Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/printk.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 * Modified to make sys_syslog() more flexible: added commands to
   8 * return the last 4k of kernel messages, regardless of whether
   9 * they've been read or not.  Added option to suppress kernel printk's
  10 * to the console.  Added hook for sending the console messages
  11 * elsewhere, in preparation for a serial line console (someday).
  12 * Ted Ts'o, 2/11/93.
  13 * Modified for sysctl support, 1/8/97, Chris Horn.
  14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
  15 *     manfred@colorfullife.com
  16 * Rewrote bits to get rid of console_lock
  17 *	01Mar01 Andrew Morton
  18 */
  19
  20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  21
  22#include <linux/kernel.h>
  23#include <linux/mm.h>
  24#include <linux/tty.h>
  25#include <linux/tty_driver.h>
  26#include <linux/console.h>
  27#include <linux/init.h>
  28#include <linux/jiffies.h>
  29#include <linux/nmi.h>
  30#include <linux/module.h>
  31#include <linux/moduleparam.h>
 
  32#include <linux/delay.h>
  33#include <linux/smp.h>
  34#include <linux/security.h>
 
  35#include <linux/memblock.h>
 
  36#include <linux/syscalls.h>
  37#include <linux/crash_core.h>
 
  38#include <linux/ratelimit.h>
  39#include <linux/kmsg_dump.h>
  40#include <linux/syslog.h>
  41#include <linux/cpu.h>
 
  42#include <linux/rculist.h>
  43#include <linux/poll.h>
  44#include <linux/irq_work.h>
  45#include <linux/ctype.h>
  46#include <linux/uio.h>
  47#include <linux/sched/clock.h>
  48#include <linux/sched/debug.h>
  49#include <linux/sched/task_stack.h>
  50
  51#include <linux/uaccess.h>
  52#include <asm/sections.h>
  53
  54#include <trace/events/initcall.h>
  55#define CREATE_TRACE_POINTS
  56#include <trace/events/printk.h>
  57
  58#include "printk_ringbuffer.h"
  59#include "console_cmdline.h"
  60#include "braille.h"
  61#include "internal.h"
  62
  63int console_printk[4] = {
  64	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
  65	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
  66	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
  67	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
  68};
  69EXPORT_SYMBOL_GPL(console_printk);
  70
  71atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
  72EXPORT_SYMBOL(ignore_console_lock_warning);
 
  73
  74EXPORT_TRACEPOINT_SYMBOL_GPL(console);
 
 
 
 
 
  75
  76/*
  77 * Low level drivers may need that to know if they can schedule in
  78 * their unblank() callback or not. So let's export it.
  79 */
  80int oops_in_progress;
  81EXPORT_SYMBOL(oops_in_progress);
  82
  83/*
  84 * console_mutex protects console_list updates and console->flags updates.
  85 * The flags are synchronized only for consoles that are registered, i.e.
  86 * accessible via the console list.
  87 */
  88static DEFINE_MUTEX(console_mutex);
  89
  90/*
  91 * console_sem protects updates to console->seq
  92 * and also provides serialization for console printing.
  93 */
  94static DEFINE_SEMAPHORE(console_sem, 1);
  95HLIST_HEAD(console_list);
  96EXPORT_SYMBOL_GPL(console_list);
  97DEFINE_STATIC_SRCU(console_srcu);
  98
  99/*
 100 * System may need to suppress printk message under certain
 101 * circumstances, like after kernel panic happens.
 102 */
 103int __read_mostly suppress_printk;
 104
 105#ifdef CONFIG_LOCKDEP
 106static struct lockdep_map console_lock_dep_map = {
 107	.name = "console_lock"
 108};
 109
 110void lockdep_assert_console_list_lock_held(void)
 111{
 112	lockdep_assert_held(&console_mutex);
 113}
 114EXPORT_SYMBOL(lockdep_assert_console_list_lock_held);
 115#endif
 116
 117#ifdef CONFIG_DEBUG_LOCK_ALLOC
 118bool console_srcu_read_lock_is_held(void)
 119{
 120	return srcu_read_lock_held(&console_srcu);
 121}
 122EXPORT_SYMBOL(console_srcu_read_lock_is_held);
 123#endif
 124
 125enum devkmsg_log_bits {
 126	__DEVKMSG_LOG_BIT_ON = 0,
 127	__DEVKMSG_LOG_BIT_OFF,
 128	__DEVKMSG_LOG_BIT_LOCK,
 129};
 130
 131enum devkmsg_log_masks {
 132	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
 133	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
 134	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
 135};
 136
 137/* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
 138#define DEVKMSG_LOG_MASK_DEFAULT	0
 139
 140static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 141
 142static int __control_devkmsg(char *str)
 143{
 144	size_t len;
 145
 146	if (!str)
 147		return -EINVAL;
 148
 149	len = str_has_prefix(str, "on");
 150	if (len) {
 151		devkmsg_log = DEVKMSG_LOG_MASK_ON;
 152		return len;
 153	}
 154
 155	len = str_has_prefix(str, "off");
 156	if (len) {
 157		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
 158		return len;
 159	}
 160
 161	len = str_has_prefix(str, "ratelimit");
 162	if (len) {
 163		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 164		return len;
 165	}
 166
 167	return -EINVAL;
 168}
 169
 170static int __init control_devkmsg(char *str)
 171{
 172	if (__control_devkmsg(str) < 0) {
 173		pr_warn("printk.devkmsg: bad option string '%s'\n", str);
 174		return 1;
 175	}
 176
 177	/*
 178	 * Set sysctl string accordingly:
 179	 */
 180	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
 181		strcpy(devkmsg_log_str, "on");
 182	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
 183		strcpy(devkmsg_log_str, "off");
 184	/* else "ratelimit" which is set by default. */
 185
 186	/*
 187	 * Sysctl cannot change it anymore. The kernel command line setting of
 188	 * this parameter is to force the setting to be permanent throughout the
 189	 * runtime of the system. This is a precation measure against userspace
 190	 * trying to be a smarta** and attempting to change it up on us.
 191	 */
 192	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
 193
 194	return 1;
 195}
 196__setup("printk.devkmsg=", control_devkmsg);
 197
 198char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
 199#if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL)
 200int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
 201			      void *buffer, size_t *lenp, loff_t *ppos)
 202{
 203	char old_str[DEVKMSG_STR_MAX_SIZE];
 204	unsigned int old;
 205	int err;
 206
 207	if (write) {
 208		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
 209			return -EINVAL;
 210
 211		old = devkmsg_log;
 212		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
 213	}
 214
 215	err = proc_dostring(table, write, buffer, lenp, ppos);
 216	if (err)
 217		return err;
 218
 219	if (write) {
 220		err = __control_devkmsg(devkmsg_log_str);
 221
 222		/*
 223		 * Do not accept an unknown string OR a known string with
 224		 * trailing crap...
 225		 */
 226		if (err < 0 || (err + 1 != *lenp)) {
 227
 228			/* ... and restore old setting. */
 229			devkmsg_log = old;
 230			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
 231
 232			return -EINVAL;
 233		}
 234	}
 235
 236	return 0;
 237}
 238#endif /* CONFIG_PRINTK && CONFIG_SYSCTL */
 239
 240/**
 241 * console_list_lock - Lock the console list
 242 *
 243 * For console list or console->flags updates
 244 */
 245void console_list_lock(void)
 246{
 247	/*
 248	 * In unregister_console() and console_force_preferred_locked(),
 249	 * synchronize_srcu() is called with the console_list_lock held.
 250	 * Therefore it is not allowed that the console_list_lock is taken
 251	 * with the srcu_lock held.
 252	 *
 253	 * Detecting if this context is really in the read-side critical
 254	 * section is only possible if the appropriate debug options are
 255	 * enabled.
 256	 */
 257	WARN_ON_ONCE(debug_lockdep_rcu_enabled() &&
 258		     srcu_read_lock_held(&console_srcu));
 259
 260	mutex_lock(&console_mutex);
 261}
 262EXPORT_SYMBOL(console_list_lock);
 263
 264/**
 265 * console_list_unlock - Unlock the console list
 266 *
 267 * Counterpart to console_list_lock()
 268 */
 269void console_list_unlock(void)
 270{
 271	mutex_unlock(&console_mutex);
 272}
 273EXPORT_SYMBOL(console_list_unlock);
 274
 275/**
 276 * console_srcu_read_lock - Register a new reader for the
 277 *	SRCU-protected console list
 278 *
 279 * Use for_each_console_srcu() to iterate the console list
 280 *
 281 * Context: Any context.
 282 * Return: A cookie to pass to console_srcu_read_unlock().
 283 */
 284int console_srcu_read_lock(void)
 285{
 286	return srcu_read_lock_nmisafe(&console_srcu);
 287}
 288EXPORT_SYMBOL(console_srcu_read_lock);
 289
 290/**
 291 * console_srcu_read_unlock - Unregister an old reader from
 292 *	the SRCU-protected console list
 293 * @cookie: cookie returned from console_srcu_read_lock()
 294 *
 295 * Counterpart to console_srcu_read_lock()
 296 */
 297void console_srcu_read_unlock(int cookie)
 298{
 299	srcu_read_unlock_nmisafe(&console_srcu, cookie);
 300}
 301EXPORT_SYMBOL(console_srcu_read_unlock);
 302
 303/*
 304 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
 305 * macros instead of functions so that _RET_IP_ contains useful information.
 306 */
 307#define down_console_sem() do { \
 308	down(&console_sem);\
 309	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
 310} while (0)
 311
 312static int __down_trylock_console_sem(unsigned long ip)
 313{
 314	int lock_failed;
 315	unsigned long flags;
 316
 317	/*
 318	 * Here and in __up_console_sem() we need to be in safe mode,
 319	 * because spindump/WARN/etc from under console ->lock will
 320	 * deadlock in printk()->down_trylock_console_sem() otherwise.
 321	 */
 322	printk_safe_enter_irqsave(flags);
 323	lock_failed = down_trylock(&console_sem);
 324	printk_safe_exit_irqrestore(flags);
 325
 326	if (lock_failed)
 327		return 1;
 328	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
 329	return 0;
 330}
 331#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
 332
 333static void __up_console_sem(unsigned long ip)
 334{
 335	unsigned long flags;
 336
 337	mutex_release(&console_lock_dep_map, ip);
 338
 339	printk_safe_enter_irqsave(flags);
 340	up(&console_sem);
 341	printk_safe_exit_irqrestore(flags);
 342}
 343#define up_console_sem() __up_console_sem(_RET_IP_)
 344
 345static bool panic_in_progress(void)
 346{
 347	return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID);
 348}
 349
 350/*
 351 * This is used for debugging the mess that is the VT code by
 352 * keeping track if we have the console semaphore held. It's
 353 * definitely not the perfect debug tool (we don't know if _WE_
 354 * hold it and are racing, but it helps tracking those weird code
 355 * paths in the console code where we end up in places I want
 356 * locked without the console semaphore held).
 
 
 
 
 
 357 */
 358static int console_locked;
 359
 360/*
 361 *	Array of consoles built from command line options (console=)
 362 */
 363
 364#define MAX_CMDLINECONSOLES 8
 365
 366static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
 367
 
 368static int preferred_console = -1;
 369int console_set_on_cmdline;
 370EXPORT_SYMBOL(console_set_on_cmdline);
 371
 372/* Flag: console code may call schedule() */
 373static int console_may_schedule;
 374
 375enum con_msg_format_flags {
 376	MSG_FORMAT_DEFAULT	= 0,
 377	MSG_FORMAT_SYSLOG	= (1 << 0),
 378};
 379
 380static int console_msg_format = MSG_FORMAT_DEFAULT;
 381
 382/*
 383 * The printk log buffer consists of a sequenced collection of records, each
 384 * containing variable length message text. Every record also contains its
 385 * own meta-data (@info).
 386 *
 387 * Every record meta-data carries the timestamp in microseconds, as well as
 388 * the standard userspace syslog level and syslog facility. The usual kernel
 389 * messages use LOG_KERN; userspace-injected messages always carry a matching
 390 * syslog facility, by default LOG_USER. The origin of every message can be
 391 * reliably determined that way.
 392 *
 393 * The human readable log message of a record is available in @text, the
 394 * length of the message text in @text_len. The stored message is not
 395 * terminated.
 
 
 
 
 
 
 
 
 396 *
 397 * Optionally, a record can carry a dictionary of properties (key/value
 398 * pairs), to provide userspace with a machine-readable message context.
 399 *
 400 * Examples for well-defined, commonly used property names are:
 401 *   DEVICE=b12:8               device identifier
 402 *                                b12:8         block dev_t
 403 *                                c127:3        char dev_t
 404 *                                n8            netdev ifindex
 405 *                                +sound:card0  subsystem:devname
 406 *   SUBSYSTEM=pci              driver-core subsystem name
 407 *
 408 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
 409 * and values are terminated by a '\0' character.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 410 *
 411 * Example of record values:
 412 *   record.text_buf                = "it's a line" (unterminated)
 413 *   record.info.seq                = 56
 414 *   record.info.ts_nsec            = 36863
 415 *   record.info.text_len           = 11
 416 *   record.info.facility           = 0 (LOG_KERN)
 417 *   record.info.flags              = 0
 418 *   record.info.level              = 3 (LOG_ERR)
 419 *   record.info.caller_id          = 299 (task 299)
 420 *   record.info.dev_info.subsystem = "pci" (terminated)
 421 *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
 422 *
 423 * The 'struct printk_info' buffer must never be directly exported to
 424 * userspace, it is a kernel-private implementation detail that might
 425 * need to be changed in the future, when the requirements change.
 426 *
 427 * /dev/kmsg exports the structured data in the following line format:
 428 *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
 429 *
 430 * Users of the export format should ignore possible additional values
 431 * separated by ',', and find the message after the ';' character.
 432 *
 433 * The optional key/value pairs are attached as continuation lines starting
 434 * with a space character and terminated by a newline. All possible
 435 * non-prinatable characters are escaped in the "\xff" notation.
 
 
 
 436 */
 437
 438/* syslog_lock protects syslog_* variables and write access to clear_seq. */
 439static DEFINE_MUTEX(syslog_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 440
 441#ifdef CONFIG_PRINTK
 442/*
 443 * During panic, heavy printk by other CPUs can delay the
 444 * panic and risk deadlock on console resources.
 445 */
 446static int __read_mostly suppress_panic_printk;
 447
 
 448DECLARE_WAIT_QUEUE_HEAD(log_wait);
 449/* All 3 protected by @syslog_lock. */
 450/* the next printk record to read by syslog(READ) or /proc/kmsg */
 451static u64 syslog_seq;
 
 
 452static size_t syslog_partial;
 453static bool syslog_time;
 454
 455struct latched_seq {
 456	seqcount_latch_t	latch;
 457	u64			val[2];
 458};
 459
 460/*
 461 * The next printk record to read after the last 'clear' command. There are
 462 * two copies (updated with seqcount_latch) so that reads can locklessly
 463 * access a valid value. Writers are synchronized by @syslog_lock.
 464 */
 465static struct latched_seq clear_seq = {
 466	.latch		= SEQCNT_LATCH_ZERO(clear_seq.latch),
 467	.val[0]		= 0,
 468	.val[1]		= 0,
 469};
 
 
 
 
 
 
 470
 471#define LOG_LEVEL(v)		((v) & 0x07)
 472#define LOG_FACILITY(v)		((v) >> 3 & 0xff)
 473
 474/* record buffer */
 475#define LOG_ALIGN __alignof__(unsigned long)
 
 
 
 
 476#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
 477#define LOG_BUF_LEN_MAX (u32)(1 << 31)
 478static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
 479static char *log_buf = __log_buf;
 480static u32 log_buf_len = __LOG_BUF_LEN;
 481
 482/*
 483 * Define the average message size. This only affects the number of
 484 * descriptors that will be available. Underestimating is better than
 485 * overestimating (too many available descriptors is better than not enough).
 486 */
 487#define PRB_AVGBITS 5	/* 32 character average length */
 488
 489#if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
 490#error CONFIG_LOG_BUF_SHIFT value too small.
 491#endif
 492_DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
 493		 PRB_AVGBITS, &__log_buf[0]);
 494
 495static struct printk_ringbuffer printk_rb_dynamic;
 496
 497struct printk_ringbuffer *prb = &printk_rb_static;
 498
 499/*
 500 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
 501 * per_cpu_areas are initialised. This variable is set to true when
 502 * it's safe to access per-CPU data.
 503 */
 504static bool __printk_percpu_data_ready __ro_after_init;
 505
 506bool printk_percpu_data_ready(void)
 507{
 508	return __printk_percpu_data_ready;
 509}
 510
 511/* Must be called under syslog_lock. */
 512static void latched_seq_write(struct latched_seq *ls, u64 val)
 513{
 514	raw_write_seqcount_latch(&ls->latch);
 515	ls->val[0] = val;
 516	raw_write_seqcount_latch(&ls->latch);
 517	ls->val[1] = val;
 518}
 519
 520/* Can be called from any context. */
 521static u64 latched_seq_read_nolock(struct latched_seq *ls)
 522{
 523	unsigned int seq;
 524	unsigned int idx;
 525	u64 val;
 526
 527	do {
 528		seq = raw_read_seqcount_latch(&ls->latch);
 529		idx = seq & 0x1;
 530		val = ls->val[idx];
 531	} while (raw_read_seqcount_latch_retry(&ls->latch, seq));
 532
 533	return val;
 
 
 
 
 
 
 534}
 535
 536/* Return log buffer address */
 537char *log_buf_addr_get(void)
 538{
 539	return log_buf;
 
 
 
 
 
 
 
 
 
 
 
 
 540}
 541
 542/* Return log buffer size */
 543u32 log_buf_len_get(void)
 
 
 
 544{
 545	return log_buf_len;
 546}
 547
 548/*
 549 * Define how much of the log buffer we could take at maximum. The value
 550 * must be greater than two. Note that only half of the buffer is available
 551 * when the index points to the middle.
 552 */
 553#define MAX_LOG_TAKE_PART 4
 554static const char trunc_msg[] = "<truncated>";
 555
 556static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
 557{
 558	/*
 559	 * The message should not take the whole buffer. Otherwise, it might
 560	 * get removed too soon.
 561	 */
 562	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
 563
 564	if (*text_len > max_text_len)
 565		*text_len = max_text_len;
 
 
 
 
 
 566
 567	/* enable the warning message (if there is room) */
 568	*trunc_msg_len = strlen(trunc_msg);
 569	if (*text_len >= *trunc_msg_len)
 570		*text_len -= *trunc_msg_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 571	else
 572		*trunc_msg_len = 0;
 
 
 
 
 
 
 573}
 574
 575int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
 
 
 
 
 576
 577static int syslog_action_restricted(int type)
 578{
 579	if (dmesg_restrict)
 580		return 1;
 581	/*
 582	 * Unless restricted, we allow "read all" and "get buffer size"
 583	 * for everybody.
 584	 */
 585	return type != SYSLOG_ACTION_READ_ALL &&
 586	       type != SYSLOG_ACTION_SIZE_BUFFER;
 587}
 588
 589static int check_syslog_permissions(int type, int source)
 590{
 591	/*
 592	 * If this is from /proc/kmsg and we've already opened it, then we've
 593	 * already done the capabilities checks at open time.
 594	 */
 595	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
 596		goto ok;
 597
 598	if (syslog_action_restricted(type)) {
 599		if (capable(CAP_SYSLOG))
 600			goto ok;
 601		/*
 602		 * For historical reasons, accept CAP_SYS_ADMIN too, with
 603		 * a warning.
 604		 */
 605		if (capable(CAP_SYS_ADMIN)) {
 606			pr_warn_once("%s (%d): Attempt to access syslog with "
 607				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
 608				     "(deprecated).\n",
 609				 current->comm, task_pid_nr(current));
 610			goto ok;
 611		}
 612		return -EPERM;
 613	}
 614ok:
 615	return security_syslog(type);
 616}
 617
 618static void append_char(char **pp, char *e, char c)
 619{
 620	if (*pp < e)
 621		*(*pp)++ = c;
 622}
 623
 624static ssize_t info_print_ext_header(char *buf, size_t size,
 625				     struct printk_info *info)
 626{
 627	u64 ts_usec = info->ts_nsec;
 628	char caller[20];
 629#ifdef CONFIG_PRINTK_CALLER
 630	u32 id = info->caller_id;
 631
 632	snprintf(caller, sizeof(caller), ",caller=%c%u",
 633		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
 634#else
 635	caller[0] = '\0';
 636#endif
 637
 638	do_div(ts_usec, 1000);
 639
 640	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
 641			 (info->facility << 3) | info->level, info->seq,
 642			 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
 643}
 644
 645static ssize_t msg_add_ext_text(char *buf, size_t size,
 646				const char *text, size_t text_len,
 647				unsigned char endc)
 648{
 649	char *p = buf, *e = buf + size;
 650	size_t i;
 651
 652	/* escape non-printable characters */
 653	for (i = 0; i < text_len; i++) {
 654		unsigned char c = text[i];
 655
 656		if (c < ' ' || c >= 127 || c == '\\')
 657			p += scnprintf(p, e - p, "\\x%02x", c);
 658		else
 659			append_char(&p, e, c);
 660	}
 661	append_char(&p, e, endc);
 662
 663	return p - buf;
 664}
 665
 666static ssize_t msg_add_dict_text(char *buf, size_t size,
 667				 const char *key, const char *val)
 668{
 669	size_t val_len = strlen(val);
 670	ssize_t len;
 671
 672	if (!val_len)
 673		return 0;
 674
 675	len = msg_add_ext_text(buf, size, "", 0, ' ');	/* dict prefix */
 676	len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
 677	len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
 678
 679	return len;
 680}
 681
 682static ssize_t msg_print_ext_body(char *buf, size_t size,
 683				  char *text, size_t text_len,
 684				  struct dev_printk_info *dev_info)
 685{
 686	ssize_t len;
 687
 688	len = msg_add_ext_text(buf, size, text, text_len, '\n');
 689
 690	if (!dev_info)
 691		goto out;
 692
 693	len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
 694				 dev_info->subsystem);
 695	len += msg_add_dict_text(buf + len, size - len, "DEVICE",
 696				 dev_info->device);
 697out:
 698	return len;
 699}
 700
 701/* /dev/kmsg - userspace message inject/listen interface */
 702struct devkmsg_user {
 703	atomic64_t seq;
 704	struct ratelimit_state rs;
 
 705	struct mutex lock;
 706	struct printk_buffers pbufs;
 707};
 708
 709static __printf(3, 4) __cold
 710int devkmsg_emit(int facility, int level, const char *fmt, ...)
 711{
 712	va_list args;
 713	int r;
 714
 715	va_start(args, fmt);
 716	r = vprintk_emit(facility, level, NULL, fmt, args);
 717	va_end(args);
 718
 719	return r;
 720}
 721
 722static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
 723{
 724	char *buf, *line;
 
 725	int level = default_message_loglevel;
 726	int facility = 1;	/* LOG_USER */
 727	struct file *file = iocb->ki_filp;
 728	struct devkmsg_user *user = file->private_data;
 729	size_t len = iov_iter_count(from);
 730	ssize_t ret = len;
 731
 732	if (len > PRINTKRB_RECORD_MAX)
 733		return -EINVAL;
 734
 735	/* Ignore when user logging is disabled. */
 736	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 737		return len;
 738
 739	/* Ratelimit when not explicitly enabled. */
 740	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
 741		if (!___ratelimit(&user->rs, current->comm))
 742			return ret;
 743	}
 744
 745	buf = kmalloc(len+1, GFP_KERNEL);
 746	if (buf == NULL)
 747		return -ENOMEM;
 748
 749	buf[len] = '\0';
 750	if (!copy_from_iter_full(buf, len, from)) {
 751		kfree(buf);
 752		return -EFAULT;
 
 
 
 753	}
 754
 755	/*
 756	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
 757	 * the decimal value represents 32bit, the lower 3 bit are the log
 758	 * level, the rest are the log facility.
 759	 *
 760	 * If no prefix or no userspace facility is specified, we
 761	 * enforce LOG_USER, to be able to reliably distinguish
 762	 * kernel-generated messages from userspace-injected ones.
 763	 */
 764	line = buf;
 765	if (line[0] == '<') {
 766		char *endp = NULL;
 767		unsigned int u;
 768
 769		u = simple_strtoul(line + 1, &endp, 10);
 770		if (endp && endp[0] == '>') {
 771			level = LOG_LEVEL(u);
 772			if (LOG_FACILITY(u) != 0)
 773				facility = LOG_FACILITY(u);
 774			endp++;
 
 775			line = endp;
 776		}
 777	}
 
 778
 779	devkmsg_emit(facility, level, "%s", line);
 
 780	kfree(buf);
 781	return ret;
 782}
 783
 784static ssize_t devkmsg_read(struct file *file, char __user *buf,
 785			    size_t count, loff_t *ppos)
 786{
 787	struct devkmsg_user *user = file->private_data;
 788	char *outbuf = &user->pbufs.outbuf[0];
 789	struct printk_message pmsg = {
 790		.pbufs = &user->pbufs,
 791	};
 
 792	ssize_t ret;
 793
 
 
 
 794	ret = mutex_lock_interruptible(&user->lock);
 795	if (ret)
 796		return ret;
 797
 798	if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) {
 799		if (file->f_flags & O_NONBLOCK) {
 800			ret = -EAGAIN;
 
 801			goto out;
 802		}
 803
 804		/*
 805		 * Guarantee this task is visible on the waitqueue before
 806		 * checking the wake condition.
 807		 *
 808		 * The full memory barrier within set_current_state() of
 809		 * prepare_to_wait_event() pairs with the full memory barrier
 810		 * within wq_has_sleeper().
 811		 *
 812		 * This pairs with __wake_up_klogd:A.
 813		 */
 814		ret = wait_event_interruptible(log_wait,
 815				printk_get_next_message(&pmsg, atomic64_read(&user->seq), true,
 816							false)); /* LMM(devkmsg_read:A) */
 817		if (ret)
 818			goto out;
 
 819	}
 820
 821	if (pmsg.dropped) {
 822		/* our last seen message is gone, return error and reset */
 823		atomic64_set(&user->seq, pmsg.seq);
 
 824		ret = -EPIPE;
 
 825		goto out;
 826	}
 827
 828	atomic64_set(&user->seq, pmsg.seq + 1);
 
 
 829
 830	if (pmsg.outbuf_len > count) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 831		ret = -EINVAL;
 832		goto out;
 833	}
 834
 835	if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) {
 836		ret = -EFAULT;
 837		goto out;
 838	}
 839	ret = pmsg.outbuf_len;
 840out:
 841	mutex_unlock(&user->lock);
 842	return ret;
 843}
 844
 845/*
 846 * Be careful when modifying this function!!!
 847 *
 848 * Only few operations are supported because the device works only with the
 849 * entire variable length messages (records). Non-standard values are
 850 * returned in the other cases and has been this way for quite some time.
 851 * User space applications might depend on this behavior.
 852 */
 853static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
 854{
 855	struct devkmsg_user *user = file->private_data;
 856	loff_t ret = 0;
 857
 
 
 858	if (offset)
 859		return -ESPIPE;
 860
 
 861	switch (whence) {
 862	case SEEK_SET:
 863		/* the first record */
 864		atomic64_set(&user->seq, prb_first_valid_seq(prb));
 
 865		break;
 866	case SEEK_DATA:
 867		/*
 868		 * The first record after the last SYSLOG_ACTION_CLEAR,
 869		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
 870		 * changes no global state, and does not clear anything.
 871		 */
 872		atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
 
 873		break;
 874	case SEEK_END:
 875		/* after the last record */
 876		atomic64_set(&user->seq, prb_next_seq(prb));
 
 877		break;
 878	default:
 879		ret = -EINVAL;
 880	}
 
 881	return ret;
 882}
 883
 884static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
 885{
 886	struct devkmsg_user *user = file->private_data;
 887	struct printk_info info;
 888	__poll_t ret = 0;
 
 
 889
 890	poll_wait(file, &log_wait, wait);
 891
 892	if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
 
 893		/* return error when data has vanished underneath us */
 894		if (info.seq != atomic64_read(&user->seq))
 895			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
 896		else
 897			ret = EPOLLIN|EPOLLRDNORM;
 898	}
 
 899
 900	return ret;
 901}
 902
 903static int devkmsg_open(struct inode *inode, struct file *file)
 904{
 905	struct devkmsg_user *user;
 906	int err;
 907
 908	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 909		return -EPERM;
 910
 911	/* write-only does not need any file context */
 912	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
 913		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
 914					       SYSLOG_FROM_READER);
 915		if (err)
 916			return err;
 917	}
 
 918
 919	user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
 920	if (!user)
 921		return -ENOMEM;
 922
 923	ratelimit_default_init(&user->rs);
 924	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
 925
 926	mutex_init(&user->lock);
 927
 928	atomic64_set(&user->seq, prb_first_valid_seq(prb));
 
