Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/kernel/power/swap.c
4 *
5 * This file provides functions for reading the suspend image from
6 * and writing it to a swap partition.
7 *
8 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
9 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
10 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
11 */
12
13#define pr_fmt(fmt) "PM: " fmt
14
15#include <linux/module.h>
16#include <linux/file.h>
17#include <linux/delay.h>
18#include <linux/bitops.h>
19#include <linux/device.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/swap.h>
23#include <linux/swapops.h>
24#include <linux/pm.h>
25#include <linux/slab.h>
26#include <linux/lzo.h>
27#include <linux/vmalloc.h>
28#include <linux/cpumask.h>
29#include <linux/atomic.h>
30#include <linux/kthread.h>
31#include <linux/crc32.h>
32#include <linux/ktime.h>
33
34#include "power.h"
35
36#define HIBERNATE_SIG "S1SUSPEND"
37
38u32 swsusp_hardware_signature;
39
40/*
41 * When reading an {un,}compressed image, we may restore pages in place,
42 * in which case some architectures need these pages cleaning before they
43 * can be executed. We don't know which pages these may be, so clean the lot.
44 */
45static bool clean_pages_on_read;
46static bool clean_pages_on_decompress;
47
48/*
49 * The swap map is a data structure used for keeping track of each page
50 * written to a swap partition. It consists of many swap_map_page
51 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
52 * These structures are stored on the swap and linked together with the
53 * help of the .next_swap member.
54 *
55 * The swap map is created during suspend. The swap map pages are
56 * allocated and populated one at a time, so we only need one memory
57 * page to set up the entire structure.
58 *
59 * During resume we pick up all swap_map_page structures into a list.
60 */
61
62#define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1)
63
64/*
65 * Number of free pages that are not high.
66 */
67static inline unsigned long low_free_pages(void)
68{
69 return nr_free_pages() - nr_free_highpages();
70}
71
72/*
73 * Number of pages required to be kept free while writing the image. Always
74 * half of all available low pages before the writing starts.
75 */
76static inline unsigned long reqd_free_pages(void)
77{
78 return low_free_pages() / 2;
79}
80
81struct swap_map_page {
82 sector_t entries[MAP_PAGE_ENTRIES];
83 sector_t next_swap;
84};
85
86struct swap_map_page_list {
87 struct swap_map_page *map;
88 struct swap_map_page_list *next;
89};
90
91/*
92 * The swap_map_handle structure is used for handling swap in
93 * a file-alike way
94 */
95
96struct swap_map_handle {
97 struct swap_map_page *cur;
98 struct swap_map_page_list *maps;
99 sector_t cur_swap;
100 sector_t first_sector;
101 unsigned int k;
102 unsigned long reqd_free_pages;
103 u32 crc32;
104};
105
106struct swsusp_header {
107 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
108 sizeof(u32) - sizeof(u32)];
109 u32 hw_sig;
110 u32 crc32;
111 sector_t image;
112 unsigned int flags; /* Flags to pass to the "boot" kernel */
113 char orig_sig[10];
114 char sig[10];
115} __packed;
116
117static struct swsusp_header *swsusp_header;
118
119/*
120 * The following functions are used for tracing the allocated
121 * swap pages, so that they can be freed in case of an error.
122 */
123
124struct swsusp_extent {
125 struct rb_node node;
126 unsigned long start;
127 unsigned long end;
128};
129
130static struct rb_root swsusp_extents = RB_ROOT;
131
132static int swsusp_extents_insert(unsigned long swap_offset)
133{
134 struct rb_node **new = &(swsusp_extents.rb_node);
135 struct rb_node *parent = NULL;
136 struct swsusp_extent *ext;
137
138 /* Figure out where to put the new node */
139 while (*new) {
140 ext = rb_entry(*new, struct swsusp_extent, node);
141 parent = *new;
142 if (swap_offset < ext->start) {
143 /* Try to merge */
144 if (swap_offset == ext->start - 1) {
145 ext->start--;
146 return 0;
147 }
148 new = &((*new)->rb_left);
149 } else if (swap_offset > ext->end) {
150 /* Try to merge */
151 if (swap_offset == ext->end + 1) {
152 ext->end++;
153 return 0;
154 }
155 new = &((*new)->rb_right);
156 } else {
157 /* It already is in the tree */
158 return -EINVAL;
159 }
160 }
161 /* Add the new node and rebalance the tree. */
162 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
163 if (!ext)
164 return -ENOMEM;
165
166 ext->start = swap_offset;
167 ext->end = swap_offset;
168 rb_link_node(&ext->node, parent, new);
169 rb_insert_color(&ext->node, &swsusp_extents);
170 return 0;
171}
172
173/*
174 * alloc_swapdev_block - allocate a swap page and register that it has
175 * been allocated, so that it can be freed in case of an error.
176 */
177
178sector_t alloc_swapdev_block(int swap)
179{
180 unsigned long offset;
181
182 offset = swp_offset(get_swap_page_of_type(swap));
183 if (offset) {
184 if (swsusp_extents_insert(offset))
185 swap_free(swp_entry(swap, offset));
186 else
187 return swapdev_block(swap, offset);
188 }
189 return 0;
190}
191
192/*
193 * free_all_swap_pages - free swap pages allocated for saving image data.
194 * It also frees the extents used to register which swap entries had been
195 * allocated.
196 */
197
198void free_all_swap_pages(int swap)
199{
200 struct rb_node *node;
201
202 while ((node = swsusp_extents.rb_node)) {
203 struct swsusp_extent *ext;
204 unsigned long offset;
205
206 ext = rb_entry(node, struct swsusp_extent, node);
207 rb_erase(node, &swsusp_extents);
208 for (offset = ext->start; offset <= ext->end; offset++)
209 swap_free(swp_entry(swap, offset));
210
211 kfree(ext);
212 }
213}
214
215int swsusp_swap_in_use(void)
216{
217 return (swsusp_extents.rb_node != NULL);
218}
219
220/*
221 * General things
222 */
223
224static unsigned short root_swap = 0xffff;
225static struct bdev_handle *hib_resume_bdev_handle;
226
227struct hib_bio_batch {
228 atomic_t count;
229 wait_queue_head_t wait;
230 blk_status_t error;
231 struct blk_plug plug;
232};
233
234static void hib_init_batch(struct hib_bio_batch *hb)
235{
236 atomic_set(&hb->count, 0);
237 init_waitqueue_head(&hb->wait);
238 hb->error = BLK_STS_OK;
239 blk_start_plug(&hb->plug);
240}
241
242static void hib_finish_batch(struct hib_bio_batch *hb)
243{
244 blk_finish_plug(&hb->plug);
245}
246
247static void hib_end_io(struct bio *bio)
248{
249 struct hib_bio_batch *hb = bio->bi_private;
250 struct page *page = bio_first_page_all(bio);
251
252 if (bio->bi_status) {
253 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
254 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
255 (unsigned long long)bio->bi_iter.bi_sector);
256 }
257
258 if (bio_data_dir(bio) == WRITE)
259 put_page(page);
260 else if (clean_pages_on_read)
261 flush_icache_range((unsigned long)page_address(page),
262 (unsigned long)page_address(page) + PAGE_SIZE);
263
264 if (bio->bi_status && !hb->error)
265 hb->error = bio->bi_status;
266 if (atomic_dec_and_test(&hb->count))
267 wake_up(&hb->wait);
268
269 bio_put(bio);
270}
271
272static int hib_submit_io(blk_opf_t opf, pgoff_t page_off, void *addr,
273 struct hib_bio_batch *hb)
274{
275 struct page *page = virt_to_page(addr);
276 struct bio *bio;
277 int error = 0;
278
279 bio = bio_alloc(hib_resume_bdev_handle->bdev, 1, opf,
280 GFP_NOIO | __GFP_HIGH);
281 bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
282
283 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
284 pr_err("Adding page to bio failed at %llu\n",
285 (unsigned long long)bio->bi_iter.bi_sector);
286 bio_put(bio);
287 return -EFAULT;
288 }
289
290 if (hb) {
291 bio->bi_end_io = hib_end_io;
292 bio->bi_private = hb;
293 atomic_inc(&hb->count);
294 submit_bio(bio);
295 } else {
296 error = submit_bio_wait(bio);
297 bio_put(bio);
298 }
299
300 return error;
301}
302
303static int hib_wait_io(struct hib_bio_batch *hb)
304{
305 /*
306 * We are relying on the behavior of blk_plug that a thread with
307 * a plug will flush the plug list before sleeping.
308 */
309 wait_event(hb->wait, atomic_read(&hb->count) == 0);
310 return blk_status_to_errno(hb->error);
311}
312
313/*
314 * Saving part
315 */
316static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
317{
318 int error;
319
320 hib_submit_io(REQ_OP_READ, swsusp_resume_block, swsusp_header, NULL);
321 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
322 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
323 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
324 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
325 swsusp_header->image = handle->first_sector;
326 if (swsusp_hardware_signature) {
327 swsusp_header->hw_sig = swsusp_hardware_signature;
328 flags |= SF_HW_SIG;
329 }
330 swsusp_header->flags = flags;
331 if (flags & SF_CRC32_MODE)
332 swsusp_header->crc32 = handle->crc32;
333 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
334 swsusp_resume_block, swsusp_header, NULL);
335 } else {
336 pr_err("Swap header not found!\n");
337 error = -ENODEV;
338 }
339 return error;
340}
341
342/**
343 * swsusp_swap_check - check if the resume device is a swap device
344 * and get its index (if so)
345 *
346 * This is called before saving image
347 */
348static int swsusp_swap_check(void)
349{
350 int res;
351
352 if (swsusp_resume_device)
353 res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
354 else
355 res = find_first_swap(&swsusp_resume_device);
356 if (res < 0)
357 return res;
358 root_swap = res;
359
360 hib_resume_bdev_handle = bdev_open_by_dev(swsusp_resume_device,
361 BLK_OPEN_WRITE, NULL, NULL);
362 if (IS_ERR(hib_resume_bdev_handle))
363 return PTR_ERR(hib_resume_bdev_handle);
364
365 res = set_blocksize(hib_resume_bdev_handle->bdev, PAGE_SIZE);
366 if (res < 0)
367 bdev_release(hib_resume_bdev_handle);
368
369 return res;
370}
371
372/**
373 * write_page - Write one page to given swap location.
