1137 *out_start = m_start;
1138 if (out_end)
1139 *out_end = m_end;
1140 if (out_nid)
1141 *out_nid = m_nid;
1142 idx_a++;
1143 *idx = (u32)idx_a | (u64)idx_b << 32;
1144 return;
1145 }
1146
1147 /* scan areas before each reservation */
1148 for (; idx_b < type_b->cnt + 1; idx_b++) {
1149 struct memblock_region *r;
1150 phys_addr_t r_start;
1151 phys_addr_t r_end;
1152
1153 r = &type_b->regions[idx_b];
1154 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1155 r_end = idx_b < type_b->cnt ?
1156 r->base : PHYS_ADDR_MAX;
1157
1158 /*
1159 * if idx_b advanced past idx_a,
1160 * break out to advance idx_a
1161 */
1162 if (r_start >= m_end)
1163 break;
1164 /* if the two regions intersect, we're done */
1165 if (m_start < r_end) {
1166 if (out_start)
1167 *out_start =
1168 max(m_start, r_start);
1169 if (out_end)
1170 *out_end = min(m_end, r_end);
1171 if (out_nid)
1172 *out_nid = m_nid;
1173 /*
1174 * The region which ends first is
1175 * advanced for the next iteration.
1176 */
1177 if (m_end <= r_end)
1178 idx_a++;
1179 else
1180 idx_b++;
1181 *idx = (u32)idx_a | (u64)idx_b << 32;
1182 return;
1183 }
1184 }
1185 }
1186
1187 /* signal end of iteration */
1188 *idx = ULLONG_MAX;
1189}
1190
1191/**
1192 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1193 *
1194 * @idx: pointer to u64 loop variable
1195 * @nid: node selector, %NUMA_NO_NODE for all nodes
1196 * @flags: pick from blocks based on memory attributes
1197 * @type_a: pointer to memblock_type from where the range is taken
1198 * @type_b: pointer to memblock_type which excludes memory from being taken
1199 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1200 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1201 * @out_nid: ptr to int for nid of the range, can be %NULL
1202 *
1203 * Finds the next range from type_a which is not marked as unsuitable
1204 * in type_b.
1205 *
1206 * Reverse of __next_mem_range().
1207 */
1208void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1209 enum memblock_flags flags,
1210 struct memblock_type *type_a,
1211 struct memblock_type *type_b,
1212 phys_addr_t *out_start,
1213 phys_addr_t *out_end, int *out_nid)
1214{
1215 int idx_a = *idx & 0xffffffff;
1216 int idx_b = *idx >> 32;
1217
1218 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1219 nid = NUMA_NO_NODE;
1220
1221 if (*idx == (u64)ULLONG_MAX) {
1222 idx_a = type_a->cnt - 1;
1223 if (type_b != NULL)
1224 idx_b = type_b->cnt;
1225 else
1226 idx_b = 0;
1227 }
1228
1229 for (; idx_a >= 0; idx_a--) {
1230 struct memblock_region *m = &type_a->regions[idx_a];
1231
1232 phys_addr_t m_start = m->base;
1233 phys_addr_t m_end = m->base + m->size;
1234 int m_nid = memblock_get_region_node(m);
1235
1236 if (should_skip_region(type_a, m, nid, flags))
1237 continue;
1238
1239 if (!type_b) {
1240 if (out_start)
1241 *out_start = m_start;
1242 if (out_end)
1243 *out_end = m_end;
1244 if (out_nid)
1245 *out_nid = m_nid;
1246 idx_a--;
1247 *idx = (u32)idx_a | (u64)idx_b << 32;
1248 return;
1249 }
1250
1251 /* scan areas before each reservation */
1252 for (; idx_b >= 0; idx_b--) {
1253 struct memblock_region *r;
1254 phys_addr_t r_start;
1255 phys_addr_t r_end;
1256
1257 r = &type_b->regions[idx_b];
1258 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1259 r_end = idx_b < type_b->cnt ?
1260 r->base : PHYS_ADDR_MAX;
1261 /*
1262 * if idx_b advanced past idx_a,
1263 * break out to advance idx_a
1264 */
1265
1266 if (r_end <= m_start)
1267 break;
1268 /* if the two regions intersect, we're done */
1269 if (m_end > r_start) {
1270 if (out_start)
1271 *out_start = max(m_start, r_start);
1272 if (out_end)
1273 *out_end = min(m_end, r_end);
1274 if (out_nid)
1275 *out_nid = m_nid;
1276 if (m_start >= r_start)
1277 idx_a--;
1278 else
1279 idx_b--;
1280 *idx = (u32)idx_a | (u64)idx_b << 32;
1281 return;
1282 }
1283 }
1284 }
1285 /* signal end of iteration */
1286 *idx = ULLONG_MAX;
1287}
1288
1289/*
1290 * Common iterator interface used to define for_each_mem_pfn_range().
1291 */
1292void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1293 unsigned long *out_start_pfn,
1294 unsigned long *out_end_pfn, int *out_nid)
1295{
1296 struct memblock_type *type = &memblock.memory;
1297 struct memblock_region *r;
1298 int r_nid;
1299
1300 while (++*idx < type->cnt) {
1301 r = &type->regions[*idx];
1302 r_nid = memblock_get_region_node(r);
1303
1304 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1305 continue;
1306 if (nid == MAX_NUMNODES || nid == r_nid)
1307 break;
1308 }
1309 if (*idx >= type->cnt) {
1310 *idx = -1;
1311 return;
1312 }
1313
1314 if (out_start_pfn)
1315 *out_start_pfn = PFN_UP(r->base);
1316 if (out_end_pfn)
1317 *out_end_pfn = PFN_DOWN(r->base + r->size);
1318 if (out_nid)
1319 *out_nid = r_nid;
1320}
1321
1322/**
1323 * memblock_set_node - set node ID on memblock regions
1324 * @base: base of area to set node ID for
1325 * @size: size of area to set node ID for
1326 * @type: memblock type to set node ID for
1327 * @nid: node ID to set
1328 *
1329 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1330 * Regions which cross the area boundaries are split as necessary.
1331 *
1332 * Return:
1333 * 0 on success, -errno on failure.
1334 */
1335int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1336 struct memblock_type *type, int nid)
1337{
1338#ifdef CONFIG_NUMA
1339 int start_rgn, end_rgn;
1340 int i, ret;
1341
1342 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1343 if (ret)
1344 return ret;
1345
1346 for (i = start_rgn; i < end_rgn; i++)
1347 memblock_set_region_node(&type->regions[i], nid);
1348
1349 memblock_merge_regions(type, start_rgn, end_rgn);
1350#endif
1351 return 0;
1352}
1353
1354#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1355/**
1356 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1357 *
1358 * @idx: pointer to u64 loop variable
1359 * @zone: zone in which all of the memory blocks reside
1360 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1361 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1362 *
1363 * This function is meant to be a zone/pfn specific wrapper for the
1364 * for_each_mem_range type iterators. Specifically they are used in the
1365 * deferred memory init routines and as such we were duplicating much of
1366 * this logic throughout the code. So instead of having it in multiple
1367 * locations it seemed like it would make more sense to centralize this to
1368 * one new iterator that does everything they need.
1369 */
1370void __init_memblock
1371__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1372 unsigned long *out_spfn, unsigned long *out_epfn)
1373{
1374 int zone_nid = zone_to_nid(zone);
1375 phys_addr_t spa, epa;
1376
1377 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1378 &memblock.memory, &memblock.reserved,
1379 &spa, &epa, NULL);
1380
1381 while (*idx != U64_MAX) {
1382 unsigned long epfn = PFN_DOWN(epa);
1383 unsigned long spfn = PFN_UP(spa);
1384
1385 /*
1386 * Verify the end is at least past the start of the zone and
1387 * that we have at least one PFN to initialize.
1388 */
1389 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1390 /* if we went too far just stop searching */
1391 if (zone_end_pfn(zone) <= spfn) {
1392 *idx = U64_MAX;
1393 break;
1394 }
1395
1396 if (out_spfn)
1397 *out_spfn = max(zone->zone_start_pfn, spfn);
1398 if (out_epfn)
1399 *out_epfn = min(zone_end_pfn(zone), epfn);
1400
1401 return;
1402 }
1403
1404 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1405 &memblock.memory, &memblock.reserved,
1406 &spa, &epa, NULL);
1407 }
1408
1409 /* signal end of iteration */
1410 if (out_spfn)
1411 *out_spfn = ULONG_MAX;
1412 if (out_epfn)
1413 *out_epfn = 0;
1414}
1415
1416#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1417
1418/**
1419 * memblock_alloc_range_nid - allocate boot memory block
1420 * @size: size of memory block to be allocated in bytes
1421 * @align: alignment of the region and block's size
1422 * @start: the lower bound of the memory region to allocate (phys address)
1423 * @end: the upper bound of the memory region to allocate (phys address)
1424 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1425 * @exact_nid: control the allocation fall back to other nodes
1426 *
1427 * The allocation is performed from memory region limited by
1428 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1429 *
1430 * If the specified node can not hold the requested memory and @exact_nid
1431 * is false, the allocation falls back to any node in the system.
1432 *
1433 * For systems with memory mirroring, the allocation is attempted first
1434 * from the regions with mirroring enabled and then retried from any
1435 * memory region.
1436 *
1437 * In addition, function using kmemleak_alloc_phys for allocated boot
1438 * memory block, it is never reported as leaks.
1439 *
1440 * Return:
1441 * Physical address of allocated memory block on success, %0 on failure.