 
 
 929
 930	file->private_data = user;
 931	return 0;
 932}
 933
 934static int devkmsg_release(struct inode *inode, struct file *file)
 935{
 936	struct devkmsg_user *user = file->private_data;
 937
 938	ratelimit_state_exit(&user->rs);
 
 939
 940	mutex_destroy(&user->lock);
 941	kvfree(user);
 942	return 0;
 943}
 944
 945const struct file_operations kmsg_fops = {
 946	.open = devkmsg_open,
 947	.read = devkmsg_read,
 948	.write_iter = devkmsg_write,
 949	.llseek = devkmsg_llseek,
 950	.poll = devkmsg_poll,
 951	.release = devkmsg_release,
 952};
 953
 954#ifdef CONFIG_CRASH_CORE
 955/*
 956 * This appends the listed symbols to /proc/vmcore
 957 *
 958 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
 959 * obtain access to symbols that are otherwise very difficult to locate.  These
 960 * symbols are specifically used so that utilities can access and extract the
 961 * dmesg log from a vmcore file after a crash.
 962 */
 963void log_buf_vmcoreinfo_setup(void)
 964{
 965	struct dev_printk_info *dev_info = NULL;
 966
 967	VMCOREINFO_SYMBOL(prb);
 968	VMCOREINFO_SYMBOL(printk_rb_static);
 969	VMCOREINFO_SYMBOL(clear_seq);
 970
 971	/*
 972	 * Export struct size and field offsets. User space tools can
 973	 * parse it and detect any changes to structure down the line.
 974	 */
 975
 976	VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
 977	VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
 978	VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
 979	VMCOREINFO_OFFSET(printk_ringbuffer, fail);
 980
 981	VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
 982	VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
 983	VMCOREINFO_OFFSET(prb_desc_ring, descs);
 984	VMCOREINFO_OFFSET(prb_desc_ring, infos);
 985	VMCOREINFO_OFFSET(prb_desc_ring, head_id);
 986	VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
 987
 988	VMCOREINFO_STRUCT_SIZE(prb_desc);
 989	VMCOREINFO_OFFSET(prb_desc, state_var);
 990	VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
 991
 992	VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
 993	VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
 994	VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
 995
 996	VMCOREINFO_STRUCT_SIZE(printk_info);
 997	VMCOREINFO_OFFSET(printk_info, seq);
 998	VMCOREINFO_OFFSET(printk_info, ts_nsec);
 999	VMCOREINFO_OFFSET(printk_info, text_len);
1000	VMCOREINFO_OFFSET(printk_info, caller_id);
1001	VMCOREINFO_OFFSET(printk_info, dev_info);
1002
1003	VMCOREINFO_STRUCT_SIZE(dev_printk_info);
1004	VMCOREINFO_OFFSET(dev_printk_info, subsystem);
1005	VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
1006	VMCOREINFO_OFFSET(dev_printk_info, device);
1007	VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
1008
1009	VMCOREINFO_STRUCT_SIZE(prb_data_ring);
1010	VMCOREINFO_OFFSET(prb_data_ring, size_bits);
1011	VMCOREINFO_OFFSET(prb_data_ring, data);
1012	VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
1013	VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
1014
1015	VMCOREINFO_SIZE(atomic_long_t);
1016	VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
1017
1018	VMCOREINFO_STRUCT_SIZE(latched_seq);
1019	VMCOREINFO_OFFSET(latched_seq, val);
1020}
1021#endif
1022
1023/* requested log_buf_len from kernel cmdline */
1024static unsigned long __initdata new_log_buf_len;
1025
1026/* we practice scaling the ring buffer by powers of 2 */
1027static void __init log_buf_len_update(u64 size)
1028{
1029	if (size > (u64)LOG_BUF_LEN_MAX) {
1030		size = (u64)LOG_BUF_LEN_MAX;
1031		pr_err("log_buf over 2G is not supported.\n");
1032	}
1033
1034	if (size)
1035		size = roundup_pow_of_two(size);
1036	if (size > log_buf_len)
1037		new_log_buf_len = (unsigned long)size;
1038}
1039
1040/* save requested log_buf_len since it's too early to process it */
1041static int __init log_buf_len_setup(char *str)
1042{
1043	u64 size;
1044
1045	if (!str)
1046		return -EINVAL;
1047
1048	size = memparse(str, &str);
1049
1050	log_buf_len_update(size);
1051
1052	return 0;
1053}
1054early_param("log_buf_len", log_buf_len_setup);
1055
1056#ifdef CONFIG_SMP
1057#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1058
1059static void __init log_buf_add_cpu(void)
1060{
1061	unsigned int cpu_extra;
1062
1063	/*
1064	 * archs should set up cpu_possible_bits properly with
1065	 * set_cpu_possible() after setup_arch() but just in
1066	 * case lets ensure this is valid.
1067	 */
1068	if (num_possible_cpus() == 1)
1069		return;
1070
1071	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1072
1073	/* by default this will only continue through for large > 64 CPUs */
1074	if (cpu_extra <= __LOG_BUF_LEN / 2)
1075		return;
1076
1077	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1078		__LOG_CPU_MAX_BUF_LEN);
1079	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1080		cpu_extra);
1081	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1082
1083	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1084}
1085#else /* !CONFIG_SMP */
1086static inline void log_buf_add_cpu(void) {}
1087#endif /* CONFIG_SMP */
1088
1089static void __init set_percpu_data_ready(void)
1090{
1091	__printk_percpu_data_ready = true;
1092}
1093
1094static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1095				     struct printk_record *r)
1096{
1097	struct prb_reserved_entry e;
1098	struct printk_record dest_r;
1099
1100	prb_rec_init_wr(&dest_r, r->info->text_len);
1101
1102	if (!prb_reserve(&e, rb, &dest_r))
1103		return 0;
1104
1105	memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1106	dest_r.info->text_len = r->info->text_len;
1107	dest_r.info->facility = r->info->facility;
1108	dest_r.info->level = r->info->level;
1109	dest_r.info->flags = r->info->flags;
1110	dest_r.info->ts_nsec = r->info->ts_nsec;
1111	dest_r.info->caller_id = r->info->caller_id;
1112	memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1113
1114	prb_final_commit(&e);
1115
1116	return prb_record_text_space(&e);
1117}
1118
1119static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata;
1120
1121void __init setup_log_buf(int early)
1122{
1123	struct printk_info *new_infos;
1124	unsigned int new_descs_count;
1125	struct prb_desc *new_descs;
1126	struct printk_info info;
1127	struct printk_record r;
1128	unsigned int text_size;
1129	size_t new_descs_size;
1130	size_t new_infos_size;
1131	unsigned long flags;
1132	char *new_log_buf;
1133	unsigned int free;
1134	u64 seq;
1135
1136	/*
1137	 * Some archs call setup_log_buf() multiple times - first is very
1138	 * early, e.g. from setup_arch(), and second - when percpu_areas
1139	 * are initialised.
1140	 */
1141	if (!early)
1142		set_percpu_data_ready();
1143
1144	if (log_buf != __log_buf)
1145		return;
1146
1147	if (!early && !new_log_buf_len)
1148		log_buf_add_cpu();
1149
1150	if (!new_log_buf_len)
1151		return;
1152
1153	new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1154	if (new_descs_count == 0) {
1155		pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1156		return;
 
1157	}
1158
1159	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1160	if (unlikely(!new_log_buf)) {
1161		pr_err("log_buf_len: %lu text bytes not available\n",
1162		       new_log_buf_len);
1163		return;
1164	}
1165
1166	new_descs_size = new_descs_count * sizeof(struct prb_desc);
1167	new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1168	if (unlikely(!new_descs)) {
1169		pr_err("log_buf_len: %zu desc bytes not available\n",
1170		       new_descs_size);
1171		goto err_free_log_buf;
1172	}
1173
1174	new_infos_size = new_descs_count * sizeof(struct printk_info);
1175	new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1176	if (unlikely(!new_infos)) {
1177		pr_err("log_buf_len: %zu info bytes not available\n",
1178		       new_infos_size);
1179		goto err_free_descs;
1180	}
1181
1182	prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1183
1184	prb_init(&printk_rb_dynamic,
1185		 new_log_buf, ilog2(new_log_buf_len),
1186		 new_descs, ilog2(new_descs_count),
1187		 new_infos);
1188
1189	local_irq_save(flags);
1190
1191	log_buf_len = new_log_buf_len;
1192	log_buf = new_log_buf;
1193	new_log_buf_len = 0;
 
 
 
1194
1195	free = __LOG_BUF_LEN;
1196	prb_for_each_record(0, &printk_rb_static, seq, &r) {
1197		text_size = add_to_rb(&printk_rb_dynamic, &r);
1198		if (text_size > free)
1199			free = 0;
1200		else
1201			free -= text_size;
1202	}
1203
1204	prb = &printk_rb_dynamic;
1205
1206	local_irq_restore(flags);
1207
1208	/*
1209	 * Copy any remaining messages that might have appeared from
1210	 * NMI context after copying but before switching to the
1211	 * dynamic buffer.
1212	 */
1213	prb_for_each_record(seq, &printk_rb_static, seq, &r) {
1214		text_size = add_to_rb(&printk_rb_dynamic, &r);
1215		if (text_size > free)
1216			free = 0;
1217		else
1218			free -= text_size;
1219	}
1220
1221	if (seq != prb_next_seq(&printk_rb_static)) {
1222		pr_err("dropped %llu messages\n",
1223		       prb_next_seq(&printk_rb_static) - seq);
1224	}
1225
1226	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1227	pr_info("early log buf free: %u(%u%%)\n",
1228		free, (free * 100) / __LOG_BUF_LEN);
1229	return;
1230
1231err_free_descs:
1232	memblock_free(new_descs, new_descs_size);
1233err_free_log_buf:
1234	memblock_free(new_log_buf, new_log_buf_len);
1235}
1236
1237static bool __read_mostly ignore_loglevel;
1238
1239static int __init ignore_loglevel_setup(char *str)
1240{
1241	ignore_loglevel = true;
1242	pr_info("debug: ignoring loglevel setting.\n");
1243
1244	return 0;
1245}
1246
1247early_param("ignore_loglevel", ignore_loglevel_setup);
1248module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1249MODULE_PARM_DESC(ignore_loglevel,
1250		 "ignore loglevel setting (prints all kernel messages to the console)");
1251
1252static bool suppress_message_printing(int level)
1253{
1254	return (level >= console_loglevel && !ignore_loglevel);
1255}
1256
1257#ifdef CONFIG_BOOT_PRINTK_DELAY
1258
1259static int boot_delay; /* msecs delay after each printk during bootup */
1260static unsigned long long loops_per_msec;	/* based on boot_delay */
1261
1262static int __init boot_delay_setup(char *str)
1263{
1264	unsigned long lpj;
1265
1266	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1267	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1268
1269	get_option(&str, &boot_delay);
1270	if (boot_delay > 10 * 1000)
1271		boot_delay = 0;
1272
1273	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1274		"HZ: %d, loops_per_msec: %llu\n",
1275		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1276	return 0;
1277}
1278early_param("boot_delay", boot_delay_setup);
1279
1280static void boot_delay_msec(int level)
1281{
1282	unsigned long long k;
1283	unsigned long timeout;
1284
1285	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1286		|| suppress_message_printing(level)) {
1287		return;
1288	}
1289
1290	k = (unsigned long long)loops_per_msec * boot_delay;
1291
1292	timeout = jiffies + msecs_to_jiffies(boot_delay);
1293	while (k) {
1294		k--;
1295		cpu_relax();
1296		/*
1297		 * use (volatile) jiffies to prevent
1298		 * compiler reduction; loop termination via jiffies
1299		 * is secondary and may or may not happen.
1300		 */
1301		if (time_after(jiffies, timeout))
1302			break;
1303		touch_nmi_watchdog();
1304	}
1305}
1306#else
1307static inline void boot_delay_msec(int level)
1308{
1309}
1310#endif
1311
1312static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
 
 
 
 
1313module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1314
1315static size_t print_syslog(unsigned int level, char *buf)
1316{
1317	return sprintf(buf, "<%u>", level);
1318}
1319
1320static size_t print_time(u64 ts, char *buf)
1321{
1322	unsigned long rem_nsec = do_div(ts, 1000000000);
1323
1324	return sprintf(buf, "[%5lu.%06lu]",
1325		       (unsigned long)ts, rem_nsec / 1000);
1326}
1327
1328#ifdef CONFIG_PRINTK_CALLER
1329static size_t print_caller(u32 id, char *buf)
1330{
1331	char caller[12];
1332
1333	snprintf(caller, sizeof(caller), "%c%u",
1334		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1335	return sprintf(buf, "[%6s]", caller);
 
 
1336}
1337#else
1338#define print_caller(id, buf) 0
1339#endif
1340
1341static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1342				bool time, char *buf)
1343{
1344	size_t len = 0;
 
1345
1346	if (syslog)
1347		len = print_syslog((info->facility << 3) | info->level, buf);
1348
1349	if (time)
1350		len += print_time(info->ts_nsec, buf + len);
1351
1352	len += print_caller(info->caller_id, buf + len);
1353
1354	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1355		buf[len++] = ' ';
1356		buf[len] = '\0';
 
1357	}
1358
 
1359	return len;
1360}
1361
1362/*
1363 * Prepare the record for printing. The text is shifted within the given
1364 * buffer to avoid a need for another one. The following operations are
1365 * done:
1366 *
1367 *   - Add prefix for each line.
1368 *   - Drop truncated lines that no longer fit into the buffer.
1369 *   - Add the trailing newline that has been removed in vprintk_store().
1370 *   - Add a string terminator.
1371 *
1372 * Since the produced string is always terminated, the maximum possible
1373 * return value is @r->text_buf_size - 1;
1374 *
1375 * Return: The length of the updated/prepared text, including the added
1376 * prefixes and the newline. The terminator is not counted. The dropped
1377 * line(s) are not counted.
1378 */
1379static size_t record_print_text(struct printk_record *r, bool syslog,
1380				bool time)
1381{
1382	size_t text_len = r->info->text_len;
1383	size_t buf_size = r->text_buf_size;
1384	char *text = r->text_buf;
1385	char prefix[PRINTK_PREFIX_MAX];
1386	bool truncated = false;
1387	size_t prefix_len;
1388	size_t line_len;
1389	size_t len = 0;
1390	char *next;
1391
1392	/*
1393	 * If the message was truncated because the buffer was not large
1394	 * enough, treat the available text as if it were the full text.
1395	 */
1396	if (text_len > buf_size)
1397		text_len = buf_size;
1398
1399	prefix_len = info_print_prefix(r->info, syslog, time, prefix);
 
 
 
 
 
 
 
 
 
 
1400
1401	/*
1402	 * @text_len: bytes of unprocessed text
1403	 * @line_len: bytes of current line _without_ newline
1404	 * @text:     pointer to beginning of current line
1405	 * @len:      number of bytes prepared in r->text_buf
1406	 */
1407	for (;;) {
1408		next = memchr(text, '\n', text_len);
1409		if (next) {
1410			line_len = next - text;
 
 
1411		} else {
1412			/* Drop truncated line(s). */
1413			if (truncated)
1414				break;
1415			line_len = text_len;
1416		}
1417
1418		/*
1419		 * Truncate the text if there is not enough space to add the
1420		 * prefix and a trailing newline and a terminator.
1421		 */
1422		if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1423			/* Drop even the current line if no space. */
1424			if (len + prefix_len + line_len + 1 + 1 > buf_size)
1425				break;
1426
1427			text_len = buf_size - len - prefix_len - 1 - 1;
1428			truncated = true;
 
 
 
 
 
 
 
 
 
 
 
1429		}
1430
1431		memmove(text + prefix_len, text, text_len);
1432		memcpy(text, prefix, prefix_len);
1433
1434		/*
1435		 * Increment the prepared length to include the text and
1436		 * prefix that were just moved+copied. Also increment for the
1437		 * newline at the end of this line. If this is the last line,
1438		 * there is no newline, but it will be added immediately below.
1439		 */
1440		len += prefix_len + line_len + 1;
1441		if (text_len == line_len) {
1442			/*
1443			 * This is the last line. Add the trailing newline
1444			 * removed in vprintk_store().
1445			 */
1446			text[prefix_len + line_len] = '\n';
1447			break;
1448		}
1449
1450		/*
1451		 * Advance beyond the added prefix and the related line with
1452		 * its newline.
1453		 */
1454		text += prefix_len + line_len + 1;
1455
1456		/*
1457		 * The remaining text has only decreased by the line with its
1458		 * newline.
1459		 *
1460		 * Note that @text_len can become zero. It happens when @text
1461		 * ended with a newline (either due to truncation or the
1462		 * original string ending with "\n\n"). The loop is correctly
1463		 * repeated and (if not truncated) an empty line with a prefix
1464		 * will be prepared.
1465		 */
1466		text_len -= line_len + 1;
1467	}
1468
1469	/*
1470	 * If a buffer was provided, it will be terminated. Space for the
1471	 * string terminator is guaranteed to be available. The terminator is
1472	 * not counted in the return value.
1473	 */
1474	if (buf_size > 0)
1475		r->text_buf[len] = 0;
1476
1477	return len;
1478}
1479
1480static size_t get_record_print_text_size(struct printk_info *info,
1481					 unsigned int line_count,
1482					 bool syslog, bool time)
1483{
1484	char prefix[PRINTK_PREFIX_MAX];
1485	size_t prefix_len;
1486
1487	prefix_len = info_print_prefix(info, syslog, time, prefix);
1488
1489	/*
1490	 * Each line will be preceded with a prefix. The intermediate
1491	 * newlines are already within the text, but a final trailing
1492	 * newline will be added.
1493	 */
1494	return ((prefix_len * line_count) + info->text_len + 1);
1495}
1496
1497/*
1498 * Beginning with @start_seq, find the first record where it and all following
1499 * records up to (but not including) @max_seq fit into @size.
1500 *
1501 * @max_seq is simply an upper bound and does not need to exist. If the caller
1502 * does not require an upper bound, -1 can be used for @max_seq.
1503 */
1504static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1505				  bool syslog, bool time)
1506{
1507	struct printk_info info;
1508	unsigned int line_count;
1509	size_t len = 0;
1510	u64 seq;
1511
1512	/* Determine the size of the records up to @max_seq. */
1513	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1514		if (info.seq >= max_seq)
1515			break;
1516		len += get_record_print_text_size(&info, line_count, syslog, time);
1517	}
1518
1519	/*
1520	 * Adjust the upper bound for the next loop to avoid subtracting
1521	 * lengths that were never added.
1522	 */
1523	if (seq < max_seq)
1524		max_seq = seq;
1525
1526	/*
1527	 * Move first record forward until length fits into the buffer. Ignore
1528	 * newest messages that were not counted in the above cycle. Messages
1529	 * might appear and get lost in the meantime. This is a best effort
1530	 * that prevents an infinite loop that could occur with a retry.
1531	 */
1532	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1533		if (len <= size || info.seq >= max_seq)
1534			break;
1535		len -= get_record_print_text_size(&info, line_count, syslog, time);
1536	}
1537
1538	return seq;
1539}
1540
1541/* The caller is responsible for making sure @size is greater than 0. */
1542static int syslog_print(char __user *buf, int size)
1543{
1544	struct printk_info info;
1545	struct printk_record r;
1546	char *text;
 
1547	int len = 0;
1548	u64 seq;
1549
1550	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1551	if (!text)
1552		return -ENOMEM;
1553
1554	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1555
1556	mutex_lock(&syslog_lock);
1557
1558	/*
1559	 * Wait for the @syslog_seq record to be available. @syslog_seq may
1560	 * change while waiting.
1561	 */
1562	do {
1563		seq = syslog_seq;
1564
1565		mutex_unlock(&syslog_lock);
1566		/*
1567		 * Guarantee this task is visible on the waitqueue before
1568		 * checking the wake condition.
1569		 *
1570		 * The full memory barrier within set_current_state() of
1571		 * prepare_to_wait_event() pairs with the full memory barrier
1572		 * within wq_has_sleeper().
1573		 *
1574		 * This pairs with __wake_up_klogd:A.
1575		 */
1576		len = wait_event_interruptible(log_wait,
1577				prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */
1578		mutex_lock(&syslog_lock);
1579
1580		if (len)
1581			goto out;
1582	} while (syslog_seq != seq);
1583
1584	/*
1585	 * Copy records that fit into the buffer. The above cycle makes sure
1586	 * that the first record is always available.
1587	 */
1588	do {
1589		size_t n;
1590		size_t skip;
1591		int err;
1592
1593		if (!prb_read_valid(prb, syslog_seq, &r))
1594			break;
1595
1596		if (r.info->seq != syslog_seq) {
1597			/* message is gone, move to next valid one */
1598			syslog_seq = r.info->seq;
1599			syslog_partial = 0;
1600		}
1601
1602		/*
1603		 * To keep reading/counting partial line consistent,
1604		 * use printk_time value as of the beginning of a line.
1605		 */
1606		if (!syslog_partial)
1607			syslog_time = printk_time;
1608
1609		skip = syslog_partial;
1610		n = record_print_text(&r, true, syslog_time);
 
 
1611		if (n - syslog_partial <= size) {
1612			/* message fits into buffer, move forward */
1613			syslog_seq = r.info->seq + 1;
 
 
1614			n -= syslog_partial;
1615			syslog_partial = 0;
1616		} else if (!len){
1617			/* partial read(), remember position */
1618			n = size;
1619			syslog_partial += n;
1620		} else
1621			n = 0;
 
1622
1623		if (!n)
1624			break;
1625
1626		mutex_unlock(&syslog_lock);
1627		err = copy_to_user(buf, text + skip, n);
1628		mutex_lock(&syslog_lock);
1629
1630		if (err) {
1631			if (!len)
1632				len = -EFAULT;
1633			break;
1634		}
1635
1636		len += n;
1637		size -= n;
1638		buf += n;
1639	} while (size);
1640out:
1641	mutex_unlock(&syslog_lock);
1642	kfree(text);
1643	return len;
1644}
1645
1646static int syslog_print_all(char __user *buf, int size, bool clear)
1647{
1648	struct printk_info info;
1649	struct printk_record r;
1650	char *text;
1651	int len = 0;
1652	u64 seq;
1653	bool time;
1654
1655	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1656	if (!text)
1657		return -ENOMEM;
1658
1659	time = printk_time;
1660	/*
1661	 * Find first record that fits, including all following records,
1662	 * into the user-provided buffer for this dump.
1663	 */
1664	seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1665				     size, true, time);
1666
1667	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
 
 
 
 
1668
1669	prb_for_each_record(seq, prb, seq, &r) {
1670		int textlen;
 
 
 
 
 
 
 
1671
1672		textlen = record_print_text(&r, true, time);
 
 
 
 
1673
1674		if (len + textlen > size) {
1675			seq--;
1676			break;
 
 
 
 
 
 
 
 
1677		}
1678
1679		if (copy_to_user(buf + len, text, textlen))
1680			len = -EFAULT;
1681		else
1682			len += textlen;
1683
1684		if (len < 0)
1685			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1686	}
1687
1688	if (clear) {
1689		mutex_lock(&syslog_lock);
1690		latched_seq_write(&clear_seq, seq);
1691		mutex_unlock(&syslog_lock);
1692	}
 
1693
1694	kfree(text);
1695	return len;
1696}
1697
1698static void syslog_clear(void)
1699{
1700	mutex_lock(&syslog_lock);
1701	latched_seq_write(&clear_seq, prb_next_seq(prb));
1702	mutex_unlock(&syslog_lock);
1703}
1704
1705int do_syslog(int type, char __user *buf, int len, int source)
1706{
1707	struct printk_info info;
1708	bool clear = false;
1709	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1710	int error;
1711
1712	error = check_syslog_permissions(type, source);
 
 
 
 
1713	if (error)
1714		return error;
1715
1716	switch (type) {
1717	case SYSLOG_ACTION_CLOSE:	/* Close log */
1718		break;
1719	case SYSLOG_ACTION_OPEN:	/* Open log */
1720		break;
1721	case SYSLOG_ACTION_READ:	/* Read from log */
 
1722		if (!buf || len < 0)
1723			return -EINVAL;
 
1724		if (!len)
1725			return 0;
1726		if (!access_ok(buf, len))
1727			return -EFAULT;
 
 
 
 
 
 
1728		error = syslog_print(buf, len);
1729		break;
1730	/* Read/clear last kernel messages */
1731	case SYSLOG_ACTION_READ_CLEAR:
1732		clear = true;
1733		fallthrough;
1734	/* Read last kernel messages */
1735	case SYSLOG_ACTION_READ_ALL:
 
1736		if (!buf || len < 0)
1737			return -EINVAL;
 
1738		if (!len)
1739			return 0;
1740		if (!access_ok(buf, len))
1741			return -EFAULT;
 
 
1742		error = syslog_print_all(buf, len, clear);
1743		break;
1744	/* Clear ring buffer */
1745	case SYSLOG_ACTION_CLEAR:
1746		syslog_clear();
1747		break;
1748	/* Disable logging to console */
1749	case SYSLOG_ACTION_CONSOLE_OFF:
1750		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1751			saved_console_loglevel = console_loglevel;
1752		console_loglevel = minimum_console_loglevel;
1753		break;
1754	/* Enable logging to console */
1755	case SYSLOG_ACTION_CONSOLE_ON:
1756		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1757			console_loglevel = saved_console_loglevel;
1758			saved_console_loglevel = LOGLEVEL_DEFAULT;
1759		}
1760		break;
1761	/* Set level of messages printed to console */
1762	case SYSLOG_ACTION_CONSOLE_LEVEL:
 
1763		if (len < 1 || len > 8)
1764			return -EINVAL;
1765		if (len < minimum_console_loglevel)
1766			len = minimum_console_loglevel;
1767		console_loglevel = len;
1768		/* Implicitly re-enable logging to console */
1769		saved_console_loglevel = LOGLEVEL_DEFAULT;
 
1770		break;
1771	/* Number of chars in the log buffer */
1772	case SYSLOG_ACTION_SIZE_UNREAD:
1773		mutex_lock(&syslog_lock);
1774		if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1775			/* No unread messages. */
1776			mutex_unlock(&syslog_lock);
1777			return 0;
1778		}
1779		if (info.seq != syslog_seq) {
1780			/* messages are gone, move to first one */
1781			syslog_seq = info.seq;
 
 
1782			syslog_partial = 0;
1783		}
1784		if (source == SYSLOG_FROM_PROC) {
1785			/*
1786			 * Short-cut for poll(/"proc/kmsg") which simply checks
1787			 * for pending data, not the size; return the count of
1788			 * records, not the length.
1789			 */
1790			error = prb_next_seq(prb) - syslog_seq;
1791		} else {
1792			bool time = syslog_partial ? syslog_time : printk_time;
1793			unsigned int line_count;
1794			u64 seq;
1795
1796			prb_for_each_info(syslog_seq, prb, seq, &info,
1797					  &line_count) {
1798				error += get_record_print_text_size(&info, line_count,
1799								    true, time);
1800				time = printk_time;
 
 
 
1801			}
1802			error -= syslog_partial;
1803		}
1804		mutex_unlock(&syslog_lock);
1805		break;
1806	/* Size of the log buffer */
1807	case SYSLOG_ACTION_SIZE_BUFFER:
1808		error = log_buf_len;
1809		break;
1810	default:
1811		error = -EINVAL;
1812		break;
1813	}
1814
1815	return error;
1816}
1817
1818SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1819{
1820	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1821}
1822
1823/*
1824 * Special console_lock variants that help to reduce the risk of soft-lockups.
1825 * They allow to pass console_lock to another printk() call using a busy wait.
 