374 * @buf: Address we're writing.
375 * @offset: Offset of the swap page we're writing to.
376 * @hb: bio completion batch
377 */
378
379static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
380{
381 void *src;
382 int ret;
383
384 if (!offset)
385 return -ENOSPC;
386
387 if (hb) {
388 src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
389 __GFP_NORETRY);
390 if (src) {
391 copy_page(src, buf);
392 } else {
393 ret = hib_wait_io(hb); /* Free pages */
394 if (ret)
395 return ret;
396 src = (void *)__get_free_page(GFP_NOIO |
397 __GFP_NOWARN |
398 __GFP_NORETRY);
399 if (src) {
400 copy_page(src, buf);
401 } else {
402 WARN_ON_ONCE(1);
403 hb = NULL; /* Go synchronous */
404 src = buf;
405 }
406 }
407 } else {
408 src = buf;
409 }
410 return hib_submit_io(REQ_OP_WRITE | REQ_SYNC, offset, src, hb);
411}
412
413static void release_swap_writer(struct swap_map_handle *handle)
414{
415 if (handle->cur)
416 free_page((unsigned long)handle->cur);
417 handle->cur = NULL;
418}
419
420static int get_swap_writer(struct swap_map_handle *handle)
421{
422 int ret;
423
424 ret = swsusp_swap_check();
425 if (ret) {
426 if (ret != -ENOSPC)
427 pr_err("Cannot find swap device, try swapon -a\n");
428 return ret;
429 }
430 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
431 if (!handle->cur) {
432 ret = -ENOMEM;
433 goto err_close;
434 }
435 handle->cur_swap = alloc_swapdev_block(root_swap);
436 if (!handle->cur_swap) {
437 ret = -ENOSPC;
438 goto err_rel;
439 }
440 handle->k = 0;
441 handle->reqd_free_pages = reqd_free_pages();
442 handle->first_sector = handle->cur_swap;
443 return 0;
444err_rel:
445 release_swap_writer(handle);
446err_close:
447 swsusp_close();
448 return ret;
449}
450
451static int swap_write_page(struct swap_map_handle *handle, void *buf,
452 struct hib_bio_batch *hb)
453{
454 int error;
455 sector_t offset;
456
457 if (!handle->cur)
458 return -EINVAL;
459 offset = alloc_swapdev_block(root_swap);
460 error = write_page(buf, offset, hb);
461 if (error)
462 return error;
463 handle->cur->entries[handle->k++] = offset;
464 if (handle->k >= MAP_PAGE_ENTRIES) {
465 offset = alloc_swapdev_block(root_swap);
466 if (!offset)
467 return -ENOSPC;
468 handle->cur->next_swap = offset;
469 error = write_page(handle->cur, handle->cur_swap, hb);
470 if (error)
471 goto out;
472 clear_page(handle->cur);
473 handle->cur_swap = offset;
474 handle->k = 0;
475
476 if (hb && low_free_pages() <= handle->reqd_free_pages) {
477 error = hib_wait_io(hb);
478 if (error)
479 goto out;
480 /*
481 * Recalculate the number of required free pages, to
482 * make sure we never take more than half.
483 */
484 handle->reqd_free_pages = reqd_free_pages();
485 }
486 }
487 out:
488 return error;
489}
490
491static int flush_swap_writer(struct swap_map_handle *handle)
492{
493 if (handle->cur && handle->cur_swap)
494 return write_page(handle->cur, handle->cur_swap, NULL);
495 else
496 return -EINVAL;
497}
498
499static int swap_writer_finish(struct swap_map_handle *handle,
500 unsigned int flags, int error)
501{
502 if (!error) {
503 pr_info("S");
504 error = mark_swapfiles(handle, flags);
505 pr_cont("|\n");
506 flush_swap_writer(handle);
507 }
508
509 if (error)
510 free_all_swap_pages(root_swap);
511 release_swap_writer(handle);
512 swsusp_close();
513
514 return error;
515}
516
517/* We need to remember how much compressed data we need to read. */
518#define LZO_HEADER sizeof(size_t)
519
520/* Number of pages/bytes we'll compress at one time. */
521#define LZO_UNC_PAGES 32
522#define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE)
523
524/* Number of pages/bytes we need for compressed data (worst case). */
525#define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
526 LZO_HEADER, PAGE_SIZE)
527#define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE)
528
529/* Maximum number of threads for compression/decompression. */
530#define LZO_THREADS 3
531
532/* Minimum/maximum number of pages for read buffering. */
533#define LZO_MIN_RD_PAGES 1024
534#define LZO_MAX_RD_PAGES 8192
535
536
537/**
538 * save_image - save the suspend image data
539 */
540
541static int save_image(struct swap_map_handle *handle,
542 struct snapshot_handle *snapshot,
543 unsigned int nr_to_write)
544{
545 unsigned int m;
546 int ret;
547 int nr_pages;
548 int err2;
549 struct hib_bio_batch hb;
550 ktime_t start;
551 ktime_t stop;
552
553 hib_init_batch(&hb);
554
555 pr_info("Saving image data pages (%u pages)...\n",
556 nr_to_write);
557 m = nr_to_write / 10;
558 if (!m)
559 m = 1;
560 nr_pages = 0;
561 start = ktime_get();
562 while (1) {
563 ret = snapshot_read_next(snapshot);
564 if (ret <= 0)
565 break;
566 ret = swap_write_page(handle, data_of(*snapshot), &hb);
567 if (ret)
568 break;
569 if (!(nr_pages % m))
570 pr_info("Image saving progress: %3d%%\n",
571 nr_pages / m * 10);
572 nr_pages++;
573 }
574 err2 = hib_wait_io(&hb);
575 hib_finish_batch(&hb);
576 stop = ktime_get();
577 if (!ret)
578 ret = err2;
579 if (!ret)
580 pr_info("Image saving done\n");
581 swsusp_show_speed(start, stop, nr_to_write, "Wrote");
582 return ret;
583}
584
585/*
586 * Structure used for CRC32.
587 */
588struct crc_data {
589 struct task_struct *thr; /* thread */
590 atomic_t ready; /* ready to start flag */
591 atomic_t stop; /* ready to stop flag */
592 unsigned run_threads; /* nr current threads */
593 wait_queue_head_t go; /* start crc update */
594 wait_queue_head_t done; /* crc update done */
595 u32 *crc32; /* points to handle's crc32 */
596 size_t *unc_len[LZO_THREADS]; /* uncompressed lengths */
597 unsigned char *unc[LZO_THREADS]; /* uncompressed data */
598};
599
600/*
601 * CRC32 update function that runs in its own thread.
602 */
603static int crc32_threadfn(void *data)
604{
605 struct crc_data *d = data;
606 unsigned i;
607
608 while (1) {
609 wait_event(d->go, atomic_read_acquire(&d->ready) ||
610 kthread_should_stop());
611 if (kthread_should_stop()) {
612 d->thr = NULL;
613 atomic_set_release(&d->stop, 1);
614 wake_up(&d->done);
615 break;
616 }
617 atomic_set(&d->ready, 0);
618
619 for (i = 0; i < d->run_threads; i++)
620 *d->crc32 = crc32_le(*d->crc32,
621 d->unc[i], *d->unc_len[i]);
622 atomic_set_release(&d->stop, 1);
623 wake_up(&d->done);
624 }
625 return 0;
626}
627/*
628 * Structure used for LZO data compression.
629 */
630struct cmp_data {
631 struct task_struct *thr; /* thread */
632 atomic_t ready; /* ready to start flag */
633 atomic_t stop; /* ready to stop flag */
634 int ret; /* return code */
635 wait_queue_head_t go; /* start compression */
636 wait_queue_head_t done; /* compression done */
637 size_t unc_len; /* uncompressed length */
638 size_t cmp_len; /* compressed length */
639 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
640 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
641 unsigned char wrk[LZO1X_1_MEM_COMPRESS]; /* compression workspace */
642};
643
644/*
645 * Compression function that runs in its own thread.
646 */
647static int lzo_compress_threadfn(void *data)
648{
649 struct cmp_data *d = data;
650
651 while (1) {
652 wait_event(d->go, atomic_read_acquire(&d->ready) ||
653 kthread_should_stop());
654 if (kthread_should_stop()) {
655 d->thr = NULL;
656 d->ret = -1;
657 atomic_set_release(&d->stop, 1);
658 wake_up(&d->done);
659 break;
660 }
661 atomic_set(&d->ready, 0);
662
663 d->ret = lzo1x_1_compress(d->unc, d->unc_len,
664 d->cmp + LZO_HEADER, &d->cmp_len,
665 d->wrk);
666 atomic_set_release(&d->stop, 1);
667 wake_up(&d->done);
668 }
669 return 0;
670}
671
672/**
673 * save_image_lzo - Save the suspend image data compressed with LZO.