1442 */
1443phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1444 phys_addr_t align, phys_addr_t start,
1445 phys_addr_t end, int nid,
1446 bool exact_nid)
1447{
1448 enum memblock_flags flags = choose_memblock_flags();
1449 phys_addr_t found;
1450
1451 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1452 nid = NUMA_NO_NODE;
1453
1454 if (!align) {
1455 /* Can't use WARNs this early in boot on powerpc */
1456 dump_stack();
1457 align = SMP_CACHE_BYTES;
1458 }
1459
1460again:
1461 found = memblock_find_in_range_node(size, align, start, end, nid,
1462 flags);
1463 if (found && !memblock_reserve(found, size))
1464 goto done;
1465
1466 if (nid != NUMA_NO_NODE && !exact_nid) {
1467 found = memblock_find_in_range_node(size, align, start,
1468 end, NUMA_NO_NODE,
1469 flags);
1470 if (found && !memblock_reserve(found, size))
1471 goto done;
1472 }
1473
1474 if (flags & MEMBLOCK_MIRROR) {
1475 flags &= ~MEMBLOCK_MIRROR;
1476 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1477 &size);
1478 goto again;
1479 }
1480
1481 return 0;
1482
1483done:
1484 /*
1485 * Skip kmemleak for those places like kasan_init() and
1486 * early_pgtable_alloc() due to high volume.
1487 */
1488 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1489 /*
1490 * Memblock allocated blocks are never reported as
1491 * leaks. This is because many of these blocks are
1492 * only referred via the physical address which is
1493 * not looked up by kmemleak.
1494 */
1495 kmemleak_alloc_phys(found, size, 0);
1496
1497 /*
1498 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1499 * require memory to be accepted before it can be used by the
1500 * guest.
1501 *
1502 * Accept the memory of the allocated buffer.
1503 */
1504 accept_memory(found, found + size);
1505
1506 return found;
1507}
1508
1509/**
1510 * memblock_phys_alloc_range - allocate a memory block inside specified range
1511 * @size: size of memory block to be allocated in bytes
1512 * @align: alignment of the region and block's size
1513 * @start: the lower bound of the memory region to allocate (physical address)
1514 * @end: the upper bound of the memory region to allocate (physical address)
1515 *
1516 * Allocate @size bytes in the between @start and @end.
1517 *
1518 * Return: physical address of the allocated memory block on success,
1519 * %0 on failure.
1520 */
1521phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1522 phys_addr_t align,
1523 phys_addr_t start,
1524 phys_addr_t end)
1525{
1526 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1527 __func__, (u64)size, (u64)align, &start, &end,
1528 (void *)_RET_IP_);
1529 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1530 false);
1531}
1532
1533/**
1534 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1535 * @size: size of memory block to be allocated in bytes
1536 * @align: alignment of the region and block's size
1537 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1538 *
1539 * Allocates memory block from the specified NUMA node. If the node
1540 * has no available memory, attempts to allocated from any node in the
1541 * system.
1542 *
1543 * Return: physical address of the allocated memory block on success,
1544 * %0 on failure.
1545 */
1546phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1547{
1548 return memblock_alloc_range_nid(size, align, 0,
1549 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1550}
1551
1552/**
1553 * memblock_alloc_internal - allocate boot memory block
1554 * @size: size of memory block to be allocated in bytes
1555 * @align: alignment of the region and block's size
1556 * @min_addr: the lower bound of the memory region to allocate (phys address)
1557 * @max_addr: the upper bound of the memory region to allocate (phys address)
1558 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1559 * @exact_nid: control the allocation fall back to other nodes
1560 *
1561 * Allocates memory block using memblock_alloc_range_nid() and
1562 * converts the returned physical address to virtual.
1563 *
1564 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1565 * will fall back to memory below @min_addr. Other constraints, such
1566 * as node and mirrored memory will be handled again in
1567 * memblock_alloc_range_nid().
1568 *
1569 * Return:
1570 * Virtual address of allocated memory block on success, NULL on failure.
1571 */
1572static void * __init memblock_alloc_internal(
1573 phys_addr_t size, phys_addr_t align,
1574 phys_addr_t min_addr, phys_addr_t max_addr,
1575 int nid, bool exact_nid)
1576{
1577 phys_addr_t alloc;
1578
1579 /*
1580 * Detect any accidental use of these APIs after slab is ready, as at
1581 * this moment memblock may be deinitialized already and its
1582 * internal data may be destroyed (after execution of memblock_free_all)
1583 */
1584 if (WARN_ON_ONCE(slab_is_available()))
1585 return kzalloc_node(size, GFP_NOWAIT, nid);
1586
1587 if (max_addr > memblock.current_limit)
1588 max_addr = memblock.current_limit;
1589
1590 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1591 exact_nid);
1592
1593 /* retry allocation without lower limit */
1594 if (!alloc && min_addr)
1595 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1596 exact_nid);
1597
1598 if (!alloc)
1599 return NULL;
1600
1601 return phys_to_virt(alloc);
1602}
1603
1604/**
1605 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1606 * without zeroing memory
1607 * @size: size of memory block to be allocated in bytes
1608 * @align: alignment of the region and block's size
1609 * @min_addr: the lower bound of the memory region from where the allocation
1610 * is preferred (phys address)
1611 * @max_addr: the upper bound of the memory region from where the allocation
1612 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1613 * allocate only from memory limited by memblock.current_limit value
1614 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1615 *
1616 * Public function, provides additional debug information (including caller
1617 * info), if enabled. Does not zero allocated memory.
1618 *
1619 * Return:
1620 * Virtual address of allocated memory block on success, NULL on failure.
1621 */
1622void * __init memblock_alloc_exact_nid_raw(
1623 phys_addr_t size, phys_addr_t align,
1624 phys_addr_t min_addr, phys_addr_t max_addr,
1625 int nid)
1626{
1627 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1628 __func__, (u64)size, (u64)align, nid, &min_addr,
1629 &max_addr, (void *)_RET_IP_);
1630
1631 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1632 true);
1633}
1634
1635/**
1636 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1637 * memory and without panicking
1638 * @size: size of memory block to be allocated in bytes
1639 * @align: alignment of the region and block's size
1640 * @min_addr: the lower bound of the memory region from where the allocation
1641 * is preferred (phys address)
1642 * @max_addr: the upper bound of the memory region from where the allocation
1643 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1644 * allocate only from memory limited by memblock.current_limit value
1645 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1646 *
1647 * Public function, provides additional debug information (including caller
1648 * info), if enabled. Does not zero allocated memory, does not panic if request
1649 * cannot be satisfied.
1650 *
1651 * Return:
1652 * Virtual address of allocated memory block on success, NULL on failure.
1653 */
1654void * __init memblock_alloc_try_nid_raw(
1655 phys_addr_t size, phys_addr_t align,
1656 phys_addr_t min_addr, phys_addr_t max_addr,
1657 int nid)
1658{
1659 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1660 __func__, (u64)size, (u64)align, nid, &min_addr,
1661 &max_addr, (void *)_RET_IP_);
1662
1663 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1664 false);
1665}
1666
1667/**
1668 * memblock_alloc_try_nid - allocate boot memory block
1669 * @size: size of memory block to be allocated in bytes
1670 * @align: alignment of the region and block's size
1671 * @min_addr: the lower bound of the memory region from where the allocation
1672 * is preferred (phys address)
1673 * @max_addr: the upper bound of the memory region from where the allocation
1674 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1675 * allocate only from memory limited by memblock.current_limit value
1676 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1677 *
1678 * Public function, provides additional debug information (including caller
1679 * info), if enabled. This function zeroes the allocated memory.
1680 *
1681 * Return:
1682 * Virtual address of allocated memory block on success, NULL on failure.
1683 */
1684void * __init memblock_alloc_try_nid(
1685 phys_addr_t size, phys_addr_t align,
1686 phys_addr_t min_addr, phys_addr_t max_addr,
1687 int nid)
1688{
1689 void *ptr;
1690
1691 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1692 __func__, (u64)size, (u64)align, nid, &min_addr,
1693 &max_addr, (void *)_RET_IP_);
1694 ptr = memblock_alloc_internal(size, align,
1695 min_addr, max_addr, nid, false);
1696 if (ptr)
1697 memset(ptr, 0, size);
1698
1699 return ptr;
1700}
1701
1702/**
1703 * memblock_free_late - free pages directly to buddy allocator
1704 * @base: phys starting address of the boot memory block
1705 * @size: size of the boot memory block in bytes
1706 *
1707 * This is only useful when the memblock allocator has already been torn
1708 * down, but we are still initializing the system. Pages are released directly
1709 * to the buddy allocator.
