Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * DMA Pool allocator
4 *
5 * Copyright 2001 David Brownell
6 * Copyright 2007 Intel Corporation
7 * Author: Matthew Wilcox <willy@linux.intel.com>
8 *
9 * This allocator returns small blocks of a given size which are DMA-able by
10 * the given device. It uses the dma_alloc_coherent page allocator to get
11 * new pages, then splits them up into blocks of the required size.
12 * Many older drivers still have their own code to do this.
13 *
14 * The current design of this allocator is fairly simple. The pool is
15 * represented by the 'struct dma_pool' which keeps a doubly-linked list of
16 * allocated pages. Each page in the page_list is split into blocks of at
17 * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked
18 * list of free blocks across all pages. Used blocks aren't tracked, but we
19 * keep a count of how many are currently allocated from each page.
20 */
21
22#include <linux/device.h>
23#include <linux/dma-mapping.h>
24#include <linux/dmapool.h>
25#include <linux/kernel.h>
26#include <linux/list.h>
27#include <linux/export.h>
28#include <linux/mutex.h>
29#include <linux/poison.h>
30#include <linux/sched.h>
31#include <linux/sched/mm.h>
32#include <linux/slab.h>
33#include <linux/stat.h>
34#include <linux/spinlock.h>
35#include <linux/string.h>
36#include <linux/types.h>
37#include <linux/wait.h>
38
39#ifdef CONFIG_SLUB_DEBUG_ON
40#define DMAPOOL_DEBUG 1
41#endif
42
43struct dma_block {
44 struct dma_block *next_block;
45 dma_addr_t dma;
46};
47
48struct dma_pool { /* the pool */
49 struct list_head page_list;
50 spinlock_t lock;
51 struct dma_block *next_block;
52 size_t nr_blocks;
53 size_t nr_active;
54 size_t nr_pages;
55 struct device *dev;
56 unsigned int size;
57 unsigned int allocation;
58 unsigned int boundary;
59 char name[32];
60 struct list_head pools;
61};
62
63struct dma_page { /* cacheable header for 'allocation' bytes */
64 struct list_head page_list;
65 void *vaddr;
66 dma_addr_t dma;
67};
68
69static DEFINE_MUTEX(pools_lock);
70static DEFINE_MUTEX(pools_reg_lock);
71
72static ssize_t pools_show(struct device *dev, struct device_attribute *attr, char *buf)
73{
74 struct dma_pool *pool;
75 unsigned size;
76
77 size = sysfs_emit(buf, "poolinfo - 0.1\n");
78
79 mutex_lock(&pools_lock);
80 list_for_each_entry(pool, &dev->dma_pools, pools) {
81 /* per-pool info, no real statistics yet */
82 size += sysfs_emit_at(buf, size, "%-16s %4zu %4zu %4u %2zu\n",
83 pool->name, pool->nr_active,
84 pool->nr_blocks, pool->size,
85 pool->nr_pages);
86 }
87 mutex_unlock(&pools_lock);
88
89 return size;
90}
91
92static DEVICE_ATTR_RO(pools);
93
94#ifdef DMAPOOL_DEBUG
95static void pool_check_block(struct dma_pool *pool, struct dma_block *block,
96 gfp_t mem_flags)
97{
98 u8 *data = (void *)block;
99 int i;
100
101 for (i = sizeof(struct dma_block); i < pool->size; i++) {
102 if (data[i] == POOL_POISON_FREED)
103 continue;
104 dev_err(pool->dev, "%s %s, %p (corrupted)\n", __func__,
105 pool->name, block);
106
107 /*
108 * Dump the first 4 bytes even if they are not
109 * POOL_POISON_FREED
110 */
111 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1,
112 data, pool->size, 1);
113 break;
114 }
115
116 if (!want_init_on_alloc(mem_flags))
117 memset(block, POOL_POISON_ALLOCATED, pool->size);
118}
119
120static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
121{
122 struct dma_page *page;
123
124 list_for_each_entry(page, &pool->page_list, page_list) {
125 if (dma < page->dma)
126 continue;
127 if ((dma - page->dma) < pool->allocation)
128 return page;
129 }
130 return NULL;
131}
132
133static bool pool_block_err(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
134{
135 struct dma_block *block = pool->next_block;