674 * @handle: Swap map handle to use for saving the image.
675 * @snapshot: Image to read data from.
676 * @nr_to_write: Number of pages to save.
677 */
678static int save_image_lzo(struct swap_map_handle *handle,
679 struct snapshot_handle *snapshot,
680 unsigned int nr_to_write)
681{
682 unsigned int m;
683 int ret = 0;
684 int nr_pages;
685 int err2;
686 struct hib_bio_batch hb;
687 ktime_t start;
688 ktime_t stop;
689 size_t off;
690 unsigned thr, run_threads, nr_threads;
691 unsigned char *page = NULL;
692 struct cmp_data *data = NULL;
693 struct crc_data *crc = NULL;
694
695 hib_init_batch(&hb);
696
697 /*
698 * We'll limit the number of threads for compression to limit memory
699 * footprint.
700 */
701 nr_threads = num_online_cpus() - 1;
702 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
703
704 page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
705 if (!page) {
706 pr_err("Failed to allocate LZO page\n");
707 ret = -ENOMEM;
708 goto out_clean;
709 }
710
711 data = vzalloc(array_size(nr_threads, sizeof(*data)));
712 if (!data) {
713 pr_err("Failed to allocate LZO data\n");
714 ret = -ENOMEM;
715 goto out_clean;
716 }
717
718 crc = kzalloc(sizeof(*crc), GFP_KERNEL);
719 if (!crc) {
720 pr_err("Failed to allocate crc\n");
721 ret = -ENOMEM;
722 goto out_clean;
723 }
724
725 /*
726 * Start the compression threads.
727 */
728 for (thr = 0; thr < nr_threads; thr++) {
729 init_waitqueue_head(&data[thr].go);
730 init_waitqueue_head(&data[thr].done);
731
732 data[thr].thr = kthread_run(lzo_compress_threadfn,
733 &data[thr],
734 "image_compress/%u", thr);
735 if (IS_ERR(data[thr].thr)) {
736 data[thr].thr = NULL;
737 pr_err("Cannot start compression threads\n");
738 ret = -ENOMEM;
739 goto out_clean;
740 }
741 }
742
743 /*
744 * Start the CRC32 thread.
745 */
746 init_waitqueue_head(&crc->go);
747 init_waitqueue_head(&crc->done);
748
749 handle->crc32 = 0;
750 crc->crc32 = &handle->crc32;
751 for (thr = 0; thr < nr_threads; thr++) {
752 crc->unc[thr] = data[thr].unc;
753 crc->unc_len[thr] = &data[thr].unc_len;
754 }
755
756 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
757 if (IS_ERR(crc->thr)) {
758 crc->thr = NULL;
759 pr_err("Cannot start CRC32 thread\n");
760 ret = -ENOMEM;
761 goto out_clean;
762 }
763
764 /*
765 * Adjust the number of required free pages after all allocations have
766 * been done. We don't want to run out of pages when writing.
767 */
768 handle->reqd_free_pages = reqd_free_pages();
769
770 pr_info("Using %u thread(s) for compression\n", nr_threads);
771 pr_info("Compressing and saving image data (%u pages)...\n",
772 nr_to_write);
773 m = nr_to_write / 10;
774 if (!m)
775 m = 1;
776 nr_pages = 0;
777 start = ktime_get();
778 for (;;) {
779 for (thr = 0; thr < nr_threads; thr++) {
780 for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
781 ret = snapshot_read_next(snapshot);
782 if (ret < 0)
783 goto out_finish;
784
785 if (!ret)
786 break;
787
788 memcpy(data[thr].unc + off,
789 data_of(*snapshot), PAGE_SIZE);
790
791 if (!(nr_pages % m))
792 pr_info("Image saving progress: %3d%%\n",
793 nr_pages / m * 10);
794 nr_pages++;
795 }
796 if (!off)
797 break;
798
799 data[thr].unc_len = off;
800
801 atomic_set_release(&data[thr].ready, 1);
802 wake_up(&data[thr].go);
803 }
804
805 if (!thr)
806 break;
807
808 crc->run_threads = thr;
809 atomic_set_release(&crc->ready, 1);
810 wake_up(&crc->go);
811
812 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
813 wait_event(data[thr].done,
814 atomic_read_acquire(&data[thr].stop));
815 atomic_set(&data[thr].stop, 0);
816
817 ret = data[thr].ret;
818
819 if (ret < 0) {
820 pr_err("LZO compression failed\n");
821 goto out_finish;
822 }
823
824 if (unlikely(!data[thr].cmp_len ||
825 data[thr].cmp_len >
826 lzo1x_worst_compress(data[thr].unc_len))) {
827 pr_err("Invalid LZO compressed length\n");
828 ret = -1;
829 goto out_finish;
830 }
831
832 *(size_t *)data[thr].cmp = data[thr].cmp_len;
833
834 /*
835 * Given we are writing one page at a time to disk, we
836 * copy that much from the buffer, although the last
837 * bit will likely be smaller than full page. This is
838 * OK - we saved the length of the compressed data, so
839 * any garbage at the end will be discarded when we
840 * read it.
841 */
842 for (off = 0;
843 off < LZO_HEADER + data[thr].cmp_len;
844 off += PAGE_SIZE) {
845 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
846
847 ret = swap_write_page(handle, page, &hb);
848 if (ret)
849 goto out_finish;
850 }
851 }
852
853 wait_event(crc->done, atomic_read_acquire(&crc->stop));
854 atomic_set(&crc->stop, 0);
855 }
856
857out_finish:
858 err2 = hib_wait_io(&hb);
859 stop = ktime_get();
860 if (!ret)
861 ret = err2;
862 if (!ret)
863 pr_info("Image saving done\n");
864 swsusp_show_speed(start, stop, nr_to_write, "Wrote");
865out_clean:
866 hib_finish_batch(&hb);
867 if (crc) {
868 if (crc->thr)
869 kthread_stop(crc->thr);
870 kfree(crc);
871 }
872 if (data) {
873 for (thr = 0; thr < nr_threads; thr++)
874 if (data[thr].thr)
875 kthread_stop(data[thr].thr);
876 vfree(data);
877 }
878 if (page) free_page((unsigned long)page);
879
880 return ret;
881}
882
883/**
884 * enough_swap - Make sure we have enough swap to save the image.
885 *
886 * Returns TRUE or FALSE after checking the total amount of swap
887 * space available from the resume partition.
888 */
889
890static int enough_swap(unsigned int nr_pages)
891{
892 unsigned int free_swap = count_swap_pages(root_swap, 1);
893 unsigned int required;
894
895 pr_debug("Free swap pages: %u\n", free_swap);
896
897 required = PAGES_FOR_IO + nr_pages;
898 return free_swap > required;
899}
900
901/**
902 * swsusp_write - Write entire image and metadata.
903 * @flags: flags to pass to the "boot" kernel in the image header
904 *
905 * It is important _NOT_ to umount filesystems at this point. We want
906 * them synced (in case something goes wrong) but we DO not want to mark
907 * filesystem clean: it is not. (And it does not matter, if we resume
908 * correctly, we'll mark system clean, anyway.)
909 */
910
911int swsusp_write(unsigned int flags)
912{
913 struct swap_map_handle handle;
914 struct snapshot_handle snapshot;
915 struct swsusp_info *header;
916 unsigned long pages;
917 int error;
918
919 pages = snapshot_get_image_size();
920 error = get_swap_writer(&handle);
921 if (error) {
922 pr_err("Cannot get swap writer\n");
923 return error;
924 }
925 if (flags & SF_NOCOMPRESS_MODE) {
926 if (!enough_swap(pages)) {
927 pr_err("Not enough free swap\n");
928 error = -ENOSPC;
929 goto out_finish;
930 }
931 }
932 memset(&snapshot, 0, sizeof(struct snapshot_handle));
933 error = snapshot_read_next(&snapshot);
934 if (error < (int)PAGE_SIZE) {
935 if (error >= 0)
936 error = -EFAULT;
937
938 goto out_finish;
939 }
940 header = (struct swsusp_info *)data_of(snapshot);
941 error = swap_write_page(&handle, header, NULL);
942 if (!error) {
943 error = (flags & SF_NOCOMPRESS_MODE) ?
944 save_image(&handle, &snapshot, pages - 1) :
945 save_image_lzo(&handle, &snapshot, pages - 1);
946 }
947out_finish:
948 error = swap_writer_finish(&handle, flags, error);
949 return error;
950}
951
952/*
953 * The following functions allow us to read data using a swap map
954 * in a file-like way.