1710 */
1711void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1712{
1713 phys_addr_t cursor, end;
1714
1715 end = base + size - 1;
1716 memblock_dbg("%s: [%pa-%pa] %pS\n",
1717 __func__, &base, &end, (void *)_RET_IP_);
1718 kmemleak_free_part_phys(base, size);
1719 cursor = PFN_UP(base);
1720 end = PFN_DOWN(base + size);
1721
1722 for (; cursor < end; cursor++) {
1723 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1724 totalram_pages_inc();
1725 }
1726}
1727
1728/*
1729 * Remaining API functions
1730 */
1731
1732phys_addr_t __init_memblock memblock_phys_mem_size(void)
1733{
1734 return memblock.memory.total_size;
1735}
1736
1737phys_addr_t __init_memblock memblock_reserved_size(void)
1738{
1739 return memblock.reserved.total_size;
1740}
1741
1742/* lowest address */
1743phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1744{
1745 return memblock.memory.regions[0].base;
1746}
1747
1748phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1749{
1750 int idx = memblock.memory.cnt - 1;
1751
1752 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1753}
1754
1755static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1756{
1757 phys_addr_t max_addr = PHYS_ADDR_MAX;
1758 struct memblock_region *r;
1759
1760 /*
1761 * translate the memory @limit size into the max address within one of
1762 * the memory memblock regions, if the @limit exceeds the total size
1763 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1764 */
1765 for_each_mem_region(r) {
1766 if (limit <= r->size) {
1767 max_addr = r->base + limit;
1768 break;
1769 }
1770 limit -= r->size;
1771 }
1772
1773 return max_addr;
1774}
1775
1776void __init memblock_enforce_memory_limit(phys_addr_t limit)
1777{
1778 phys_addr_t max_addr;
1779
1780 if (!limit)
1781 return;
1782
1783 max_addr = __find_max_addr(limit);
1784
1785 /* @limit exceeds the total size of the memory, do nothing */
1786 if (max_addr == PHYS_ADDR_MAX)
1787 return;
1788
1789 /* truncate both memory and reserved regions */
1790 memblock_remove_range(&memblock.memory, max_addr,
1791 PHYS_ADDR_MAX);
1792 memblock_remove_range(&memblock.reserved, max_addr,
1793 PHYS_ADDR_MAX);
1794}
1795
1796void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1797{
1798 int start_rgn, end_rgn;
1799 int i, ret;
1800
1801 if (!size)
1802 return;
1803
1804 if (!memblock_memory->total_size) {
1805 pr_warn("%s: No memory registered yet\n", __func__);
1806 return;
1807 }
1808
1809 ret = memblock_isolate_range(&memblock.memory, base, size,
1810 &start_rgn, &end_rgn);
1811 if (ret)
1812 return;
1813
1814 /* remove all the MAP regions */
1815 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1816 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1817 memblock_remove_region(&memblock.memory, i);
1818
1819 for (i = start_rgn - 1; i >= 0; i--)
1820 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1821 memblock_remove_region(&memblock.memory, i);
1822
1823 /* truncate the reserved regions */
1824 memblock_remove_range(&memblock.reserved, 0, base);
1825 memblock_remove_range(&memblock.reserved,
1826 base + size, PHYS_ADDR_MAX);
1827}
1828
1829void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1830{
1831 phys_addr_t max_addr;
1832
1833 if (!limit)
1834 return;
1835
1836 max_addr = __find_max_addr(limit);
1837
1838 /* @limit exceeds the total size of the memory, do nothing */
1839 if (max_addr == PHYS_ADDR_MAX)
1840 return;
1841
1842 memblock_cap_memory_range(0, max_addr);
1843}
1844
1845static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1846{
1847 unsigned int left = 0, right = type->cnt;
1848
1849 do {
1850 unsigned int mid = (right + left) / 2;
1851
1852 if (addr < type->regions[mid].base)
1853 right = mid;
1854 else if (addr >= (type->regions[mid].base +
1855 type->regions[mid].size))
1856 left = mid + 1;
1857 else
1858 return mid;
1859 } while (left < right);
1860 return -1;
1861}
1862
1863bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1864{
1865 return memblock_search(&memblock.reserved, addr) != -1;
1866}
1867
1868bool __init_memblock memblock_is_memory(phys_addr_t addr)
1869{
1870 return memblock_search(&memblock.memory, addr) != -1;
1871}
1872
1873bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1874{
1875 int i = memblock_search(&memblock.memory, addr);
1876
1877 if (i == -1)
1878 return false;
1879 return !memblock_is_nomap(&memblock.memory.regions[i]);
1880}
1881
1882int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1883 unsigned long *start_pfn, unsigned long *end_pfn)
1884{
1885 struct memblock_type *type = &memblock.memory;
1886 int mid = memblock_search(type, PFN_PHYS(pfn));
1887
1888 if (mid == -1)
1889 return NUMA_NO_NODE;
1890
1891 *start_pfn = PFN_DOWN(type->regions[mid].base);
1892 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1893
1894 return memblock_get_region_node(&type->regions[mid]);
1895}
1896
1897/**
1898 * memblock_is_region_memory - check if a region is a subset of memory
1899 * @base: base of region to check
1900 * @size: size of region to check
1901 *
1902 * Check if the region [@base, @base + @size) is a subset of a memory block.
1903 *
1904 * Return:
1905 * 0 if false, non-zero if true
1906 */
1907bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1908{
1909 int idx = memblock_search(&memblock.memory, base);
1910 phys_addr_t end = base + memblock_cap_size(base, &size);
1911
1912 if (idx == -1)
1913 return false;
1914 return (memblock.memory.regions[idx].base +
1915 memblock.memory.regions[idx].size) >= end;
1916}
1917
1918/**
1919 * memblock_is_region_reserved - check if a region intersects reserved memory
1920 * @base: base of region to check
1921 * @size: size of region to check
1922 *
1923 * Check if the region [@base, @base + @size) intersects a reserved
1924 * memory block.
1925 *
1926 * Return:
1927 * True if they intersect, false if not.
1928 */
1929bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1930{
1931 return memblock_overlaps_region(&memblock.reserved, base, size);
1932}
1933
1934void __init_memblock memblock_trim_memory(phys_addr_t align)
1935{
1936 phys_addr_t start, end, orig_start, orig_end;
1937 struct memblock_region *r;
1938
1939 for_each_mem_region(r) {
1940 orig_start = r->base;
1941 orig_end = r->base + r->size;
1942 start = round_up(orig_start, align);
1943 end = round_down(orig_end, align);
1944
1945 if (start == orig_start && end == orig_end)
1946 continue;
1947
1948 if (start < end) {
1949 r->base = start;
1950 r->size = end - start;
1951 } else {
1952 memblock_remove_region(&memblock.memory,
1953 r - memblock.memory.regions);
1954 r--;
1955 }
1956 }
1957}
1958
1959void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1960{
1961 memblock.current_limit = limit;
1962}
1963
1964phys_addr_t __init_memblock memblock_get_current_limit(void)
1965{
1966 return memblock.current_limit;
1967}
1968
1969static void __init_memblock memblock_dump(struct memblock_type *type)
1970{
1971 phys_addr_t base, end, size;
1972 enum memblock_flags flags;
1973 int idx;
1974 struct memblock_region *rgn;
1975
1976 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1977
1978 for_each_memblock_type(idx, type, rgn) {
1979 char nid_buf[32] = "";
1980
1981 base = rgn->base;
1982 size = rgn->size;
1983 end = base + size - 1;
1984 flags = rgn->flags;
1985#ifdef CONFIG_NUMA
1986 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1987 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1988 memblock_get_region_node(rgn));
1989#endif
1990 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1991 type->name, idx, &base, &end, &size, nid_buf, flags);
1992 }
1993}
1994
1995static void __init_memblock __memblock_dump_all(void)
1996{
1997 pr_info("MEMBLOCK configuration:\n");
1998 pr_info(" memory size = %pa reserved size = %pa\n",
1999 &memblock.memory.total_size,
2000 &memblock.reserved.total_size);
2001
2002 memblock_dump(&memblock.memory);
2003 memblock_dump(&memblock.reserved);
2004#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2005 memblock_dump(&physmem);
2006#endif
2007}
2008
2009void __init_memblock memblock_dump_all(void)
2010{
2011 if (memblock_debug)
2012 __memblock_dump_all();
2013}
2014
2015void __init memblock_allow_resize(void)
2016{
2017 memblock_can_resize = 1;
2018}
2019
2020static int __init early_memblock(char *p)
2021{
2022 if (p && strstr(p, "debug"))
2023 memblock_debug = 1;
2024 return 0;
2025}
2026early_param("memblock", early_memblock);
2027
2028static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
2029{
2030 struct page *start_pg, *end_pg;
2031 phys_addr_t pg, pgend;
2032
2033 /*
2034 * Convert start_pfn/end_pfn to a struct page pointer.
2035 */
2036 start_pg = pfn_to_page(start_pfn - 1) + 1;
2037 end_pg = pfn_to_page(end_pfn - 1) + 1;
2038
2039 /*
2040 * Convert to physical addresses, and round start upwards and end
2041 * downwards.
2042 */
2043 pg = PAGE_ALIGN(__pa(start_pg));
2044 pgend = __pa(end_pg) & PAGE_MASK;
2045
2046 /*
2047 * If there are free pages between these, free the section of the
2048 * memmap array.
2049 */
2050 if (pg < pgend)
2051 memblock_phys_free(pg, pgend - pg);
2052}
2053
2054/*
2055 * The mem_map array can get very big. Free the unused area of the memory map.
2056 */
2057static void __init free_unused_memmap(void)
2058{
2059 unsigned long start, end, prev_end = 0;
2060 int i;
2061
2062 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2063 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2064 return;
2065
2066 /*
2067 * This relies on each bank being in address order.
2068 * The banks are sorted previously in bootmem_init().
2069 */
2070 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2071#ifdef CONFIG_SPARSEMEM
2072 /*
2073 * Take care not to free memmap entries that don't exist
2074 * due to SPARSEMEM sections which aren't present.
2075 */
2076 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2077#endif
2078 /*
2079 * Align down here since many operations in VM subsystem
2080 * presume that there are no holes in the memory map inside
2081 * a pageblock
2082 */
2083 start = pageblock_start_pfn(start);
2084
2085 /*
2086 * If we had a previous bank, and there is a space
2087 * between the current bank and the previous, free it.
2088 */
2089 if (prev_end && prev_end < start)
2090 free_memmap(prev_end, start);
2091
2092 /*
2093 * Align up here since many operations in VM subsystem
2094 * presume that there are no holes in the memory map inside
2095 * a pageblock
2096 */
2097 prev_end = pageblock_align(end);
2098 }
2099
2100#ifdef CONFIG_SPARSEMEM
2101 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2102 prev_end = pageblock_align(end);
2103 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2104 }
2105#endif
2106}
2107
2108static void __init __free_pages_memory(unsigned long start, unsigned long end)
2109{
2110 int order;
2111
2112 while (start < end) {
2113 /*
2114 * Free the pages in the largest chunks alignment allows.
2115 *
2116 * __ffs() behaviour is undefined for 0. start == 0 is
2117 * MAX_PAGE_ORDER-aligned, set order to MAX_PAGE_ORDER for
2118 * the case.