1826 */
 
 
 
1827
1828#ifdef CONFIG_LOCKDEP
1829static struct lockdep_map console_owner_dep_map = {
1830	.name = "console_owner"
1831};
1832#endif
1833
1834static DEFINE_RAW_SPINLOCK(console_owner_lock);
1835static struct task_struct *console_owner;
1836static bool console_waiter;
1837
1838/**
1839 * console_lock_spinning_enable - mark beginning of code where another
1840 *	thread might safely busy wait
1841 *
1842 * This basically converts console_lock into a spinlock. This marks
1843 * the section where the console_lock owner can not sleep, because
1844 * there may be a waiter spinning (like a spinlock). Also it must be
1845 * ready to hand over the lock at the end of the section.
1846 */
1847static void console_lock_spinning_enable(void)
1848{
1849	raw_spin_lock(&console_owner_lock);
1850	console_owner = current;
1851	raw_spin_unlock(&console_owner_lock);
1852
1853	/* The waiter may spin on us after setting console_owner */
1854	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
 
 
 
 
 
 
 
 
 
 
1855}
1856
1857/**
1858 * console_lock_spinning_disable_and_check - mark end of code where another
1859 *	thread was able to busy wait and check if there is a waiter
1860 * @cookie: cookie returned from console_srcu_read_lock()
1861 *
1862 * This is called at the end of the section where spinning is allowed.
1863 * It has two functions. First, it is a signal that it is no longer
1864 * safe to start busy waiting for the lock. Second, it checks if
1865 * there is a busy waiter and passes the lock rights to her.
1866 *
1867 * Important: Callers lose both the console_lock and the SRCU read lock if
1868 *	there was a busy waiter. They must not touch items synchronized by
1869 *	console_lock or SRCU read lock in this case.
1870 *
1871 * Return: 1 if the lock rights were passed, 0 otherwise.
1872 */
1873static int console_lock_spinning_disable_and_check(int cookie)
1874{
1875	int waiter;
1876
1877	raw_spin_lock(&console_owner_lock);
1878	waiter = READ_ONCE(console_waiter);
1879	console_owner = NULL;
1880	raw_spin_unlock(&console_owner_lock);
1881
1882	if (!waiter) {
1883		spin_release(&console_owner_dep_map, _THIS_IP_);
1884		return 0;
1885	}
1886
1887	/* The waiter is now free to continue */
1888	WRITE_ONCE(console_waiter, false);
 
 
 
 
1889
1890	spin_release(&console_owner_dep_map, _THIS_IP_);
 
 
 
1891
1892	/*
1893	 * Preserve lockdep lock ordering. Release the SRCU read lock before
1894	 * releasing the console_lock.
1895	 */
1896	console_srcu_read_unlock(cookie);
1897
1898	/*
1899	 * Hand off console_lock to waiter. The waiter will perform
1900	 * the up(). After this, the waiter is the console_lock owner.
1901	 */
1902	mutex_release(&console_lock_dep_map, _THIS_IP_);
1903	return 1;
1904}
1905
1906/**
1907 * console_trylock_spinning - try to get console_lock by busy waiting
1908 *
1909 * This allows to busy wait for the console_lock when the current
1910 * owner is running in specially marked sections. It means that
1911 * the current owner is running and cannot reschedule until it
1912 * is ready to lose the lock.
1913 *
1914 * Return: 1 if we got the lock, 0 othrewise
 
 
 
1915 */
1916static int console_trylock_spinning(void)
1917{
1918	struct task_struct *owner = NULL;
1919	bool waiter;
1920	bool spin = false;
1921	unsigned long flags;
1922
1923	if (console_trylock())
1924		return 1;
1925
1926	/*
1927	 * It's unsafe to spin once a panic has begun. If we are the
1928	 * panic CPU, we may have already halted the owner of the
1929	 * console_sem. If we are not the panic CPU, then we should
1930	 * avoid taking console_sem, so the panic CPU has a better
1931	 * chance of cleanly acquiring it later.
1932	 */
1933	if (panic_in_progress())
1934		return 0;
1935
1936	printk_safe_enter_irqsave(flags);
1937
1938	raw_spin_lock(&console_owner_lock);
1939	owner = READ_ONCE(console_owner);
1940	waiter = READ_ONCE(console_waiter);
1941	if (!waiter && owner && owner != current) {
1942		WRITE_ONCE(console_waiter, true);
1943		spin = true;
1944	}
1945	raw_spin_unlock(&console_owner_lock);
1946
1947	/*
1948	 * If there is an active printk() writing to the
1949	 * consoles, instead of having it write our data too,
1950	 * see if we can offload that load from the active
1951	 * printer, and do some printing ourselves.
1952	 * Go into a spin only if there isn't already a waiter
1953	 * spinning, and there is an active printer, and
1954	 * that active printer isn't us (recursive printk?).
1955	 */
1956	if (!spin) {
1957		printk_safe_exit_irqrestore(flags);
1958		return 0;
1959	}
1960
1961	/* We spin waiting for the owner to release us */
1962	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1963	/* Owner will clear console_waiter on hand off */
1964	while (READ_ONCE(console_waiter))
1965		cpu_relax();
1966	spin_release(&console_owner_dep_map, _THIS_IP_);
1967
1968	printk_safe_exit_irqrestore(flags);
1969	/*
1970	 * The owner passed the console lock to us.
1971	 * Since we did not spin on console lock, annotate
1972	 * this as a trylock. Otherwise lockdep will
1973	 * complain.
1974	 */
1975	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1976
1977	return 1;
1978}
1979
1980/*
1981 * Recursion is tracked separately on each CPU. If NMIs are supported, an
1982 * additional NMI context per CPU is also separately tracked. Until per-CPU
1983 * is available, a separate "early tracking" is performed.
 
 
 
 
 
1984 */
1985static DEFINE_PER_CPU(u8, printk_count);
1986static u8 printk_count_early;
1987#ifdef CONFIG_HAVE_NMI
1988static DEFINE_PER_CPU(u8, printk_count_nmi);
1989static u8 printk_count_nmi_early;
1990#endif
1991
1992/*
1993 * Recursion is limited to keep the output sane. printk() should not require
1994 * more than 1 level of recursion (allowing, for example, printk() to trigger
1995 * a WARN), but a higher value is used in case some printk-internal errors
1996 * exist, such as the ringbuffer validation checks failing.
1997 */
1998#define PRINTK_MAX_RECURSION 3
1999
2000/*
2001 * Return a pointer to the dedicated counter for the CPU+context of the
2002 * caller.
2003 */
2004static u8 *__printk_recursion_counter(void)
2005{
2006#ifdef CONFIG_HAVE_NMI
2007	if (in_nmi()) {
2008		if (printk_percpu_data_ready())
2009			return this_cpu_ptr(&printk_count_nmi);
2010		return &printk_count_nmi_early;
2011	}
2012#endif
2013	if (printk_percpu_data_ready())
2014		return this_cpu_ptr(&printk_count);
2015	return &printk_count_early;
 
2016}
2017
2018/*
2019 * Enter recursion tracking. Interrupts are disabled to simplify tracking.
2020 * The caller must check the boolean return value to see if the recursion is
2021 * allowed. On failure, interrupts are not disabled.
2022 *
2023 * @recursion_ptr must be a variable of type (u8 *) and is the same variable
2024 * that is passed to printk_exit_irqrestore().
2025 */
2026#define printk_enter_irqsave(recursion_ptr, flags)	\
2027({							\
2028	bool success = true;				\
2029							\
2030	typecheck(u8 *, recursion_ptr);			\
2031	local_irq_save(flags);				\
2032	(recursion_ptr) = __printk_recursion_counter();	\
2033	if (*(recursion_ptr) > PRINTK_MAX_RECURSION) {	\
2034		local_irq_restore(flags);		\
2035		success = false;			\
2036	} else {					\
2037		(*(recursion_ptr))++;			\
2038	}						\
2039	success;					\
2040})
2041
2042/* Exit recursion tracking, restoring interrupts. */
2043#define printk_exit_irqrestore(recursion_ptr, flags)	\
2044	do {						\
2045		typecheck(u8 *, recursion_ptr);		\
2046		(*(recursion_ptr))--;			\
2047		local_irq_restore(flags);		\
2048	} while (0)
2049
2050int printk_delay_msec __read_mostly;
2051
2052static inline void printk_delay(int level)
2053{
2054	boot_delay_msec(level);
2055
2056	if (unlikely(printk_delay_msec)) {
2057		int m = printk_delay_msec;
2058
2059		while (m--) {
2060			mdelay(1);
2061			touch_nmi_watchdog();
2062		}
2063	}
2064}
2065
2066static inline u32 printk_caller_id(void)
2067{
2068	return in_task() ? task_pid_nr(current) :
2069		0x80000000 + smp_processor_id();
2070}
 
 
 
 
 
 
 
 
 
 
 
 
2071
2072/**
2073 * printk_parse_prefix - Parse level and control flags.
2074 *
2075 * @text:     The terminated text message.
2076 * @level:    A pointer to the current level value, will be updated.
2077 * @flags:    A pointer to the current printk_info flags, will be updated.
2078 *
2079 * @level may be NULL if the caller is not interested in the parsed value.
2080 * Otherwise the variable pointed to by @level must be set to
2081 * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
2082 *
2083 * @flags may be NULL if the caller is not interested in the parsed value.
2084 * Otherwise the variable pointed to by @flags will be OR'd with the parsed
2085 * value.
2086 *
2087 * Return: The length of the parsed level and control flags.
2088 */
2089u16 printk_parse_prefix(const char *text, int *level,
2090			enum printk_info_flags *flags)
2091{
2092	u16 prefix_len = 0;
2093	int kern_level;
2094
2095	while (*text) {
2096		kern_level = printk_get_level(text);
2097		if (!kern_level)
2098			break;
2099
2100		switch (kern_level) {
2101		case '0' ... '7':
2102			if (level && *level == LOGLEVEL_DEFAULT)
2103				*level = kern_level - '0';
2104			break;
2105		case 'c':	/* KERN_CONT */
2106			if (flags)
2107				*flags |= LOG_CONT;
2108		}
2109
2110		prefix_len += 2;
2111		text += 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2112	}
2113
2114	return prefix_len;
2115}
2116
2117__printf(5, 0)
2118static u16 printk_sprint(char *text, u16 size, int facility,
2119			 enum printk_info_flags *flags, const char *fmt,
2120			 va_list args)
2121{
2122	u16 text_len;
2123
2124	text_len = vscnprintf(text, size, fmt, args);
2125
2126	/* Mark and strip a trailing newline. */
2127	if (text_len && text[text_len - 1] == '\n') {
2128		text_len--;
2129		*flags |= LOG_NEWLINE;
2130	}
2131
2132	/* Strip log level and control flags. */
2133	if (facility == 0) {
2134		u16 prefix_len;
2135
2136		prefix_len = printk_parse_prefix(text, NULL, NULL);
2137		if (prefix_len) {
2138			text_len -= prefix_len;
2139			memmove(text, text + prefix_len, text_len);
2140		}
2141	}
2142
2143	trace_console(text, text_len);
 
 
 
 
2144
2145	return text_len;
2146}
2147
2148__printf(4, 0)
2149int vprintk_store(int facility, int level,
2150		  const struct dev_printk_info *dev_info,
2151		  const char *fmt, va_list args)
2152{
2153	struct prb_reserved_entry e;
2154	enum printk_info_flags flags = 0;
2155	struct printk_record r;
2156	unsigned long irqflags;
2157	u16 trunc_msg_len = 0;
2158	char prefix_buf[8];
2159	u8 *recursion_ptr;
2160	u16 reserve_size;
2161	va_list args2;
2162	u32 caller_id;
2163	u16 text_len;
2164	int ret = 0;
2165	u64 ts_nsec;
2166
2167	if (!printk_enter_irqsave(recursion_ptr, irqflags))
2168		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2169
2170	/*
2171	 * Since the duration of printk() can vary depending on the message
2172	 * and state of the ringbuffer, grab the timestamp now so that it is
2173	 * close to the call of printk(). This provides a more deterministic
2174	 * timestamp with respect to the caller.
2175	 */
2176	ts_nsec = local_clock();
 
 
 
 
 
2177
2178	caller_id = printk_caller_id();
 
 
 
 
 
2179
2180	/*
2181	 * The sprintf needs to come first since the syslog prefix might be
2182	 * passed in as a parameter. An extra byte must be reserved so that
2183	 * later the vscnprintf() into the reserved buffer has room for the
2184	 * terminating '\0', which is not counted by vsnprintf().
2185	 */
2186	va_copy(args2, args);
2187	reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2188	va_end(args2);
2189
2190	if (reserve_size > PRINTKRB_RECORD_MAX)
2191		reserve_size = PRINTKRB_RECORD_MAX;
2192
2193	/* Extract log level or control flags. */
2194	if (facility == 0)
2195		printk_parse_prefix(&prefix_buf[0], &level, &flags);
2196
2197	if (level == LOGLEVEL_DEFAULT)
2198		level = default_message_loglevel;
 
2199
2200	if (dev_info)
2201		flags |= LOG_NEWLINE;
 
2202
2203	if (flags & LOG_CONT) {
2204		prb_rec_init_wr(&r, reserve_size);
2205		if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) {
2206			text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2207						 facility, &flags, fmt, args);
2208			r.info->text_len += text_len;
2209
2210			if (flags & LOG_NEWLINE) {
2211				r.info->flags |= LOG_NEWLINE;
2212				prb_final_commit(&e);
2213			} else {
2214				prb_commit(&e);
2215			}
2216
2217			ret = text_len;
2218			goto out;
2219		}
 
 
2220	}
2221
2222	/*
2223	 * Explicitly initialize the record before every prb_reserve() call.
2224	 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2225	 * structure when they fail.
2226	 */
2227	prb_rec_init_wr(&r, reserve_size);
2228	if (!prb_reserve(&e, prb, &r)) {
2229		/* truncate the message if it is too long for empty buffer */
2230		truncate_msg(&reserve_size, &trunc_msg_len);
2231
2232		prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2233		if (!prb_reserve(&e, prb, &r))
2234			goto out;
 
2235	}
2236
2237	/* fill message */
2238	text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
2239	if (trunc_msg_len)
2240		memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2241	r.info->text_len = text_len + trunc_msg_len;
2242	r.info->facility = facility;
2243	r.info->level = level & 7;
2244	r.info->flags = flags & 0x1f;
2245	r.info->ts_nsec = ts_nsec;
2246	r.info->caller_id = caller_id;
2247	if (dev_info)
2248		memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2249
2250	/* A message without a trailing newline can be continued. */
2251	if (!(flags & LOG_NEWLINE))
2252		prb_commit(&e);
2253	else
2254		prb_final_commit(&e);
2255
2256	ret = text_len + trunc_msg_len;
2257out:
2258	printk_exit_irqrestore(recursion_ptr, irqflags);
2259	return ret;
2260}
2261
2262asmlinkage int vprintk_emit(int facility, int level,
2263			    const struct dev_printk_info *dev_info,
2264			    const char *fmt, va_list args)
2265{
2266	int printed_len;
2267	bool in_sched = false;
2268
2269	/* Suppress unimportant messages after panic happens */
2270	if (unlikely(suppress_printk))
2271		return 0;
2272
2273	if (unlikely(suppress_panic_printk) &&
2274	    atomic_read(&panic_cpu) != raw_smp_processor_id())
2275		return 0;
2276
2277	if (level == LOGLEVEL_SCHED) {
2278		level = LOGLEVEL_DEFAULT;
2279		in_sched = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2280	}
2281
2282	printk_delay(level);
 
2283
2284	printed_len = vprintk_store(facility, level, dev_info, fmt, args);
 
2285
2286	/* If called from the scheduler, we can not call up(). */
2287	if (!in_sched) {
2288		/*
2289		 * The caller may be holding system-critical or
2290		 * timing-sensitive locks. Disable preemption during
2291		 * printing of all remaining records to all consoles so that
2292		 * this context can return as soon as possible. Hopefully
2293		 * another printk() caller will take over the printing.
2294		 */
2295		preempt_disable();
 
 
 
 
 
 
 
 
 
2296		/*
2297		 * Try to acquire and then immediately release the console
2298		 * semaphore. The release will print out buffers. With the
2299		 * spinning variant, this context tries to take over the
2300		 * printing from another printing context.
 
 
2301		 */
2302		if (console_trylock_spinning())
2303			console_unlock();
2304		preempt_enable();
 
 
 
 
 
 
 
2305	}
 
2306
2307	if (in_sched)
2308		defer_console_output();
2309	else
2310		wake_up_klogd();
 
 
 
 
 
 
 
 
 
 
2311
2312	return printed_len;
2313}
2314EXPORT_SYMBOL(vprintk_emit);
2315
2316int vprintk_default(const char *fmt, va_list args)
2317{
2318	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2319}
2320EXPORT_SYMBOL_GPL(vprintk_default);
2321
2322asmlinkage __visible int _printk(const char *fmt, ...)
 
 
2323{
2324	va_list args;
2325	int r;
2326
2327	va_start(args, fmt);
2328	r = vprintk(fmt, args);
2329	va_end(args);
2330
2331	return r;
2332}
2333EXPORT_SYMBOL(_printk);
2334
2335static bool pr_flush(int timeout_ms, bool reset_on_progress);
2336static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2337
2338#else /* CONFIG_PRINTK */
 
 
 
 
 
 
 
 
 
 
2339
2340#define printk_time		false
 
 
2341
2342#define prb_read_valid(rb, seq, r)	false
2343#define prb_first_valid_seq(rb)		0
2344#define prb_next_seq(rb)		0
2345
 
 
 
2346static u64 syslog_seq;
2347
2348static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; }
2349static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2350
2351#endif /* CONFIG_PRINTK */
2352
2353#ifdef CONFIG_EARLY_PRINTK
2354struct console *early_console;
2355
 
 
 
 
 
 
 
 
 
 
2356asmlinkage __visible void early_printk(const char *fmt, ...)
2357{
2358	va_list ap;
2359	char buf[512];
2360	int n;
2361
2362	if (!early_console)
2363		return;
2364
2365	va_start(ap, fmt);
2366	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2367	va_end(ap);
2368
2369	early_console->write(early_console, buf, n);
2370}
2371#endif
2372
2373static void set_user_specified(struct console_cmdline *c, bool user_specified)
2374{
2375	if (!user_specified)
2376		return;
2377
2378	/*
2379	 * @c console was defined by the user on the command line.
2380	 * Do not clear when added twice also by SPCR or the device tree.
2381	 */
2382	c->user_specified = true;
2383	/* At least one console defined by the user on the command line. */
2384	console_set_on_cmdline = 1;
2385}
2386
2387static int __add_preferred_console(const char *name, const short idx, char *options,
2388				   char *brl_options, bool user_specified)
2389{
2390	struct console_cmdline *c;
2391	int i;
2392
2393	/*
2394	 * We use a signed short index for struct console for device drivers to
2395	 * indicate a not yet assigned index or port. However, a negative index
2396	 * value is not valid for preferred console.
2397	 */
2398	if (idx < 0)
2399		return -EINVAL;
2400
2401	/*
2402	 *	See if this tty is not yet registered, and
2403	 *	if we have a slot free.
2404	 */
2405	for (i = 0, c = console_cmdline;
2406	     i < MAX_CMDLINECONSOLES && c->name[0];
2407	     i++, c++) {
2408		if (strcmp(c->name, name) == 0 && c->index == idx) {
2409			if (!brl_options)
2410				preferred_console = i;
2411			set_user_specified(c, user_specified);
2412			return 0;
2413		}
2414	}
2415	if (i == MAX_CMDLINECONSOLES)
2416		return -E2BIG;
2417	if (!brl_options)
2418		preferred_console = i;
2419	strscpy(c->name, name, sizeof(c->name));
2420	c->options = options;
2421	set_user_specified(c, user_specified);
2422	braille_set_options(c, brl_options);
2423
2424	c->index = idx;
2425	return 0;
2426}
2427
2428static int __init console_msg_format_setup(char *str)
2429{
2430	if (!strcmp(str, "syslog"))
2431		console_msg_format = MSG_FORMAT_SYSLOG;
2432	if (!strcmp(str, "default"))
2433		console_msg_format = MSG_FORMAT_DEFAULT;
2434	return 1;
2435}
2436__setup("console_msg_format=", console_msg_format_setup);
2437
2438/*
2439 * Set up a console.  Called via do_early_param() in init/main.c
2440 * for each "console=" parameter in the boot command line.
2441 */
2442static int __init console_setup(char *str)
2443{
2444	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2445	char *s, *options, *brl_options = NULL;
2446	int idx;
2447
2448	/*
2449	 * console="" or console=null have been suggested as a way to
2450	 * disable console output. Use ttynull that has been created
2451	 * for exactly this purpose.
2452	 */
2453	if (str[0] == 0 || strcmp(str, "null") == 0) {
2454		__add_preferred_console("ttynull", 0, NULL, NULL, true);
2455		return 1;
2456	}
2457
2458	if (_braille_console_setup(&str, &brl_options))
2459		return 1;
2460
2461	/*
2462	 * Decode str into name, index, options.
2463	 */
2464	if (str[0] >= '0' && str[0] <= '9') {
2465		strcpy(buf, "ttyS");
2466		strncpy(buf + 4, str, sizeof(buf) - 5);
2467	} else {
2468		strncpy(buf, str, sizeof(buf) - 1);
2469	}
2470	buf[sizeof(buf) - 1] = 0;
2471	options = strchr(str, ',');
2472	if (options)
2473		*(options++) = 0;
2474#ifdef __sparc__
2475	if (!strcmp(str, "ttya"))
2476		strcpy(buf, "ttyS0");
2477	if (!strcmp(str, "ttyb"))
2478		strcpy(buf, "ttyS1");
2479#endif
2480	for (s = buf; *s; s++)
2481		if (isdigit(*s) || *s == ',')
2482			break;
2483	idx = simple_strtoul(s, NULL, 10);
2484	*s = 0;
2485
2486	__add_preferred_console(buf, idx, options, brl_options, true);
 
2487	return 1;
2488}
2489__setup("console=", console_setup);
2490
2491/**
2492 * add_preferred_console - add a device to the list of preferred consoles.
2493 * @name: device name
2494 * @idx: device index
2495 * @options: options for this console
2496 *
2497 * The last preferred console added will be used for kernel messages
2498 * and stdin/out/err for init.  Normally this is used by console_setup
2499 * above to handle user-supplied console arguments; however it can also
2500 * be used by arch-specific code either to override the user or more
2501 * commonly to provide a default console (ie from PROM variables) when
2502 * the user has not supplied one.
2503 */
2504int add_preferred_console(const char *name, const short idx, char *options)
2505{
2506	return __add_preferred_console(name, idx, options, NULL, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2507}
2508
2509bool console_suspend_enabled = true;
2510EXPORT_SYMBOL(console_suspend_enabled);
2511
2512static int __init console_suspend_disable(char *str)
2513{
2514	console_suspend_enabled = false;
2515	return 1;
2516}
2517__setup("no_console_suspend", console_suspend_disable);
2518module_param_named(console_suspend, console_suspend_enabled,
2519		bool, S_IRUGO | S_IWUSR);
2520MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2521	" and hibernate operations");
2522
2523static bool printk_console_no_auto_verbose;
2524
2525void console_verbose(void)
2526{
2527	if (console_loglevel && !printk_console_no_auto_verbose)
2528		console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
2529}
2530EXPORT_SYMBOL_GPL(console_verbose);
2531
2532module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
2533MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
2534
2535/**
2536 * suspend_console - suspend the console subsystem
2537 *
2538 * This disables printk() while we go into suspend states
2539 */
2540void suspend_console(void)
2541{
2542	struct console *con;
2543
2544	if (!console_suspend_enabled)
2545		return;
2546	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2547	pr_flush(1000, true);
2548
2549	console_list_lock();
2550	for_each_console(con)
2551		console_srcu_write_flags(con, con->flags | CON_SUSPENDED);
2552	console_list_unlock();
2553
2554	/*
2555	 * Ensure that all SRCU list walks have completed. All printing
2556	 * contexts must be able to see that they are suspended so that it
2557	 * is guaranteed that all printing has stopped when this function
2558	 * completes.
2559	 */
2560	synchronize_srcu(&console_srcu);
2561}
2562
2563void resume_console(void)
2564{
2565	struct console *con;
2566
2567	if (!console_suspend_enabled)
2568		return;
2569
2570	console_list_lock();
2571	for_each_console(con)
2572		console_srcu_write_flags(con, con->flags & ~CON_SUSPENDED);
2573	console_list_unlock();
2574
2575	/*
2576	 * Ensure that all SRCU list walks have completed. All printing
2577	 * contexts must be able to see they are no longer suspended so
2578	 * that they are guaranteed to wake up and resume printing.
2579	 */
2580	synchronize_srcu(&console_srcu);
2581
2582	pr_flush(1000, true);
2583}
2584
2585/**
2586 * console_cpu_notify - print deferred console messages after CPU hotplug
2587 * @cpu: unused
 
 
2588 *
2589 * If printk() is called from a CPU that is not online yet, the messages
2590 * will be printed on the console only if there are CON_ANYTIME consoles.
2591 * This function is called when a new CPU comes online (or fails to come
2592 * up) or goes offline.
2593 */
2594static int console_cpu_notify(unsigned int cpu)
2595{
2596	if (!cpuhp_tasks_frozen) {
2597		/* If trylock fails, someone else is doing the printing */
2598		if (console_trylock())
2599			console_unlock();
 
 
 
 
2600	}
2601	return 0;
2602}
2603
2604/*
2605 * Return true if a panic is in progress on a remote CPU.
2606 *
2607 * On true, the local CPU should immediately release any printing resources
2608 * that may be needed by the panic CPU.
2609 */
2610bool other_cpu_in_panic(void)
2611{
2612	if (!panic_in_progress())
2613		return false;
2614
2615	/*
2616	 * We can use raw_smp_processor_id() here because it is impossible for
2617	 * the task to be migrated to the panic_cpu, or away from it. If
2618	 * panic_cpu has already been set, and we're not currently executing on
2619	 * that CPU, then we never will be.
2620	 */
2621	return atomic_read(&panic_cpu) != raw_smp_processor_id();
2622}
2623
2624/**
2625 * console_lock - block the console subsystem from printing
2626 *
2627 * Acquires a lock which guarantees that no consoles will
2628 * be in or enter their write() callback.
2629 *
2630 * Can sleep, returns nothing.
2631 */
2632void console_lock(void)
2633{
2634	might_sleep();
2635
2636	/* On panic, the console_lock must be left to the panic cpu. */
2637	while (other_cpu_in_panic())
2638		msleep(1000);
2639
2640	down_console_sem();
2641	console_locked = 1;
2642	console_may_schedule = 1;
 
2643}
2644EXPORT_SYMBOL(console_lock);
2645
2646/**
2647 * console_trylock - try to block the console subsystem from printing
2648 *
2649 * Try to acquire a lock which guarantees that no consoles will
2650 * be in or enter their write() callback.
2651 *
2652 * returns 1 on success, and 0 on failure to acquire the lock.
2653 */
2654int console_trylock(void)
2655{
2656	/* On panic, the console_lock must be left to the panic cpu. */
2657	if (other_cpu_in_panic())
2658		return 0;
2659	if (down_trylock_console_sem())
 
2660		return 0;
 
2661	console_locked = 1;
2662	console_may_schedule = 0;
 
2663	return 1;
2664}
2665EXPORT_SYMBOL(console_trylock);
2666
2667int is_console_locked(void)
2668{
2669	return console_locked;
2670}
2671EXPORT_SYMBOL(is_console_locked);
2672
2673/*
2674 * Check if the given console is currently capable and allowed to print
2675 * records.
2676 *
2677 * Requires the console_srcu_read_lock.
2678 */
2679static inline bool console_is_usable(struct console *con)
2680{
2681	short flags = console_srcu_read_flags(con);
2682
2683	if (!(flags & CON_ENABLED))
2684		return false;
2685
2686	if ((flags & CON_SUSPENDED))
2687		return false;
2688
2689	if (!con->write)
2690		return false;
2691
2692	/*
2693	 * Console drivers may assume that per-cpu resources have been
2694	 * allocated. So unless they're explicitly marked as being able to
2695	 * cope (CON_ANYTIME) don't call them until this CPU is officially up.
2696	 */
2697	if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME))
2698		return false;
2699
2700	return true;
2701}
2702
2703static void __console_unlock(void)
2704{
2705	console_locked = 0;
2706	up_console_sem();
2707}
2708
2709#ifdef CONFIG_PRINTK
2710
2711/*
2712 * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message". This
2713 * is achieved by shifting the existing message over and inserting the dropped
2714 * message.
2715 *
2716 * @pmsg is the printk message to prepend.
2717 *
2718 * @dropped is the dropped count to report in the dropped message.
2719 *
2720 * If the message text in @pmsg->pbufs->outbuf does not have enough space for
2721 * the dropped message, the message text will be sufficiently truncated.
2722 *
2723 * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated.
2724 */
2725void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped)
2726{
2727	struct printk_buffers *pbufs = pmsg->pbufs;
2728	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2729	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2730	char *scratchbuf = &pbufs->scratchbuf[0];
2731	char *outbuf = &pbufs->outbuf[0];
2732	size_t len;
2733
2734	len = scnprintf(scratchbuf, scratchbuf_sz,
2735		       "** %lu printk messages dropped **\n", dropped);
2736
2737	/*
2738	 * Make sure outbuf is sufficiently large before prepending.
2739	 * Keep at least the prefix when the message must be truncated.
2740	 * It is a rather theoretical problem when someone tries to
2741	 * use a minimalist buffer.
2742	 */
2743	if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz))
2744		return;
2745
2746	if (pmsg->outbuf_len + len >= outbuf_sz) {
2747		/* Truncate the message, but keep it terminated. */
2748		pmsg->outbuf_len = outbuf_sz - (len + 1);
2749		outbuf[pmsg->outbuf_len] = 0;
2750	}
2751
2752	memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1);
2753	memcpy(outbuf, scratchbuf, len);
2754	pmsg->outbuf_len += len;
2755}
2756
2757/*
2758 * Read and format the specified record (or a later record if the specified
2759 * record is not available).
2760 *
2761 * @pmsg will contain the formatted result. @pmsg->pbufs must point to a
2762 * struct printk_buffers.
2763 *
2764 * @seq is the record to read and format. If it is not available, the next
2765 * valid record is read.
2766 *
2767 * @is_extended specifies if the message should be formatted for extended
2768 * console output.
2769 *
2770 * @may_supress specifies if records may be skipped based on loglevel.
2771 *
2772 * Returns false if no record is available. Otherwise true and all fields
2773 * of @pmsg are valid. (See the documentation of struct printk_message
2774 * for information about the @pmsg fields.)
2775 */
2776bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
2777			     bool is_extended, bool may_suppress)
2778{
2779	static int panic_console_dropped;
2780
2781	struct printk_buffers *pbufs = pmsg->pbufs;
2782	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2783	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2784	char *scratchbuf = &pbufs->scratchbuf[0];
2785	char *outbuf = &pbufs->outbuf[0];
2786	struct printk_info info;
2787	struct printk_record r;
2788	size_t len = 0;
2789
2790	/*
2791	 * Formatting extended messages requires a separate buffer, so use the
2792	 * scratch buffer to read in the ringbuffer text.
2793	 *
2794	 * Formatting normal messages is done in-place, so read the ringbuffer
2795	 * text directly into the output buffer.
2796	 */
2797	if (is_extended)
2798		prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz);
2799	else
2800		prb_rec_init_rd(&r, &info, outbuf, outbuf_sz);
2801
2802	if (!prb_read_valid(prb, seq, &r))
2803		return false;
2804
2805	pmsg->seq = r.info->seq;
2806	pmsg->dropped = r.info->seq - seq;
2807
2808	/*
2809	 * Check for dropped messages in panic here so that printk
2810	 * suppression can occur as early as possible if necessary.
 