955 */
956
957static void release_swap_reader(struct swap_map_handle *handle)
958{
959 struct swap_map_page_list *tmp;
960
961 while (handle->maps) {
962 if (handle->maps->map)
963 free_page((unsigned long)handle->maps->map);
964 tmp = handle->maps;
965 handle->maps = handle->maps->next;
966 kfree(tmp);
967 }
968 handle->cur = NULL;
969}
970
971static int get_swap_reader(struct swap_map_handle *handle,
972 unsigned int *flags_p)
973{
974 int error;
975 struct swap_map_page_list *tmp, *last;
976 sector_t offset;
977
978 *flags_p = swsusp_header->flags;
979
980 if (!swsusp_header->image) /* how can this happen? */
981 return -EINVAL;
982
983 handle->cur = NULL;
984 last = handle->maps = NULL;
985 offset = swsusp_header->image;
986 while (offset) {
987 tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
988 if (!tmp) {
989 release_swap_reader(handle);
990 return -ENOMEM;
991 }
992 if (!handle->maps)
993 handle->maps = tmp;
994 if (last)
995 last->next = tmp;
996 last = tmp;
997
998 tmp->map = (struct swap_map_page *)
999 __get_free_page(GFP_NOIO | __GFP_HIGH);
1000 if (!tmp->map) {
1001 release_swap_reader(handle);
1002 return -ENOMEM;
1003 }
1004
1005 error = hib_submit_io(REQ_OP_READ, offset, tmp->map, NULL);
1006 if (error) {
1007 release_swap_reader(handle);
1008 return error;
1009 }
1010 offset = tmp->map->next_swap;
1011 }
1012 handle->k = 0;
1013 handle->cur = handle->maps->map;
1014 return 0;
1015}
1016
1017static int swap_read_page(struct swap_map_handle *handle, void *buf,
1018 struct hib_bio_batch *hb)
1019{
1020 sector_t offset;
1021 int error;
1022 struct swap_map_page_list *tmp;
1023
1024 if (!handle->cur)
1025 return -EINVAL;
1026 offset = handle->cur->entries[handle->k];
1027 if (!offset)
1028 return -EFAULT;
1029 error = hib_submit_io(REQ_OP_READ, offset, buf, hb);
1030 if (error)
1031 return error;
1032 if (++handle->k >= MAP_PAGE_ENTRIES) {
1033 handle->k = 0;
1034 free_page((unsigned long)handle->maps->map);
1035 tmp = handle->maps;
1036 handle->maps = handle->maps->next;
1037 kfree(tmp);
1038 if (!handle->maps)
1039 release_swap_reader(handle);
1040 else
1041 handle->cur = handle->maps->map;
1042 }
1043 return error;
1044}
1045
1046static int swap_reader_finish(struct swap_map_handle *handle)
1047{
1048 release_swap_reader(handle);
1049
1050 return 0;
1051}
1052
1053/**
1054 * load_image - load the image using the swap map handle
1055 * @handle and the snapshot handle @snapshot
1056 * (assume there are @nr_pages pages to load)
1057 */
1058
1059static int load_image(struct swap_map_handle *handle,
1060 struct snapshot_handle *snapshot,
1061 unsigned int nr_to_read)
1062{
1063 unsigned int m;
1064 int ret = 0;
1065 ktime_t start;
1066 ktime_t stop;
1067 struct hib_bio_batch hb;
1068 int err2;
1069 unsigned nr_pages;
1070
1071 hib_init_batch(&hb);
1072
1073 clean_pages_on_read = true;
1074 pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1075 m = nr_to_read / 10;
1076 if (!m)
1077 m = 1;
1078 nr_pages = 0;
1079 start = ktime_get();
1080 for ( ; ; ) {
1081 ret = snapshot_write_next(snapshot);
1082 if (ret <= 0)
1083 break;
1084 ret = swap_read_page(handle, data_of(*snapshot), &hb);
1085 if (ret)
1086 break;
1087 if (snapshot->sync_read)
1088 ret = hib_wait_io(&hb);
1089 if (ret)
1090 break;
1091 if (!(nr_pages % m))
1092 pr_info("Image loading progress: %3d%%\n",
1093 nr_pages / m * 10);
1094 nr_pages++;
1095 }
1096 err2 = hib_wait_io(&hb);
1097 hib_finish_batch(&hb);
1098 stop = ktime_get();
1099 if (!ret)
1100 ret = err2;
1101 if (!ret) {
1102 pr_info("Image loading done\n");
1103 snapshot_write_finalize(snapshot);
1104 if (!snapshot_image_loaded(snapshot))
1105 ret = -ENODATA;
1106 }
1107 swsusp_show_speed(start, stop, nr_to_read, "Read");
1108 return ret;
1109}
1110
1111/*
1112 * Structure used for LZO data decompression.
1113 */
1114struct dec_data {
1115 struct task_struct *thr; /* thread */
1116 atomic_t ready; /* ready to start flag */
1117 atomic_t stop; /* ready to stop flag */
1118 int ret; /* return code */
1119 wait_queue_head_t go; /* start decompression */
1120 wait_queue_head_t done; /* decompression done */
1121 size_t unc_len; /* uncompressed length */
1122 size_t cmp_len; /* compressed length */
1123 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
1124 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
1125};
1126
1127/*
1128 * Decompression function that runs in its own thread.
1129 */
1130static int lzo_decompress_threadfn(void *data)
1131{
1132 struct dec_data *d = data;
1133
1134 while (1) {
1135 wait_event(d->go, atomic_read_acquire(&d->ready) ||
1136 kthread_should_stop());
1137 if (kthread_should_stop()) {
1138 d->thr = NULL;
1139 d->ret = -1;
1140 atomic_set_release(&d->stop, 1);
1141 wake_up(&d->done);
1142 break;
1143 }
1144 atomic_set(&d->ready, 0);
1145
1146 d->unc_len = LZO_UNC_SIZE;
1147 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1148 d->unc, &d->unc_len);
1149 if (clean_pages_on_decompress)
1150 flush_icache_range((unsigned long)d->unc,
1151 (unsigned long)d->unc + d->unc_len);
1152
1153 atomic_set_release(&d->stop, 1);
1154 wake_up(&d->done);
1155 }
1156 return 0;
1157}
1158
1159/**
1160 * load_image_lzo - Load compressed image data and decompress them with LZO.
1161 * @handle: Swap map handle to use for loading data.
1162 * @snapshot: Image to copy uncompressed data into.
1163 * @nr_to_read: Number of pages to load.
1164 */
1165static int load_image_lzo(struct swap_map_handle *handle,
1166 struct snapshot_handle *snapshot,
1167 unsigned int nr_to_read)
1168{
1169 unsigned int m;
1170 int ret = 0;
1171 int eof = 0;
1172 struct hib_bio_batch hb;
1173 ktime_t start;
1174 ktime_t stop;
1175 unsigned nr_pages;
1176 size_t off;
1177 unsigned i, thr, run_threads, nr_threads;
1178 unsigned ring = 0, pg = 0, ring_size = 0,
1179 have = 0, want, need, asked = 0;
1180 unsigned long read_pages = 0;
1181 unsigned char **page = NULL;
1182 struct dec_data *data = NULL;
1183 struct crc_data *crc = NULL;
1184
1185 hib_init_batch(&hb);
1186
1187 /*
1188 * We'll limit the number of threads for decompression to limit memory
1189 * footprint.
1190 */
1191 nr_threads = num_online_cpus() - 1;
1192 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1193
1194 page = vmalloc(array_size(LZO_MAX_RD_PAGES, sizeof(*page)));
1195 if (!page) {
1196 pr_err("Failed to allocate LZO page\n");
1197 ret = -ENOMEM;
1198 goto out_clean;
1199 }
1200
1201 data = vzalloc(array_size(nr_threads, sizeof(*data)));
1202 if (!data) {
1203 pr_err("Failed to allocate LZO data\n");
1204 ret = -ENOMEM;
1205 goto out_clean;
1206 }
1207
1208 crc = kzalloc(sizeof(*crc), GFP_KERNEL);
1209 if (!crc) {
1210 pr_err("Failed to allocate crc\n");
1211 ret = -ENOMEM;
1212 goto out_clean;
1213 }
1214
1215 clean_pages_on_decompress = true;
1216
1217 /*
1218 * Start the decompression threads.
1219 */
1220 for (thr = 0; thr < nr_threads; thr++) {
1221 init_waitqueue_head(&data[thr].go);
1222 init_waitqueue_head(&data[thr].done);
1223
1224 data[thr].thr = kthread_run(lzo_decompress_threadfn,
1225 &data[thr],
1226 "image_decompress/%u", thr);
1227 if (IS_ERR(data[thr].thr)) {
1228 data[thr].thr = NULL;
1229 pr_err("Cannot start decompression threads\n");
1230 ret = -ENOMEM;
1231 goto out_clean;
1232 }
1233 }
1234
1235 /*
1236 * Start the CRC32 thread.
1237 */
1238 init_waitqueue_head(&crc->go);
1239 init_waitqueue_head(&crc->done);
1240
1241 handle->crc32 = 0;
1242 crc->crc32 = &handle->crc32;
1243 for (thr = 0; thr < nr_threads; thr++) {
1244 crc->unc[thr] = data[thr].unc;
1245 crc->unc_len[thr] = &data[thr].unc_len;
1246 }
1247
1248 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1249 if (IS_ERR(crc->thr)) {
1250 crc->thr = NULL;
1251 pr_err("Cannot start CRC32 thread\n");
1252 ret = -ENOMEM;
1253 goto out_clean;
1254 }
1255
1256 /*
1257 * Set the number of pages for read buffering.
1258 * This is complete guesswork, because we'll only know the real
1259 * picture once prepare_image() is called, which is much later on
1260 * during the image load phase. We'll assume the worst case and
1261 * say that none of the image pages are from high memory.