136 struct dma_page *page;
137
138 page = pool_find_page(pool, dma);
139 if (!page) {
140 dev_err(pool->dev, "%s %s, %p/%pad (bad dma)\n",
141 __func__, pool->name, vaddr, &dma);
142 return true;
143 }
144
145 while (block) {
146 if (block != vaddr) {
147 block = block->next_block;
148 continue;
149 }
150 dev_err(pool->dev, "%s %s, dma %pad already free\n",
151 __func__, pool->name, &dma);
152 return true;
153 }
154
155 memset(vaddr, POOL_POISON_FREED, pool->size);
156 return false;
157}
158
159static void pool_init_page(struct dma_pool *pool, struct dma_page *page)
160{
161 memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
162}
163#else
164static void pool_check_block(struct dma_pool *pool, struct dma_block *block,
165 gfp_t mem_flags)
166{
167}
168
169static bool pool_block_err(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
170{
171 if (want_init_on_free())
172 memset(vaddr, 0, pool->size);
173 return false;
174}
175
176static void pool_init_page(struct dma_pool *pool, struct dma_page *page)
177{
178}
179#endif
180
181static struct dma_block *pool_block_pop(struct dma_pool *pool)
182{
183 struct dma_block *block = pool->next_block;
184
185 if (block) {
186 pool->next_block = block->next_block;
187 pool->nr_active++;
188 }
189 return block;
190}
191
192static void pool_block_push(struct dma_pool *pool, struct dma_block *block,
193 dma_addr_t dma)
194{
195 block->dma = dma;
196 block->next_block = pool->next_block;
197 pool->next_block = block;
198}
199
200
201/**
202 * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
203 * @name: name of pool, for diagnostics
204 * @dev: device that will be doing the DMA
205 * @size: size of the blocks in this pool.
206 * @align: alignment requirement for blocks; must be a power of two
207 * @boundary: returned blocks won't cross this power of two boundary
208 * Context: not in_interrupt()
209 *
210 * Given one of these pools, dma_pool_alloc()
211 * may be used to allocate memory. Such memory will all have "consistent"
212 * DMA mappings, accessible by the device and its driver without using
213 * cache flushing primitives. The actual size of blocks allocated may be
214 * larger than requested because of alignment.
215 *
216 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
217 * cross that size boundary. This is useful for devices which have
218 * addressing restrictions on individual DMA transfers, such as not crossing
219 * boundaries of 4KBytes.
220 *
221 * Return: a dma allocation pool with the requested characteristics, or
222 * %NULL if one can't be created.
223 */
224struct dma_pool *dma_pool_create(const char *name, struct device *dev,
225 size_t size, size_t align, size_t boundary)
226{
227 struct dma_pool *retval;
228 size_t allocation;
229 bool empty;
230
231 if (!dev)
232 return NULL;
233
234 if (align == 0)
235 align = 1;
236 else if (align & (align - 1))
237 return NULL;
238
239 if (size == 0 || size > INT_MAX)
240 return NULL;
241 if (size < sizeof(struct dma_block))
242 size = sizeof(struct dma_block);
243
244 size = ALIGN(size, align);
245 allocation = max_t(size_t, size, PAGE_SIZE);
246
247 if (!boundary)
248 boundary = allocation;
249 else if ((boundary < size) || (boundary & (boundary - 1)))
250 return NULL;
251
252 boundary = min(boundary, allocation);
253
254 retval = kzalloc(sizeof(*retval), GFP_KERNEL);
255 if (!retval)
256 return retval;
257
258 strscpy(retval->name, name, sizeof(retval->name));
259
260 retval->dev = dev;
261
262 INIT_LIST_HEAD(&retval->page_list);
263 spin_lock_init(&retval->lock);
264 retval->size = size;
265 retval->boundary = boundary;
266 retval->allocation = allocation;
267 INIT_LIST_HEAD(&retval->pools);
268
269 /*
270 * pools_lock ensures that the ->dma_pools list does not get corrupted.