2811	 */
2812	if (pmsg->dropped &&
2813	    panic_in_progress() &&
2814	    panic_console_dropped++ > 10) {
2815		suppress_panic_printk = 1;
2816		pr_warn_once("Too many dropped messages. Suppress messages on non-panic CPUs to prevent livelock.\n");
2817	}
2818
2819	/* Skip record that has level above the console loglevel. */
2820	if (may_suppress && suppress_message_printing(r.info->level))
2821		goto out;
2822
2823	if (is_extended) {
2824		len = info_print_ext_header(outbuf, outbuf_sz, r.info);
2825		len += msg_print_ext_body(outbuf + len, outbuf_sz - len,
2826					  &r.text_buf[0], r.info->text_len, &r.info->dev_info);
2827	} else {
2828		len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time);
2829	}
2830out:
2831	pmsg->outbuf_len = len;
2832	return true;
2833}
2834
2835/*
2836 * Used as the printk buffers for non-panic, serialized console printing.
2837 * This is for legacy (!CON_NBCON) as well as all boot (CON_BOOT) consoles.
2838 * Its usage requires the console_lock held.
2839 */
2840struct printk_buffers printk_shared_pbufs;
2841
2842/*
2843 * Print one record for the given console. The record printed is whatever
2844 * record is the next available record for the given console.
2845 *
2846 * @handover will be set to true if a printk waiter has taken over the
2847 * console_lock, in which case the caller is no longer holding both the
2848 * console_lock and the SRCU read lock. Otherwise it is set to false.
2849 *
2850 * @cookie is the cookie from the SRCU read lock.
 
 
2851 *
2852 * Returns false if the given console has no next record to print, otherwise
2853 * true.
2854 *
2855 * Requires the console_lock and the SRCU read lock.
2856 */
2857static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
2858{
2859	bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED;
2860	char *outbuf = &printk_shared_pbufs.outbuf[0];
2861	struct printk_message pmsg = {
2862		.pbufs = &printk_shared_pbufs,
2863	};
2864	unsigned long flags;
 
 
2865
2866	*handover = false;
2867
2868	if (!printk_get_next_message(&pmsg, con->seq, is_extended, true))
2869		return false;
2870
2871	con->dropped += pmsg.dropped;
2872
2873	/* Skip messages of formatted length 0. */
2874	if (pmsg.outbuf_len == 0) {
2875		con->seq = pmsg.seq + 1;
2876		goto skip;
2877	}
2878
2879	if (con->dropped && !is_extended) {
2880		console_prepend_dropped(&pmsg, con->dropped);
2881		con->dropped = 0;
2882	}
2883
2884	/*
2885	 * While actively printing out messages, if another printk()
2886	 * were to occur on another CPU, it may wait for this one to
2887	 * finish. This task can not be preempted if there is a
2888	 * waiter waiting to take over.
2889	 *
2890	 * Interrupts are disabled because the hand over to a waiter
2891	 * must not be interrupted until the hand over is completed
2892	 * (@console_waiter is cleared).
2893	 */
2894	printk_safe_enter_irqsave(flags);
2895	console_lock_spinning_enable();
2896
2897	/* Do not trace print latency. */
2898	stop_critical_timings();
2899
2900	/* Write everything out to the hardware. */
2901	con->write(con, outbuf, pmsg.outbuf_len);
2902
2903	start_critical_timings();
 
 
 
 
 
 
2904
2905	con->seq = pmsg.seq + 1;
 
 
 
 
2906
2907	*handover = console_lock_spinning_disable_and_check(cookie);
2908	printk_safe_exit_irqrestore(flags);
 
 
 
 
2909skip:
2910	return true;
2911}
2912
2913#else
2914
2915static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
2916{
2917	*handover = false;
2918	return false;
2919}
2920
2921#endif /* CONFIG_PRINTK */
2922
2923/*
2924 * Print out all remaining records to all consoles.
2925 *
2926 * @do_cond_resched is set by the caller. It can be true only in schedulable
2927 * context.
2928 *
2929 * @next_seq is set to the sequence number after the last available record.
2930 * The value is valid only when this function returns true. It means that all
2931 * usable consoles are completely flushed.
2932 *
2933 * @handover will be set to true if a printk waiter has taken over the
2934 * console_lock, in which case the caller is no longer holding the
2935 * console_lock. Otherwise it is set to false.
2936 *
2937 * Returns true when there was at least one usable console and all messages
2938 * were flushed to all usable consoles. A returned false informs the caller
2939 * that everything was not flushed (either there were no usable consoles or
2940 * another context has taken over printing or it is a panic situation and this
2941 * is not the panic CPU). Regardless the reason, the caller should assume it
2942 * is not useful to immediately try again.
2943 *
2944 * Requires the console_lock.
2945 */
2946static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover)
2947{
2948	bool any_usable = false;
2949	struct console *con;
2950	bool any_progress;
2951	int cookie;
2952
2953	*next_seq = 0;
2954	*handover = false;
2955
2956	do {
2957		any_progress = false;
2958
2959		cookie = console_srcu_read_lock();
2960		for_each_console_srcu(con) {
2961			bool progress;
2962
2963			if (!console_is_usable(con))
2964				continue;
2965			any_usable = true;
2966
2967			progress = console_emit_next_record(con, handover, cookie);
2968
 
 
2969			/*
2970			 * If a handover has occurred, the SRCU read lock
2971			 * is already released.
2972			 */
2973			if (*handover)
2974				return false;
2975
2976			/* Track the next of the highest seq flushed. */
2977			if (con->seq > *next_seq)
2978				*next_seq = con->seq;
2979
2980			if (!progress)
2981				continue;
2982			any_progress = true;
2983
2984			/* Allow panic_cpu to take over the consoles safely. */
2985			if (other_cpu_in_panic())
2986				goto abandon;
 
 
 
 
 
 
 
 
 
 
 
 
 
2987
2988			if (do_cond_resched)
2989				cond_resched();
2990		}
2991		console_srcu_read_unlock(cookie);
2992	} while (any_progress);
2993
2994	return any_usable;
2995
2996abandon:
2997	console_srcu_read_unlock(cookie);
2998	return false;
2999}
3000
3001/**
3002 * console_unlock - unblock the console subsystem from printing
3003 *
3004 * Releases the console_lock which the caller holds to block printing of
3005 * the console subsystem.
3006 *
3007 * While the console_lock was held, console output may have been buffered
3008 * by printk().  If this is the case, console_unlock(); emits
3009 * the output prior to releasing the lock.
3010 *
3011 * console_unlock(); may be called from any context.
3012 */
3013void console_unlock(void)
3014{
3015	bool do_cond_resched;
3016	bool handover;
3017	bool flushed;
3018	u64 next_seq;
3019
3020	/*
3021	 * Console drivers are called with interrupts disabled, so
3022	 * @console_may_schedule should be cleared before; however, we may
3023	 * end up dumping a lot of lines, for example, if called from
3024	 * console registration path, and should invoke cond_resched()
3025	 * between lines if allowable.  Not doing so can cause a very long
3026	 * scheduling stall on a slow console leading to RCU stall and
3027	 * softlockup warnings which exacerbate the issue with more
3028	 * messages practically incapacitating the system. Therefore, create
3029	 * a local to use for the printing loop.
3030	 */
3031	do_cond_resched = console_may_schedule;
3032
3033	do {
3034		console_may_schedule = 0;
3035
3036		flushed = console_flush_all(do_cond_resched, &next_seq, &handover);
3037		if (!handover)
3038			__console_unlock();
3039
3040		/*
3041		 * Abort if there was a failure to flush all messages to all
3042		 * usable consoles. Either it is not possible to flush (in
3043		 * which case it would be an infinite loop of retrying) or
3044		 * another context has taken over printing.
3045		 */
3046		if (!flushed)
3047			break;
3048
3049		/*
3050		 * Some context may have added new records after
3051		 * console_flush_all() but before unlocking the console.
3052		 * Re-check if there is a new record to flush. If the trylock
3053		 * fails, another context is already handling the printing.
3054		 */
3055	} while (prb_read_valid(prb, next_seq, NULL) && console_trylock());
3056}
3057EXPORT_SYMBOL(console_unlock);
3058
3059/**
3060 * console_conditional_schedule - yield the CPU if required
3061 *
3062 * If the console code is currently allowed to sleep, and
3063 * if this CPU should yield the CPU to another task, do
3064 * so here.
3065 *
3066 * Must be called within console_lock();.
3067 */
3068void __sched console_conditional_schedule(void)
3069{
3070	if (console_may_schedule)
3071		cond_resched();
3072}
3073EXPORT_SYMBOL(console_conditional_schedule);
3074
3075void console_unblank(void)
3076{
3077	bool found_unblank = false;
3078	struct console *c;
3079	int cookie;
3080
3081	/*
3082	 * First check if there are any consoles implementing the unblank()
3083	 * callback. If not, there is no reason to continue and take the
3084	 * console lock, which in particular can be dangerous if
3085	 * @oops_in_progress is set.
3086	 */
3087	cookie = console_srcu_read_lock();
3088	for_each_console_srcu(c) {
3089		if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) {
3090			found_unblank = true;
3091			break;
3092		}
3093	}
3094	console_srcu_read_unlock(cookie);
3095	if (!found_unblank)
3096		return;
3097
3098	/*
3099	 * Stop console printing because the unblank() callback may
3100	 * assume the console is not within its write() callback.
3101	 *
3102	 * If @oops_in_progress is set, this may be an atomic context.
3103	 * In that case, attempt a trylock as best-effort.
3104	 */
3105	if (oops_in_progress) {
3106		/* Semaphores are not NMI-safe. */
3107		if (in_nmi())
3108			return;
3109
3110		/*
3111		 * Attempting to trylock the console lock can deadlock
3112		 * if another CPU was stopped while modifying the
3113		 * semaphore. "Hope and pray" that this is not the
3114		 * current situation.
3115		 */
3116		if (down_trylock_console_sem() != 0)
3117			return;
3118	} else
3119		console_lock();
3120
3121	console_locked = 1;
3122	console_may_schedule = 0;
3123
3124	cookie = console_srcu_read_lock();
3125	for_each_console_srcu(c) {
3126		if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank)
3127			c->unblank();
3128	}
3129	console_srcu_read_unlock(cookie);
3130
3131	console_unlock();
3132
3133	if (!oops_in_progress)
3134		pr_flush(1000, true);
3135}
3136
3137/**
3138 * console_flush_on_panic - flush console content on panic
3139 * @mode: flush all messages in buffer or just the pending ones
3140 *
3141 * Immediately output all pending messages no matter what.
3142 */
3143void console_flush_on_panic(enum con_flush_mode mode)
3144{
3145	bool handover;
3146	u64 next_seq;
3147
3148	/*
3149	 * Ignore the console lock and flush out the messages. Attempting a
3150	 * trylock would not be useful because:
3151	 *
3152	 *   - if it is contended, it must be ignored anyway
3153	 *   - console_lock() and console_trylock() block and fail
3154	 *     respectively in panic for non-panic CPUs
3155	 *   - semaphores are not NMI-safe
3156	 */
3157
3158	/*
3159	 * If another context is holding the console lock,
3160	 * @console_may_schedule might be set. Clear it so that
3161	 * this context does not call cond_resched() while flushing.
3162	 */
3163	console_may_schedule = 0;
3164
3165	if (mode == CONSOLE_REPLAY_ALL) {
3166		struct console *c;
3167		short flags;
3168		int cookie;
3169		u64 seq;
3170
3171		seq = prb_first_valid_seq(prb);
3172
3173		cookie = console_srcu_read_lock();
3174		for_each_console_srcu(c) {
3175			flags = console_srcu_read_flags(c);
3176
3177			if (flags & CON_NBCON) {
3178				nbcon_seq_force(c, seq);
3179			} else {
3180				/*
3181				 * This is an unsynchronized assignment. On
3182				 * panic legacy consoles are only best effort.
3183				 */
3184				c->seq = seq;
3185			}
3186		}
3187		console_srcu_read_unlock(cookie);
3188	}
3189
3190	console_flush_all(false, &next_seq, &handover);
3191}
3192
3193/*
3194 * Return the console tty driver structure and its associated index
3195 */
3196struct tty_driver *console_device(int *index)
3197{
3198	struct console *c;
3199	struct tty_driver *driver = NULL;
3200	int cookie;
3201
3202	/*
3203	 * Take console_lock to serialize device() callback with
3204	 * other console operations. For example, fg_console is
3205	 * modified under console_lock when switching vt.
3206	 */
3207	console_lock();
3208
3209	cookie = console_srcu_read_lock();
3210	for_each_console_srcu(c) {
3211		if (!c->device)
3212			continue;
3213		driver = c->device(c, index);
3214		if (driver)
3215			break;
3216	}
3217	console_srcu_read_unlock(cookie);
3218
3219	console_unlock();
3220	return driver;
3221}
3222
3223/*
3224 * Prevent further output on the passed console device so that (for example)
3225 * serial drivers can disable console output before suspending a port, and can
3226 * re-enable output afterwards.
3227 */
3228void console_stop(struct console *console)
3229{
3230	__pr_flush(console, 1000, true);
3231	console_list_lock();
3232	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3233	console_list_unlock();
3234
3235	/*
3236	 * Ensure that all SRCU list walks have completed. All contexts must
3237	 * be able to see that this console is disabled so that (for example)
3238	 * the caller can suspend the port without risk of another context
3239	 * using the port.
3240	 */
3241	synchronize_srcu(&console_srcu);
3242}
3243EXPORT_SYMBOL(console_stop);
3244
3245void console_start(struct console *console)
3246{
3247	console_list_lock();
3248	console_srcu_write_flags(console, console->flags | CON_ENABLED);
3249	console_list_unlock();
3250	__pr_flush(console, 1000, true);
3251}
3252EXPORT_SYMBOL(console_start);
3253
3254static int __read_mostly keep_bootcon;
3255
3256static int __init keep_bootcon_setup(char *str)
3257{
3258	keep_bootcon = 1;
3259	pr_info("debug: skip boot console de-registration.\n");
3260
3261	return 0;
3262}
3263
3264early_param("keep_bootcon", keep_bootcon_setup);
3265
3266/*
3267 * This is called by register_console() to try to match
3268 * the newly registered console with any of the ones selected
3269 * by either the command line or add_preferred_console() and
3270 * setup/enable it.
3271 *
3272 * Care need to be taken with consoles that are statically
3273 * enabled such as netconsole
3274 */
3275static int try_enable_preferred_console(struct console *newcon,
3276					bool user_specified)
3277{
3278	struct console_cmdline *c;
3279	int i, err;
3280
3281	for (i = 0, c = console_cmdline;
3282	     i < MAX_CMDLINECONSOLES && c->name[0];
3283	     i++, c++) {
3284		if (c->user_specified != user_specified)
3285			continue;
3286		if (!newcon->match ||
3287		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
3288			/* default matching */
3289			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
3290			if (strcmp(c->name, newcon->name) != 0)
3291				continue;
3292			if (newcon->index >= 0 &&
3293			    newcon->index != c->index)
3294				continue;
3295			if (newcon->index < 0)
3296				newcon->index = c->index;
3297
3298			if (_braille_register_console(newcon, c))
3299				return 0;
3300
3301			if (newcon->setup &&
3302			    (err = newcon->setup(newcon, c->options)) != 0)
3303				return err;
3304		}
3305		newcon->flags |= CON_ENABLED;
3306		if (i == preferred_console)
3307			newcon->flags |= CON_CONSDEV;
3308		return 0;
3309	}
3310
3311	/*
3312	 * Some consoles, such as pstore and netconsole, can be enabled even
3313	 * without matching. Accept the pre-enabled consoles only when match()
3314	 * and setup() had a chance to be called.
3315	 */
3316	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
3317		return 0;
3318
3319	return -ENOENT;
3320}
3321
3322/* Try to enable the console unconditionally */
3323static void try_enable_default_console(struct console *newcon)
3324{
3325	if (newcon->index < 0)
3326		newcon->index = 0;
3327
3328	if (newcon->setup && newcon->setup(newcon, NULL) != 0)
3329		return;
3330
3331	newcon->flags |= CON_ENABLED;
3332
3333	if (newcon->device)
3334		newcon->flags |= CON_CONSDEV;
3335}
3336
3337static void console_init_seq(struct console *newcon, bool bootcon_registered)
3338{
3339	struct console *con;
3340	bool handover;
3341
3342	if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) {
3343		/* Get a consistent copy of @syslog_seq. */
3344		mutex_lock(&syslog_lock);
3345		newcon->seq = syslog_seq;
3346		mutex_unlock(&syslog_lock);
3347	} else {
3348		/* Begin with next message added to ringbuffer. */
3349		newcon->seq = prb_next_seq(prb);
3350
3351		/*
3352		 * If any enabled boot consoles are due to be unregistered
3353		 * shortly, some may not be caught up and may be the same
3354		 * device as @newcon. Since it is not known which boot console
3355		 * is the same device, flush all consoles and, if necessary,
3356		 * start with the message of the enabled boot console that is
3357		 * the furthest behind.
3358		 */
3359		if (bootcon_registered && !keep_bootcon) {
3360			/*
3361			 * Hold the console_lock to stop console printing and
3362			 * guarantee safe access to console->seq.
3363			 */
3364			console_lock();
3365
3366			/*
3367			 * Flush all consoles and set the console to start at
3368			 * the next unprinted sequence number.
3369			 */
3370			if (!console_flush_all(true, &newcon->seq, &handover)) {
3371				/*
3372				 * Flushing failed. Just choose the lowest
3373				 * sequence of the enabled boot consoles.
3374				 */
3375
3376				/*
3377				 * If there was a handover, this context no
3378				 * longer holds the console_lock.
3379				 */
3380				if (handover)
3381					console_lock();
3382
3383				newcon->seq = prb_next_seq(prb);
3384				for_each_console(con) {
3385					if ((con->flags & CON_BOOT) &&
3386					    (con->flags & CON_ENABLED) &&
3387					    con->seq < newcon->seq) {
3388						newcon->seq = con->seq;
3389					}
3390				}
3391			}
3392
3393			console_unlock();
3394		}
3395	}
3396}
3397
3398#define console_first()				\
3399	hlist_entry(console_list.first, struct console, node)
3400
3401static int unregister_console_locked(struct console *console);
3402
3403/*
3404 * The console driver calls this routine during kernel initialization
3405 * to register the console printing procedure with printk() and to
3406 * print any messages that were printed by the kernel before the
3407 * console driver was initialized.
3408 *
3409 * This can happen pretty early during the boot process (because of
3410 * early_printk) - sometimes before setup_arch() completes - be careful
3411 * of what kernel features are used - they may not be initialised yet.
3412 *
3413 * There are two types of consoles - bootconsoles (early_printk) and
3414 * "real" consoles (everything which is not a bootconsole) which are
3415 * handled differently.
3416 *  - Any number of bootconsoles can be registered at any time.
3417 *  - As soon as a "real" console is registered, all bootconsoles
3418 *    will be unregistered automatically.
3419 *  - Once a "real" console is registered, any attempt to register a
3420 *    bootconsoles will be rejected
3421 */
3422void register_console(struct console *newcon)
3423{
3424	struct console *con;
3425	bool bootcon_registered = false;
3426	bool realcon_registered = false;
3427	int err;
3428
3429	console_list_lock();
3430
3431	for_each_console(con) {
3432		if (WARN(con == newcon, "console '%s%d' already registered\n",
3433					 con->name, con->index)) {
3434			goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3435		}
3436
3437		if (con->flags & CON_BOOT)
3438			bootcon_registered = true;
3439		else
3440			realcon_registered = true;
3441	}
3442
3443	/* Do not register boot consoles when there already is a real one. */
3444	if ((newcon->flags & CON_BOOT) && realcon_registered) {
3445		pr_info("Too late to register bootconsole %s%d\n",
3446			newcon->name, newcon->index);
3447		goto unlock;
3448	}
3449
3450	if (newcon->flags & CON_NBCON) {
3451		/*
3452		 * Ensure the nbcon console buffers can be allocated
3453		 * before modifying any global data.
3454		 */
3455		if (!nbcon_alloc(newcon))
3456			goto unlock;
3457	}
3458
3459	/*
3460	 * See if we want to enable this console driver by default.
3461	 *
3462	 * Nope when a console is preferred by the command line, device
3463	 * tree, or SPCR.
3464	 *
3465	 * The first real console with tty binding (driver) wins. More
3466	 * consoles might get enabled before the right one is found.
3467	 *
3468	 * Note that a console with tty binding will have CON_CONSDEV
3469	 * flag set and will be first in the list.
3470	 */
3471	if (preferred_console < 0) {
3472		if (hlist_empty(&console_list) || !console_first()->device ||
3473		    console_first()->flags & CON_BOOT) {
3474			try_enable_default_console(newcon);
 
 
 
 
 
 
3475		}
3476	}
3477
3478	/* See if this console matches one we selected on the command line */
3479	err = try_enable_preferred_console(newcon, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3480
3481	/* If not, try to match against the platform default(s) */
3482	if (err == -ENOENT)
3483		err = try_enable_preferred_console(newcon, false);
3484
3485	/* printk() messages are not printed to the Braille console. */
3486	if (err || newcon->flags & CON_BRL) {
3487		if (newcon->flags & CON_NBCON)
3488			nbcon_free(newcon);
3489		goto unlock;
 
3490	}
3491
 
 
 
3492	/*
3493	 * If we have a bootconsole, and are switching to a real console,
3494	 * don't print everything out again, since when the boot console, and
3495	 * the real console are the same physical device, it's annoying to
3496	 * see the beginning boot messages twice
3497	 */
3498	if (bootcon_registered &&
3499	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
3500		newcon->flags &= ~CON_PRINTBUFFER;
3501	}
3502
3503	newcon->dropped = 0;
3504	console_init_seq(newcon, bootcon_registered);
3505
3506	if (newcon->flags & CON_NBCON)
3507		nbcon_init(newcon);
3508
3509	/*
3510	 * Put this console in the list - keep the
3511	 * preferred driver at the head of the list.
3512	 */
3513	if (hlist_empty(&console_list)) {
3514		/* Ensure CON_CONSDEV is always set for the head. */
3515		newcon->flags |= CON_CONSDEV;
3516		hlist_add_head_rcu(&newcon->node, &console_list);
3517
3518	} else if (newcon->flags & CON_CONSDEV) {
3519		/* Only the new head can have CON_CONSDEV set. */
3520		console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV);
3521		hlist_add_head_rcu(&newcon->node, &console_list);
3522
3523	} else {
3524		hlist_add_behind_rcu(&newcon->node, console_list.first);
 
3525	}
3526
3527	/*
3528	 * No need to synchronize SRCU here! The caller does not rely
3529	 * on all contexts being able to see the new console before
3530	 * register_console() completes.
3531	 */
3532
 
 
 
 
 
 
 
 
 
 
 
3533	console_sysfs_notify();
3534
3535	/*
3536	 * By unregistering the bootconsoles after we enable the real console
3537	 * we get the "console xxx enabled" message on all the consoles -
3538	 * boot consoles, real consoles, etc - this is to ensure that end
3539	 * users know there might be something in the kernel's log buffer that
3540	 * went to the bootconsole (that they do not see on the real console)
3541	 */
3542	con_printk(KERN_INFO, newcon, "enabled\n");
3543	if (bootcon_registered &&
 
 
3544	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
3545	    !keep_bootcon) {
3546		struct hlist_node *tmp;
3547
3548		hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3549			if (con->flags & CON_BOOT)
3550				unregister_console_locked(con);
3551		}
3552	}
3553unlock:
3554	console_list_unlock();
3555}
3556EXPORT_SYMBOL(register_console);
3557
3558/* Must be called under console_list_lock(). */
3559static int unregister_console_locked(struct console *console)
3560{
 
3561	int res;
3562
3563	lockdep_assert_console_list_lock_held();
3564
3565	con_printk(KERN_INFO, console, "disabled\n");
3566
3567	res = _braille_unregister_console(console);
3568	if (res < 0)
3569		return res;
3570	if (res > 0)
3571		return 0;
3572
3573	/* Disable it unconditionally */
3574	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3575
3576	if (!console_is_registered_locked(console))
3577		return -ENODEV;
3578
3579	hlist_del_init_rcu(&console->node);
 
 
 
 
 
 
 
 
 
 
 
3580
3581	/*
3582	 * <HISTORICAL>
3583	 * If this isn't the last console and it has CON_CONSDEV set, we
3584	 * need to set it on the next preferred console.
3585	 * </HISTORICAL>
3586	 *
3587	 * The above makes no sense as there is no guarantee that the next
3588	 * console has any device attached. Oh well....
3589	 */
3590	if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV)
3591		console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV);
3592
3593	/*
3594	 * Ensure that all SRCU list walks have completed. All contexts
3595	 * must not be able to see this console in the list so that any
3596	 * exit/cleanup routines can be performed safely.
3597	 */
3598	synchronize_srcu(&console_srcu);
3599
3600	if (console->flags & CON_NBCON)
3601		nbcon_free(console);
3602
 