1262 */
1263 if (low_free_pages() > snapshot_get_image_size())
1264 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1265 read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1266
1267 for (i = 0; i < read_pages; i++) {
1268 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1269 GFP_NOIO | __GFP_HIGH :
1270 GFP_NOIO | __GFP_NOWARN |
1271 __GFP_NORETRY);
1272
1273 if (!page[i]) {
1274 if (i < LZO_CMP_PAGES) {
1275 ring_size = i;
1276 pr_err("Failed to allocate LZO pages\n");
1277 ret = -ENOMEM;
1278 goto out_clean;
1279 } else {
1280 break;
1281 }
1282 }
1283 }
1284 want = ring_size = i;
1285
1286 pr_info("Using %u thread(s) for decompression\n", nr_threads);
1287 pr_info("Loading and decompressing image data (%u pages)...\n",
1288 nr_to_read);
1289 m = nr_to_read / 10;
1290 if (!m)
1291 m = 1;
1292 nr_pages = 0;
1293 start = ktime_get();
1294
1295 ret = snapshot_write_next(snapshot);
1296 if (ret <= 0)
1297 goto out_finish;
1298
1299 for(;;) {
1300 for (i = 0; !eof && i < want; i++) {
1301 ret = swap_read_page(handle, page[ring], &hb);
1302 if (ret) {
1303 /*
1304 * On real read error, finish. On end of data,
1305 * set EOF flag and just exit the read loop.
1306 */
1307 if (handle->cur &&
1308 handle->cur->entries[handle->k]) {
1309 goto out_finish;
1310 } else {
1311 eof = 1;
1312 break;
1313 }
1314 }
1315 if (++ring >= ring_size)
1316 ring = 0;
1317 }
1318 asked += i;
1319 want -= i;
1320
1321 /*
1322 * We are out of data, wait for some more.
1323 */
1324 if (!have) {
1325 if (!asked)
1326 break;
1327
1328 ret = hib_wait_io(&hb);
1329 if (ret)
1330 goto out_finish;
1331 have += asked;
1332 asked = 0;
1333 if (eof)
1334 eof = 2;
1335 }
1336
1337 if (crc->run_threads) {
1338 wait_event(crc->done, atomic_read_acquire(&crc->stop));
1339 atomic_set(&crc->stop, 0);
1340 crc->run_threads = 0;
1341 }
1342
1343 for (thr = 0; have && thr < nr_threads; thr++) {
1344 data[thr].cmp_len = *(size_t *)page[pg];
1345 if (unlikely(!data[thr].cmp_len ||
1346 data[thr].cmp_len >
1347 lzo1x_worst_compress(LZO_UNC_SIZE))) {
1348 pr_err("Invalid LZO compressed length\n");
1349 ret = -1;
1350 goto out_finish;
1351 }
1352
1353 need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1354 PAGE_SIZE);
1355 if (need > have) {
1356 if (eof > 1) {
1357 ret = -1;
1358 goto out_finish;
1359 }
1360 break;
1361 }
1362
1363 for (off = 0;
1364 off < LZO_HEADER + data[thr].cmp_len;
1365 off += PAGE_SIZE) {
1366 memcpy(data[thr].cmp + off,
1367 page[pg], PAGE_SIZE);
1368 have--;
1369 want++;
1370 if (++pg >= ring_size)
1371 pg = 0;
1372 }
1373
1374 atomic_set_release(&data[thr].ready, 1);
1375 wake_up(&data[thr].go);
1376 }
1377
1378 /*
1379 * Wait for more data while we are decompressing.
1380 */
1381 if (have < LZO_CMP_PAGES && asked) {
1382 ret = hib_wait_io(&hb);
1383 if (ret)
1384 goto out_finish;
1385 have += asked;
1386 asked = 0;
1387 if (eof)
1388 eof = 2;
1389 }
1390
1391 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1392 wait_event(data[thr].done,
1393 atomic_read_acquire(&data[thr].stop));
1394 atomic_set(&data[thr].stop, 0);
1395
1396 ret = data[thr].ret;
1397
1398 if (ret < 0) {
1399 pr_err("LZO decompression failed\n");
1400 goto out_finish;
1401 }
1402
1403 if (unlikely(!data[thr].unc_len ||
1404 data[thr].unc_len > LZO_UNC_SIZE ||
1405 data[thr].unc_len & (PAGE_SIZE - 1))) {
1406 pr_err("Invalid LZO uncompressed length\n");
1407 ret = -1;
1408 goto out_finish;
1409 }
1410
1411 for (off = 0;
1412 off < data[thr].unc_len; off += PAGE_SIZE) {
1413 memcpy(data_of(*snapshot),
1414 data[thr].unc + off, PAGE_SIZE);
1415
1416 if (!(nr_pages % m))
1417 pr_info("Image loading progress: %3d%%\n",
1418 nr_pages / m * 10);
1419 nr_pages++;
1420
1421 ret = snapshot_write_next(snapshot);
1422 if (ret <= 0) {
1423 crc->run_threads = thr + 1;
1424 atomic_set_release(&crc->ready, 1);
1425 wake_up(&crc->go);
1426 goto out_finish;
1427 }
1428 }
1429 }
1430
1431 crc->run_threads = thr;
1432 atomic_set_release(&crc->ready, 1);
1433 wake_up(&crc->go);
1434 }
1435
1436out_finish:
1437 if (crc->run_threads) {
1438 wait_event(crc->done, atomic_read_acquire(&crc->stop));
1439 atomic_set(&crc->stop, 0);
1440 }
1441 stop = ktime_get();
1442 if (!ret) {
1443 pr_info("Image loading done\n");
1444 snapshot_write_finalize(snapshot);
1445 if (!snapshot_image_loaded(snapshot))
1446 ret = -ENODATA;
1447 if (!ret) {
1448 if (swsusp_header->flags & SF_CRC32_MODE) {
1449 if(handle->crc32 != swsusp_header->crc32) {
1450 pr_err("Invalid image CRC32!\n");
1451 ret = -ENODATA;
1452 }
1453 }
1454 }
1455 }
1456 swsusp_show_speed(start, stop, nr_to_read, "Read");
1457out_clean:
1458 hib_finish_batch(&hb);
1459 for (i = 0; i < ring_size; i++)
1460 free_page((unsigned long)page[i]);
1461 if (crc) {
1462 if (crc->thr)
1463 kthread_stop(crc->thr);
1464 kfree(crc);
1465 }
1466 if (data) {
1467 for (thr = 0; thr < nr_threads; thr++)
1468 if (data[thr].thr)
1469 kthread_stop(data[thr].thr);
1470 vfree(data);
1471 }
1472 vfree(page);
1473
1474 return ret;
1475}
1476
1477/**
1478 * swsusp_read - read the hibernation image.
1479 * @flags_p: flags passed by the "frozen" kernel in the image header should
1480 * be written into this memory location
1481 */
1482
1483int swsusp_read(unsigned int *flags_p)
1484{
1485 int error;
1486 struct swap_map_handle handle;
1487 struct snapshot_handle snapshot;
1488 struct swsusp_info *header;
1489
1490 memset(&snapshot, 0, sizeof(struct snapshot_handle));
1491 error = snapshot_write_next(&snapshot);
1492 if (error < (int)PAGE_SIZE)
1493 return error < 0 ? error : -EFAULT;
1494 header = (struct swsusp_info *)data_of(snapshot);
1495 error = get_swap_reader(&handle, flags_p);
1496 if (error)
1497 goto end;
1498 if (!error)
1499 error = swap_read_page(&handle, header, NULL);
1500 if (!error) {
1501 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1502 load_image(&handle, &snapshot, header->pages - 1) :
1503 load_image_lzo(&handle, &snapshot, header->pages - 1);
1504 }
1505 swap_reader_finish(&handle);
1506end:
1507 if (!error)
1508 pr_debug("Image successfully loaded\n");
1509 else
1510 pr_debug("Error %d resuming\n", error);
1511 return error;
1512}
1513
1514static void *swsusp_holder;
1515
1516/**
1517 * swsusp_check - Open the resume device and check for the swsusp signature.
1518 * @exclusive: Open the resume device exclusively.
1519 */
1520
1521int swsusp_check(bool exclusive)
1522{
1523 void *holder = exclusive ? &swsusp_holder : NULL;
1524 int error;
1525
1526 hib_resume_bdev_handle = bdev_open_by_dev(swsusp_resume_device,
1527 BLK_OPEN_READ, holder, NULL);
1528 if (!IS_ERR(hib_resume_bdev_handle)) {
1529 set_blocksize(hib_resume_bdev_handle->bdev, PAGE_SIZE);
1530 clear_page(swsusp_header);
1531 error = hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1532 swsusp_header, NULL);
1533 if (error)
1534 goto put;
1535
1536 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1537 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1538 /* Reset swap signature now */
1539 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1540 swsusp_resume_block,
1541 swsusp_header, NULL);
1542 } else {
1543 error = -EINVAL;
1544 }
1545 if (!error && swsusp_header->flags & SF_HW_SIG &&
1546 swsusp_header->hw_sig != swsusp_hardware_signature) {
1547 pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n",
1548 swsusp_header->hw_sig, swsusp_hardware_signature);
1549 error = -EINVAL;
1550 }
1551
1552put:
1553 if (error)
1554 bdev_release(hib_resume_bdev_handle);
1555 else
1556 pr_debug("Image signature found, resuming\n");
1557 } else {
1558 error = PTR_ERR(hib_resume_bdev_handle);
1559 }
1560
1561 if (error)
1562 pr_debug("Image not found (code %d)\n", error);
1563
1564 return error;
1565}
1566
1567/**
1568 * swsusp_close - close resume device.