271 * pools_reg_lock ensures that there is not a race between
272 * dma_pool_create() and dma_pool_destroy() or within dma_pool_create()
273 * when the first invocation of dma_pool_create() failed on
274 * device_create_file() and the second assumes that it has been done (I
275 * know it is a short window).
276 */
277 mutex_lock(&pools_reg_lock);
278 mutex_lock(&pools_lock);
279 empty = list_empty(&dev->dma_pools);
280 list_add(&retval->pools, &dev->dma_pools);
281 mutex_unlock(&pools_lock);
282 if (empty) {
283 int err;
284
285 err = device_create_file(dev, &dev_attr_pools);
286 if (err) {
287 mutex_lock(&pools_lock);
288 list_del(&retval->pools);
289 mutex_unlock(&pools_lock);
290 mutex_unlock(&pools_reg_lock);
291 kfree(retval);
292 return NULL;
293 }
294 }
295 mutex_unlock(&pools_reg_lock);
296 return retval;
297}
298EXPORT_SYMBOL(dma_pool_create);
299
300static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
301{
302 unsigned int next_boundary = pool->boundary, offset = 0;
303 struct dma_block *block, *first = NULL, *last = NULL;
304
305 pool_init_page(pool, page);
306 while (offset + pool->size <= pool->allocation) {
307 if (offset + pool->size > next_boundary) {
308 offset = next_boundary;
309 next_boundary += pool->boundary;
310 continue;
311 }
312
313 block = page->vaddr + offset;
314 block->dma = page->dma + offset;
315 block->next_block = NULL;
316
317 if (last)
318 last->next_block = block;
319 else
320 first = block;
321 last = block;
322
323 offset += pool->size;
324 pool->nr_blocks++;
325 }
326
327 last->next_block = pool->next_block;
328 pool->next_block = first;
329
330 list_add(&page->page_list, &pool->page_list);
331 pool->nr_pages++;
332}
333
334static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
335{
336 struct dma_page *page;
337
338 page = kmalloc(sizeof(*page), mem_flags);
339 if (!page)
340 return NULL;
341
342 page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
343 &page->dma, mem_flags);
344 if (!page->vaddr) {
345 kfree(page);
346 return NULL;
347 }
348
349 return page;
350}
351
352/**
353 * dma_pool_destroy - destroys a pool of dma memory blocks.
354 * @pool: dma pool that will be destroyed
355 * Context: !in_interrupt()
356 *
357 * Caller guarantees that no more memory from the pool is in use,
358 * and that nothing will try to use the pool after this call.
359 */
360void dma_pool_destroy(struct dma_pool *pool)
361{
362 struct dma_page *page, *tmp;
363 bool empty, busy = false;
364
365 if (unlikely(!pool))
366 return;
367
368 mutex_lock(&pools_reg_lock);
369 mutex_lock(&pools_lock);
370 list_del(&pool->pools);
371 empty = list_empty(&pool->dev->dma_pools);
372 mutex_unlock(&pools_lock);
373 if (empty)
374 device_remove_file(pool->dev, &dev_attr_pools);
375 mutex_unlock(&pools_reg_lock);
376
377 if (pool->nr_active) {
378 dev_err(pool->dev, "%s %s busy\n", __func__, pool->name);
379 busy = true;
380 }
381
382 list_for_each_entry_safe(page, tmp, &pool->page_list, page_list) {
383 if (!busy)
384 dma_free_coherent(pool->dev, pool->allocation,
385 page->vaddr, page->dma);
386 list_del(&page->page_list);
387 kfree(page);
388 }
389
390 kfree(pool);
391}
392EXPORT_SYMBOL(dma_pool_destroy);
393
394/**
395 * dma_pool_alloc - get a block of consistent memory
396 * @pool: dma pool that will produce the block
397 * @mem_flags: GFP_* bitmask
398 * @handle: pointer to dma address of block
399 *
400 * Return: the kernel virtual address of a currently unused block,
401 * and reports its dma address through the handle.