2119 */
2120 if (start)
2121 order = min_t(int, MAX_PAGE_ORDER, __ffs(start));
2122 else
2123 order = MAX_PAGE_ORDER;
2124
2125 while (start + (1UL << order) > end)
2126 order--;
2127
2128 memblock_free_pages(pfn_to_page(start), start, order);
2129
2130 start += (1UL << order);
2131 }
2132}
2133
2134static unsigned long __init __free_memory_core(phys_addr_t start,
2135 phys_addr_t end)
2136{
2137 unsigned long start_pfn = PFN_UP(start);
2138 unsigned long end_pfn = min_t(unsigned long,
2139 PFN_DOWN(end), max_low_pfn);
2140
2141 if (start_pfn >= end_pfn)
2142 return 0;
2143
2144 __free_pages_memory(start_pfn, end_pfn);
2145
2146 return end_pfn - start_pfn;
2147}
2148
2149static void __init memmap_init_reserved_pages(void)
2150{
2151 struct memblock_region *region;
2152 phys_addr_t start, end;
2153 int nid;
2154
2155 /*
2156 * set nid on all reserved pages and also treat struct
2157 * pages for the NOMAP regions as PageReserved
2158 */
2159 for_each_mem_region(region) {
2160 nid = memblock_get_region_node(region);
2161 start = region->base;
2162 end = start + region->size;
2163
2164 if (memblock_is_nomap(region))
2165 reserve_bootmem_region(start, end, nid);
2166
2167 memblock_set_node(start, end, &memblock.reserved, nid);
2168 }
2169
2170 /*
2171 * initialize struct pages for reserved regions that don't have
2172 * the MEMBLOCK_RSRV_NOINIT flag set
2173 */
2174 for_each_reserved_mem_region(region) {
2175 if (!memblock_is_reserved_noinit(region)) {
2176 nid = memblock_get_region_node(region);
2177 start = region->base;
2178 end = start + region->size;
2179
2180 if (nid == NUMA_NO_NODE || nid >= MAX_NUMNODES)
2181 nid = early_pfn_to_nid(PFN_DOWN(start));
2182
2183 reserve_bootmem_region(start, end, nid);
2184 }
2185 }
2186}
2187
2188static unsigned long __init free_low_memory_core_early(void)
2189{
2190 unsigned long count = 0;
2191 phys_addr_t start, end;
2192 u64 i;
2193
2194 memblock_clear_hotplug(0, -1);
2195
2196 memmap_init_reserved_pages();
2197
2198 /*
2199 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2200 * because in some case like Node0 doesn't have RAM installed
2201 * low ram will be on Node1
2202 */
2203 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2204 NULL)
2205 count += __free_memory_core(start, end);
2206
2207 return count;
2208}
2209
2210static int reset_managed_pages_done __initdata;
2211
2212static void __init reset_node_managed_pages(pg_data_t *pgdat)
2213{
2214 struct zone *z;
2215
2216 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2217 atomic_long_set(&z->managed_pages, 0);
2218}
2219
2220void __init reset_all_zones_managed_pages(void)
2221{
2222 struct pglist_data *pgdat;
2223
2224 if (reset_managed_pages_done)
2225 return;
2226
2227 for_each_online_pgdat(pgdat)
2228 reset_node_managed_pages(pgdat);
2229
2230 reset_managed_pages_done = 1;
2231}
2232
2233/**
2234 * memblock_free_all - release free pages to the buddy allocator
2235 */
2236void __init memblock_free_all(void)
2237{
2238 unsigned long pages;
2239
2240 free_unused_memmap();
2241 reset_all_zones_managed_pages();
2242
2243 pages = free_low_memory_core_early();
2244 totalram_pages_add(pages);
2245}
2246
2247#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2248static const char * const flagname[] = {
2249 [ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2250 [ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2251 [ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2252 [ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2253 [ilog2(MEMBLOCK_RSRV_NOINIT)] = "RSV_NIT",
2254};
2255
2256static int memblock_debug_show(struct seq_file *m, void *private)
2257{
2258 struct memblock_type *type = m->private;
2259 struct memblock_region *reg;
2260 int i, j, nid;
2261 unsigned int count = ARRAY_SIZE(flagname);
2262 phys_addr_t end;
2263
2264 for (i = 0; i < type->cnt; i++) {
2265 reg = &type->regions[i];
2266 end = reg->base + reg->size - 1;
2267 nid = memblock_get_region_node(reg);
2268
2269 seq_printf(m, "%4d: ", i);
2270 seq_printf(m, "%pa..%pa ", ®->base, &end);
2271 if (nid != MAX_NUMNODES)
2272 seq_printf(m, "%4d ", nid);
2273 else
2274 seq_printf(m, "%4c ", 'x');
2275 if (reg->flags) {
2276 for (j = 0; j < count; j++) {
2277 if (reg->flags & (1U << j)) {
2278 seq_printf(m, "%s\n", flagname[j]);
2279 break;
2280 }
2281 }
2282 if (j == count)
2283 seq_printf(m, "%s\n", "UNKNOWN");
2284 } else {
2285 seq_printf(m, "%s\n", "NONE");
2286 }
2287 }
2288 return 0;
2289}
2290DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2291
2292static int __init memblock_init_debugfs(void)
2293{
2294 struct dentry *root = debugfs_create_dir("memblock", NULL);
2295
2296 debugfs_create_file("memory", 0444, root,
2297 &memblock.memory, &memblock_debug_fops);
2298 debugfs_create_file("reserved", 0444, root,
2299 &memblock.reserved, &memblock_debug_fops);
2300#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2301 debugfs_create_file("physmem", 0444, root, &physmem,
2302 &memblock_debug_fops);
2303#endif
2304
2305 return 0;
2306}
2307__initcall(memblock_init_debugfs);
2308
2309#endif /* CONFIG_DEBUG_FS */
1/*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/kernel.h>
14#include <linux/slab.h>
15#include <linux/init.h>
16#include <linux/bitops.h>
17#include <linux/poison.h>
18#include <linux/pfn.h>
19#include <linux/debugfs.h>
20#include <linux/seq_file.h>
21#include <linux/memblock.h>
22
23#include <asm-generic/sections.h>
24#include <linux/io.h>
25
26#include "internal.h"
27
28static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30
31struct memblock memblock __initdata_memblock = {
32 .memory.regions = memblock_memory_init_regions,
33 .memory.cnt = 1, /* empty dummy entry */
34 .memory.max = INIT_MEMBLOCK_REGIONS,
35
36 .reserved.regions = memblock_reserved_init_regions,
37 .reserved.cnt = 1, /* empty dummy entry */
38 .reserved.max = INIT_MEMBLOCK_REGIONS,
39
40 .bottom_up = false,
41 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
42};
43
44int memblock_debug __initdata_memblock;
45#ifdef CONFIG_MOVABLE_NODE
46bool movable_node_enabled __initdata_memblock = false;
47#endif
48static int memblock_can_resize __initdata_memblock;
49static int memblock_memory_in_slab __initdata_memblock = 0;
50static int memblock_reserved_in_slab __initdata_memblock = 0;
51
52/* inline so we don't get a warning when pr_debug is compiled out */
53static __init_memblock const char *
54memblock_type_name(struct memblock_type *type)
55{
56 if (type == &memblock.memory)
57 return "memory";
58 else if (type == &memblock.reserved)
59 return "reserved";
60 else
61 return "unknown";
62}
63
64/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
65static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
66{
67 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
68}
69
70/*
71 * Address comparison utilities
72 */
73static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
74 phys_addr_t base2, phys_addr_t size2)
75{
76 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
77}
78
79static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
80 phys_addr_t base, phys_addr_t size)
81{
82 unsigned long i;
83
84 for (i = 0; i < type->cnt; i++) {
85 phys_addr_t rgnbase = type->regions[i].base;
86 phys_addr_t rgnsize = type->regions[i].size;
87 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
88 break;
89 }
90
91 return (i < type->cnt) ? i : -1;
92}
93
94/*
95 * __memblock_find_range_bottom_up - find free area utility in bottom-up
96 * @start: start of candidate range
97 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
98 * @size: size of free area to find
99 * @align: alignment of free area to find
100 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
101 *
102 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
103 *
104 * RETURNS:
105 * Found address on success, 0 on failure.
106 */
107static phys_addr_t __init_memblock
108__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
109 phys_addr_t size, phys_addr_t align, int nid)
110{
111 phys_addr_t this_start, this_end, cand;
112 u64 i;
113
114 for_each_free_mem_range(i, nid, &this_start, &this_end, NULL) {
115 this_start = clamp(this_start, start, end);
116 this_end = clamp(this_end, start, end);
117
118 cand = round_up(this_start, align);
119 if (cand < this_end && this_end - cand >= size)
120 return cand;
121 }
122
123 return 0;
124}
125
126/**
127 * __memblock_find_range_top_down - find free area utility, in top-down
128 * @start: start of candidate range
129 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
130 * @size: size of free area to find
131 * @align: alignment of free area to find
132 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
133 *
134 * Utility called from memblock_find_in_range_node(), find free area top-down.
135 *
136 * RETURNS:
137 * Found address on success, 0 on failure.
138 */
139static phys_addr_t __init_memblock
140__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
141 phys_addr_t size, phys_addr_t align, int nid)
142{
143 phys_addr_t this_start, this_end, cand;
144 u64 i;
145
146 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
147 this_start = clamp(this_start, start, end);
148 this_end = clamp(this_end, start, end);
149
150 if (this_end < size)
151 continue;
152
153 cand = round_down(this_end - size, align);
154 if (cand >= this_start)
155 return cand;
156 }
157
158 return 0;
159}
160
161/**
162 * memblock_find_in_range_node - find free area in given range and node
163 * @size: size of free area to find
164 * @align: alignment of free area to find
165 * @start: start of candidate range
166 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
167 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
168 *
169 * Find @size free area aligned to @align in the specified range and node.