1569 */
1570
1571void swsusp_close(void)
1572{
1573 if (IS_ERR(hib_resume_bdev_handle)) {
1574 pr_debug("Image device not initialised\n");
1575 return;
1576 }
1577
1578 bdev_release(hib_resume_bdev_handle);
1579}
1580
1581/**
1582 * swsusp_unmark - Unmark swsusp signature in the resume device
1583 */
1584
1585#ifdef CONFIG_SUSPEND
1586int swsusp_unmark(void)
1587{
1588 int error;
1589
1590 hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1591 swsusp_header, NULL);
1592 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1593 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1594 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1595 swsusp_resume_block,
1596 swsusp_header, NULL);
1597 } else {
1598 pr_err("Cannot find swsusp signature!\n");
1599 error = -ENODEV;
1600 }
1601
1602 /*
1603 * We just returned from suspend, we don't need the image any more.
1604 */
1605 free_all_swap_pages(root_swap);
1606
1607 return error;
1608}
1609#endif
1610
1611static int __init swsusp_header_init(void)
1612{
1613 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1614 if (!swsusp_header)
1615 panic("Could not allocate memory for swsusp_header\n");
1616 return 0;
1617}
1618
1619core_initcall(swsusp_header_init);
1/*
2 * linux/kernel/power/swap.c
3 *
4 * This file provides functions for reading the suspend image from
5 * and writing it to a swap partition.
6 *
7 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
10 *
11 * This file is released under the GPLv2.
12 *
13 */
14
15#include <linux/module.h>
16#include <linux/file.h>
17#include <linux/delay.h>
18#include <linux/bitops.h>
19#include <linux/genhd.h>
20#include <linux/device.h>
21#include <linux/bio.h>
22#include <linux/blkdev.h>
23#include <linux/swap.h>
24#include <linux/swapops.h>
25#include <linux/pm.h>
26#include <linux/slab.h>
27#include <linux/lzo.h>
28#include <linux/vmalloc.h>
29#include <linux/cpumask.h>
30#include <linux/atomic.h>
31#include <linux/kthread.h>
32#include <linux/crc32.h>
33
34#include "power.h"
35
36#define HIBERNATE_SIG "S1SUSPEND"
37
38/*
39 * The swap map is a data structure used for keeping track of each page
40 * written to a swap partition. It consists of many swap_map_page
41 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
42 * These structures are stored on the swap and linked together with the
43 * help of the .next_swap member.
44 *
45 * The swap map is created during suspend. The swap map pages are
46 * allocated and populated one at a time, so we only need one memory
47 * page to set up the entire structure.
48 *
49 * During resume we pick up all swap_map_page structures into a list.
50 */
51
52#define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1)
53
54/*
55 * Number of free pages that are not high.
56 */
57static inline unsigned long low_free_pages(void)
58{
59 return nr_free_pages() - nr_free_highpages();
60}
61
62/*
63 * Number of pages required to be kept free while writing the image. Always
64 * half of all available low pages before the writing starts.
65 */
66static inline unsigned long reqd_free_pages(void)
67{
68 return low_free_pages() / 2;
69}
70
71struct swap_map_page {
72 sector_t entries[MAP_PAGE_ENTRIES];
73 sector_t next_swap;
74};
75
76struct swap_map_page_list {
77 struct swap_map_page *map;
78 struct swap_map_page_list *next;
79};
80
81/**
82 * The swap_map_handle structure is used for handling swap in
83 * a file-alike way
84 */
85
86struct swap_map_handle {
87 struct swap_map_page *cur;
88 struct swap_map_page_list *maps;
89 sector_t cur_swap;
90 sector_t first_sector;
91 unsigned int k;
92 unsigned long reqd_free_pages;
93 u32 crc32;
94};
95
96struct swsusp_header {
97 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
98 sizeof(u32)];
99 u32 crc32;
100 sector_t image;
101 unsigned int flags; /* Flags to pass to the "boot" kernel */
102 char orig_sig[10];
103 char sig[10];
104} __packed;
105
106static struct swsusp_header *swsusp_header;
107
108/**
109 * The following functions are used for tracing the allocated
110 * swap pages, so that they can be freed in case of an error.
111 */
112
113struct swsusp_extent {
114 struct rb_node node;
115 unsigned long start;
116 unsigned long end;
117};
118
119static struct rb_root swsusp_extents = RB_ROOT;
120
121static int swsusp_extents_insert(unsigned long swap_offset)
122{
123 struct rb_node **new = &(swsusp_extents.rb_node);
124 struct rb_node *parent = NULL;
125 struct swsusp_extent *ext;
126
127 /* Figure out where to put the new node */
128 while (*new) {
129 ext = rb_entry(*new, struct swsusp_extent, node);
130 parent = *new;
131 if (swap_offset < ext->start) {
132 /* Try to merge */
133 if (swap_offset == ext->start - 1) {
134 ext->start--;
135 return 0;
136 }
137 new = &((*new)->rb_left);
138 } else if (swap_offset > ext->end) {
139 /* Try to merge */
140 if (swap_offset == ext->end + 1) {
141 ext->end++;
142 return 0;
143 }
144 new = &((*new)->rb_right);
145 } else {
146 /* It already is in the tree */
147 return -EINVAL;
148 }
149 }
150 /* Add the new node and rebalance the tree. */
151 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
152 if (!ext)
153 return -ENOMEM;
154
155 ext->start = swap_offset;
156 ext->end = swap_offset;
157 rb_link_node(&ext->node, parent, new);
158 rb_insert_color(&ext->node, &swsusp_extents);
159 return 0;
160}
161
162/**
163 * alloc_swapdev_block - allocate a swap page and register that it has
164 * been allocated, so that it can be freed in case of an error.
165 */
166
167sector_t alloc_swapdev_block(int swap)
168{
169 unsigned long offset;
170
171 offset = swp_offset(get_swap_page_of_type(swap));
172 if (offset) {
173 if (swsusp_extents_insert(offset))
174 swap_free(swp_entry(swap, offset));
175 else
176 return swapdev_block(swap, offset);
177 }
178 return 0;
179}
180
181/**
182 * free_all_swap_pages - free swap pages allocated for saving image data.
183 * It also frees the extents used to register which swap entries had been
184 * allocated.
185 */
186
187void free_all_swap_pages(int swap)
188{
189 struct rb_node *node;
190
191 while ((node = swsusp_extents.rb_node)) {
192 struct swsusp_extent *ext;
193 unsigned long offset;
194
195 ext = container_of(node, struct swsusp_extent, node);
196 rb_erase(node, &swsusp_extents);
197 for (offset = ext->start; offset <= ext->end; offset++)
198 swap_free(swp_entry(swap, offset));
199
200 kfree(ext);
201 }
202}
203
204int swsusp_swap_in_use(void)
205{
206 return (swsusp_extents.rb_node != NULL);
207}
208
209/*
210 * General things
211 */
212
213static unsigned short root_swap = 0xffff;
214struct block_device *hib_resume_bdev;
215
216/*
217 * Saving part
218 */
219
220static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
221{
222 int error;
223
224 hib_bio_read_page(swsusp_resume_block, swsusp_header, NULL);
225 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
226 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
227 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
228 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
229 swsusp_header->image = handle->first_sector;
230 swsusp_header->flags = flags;
231 if (flags & SF_CRC32_MODE)
232 swsusp_header->crc32 = handle->crc32;
233 error = hib_bio_write_page(swsusp_resume_block,
234 swsusp_header, NULL);
235 } else {
236 printk(KERN_ERR "PM: Swap header not found!\n");
237 error = -ENODEV;
238 }
239 return error;
240}
241
242/**
243 * swsusp_swap_check - check if the resume device is a swap device
244 * and get its index (if so)
245 *
246 * This is called before saving image
247 */
248static int swsusp_swap_check(void)
249{
250 int res;
251
252 res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
253 &hib_resume_bdev);
254 if (res < 0)
255 return res;
256
257 root_swap = res;
258 res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
259 if (res)
260 return res;
261
262 res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
263 if (res < 0)
264 blkdev_put(hib_resume_bdev, FMODE_WRITE);
265
266 return res;
267}
268
269/**
270 * write_page - Write one page to given swap location.
271 * @buf: Address we're writing.
272 * @offset: Offset of the swap page we're writing to.