3603	console_sysfs_notify();
3604
3605	if (console->exit)
3606		res = console->exit(console);
3607
3608	return res;
3609}
3610
3611int unregister_console(struct console *console)
3612{
3613	int res;
3614
3615	console_list_lock();
3616	res = unregister_console_locked(console);
3617	console_list_unlock();
3618	return res;
3619}
3620EXPORT_SYMBOL(unregister_console);
3621
3622/**
3623 * console_force_preferred_locked - force a registered console preferred
3624 * @con: The registered console to force preferred.
3625 *
3626 * Must be called under console_list_lock().
3627 */
3628void console_force_preferred_locked(struct console *con)
3629{
3630	struct console *cur_pref_con;
3631
3632	if (!console_is_registered_locked(con))
3633		return;
3634
3635	cur_pref_con = console_first();
3636
3637	/* Already preferred? */
3638	if (cur_pref_con == con)
3639		return;
3640
3641	/*
3642	 * Delete, but do not re-initialize the entry. This allows the console
3643	 * to continue to appear registered (via any hlist_unhashed_lockless()
3644	 * checks), even though it was briefly removed from the console list.
3645	 */
3646	hlist_del_rcu(&con->node);
3647
3648	/*
3649	 * Ensure that all SRCU list walks have completed so that the console
3650	 * can be added to the beginning of the console list and its forward
3651	 * list pointer can be re-initialized.
3652	 */
3653	synchronize_srcu(&console_srcu);
3654
3655	con->flags |= CON_CONSDEV;
3656	WARN_ON(!con->device);
3657
3658	/* Only the new head can have CON_CONSDEV set. */
3659	console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV);
3660	hlist_add_head_rcu(&con->node, &console_list);
3661}
3662EXPORT_SYMBOL(console_force_preferred_locked);
3663
3664/*
3665 * Initialize the console device. This is called *early*, so
3666 * we can't necessarily depend on lots of kernel help here.
3667 * Just do some early initializations, and do the complex setup
3668 * later.
3669 */
3670void __init console_init(void)
3671{
3672	int ret;
3673	initcall_t call;
3674	initcall_entry_t *ce;
3675
3676	/* Setup the default TTY line discipline. */
3677	n_tty_init();
3678
3679	/*
3680	 * set up the console device so that later boot sequences can
3681	 * inform about problems etc..
3682	 */
3683	ce = __con_initcall_start;
3684	trace_initcall_level("console");
3685	while (ce < __con_initcall_end) {
3686		call = initcall_from_entry(ce);
3687		trace_initcall_start(call);
3688		ret = call();
3689		trace_initcall_finish(call, ret);
3690		ce++;
3691	}
3692}
3693
3694/*
3695 * Some boot consoles access data that is in the init section and which will
3696 * be discarded after the initcalls have been run. To make sure that no code
3697 * will access this data, unregister the boot consoles in a late initcall.
3698 *
3699 * If for some reason, such as deferred probe or the driver being a loadable
3700 * module, the real console hasn't registered yet at this point, there will
3701 * be a brief interval in which no messages are logged to the console, which
3702 * makes it difficult to diagnose problems that occur during this time.
3703 *
3704 * To mitigate this problem somewhat, only unregister consoles whose memory
3705 * intersects with the init section. Note that all other boot consoles will
3706 * get unregistered when the real preferred console is registered.
3707 */
3708static int __init printk_late_init(void)
3709{
3710	struct hlist_node *tmp;
3711	struct console *con;
3712	int ret;
3713
3714	console_list_lock();
3715	hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3716		if (!(con->flags & CON_BOOT))
3717			continue;
3718
3719		/* Check addresses that might be used for enabled consoles. */
3720		if (init_section_intersects(con, sizeof(*con)) ||
3721		    init_section_contains(con->write, 0) ||
3722		    init_section_contains(con->read, 0) ||
3723		    init_section_contains(con->device, 0) ||
3724		    init_section_contains(con->unblank, 0) ||
3725		    init_section_contains(con->data, 0)) {
3726			/*
3727			 * Please, consider moving the reported consoles out
3728			 * of the init section.
3729			 */
3730			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3731				con->name, con->index);
3732			unregister_console_locked(con);
3733		}
3734	}
3735	console_list_unlock();
3736
3737	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3738					console_cpu_notify);
3739	WARN_ON(ret < 0);
3740	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3741					console_cpu_notify, NULL);
3742	WARN_ON(ret < 0);
3743	printk_sysctl_init();
3744	return 0;
3745}
3746late_initcall(printk_late_init);
3747
3748#if defined CONFIG_PRINTK
3749/* If @con is specified, only wait for that console. Otherwise wait for all. */
3750static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress)
3751{
3752	unsigned long timeout_jiffies = msecs_to_jiffies(timeout_ms);
3753	unsigned long remaining_jiffies = timeout_jiffies;
3754	struct console *c;
3755	u64 last_diff = 0;
3756	u64 printk_seq;
3757	short flags;
3758	int cookie;
3759	u64 diff;
3760	u64 seq;
3761
3762	might_sleep();
3763
3764	seq = prb_next_seq(prb);
3765
3766	/* Flush the consoles so that records up to @seq are printed. */
3767	console_lock();
3768	console_unlock();
3769
3770	for (;;) {
3771		unsigned long begin_jiffies;
3772		unsigned long slept_jiffies;
3773
3774		diff = 0;
3775
3776		/*
3777		 * Hold the console_lock to guarantee safe access to
3778		 * console->seq. Releasing console_lock flushes more
3779		 * records in case @seq is still not printed on all
3780		 * usable consoles.
3781		 */
3782		console_lock();
3783
3784		cookie = console_srcu_read_lock();
3785		for_each_console_srcu(c) {
3786			if (con && con != c)
3787				continue;
3788
3789			flags = console_srcu_read_flags(c);
3790
3791			/*
3792			 * If consoles are not usable, it cannot be expected
3793			 * that they make forward progress, so only increment
3794			 * @diff for usable consoles.
3795			 */
3796			if (!console_is_usable(c))
3797				continue;
3798
3799			if (flags & CON_NBCON) {
3800				printk_seq = nbcon_seq_read(c);
3801			} else {
3802				printk_seq = c->seq;
3803			}
3804
3805			if (printk_seq < seq)
3806				diff += seq - printk_seq;
3807		}
3808		console_srcu_read_unlock(cookie);
3809
3810		if (diff != last_diff && reset_on_progress)
3811			remaining_jiffies = timeout_jiffies;
3812
3813		console_unlock();
3814
3815		/* Note: @diff is 0 if there are no usable consoles. */
3816		if (diff == 0 || remaining_jiffies == 0)
3817			break;
3818
3819		/* msleep(1) might sleep much longer. Check time by jiffies. */
3820		begin_jiffies = jiffies;
3821		msleep(1);
3822		slept_jiffies = jiffies - begin_jiffies;
3823
3824		remaining_jiffies -= min(slept_jiffies, remaining_jiffies);
3825
3826		last_diff = diff;
3827	}
3828
3829	return (diff == 0);
3830}
3831
3832/**
3833 * pr_flush() - Wait for printing threads to catch up.
3834 *
3835 * @timeout_ms:        The maximum time (in ms) to wait.
3836 * @reset_on_progress: Reset the timeout if forward progress is seen.
3837 *
3838 * A value of 0 for @timeout_ms means no waiting will occur. A value of -1
3839 * represents infinite waiting.
3840 *
3841 * If @reset_on_progress is true, the timeout will be reset whenever any
3842 * printer has been seen to make some forward progress.
3843 *
3844 * Context: Process context. May sleep while acquiring console lock.
3845 * Return: true if all usable printers are caught up.
3846 */
3847static bool pr_flush(int timeout_ms, bool reset_on_progress)
3848{
3849	return __pr_flush(NULL, timeout_ms, reset_on_progress);
3850}
3851
3852/*
3853 * Delayed printk version, for scheduler-internal messages:
3854 */
 
 
3855#define PRINTK_PENDING_WAKEUP	0x01
3856#define PRINTK_PENDING_OUTPUT	0x02
3857
3858static DEFINE_PER_CPU(int, printk_pending);
 
3859
3860static void wake_up_klogd_work_func(struct irq_work *irq_work)
3861{
3862	int pending = this_cpu_xchg(printk_pending, 0);
3863
3864	if (pending & PRINTK_PENDING_OUTPUT) {
3865		/* If trylock fails, someone else is doing the printing */
3866		if (console_trylock())
3867			console_unlock();
3868	}
3869
3870	if (pending & PRINTK_PENDING_WAKEUP)
3871		wake_up_interruptible(&log_wait);
3872}
3873
3874static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3875	IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
 
 
3876
3877static void __wake_up_klogd(int val)
3878{
3879	if (!printk_percpu_data_ready())
3880		return;
3881
3882	preempt_disable();
3883	/*
3884	 * Guarantee any new records can be seen by tasks preparing to wait
3885	 * before this context checks if the wait queue is empty.
3886	 *
3887	 * The full memory barrier within wq_has_sleeper() pairs with the full
3888	 * memory barrier within set_current_state() of
3889	 * prepare_to_wait_event(), which is called after ___wait_event() adds
3890	 * the waiter but before it has checked the wait condition.
3891	 *
3892	 * This pairs with devkmsg_read:A and syslog_print:A.
3893	 */
3894	if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */
3895	    (val & PRINTK_PENDING_OUTPUT)) {
3896		this_cpu_or(printk_pending, val);
3897		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3898	}
3899	preempt_enable();
3900}
3901
3902/**
3903 * wake_up_klogd - Wake kernel logging daemon
3904 *
3905 * Use this function when new records have been added to the ringbuffer
3906 * and the console printing of those records has already occurred or is
3907 * known to be handled by some other context. This function will only
3908 * wake the logging daemon.
3909 *
3910 * Context: Any context.
3911 */
3912void wake_up_klogd(void)
3913{
3914	__wake_up_klogd(PRINTK_PENDING_WAKEUP);
3915}
3916
3917/**
3918 * defer_console_output - Wake kernel logging daemon and trigger
3919 *	console printing in a deferred context
3920 *
3921 * Use this function when new records have been added to the ringbuffer,
3922 * this context is responsible for console printing those records, but
3923 * the current context is not allowed to perform the console printing.
3924 * Trigger an irq_work context to perform the console printing. This
3925 * function also wakes the logging daemon.
3926 *
3927 * Context: Any context.
3928 */
3929void defer_console_output(void)
3930{
3931	/*
3932	 * New messages may have been added directly to the ringbuffer
3933	 * using vprintk_store(), so wake any waiters as well.
3934	 */
3935	__wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT);
3936}
3937
3938void printk_trigger_flush(void)
3939{
3940	defer_console_output();
3941}
3942
3943int vprintk_deferred(const char *fmt, va_list args)
3944{
3945	return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3946}
3947
3948int _printk_deferred(const char *fmt, ...)
3949{
 
3950	va_list args;
 
3951	int r;
3952
 
 
 
3953	va_start(args, fmt);
3954	r = vprintk_deferred(fmt, args);
3955	va_end(args);
3956
 
 
 
 
3957	return r;
3958}
3959
3960/*
3961 * printk rate limiting, lifted from the networking subsystem.
3962 *
3963 * This enforces a rate limit: not more than 10 kernel messages
3964 * every 5s to make a denial-of-service attack impossible.
3965 */
3966DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3967
3968int __printk_ratelimit(const char *func)
3969{
3970	return ___ratelimit(&printk_ratelimit_state, func);
3971}
3972EXPORT_SYMBOL(__printk_ratelimit);
3973
3974/**
3975 * printk_timed_ratelimit - caller-controlled printk ratelimiting
3976 * @caller_jiffies: pointer to caller's state
3977 * @interval_msecs: minimum interval between prints
3978 *
3979 * printk_timed_ratelimit() returns true if more than @interval_msecs
3980 * milliseconds have elapsed since the last time printk_timed_ratelimit()
3981 * returned true.
3982 */
3983bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3984			unsigned int interval_msecs)
3985{
3986	unsigned long elapsed = jiffies - *caller_jiffies;
3987
3988	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3989		return false;
3990
3991	*caller_jiffies = jiffies;
3992	return true;
 
3993}
3994EXPORT_SYMBOL(printk_timed_ratelimit);
3995
3996static DEFINE_SPINLOCK(dump_list_lock);
3997static LIST_HEAD(dump_list);
3998
3999/**
4000 * kmsg_dump_register - register a kernel log dumper.
4001 * @dumper: pointer to the kmsg_dumper structure
4002 *
4003 * Adds a kernel log dumper to the system. The dump callback in the
4004 * structure will be called when the kernel oopses or panics and must be
4005 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
4006 */
4007int kmsg_dump_register(struct kmsg_dumper *dumper)
4008{
4009	unsigned long flags;
4010	int err = -EBUSY;
4011
4012	/* The dump callback needs to be set */
4013	if (!dumper->dump)
4014		return -EINVAL;
4015
4016	spin_lock_irqsave(&dump_list_lock, flags);
4017	/* Don't allow registering multiple times */
4018	if (!dumper->registered) {
4019		dumper->registered = 1;
4020		list_add_tail_rcu(&dumper->list, &dump_list);
4021		err = 0;
4022	}
4023	spin_unlock_irqrestore(&dump_list_lock, flags);
4024
4025	return err;
4026}
4027EXPORT_SYMBOL_GPL(kmsg_dump_register);
4028
4029/**
4030 * kmsg_dump_unregister - unregister a kmsg dumper.
4031 * @dumper: pointer to the kmsg_dumper structure
4032 *
4033 * Removes a dump device from the system. Returns zero on success and
4034 * %-EINVAL otherwise.
4035 */
4036int kmsg_dump_unregister(struct kmsg_dumper *dumper)
4037{
4038	unsigned long flags;
4039	int err = -EINVAL;
4040
4041	spin_lock_irqsave(&dump_list_lock, flags);
4042	if (dumper->registered) {
4043		dumper->registered = 0;
4044		list_del_rcu(&dumper->list);
4045		err = 0;
4046	}
4047	spin_unlock_irqrestore(&dump_list_lock, flags);
4048	synchronize_rcu();
4049
4050	return err;
4051}
4052EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
4053
4054static bool always_kmsg_dump;
4055module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
4056
4057const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
4058{
4059	switch (reason) {
4060	case KMSG_DUMP_PANIC:
4061		return "Panic";
4062	case KMSG_DUMP_OOPS:
4063		return "Oops";
4064	case KMSG_DUMP_EMERG:
4065		return "Emergency";
4066	case KMSG_DUMP_SHUTDOWN:
4067		return "Shutdown";
4068	default:
4069		return "Unknown";
4070	}
4071}
4072EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
4073
4074/**
4075 * kmsg_dump - dump kernel log to kernel message dumpers.
4076 * @reason: the reason (oops, panic etc) for dumping
4077 *
4078 * Call each of the registered dumper's dump() callback, which can
4079 * retrieve the kmsg records with kmsg_dump_get_line() or
4080 * kmsg_dump_get_buffer().
4081 */
4082void kmsg_dump(enum kmsg_dump_reason reason)
4083{
4084	struct kmsg_dumper *dumper;
 
 
 
 
4085
4086	rcu_read_lock();
4087	list_for_each_entry_rcu(dumper, &dump_list, list) {
4088		enum kmsg_dump_reason max_reason = dumper->max_reason;
4089
4090		/*
4091		 * If client has not provided a specific max_reason, default
4092		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
4093		 */
4094		if (max_reason == KMSG_DUMP_UNDEF) {
4095			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
4096							KMSG_DUMP_OOPS;
4097		}
4098		if (reason > max_reason)
4099			continue;
4100
 
 
 
 
 
 
 
 
 
 
4101		/* invoke dumper which will iterate over records */
4102		dumper->dump(dumper, reason);
 
 
 
4103	}
4104	rcu_read_unlock();
4105}
4106
4107/**
4108 * kmsg_dump_get_line - retrieve one kmsg log line
4109 * @iter: kmsg dump iterator
4110 * @syslog: include the "<4>" prefixes
4111 * @line: buffer to copy the line to
4112 * @size: maximum size of the buffer
4113 * @len: length of line placed into buffer
4114 *
4115 * Start at the beginning of the kmsg buffer, with the oldest kmsg
4116 * record, and copy one record into the provided buffer.
4117 *
4118 * Consecutive calls will return the next available record moving
4119 * towards the end of the buffer with the youngest messages.
4120 *
4121 * A return value of FALSE indicates that there are no more records to
4122 * read.
 
 
4123 */
4124bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
4125			char *line, size_t size, size_t *len)
4126{
4127	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4128	struct printk_info info;
4129	unsigned int line_count;
4130	struct printk_record r;
4131	size_t l = 0;
4132	bool ret = false;
4133
4134	if (iter->cur_seq < min_seq)
4135		iter->cur_seq = min_seq;
4136
4137	prb_rec_init_rd(&r, &info, line, size);
 
 
 
 
4138
4139	/* Read text or count text lines? */
4140	if (line) {
4141		if (!prb_read_valid(prb, iter->cur_seq, &r))
4142			goto out;
4143		l = record_print_text(&r, syslog, printk_time);
4144	} else {
4145		if (!prb_read_valid_info(prb, iter->cur_seq,
4146					 &info, &line_count)) {
4147			goto out;
4148		}
4149		l = get_record_print_text_size(&info, line_count, syslog,
4150					       printk_time);
4151
4152	}
 
4153
4154	iter->cur_seq = r.info->seq + 1;
 
4155	ret = true;
4156out:
4157	if (len)
4158		*len = l;
4159	return ret;
4160}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4161EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
4162
4163/**
4164 * kmsg_dump_get_buffer - copy kmsg log lines
4165 * @iter: kmsg dump iterator
4166 * @syslog: include the "<4>" prefixes
4167 * @buf: buffer to copy the line to
4168 * @size: maximum size of the buffer
4169 * @len_out: length of line placed into buffer
4170 *
4171 * Start at the end of the kmsg buffer and fill the provided buffer
4172 * with as many of the *youngest* kmsg records that fit into it.
4173 * If the buffer is large enough, all available kmsg records will be
4174 * copied with a single call.
4175 *
4176 * Consecutive calls will fill the buffer with the next block of
4177 * available older records, not including the earlier retrieved ones.
4178 *
4179 * A return value of FALSE indicates that there are no more records to
4180 * read.
4181 */
4182bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
4183			  char *buf, size_t size, size_t *len_out)
4184{
4185	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4186	struct printk_info info;
4187	struct printk_record r;
4188	u64 seq;
 
4189	u64 next_seq;
4190	size_t len = 0;
 
 
4191	bool ret = false;
4192	bool time = printk_time;
4193
4194	if (!buf || !size)
4195		goto out;
4196
4197	if (iter->cur_seq < min_seq)
4198		iter->cur_seq = min_seq;
4199
4200	if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
4201		if (info.seq != iter->cur_seq) {
4202			/* messages are gone, move to first available one */
4203			iter->cur_seq = info.seq;
4204		}
4205	}
4206
4207	/* last entry */
4208	if (iter->cur_seq >= iter->next_seq)
 
4209		goto out;
 
4210
4211	/*
4212	 * Find first record that fits, including all following records,
4213	 * into the user-provided buffer for this dump. Pass in size-1
4214	 * because this function (by way of record_print_text()) will
4215	 * not write more than size-1 bytes of text into @buf.
4216	 */
4217	seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
4218				     size - 1, syslog, time);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4219
4220	/*
4221	 * Next kmsg_dump_get_buffer() invocation will dump block of
4222	 * older records stored right before this one.
4223	 */
4224	next_seq = seq;
 
4225
4226	prb_rec_init_rd(&r, &info, buf, size);
4227
4228	prb_for_each_record(seq, prb, seq, &r) {
4229		if (r.info->seq >= iter->next_seq)
4230			break;
4231
4232		len += record_print_text(&r, syslog, time);
4233
4234		/* Adjust record to store to remaining buffer space. */
4235		prb_rec_init_rd(&r, &info, buf + len, size - len);
4236	}
4237
4238	iter->next_seq = next_seq;
 
4239	ret = true;
 
4240out:
4241	if (len_out)
4242		*len_out = len;
4243	return ret;
4244}
4245EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
4246
4247/**
4248 * kmsg_dump_rewind - reset the iterator
4249 * @iter: kmsg dump iterator
4250 *
4251 * Reset the dumper's iterator so that kmsg_dump_get_line() and
4252 * kmsg_dump_get_buffer() can be called again and used multiple
4253 * times within the same dumper.dump() callback.
 
 
4254 */
4255void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
4256{
4257	iter->cur_seq = latched_seq_read_nolock(&clear_seq);
4258	iter->next_seq = prb_next_seq(prb);
 
 
4259}
4260EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
4261
4262#endif
4263
4264#ifdef CONFIG_SMP
4265static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1);
4266static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0);
4267
4268/**
4269 * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant
4270 *                            spinning lock is not owned by any CPU.
4271 *
4272 * Context: Any context.
 
 
4273 */
4274void __printk_cpu_sync_wait(void)
4275{
4276	do {
4277		cpu_relax();
4278	} while (atomic_read(&printk_cpu_sync_owner) != -1);
 
 
4279}
4280EXPORT_SYMBOL(__printk_cpu_sync_wait);
 
 
4281
4282/**
4283 * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant
4284 *                               spinning lock.
4285 *
4286 * If no processor has the lock, the calling processor takes the lock and
4287 * becomes the owner. If the calling processor is already the owner of the
4288 * lock, this function succeeds immediately.
4289 *
4290 * Context: Any context. Expects interrupts to be disabled.
4291 * Return: 1 on success, otherwise 0.
 
 
4292 */
4293int __printk_cpu_sync_try_get(void)
4294{
4295	int cpu;
4296	int old;
4297
4298	cpu = smp_processor_id();
 
 
 
 
4299
4300	/*
4301	 * Guarantee loads and stores from this CPU when it is the lock owner
4302	 * are _not_ visible to the previous lock owner. This pairs with
4303	 * __printk_cpu_sync_put:B.
4304	 *
4305	 * Memory barrier involvement:
4306	 *
4307	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4308	 * then __printk_cpu_sync_put:A can never read from
4309	 * __printk_cpu_sync_try_get:B.
4310	 *
4311	 * Relies on:
4312	 *
4313	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4314	 * of the previous CPU
4315	 *    matching
4316	 * ACQUIRE from __printk_cpu_sync_try_get:A to
4317	 * __printk_cpu_sync_try_get:B of this CPU
4318	 */
4319	old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1,
4320				     cpu); /* LMM(__printk_cpu_sync_try_get:A) */
4321	if (old == -1) {
4322		/*
4323		 * This CPU is now the owner and begins loading/storing
4324		 * data: LMM(__printk_cpu_sync_try_get:B)
4325		 */
4326		return 1;
4327
4328	} else if (old == cpu) {
4329		/* This CPU is already the owner. */
4330		atomic_inc(&printk_cpu_sync_nested);
4331		return 1;
4332	}
4333
4334	return 0;
4335}
4336EXPORT_SYMBOL(__printk_cpu_sync_try_get);
4337
4338/**
4339 * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock.
4340 *
4341 * The calling processor must be the owner of the lock.
4342 *
4343 * Context: Any context. Expects interrupts to be disabled.
 
4344 */
4345void __printk_cpu_sync_put(void)
4346{
4347	if (atomic_read(&printk_cpu_sync_nested)) {
4348		atomic_dec(&printk_cpu_sync_nested);
4349		return;
4350	}
4351
4352	/*
4353	 * This CPU is finished loading/storing data:
4354	 * LMM(__printk_cpu_sync_put:A)
4355	 */
4356
4357	/*
4358	 * Guarantee loads and stores from this CPU when it was the
4359	 * lock owner are visible to the next lock owner. This pairs
4360	 * with __printk_cpu_sync_try_get:A.
4361	 *
4362	 * Memory barrier involvement:
4363	 *
4364	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4365	 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A.
4366	 *
4367	 * Relies on:
4368	 *
4369	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4370	 * of this CPU
4371	 *    matching
4372	 * ACQUIRE from __printk_cpu_sync_try_get:A to
4373	 * __printk_cpu_sync_try_get:B of the next CPU
4374	 */
4375	atomic_set_release(&printk_cpu_sync_owner,
4376			   -1); /* LMM(__printk_cpu_sync_put:B) */
4377}
4378EXPORT_SYMBOL(__printk_cpu_sync_put);
4379#endif /* CONFIG_SMP */
v3.15
 
   1/*
   2 *  linux/kernel/printk.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 * Modified to make sys_syslog() more flexible: added commands to
   7 * return the last 4k of kernel messages, regardless of whether
   8 * they've been read or not.  Added option to suppress kernel printk's
   9 * to the console.  Added hook for sending the console messages
  10 * elsewhere, in preparation for a serial line console (someday).
  11 * Ted Ts'o, 2/11/93.
  12 * Modified for sysctl support, 1/8/97, Chris Horn.
  13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
  14 *     manfred@colorfullife.com
  15 * Rewrote bits to get rid of console_lock
  16 *	01Mar01 Andrew Morton
  17 */
  18
 
 
  19#include <linux/kernel.h>
  20#include <linux/mm.h>
  21#include <linux/tty.h>
  22#include <linux/tty_driver.h>
  23#include <linux/console.h>
  24#include <linux/init.h>
  25#include <linux/jiffies.h>
  26#include <linux/nmi.h>
  27#include <linux/module.h>
  28#include <linux/moduleparam.h>
  29#include <linux/interrupt.h>			/* For in_interrupt() */
  30#include <linux/delay.h>
  31#include <linux/smp.h>
  32#include <linux/security.h>
  33#include <linux/bootmem.h>
  34#include <linux/memblock.h>
  35#include <linux/aio.h>
  36#include <linux/syscalls.h>
  37#include <linux/kexec.h>
  38#include <linux/kdb.h>
  39#include <linux/ratelimit.h>
  40#include <linux/kmsg_dump.h>
  41#include <linux/syslog.h>
  42#include <linux/cpu.h>
  43#include <linux/notifier.h>
  44#include <linux/rculist.h>
  45#include <linux/poll.h>
  46#include <linux/irq_work.h>
  47#include <linux/utsname.h>
 
 
 
 
  48
  49#include <asm/uaccess.h>
 
  50
 
  51#define CREATE_TRACE_POINTS
  52#include <trace/events/printk.h>
  53
 
  54#include "console_cmdline.h"
  55#include "braille.h"
 
  56
  57/* printk's without a loglevel use this.. */
  58#define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL
 
 
 
 
 
  59
  60/* We show everything that is MORE important than this.. */
  61#define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */
  62#define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */
  63
  64int console_printk[4] = {
  65	DEFAULT_CONSOLE_LOGLEVEL,	/* console_loglevel */
  66	DEFAULT_MESSAGE_LOGLEVEL,	/* default_message_loglevel */
  67	MINIMUM_CONSOLE_LOGLEVEL,	/* minimum_console_loglevel */
  68	DEFAULT_CONSOLE_LOGLEVEL,	/* default_console_loglevel */
  69};
  70
  71/*
  72 * Low level drivers may need that to know if they can schedule in
  73 * their unblank() callback or not. So let's export it.
  74 */
  75int oops_in_progress;
  76EXPORT_SYMBOL(oops_in_progress);
  77
  78/*
  79 * console_sem protects the console_drivers list, and also
  80 * provides serialisation for access to the entire console
  81 * driver system.
  82 */
  83static DEFINE_SEMAPHORE(console_sem);
  84struct console *console_drivers;
  85EXPORT_SYMBOL_GPL(console_drivers);
 
 
 
 
 
 
 
 
 
 
 
 
 
  86
  87#ifdef CONFIG_LOCKDEP
  88static struct lockdep_map console_lock_dep_map = {
  89	.name = "console_lock"
  90};
 
 
 
 
 
 
  91#endif
  92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  93/*
  94 * This is used for debugging the mess that is the VT code by
  95 * keeping track if we have the console semaphore held. It's
  96 * definitely not the perfect debug tool (we don't know if _WE_
  97 * hold it are racing, but it helps tracking those weird code
  98 * path in the console code where we end up in places I want
  99 * locked without the console sempahore held
 100 */
 101static int console_locked, console_suspended;
 102
 103/*
 104 * If exclusive_console is non-NULL then only this console is to be printed to.
 105 */
 106static struct console *exclusive_console;
 107
 108/*
 109 *	Array of consoles built from command line options (console=)
 110 */
 111
 112#define MAX_CMDLINECONSOLES 8
 113
 114static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
 115
 116static int selected_console = -1;
 117static int preferred_console = -1;
 118int console_set_on_cmdline;
 119EXPORT_SYMBOL(console_set_on_cmdline);
 120
 121/* Flag: console code may call schedule() */
 122static int console_may_schedule;
 123
 
 
 
 
 
 
 
 124/*
 125 * The printk log buffer consists of a chain of concatenated variable
 126 * length records. Every record starts with a record header, containing
 127 * the overall length of the record.
 128 *
 129 * The heads to the first and last entry in the buffer, as well as the
 130 * sequence numbers of these both entries are maintained when messages
 131 * are stored..
 132 *
 133 * If the heads indicate available messages, the length in the header
 134 * tells the start next message. A length == 0 for the next message
 135 * indicates a wrap-around to the beginning of the buffer.
 136 *
 137 * Every record carries the monotonic timestamp in microseconds, as well as
 138 * the standard userspace syslog level and syslog facility. The usual
 139 * kernel messages use LOG_KERN; userspace-injected messages always carry
 140 * a matching syslog facility, by default LOG_USER. The origin of every
 141 * message can be reliably determined that way.
 142 *
 143 * The human readable log message directly follows the message header. The
 144 * length of the message text is stored in the header, the stored message
 145 * is not terminated.
 146 *
 147 * Optionally, a message can carry a dictionary of properties (key/value pairs),
 148 * to provide userspace with a machine-readable message context.
 149 *
 150 * Examples for well-defined, commonly used property names are:
 151 *   DEVICE=b12:8               device identifier
 152 *                                b12:8         block dev_t
 153 *                                c127:3        char dev_t
 154 *                                n8            netdev ifindex
 155 *                                +sound:card0  subsystem:devname
 156 *   SUBSYSTEM=pci              driver-core subsystem name
 157 *
 158 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
 159 * follows directly after a '=' character. Every property is terminated by
 160 * a '\0' character. The last property is not terminated.
 161 *
 162 * Example of a message structure:
 163 *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
 164 *   0008  34 00                        record is 52 bytes long
 165 *   000a        0b 00                  text is 11 bytes long
 166 *   000c              1f 00            dictionary is 23 bytes long
 167 *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
 168 *   0010  69 74 27 73 20 61 20 6c      "it's a l"
 169 *         69 6e 65                     "ine"
 170 *   001b           44 45 56 49 43      "DEVIC"
 171 *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
 172 *         52 49 56 45 52 3d 62 75      "RIVER=bu"
 173 *         67                           "g"
 174 *   0032     00 00 00                  padding to next message header
 175 *
 176 * The 'struct printk_log' buffer header must never be directly exported to
 