170 *
171 * When allocation direction is bottom-up, the @start should be greater
172 * than the end of the kernel image. Otherwise, it will be trimmed. The
173 * reason is that we want the bottom-up allocation just near the kernel
174 * image so it is highly likely that the allocated memory and the kernel
175 * will reside in the same node.
176 *
177 * If bottom-up allocation failed, will try to allocate memory top-down.
178 *
179 * RETURNS:
180 * Found address on success, 0 on failure.
181 */
182phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
183 phys_addr_t align, phys_addr_t start,
184 phys_addr_t end, int nid)
185{
186 int ret;
187 phys_addr_t kernel_end;
188
189 /* pump up @end */
190 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
191 end = memblock.current_limit;
192
193 /* avoid allocating the first page */
194 start = max_t(phys_addr_t, start, PAGE_SIZE);
195 end = max(start, end);
196 kernel_end = __pa_symbol(_end);
197
198 /*
199 * try bottom-up allocation only when bottom-up mode
200 * is set and @end is above the kernel image.
201 */
202 if (memblock_bottom_up() && end > kernel_end) {
203 phys_addr_t bottom_up_start;
204
205 /* make sure we will allocate above the kernel */
206 bottom_up_start = max(start, kernel_end);
207
208 /* ok, try bottom-up allocation first */
209 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
210 size, align, nid);
211 if (ret)
212 return ret;
213
214 /*
215 * we always limit bottom-up allocation above the kernel,
216 * but top-down allocation doesn't have the limit, so
217 * retrying top-down allocation may succeed when bottom-up
218 * allocation failed.
219 *
220 * bottom-up allocation is expected to be fail very rarely,
221 * so we use WARN_ONCE() here to see the stack trace if
222 * fail happens.
223 */
224 WARN_ONCE(1, "memblock: bottom-up allocation failed, "
225 "memory hotunplug may be affected\n");
226 }
227
228 return __memblock_find_range_top_down(start, end, size, align, nid);
229}
230
231/**
232 * memblock_find_in_range - find free area in given range
233 * @start: start of candidate range
234 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
235 * @size: size of free area to find
236 * @align: alignment of free area to find
237 *
238 * Find @size free area aligned to @align in the specified range.
239 *
240 * RETURNS:
241 * Found address on success, 0 on failure.
242 */
243phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
244 phys_addr_t end, phys_addr_t size,
245 phys_addr_t align)
246{
247 return memblock_find_in_range_node(size, align, start, end,
248 NUMA_NO_NODE);
249}
250
251static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
252{
253 type->total_size -= type->regions[r].size;
254 memmove(&type->regions[r], &type->regions[r + 1],
255 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
256 type->cnt--;
257
258 /* Special case for empty arrays */
259 if (type->cnt == 0) {
260 WARN_ON(type->total_size != 0);
261 type->cnt = 1;
262 type->regions[0].base = 0;
263 type->regions[0].size = 0;
264 type->regions[0].flags = 0;
265 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
266 }
267}
268
269#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
270
271phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
272 phys_addr_t *addr)
273{
274 if (memblock.reserved.regions == memblock_reserved_init_regions)
275 return 0;
276
277 *addr = __pa(memblock.reserved.regions);
278
279 return PAGE_ALIGN(sizeof(struct memblock_region) *
280 memblock.reserved.max);
281}
282
283phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
284 phys_addr_t *addr)
285{
286 if (memblock.memory.regions == memblock_memory_init_regions)
287 return 0;
288
289 *addr = __pa(memblock.memory.regions);
290
291 return PAGE_ALIGN(sizeof(struct memblock_region) *
292 memblock.memory.max);
293}
294
295#endif
296
297/**
298 * memblock_double_array - double the size of the memblock regions array
299 * @type: memblock type of the regions array being doubled
300 * @new_area_start: starting address of memory range to avoid overlap with
301 * @new_area_size: size of memory range to avoid overlap with
302 *
303 * Double the size of the @type regions array. If memblock is being used to
304 * allocate memory for a new reserved regions array and there is a previously
305 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
306 * waiting to be reserved, ensure the memory used by the new array does
307 * not overlap.
308 *
309 * RETURNS:
310 * 0 on success, -1 on failure.
311 */
312static int __init_memblock memblock_double_array(struct memblock_type *type,
313 phys_addr_t new_area_start,
314 phys_addr_t new_area_size)
315{
316 struct memblock_region *new_array, *old_array;
317 phys_addr_t old_alloc_size, new_alloc_size;
318 phys_addr_t old_size, new_size, addr;
319 int use_slab = slab_is_available();
320 int *in_slab;
321
322 /* We don't allow resizing until we know about the reserved regions
323 * of memory that aren't suitable for allocation
324 */
325 if (!memblock_can_resize)
326 return -1;
327
328 /* Calculate new doubled size */
329 old_size = type->max * sizeof(struct memblock_region);
330 new_size = old_size << 1;
331 /*
332 * We need to allocated new one align to PAGE_SIZE,
333 * so we can free them completely later.
334 */
335 old_alloc_size = PAGE_ALIGN(old_size);
336 new_alloc_size = PAGE_ALIGN(new_size);
337
338 /* Retrieve the slab flag */
339 if (type == &memblock.memory)
340 in_slab = &memblock_memory_in_slab;
341 else
342 in_slab = &memblock_reserved_in_slab;
343
344 /* Try to find some space for it.
345 *
346 * WARNING: We assume that either slab_is_available() and we use it or
347 * we use MEMBLOCK for allocations. That means that this is unsafe to
348 * use when bootmem is currently active (unless bootmem itself is
349 * implemented on top of MEMBLOCK which isn't the case yet)
350 *
351 * This should however not be an issue for now, as we currently only
352 * call into MEMBLOCK while it's still active, or much later when slab
353 * is active for memory hotplug operations
354 */
355 if (use_slab) {
356 new_array = kmalloc(new_size, GFP_KERNEL);
357 addr = new_array ? __pa(new_array) : 0;
358 } else {
359 /* only exclude range when trying to double reserved.regions */
360 if (type != &memblock.reserved)
361 new_area_start = new_area_size = 0;
362
363 addr = memblock_find_in_range(new_area_start + new_area_size,
364 memblock.current_limit,
365 new_alloc_size, PAGE_SIZE);
366 if (!addr && new_area_size)
367 addr = memblock_find_in_range(0,
368 min(new_area_start, memblock.current_limit),
369 new_alloc_size, PAGE_SIZE);
370
371 new_array = addr ? __va(addr) : NULL;
372 }
373 if (!addr) {
374 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
375 memblock_type_name(type), type->max, type->max * 2);
376 return -1;
377 }
378
379 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
380 memblock_type_name(type), type->max * 2, (u64)addr,
381 (u64)addr + new_size - 1);
382
383 /*
384 * Found space, we now need to move the array over before we add the
385 * reserved region since it may be our reserved array itself that is
386 * full.
387 */
388 memcpy(new_array, type->regions, old_size);
389 memset(new_array + type->max, 0, old_size);
390 old_array = type->regions;
391 type->regions = new_array;
392 type->max <<= 1;
393
394 /* Free old array. We needn't free it if the array is the static one */
395 if (*in_slab)
396 kfree(old_array);
397 else if (old_array != memblock_memory_init_regions &&
398 old_array != memblock_reserved_init_regions)
399 memblock_free(__pa(old_array), old_alloc_size);
400
401 /*
402 * Reserve the new array if that comes from the memblock. Otherwise, we
403 * needn't do it
404 */
405 if (!use_slab)
406 BUG_ON(memblock_reserve(addr, new_alloc_size));
407
408 /* Update slab flag */
409 *in_slab = use_slab;
410
411 return 0;
412}
413
414/**
415 * memblock_merge_regions - merge neighboring compatible regions
416 * @type: memblock type to scan
417 *
418 * Scan @type and merge neighboring compatible regions.
419 */
420static void __init_memblock memblock_merge_regions(struct memblock_type *type)
421{
422 int i = 0;
423
424 /* cnt never goes below 1 */
425 while (i < type->cnt - 1) {
426 struct memblock_region *this = &type->regions[i];
427 struct memblock_region *next = &type->regions[i + 1];
428
429 if (this->base + this->size != next->base ||
430 memblock_get_region_node(this) !=
431 memblock_get_region_node(next) ||
432 this->flags != next->flags) {
433 BUG_ON(this->base + this->size > next->base);
434 i++;
435 continue;
436 }
437
438 this->size += next->size;
439 /* move forward from next + 1, index of which is i + 2 */
440 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
441 type->cnt--;
442 }
443}
444
445/**
446 * memblock_insert_region - insert new memblock region
447 * @type: memblock type to insert into
448 * @idx: index for the insertion point
449 * @base: base address of the new region
450 * @size: size of the new region
451 * @nid: node id of the new region
452 * @flags: flags of the new region
453 *
454 * Insert new memblock region [@base,@base+@size) into @type at @idx.
455 * @type must already have extra room to accomodate the new region.
456 */
457static void __init_memblock memblock_insert_region(struct memblock_type *type,
458 int idx, phys_addr_t base,
459 phys_addr_t size,
460 int nid, unsigned long flags)
461{
462 struct memblock_region *rgn = &type->regions[idx];
463
464 BUG_ON(type->cnt >= type->max);
465 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
466 rgn->base = base;
467 rgn->size = size;
468 rgn->flags = flags;
469 memblock_set_region_node(rgn, nid);
470 type->cnt++;
471 type->total_size += size;
472}
473
474/**
475 * memblock_add_region - add new memblock region
476 * @type: memblock type to add new region into
477 * @base: base address of the new region
478 * @size: size of the new region
479 * @nid: nid of the new region
480 * @flags: flags of the new region
481 *
482 * Add new memblock region [@base,@base+@size) into @type. The new region
483 * is allowed to overlap with existing ones - overlaps don't affect already
484 * existing regions. @type is guaranteed to be minimal (all neighbouring
485 * compatible regions are merged) after the addition.