402 * If such a memory block can't be allocated, %NULL is returned.
403 */
404void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
405 dma_addr_t *handle)
406{
407 struct dma_block *block;
408 struct dma_page *page;
409 unsigned long flags;
410
411 might_alloc(mem_flags);
412
413 spin_lock_irqsave(&pool->lock, flags);
414 block = pool_block_pop(pool);
415 if (!block) {
416 /*
417 * pool_alloc_page() might sleep, so temporarily drop
418 * &pool->lock
419 */
420 spin_unlock_irqrestore(&pool->lock, flags);
421
422 page = pool_alloc_page(pool, mem_flags & (~__GFP_ZERO));
423 if (!page)
424 return NULL;
425
426 spin_lock_irqsave(&pool->lock, flags);
427 pool_initialise_page(pool, page);
428 block = pool_block_pop(pool);
429 }
430 spin_unlock_irqrestore(&pool->lock, flags);
431
432 *handle = block->dma;
433 pool_check_block(pool, block, mem_flags);
434 if (want_init_on_alloc(mem_flags))
435 memset(block, 0, pool->size);
436
437 return block;
438}
439EXPORT_SYMBOL(dma_pool_alloc);
440
441/**
442 * dma_pool_free - put block back into dma pool
443 * @pool: the dma pool holding the block
444 * @vaddr: virtual address of block
445 * @dma: dma address of block
446 *
447 * Caller promises neither device nor driver will again touch this block
448 * unless it is first re-allocated.
449 */
450void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
451{
452 struct dma_block *block = vaddr;
453 unsigned long flags;
454
455 spin_lock_irqsave(&pool->lock, flags);
456 if (!pool_block_err(pool, vaddr, dma)) {
457 pool_block_push(pool, block, dma);
458 pool->nr_active--;
459 }
460 spin_unlock_irqrestore(&pool->lock, flags);
461}
462EXPORT_SYMBOL(dma_pool_free);
463
464/*
465 * Managed DMA pool
466 */
467static void dmam_pool_release(struct device *dev, void *res)
468{
469 struct dma_pool *pool = *(struct dma_pool **)res;
470
471 dma_pool_destroy(pool);
472}
473
474static int dmam_pool_match(struct device *dev, void *res, void *match_data)
475{
476 return *(struct dma_pool **)res == match_data;
477}
478
479/**
480 * dmam_pool_create - Managed dma_pool_create()
481 * @name: name of pool, for diagnostics
482 * @dev: device that will be doing the DMA
483 * @size: size of the blocks in this pool.
484 * @align: alignment requirement for blocks; must be a power of two
485 * @allocation: returned blocks won't cross this boundary (or zero)
486 *
487 * Managed dma_pool_create(). DMA pool created with this function is
488 * automatically destroyed on driver detach.
489 *
490 * Return: a managed dma allocation pool with the requested
491 * characteristics, or %NULL if one can't be created.
492 */
493struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
494 size_t size, size_t align, size_t allocation)
495{
496 struct dma_pool **ptr, *pool;
497
498 ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
499 if (!ptr)
500 return NULL;
501
502 pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
503 if (pool)
504 devres_add(dev, ptr);
505 else
506 devres_free(ptr);
507
508 return pool;
509}
510EXPORT_SYMBOL(dmam_pool_create);
511
512/**
513 * dmam_pool_destroy - Managed dma_pool_destroy()
514 * @pool: dma pool that will be destroyed
515 *
516 * Managed dma_pool_destroy().