 
 
 
 
 
 
 
 
 
 
 
 177 * userspace, it is a kernel-private implementation detail that might
 178 * need to be changed in the future, when the requirements change.
 179 *
 180 * /dev/kmsg exports the structured data in the following line format:
 181 *   "level,sequnum,timestamp;<message text>\n"
 
 
 
 182 *
 183 * The optional key/value pairs are attached as continuation lines starting
 184 * with a space character and terminated by a newline. All possible
 185 * non-prinatable characters are escaped in the "\xff" notation.
 186 *
 187 * Users of the export format should ignore possible additional values
 188 * separated by ',', and find the message after the ';' character.
 189 */
 190
 191enum log_flags {
 192	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
 193	LOG_NEWLINE	= 2,	/* text ended with a newline */
 194	LOG_PREFIX	= 4,	/* text started with a prefix */
 195	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
 196};
 197
 198struct printk_log {
 199	u64 ts_nsec;		/* timestamp in nanoseconds */
 200	u16 len;		/* length of entire record */
 201	u16 text_len;		/* length of text buffer */
 202	u16 dict_len;		/* length of dictionary buffer */
 203	u8 facility;		/* syslog facility */
 204	u8 flags:5;		/* internal record flags */
 205	u8 level:3;		/* syslog level */
 206};
 207
 
 208/*
 209 * The logbuf_lock protects kmsg buffer, indices, counters. It is also
 210 * used in interesting ways to provide interlocking in console_unlock();
 211 */
 212static DEFINE_RAW_SPINLOCK(logbuf_lock);
 213
 214#ifdef CONFIG_PRINTK
 215DECLARE_WAIT_QUEUE_HEAD(log_wait);
 
 216/* the next printk record to read by syslog(READ) or /proc/kmsg */
 217static u64 syslog_seq;
 218static u32 syslog_idx;
 219static enum log_flags syslog_prev;
 220static size_t syslog_partial;
 
 
 
 
 
 
 221
 222/* index and sequence number of the first record stored in the buffer */
 223static u64 log_first_seq;
 224static u32 log_first_idx;
 225
 226/* index and sequence number of the next record to store in the buffer */
 227static u64 log_next_seq;
 228static u32 log_next_idx;
 229
 230/* the next printk record to write to the console */
 231static u64 console_seq;
 232static u32 console_idx;
 233static enum log_flags console_prev;
 234
 235/* the next printk record to read after the last 'clear' command */
 236static u64 clear_seq;
 237static u32 clear_idx;
 238
 239#define PREFIX_MAX		32
 240#define LOG_LINE_MAX		1024 - PREFIX_MAX
 241
 242/* record buffer */
 243#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
 244#define LOG_ALIGN 4
 245#else
 246#define LOG_ALIGN __alignof__(struct printk_log)
 247#endif
 248#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
 
 249static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
 250static char *log_buf = __log_buf;
 251static u32 log_buf_len = __LOG_BUF_LEN;
 252
 253/* cpu currently holding logbuf_lock */
 254static volatile unsigned int logbuf_cpu = UINT_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 255
 256/* human readable text of the record */
 257static char *log_text(const struct printk_log *msg)
 
 
 
 
 
 
 
 
 258{
 259	return (char *)msg + sizeof(struct printk_log);
 260}
 261
 262/* optional key/value pair dictionary attached to the record */
 263static char *log_dict(const struct printk_log *msg)
 264{
 265	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
 
 
 
 266}
 267
 268/* get record by index; idx must point to valid msg */
 269static struct printk_log *log_from_idx(u32 idx)
 270{
 271	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 
 
 
 
 
 
 
 
 272
 273	/*
 274	 * A length == 0 record is the end of buffer marker. Wrap around and
 275	 * read the message at the start of the buffer.
 276	 */
 277	if (!msg->len)
 278		return (struct printk_log *)log_buf;
 279	return msg;
 280}
 281
 282/* get next record; idx must point to valid msg */
 283static u32 log_next(u32 idx)
 284{
 285	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 286
 287	/* length == 0 indicates the end of the buffer; wrap */
 288	/*
 289	 * A length == 0 record is the end of buffer marker. Wrap around and
 290	 * read the message at the start of the buffer as *this* one, and
 291	 * return the one after that.
 292	 */
 293	if (!msg->len) {
 294		msg = (struct printk_log *)log_buf;
 295		return msg->len;
 296	}
 297	return idx + msg->len;
 298}
 299
 300/* insert record into the buffer, discard old ones, update heads */
 301static void log_store(int facility, int level,
 302		      enum log_flags flags, u64 ts_nsec,
 303		      const char *dict, u16 dict_len,
 304		      const char *text, u16 text_len)
 305{
 306	struct printk_log *msg;
 307	u32 size, pad_len;
 308
 309	/* number of '\0' padding bytes to next message */
 310	size = sizeof(struct printk_log) + text_len + dict_len;
 311	pad_len = (-size) & (LOG_ALIGN - 1);
 312	size += pad_len;
 
 
 
 313
 314	while (log_first_seq < log_next_seq) {
 315		u32 free;
 
 
 
 
 
 316
 317		if (log_next_idx > log_first_idx)
 318			free = max(log_buf_len - log_next_idx, log_first_idx);
 319		else
 320			free = log_first_idx - log_next_idx;
 321
 322		if (free >= size + sizeof(struct printk_log))
 323			break;
 324
 325		/* drop old messages until we have enough contiuous space */
 326		log_first_idx = log_next(log_first_idx);
 327		log_first_seq++;
 328	}
 329
 330	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
 331		/*
 332		 * This message + an additional empty header does not fit
 333		 * at the end of the buffer. Add an empty header with len == 0
 334		 * to signify a wrap around.
 335		 */
 336		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
 337		log_next_idx = 0;
 338	}
 339
 340	/* fill message */
 341	msg = (struct printk_log *)(log_buf + log_next_idx);
 342	memcpy(log_text(msg), text, text_len);
 343	msg->text_len = text_len;
 344	memcpy(log_dict(msg), dict, dict_len);
 345	msg->dict_len = dict_len;
 346	msg->facility = facility;
 347	msg->level = level & 7;
 348	msg->flags = flags & 0x1f;
 349	if (ts_nsec > 0)
 350		msg->ts_nsec = ts_nsec;
 351	else
 352		msg->ts_nsec = local_clock();
 353	memset(log_dict(msg) + dict_len, 0, pad_len);
 354	msg->len = size;
 355
 356	/* insert message */
 357	log_next_idx += msg->len;
 358	log_next_seq++;
 359}
 360
 361#ifdef CONFIG_SECURITY_DMESG_RESTRICT
 362int dmesg_restrict = 1;
 363#else
 364int dmesg_restrict;
 365#endif
 366
 367static int syslog_action_restricted(int type)
 368{
 369	if (dmesg_restrict)
 370		return 1;
 371	/*
 372	 * Unless restricted, we allow "read all" and "get buffer size"
 373	 * for everybody.
 374	 */
 375	return type != SYSLOG_ACTION_READ_ALL &&
 376	       type != SYSLOG_ACTION_SIZE_BUFFER;
 377}
 378
 379static int check_syslog_permissions(int type, bool from_file)
 380{
 381	/*
 382	 * If this is from /proc/kmsg and we've already opened it, then we've
 383	 * already done the capabilities checks at open time.
 384	 */
 385	if (from_file && type != SYSLOG_ACTION_OPEN)
 386		return 0;
 387
 388	if (syslog_action_restricted(type)) {
 389		if (capable(CAP_SYSLOG))
 390			return 0;
 391		/*
 392		 * For historical reasons, accept CAP_SYS_ADMIN too, with
 393		 * a warning.
 394		 */
 395		if (capable(CAP_SYS_ADMIN)) {
 396			pr_warn_once("%s (%d): Attempt to access syslog with "
 397				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
 398				     "(deprecated).\n",
 399				 current->comm, task_pid_nr(current));
 400			return 0;
 401		}
 402		return -EPERM;
 403	}
 
 404	return security_syslog(type);
 405}
 406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 407
 408/* /dev/kmsg - userspace message inject/listen interface */
 409struct devkmsg_user {
 410	u64 seq;
 411	u32 idx;
 412	enum log_flags prev;
 413	struct mutex lock;
 414	char buf[8192];
 415};
 416
 417static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
 418			      unsigned long count, loff_t pos)
 
 
 
 
 
 
 
 
 
 
 
 
 419{
 420	char *buf, *line;
 421	int i;
 422	int level = default_message_loglevel;
 423	int facility = 1;	/* LOG_USER */
 424	size_t len = iov_length(iv, count);
 
 
 425	ssize_t ret = len;
 426
 427	if (len > LOG_LINE_MAX)
 428		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 429	buf = kmalloc(len+1, GFP_KERNEL);
 430	if (buf == NULL)
 431		return -ENOMEM;
 432
 433	line = buf;
 434	for (i = 0; i < count; i++) {
 435		if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) {
 436			ret = -EFAULT;
 437			goto out;
 438		}
 439		line += iv[i].iov_len;
 440	}
 441
 442	/*
 443	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
 444	 * the decimal value represents 32bit, the lower 3 bit are the log
 445	 * level, the rest are the log facility.
 446	 *
 447	 * If no prefix or no userspace facility is specified, we
 448	 * enforce LOG_USER, to be able to reliably distinguish
 449	 * kernel-generated messages from userspace-injected ones.
 450	 */
 451	line = buf;
 452	if (line[0] == '<') {
 453		char *endp = NULL;
 
 454
 455		i = simple_strtoul(line+1, &endp, 10);
 456		if (endp && endp[0] == '>') {
 457			level = i & 7;
 458			if (i >> 3)
 459				facility = i >> 3;
 460			endp++;
 461			len -= endp - line;
 462			line = endp;
 463		}
 464	}
 465	line[len] = '\0';
 466
 467	printk_emit(facility, level, NULL, 0, "%s", line);
 468out:
 469	kfree(buf);
 470	return ret;
 471}
 472
 473static ssize_t devkmsg_read(struct file *file, char __user *buf,
 474			    size_t count, loff_t *ppos)
 475{
 476	struct devkmsg_user *user = file->private_data;
 477	struct printk_log *msg;
 478	u64 ts_usec;
 479	size_t i;
 480	char cont = '-';
 481	size_t len;
 482	ssize_t ret;
 483
 484	if (!user)
 485		return -EBADF;
 486
 487	ret = mutex_lock_interruptible(&user->lock);
 488	if (ret)
 489		return ret;
 490	raw_spin_lock_irq(&logbuf_lock);
 491	while (user->seq == log_next_seq) {
 492		if (file->f_flags & O_NONBLOCK) {
 493			ret = -EAGAIN;
 494			raw_spin_unlock_irq(&logbuf_lock);
 495			goto out;
 496		}
 497
 498		raw_spin_unlock_irq(&logbuf_lock);
 
 
 
 
 
 
 
 
 
 499		ret = wait_event_interruptible(log_wait,
 500					       user->seq != log_next_seq);
 
 501		if (ret)
 502			goto out;
 503		raw_spin_lock_irq(&logbuf_lock);
 504	}
 505
 506	if (user->seq < log_first_seq) {
 507		/* our last seen message is gone, return error and reset */
 508		user->idx = log_first_idx;
 509		user->seq = log_first_seq;
 510		ret = -EPIPE;
 511		raw_spin_unlock_irq(&logbuf_lock);
 512		goto out;
 513	}
 514
 515	msg = log_from_idx(user->idx);
 516	ts_usec = msg->ts_nsec;
 517	do_div(ts_usec, 1000);
 518
 519	/*
 520	 * If we couldn't merge continuation line fragments during the print,
 521	 * export the stored flags to allow an optional external merge of the
 522	 * records. Merging the records isn't always neccessarily correct, like
 523	 * when we hit a race during printing. In most cases though, it produces
 524	 * better readable output. 'c' in the record flags mark the first
 525	 * fragment of a line, '+' the following.
 526	 */
 527	if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
 528		cont = 'c';
 529	else if ((msg->flags & LOG_CONT) ||
 530		 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
 531		cont = '+';
 532
 533	len = sprintf(user->buf, "%u,%llu,%llu,%c;",
 534		      (msg->facility << 3) | msg->level,
 535		      user->seq, ts_usec, cont);
 536	user->prev = msg->flags;
 537
 538	/* escape non-printable characters */
 539	for (i = 0; i < msg->text_len; i++) {
 540		unsigned char c = log_text(msg)[i];
 541
 542		if (c < ' ' || c >= 127 || c == '\\')
 543			len += sprintf(user->buf + len, "\\x%02x", c);
 544		else
 545			user->buf[len++] = c;
 546	}
 547	user->buf[len++] = '\n';
 548
 549	if (msg->dict_len) {
 550		bool line = true;
 551
 552		for (i = 0; i < msg->dict_len; i++) {
 553			unsigned char c = log_dict(msg)[i];
 554
 555			if (line) {
 556				user->buf[len++] = ' ';
 557				line = false;
 558			}
 559
 560			if (c == '\0') {
 561				user->buf[len++] = '\n';
 562				line = true;
 563				continue;
 564			}
 565
 566			if (c < ' ' || c >= 127 || c == '\\') {
 567				len += sprintf(user->buf + len, "\\x%02x", c);
 568				continue;
 569			}
 570
 571			user->buf[len++] = c;
 572		}
 573		user->buf[len++] = '\n';
 574	}
 575
 576	user->idx = log_next(user->idx);
 577	user->seq++;
 578	raw_spin_unlock_irq(&logbuf_lock);
 579
 580	if (len > count) {
 581		ret = -EINVAL;
 582		goto out;
 583	}
 584
 585	if (copy_to_user(buf, user->buf, len)) {
 586		ret = -EFAULT;
 587		goto out;
 588	}
 589	ret = len;
 590out:
 591	mutex_unlock(&user->lock);
 592	return ret;
 593}
 594
 
 
 
 
 
 
 
 
 595static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
 596{
 597	struct devkmsg_user *user = file->private_data;
 598	loff_t ret = 0;
 599
 600	if (!user)
 601		return -EBADF;
 602	if (offset)
 603		return -ESPIPE;
 604
 605	raw_spin_lock_irq(&logbuf_lock);
 606	switch (whence) {
 607	case SEEK_SET:
 608		/* the first record */
 609		user->idx = log_first_idx;
 610		user->seq = log_first_seq;
 611		break;
 612	case SEEK_DATA:
 613		/*
 614		 * The first record after the last SYSLOG_ACTION_CLEAR,
 615		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
 616		 * changes no global state, and does not clear anything.
 617		 */
 618		user->idx = clear_idx;
 619		user->seq = clear_seq;
 620		break;
 621	case SEEK_END:
 622		/* after the last record */
 623		user->idx = log_next_idx;
 624		user->seq = log_next_seq;
 625		break;
 626	default:
 627		ret = -EINVAL;
 628	}
 629	raw_spin_unlock_irq(&logbuf_lock);
 630	return ret;
 631}
 632
 633static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
 634{
 635	struct devkmsg_user *user = file->private_data;
 636	int ret = 0;
 637
 638	if (!user)
 639		return POLLERR|POLLNVAL;
 640
 641	poll_wait(file, &log_wait, wait);
 642
 643	raw_spin_lock_irq(&logbuf_lock);
 644	if (user->seq < log_next_seq) {
 645		/* return error when data has vanished underneath us */
 646		if (user->seq < log_first_seq)
 647			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
 648		else
 649			ret = POLLIN|POLLRDNORM;
 650	}
 651	raw_spin_unlock_irq(&logbuf_lock);
 652
 653	return ret;
 654}
 655
 656static int devkmsg_open(struct inode *inode, struct file *file)
 657{
 658	struct devkmsg_user *user;
 659	int err;
 660
 
 
 
 661	/* write-only does not need any file context */
 662	if ((file->f_flags & O_ACCMODE) == O_WRONLY)
 663		return 0;
 664
 665	err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
 666				       SYSLOG_FROM_READER);
 667	if (err)
 668		return err;
 669
 670	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
 671	if (!user)
 672		return -ENOMEM;
 673
 
 
 
 674	mutex_init(&user->lock);
 675
 676	raw_spin_lock_irq(&logbuf_lock);
 677	user->idx = log_first_idx;
 678	user->seq = log_first_seq;
 679	raw_spin_unlock_irq(&logbuf_lock);
 680
 681	file->private_data = user;
 682	return 0;
 683}
 684
 685static int devkmsg_release(struct inode *inode, struct file *file)
 686{
 687	struct devkmsg_user *user = file->private_data;
 688
 689	if (!user)
 690		return 0;
 691
 692	mutex_destroy(&user->lock);
 693	kfree(user);
 694	return 0;
 695}
 696
 697const struct file_operations kmsg_fops = {
 698	.open = devkmsg_open,
 699	.read = devkmsg_read,
 700	.aio_write = devkmsg_writev,
 701	.llseek = devkmsg_llseek,
 702	.poll = devkmsg_poll,
 703	.release = devkmsg_release,
 704};
 705
 706#ifdef CONFIG_KEXEC
 707/*
 708 * This appends the listed symbols to /proc/vmcore
 709 *
 710 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
 711 * obtain access to symbols that are otherwise very difficult to locate.  These
 712 * symbols are specifically used so that utilities can access and extract the
 713 * dmesg log from a vmcore file after a crash.
 714 */
 715void log_buf_kexec_setup(void)
 716{
 717	VMCOREINFO_SYMBOL(log_buf);
 718	VMCOREINFO_SYMBOL(log_buf_len);
 719	VMCOREINFO_SYMBOL(log_first_idx);
 720	VMCOREINFO_SYMBOL(log_next_idx);
 
 
 721	/*
 722	 * Export struct printk_log size and field offsets. User space tools can
 723	 * parse it and detect any changes to structure down the line.
 724	 */
 725	VMCOREINFO_STRUCT_SIZE(printk_log);
 726	VMCOREINFO_OFFSET(printk_log, ts_nsec);
 727	VMCOREINFO_OFFSET(printk_log, len);
 728	VMCOREINFO_OFFSET(printk_log, text_len);
 729	VMCOREINFO_OFFSET(printk_log, dict_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 730}
 731#endif
 732
 733/* requested log_buf_len from kernel cmdline */
 734static unsigned long __initdata new_log_buf_len;
 735
 736/* save requested log_buf_len since it's too early to process it */
 737static int __init log_buf_len_setup(char *str)
 738{
 739	unsigned size = memparse(str, &str);
 
 
 
 740
 741	if (size)
 742		size = roundup_pow_of_two(size);
 743	if (size > log_buf_len)
 744		new_log_buf_len = size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 745
 746	return 0;
 747}
 748early_param("log_buf_len", log_buf_len_setup);
 749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 750void __init setup_log_buf(int early)
 751{
 
 
 
 
 
 
 
 
 752	unsigned long flags;
 753	char *new_log_buf;
 754	int free;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 755
 756	if (!new_log_buf_len)
 757		return;
 758
 759	if (early) {
 760		new_log_buf =
 761			memblock_virt_alloc(new_log_buf_len, PAGE_SIZE);
 762	} else {
 763		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 0);
 764	}
 765
 
 766	if (unlikely(!new_log_buf)) {
 767		pr_err("log_buf_len: %ld bytes not available\n",
 768			new_log_buf_len);
 769		return;
 770	}
 771
 772	raw_spin_lock_irqsave(&logbuf_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 773	log_buf_len = new_log_buf_len;
 774	log_buf = new_log_buf;
 775	new_log_buf_len = 0;
 776	free = __LOG_BUF_LEN - log_next_idx;
 777	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
 778	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
 779
 780	pr_info("log_buf_len: %d\n", log_buf_len);
 781	pr_info("early log buf free: %d(%d%%)\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 782		free, (free * 100) / __LOG_BUF_LEN);
 
 
 
 
 
 
 783}
 784
 785static bool __read_mostly ignore_loglevel;
 786
 787static int __init ignore_loglevel_setup(char *str)
 788{
 789	ignore_loglevel = 1;
 790	pr_info("debug: ignoring loglevel setting.\n");
 791
 792	return 0;
 793}
 794
 795early_param("ignore_loglevel", ignore_loglevel_setup);
 796module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
 797MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
 798	"print all kernel messages to the console.");
 
 
 
 
 
 799
 800#ifdef CONFIG_BOOT_PRINTK_DELAY
 801
 802static int boot_delay; /* msecs delay after each printk during bootup */
 803static unsigned long long loops_per_msec;	/* based on boot_delay */
 804
 805static int __init boot_delay_setup(char *str)
 806{
 807	unsigned long lpj;
 808
 809	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
 810	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
 811
 812	get_option(&str, &boot_delay);
 813	if (boot_delay > 10 * 1000)
 814		boot_delay = 0;
 815
 816	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
 817		"HZ: %d, loops_per_msec: %llu\n",
 818		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
 819	return 0;
 820}
 821early_param("boot_delay", boot_delay_setup);
 822
 823static void boot_delay_msec(int level)
 824{
 825	unsigned long long k;
 826	unsigned long timeout;
 827
 828	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
 829		|| (level >= console_loglevel && !ignore_loglevel)) {
 830		return;
 831	}
 832
 833	k = (unsigned long long)loops_per_msec * boot_delay;
 834
 835	timeout = jiffies + msecs_to_jiffies(boot_delay);
 836	while (k) {
 837		k--;
 838		cpu_relax();
 839		/*
 840		 * use (volatile) jiffies to prevent
 841		 * compiler reduction; loop termination via jiffies
 842		 * is secondary and may or may not happen.
 843		 */
 844		if (time_after(jiffies, timeout))
 845			break;
 846		touch_nmi_watchdog();
 847	}
 848}
 849#else
 850static inline void boot_delay_msec(int level)
 851{
 852}
 853#endif
 854
 855#if defined(CONFIG_PRINTK_TIME)
 856static bool printk_time = 1;
 857#else
 858static bool printk_time;
 859#endif
 860module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
 861
 
 
 
 
 
 862static size_t print_time(u64 ts, char *buf)
 863{
 864	unsigned long rem_nsec;
 865
 866	if (!printk_time)
 867		return 0;
 
 868
 869	rem_nsec = do_div(ts, 1000000000);
 
 
 
 870
 871	if (!buf)
 872		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
 873
 874	return sprintf(buf, "[%5lu.%06lu] ",
 875		       (unsigned long)ts, rem_nsec / 1000);
 876}
 
 
 
 877
 878static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
 
 879{
 880	size_t len = 0;
 881	unsigned int prefix = (msg->facility << 3) | msg->level;
 882
 883	if (syslog) {
 884		if (buf) {
 885			len += sprintf(buf, "<%u>", prefix);
 886		} else {
 887			len += 3;
 888			if (prefix > 999)
 889				len += 3;
 890			else if (prefix > 99)
 891				len += 2;
 892			else if (prefix > 9)
 893				len++;
 894		}
 895	}
 896
 897	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
 898	return len;
 899}
 900
 901static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
 902			     bool syslog, char *buf, size_t size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 903{
 904	const char *text = log_text(msg);
 905	size_t text_size = msg->text_len;
 906	bool prefix = true;
 907	bool newline = true;
 
 
 
 908	size_t len = 0;
 
 909
 910	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
 911		prefix = false;
 
 
 
 
 912
 913	if (msg->flags & LOG_CONT) {
 914		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
 915			prefix = false;
 916
 917		if (!(msg->flags & LOG_NEWLINE))
 918			newline = false;
 919	}
 920
 921	do {
 922		const char *next = memchr(text, '\n', text_size);
 923		size_t text_len;
 924
 
 
 
 
 
 
 
 
 925		if (next) {
 926			text_len = next - text;
 927			next++;
 928			text_size -= next - text;
 929		} else {
 930			text_len = text_size;
 
 
 
 931		}
 932
 933		if (buf) {
 934			if (print_prefix(msg, syslog, NULL) +
 935			    text_len + 1 >= size - len)
 
 
 
 
 936				break;
 937
 938			if (prefix)
 939				len += print_prefix(msg, syslog, buf + len);
 940			memcpy(buf + len, text, text_len);
 941			len += text_len;
 942			if (next || newline)
 943				buf[len++] = '\n';
 944		} else {
 945			/* SYSLOG_ACTION_* buffer size only calculation */
 946			if (prefix)
 947				len += print_prefix(msg, syslog, NULL);
 948			len += text_len;
 949			if (next || newline)
 950				len++;
 951		}
 952
 953		prefix = true;
 954		text = next;
 955	} while (text);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 956
 957	return len;
 958}
 959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 960static int syslog_print(char __user *buf, int size)
 961{
 
 
 962	char *text;
 963	struct printk_log *msg;
 964	int len = 0;
 
 965
 966	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
 967	if (!text)
 968		return -ENOMEM;
 969
 970	while (size > 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 971		size_t n;
 972		size_t skip;
 
 973
 974		raw_spin_lock_irq(&logbuf_lock);
 975		if (syslog_seq < log_first_seq) {
 976			/* messages are gone, move to first one */
 977			syslog_seq = log_first_seq;
 978			syslog_idx = log_first_idx;
 979			syslog_prev = 0;
 980			syslog_partial = 0;
 981		}
 982		if (syslog_seq == log_next_seq) {
 983			raw_spin_unlock_irq(&logbuf_lock);
 984			break;
 985		}
 
 
 
 986
 987		skip = syslog_partial;
 988		msg = log_from_idx(syslog_idx);
 989		n = msg_print_text(msg, syslog_prev, true, text,
 990				   LOG_LINE_MAX + PREFIX_MAX);
 991		if (n - syslog_partial <= size) {
 992			/* message fits into buffer, move forward */
 993			syslog_idx = log_next(syslog_idx);
 994			syslog_seq++;
 995			syslog_prev = msg->flags;
 996			n -= syslog_partial;
 997			syslog_partial = 0;
 998		} else if (!len){
 999			/* partial read(), remember position */
1000			n = size;
1001			syslog_partial += n;
1002		} else
1003			n = 0;
1004		raw_spin_unlock_irq(&logbuf_lock);
1005
1006		if (!n)
1007			break;
1008
1009		if (copy_to_user(buf, text + skip, n)) {
 
 
 
 
1010			if (!len)
1011				len = -EFAULT;
1012			break;
1013		}
1014
1015		len += n;
1016		size -= n;
1017		buf += n;
1018	}
1019
 
1020	kfree(text);
1021	return len;
1022}
1023
1024static int syslog_print_all(char __user *buf, int size, bool clear)
1025{
 
 
1026	char *text;
1027	int len = 0;
 
 
1028
1029	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1030	if (!text)
1031		return -ENOMEM;
1032
1033	raw_spin_lock_irq(&logbuf_lock);
1034	if (buf) {
1035		u64 next_seq;
1036		u64 seq;
1037		u32 idx;
1038		enum log_flags prev;
 
1039
1040		if (clear_seq < log_first_seq) {
1041			/* messages are gone, move to first available one */
1042			clear_seq = log_first_seq;
1043			clear_idx = log_first_idx;
1044		}
1045
1046		/*
1047		 * Find first record that fits, including all following records,
1048		 * into the user-provided buffer for this dump.
1049		 */
1050		seq = clear_seq;
1051		idx = clear_idx;
1052		prev = 0;
1053		while (seq < log_next_seq) {
1054			struct printk_log *msg = log_from_idx(idx);
1055
1056			len += msg_print_text(msg, prev, true, NULL, 0);
1057			prev = msg->flags;
1058			idx = log_next(idx);
1059			seq++;
1060		}
1061
1062		/* move first record forward until length fits into the buffer */
1063		seq = clear_seq;
1064		idx = clear_idx;
1065		prev = 0;
1066		while (len > size && seq < log_next_seq) {
1067			struct printk_log *msg = log_from_idx(idx);
1068
1069			len -= msg_print_text(msg, prev, true, NULL, 0);
1070			prev = msg->flags;
1071			idx = log_next(idx);
1072			seq++;
1073		}
1074
1075		/* last message fitting into this dump */
1076		next_seq = log_next_seq;
 
 
1077
1078		len = 0;
1079		while (len >= 0 && seq < next_seq) {
1080			struct printk_log *msg = log_from_idx(idx);
1081			int textlen;
1082
1083			textlen = msg_print_text(msg, prev, true, text,
1084						 LOG_LINE_MAX + PREFIX_MAX);
1085			if (textlen < 0) {
1086				len = textlen;
1087				break;
1088			}
1089			idx = log_next(idx);
1090			seq++;
1091			prev = msg->flags;
1092
1093			raw_spin_unlock_irq(&logbuf_lock);
1094			if (copy_to_user(buf + len, text, textlen))
1095				len = -EFAULT;
1096			else
1097				len += textlen;
1098			raw_spin_lock_irq(&logbuf_lock);
1099
1100			if (seq < log_first_seq) {
1101				/* messages are gone, move to next one */
1102				seq = log_first_seq;
1103				idx = log_first_idx;
1104				prev = 0;
1105			}
1106		}
1107	}
1108
1109	if (clear) {
1110		clear_seq = log_next_seq;
1111		clear_idx = log_next_idx;
 