273 * @bio_chain: Link the next write BIO here
274 */
275
276static int write_page(void *buf, sector_t offset, struct bio **bio_chain)
277{
278 void *src;
279 int ret;
280
281 if (!offset)
282 return -ENOSPC;
283
284 if (bio_chain) {
285 src = (void *)__get_free_page(__GFP_WAIT | __GFP_NOWARN |
286 __GFP_NORETRY);
287 if (src) {
288 copy_page(src, buf);
289 } else {
290 ret = hib_wait_on_bio_chain(bio_chain); /* Free pages */
291 if (ret)
292 return ret;
293 src = (void *)__get_free_page(__GFP_WAIT |
294 __GFP_NOWARN |
295 __GFP_NORETRY);
296 if (src) {
297 copy_page(src, buf);
298 } else {
299 WARN_ON_ONCE(1);
300 bio_chain = NULL; /* Go synchronous */
301 src = buf;
302 }
303 }
304 } else {
305 src = buf;
306 }
307 return hib_bio_write_page(offset, src, bio_chain);
308}
309
310static void release_swap_writer(struct swap_map_handle *handle)
311{
312 if (handle->cur)
313 free_page((unsigned long)handle->cur);
314 handle->cur = NULL;
315}
316
317static int get_swap_writer(struct swap_map_handle *handle)
318{
319 int ret;
320
321 ret = swsusp_swap_check();
322 if (ret) {
323 if (ret != -ENOSPC)
324 printk(KERN_ERR "PM: Cannot find swap device, try "
325 "swapon -a.\n");
326 return ret;
327 }
328 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
329 if (!handle->cur) {
330 ret = -ENOMEM;
331 goto err_close;
332 }
333 handle->cur_swap = alloc_swapdev_block(root_swap);
334 if (!handle->cur_swap) {
335 ret = -ENOSPC;
336 goto err_rel;
337 }
338 handle->k = 0;
339 handle->reqd_free_pages = reqd_free_pages();
340 handle->first_sector = handle->cur_swap;
341 return 0;
342err_rel:
343 release_swap_writer(handle);
344err_close:
345 swsusp_close(FMODE_WRITE);
346 return ret;
347}
348
349static int swap_write_page(struct swap_map_handle *handle, void *buf,
350 struct bio **bio_chain)
351{
352 int error = 0;
353 sector_t offset;
354
355 if (!handle->cur)
356 return -EINVAL;
357 offset = alloc_swapdev_block(root_swap);
358 error = write_page(buf, offset, bio_chain);
359 if (error)
360 return error;
361 handle->cur->entries[handle->k++] = offset;
362 if (handle->k >= MAP_PAGE_ENTRIES) {
363 offset = alloc_swapdev_block(root_swap);
364 if (!offset)
365 return -ENOSPC;
366 handle->cur->next_swap = offset;
367 error = write_page(handle->cur, handle->cur_swap, bio_chain);
368 if (error)
369 goto out;
370 clear_page(handle->cur);
371 handle->cur_swap = offset;
372 handle->k = 0;
373
374 if (bio_chain && low_free_pages() <= handle->reqd_free_pages) {
375 error = hib_wait_on_bio_chain(bio_chain);
376 if (error)
377 goto out;
378 /*
379 * Recalculate the number of required free pages, to
380 * make sure we never take more than half.
381 */
382 handle->reqd_free_pages = reqd_free_pages();
383 }
384 }
385 out:
386 return error;
387}
388
389static int flush_swap_writer(struct swap_map_handle *handle)
390{
391 if (handle->cur && handle->cur_swap)
392 return write_page(handle->cur, handle->cur_swap, NULL);
393 else
394 return -EINVAL;
395}
396
397static int swap_writer_finish(struct swap_map_handle *handle,
398 unsigned int flags, int error)
399{
400 if (!error) {
401 flush_swap_writer(handle);
402 printk(KERN_INFO "PM: S");
403 error = mark_swapfiles(handle, flags);
404 printk("|\n");
405 }
406
407 if (error)
408 free_all_swap_pages(root_swap);
409 release_swap_writer(handle);
410 swsusp_close(FMODE_WRITE);
411
412 return error;
413}
414
415/* We need to remember how much compressed data we need to read. */
416#define LZO_HEADER sizeof(size_t)
417
418/* Number of pages/bytes we'll compress at one time. */
419#define LZO_UNC_PAGES 32
420#define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE)
421
422/* Number of pages/bytes we need for compressed data (worst case). */
423#define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
424 LZO_HEADER, PAGE_SIZE)
425#define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE)
426
427/* Maximum number of threads for compression/decompression. */
428#define LZO_THREADS 3
429
430/* Minimum/maximum number of pages for read buffering. */
431#define LZO_MIN_RD_PAGES 1024
432#define LZO_MAX_RD_PAGES 8192
433
434
435/**
436 * save_image - save the suspend image data
437 */
438
439static int save_image(struct swap_map_handle *handle,
440 struct snapshot_handle *snapshot,
441 unsigned int nr_to_write)
442{
443 unsigned int m;
444 int ret;
445 int nr_pages;
446 int err2;
447 struct bio *bio;
448 struct timeval start;
449 struct timeval stop;
450
451 printk(KERN_INFO "PM: Saving image data pages (%u pages)...\n",
452 nr_to_write);
453 m = nr_to_write / 10;
454 if (!m)
455 m = 1;
456 nr_pages = 0;
457 bio = NULL;
458 do_gettimeofday(&start);
459 while (1) {
460 ret = snapshot_read_next(snapshot);
461 if (ret <= 0)
462 break;
463 ret = swap_write_page(handle, data_of(*snapshot), &bio);
464 if (ret)
465 break;
466 if (!(nr_pages % m))
467 printk(KERN_INFO "PM: Image saving progress: %3d%%\n",
468 nr_pages / m * 10);
469 nr_pages++;
470 }
471 err2 = hib_wait_on_bio_chain(&bio);
472 do_gettimeofday(&stop);
473 if (!ret)
474 ret = err2;
475 if (!ret)
476 printk(KERN_INFO "PM: Image saving done.\n");
477 swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
478 return ret;
479}
480
481/**
482 * Structure used for CRC32.
483 */
484struct crc_data {
485 struct task_struct *thr; /* thread */
486 atomic_t ready; /* ready to start flag */
487 atomic_t stop; /* ready to stop flag */
488 unsigned run_threads; /* nr current threads */
489 wait_queue_head_t go; /* start crc update */
490 wait_queue_head_t done; /* crc update done */
491 u32 *crc32; /* points to handle's crc32 */
492 size_t *unc_len[LZO_THREADS]; /* uncompressed lengths */
493 unsigned char *unc[LZO_THREADS]; /* uncompressed data */
494};
495
496/**
497 * CRC32 update function that runs in its own thread.
498 */
499static int crc32_threadfn(void *data)
500{
501 struct crc_data *d = data;
502 unsigned i;
503
504 while (1) {
505 wait_event(d->go, atomic_read(&d->ready) ||
506 kthread_should_stop());
507 if (kthread_should_stop()) {
508 d->thr = NULL;
509 atomic_set(&d->stop, 1);
510 wake_up(&d->done);
511 break;
512 }
513 atomic_set(&d->ready, 0);
514
515 for (i = 0; i < d->run_threads; i++)
516 *d->crc32 = crc32_le(*d->crc32,
517 d->unc[i], *d->unc_len[i]);
518 atomic_set(&d->stop, 1);
519 wake_up(&d->done);
520 }
521 return 0;
522}
523/**
524 * Structure used for LZO data compression.
525 */
526struct cmp_data {
527 struct task_struct *thr; /* thread */
528 atomic_t ready; /* ready to start flag */
529 atomic_t stop; /* ready to stop flag */
530 int ret; /* return code */
531 wait_queue_head_t go; /* start compression */
532 wait_queue_head_t done; /* compression done */
533 size_t unc_len; /* uncompressed length */
534 size_t cmp_len; /* compressed length */
535 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
536 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
537 unsigned char wrk[LZO1X_1_MEM_COMPRESS]; /* compression workspace */
538};
539
540/**
541 * Compression function that runs in its own thread.
542 */
543static int lzo_compress_threadfn(void *data)
544{
545 struct cmp_data *d = data;
546
547 while (1) {
548 wait_event(d->go, atomic_read(&d->ready) ||
549 kthread_should_stop());
550 if (kthread_should_stop()) {
551 d->thr = NULL;
552 d->ret = -1;
553 atomic_set(&d->stop, 1);
554 wake_up(&d->done);
555 break;
556 }
557 atomic_set(&d->ready, 0);
558
559 d->ret = lzo1x_1_compress(d->unc, d->unc_len,
560 d->cmp + LZO_HEADER, &d->cmp_len,
561 d->wrk);
562 atomic_set(&d->stop, 1);
563 wake_up(&d->done);
564 }
565 return 0;
566}
567
568/**
569 * save_image_lzo - Save the suspend image data compressed with LZO.
570 * @handle: Swap mam handle to use for saving the image.
571 * @snapshot: Image to read data from.
572 * @nr_to_write: Number of pages to save.
573 */
574static int save_image_lzo(struct swap_map_handle *handle,
575 struct snapshot_handle *snapshot,
576 unsigned int nr_to_write)
577{
578 unsigned int m;
579 int ret = 0;
580 int nr_pages;
581 int err2;
582 struct bio *bio;
583 struct timeval start;
584 struct timeval stop;
585 size_t off;
586 unsigned thr, run_threads, nr_threads;
587 unsigned char *page = NULL;
588 struct cmp_data *data = NULL;
589 struct crc_data *crc = NULL;
590
591 /*
592 * We'll limit the number of threads for compression to limit memory
593 * footprint.
594 */
595 nr_threads = num_online_cpus() - 1;
596 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
597
598 page = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
599 if (!page) {
600 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
601 ret = -ENOMEM;
602 goto out_clean;
603 }
604
605 data = vmalloc(sizeof(*data) * nr_threads);
606 if (!data) {
607 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
608 ret = -ENOMEM;
609 goto out_clean;
610 }
611 for (thr = 0; thr < nr_threads; thr++)
612 memset(&data[thr], 0, offsetof(struct cmp_data, go));
613
614 crc = kmalloc(sizeof(*crc), GFP_KERNEL);
615 if (!crc) {
616 printk(KERN_ERR "PM: Failed to allocate crc\n");
617 ret = -ENOMEM;
618 goto out_clean;
619 }
620 memset(crc, 0, offsetof(struct crc_data, go));
621
622 /*
623 * Start the compression threads.
624 */
625 for (thr = 0; thr < nr_threads; thr++) {
626 init_waitqueue_head(&data[thr].go);
627 init_waitqueue_head(&data[thr].done);
628
629 data[thr].thr = kthread_run(lzo_compress_threadfn,
630 &data[thr],
631 "image_compress/%u", thr);
632 if (IS_ERR(data[thr].thr)) {
633 data[thr].thr = NULL;
634 printk(KERN_ERR
635 "PM: Cannot start compression threads\n");
636 ret = -ENOMEM;
637 goto out_clean;
638 }
639 }
640
641 /*
642 * Start the CRC32 thread.