517 */
518void dmam_pool_destroy(struct dma_pool *pool)
519{
520 struct device *dev = pool->dev;
521
522 WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool));
523}
524EXPORT_SYMBOL(dmam_pool_destroy);
1/*
2 * DMA Pool allocator
3 *
4 * Copyright 2001 David Brownell
5 * Copyright 2007 Intel Corporation
6 * Author: Matthew Wilcox <willy@linux.intel.com>
7 *
8 * This software may be redistributed and/or modified under the terms of
9 * the GNU General Public License ("GPL") version 2 as published by the
10 * Free Software Foundation.
11 *
12 * This allocator returns small blocks of a given size which are DMA-able by
13 * the given device. It uses the dma_alloc_coherent page allocator to get
14 * new pages, then splits them up into blocks of the required size.
15 * Many older drivers still have their own code to do this.
16 *
17 * The current design of this allocator is fairly simple. The pool is
18 * represented by the 'struct dma_pool' which keeps a doubly-linked list of
19 * allocated pages. Each page in the page_list is split into blocks of at
20 * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked
21 * list of free blocks within the page. Used blocks aren't tracked, but we
22 * keep a count of how many are currently allocated from each page.
23 */
24
25#include <linux/device.h>
26#include <linux/dma-mapping.h>
27#include <linux/dmapool.h>
28#include <linux/kernel.h>
29#include <linux/list.h>
30#include <linux/export.h>
31#include <linux/mutex.h>
32#include <linux/poison.h>
33#include <linux/sched.h>
34#include <linux/slab.h>
35#include <linux/stat.h>
36#include <linux/spinlock.h>
37#include <linux/string.h>
38#include <linux/types.h>
39#include <linux/wait.h>
40
41#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
42#define DMAPOOL_DEBUG 1
43#endif
44
45struct dma_pool { /* the pool */
46 struct list_head page_list;
47 spinlock_t lock;
48 size_t size;
49 struct device *dev;
50 size_t allocation;
51 size_t boundary;
52 char name[32];
53 struct list_head pools;
54};
55
56struct dma_page { /* cacheable header for 'allocation' bytes */
57 struct list_head page_list;
58 void *vaddr;
59 dma_addr_t dma;
60 unsigned int in_use;
61 unsigned int offset;
62};
63
64static DEFINE_MUTEX(pools_lock);
65
66static ssize_t
67show_pools(struct device *dev, struct device_attribute *attr, char *buf)
68{
69 unsigned temp;
70 unsigned size;
71 char *next;
72 struct dma_page *page;
73 struct dma_pool *pool;
74
75 next = buf;
76 size = PAGE_SIZE;
77
78 temp = scnprintf(next, size, "poolinfo - 0.1\n");
79 size -= temp;
80 next += temp;
81
82 mutex_lock(&pools_lock);
83 list_for_each_entry(pool, &dev->dma_pools, pools) {
84 unsigned pages = 0;
85 unsigned blocks = 0;
86
87 spin_lock_irq(&pool->lock);
88 list_for_each_entry(page, &pool->page_list, page_list) {
89 pages++;
90 blocks += page->in_use;
91 }
92 spin_unlock_irq(&pool->lock);
93
94 /* per-pool info, no real statistics yet */
95 temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n",
96 pool->name, blocks,
97 pages * (pool->allocation / pool->size),
98 pool->size, pages);
99 size -= temp;
100 next += temp;
101 }
102 mutex_unlock(&pools_lock);
103
104 return PAGE_SIZE - size;
105}
106
107static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL);
108
109/**
110 * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
111 * @name: name of pool, for diagnostics
112 * @dev: device that will be doing the DMA
113 * @size: size of the blocks in this pool.
114 * @align: alignment requirement for blocks; must be a power of two
115 * @boundary: returned blocks won't cross this power of two boundary
116 * Context: !in_interrupt()
117 *
118 * Returns a dma allocation pool with the requested characteristics, or
119 * null if one can't be created. Given one of these pools, dma_pool_alloc()
120 * may be used to allocate memory. Such memory will all have "consistent"
121 * DMA mappings, accessible by the device and its driver without using
122 * cache flushing primitives. The actual size of blocks allocated may be
123 * larger than requested because of alignment.