1112	}
1113	raw_spin_unlock_irq(&logbuf_lock);
1114
1115	kfree(text);
1116	return len;
1117}
1118
1119int do_syslog(int type, char __user *buf, int len, bool from_file)
 
 
 
 
 
 
 
1120{
 
1121	bool clear = false;
1122	static int saved_console_loglevel = -1;
1123	int error;
1124
1125	error = check_syslog_permissions(type, from_file);
1126	if (error)
1127		goto out;
1128
1129	error = security_syslog(type);
1130	if (error)
1131		return error;
1132
1133	switch (type) {
1134	case SYSLOG_ACTION_CLOSE:	/* Close log */
1135		break;
1136	case SYSLOG_ACTION_OPEN:	/* Open log */
1137		break;
1138	case SYSLOG_ACTION_READ:	/* Read from log */
1139		error = -EINVAL;
1140		if (!buf || len < 0)
1141			goto out;
1142		error = 0;
1143		if (!len)
1144			goto out;
1145		if (!access_ok(VERIFY_WRITE, buf, len)) {
1146			error = -EFAULT;
1147			goto out;
1148		}
1149		error = wait_event_interruptible(log_wait,
1150						 syslog_seq != log_next_seq);
1151		if (error)
1152			goto out;
1153		error = syslog_print(buf, len);
1154		break;
1155	/* Read/clear last kernel messages */
1156	case SYSLOG_ACTION_READ_CLEAR:
1157		clear = true;
1158		/* FALL THRU */
1159	/* Read last kernel messages */
1160	case SYSLOG_ACTION_READ_ALL:
1161		error = -EINVAL;
1162		if (!buf || len < 0)
1163			goto out;
1164		error = 0;
1165		if (!len)
1166			goto out;
1167		if (!access_ok(VERIFY_WRITE, buf, len)) {
1168			error = -EFAULT;
1169			goto out;
1170		}
1171		error = syslog_print_all(buf, len, clear);
1172		break;
1173	/* Clear ring buffer */
1174	case SYSLOG_ACTION_CLEAR:
1175		syslog_print_all(NULL, 0, true);
1176		break;
1177	/* Disable logging to console */
1178	case SYSLOG_ACTION_CONSOLE_OFF:
1179		if (saved_console_loglevel == -1)
1180			saved_console_loglevel = console_loglevel;
1181		console_loglevel = minimum_console_loglevel;
1182		break;
1183	/* Enable logging to console */
1184	case SYSLOG_ACTION_CONSOLE_ON:
1185		if (saved_console_loglevel != -1) {
1186			console_loglevel = saved_console_loglevel;
1187			saved_console_loglevel = -1;
1188		}
1189		break;
1190	/* Set level of messages printed to console */
1191	case SYSLOG_ACTION_CONSOLE_LEVEL:
1192		error = -EINVAL;
1193		if (len < 1 || len > 8)
1194			goto out;
1195		if (len < minimum_console_loglevel)
1196			len = minimum_console_loglevel;
1197		console_loglevel = len;
1198		/* Implicitly re-enable logging to console */
1199		saved_console_loglevel = -1;
1200		error = 0;
1201		break;
1202	/* Number of chars in the log buffer */
1203	case SYSLOG_ACTION_SIZE_UNREAD:
1204		raw_spin_lock_irq(&logbuf_lock);
1205		if (syslog_seq < log_first_seq) {
 
 
 
 
 
1206			/* messages are gone, move to first one */
1207			syslog_seq = log_first_seq;
1208			syslog_idx = log_first_idx;
1209			syslog_prev = 0;
1210			syslog_partial = 0;
1211		}
1212		if (from_file) {
1213			/*
1214			 * Short-cut for poll(/"proc/kmsg") which simply checks
1215			 * for pending data, not the size; return the count of
1216			 * records, not the length.
1217			 */
1218			error = log_next_idx - syslog_idx;
1219		} else {
1220			u64 seq = syslog_seq;
1221			u32 idx = syslog_idx;
1222			enum log_flags prev = syslog_prev;
1223
1224			error = 0;
1225			while (seq < log_next_seq) {
1226				struct printk_log *msg = log_from_idx(idx);
1227
1228				error += msg_print_text(msg, prev, true, NULL, 0);
1229				idx = log_next(idx);
1230				seq++;
1231				prev = msg->flags;
1232			}
1233			error -= syslog_partial;
1234		}
1235		raw_spin_unlock_irq(&logbuf_lock);
1236		break;
1237	/* Size of the log buffer */
1238	case SYSLOG_ACTION_SIZE_BUFFER:
1239		error = log_buf_len;
1240		break;
1241	default:
1242		error = -EINVAL;
1243		break;
1244	}
1245out:
1246	return error;
1247}
1248
1249SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1250{
1251	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1252}
1253
1254/*
1255 * Call the console drivers, asking them to write out
1256 * log_buf[start] to log_buf[end - 1].
1257 * The console_lock must be held.
1258 */
1259static void call_console_drivers(int level, const char *text, size_t len)
1260{
1261	struct console *con;
1262
1263	trace_console(text, len);
 
 
 
 
 
 
 
 
1264
1265	if (level >= console_loglevel && !ignore_loglevel)
1266		return;
1267	if (!console_drivers)
1268		return;
 
 
 
 
 
 
 
 
 
 
1269
1270	for_each_console(con) {
1271		if (exclusive_console && con != exclusive_console)
1272			continue;
1273		if (!(con->flags & CON_ENABLED))
1274			continue;
1275		if (!con->write)
1276			continue;
1277		if (!cpu_online(smp_processor_id()) &&
1278		    !(con->flags & CON_ANYTIME))
1279			continue;
1280		con->write(con, text, len);
1281	}
1282}
1283
1284/*
1285 * Zap console related locks when oopsing. Only zap at most once
1286 * every 10 seconds, to leave time for slow consoles to print a
1287 * full oops.
 
 
 
 
 
 
 
 
 
 
 
1288 */
1289static void zap_locks(void)
1290{
1291	static unsigned long oops_timestamp;
1292
1293	if (time_after_eq(jiffies, oops_timestamp) &&
1294			!time_after(jiffies, oops_timestamp + 30 * HZ))
1295		return;
 
1296
1297	oops_timestamp = jiffies;
 
 
 
1298
1299	debug_locks_off();
1300	/* If a crash is occurring, make sure we can't deadlock */
1301	raw_spin_lock_init(&logbuf_lock);
1302	/* And make sure that we print immediately */
1303	sema_init(&console_sem, 1);
1304}
1305
1306/* Check if we have any console registered that can be called early in boot. */
1307static int have_callable_console(void)
1308{
1309	struct console *con;
1310
1311	for_each_console(con)
1312		if (con->flags & CON_ANYTIME)
1313			return 1;
 
 
1314
1315	return 0;
 
 
 
 
 
1316}
1317
1318/*
1319 * Can we actually use the console at this time on this cpu?
 
 
 
 
 
1320 *
1321 * Console drivers may assume that per-cpu resources have
1322 * been allocated. So unless they're explicitly marked as
1323 * being able to cope (CON_ANYTIME) don't call them until
1324 * this CPU is officially up.
1325 */
1326static inline int can_use_console(unsigned int cpu)
1327{
1328	return cpu_online(cpu) || have_callable_console();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1329}
1330
1331/*
1332 * Try to get console ownership to actually show the kernel
1333 * messages from a 'printk'. Return true (and with the
1334 * console_lock held, and 'console_locked' set) if it
1335 * is successful, false otherwise.
1336 *
1337 * This gets called with the 'logbuf_lock' spinlock held and
1338 * interrupts disabled. It should return with 'lockbuf_lock'
1339 * released but interrupts still disabled.
1340 */
1341static int console_trylock_for_printk(unsigned int cpu)
1342	__releases(&logbuf_lock)
1343{
1344	int retval = 0, wake = 0;
 
 
1345
1346	if (console_trylock()) {
1347		retval = 1;
 
 
 
 
 
1348
1349		/*
1350		 * If we can't use the console, we need to release
1351		 * the console semaphore by hand to avoid flushing
1352		 * the buffer. We need to hold the console semaphore
1353		 * in order to do this test safely.
1354		 */
1355		if (!can_use_console(cpu)) {
1356			console_locked = 0;
1357			wake = 1;
1358			retval = 0;
1359		}
1360	}
1361	logbuf_cpu = UINT_MAX;
1362	raw_spin_unlock(&logbuf_lock);
1363	if (wake)
1364		up(&console_sem);
1365	return retval;
1366}
1367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1368int printk_delay_msec __read_mostly;
1369
1370static inline void printk_delay(void)
1371{
 
 
1372	if (unlikely(printk_delay_msec)) {
1373		int m = printk_delay_msec;
1374
1375		while (m--) {
1376			mdelay(1);
1377			touch_nmi_watchdog();
1378		}
1379	}
1380}
1381
1382/*
1383 * Continuation lines are buffered, and not committed to the record buffer
1384 * until the line is complete, or a race forces it. The line fragments
1385 * though, are printed immediately to the consoles to ensure everything has
1386 * reached the console in case of a kernel crash.
1387 */
1388static struct cont {
1389	char buf[LOG_LINE_MAX];
1390	size_t len;			/* length == 0 means unused buffer */
1391	size_t cons;			/* bytes written to console */
1392	struct task_struct *owner;	/* task of first print*/
1393	u64 ts_nsec;			/* time of first print */
1394	u8 level;			/* log level of first message */
1395	u8 facility;			/* log level of first message */
1396	enum log_flags flags;		/* prefix, newline flags */
1397	bool flushed:1;			/* buffer sealed and committed */
1398} cont;
1399
1400static void cont_flush(enum log_flags flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1401{
1402	if (cont.flushed)
1403		return;
1404	if (cont.len == 0)
1405		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
1406
1407	if (cont.cons) {
1408		/*
1409		 * If a fragment of this line was directly flushed to the
1410		 * console; wait for the console to pick up the rest of the
1411		 * line. LOG_NOCONS suppresses a duplicated output.
1412		 */
1413		log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1414			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1415		cont.flags = flags;
1416		cont.flushed = true;
1417	} else {
1418		/*
1419		 * If no fragment of this line ever reached the console,
1420		 * just submit it to the store and free the buffer.
1421		 */
1422		log_store(cont.facility, cont.level, flags, 0,
1423			  NULL, 0, cont.buf, cont.len);
1424		cont.len = 0;
1425	}
 
 
1426}
1427
1428static bool cont_add(int facility, int level, const char *text, size_t len)
 
 
 
1429{
1430	if (cont.len && cont.flushed)
1431		return false;
 
1432
1433	if (cont.len + len > sizeof(cont.buf)) {
1434		/* the line gets too long, split it up in separate records */
1435		cont_flush(LOG_CONT);
1436		return false;
1437	}
1438
1439	if (!cont.len) {
1440		cont.facility = facility;
1441		cont.level = level;
1442		cont.owner = current;
1443		cont.ts_nsec = local_clock();
1444		cont.flags = 0;
1445		cont.cons = 0;
1446		cont.flushed = false;
 
1447	}
1448
1449	memcpy(cont.buf + cont.len, text, len);
1450	cont.len += len;
1451
1452	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1453		cont_flush(LOG_CONT);
1454
1455	return true;
1456}
1457
1458static size_t cont_print_text(char *text, size_t size)
1459{
1460	size_t textlen = 0;
1461	size_t len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1462
1463	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1464		textlen += print_time(cont.ts_nsec, text);
1465		size -= textlen;
1466	}
1467
1468	len = cont.len - cont.cons;
1469	if (len > 0) {
1470		if (len+1 > size)
1471			len = size-1;
1472		memcpy(text + textlen, cont.buf + cont.cons, len);
1473		textlen += len;
1474		cont.cons = cont.len;
1475	}
1476
1477	if (cont.flushed) {
1478		if (cont.flags & LOG_NEWLINE)
1479			text[textlen++] = '\n';
1480		/* got everything, release buffer */
1481		cont.len = 0;
1482	}
1483	return textlen;
1484}
1485
1486asmlinkage int vprintk_emit(int facility, int level,
1487			    const char *dict, size_t dictlen,
1488			    const char *fmt, va_list args)
1489{
1490	static int recursion_bug;
1491	static char textbuf[LOG_LINE_MAX];
1492	char *text = textbuf;
1493	size_t text_len;
1494	enum log_flags lflags = 0;
1495	unsigned long flags;
1496	int this_cpu;
1497	int printed_len = 0;
1498
1499	boot_delay_msec(level);
1500	printk_delay();
1501
1502	/* This stops the holder of console_sem just where we want him */
1503	local_irq_save(flags);
1504	this_cpu = smp_processor_id();
1505
1506	/*
1507	 * Ouch, printk recursed into itself!
 
 
 
1508	 */
1509	if (unlikely(logbuf_cpu == this_cpu)) {
1510		/*
1511		 * If a crash is occurring during printk() on this CPU,
1512		 * then try to get the crash message out but make sure
1513		 * we can't deadlock. Otherwise just return to avoid the
1514		 * recursion and return - but flag the recursion so that
1515		 * it can be printed at the next appropriate moment:
1516		 */
1517		if (!oops_in_progress && !lockdep_recursing(current)) {
1518			recursion_bug = 1;
1519			goto out_restore_irqs;
1520		}
1521		zap_locks();
1522	}
1523
1524	lockdep_off();
1525	raw_spin_lock(&logbuf_lock);
1526	logbuf_cpu = this_cpu;
1527
1528	if (recursion_bug) {
1529		static const char recursion_msg[] =
1530			"BUG: recent printk recursion!";
 
 
 
 
 
 
 
 
 
 
1531
1532		recursion_bug = 0;
1533		printed_len += strlen(recursion_msg);
1534		/* emit KERN_CRIT message */
1535		log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1536			  NULL, 0, recursion_msg, printed_len);
1537	}
1538
1539	/*
1540	 * The printf needs to come first; we need the syslog
1541	 * prefix which might be passed-in as a parameter.
 
1542	 */
1543	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
 
 
 
1544
1545	/* mark and strip a trailing newline */
1546	if (text_len && text[text_len-1] == '\n') {
1547		text_len--;
1548		lflags |= LOG_NEWLINE;
1549	}
1550
1551	/* strip kernel syslog prefix and extract log level or control flags */
1552	if (facility == 0) {
1553		int kern_level = printk_get_level(text);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1554
1555		if (kern_level) {
1556			const char *end_of_header = printk_skip_level(text);
1557			switch (kern_level) {
1558			case '0' ... '7':
1559				if (level == -1)
1560					level = kern_level - '0';
1561			case 'd':	/* KERN_DEFAULT */
1562				lflags |= LOG_PREFIX;
1563			}
1564			/*
1565			 * No need to check length here because vscnprintf
1566			 * put '\0' at the end of the string. Only valid and
1567			 * newly printed level is detected.
1568			 */
1569			text_len -= end_of_header - text;
1570			text = (char *)end_of_header;
1571		}
1572	}
1573
1574	if (level == -1)
1575		level = default_message_loglevel;
1576
1577	if (dict)
1578		lflags |= LOG_PREFIX|LOG_NEWLINE;
1579
1580	if (!(lflags & LOG_NEWLINE)) {
 
1581		/*
1582		 * Flush the conflicting buffer. An earlier newline was missing,
1583		 * or another task also prints continuation lines.
 
 
 
1584		 */
1585		if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1586			cont_flush(LOG_NEWLINE);
1587
1588		/* buffer line if possible, otherwise store it right away */
1589		if (!cont_add(facility, level, text, text_len))
1590			log_store(facility, level, lflags | LOG_CONT, 0,
1591				  dict, dictlen, text, text_len);
1592	} else {
1593		bool stored = false;
1594
1595		/*
1596		 * If an earlier newline was missing and it was the same task,
1597		 * either merge it with the current buffer and flush, or if
1598		 * there was a race with interrupts (prefix == true) then just
1599		 * flush it out and store this line separately.
1600		 * If the preceding printk was from a different task and missed
1601		 * a newline, flush and append the newline.
1602		 */
1603		if (cont.len) {
1604			if (cont.owner == current && !(lflags & LOG_PREFIX))
1605				stored = cont_add(facility, level, text,
1606						  text_len);
1607			cont_flush(LOG_NEWLINE);
1608		}
1609
1610		if (!stored)
1611			log_store(facility, level, lflags, 0,
1612				  dict, dictlen, text, text_len);
1613	}
1614	printed_len += text_len;
1615
1616	/*
1617	 * Try to acquire and then immediately release the console semaphore.
1618	 * The release will print out buffers and wake up /dev/kmsg and syslog()
1619	 * users.
1620	 *
1621	 * The console_trylock_for_printk() function will release 'logbuf_lock'
1622	 * regardless of whether it actually gets the console semaphore or not.
1623	 */
1624	if (console_trylock_for_printk(this_cpu))
1625		console_unlock();
1626
1627	lockdep_on();
1628out_restore_irqs:
1629	local_irq_restore(flags);
1630
1631	return printed_len;
1632}
1633EXPORT_SYMBOL(vprintk_emit);
1634
1635asmlinkage int vprintk(const char *fmt, va_list args)
1636{
1637	return vprintk_emit(0, -1, NULL, 0, fmt, args);
1638}
1639EXPORT_SYMBOL(vprintk);
1640
1641asmlinkage int printk_emit(int facility, int level,
1642			   const char *dict, size_t dictlen,
1643			   const char *fmt, ...)
1644{
1645	va_list args;
1646	int r;
1647
1648	va_start(args, fmt);
1649	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1650	va_end(args);
1651
1652	return r;
1653}
1654EXPORT_SYMBOL(printk_emit);
1655
1656/**
1657 * printk - print a kernel message
1658 * @fmt: format string
1659 *
1660 * This is printk(). It can be called from any context. We want it to work.
1661 *
1662 * We try to grab the console_lock. If we succeed, it's easy - we log the
1663 * output and call the console drivers.  If we fail to get the semaphore, we
1664 * place the output into the log buffer and return. The current holder of
1665 * the console_sem will notice the new output in console_unlock(); and will
1666 * send it to the consoles before releasing the lock.
1667 *
1668 * One effect of this deferred printing is that code which calls printk() and
1669 * then changes console_loglevel may break. This is because console_loglevel
1670 * is inspected when the actual printing occurs.
1671 *
1672 * See also:
1673 * printf(3)
1674 *
1675 * See the vsnprintf() documentation for format string extensions over C99.
1676 */
1677asmlinkage __visible int printk(const char *fmt, ...)
1678{
1679	va_list args;
1680	int r;
1681
1682#ifdef CONFIG_KGDB_KDB
1683	if (unlikely(kdb_trap_printk)) {
1684		va_start(args, fmt);
1685		r = vkdb_printf(fmt, args);
1686		va_end(args);
1687		return r;
1688	}
1689#endif
1690	va_start(args, fmt);
1691	r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1692	va_end(args);
1693
1694	return r;
1695}
1696EXPORT_SYMBOL(printk);
1697
1698#else /* CONFIG_PRINTK */
 
 
1699
1700#define LOG_LINE_MAX		0
1701#define PREFIX_MAX		0
1702#define LOG_LINE_MAX 0
1703static u64 syslog_seq;
1704static u32 syslog_idx;
1705static u64 console_seq;
1706static u32 console_idx;
1707static enum log_flags syslog_prev;
1708static u64 log_first_seq;
1709static u32 log_first_idx;
1710static u64 log_next_seq;
1711static enum log_flags console_prev;
1712static struct cont {
1713	size_t len;
1714	size_t cons;
1715	u8 level;
1716	bool flushed:1;
1717} cont;
1718static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1719static u32 log_next(u32 idx) { return 0; }
1720static void call_console_drivers(int level, const char *text, size_t len) {}
1721static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1722			     bool syslog, char *buf, size_t size) { return 0; }
1723static size_t cont_print_text(char *text, size_t size) { return 0; }
1724
1725#endif /* CONFIG_PRINTK */
1726
1727#ifdef CONFIG_EARLY_PRINTK
1728struct console *early_console;
1729
1730void early_vprintk(const char *fmt, va_list ap)
1731{
1732	if (early_console) {
1733		char buf[512];
1734		int n = vscnprintf(buf, sizeof(buf), fmt, ap);
1735
1736		early_console->write(early_console, buf, n);
1737	}
1738}
1739
1740asmlinkage __visible void early_printk(const char *fmt, ...)
1741{
1742	va_list ap;
 
 
 
 
 
1743
1744	va_start(ap, fmt);
1745	early_vprintk(fmt, ap);
1746	va_end(ap);
 
 
1747}
1748#endif
1749
1750static int __add_preferred_console(char *name, int idx, char *options,
1751				   char *brl_options)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1752{
1753	struct console_cmdline *c;
1754	int i;
1755
1756	/*
 
 
 
 
 
 
 
 
1757	 *	See if this tty is not yet registered, and
1758	 *	if we have a slot free.
1759	 */
1760	for (i = 0, c = console_cmdline;
1761	     i < MAX_CMDLINECONSOLES && c->name[0];
1762	     i++, c++) {
1763		if (strcmp(c->name, name) == 0 && c->index == idx) {
1764			if (!brl_options)
1765				selected_console = i;
 
1766			return 0;
1767		}
1768	}
1769	if (i == MAX_CMDLINECONSOLES)
1770		return -E2BIG;
1771	if (!brl_options)
1772		selected_console = i;
1773	strlcpy(c->name, name, sizeof(c->name));
1774	c->options = options;
 
1775	braille_set_options(c, brl_options);
1776
1777	c->index = idx;
1778	return 0;
1779}
 
 
 
 
 
 
 
 
 
 
 
1780/*
1781 * Set up a list of consoles.  Called from init/main.c
 
1782 */
1783static int __init console_setup(char *str)
1784{
1785	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1786	char *s, *options, *brl_options = NULL;
1787	int idx;
1788
 
 
 
 
 
 
 
 
 
 
1789	if (_braille_console_setup(&str, &brl_options))
1790		return 1;
1791
1792	/*
1793	 * Decode str into name, index, options.
1794	 */
1795	if (str[0] >= '0' && str[0] <= '9') {
1796		strcpy(buf, "ttyS");
1797		strncpy(buf + 4, str, sizeof(buf) - 5);
1798	} else {
1799		strncpy(buf, str, sizeof(buf) - 1);
1800	}
1801	buf[sizeof(buf) - 1] = 0;
1802	if ((options = strchr(str, ',')) != NULL)
 
1803		*(options++) = 0;
1804#ifdef __sparc__
1805	if (!strcmp(str, "ttya"))
1806		strcpy(buf, "ttyS0");
1807	if (!strcmp(str, "ttyb"))
1808		strcpy(buf, "ttyS1");
1809#endif
1810	for (s = buf; *s; s++)
1811		if ((*s >= '0' && *s <= '9') || *s == ',')
1812			break;
1813	idx = simple_strtoul(s, NULL, 10);
1814	*s = 0;
1815
1816	__add_preferred_console(buf, idx, options, brl_options);
1817	console_set_on_cmdline = 1;
1818	return 1;
1819}
1820__setup("console=", console_setup);
1821
1822/**
1823 * add_preferred_console - add a device to the list of preferred consoles.
1824 * @name: device name
1825 * @idx: device index
1826 * @options: options for this console
1827 *
1828 * The last preferred console added will be used for kernel messages
1829 * and stdin/out/err for init.  Normally this is used by console_setup
1830 * above to handle user-supplied console arguments; however it can also
1831 * be used by arch-specific code either to override the user or more
1832 * commonly to provide a default console (ie from PROM variables) when
1833 * the user has not supplied one.
1834 */
1835int add_preferred_console(char *name, int idx, char *options)
1836{
1837	return __add_preferred_console(name, idx, options, NULL);
1838}
1839
1840int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1841{
1842	struct console_cmdline *c;
1843	int i;
1844
1845	for (i = 0, c = console_cmdline;
1846	     i < MAX_CMDLINECONSOLES && c->name[0];
1847	     i++, c++)
1848		if (strcmp(c->name, name) == 0 && c->index == idx) {
1849			strlcpy(c->name, name_new, sizeof(c->name));
1850			c->name[sizeof(c->name) - 1] = 0;
1851			c->options = options;
1852			c->index = idx_new;
1853			return i;
1854		}
1855	/* not found */
1856	return -1;
1857}
1858
1859bool console_suspend_enabled = 1;
1860EXPORT_SYMBOL(console_suspend_enabled);
1861
1862static int __init console_suspend_disable(char *str)
1863{
1864	console_suspend_enabled = 0;
1865	return 1;
1866}
1867__setup("no_console_suspend", console_suspend_disable);
1868module_param_named(console_suspend, console_suspend_enabled,
1869		bool, S_IRUGO | S_IWUSR);
1870MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1871	" and hibernate operations");
1872
 
 
 
 
 
 
 
 
 
 
 
 
1873/**
1874 * suspend_console - suspend the console subsystem
1875 *
1876 * This disables printk() while we go into suspend states
1877 */
1878void suspend_console(void)
1879{
 
 
1880	if (!console_suspend_enabled)
1881		return;
1882	printk("Suspending console(s) (use no_console_suspend to debug)\n");
1883	console_lock();
1884	console_suspended = 1;
1885	up(&console_sem);
1886	mutex_release(&console_lock_dep_map, 1, _RET_IP_);
 
 
 
 
 
 
 
 
 
 
1887}
1888
1889void resume_console(void)
1890{
 
 
1891	if (!console_suspend_enabled)
1892		return;
1893	down(&console_sem);
1894	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);
1895	console_suspended = 0;
1896	console_unlock();
 
 
 
 
 
 
 
 
 
 
1897}
1898
1899/**
1900 * console_cpu_notify - print deferred console messages after CPU hotplug
1901 * @self: notifier struct
1902 * @action: CPU hotplug event
1903 * @hcpu: unused
1904 *
1905 * If printk() is called from a CPU that is not online yet, the messages
1906 * will be spooled but will not show up on the console.  This function is
1907 * called when a new CPU comes online (or fails to come up), and ensures
1908 * that any such output gets printed.
1909 */
1910static int console_cpu_notify(struct notifier_block *self,
1911	unsigned long action, void *hcpu)
1912{
1913	switch (action) {
1914	case CPU_ONLINE:
1915	case CPU_DEAD:
1916	case CPU_DOWN_FAILED:
1917	case CPU_UP_CANCELED:
1918		console_lock();
1919		console_unlock();
1920	}
1921	return NOTIFY_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1922}
1923
1924/**
1925 * console_lock - lock the console system for exclusive use.
1926 *
1927 * Acquires a lock which guarantees that the caller has
1928 * exclusive access to the console system and the console_drivers list.
1929 *
1930 * Can sleep, returns nothing.
1931 */
1932void console_lock(void)
1933{
1934	might_sleep();
1935
1936	down(&console_sem);
1937	if (console_suspended)
1938		return;
 
 
1939	console_locked = 1;
1940	console_may_schedule = 1;
1941	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);
1942}
1943EXPORT_SYMBOL(console_lock);
1944
1945/**
1946 * console_trylock - try to lock the console system for exclusive use.
1947 *
1948 * Tried to acquire a lock which guarantees that the caller has
1949 * exclusive access to the console system and the console_drivers list.
1950 *
1951 * returns 1 on success, and 0 on failure to acquire the lock.
1952 */
1953int console_trylock(void)
1954{
1955	if (down_trylock(&console_sem))
 
1956		return 0;
1957	if (console_suspended) {
1958		up(&console_sem);
1959		return 0;
1960	}
1961	console_locked = 1;
1962	console_may_schedule = 0;
1963	mutex_acquire(&console_lock_dep_map, 0, 1, _RET_IP_);
1964	return 1;
1965}
1966EXPORT_SYMBOL(console_trylock);
1967
1968int is_console_locked(void)
1969{
1970	return console_locked;
1971}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1972
1973static void console_cont_flush(char *text, size_t size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1974{
1975	unsigned long flags;
 
 
 
 
1976	size_t len;
1977
1978	raw_spin_lock_irqsave(&logbuf_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1979
1980	if (!cont.len)
1981		goto out;
1982
1983	/*
1984	 * We still queue earlier records, likely because the console was
1985	 * busy. The earlier ones need to be printed before this one, we
1986	 * did not flush any fragment so far, so just let it queue up.
1987	 */
1988	if (console_seq < log_next_seq && !cont.cons)
 
 
 
 
 
 
 
 
1989		goto out;
1990
1991	len = cont_print_text(text, size);
1992	raw_spin_unlock(&logbuf_lock);
1993	stop_critical_timings();
1994	call_console_drivers(cont.level, text, len);
1995	start_critical_timings();
1996	local_irq_restore(flags);
1997	return;
1998out:
1999	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
 
2000}
2001
2002/**
2003 * console_unlock - unlock the console system
 
 
 
 
 
 
 
 
2004 *
2005 * Releases the console_lock which the caller holds on the console system
2006 * and the console driver list.
 