486 *
487 * RETURNS:
488 * 0 on success, -errno on failure.
489 */
490static int __init_memblock memblock_add_region(struct memblock_type *type,
491 phys_addr_t base, phys_addr_t size,
492 int nid, unsigned long flags)
493{
494 bool insert = false;
495 phys_addr_t obase = base;
496 phys_addr_t end = base + memblock_cap_size(base, &size);
497 int i, nr_new;
498
499 if (!size)
500 return 0;
501
502 /* special case for empty array */
503 if (type->regions[0].size == 0) {
504 WARN_ON(type->cnt != 1 || type->total_size);
505 type->regions[0].base = base;
506 type->regions[0].size = size;
507 type->regions[0].flags = flags;
508 memblock_set_region_node(&type->regions[0], nid);
509 type->total_size = size;
510 return 0;
511 }
512repeat:
513 /*
514 * The following is executed twice. Once with %false @insert and
515 * then with %true. The first counts the number of regions needed
516 * to accomodate the new area. The second actually inserts them.
517 */
518 base = obase;
519 nr_new = 0;
520
521 for (i = 0; i < type->cnt; i++) {
522 struct memblock_region *rgn = &type->regions[i];
523 phys_addr_t rbase = rgn->base;
524 phys_addr_t rend = rbase + rgn->size;
525
526 if (rbase >= end)
527 break;
528 if (rend <= base)
529 continue;
530 /*
531 * @rgn overlaps. If it separates the lower part of new
532 * area, insert that portion.
533 */
534 if (rbase > base) {
535 nr_new++;
536 if (insert)
537 memblock_insert_region(type, i++, base,
538 rbase - base, nid,
539 flags);
540 }
541 /* area below @rend is dealt with, forget about it */
542 base = min(rend, end);
543 }
544
545 /* insert the remaining portion */
546 if (base < end) {
547 nr_new++;
548 if (insert)
549 memblock_insert_region(type, i, base, end - base,
550 nid, flags);
551 }
552
553 /*
554 * If this was the first round, resize array and repeat for actual
555 * insertions; otherwise, merge and return.
556 */
557 if (!insert) {
558 while (type->cnt + nr_new > type->max)
559 if (memblock_double_array(type, obase, size) < 0)
560 return -ENOMEM;
561 insert = true;
562 goto repeat;
563 } else {
564 memblock_merge_regions(type);
565 return 0;
566 }
567}
568
569int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
570 int nid)
571{
572 return memblock_add_region(&memblock.memory, base, size, nid, 0);
573}
574
575int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
576{
577 return memblock_add_region(&memblock.memory, base, size,
578 MAX_NUMNODES, 0);
579}
580
581/**
582 * memblock_isolate_range - isolate given range into disjoint memblocks
583 * @type: memblock type to isolate range for
584 * @base: base of range to isolate
585 * @size: size of range to isolate
586 * @start_rgn: out parameter for the start of isolated region
587 * @end_rgn: out parameter for the end of isolated region
588 *
589 * Walk @type and ensure that regions don't cross the boundaries defined by
590 * [@base,@base+@size). Crossing regions are split at the boundaries,
591 * which may create at most two more regions. The index of the first
592 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
593 *
594 * RETURNS:
595 * 0 on success, -errno on failure.
596 */
597static int __init_memblock memblock_isolate_range(struct memblock_type *type,
598 phys_addr_t base, phys_addr_t size,
599 int *start_rgn, int *end_rgn)
600{
601 phys_addr_t end = base + memblock_cap_size(base, &size);
602 int i;
603
604 *start_rgn = *end_rgn = 0;
605
606 if (!size)
607 return 0;
608
609 /* we'll create at most two more regions */
610 while (type->cnt + 2 > type->max)
611 if (memblock_double_array(type, base, size) < 0)
612 return -ENOMEM;
613
614 for (i = 0; i < type->cnt; i++) {
615 struct memblock_region *rgn = &type->regions[i];
616 phys_addr_t rbase = rgn->base;
617 phys_addr_t rend = rbase + rgn->size;
618
619 if (rbase >= end)
620 break;
621 if (rend <= base)
622 continue;
623
624 if (rbase < base) {
625 /*
626 * @rgn intersects from below. Split and continue
627 * to process the next region - the new top half.
628 */
629 rgn->base = base;
630 rgn->size -= base - rbase;
631 type->total_size -= base - rbase;
632 memblock_insert_region(type, i, rbase, base - rbase,
633 memblock_get_region_node(rgn),
634 rgn->flags);
635 } else if (rend > end) {
636 /*
637 * @rgn intersects from above. Split and redo the
638 * current region - the new bottom half.
639 */
640 rgn->base = end;
641 rgn->size -= end - rbase;
642 type->total_size -= end - rbase;
643 memblock_insert_region(type, i--, rbase, end - rbase,
644 memblock_get_region_node(rgn),
645 rgn->flags);
646 } else {
647 /* @rgn is fully contained, record it */
648 if (!*end_rgn)
649 *start_rgn = i;
650 *end_rgn = i + 1;
651 }
652 }
653
654 return 0;
655}
656
657static int __init_memblock __memblock_remove(struct memblock_type *type,
658 phys_addr_t base, phys_addr_t size)
659{
660 int start_rgn, end_rgn;
661 int i, ret;
662
663 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
664 if (ret)
665 return ret;
666
667 for (i = end_rgn - 1; i >= start_rgn; i--)
668 memblock_remove_region(type, i);
669 return 0;
670}
671
672int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
673{
674 return __memblock_remove(&memblock.memory, base, size);
675}
676
677int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
678{
679 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
680 (unsigned long long)base,
681 (unsigned long long)base + size - 1,
682 (void *)_RET_IP_);
683
684 return __memblock_remove(&memblock.reserved, base, size);
685}
686
687static int __init_memblock memblock_reserve_region(phys_addr_t base,
688 phys_addr_t size,
689 int nid,
690 unsigned long flags)
691{
692 struct memblock_type *_rgn = &memblock.reserved;
693
694 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
695 (unsigned long long)base,
696 (unsigned long long)base + size - 1,
697 flags, (void *)_RET_IP_);
698
699 return memblock_add_region(_rgn, base, size, nid, flags);
700}
701
702int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
703{
704 return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
705}
706
707/**
708 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
709 * @base: the base phys addr of the region
710 * @size: the size of the region
711 *
712 * This function isolates region [@base, @base + @size), and mark it with flag
713 * MEMBLOCK_HOTPLUG.
714 *
715 * Return 0 on succees, -errno on failure.
716 */
717int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
718{
719 struct memblock_type *type = &memblock.memory;
720 int i, ret, start_rgn, end_rgn;
721
722 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
723 if (ret)
724 return ret;
725
726 for (i = start_rgn; i < end_rgn; i++)
727 memblock_set_region_flags(&type->regions[i], MEMBLOCK_HOTPLUG);
728
729 memblock_merge_regions(type);
730 return 0;
731}
732
733/**
734 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
735 * @base: the base phys addr of the region
736 * @size: the size of the region
737 *
738 * This function isolates region [@base, @base + @size), and clear flag
739 * MEMBLOCK_HOTPLUG for the isolated regions.
740 *
741 * Return 0 on succees, -errno on failure.
742 */
743int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
744{
745 struct memblock_type *type = &memblock.memory;
746 int i, ret, start_rgn, end_rgn;
747
748 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
749 if (ret)
750 return ret;
751
752 for (i = start_rgn; i < end_rgn; i++)
753 memblock_clear_region_flags(&type->regions[i],
754 MEMBLOCK_HOTPLUG);
755
756 memblock_merge_regions(type);
757 return 0;
758}
759
760/**
761 * __next_free_mem_range - next function for for_each_free_mem_range()
762 * @idx: pointer to u64 loop variable
763 * @nid: node selector, %NUMA_NO_NODE for all nodes
764 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
765 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
766 * @out_nid: ptr to int for nid of the range, can be %NULL
767 *
768 * Find the first free area from *@idx which matches @nid, fill the out
769 * parameters, and update *@idx for the next iteration. The lower 32bit of
770 * *@idx contains index into memory region and the upper 32bit indexes the
771 * areas before each reserved region. For example, if reserved regions
772 * look like the following,
773 *
774 * 0:[0-16), 1:[32-48), 2:[128-130)
775 *
776 * The upper 32bit indexes the following regions.
777 *
778 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
779 *
780 * As both region arrays are sorted, the function advances the two indices
781 * in lockstep and returns each intersection.
782 */
783void __init_memblock __next_free_mem_range(u64 *idx, int nid,
784 phys_addr_t *out_start,
785 phys_addr_t *out_end, int *out_nid)
786{
787 struct memblock_type *mem = &memblock.memory;
788 struct memblock_type *rsv = &memblock.reserved;
789 int mi = *idx & 0xffffffff;
790 int ri = *idx >> 32;
791
792 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
793 nid = NUMA_NO_NODE;
794
795 for ( ; mi < mem->cnt; mi++) {
796 struct memblock_region *m = &mem->regions[mi];
797 phys_addr_t m_start = m->base;
798 phys_addr_t m_end = m->base + m->size;
799
800 /* only memory regions are associated with nodes, check it */
801 if (nid != NUMA_NO_NODE && nid != memblock_get_region_node(m))
802 continue;
803
804 /* scan areas before each reservation for intersection */
805 for ( ; ri < rsv->cnt + 1; ri++) {
806 struct memblock_region *r = &rsv->regions[ri];
807 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
808 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
809
810 /* if ri advanced past mi, break out to advance mi */
811 if (r_start >= m_end)
812 break;
813 /* if the two regions intersect, we're done */
814 if (m_start < r_end) {
815 if (out_start)
816 *out_start = max(m_start, r_start);
817 if (out_end)
818 *out_end = min(m_end, r_end);
819 if (out_nid)
820 *out_nid = memblock_get_region_node(m);
821 /*
822 * The region which ends first is advanced
823 * for the next iteration.