124 *
125 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
126 * cross that size boundary. This is useful for devices which have
127 * addressing restrictions on individual DMA transfers, such as not crossing
128 * boundaries of 4KBytes.
129 */
130struct dma_pool *dma_pool_create(const char *name, struct device *dev,
131 size_t size, size_t align, size_t boundary)
132{
133 struct dma_pool *retval;
134 size_t allocation;
135
136 if (align == 0) {
137 align = 1;
138 } else if (align & (align - 1)) {
139 return NULL;
140 }
141
142 if (size == 0) {
143 return NULL;
144 } else if (size < 4) {
145 size = 4;
146 }
147
148 if ((size % align) != 0)
149 size = ALIGN(size, align);
150
151 allocation = max_t(size_t, size, PAGE_SIZE);
152
153 if (!boundary) {
154 boundary = allocation;
155 } else if ((boundary < size) || (boundary & (boundary - 1))) {
156 return NULL;
157 }
158
159 retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
160 if (!retval)
161 return retval;
162
163 strlcpy(retval->name, name, sizeof(retval->name));
164
165 retval->dev = dev;
166
167 INIT_LIST_HEAD(&retval->page_list);
168 spin_lock_init(&retval->lock);
169 retval->size = size;
170 retval->boundary = boundary;
171 retval->allocation = allocation;
172
173 if (dev) {
174 int ret;
175
176 mutex_lock(&pools_lock);
177 if (list_empty(&dev->dma_pools))
178 ret = device_create_file(dev, &dev_attr_pools);
179 else
180 ret = 0;
181 /* note: not currently insisting "name" be unique */
182 if (!ret)
183 list_add(&retval->pools, &dev->dma_pools);
184 else {
185 kfree(retval);
186 retval = NULL;
187 }
188 mutex_unlock(&pools_lock);
189 } else
190 INIT_LIST_HEAD(&retval->pools);
191
192 return retval;
193}
194EXPORT_SYMBOL(dma_pool_create);
195
196static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
197{
198 unsigned int offset = 0;
199 unsigned int next_boundary = pool->boundary;
200
201 do {
202 unsigned int next = offset + pool->size;
203 if (unlikely((next + pool->size) >= next_boundary)) {
204 next = next_boundary;
205 next_boundary += pool->boundary;
206 }
207 *(int *)(page->vaddr + offset) = next;
208 offset = next;
209 } while (offset < pool->allocation);
210}
211
212static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
213{
214 struct dma_page *page;
215
216 page = kmalloc(sizeof(*page), mem_flags);
217 if (!page)
218 return NULL;
219 page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
220 &page->dma, mem_flags);
221 if (page->vaddr) {
222#ifdef DMAPOOL_DEBUG
223 memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
224#endif
225 pool_initialise_page(pool, page);
226 page->in_use = 0;
227 page->offset = 0;
228 } else {
229 kfree(page);
230 page = NULL;
231 }
232 return page;
233}
234
235static inline int is_page_busy(struct dma_page *page)
236{
237 return page->in_use != 0;
238}
239
240static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
241{
242 dma_addr_t dma = page->dma;
243
244#ifdef DMAPOOL_DEBUG
245 memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
246#endif
247 dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
248 list_del(&page->page_list);
249 kfree(page);
250}
251
252/**
253 * dma_pool_destroy - destroys a pool of dma memory blocks.
254 * @pool: dma pool that will be destroyed
255 * Context: !in_interrupt()
256 *
257 * Caller guarantees that no more memory from the pool is in use,
258 * and that nothing will try to use the pool after this call.