2007 *
2008 * While the console_lock was held, console output may have been buffered
2009 * by printk().  If this is the case, console_unlock(); emits
2010 * the output prior to releasing the lock.
2011 *
2012 * If there is output waiting, we wake /dev/kmsg and syslog() users.
 
2013 *
2014 * console_unlock(); may be called from any context.
2015 */
2016void console_unlock(void)
2017{
2018	static char text[LOG_LINE_MAX + PREFIX_MAX];
2019	static u64 seen_seq;
 
 
 
2020	unsigned long flags;
2021	bool wake_klogd = false;
2022	bool retry;
2023
2024	if (console_suspended) {
2025		up(&console_sem);
2026		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
2027	}
2028
2029	console_may_schedule = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2030
2031	/* flush buffered message fragment immediately to console */
2032	console_cont_flush(text, sizeof(text));
2033again:
2034	for (;;) {
2035		struct printk_log *msg;
2036		size_t len;
2037		int level;
2038
2039		raw_spin_lock_irqsave(&logbuf_lock, flags);
2040		if (seen_seq != log_next_seq) {
2041			wake_klogd = true;
2042			seen_seq = log_next_seq;
2043		}
2044
2045		if (console_seq < log_first_seq) {
2046			/* messages are gone, move to first one */
2047			console_seq = log_first_seq;
2048			console_idx = log_first_idx;
2049			console_prev = 0;
2050		}
2051skip:
2052		if (console_seq == log_next_seq)
2053			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2054
2055		msg = log_from_idx(console_idx);
2056		if (msg->flags & LOG_NOCONS) {
2057			/*
2058			 * Skip record we have buffered and already printed
2059			 * directly to the console when we received it.
2060			 */
2061			console_idx = log_next(console_idx);
2062			console_seq++;
2063			/*
2064			 * We will get here again when we register a new
2065			 * CON_PRINTBUFFER console. Clear the flag so we
2066			 * will properly dump everything later.
2067			 */
2068			msg->flags &= ~LOG_NOCONS;
2069			console_prev = msg->flags;
2070			goto skip;
2071		}
2072
2073		level = msg->level;
2074		len = msg_print_text(msg, console_prev, false,
2075				     text, sizeof(text));
2076		console_idx = log_next(console_idx);
2077		console_seq++;
2078		console_prev = msg->flags;
2079		raw_spin_unlock(&logbuf_lock);
2080
2081		stop_critical_timings();	/* don't trace print latency */
2082		call_console_drivers(level, text, len);
2083		start_critical_timings();
2084		local_irq_restore(flags);
2085	}
2086	console_locked = 0;
2087	mutex_release(&console_lock_dep_map, 1, _RET_IP_);
2088
2089	/* Release the exclusive_console once it is used */
2090	if (unlikely(exclusive_console))
2091		exclusive_console = NULL;
 
 
2092
2093	raw_spin_unlock(&logbuf_lock);
2094
2095	up(&console_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2096
2097	/*
2098	 * Someone could have filled up the buffer again, so re-check if there's
2099	 * something to flush. In case we cannot trylock the console_sem again,
2100	 * there's a new owner and the console_unlock() from them will do the
2101	 * flush, no worries.
2102	 */
2103	raw_spin_lock(&logbuf_lock);
2104	retry = console_seq != log_next_seq;
2105	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
 
 
 
2106
2107	if (retry && console_trylock())
2108		goto again;
 
 
 
 
 
 
 
 
 
 
 
 
 
2109
2110	if (wake_klogd)
2111		wake_up_klogd();
 
 
 
 
 
2112}
2113EXPORT_SYMBOL(console_unlock);
2114
2115/**
2116 * console_conditional_schedule - yield the CPU if required
2117 *
2118 * If the console code is currently allowed to sleep, and
2119 * if this CPU should yield the CPU to another task, do
2120 * so here.
2121 *
2122 * Must be called within console_lock();.
2123 */
2124void __sched console_conditional_schedule(void)
2125{
2126	if (console_may_schedule)
2127		cond_resched();
2128}
2129EXPORT_SYMBOL(console_conditional_schedule);
2130
2131void console_unblank(void)
2132{
 
2133	struct console *c;
 
2134
2135	/*
2136	 * console_unblank can no longer be called in interrupt context unless
2137	 * oops_in_progress is set to 1..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2138	 */
2139	if (oops_in_progress) {
2140		if (down_trylock(&console_sem) != 0)
 
 
 
 
 
 
 
 
 
 
2141			return;
2142	} else
2143		console_lock();
2144
2145	console_locked = 1;
2146	console_may_schedule = 0;
2147	for_each_console(c)
2148		if ((c->flags & CON_ENABLED) && c->unblank)
 
 
2149			c->unblank();
 
 
 
2150	console_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2151}
2152
2153/*
2154 * Return the console tty driver structure and its associated index
2155 */
2156struct tty_driver *console_device(int *index)
2157{
2158	struct console *c;
2159	struct tty_driver *driver = NULL;
 
2160
 
 
 
 
 
2161	console_lock();
2162	for_each_console(c) {
 
 
2163		if (!c->device)
2164			continue;
2165		driver = c->device(c, index);
2166		if (driver)
2167			break;
2168	}
 
 
2169	console_unlock();
2170	return driver;
2171}
2172
2173/*
2174 * Prevent further output on the passed console device so that (for example)
2175 * serial drivers can disable console output before suspending a port, and can
2176 * re-enable output afterwards.
2177 */
2178void console_stop(struct console *console)
2179{
2180	console_lock();
2181	console->flags &= ~CON_ENABLED;
2182	console_unlock();
 
 
 
 
 
 
 
 
 
2183}
2184EXPORT_SYMBOL(console_stop);
2185
2186void console_start(struct console *console)
2187{
2188	console_lock();
2189	console->flags |= CON_ENABLED;
2190	console_unlock();
 
2191}
2192EXPORT_SYMBOL(console_start);
2193
2194static int __read_mostly keep_bootcon;
2195
2196static int __init keep_bootcon_setup(char *str)
2197{
2198	keep_bootcon = 1;
2199	pr_info("debug: skip boot console de-registration.\n");
2200
2201	return 0;
2202}
2203
2204early_param("keep_bootcon", keep_bootcon_setup);
2205
2206/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2207 * The console driver calls this routine during kernel initialization
2208 * to register the console printing procedure with printk() and to
2209 * print any messages that were printed by the kernel before the
2210 * console driver was initialized.
2211 *
2212 * This can happen pretty early during the boot process (because of
2213 * early_printk) - sometimes before setup_arch() completes - be careful
2214 * of what kernel features are used - they may not be initialised yet.
2215 *
2216 * There are two types of consoles - bootconsoles (early_printk) and
2217 * "real" consoles (everything which is not a bootconsole) which are
2218 * handled differently.
2219 *  - Any number of bootconsoles can be registered at any time.
2220 *  - As soon as a "real" console is registered, all bootconsoles
2221 *    will be unregistered automatically.
2222 *  - Once a "real" console is registered, any attempt to register a
2223 *    bootconsoles will be rejected
2224 */
2225void register_console(struct console *newcon)
2226{
2227	int i;
2228	unsigned long flags;
2229	struct console *bcon = NULL;
2230	struct console_cmdline *c;
 
 
2231
2232	if (console_drivers)
2233		for_each_console(bcon)
2234			if (WARN(bcon == newcon,
2235					"console '%s%d' already registered\n",
2236					bcon->name, bcon->index))
2237				return;
2238
2239	/*
2240	 * before we register a new CON_BOOT console, make sure we don't
2241	 * already have a valid console
2242	 */
2243	if (console_drivers && newcon->flags & CON_BOOT) {
2244		/* find the last or real console */
2245		for_each_console(bcon) {
2246			if (!(bcon->flags & CON_BOOT)) {
2247				pr_info("Too late to register bootconsole %s%d\n",
2248					newcon->name, newcon->index);
2249				return;
2250			}
2251		}
 
 
 
 
 
2252	}
2253
2254	if (console_drivers && console_drivers->flags & CON_BOOT)
2255		bcon = console_drivers;
 
 
 
 
2256
2257	if (preferred_console < 0 || bcon || !console_drivers)
2258		preferred_console = selected_console;
2259
2260	if (newcon->early_setup)
2261		newcon->early_setup();
 
 
 
2262
2263	/*
2264	 *	See if we want to use this console driver. If we
2265	 *	didn't select a console we take the first one
2266	 *	that registers here.
 
 
 
 
 
 
 
2267	 */
2268	if (preferred_console < 0) {
2269		if (newcon->index < 0)
2270			newcon->index = 0;
2271		if (newcon->setup == NULL ||
2272		    newcon->setup(newcon, NULL) == 0) {
2273			newcon->flags |= CON_ENABLED;
2274			if (newcon->device) {
2275				newcon->flags |= CON_CONSDEV;
2276				preferred_console = 0;
2277			}
2278		}
2279	}
2280
2281	/*
2282	 *	See if this console matches one we selected on
2283	 *	the command line.
2284	 */
2285	for (i = 0, c = console_cmdline;
2286	     i < MAX_CMDLINECONSOLES && c->name[0];
2287	     i++, c++) {
2288		if (strcmp(c->name, newcon->name) != 0)
2289			continue;
2290		if (newcon->index >= 0 &&
2291		    newcon->index != c->index)
2292			continue;
2293		if (newcon->index < 0)
2294			newcon->index = c->index;
2295
2296		if (_braille_register_console(newcon, c))
2297			return;
2298
2299		if (newcon->setup &&
2300		    newcon->setup(newcon, console_cmdline[i].options) != 0)
2301			break;
2302		newcon->flags |= CON_ENABLED;
2303		newcon->index = c->index;
2304		if (i == selected_console) {
2305			newcon->flags |= CON_CONSDEV;
2306			preferred_console = selected_console;
2307		}
2308		break;
2309	}
2310
2311	if (!(newcon->flags & CON_ENABLED))
2312		return;
2313
2314	/*
2315	 * If we have a bootconsole, and are switching to a real console,
2316	 * don't print everything out again, since when the boot console, and
2317	 * the real console are the same physical device, it's annoying to
2318	 * see the beginning boot messages twice
2319	 */
2320	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
 
2321		newcon->flags &= ~CON_PRINTBUFFER;
 
 
 
 
 
 
 
2322
2323	/*
2324	 *	Put this console in the list - keep the
2325	 *	preferred driver at the head of the list.
2326	 */
2327	console_lock();
2328	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2329		newcon->next = console_drivers;
2330		console_drivers = newcon;
2331		if (newcon->next)
2332			newcon->next->flags &= ~CON_CONSDEV;
 
 
 
 
2333	} else {
2334		newcon->next = console_drivers->next;
2335		console_drivers->next = newcon;
2336	}
2337	if (newcon->flags & CON_PRINTBUFFER) {
2338		/*
2339		 * console_unlock(); will print out the buffered messages
2340		 * for us.
2341		 */
2342		raw_spin_lock_irqsave(&logbuf_lock, flags);
2343		console_seq = syslog_seq;
2344		console_idx = syslog_idx;
2345		console_prev = syslog_prev;
2346		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2347		/*
2348		 * We're about to replay the log buffer.  Only do this to the
2349		 * just-registered console to avoid excessive message spam to
2350		 * the already-registered consoles.
2351		 */
2352		exclusive_console = newcon;
2353	}
2354	console_unlock();
2355	console_sysfs_notify();
2356
2357	/*
2358	 * By unregistering the bootconsoles after we enable the real console
2359	 * we get the "console xxx enabled" message on all the consoles -
2360	 * boot consoles, real consoles, etc - this is to ensure that end
2361	 * users know there might be something in the kernel's log buffer that
2362	 * went to the bootconsole (that they do not see on the real console)
2363	 */
2364	pr_info("%sconsole [%s%d] enabled\n",
2365		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2366		newcon->name, newcon->index);
2367	if (bcon &&
2368	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2369	    !keep_bootcon) {
2370		/* We need to iterate through all boot consoles, to make
2371		 * sure we print everything out, before we unregister them.
2372		 */
2373		for_each_console(bcon)
2374			if (bcon->flags & CON_BOOT)
2375				unregister_console(bcon);
2376	}
 
 
2377}
2378EXPORT_SYMBOL(register_console);
2379
2380int unregister_console(struct console *console)
 
2381{
2382        struct console *a, *b;
2383	int res;
2384
2385	pr_info("%sconsole [%s%d] disabled\n",
2386		(console->flags & CON_BOOT) ? "boot" : "" ,
2387		console->name, console->index);
2388
2389	res = _braille_unregister_console(console);
2390	if (res)
2391		return res;
 
 
 
 
 
2392
2393	res = 1;
2394	console_lock();
2395	if (console_drivers == console) {
2396		console_drivers=console->next;
2397		res = 0;
2398	} else if (console_drivers) {
2399		for (a=console_drivers->next, b=console_drivers ;
2400		     a; b=a, a=b->next) {
2401			if (a == console) {
2402				b->next = a->next;
2403				res = 0;
2404				break;
2405			}
2406		}
2407	}
2408
2409	/*
 
2410	 * If this isn't the last console and it has CON_CONSDEV set, we
2411	 * need to set it on the next preferred console.
 
 
 
 
2412	 */
2413	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2414		console_drivers->flags |= CON_CONSDEV;
 
 
 
 
 
 
 
 
 
 
2415
2416	console_unlock();
2417	console_sysfs_notify();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2418	return res;
2419}
2420EXPORT_SYMBOL(unregister_console);
2421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2422static int __init printk_late_init(void)
2423{
 
2424	struct console *con;
 
2425
2426	for_each_console(con) {
2427		if (!keep_bootcon && con->flags & CON_BOOT) {
2428			unregister_console(con);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2429		}
2430	}
2431	hotcpu_notifier(console_cpu_notify, 0);
 
 
 
 
 
 
 
 
2432	return 0;
2433}
2434late_initcall(printk_late_init);
2435
2436#if defined CONFIG_PRINTK
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2437/*
2438 * Delayed printk version, for scheduler-internal messages:
2439 */
2440#define PRINTK_BUF_SIZE		512
2441
2442#define PRINTK_PENDING_WAKEUP	0x01
2443#define PRINTK_PENDING_SCHED	0x02
2444
2445static DEFINE_PER_CPU(int, printk_pending);
2446static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
2447
2448static void wake_up_klogd_work_func(struct irq_work *irq_work)
2449{
2450	int pending = __this_cpu_xchg(printk_pending, 0);
2451
2452	if (pending & PRINTK_PENDING_SCHED) {
2453		char *buf = __get_cpu_var(printk_sched_buf);
2454		pr_warn("[sched_delayed] %s", buf);
 
2455	}
2456
2457	if (pending & PRINTK_PENDING_WAKEUP)
2458		wake_up_interruptible(&log_wait);
2459}
2460
2461static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2462	.func = wake_up_klogd_work_func,
2463	.flags = IRQ_WORK_LAZY,
2464};
2465
2466void wake_up_klogd(void)
2467{
 
 
 
2468	preempt_disable();
2469	if (waitqueue_active(&log_wait)) {
2470		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2471		irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
 
 
 
 
 
 
 
 
 
 
 
 
2472	}
2473	preempt_enable();
2474}
2475
2476int printk_sched(const char *fmt, ...)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2477{
2478	unsigned long flags;
2479	va_list args;
2480	char *buf;
2481	int r;
2482
2483	local_irq_save(flags);
2484	buf = __get_cpu_var(printk_sched_buf);
2485
2486	va_start(args, fmt);
2487	r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
2488	va_end(args);
2489
2490	__this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
2491	irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2492	local_irq_restore(flags);
2493
2494	return r;
2495}
2496
2497/*
2498 * printk rate limiting, lifted from the networking subsystem.
2499 *
2500 * This enforces a rate limit: not more than 10 kernel messages
2501 * every 5s to make a denial-of-service attack impossible.
2502 */
2503DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2504
2505int __printk_ratelimit(const char *func)
2506{
2507	return ___ratelimit(&printk_ratelimit_state, func);
2508}
2509EXPORT_SYMBOL(__printk_ratelimit);
2510
2511/**
2512 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2513 * @caller_jiffies: pointer to caller's state
2514 * @interval_msecs: minimum interval between prints
2515 *
2516 * printk_timed_ratelimit() returns true if more than @interval_msecs
2517 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2518 * returned true.
2519 */
2520bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2521			unsigned int interval_msecs)
2522{
2523	if (*caller_jiffies == 0
2524			|| !time_in_range(jiffies, *caller_jiffies,
2525					*caller_jiffies
2526					+ msecs_to_jiffies(interval_msecs))) {
2527		*caller_jiffies = jiffies;
2528		return true;
2529	}
2530	return false;
2531}
2532EXPORT_SYMBOL(printk_timed_ratelimit);
2533
2534static DEFINE_SPINLOCK(dump_list_lock);
2535static LIST_HEAD(dump_list);
2536
2537/**
2538 * kmsg_dump_register - register a kernel log dumper.
2539 * @dumper: pointer to the kmsg_dumper structure
2540 *
2541 * Adds a kernel log dumper to the system. The dump callback in the
2542 * structure will be called when the kernel oopses or panics and must be
2543 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2544 */
2545int kmsg_dump_register(struct kmsg_dumper *dumper)
2546{
2547	unsigned long flags;
2548	int err = -EBUSY;
2549
2550	/* The dump callback needs to be set */
2551	if (!dumper->dump)
2552		return -EINVAL;
2553
2554	spin_lock_irqsave(&dump_list_lock, flags);
2555	/* Don't allow registering multiple times */
2556	if (!dumper->registered) {
2557		dumper->registered = 1;
2558		list_add_tail_rcu(&dumper->list, &dump_list);
2559		err = 0;
2560	}
2561	spin_unlock_irqrestore(&dump_list_lock, flags);
2562
2563	return err;
2564}
2565EXPORT_SYMBOL_GPL(kmsg_dump_register);
2566
2567/**
2568 * kmsg_dump_unregister - unregister a kmsg dumper.
2569 * @dumper: pointer to the kmsg_dumper structure
2570 *
2571 * Removes a dump device from the system. Returns zero on success and
2572 * %-EINVAL otherwise.
2573 */
2574int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2575{
2576	unsigned long flags;
2577	int err = -EINVAL;
2578
2579	spin_lock_irqsave(&dump_list_lock, flags);
2580	if (dumper->registered) {
2581		dumper->registered = 0;
2582		list_del_rcu(&dumper->list);
2583		err = 0;
2584	}
2585	spin_unlock_irqrestore(&dump_list_lock, flags);
2586	synchronize_rcu();
2587
2588	return err;
2589}
2590EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2591
2592static bool always_kmsg_dump;
2593module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2595/**
2596 * kmsg_dump - dump kernel log to kernel message dumpers.
2597 * @reason: the reason (oops, panic etc) for dumping
2598 *
2599 * Call each of the registered dumper's dump() callback, which can
2600 * retrieve the kmsg records with kmsg_dump_get_line() or
2601 * kmsg_dump_get_buffer().
2602 */
2603void kmsg_dump(enum kmsg_dump_reason reason)
2604{
2605	struct kmsg_dumper *dumper;
2606	unsigned long flags;
2607
2608	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2609		return;
2610
2611	rcu_read_lock();
2612	list_for_each_entry_rcu(dumper, &dump_list, list) {
2613		if (dumper->max_reason && reason > dumper->max_reason)
 
 
 
 
 
 
 
 
 
 
2614			continue;
2615
2616		/* initialize iterator with data about the stored records */
2617		dumper->active = true;
2618
2619		raw_spin_lock_irqsave(&logbuf_lock, flags);
2620		dumper->cur_seq = clear_seq;
2621		dumper->cur_idx = clear_idx;
2622		dumper->next_seq = log_next_seq;
2623		dumper->next_idx = log_next_idx;
2624		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2625
2626		/* invoke dumper which will iterate over records */
2627		dumper->dump(dumper, reason);
2628
2629		/* reset iterator */
2630		dumper->active = false;
2631	}
2632	rcu_read_unlock();
2633}
2634
2635/**
2636 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2637 * @dumper: registered kmsg dumper
2638 * @syslog: include the "<4>" prefixes
2639 * @line: buffer to copy the line to
2640 * @size: maximum size of the buffer
2641 * @len: length of line placed into buffer
2642 *
2643 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2644 * record, and copy one record into the provided buffer.
2645 *
2646 * Consecutive calls will return the next available record moving
2647 * towards the end of the buffer with the youngest messages.
2648 *
2649 * A return value of FALSE indicates that there are no more records to
2650 * read.
2651 *
2652 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2653 */
2654bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2655			       char *line, size_t size, size_t *len)
2656{
2657	struct printk_log *msg;
 
 
 
2658	size_t l = 0;
2659	bool ret = false;
2660
2661	if (!dumper->active)
2662		goto out;
2663
2664	if (dumper->cur_seq < log_first_seq) {
2665		/* messages are gone, move to first available one */
2666		dumper->cur_seq = log_first_seq;
2667		dumper->cur_idx = log_first_idx;
2668	}
2669
2670	/* last entry */
2671	if (dumper->cur_seq >= log_next_seq)
2672		goto out;
 
 
 
 
 
 
 
 
 
2673
2674	msg = log_from_idx(dumper->cur_idx);
2675	l = msg_print_text(msg, 0, syslog, line, size);
2676
2677	dumper->cur_idx = log_next(dumper->cur_idx);
2678	dumper->cur_seq++;
2679	ret = true;
2680out:
2681	if (len)
2682		*len = l;
2683	return ret;
2684}
2685
2686/**
2687 * kmsg_dump_get_line - retrieve one kmsg log line
2688 * @dumper: registered kmsg dumper
2689 * @syslog: include the "<4>" prefixes
2690 * @line: buffer to copy the line to
2691 * @size: maximum size of the buffer
2692 * @len: length of line placed into buffer
2693 *
2694 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2695 * record, and copy one record into the provided buffer.
2696 *
2697 * Consecutive calls will return the next available record moving
2698 * towards the end of the buffer with the youngest messages.
2699 *
2700 * A return value of FALSE indicates that there are no more records to
2701 * read.
2702 */
2703bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2704			char *line, size_t size, size_t *len)
2705{
2706	unsigned long flags;
2707	bool ret;
2708
2709	raw_spin_lock_irqsave(&logbuf_lock, flags);
2710	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2711	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2712
2713	return ret;
2714}
2715EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2716
2717/**
2718 * kmsg_dump_get_buffer - copy kmsg log lines
2719 * @dumper: registered kmsg dumper
2720 * @syslog: include the "<4>" prefixes
2721 * @buf: buffer to copy the line to
2722 * @size: maximum size of the buffer
2723 * @len: length of line placed into buffer
2724 *
2725 * Start at the end of the kmsg buffer and fill the provided buffer
2726 * with as many of the the *youngest* kmsg records that fit into it.
2727 * If the buffer is large enough, all available kmsg records will be
2728 * copied with a single call.
2729 *
2730 * Consecutive calls will fill the buffer with the next block of
2731 * available older records, not including the earlier retrieved ones.
2732 *
2733 * A return value of FALSE indicates that there are no more records to
2734 * read.
2735 */
2736bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2737			  char *buf, size_t size, size_t *len)
2738{
2739	unsigned long flags;
 
 
2740	u64 seq;
2741	u32 idx;
2742	u64 next_seq;
2743	u32 next_idx;
2744	enum log_flags prev;
2745	size_t l = 0;
2746	bool ret = false;
 
2747
2748	if (!dumper->active)
2749		goto out;
2750
2751	raw_spin_lock_irqsave(&logbuf_lock, flags);
2752	if (dumper->cur_seq < log_first_seq) {
2753		/* messages are gone, move to first available one */
2754		dumper->cur_seq = log_first_seq;
2755		dumper->cur_idx = log_first_idx;
 
 
 
2756	}
2757
2758	/* last entry */
2759	if (dumper->cur_seq >= dumper->next_seq) {
2760		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2761		goto out;
2762	}
2763
2764	/* calculate length of entire buffer */
2765	seq = dumper->cur_seq;
2766	idx = dumper->cur_idx;
2767	prev = 0;
2768	while (seq < dumper->next_seq) {
2769		struct printk_log *msg = log_from_idx(idx);
2770
2771		l += msg_print_text(msg, prev, true, NULL, 0);
2772		idx = log_next(idx);
2773		seq++;
2774		prev = msg->flags;
2775	}
2776
2777	/* move first record forward until length fits into the buffer */
2778	seq = dumper->cur_seq;
2779	idx = dumper->cur_idx;
2780	prev = 0;
2781	while (l > size && seq < dumper->next_seq) {
2782		struct printk_log *msg = log_from_idx(idx);
2783
2784		l -= msg_print_text(msg, prev, true, NULL, 0);
2785		idx = log_next(idx);
2786		seq++;
2787		prev = msg->flags;
2788	}
2789
2790	/* last message in next interation */
 
 
 
2791	next_seq = seq;
2792	next_idx = idx;
2793
2794	l = 0;
2795	while (seq < dumper->next_seq) {
2796		struct printk_log *msg = log_from_idx(idx);
 
 
2797
2798		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2799		idx = log_next(idx);
2800		seq++;
2801		prev = msg->flags;
2802	}
2803
2804	dumper->next_seq = next_seq;
2805	dumper->next_idx = next_idx;
2806	ret = true;
2807	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2808out:
2809	if (len)
2810		*len = l;
2811	return ret;
2812}
2813EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2814
2815/**
2816 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2817 * @dumper: registered kmsg dumper
2818 *
2819 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2820 * kmsg_dump_get_buffer() can be called again and used multiple
2821 * times within the same dumper.dump() callback.
2822 *
2823 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2824 */
2825void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2826{
2827	dumper->cur_seq = clear_seq;
2828	dumper->cur_idx = clear_idx;
2829	dumper->next_seq = log_next_seq;
2830	dumper->next_idx = log_next_idx;
2831}
 
 
 
 
 
 
 
2832
2833/**
2834 * kmsg_dump_rewind - reset the interator
2835 * @dumper: registered kmsg dumper
2836 *
2837 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2838 * kmsg_dump_get_buffer() can be called again and used multiple
2839 * times within the same dumper.dump() callback.
2840 */
2841void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2842{
2843	unsigned long flags;
2844
2845	raw_spin_lock_irqsave(&logbuf_lock, flags);
2846	kmsg_dump_rewind_nolock(dumper);
2847	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2848}
2849EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2850
2851static char dump_stack_arch_desc_str[128];
2852
2853/**
2854 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
2855 * @fmt: printf-style format string
2856 * @...: arguments for the format string
 
 
 
2857 *
2858 * The configured string will be printed right after utsname during task
2859 * dumps.  Usually used to add arch-specific system identifiers.  If an
2860 * arch wants to make use of such an ID string, it should initialize this
2861 * as soon as possible during boot.
2862 */
2863void __init dump_stack_set_arch_desc(const char *fmt, ...)
2864{
2865	va_list args;
 
2866
2867	va_start(args, fmt);
2868	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
2869		  fmt, args);
2870	va_end(args);
2871}
2872
2873/**
2874 * dump_stack_print_info - print generic debug info for dump_stack()
2875 * @log_lvl: log level
2876 *
2877 * Arch-specific dump_stack() implementations can use this function to
2878 * print out the same debug information as the generic dump_stack().
2879 */
2880void dump_stack_print_info(const char *log_lvl)
2881{
2882	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
2883	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
2884	       print_tainted(), init_utsname()->release,
2885	       (int)strcspn(init_utsname()->version, " "),
2886	       init_utsname()->version);
 
 
 
 
 
 
 
 
 
 
 
 
 
2887
2888	if (dump_stack_arch_desc_str[0] != '\0')
2889		printk("%sHardware name: %s\n",
2890		       log_lvl, dump_stack_arch_desc_str);
 
 
2891
2892	print_worker_info(log_lvl, current);
2893}
 
2894
2895/**
2896 * show_regs_print_info - print generic debug info for show_regs()
2897 * @log_lvl: log level
 
2898 *
2899 * show_regs() implementations can use this function to print out generic
2900 * debug information.
2901 */
2902void show_regs_print_info(const char *log_lvl)
2903{
2904	dump_stack_print_info(log_lvl);
 
 
 
2905
2906	printk("%stask: %p ti: %p task.ti: %p\n",
2907	       log_lvl, current, current_thread_info(),
2908	       task_thread_info(current));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2909}
2910
2911#endif