824 */
825 if (m_end <= r_end)
826 mi++;
827 else
828 ri++;
829 *idx = (u32)mi | (u64)ri << 32;
830 return;
831 }
832 }
833 }
834
835 /* signal end of iteration */
836 *idx = ULLONG_MAX;
837}
838
839/**
840 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
841 * @idx: pointer to u64 loop variable
842 * @nid: nid: node selector, %NUMA_NO_NODE for all nodes
843 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
844 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
845 * @out_nid: ptr to int for nid of the range, can be %NULL
846 *
847 * Reverse of __next_free_mem_range().
848 *
849 * Linux kernel cannot migrate pages used by itself. Memory hotplug users won't
850 * be able to hot-remove hotpluggable memory used by the kernel. So this
851 * function skip hotpluggable regions if needed when allocating memory for the
852 * kernel.
853 */
854void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
855 phys_addr_t *out_start,
856 phys_addr_t *out_end, int *out_nid)
857{
858 struct memblock_type *mem = &memblock.memory;
859 struct memblock_type *rsv = &memblock.reserved;
860 int mi = *idx & 0xffffffff;
861 int ri = *idx >> 32;
862
863 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
864 nid = NUMA_NO_NODE;
865
866 if (*idx == (u64)ULLONG_MAX) {
867 mi = mem->cnt - 1;
868 ri = rsv->cnt;
869 }
870
871 for ( ; mi >= 0; mi--) {
872 struct memblock_region *m = &mem->regions[mi];
873 phys_addr_t m_start = m->base;
874 phys_addr_t m_end = m->base + m->size;
875
876 /* only memory regions are associated with nodes, check it */
877 if (nid != NUMA_NO_NODE && nid != memblock_get_region_node(m))
878 continue;
879
880 /* skip hotpluggable memory regions if needed */
881 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
882 continue;
883
884 /* scan areas before each reservation for intersection */
885 for ( ; ri >= 0; ri--) {
886 struct memblock_region *r = &rsv->regions[ri];
887 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
888 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
889
890 /* if ri advanced past mi, break out to advance mi */
891 if (r_end <= m_start)
892 break;
893 /* if the two regions intersect, we're done */
894 if (m_end > r_start) {
895 if (out_start)
896 *out_start = max(m_start, r_start);
897 if (out_end)
898 *out_end = min(m_end, r_end);
899 if (out_nid)
900 *out_nid = memblock_get_region_node(m);
901
902 if (m_start >= r_start)
903 mi--;
904 else
905 ri--;
906 *idx = (u32)mi | (u64)ri << 32;
907 return;
908 }
909 }
910 }
911
912 *idx = ULLONG_MAX;
913}
914
915#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
916/*
917 * Common iterator interface used to define for_each_mem_range().
918 */
919void __init_memblock __next_mem_pfn_range(int *idx, int nid,
920 unsigned long *out_start_pfn,
921 unsigned long *out_end_pfn, int *out_nid)
922{
923 struct memblock_type *type = &memblock.memory;
924 struct memblock_region *r;
925
926 while (++*idx < type->cnt) {
927 r = &type->regions[*idx];
928
929 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
930 continue;
931 if (nid == MAX_NUMNODES || nid == r->nid)
932 break;
933 }
934 if (*idx >= type->cnt) {
935 *idx = -1;
936 return;
937 }
938
939 if (out_start_pfn)
940 *out_start_pfn = PFN_UP(r->base);
941 if (out_end_pfn)
942 *out_end_pfn = PFN_DOWN(r->base + r->size);
943 if (out_nid)
944 *out_nid = r->nid;
945}
946
947/**
948 * memblock_set_node - set node ID on memblock regions
949 * @base: base of area to set node ID for
950 * @size: size of area to set node ID for
951 * @type: memblock type to set node ID for
952 * @nid: node ID to set
953 *
954 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
955 * Regions which cross the area boundaries are split as necessary.
956 *
957 * RETURNS:
958 * 0 on success, -errno on failure.
959 */
960int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
961 struct memblock_type *type, int nid)
962{
963 int start_rgn, end_rgn;
964 int i, ret;
965
966 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
967 if (ret)
968 return ret;
969
970 for (i = start_rgn; i < end_rgn; i++)
971 memblock_set_region_node(&type->regions[i], nid);
972
973 memblock_merge_regions(type);
974 return 0;
975}
976#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
977
978static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
979 phys_addr_t align, phys_addr_t max_addr,
980 int nid)
981{
982 phys_addr_t found;
983
984 if (!align)
985 align = SMP_CACHE_BYTES;
986
987 found = memblock_find_in_range_node(size, align, 0, max_addr, nid);
988 if (found && !memblock_reserve(found, size))
989 return found;
990
991 return 0;
992}
993
994phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
995{
996 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
997}
998
999phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1000{
1001 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE);
1002}
1003
1004phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1005{
1006 phys_addr_t alloc;
1007
1008 alloc = __memblock_alloc_base(size, align, max_addr);
1009
1010 if (alloc == 0)
1011 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1012 (unsigned long long) size, (unsigned long long) max_addr);
1013
1014 return alloc;
1015}
1016
1017phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1018{
1019 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1020}
1021
1022phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1023{
1024 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1025
1026 if (res)
1027 return res;
1028 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1029}
1030
1031/**
1032 * memblock_virt_alloc_internal - allocate boot memory block
1033 * @size: size of memory block to be allocated in bytes
1034 * @align: alignment of the region and block's size
1035 * @min_addr: the lower bound of the memory region to allocate (phys address)
1036 * @max_addr: the upper bound of the memory region to allocate (phys address)
1037 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1038 *
1039 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1040 * will fall back to memory below @min_addr. Also, allocation may fall back
1041 * to any node in the system if the specified node can not
1042 * hold the requested memory.
1043 *
1044 * The allocation is performed from memory region limited by
1045 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1046 *
1047 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1048 *
1049 * The phys address of allocated boot memory block is converted to virtual and
1050 * allocated memory is reset to 0.
1051 *
1052 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1053 * allocated boot memory block, so that it is never reported as leaks.
1054 *
1055 * RETURNS:
1056 * Virtual address of allocated memory block on success, NULL on failure.
1057 */
1058static void * __init memblock_virt_alloc_internal(
1059 phys_addr_t size, phys_addr_t align,
1060 phys_addr_t min_addr, phys_addr_t max_addr,
1061 int nid)
1062{
1063 phys_addr_t alloc;
1064 void *ptr;
1065
1066 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1067 nid = NUMA_NO_NODE;
1068
1069 /*
1070 * Detect any accidental use of these APIs after slab is ready, as at
1071 * this moment memblock may be deinitialized already and its
1072 * internal data may be destroyed (after execution of free_all_bootmem)
1073 */
1074 if (WARN_ON_ONCE(slab_is_available()))
1075 return kzalloc_node(size, GFP_NOWAIT, nid);
1076
1077 if (!align)
1078 align = SMP_CACHE_BYTES;
1079
1080 if (max_addr > memblock.current_limit)
1081 max_addr = memblock.current_limit;
1082
1083again:
1084 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1085 nid);
1086 if (alloc)
1087 goto done;
1088
1089 if (nid != NUMA_NO_NODE) {
1090 alloc = memblock_find_in_range_node(size, align, min_addr,
1091 max_addr, NUMA_NO_NODE);
1092 if (alloc)
1093 goto done;
1094 }
1095
1096 if (min_addr) {
1097 min_addr = 0;
1098 goto again;
1099 } else {
1100 goto error;
1101 }
1102
1103done:
1104 memblock_reserve(alloc, size);
1105 ptr = phys_to_virt(alloc);
1106 memset(ptr, 0, size);
1107
1108 /*
1109 * The min_count is set to 0 so that bootmem allocated blocks
1110 * are never reported as leaks. This is because many of these blocks
1111 * are only referred via the physical address which is not
1112 * looked up by kmemleak.
1113 */
1114 kmemleak_alloc(ptr, size, 0, 0);
1115
1116 return ptr;
1117
1118error:
1119 return NULL;
1120}
1121
1122/**
1123 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1124 * @size: size of memory block to be allocated in bytes
1125 * @align: alignment of the region and block's size
1126 * @min_addr: the lower bound of the memory region from where the allocation
1127 * is preferred (phys address)
1128 * @max_addr: the upper bound of the memory region from where the allocation
1129 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1130 * allocate only from memory limited by memblock.current_limit value
1131 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1132 *
1133 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1134 * additional debug information (including caller info), if enabled.
1135 *
1136 * RETURNS:
1137 * Virtual address of allocated memory block on success, NULL on failure.
1138 */
1139void * __init memblock_virt_alloc_try_nid_nopanic(
1140 phys_addr_t size, phys_addr_t align,
1141 phys_addr_t min_addr, phys_addr_t max_addr,
1142 int nid)
1143{
1144 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1145 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1146 (u64)max_addr, (void *)_RET_IP_);
1147 return memblock_virt_alloc_internal(size, align, min_addr,
1148 max_addr, nid);
1149}
1150
1151/**
1152 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1153 * @size: size of memory block to be allocated in bytes
1154 * @align: alignment of the region and block's size
1155 * @min_addr: the lower bound of the memory region from where the allocation
1156 * is preferred (phys address)
1157 * @max_addr: the upper bound of the memory region from where the allocation
1158 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1159 * allocate only from memory limited by memblock.current_limit value
1160 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1161 *
1162 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1163 * which provides debug information (including caller info), if enabled,
1164 * and panics if the request can not be satisfied.