259 */
260void dma_pool_destroy(struct dma_pool *pool)
261{
262 mutex_lock(&pools_lock);
263 list_del(&pool->pools);
264 if (pool->dev && list_empty(&pool->dev->dma_pools))
265 device_remove_file(pool->dev, &dev_attr_pools);
266 mutex_unlock(&pools_lock);
267
268 while (!list_empty(&pool->page_list)) {
269 struct dma_page *page;
270 page = list_entry(pool->page_list.next,
271 struct dma_page, page_list);
272 if (is_page_busy(page)) {
273 if (pool->dev)
274 dev_err(pool->dev,
275 "dma_pool_destroy %s, %p busy\n",
276 pool->name, page->vaddr);
277 else
278 printk(KERN_ERR
279 "dma_pool_destroy %s, %p busy\n",
280 pool->name, page->vaddr);
281 /* leak the still-in-use consistent memory */
282 list_del(&page->page_list);
283 kfree(page);
284 } else
285 pool_free_page(pool, page);
286 }
287
288 kfree(pool);
289}
290EXPORT_SYMBOL(dma_pool_destroy);
291
292/**
293 * dma_pool_alloc - get a block of consistent memory
294 * @pool: dma pool that will produce the block
295 * @mem_flags: GFP_* bitmask
296 * @handle: pointer to dma address of block
297 *
298 * This returns the kernel virtual address of a currently unused block,
299 * and reports its dma address through the handle.
300 * If such a memory block can't be allocated, %NULL is returned.
301 */
302void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
303 dma_addr_t *handle)
304{
305 unsigned long flags;
306 struct dma_page *page;
307 size_t offset;
308 void *retval;
309
310 might_sleep_if(mem_flags & __GFP_WAIT);
311
312 spin_lock_irqsave(&pool->lock, flags);
313 list_for_each_entry(page, &pool->page_list, page_list) {
314 if (page->offset < pool->allocation)
315 goto ready;
316 }
317
318 /* pool_alloc_page() might sleep, so temporarily drop &pool->lock */
319 spin_unlock_irqrestore(&pool->lock, flags);
320
321 page = pool_alloc_page(pool, mem_flags);
322 if (!page)
323 return NULL;
324
325 spin_lock_irqsave(&pool->lock, flags);
326
327 list_add(&page->page_list, &pool->page_list);
328 ready:
329 page->in_use++;
330 offset = page->offset;
331 page->offset = *(int *)(page->vaddr + offset);
332 retval = offset + page->vaddr;
333 *handle = offset + page->dma;
334#ifdef DMAPOOL_DEBUG
335 {
336 int i;
337 u8 *data = retval;
338 /* page->offset is stored in first 4 bytes */
339 for (i = sizeof(page->offset); i < pool->size; i++) {
340 if (data[i] == POOL_POISON_FREED)
341 continue;
342 if (pool->dev)
343 dev_err(pool->dev,
344 "dma_pool_alloc %s, %p (corruped)\n",
345 pool->name, retval);
346 else
347 pr_err("dma_pool_alloc %s, %p (corruped)\n",
348 pool->name, retval);
349
350 /*
351 * Dump the first 4 bytes even if they are not
352 * POOL_POISON_FREED
353 */
354 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1,
355 data, pool->size, 1);
356 break;
357 }
358 }
359 memset(retval, POOL_POISON_ALLOCATED, pool->size);
360#endif
361 spin_unlock_irqrestore(&pool->lock, flags);
362 return retval;
363}
364EXPORT_SYMBOL(dma_pool_alloc);
365
366static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
367{
368 struct dma_page *page;
369
370 list_for_each_entry(page, &pool->page_list, page_list) {
371 if (dma < page->dma)
372 continue;
373 if (dma < (page->dma + pool->allocation))
374 return page;
375 }
376 return NULL;
377}
378
379/**
380 * dma_pool_free - put block back into dma pool
381 * @pool: the dma pool holding the block
382 * @vaddr: virtual address of block
383 * @dma: dma address of block
384 *
385 * Caller promises neither device nor driver will again touch this block
386 * unless it is first re-allocated.
387 */
388void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
389{
390 struct dma_page *page;
391 unsigned long flags;
392 unsigned int offset;
393
394 spin_lock_irqsave(&pool->lock, flags);
395 page = pool_find_page(pool, dma);
396 if (!page) {
397 spin_unlock_irqrestore(&pool->lock, flags);
398 if (pool->dev)
399 dev_err(pool->dev,
400 "dma_pool_free %s, %p/%lx (bad dma)\n",
401 pool->name, vaddr, (unsigned long)dma);
402 else
403 printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n",
404 pool->name, vaddr, (unsigned long)dma);
405 return;
406 }
407
408 offset = vaddr - page->vaddr;
409#ifdef DMAPOOL_DEBUG
410 if ((dma - page->dma) != offset) {
411 spin_unlock_irqrestore(&pool->lock, flags);
412 if (pool->dev)
413 dev_err(pool->dev,
414 "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
415 pool->name, vaddr, (unsigned long long)dma);
416 else
417 printk(KERN_ERR
418 "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
419 pool->name, vaddr, (unsigned long long)dma);
420 return;
421 }
422 {
423 unsigned int chain = page->offset;
424 while (chain < pool->allocation) {
425 if (chain != offset) {
426 chain = *(int *)(page->vaddr + chain);
427 continue;
428 }
429 spin_unlock_irqrestore(&pool->lock, flags);
430 if (pool->dev)
431 dev_err(pool->dev, "dma_pool_free %s, dma %Lx "
432 "already free\n", pool->name,
433 (unsigned long long)dma);
434 else
435 printk(KERN_ERR "dma_pool_free %s, dma %Lx "
436 "already free\n", pool->name,
437 (unsigned long long)dma);
438 return;
439 }
440 }
441 memset(vaddr, POOL_POISON_FREED, pool->size);
442#endif
443
444 page->in_use--;
445 *(int *)vaddr = page->offset;
446 page->offset = offset;
447 /*
448 * Resist a temptation to do
449 * if (!is_page_busy(page)) pool_free_page(pool, page);
450 * Better have a few empty pages hang around.
451 */
452 spin_unlock_irqrestore(&pool->lock, flags);
453}
454EXPORT_SYMBOL(dma_pool_free);
455
456/*
457 * Managed DMA pool
458 */
459static void dmam_pool_release(struct device *dev, void *res)
460{
461 struct dma_pool *pool = *(struct dma_pool **)res;
462
463 dma_pool_destroy(pool);
464}
465
466static int dmam_pool_match(struct device *dev, void *res, void *match_data)
467{
468 return *(struct dma_pool **)res == match_data;
469}
470
471/**
472 * dmam_pool_create - Managed dma_pool_create()
473 * @name: name of pool, for diagnostics
474 * @dev: device that will be doing the DMA
475 * @size: size of the blocks in this pool.
476 * @align: alignment requirement for blocks; must be a power of two
477 * @allocation: returned blocks won't cross this boundary (or zero)
478 *
479 * Managed dma_pool_create(). DMA pool created with this function is
480 * automatically destroyed on driver detach.
481 */
482struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
483 size_t size, size_t align, size_t allocation)
484{
485 struct dma_pool **ptr, *pool;
486
487 ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
488 if (!ptr)
489 return NULL;
490
491 pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
492 if (pool)
493 devres_add(dev, ptr);
494 else
495 devres_free(ptr);
496
497 return pool;
498}
499EXPORT_SYMBOL(dmam_pool_create);
500
501/**
502 * dmam_pool_destroy - Managed dma_pool_destroy()
503 * @pool: dma pool that will be destroyed
504 *
505 * Managed dma_pool_destroy().
506 */
507void dmam_pool_destroy(struct dma_pool *pool)
508{
509 struct device *dev = pool->dev;
510
511 WARN_ON(devres_destroy(dev, dmam_pool_release, dmam_pool_match, pool));
512 dma_pool_destroy(pool);
513}
514EXPORT_SYMBOL(dmam_pool_destroy);