1165 *
1166 * RETURNS:
1167 * Virtual address of allocated memory block on success, NULL on failure.
1168 */
1169void * __init memblock_virt_alloc_try_nid(
1170 phys_addr_t size, phys_addr_t align,
1171 phys_addr_t min_addr, phys_addr_t max_addr,
1172 int nid)
1173{
1174 void *ptr;
1175
1176 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1177 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1178 (u64)max_addr, (void *)_RET_IP_);
1179 ptr = memblock_virt_alloc_internal(size, align,
1180 min_addr, max_addr, nid);
1181 if (ptr)
1182 return ptr;
1183
1184 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1185 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1186 (u64)max_addr);
1187 return NULL;
1188}
1189
1190/**
1191 * __memblock_free_early - free boot memory block
1192 * @base: phys starting address of the boot memory block
1193 * @size: size of the boot memory block in bytes
1194 *
1195 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1196 * The freeing memory will not be released to the buddy allocator.
1197 */
1198void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1199{
1200 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1201 __func__, (u64)base, (u64)base + size - 1,
1202 (void *)_RET_IP_);
1203 kmemleak_free_part(__va(base), size);
1204 __memblock_remove(&memblock.reserved, base, size);
1205}
1206
1207/*
1208 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1209 * @addr: phys starting address of the boot memory block
1210 * @size: size of the boot memory block in bytes
1211 *
1212 * This is only useful when the bootmem allocator has already been torn
1213 * down, but we are still initializing the system. Pages are released directly
1214 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1215 */
1216void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1217{
1218 u64 cursor, end;
1219
1220 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1221 __func__, (u64)base, (u64)base + size - 1,
1222 (void *)_RET_IP_);
1223 kmemleak_free_part(__va(base), size);
1224 cursor = PFN_UP(base);
1225 end = PFN_DOWN(base + size);
1226
1227 for (; cursor < end; cursor++) {
1228 __free_pages_bootmem(pfn_to_page(cursor), 0);
1229 totalram_pages++;
1230 }
1231}
1232
1233/*
1234 * Remaining API functions
1235 */
1236
1237phys_addr_t __init memblock_phys_mem_size(void)
1238{
1239 return memblock.memory.total_size;
1240}
1241
1242phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1243{
1244 unsigned long pages = 0;
1245 struct memblock_region *r;
1246 unsigned long start_pfn, end_pfn;
1247
1248 for_each_memblock(memory, r) {
1249 start_pfn = memblock_region_memory_base_pfn(r);
1250 end_pfn = memblock_region_memory_end_pfn(r);
1251 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1252 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1253 pages += end_pfn - start_pfn;
1254 }
1255
1256 return PFN_PHYS(pages);
1257}
1258
1259/* lowest address */
1260phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1261{
1262 return memblock.memory.regions[0].base;
1263}
1264
1265phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1266{
1267 int idx = memblock.memory.cnt - 1;
1268
1269 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1270}
1271
1272void __init memblock_enforce_memory_limit(phys_addr_t limit)
1273{
1274 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1275 struct memblock_region *r;
1276
1277 if (!limit)
1278 return;
1279
1280 /* find out max address */
1281 for_each_memblock(memory, r) {
1282 if (limit <= r->size) {
1283 max_addr = r->base + limit;
1284 break;
1285 }
1286 limit -= r->size;
1287 }
1288
1289 /* truncate both memory and reserved regions */
1290 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
1291 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
1292}
1293
1294static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1295{
1296 unsigned int left = 0, right = type->cnt;
1297
1298 do {
1299 unsigned int mid = (right + left) / 2;
1300
1301 if (addr < type->regions[mid].base)
1302 right = mid;
1303 else if (addr >= (type->regions[mid].base +
1304 type->regions[mid].size))
1305 left = mid + 1;
1306 else
1307 return mid;
1308 } while (left < right);
1309 return -1;
1310}
1311
1312int __init memblock_is_reserved(phys_addr_t addr)
1313{
1314 return memblock_search(&memblock.reserved, addr) != -1;
1315}
1316
1317int __init_memblock memblock_is_memory(phys_addr_t addr)
1318{
1319 return memblock_search(&memblock.memory, addr) != -1;
1320}
1321
1322#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1323int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1324 unsigned long *start_pfn, unsigned long *end_pfn)
1325{
1326 struct memblock_type *type = &memblock.memory;
1327 int mid = memblock_search(type, PFN_PHYS(pfn));
1328
1329 if (mid == -1)
1330 return -1;
1331
1332 *start_pfn = type->regions[mid].base >> PAGE_SHIFT;
1333 *end_pfn = (type->regions[mid].base + type->regions[mid].size)
1334 >> PAGE_SHIFT;
1335
1336 return type->regions[mid].nid;
1337}
1338#endif
1339
1340/**
1341 * memblock_is_region_memory - check if a region is a subset of memory
1342 * @base: base of region to check
1343 * @size: size of region to check
1344 *
1345 * Check if the region [@base, @base+@size) is a subset of a memory block.
1346 *
1347 * RETURNS:
1348 * 0 if false, non-zero if true
1349 */
1350int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1351{
1352 int idx = memblock_search(&memblock.memory, base);
1353 phys_addr_t end = base + memblock_cap_size(base, &size);
1354
1355 if (idx == -1)
1356 return 0;
1357 return memblock.memory.regions[idx].base <= base &&
1358 (memblock.memory.regions[idx].base +
1359 memblock.memory.regions[idx].size) >= end;
1360}
1361
1362/**
1363 * memblock_is_region_reserved - check if a region intersects reserved memory
1364 * @base: base of region to check
1365 * @size: size of region to check
1366 *
1367 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1368 *
1369 * RETURNS:
1370 * 0 if false, non-zero if true
1371 */
1372int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1373{
1374 memblock_cap_size(base, &size);
1375 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
1376}
1377
1378void __init_memblock memblock_trim_memory(phys_addr_t align)
1379{
1380 phys_addr_t start, end, orig_start, orig_end;
1381 struct memblock_region *r;
1382
1383 for_each_memblock(memory, r) {
1384 orig_start = r->base;
1385 orig_end = r->base + r->size;
1386 start = round_up(orig_start, align);
1387 end = round_down(orig_end, align);
1388
1389 if (start == orig_start && end == orig_end)
1390 continue;
1391
1392 if (start < end) {
1393 r->base = start;
1394 r->size = end - start;
1395 } else {
1396 memblock_remove_region(&memblock.memory,
1397 r - memblock.memory.regions);
1398 r--;
1399 }
1400 }
1401}
1402
1403void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1404{
1405 memblock.current_limit = limit;
1406}
1407
1408phys_addr_t __init_memblock memblock_get_current_limit(void)
1409{
1410 return memblock.current_limit;
1411}
1412
1413static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1414{
1415 unsigned long long base, size;
1416 unsigned long flags;
1417 int i;
1418
1419 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
1420
1421 for (i = 0; i < type->cnt; i++) {
1422 struct memblock_region *rgn = &type->regions[i];
1423 char nid_buf[32] = "";
1424
1425 base = rgn->base;
1426 size = rgn->size;
1427 flags = rgn->flags;
1428#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1429 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1430 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1431 memblock_get_region_node(rgn));
1432#endif
1433 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1434 name, i, base, base + size - 1, size, nid_buf, flags);
1435 }
1436}
1437
1438void __init_memblock __memblock_dump_all(void)
1439{
1440 pr_info("MEMBLOCK configuration:\n");
1441 pr_info(" memory size = %#llx reserved size = %#llx\n",
1442 (unsigned long long)memblock.memory.total_size,
1443 (unsigned long long)memblock.reserved.total_size);
1444
1445 memblock_dump(&memblock.memory, "memory");
1446 memblock_dump(&memblock.reserved, "reserved");
1447}
1448
1449void __init memblock_allow_resize(void)
1450{
1451 memblock_can_resize = 1;
1452}
1453
1454static int __init early_memblock(char *p)
1455{
1456 if (p && strstr(p, "debug"))
1457 memblock_debug = 1;
1458 return 0;
1459}
1460early_param("memblock", early_memblock);
1461
1462#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1463
1464static int memblock_debug_show(struct seq_file *m, void *private)
1465{
1466 struct memblock_type *type = m->private;
1467 struct memblock_region *reg;
1468 int i;
1469
1470 for (i = 0; i < type->cnt; i++) {
1471 reg = &type->regions[i];
1472 seq_printf(m, "%4d: ", i);
1473 if (sizeof(phys_addr_t) == 4)
1474 seq_printf(m, "0x%08lx..0x%08lx\n",
1475 (unsigned long)reg->base,
1476 (unsigned long)(reg->base + reg->size - 1));
1477 else
1478 seq_printf(m, "0x%016llx..0x%016llx\n",
1479 (unsigned long long)reg->base,
1480 (unsigned long long)(reg->base + reg->size - 1));
1481
1482 }
1483 return 0;
1484}
1485
1486static int memblock_debug_open(struct inode *inode, struct file *file)
1487{
1488 return single_open(file, memblock_debug_show, inode->i_private);
1489}
1490
1491static const struct file_operations memblock_debug_fops = {
1492 .open = memblock_debug_open,
1493 .read = seq_read,
1494 .llseek = seq_lseek,
1495 .release = single_release,
1496};
1497
1498static int __init memblock_init_debugfs(void)
1499{
1500 struct dentry *root = debugfs_create_dir("memblock", NULL);
1501 if (!root)
1502 return -ENXIO;
1503 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1504 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1505
1506 return 0;
1507}
1508__initcall(memblock_init_debugfs);
1509
1510#endif /* CONFIG_DEBUG_FS */