643 */
644 init_waitqueue_head(&crc->go);
645 init_waitqueue_head(&crc->done);
646
647 handle->crc32 = 0;
648 crc->crc32 = &handle->crc32;
649 for (thr = 0; thr < nr_threads; thr++) {
650 crc->unc[thr] = data[thr].unc;
651 crc->unc_len[thr] = &data[thr].unc_len;
652 }
653
654 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
655 if (IS_ERR(crc->thr)) {
656 crc->thr = NULL;
657 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
658 ret = -ENOMEM;
659 goto out_clean;
660 }
661
662 /*
663 * Adjust the number of required free pages after all allocations have
664 * been done. We don't want to run out of pages when writing.
665 */
666 handle->reqd_free_pages = reqd_free_pages();
667
668 printk(KERN_INFO
669 "PM: Using %u thread(s) for compression.\n"
670 "PM: Compressing and saving image data (%u pages)...\n",
671 nr_threads, nr_to_write);
672 m = nr_to_write / 10;
673 if (!m)
674 m = 1;
675 nr_pages = 0;
676 bio = NULL;
677 do_gettimeofday(&start);
678 for (;;) {
679 for (thr = 0; thr < nr_threads; thr++) {
680 for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
681 ret = snapshot_read_next(snapshot);
682 if (ret < 0)
683 goto out_finish;
684
685 if (!ret)
686 break;
687
688 memcpy(data[thr].unc + off,
689 data_of(*snapshot), PAGE_SIZE);
690
691 if (!(nr_pages % m))
692 printk(KERN_INFO
693 "PM: Image saving progress: "
694 "%3d%%\n",
695 nr_pages / m * 10);
696 nr_pages++;
697 }
698 if (!off)
699 break;
700
701 data[thr].unc_len = off;
702
703 atomic_set(&data[thr].ready, 1);
704 wake_up(&data[thr].go);
705 }
706
707 if (!thr)
708 break;
709
710 crc->run_threads = thr;
711 atomic_set(&crc->ready, 1);
712 wake_up(&crc->go);
713
714 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
715 wait_event(data[thr].done,
716 atomic_read(&data[thr].stop));
717 atomic_set(&data[thr].stop, 0);
718
719 ret = data[thr].ret;
720
721 if (ret < 0) {
722 printk(KERN_ERR "PM: LZO compression failed\n");
723 goto out_finish;
724 }
725
726 if (unlikely(!data[thr].cmp_len ||
727 data[thr].cmp_len >
728 lzo1x_worst_compress(data[thr].unc_len))) {
729 printk(KERN_ERR
730 "PM: Invalid LZO compressed length\n");
731 ret = -1;
732 goto out_finish;
733 }
734
735 *(size_t *)data[thr].cmp = data[thr].cmp_len;
736
737 /*
738 * Given we are writing one page at a time to disk, we
739 * copy that much from the buffer, although the last
740 * bit will likely be smaller than full page. This is
741 * OK - we saved the length of the compressed data, so
742 * any garbage at the end will be discarded when we
743 * read it.
744 */
745 for (off = 0;
746 off < LZO_HEADER + data[thr].cmp_len;
747 off += PAGE_SIZE) {
748 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
749
750 ret = swap_write_page(handle, page, &bio);
751 if (ret)
752 goto out_finish;
753 }
754 }
755
756 wait_event(crc->done, atomic_read(&crc->stop));
757 atomic_set(&crc->stop, 0);
758 }
759
760out_finish:
761 err2 = hib_wait_on_bio_chain(&bio);
762 do_gettimeofday(&stop);
763 if (!ret)
764 ret = err2;
765 if (!ret)
766 printk(KERN_INFO "PM: Image saving done.\n");
767 swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
768out_clean:
769 if (crc) {
770 if (crc->thr)
771 kthread_stop(crc->thr);
772 kfree(crc);
773 }
774 if (data) {
775 for (thr = 0; thr < nr_threads; thr++)
776 if (data[thr].thr)
777 kthread_stop(data[thr].thr);
778 vfree(data);
779 }
780 if (page) free_page((unsigned long)page);
781
782 return ret;
783}
784
785/**
786 * enough_swap - Make sure we have enough swap to save the image.
787 *
788 * Returns TRUE or FALSE after checking the total amount of swap
789 * space avaiable from the resume partition.
790 */
791
792static int enough_swap(unsigned int nr_pages, unsigned int flags)
793{
794 unsigned int free_swap = count_swap_pages(root_swap, 1);
795 unsigned int required;
796
797 pr_debug("PM: Free swap pages: %u\n", free_swap);
798
799 required = PAGES_FOR_IO + nr_pages;
800 return free_swap > required;
801}
802
803/**
804 * swsusp_write - Write entire image and metadata.
805 * @flags: flags to pass to the "boot" kernel in the image header
806 *
807 * It is important _NOT_ to umount filesystems at this point. We want
808 * them synced (in case something goes wrong) but we DO not want to mark
809 * filesystem clean: it is not. (And it does not matter, if we resume
810 * correctly, we'll mark system clean, anyway.)
811 */
812
813int swsusp_write(unsigned int flags)
814{
815 struct swap_map_handle handle;
816 struct snapshot_handle snapshot;
817 struct swsusp_info *header;
818 unsigned long pages;
819 int error;
820
821 pages = snapshot_get_image_size();
822 error = get_swap_writer(&handle);
823 if (error) {
824 printk(KERN_ERR "PM: Cannot get swap writer\n");
825 return error;
826 }
827 if (flags & SF_NOCOMPRESS_MODE) {
828 if (!enough_swap(pages, flags)) {
829 printk(KERN_ERR "PM: Not enough free swap\n");
830 error = -ENOSPC;
831 goto out_finish;
832 }
833 }
834 memset(&snapshot, 0, sizeof(struct snapshot_handle));
835 error = snapshot_read_next(&snapshot);
836 if (error < PAGE_SIZE) {
837 if (error >= 0)
838 error = -EFAULT;
839
840 goto out_finish;
841 }
842 header = (struct swsusp_info *)data_of(snapshot);
843 error = swap_write_page(&handle, header, NULL);
844 if (!error) {
845 error = (flags & SF_NOCOMPRESS_MODE) ?
846 save_image(&handle, &snapshot, pages - 1) :
847 save_image_lzo(&handle, &snapshot, pages - 1);
848 }
849out_finish:
850 error = swap_writer_finish(&handle, flags, error);
851 return error;
852}
853
854/**
855 * The following functions allow us to read data using a swap map
856 * in a file-alike way
857 */
858
859static void release_swap_reader(struct swap_map_handle *handle)
860{
861 struct swap_map_page_list *tmp;
862
863 while (handle->maps) {
864 if (handle->maps->map)
865 free_page((unsigned long)handle->maps->map);
866 tmp = handle->maps;
867 handle->maps = handle->maps->next;
868 kfree(tmp);
869 }
870 handle->cur = NULL;
871}
872
873static int get_swap_reader(struct swap_map_handle *handle,
874 unsigned int *flags_p)
875{
876 int error;
877 struct swap_map_page_list *tmp, *last;
878 sector_t offset;
879
880 *flags_p = swsusp_header->flags;
881
882 if (!swsusp_header->image) /* how can this happen? */
883 return -EINVAL;
884
885 handle->cur = NULL;
886 last = handle->maps = NULL;
887 offset = swsusp_header->image;
888 while (offset) {
889 tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
890 if (!tmp) {
891 release_swap_reader(handle);
892 return -ENOMEM;
893 }
894 memset(tmp, 0, sizeof(*tmp));
895 if (!handle->maps)
896 handle->maps = tmp;
897 if (last)
898 last->next = tmp;
899 last = tmp;
900
901 tmp->map = (struct swap_map_page *)
902 __get_free_page(__GFP_WAIT | __GFP_HIGH);
903 if (!tmp->map) {
904 release_swap_reader(handle);
905 return -ENOMEM;
906 }
907
908 error = hib_bio_read_page(offset, tmp->map, NULL);
909 if (error) {
910 release_swap_reader(handle);
911 return error;
912 }
913 offset = tmp->map->next_swap;
914 }
915 handle->k = 0;
916 handle->cur = handle->maps->map;
917 return 0;
918}
919
920static int swap_read_page(struct swap_map_handle *handle, void *buf,
921 struct bio **bio_chain)
922{
923 sector_t offset;
924 int error;
925 struct swap_map_page_list *tmp;
926
927 if (!handle->cur)
928 return -EINVAL;
929 offset = handle->cur->entries[handle->k];
930 if (!offset)
931 return -EFAULT;
932 error = hib_bio_read_page(offset, buf, bio_chain);
933 if (error)
934 return error;
935 if (++handle->k >= MAP_PAGE_ENTRIES) {
936 handle->k = 0;
937 free_page((unsigned long)handle->maps->map);
938 tmp = handle->maps;
939 handle->maps = handle->maps->next;
940 kfree(tmp);
941 if (!handle->maps)
942 release_swap_reader(handle);
943 else
944 handle->cur = handle->maps->map;
945 }
946 return error;
947}
948
949static int swap_reader_finish(struct swap_map_handle *handle)
950{
951 release_swap_reader(handle);
952
953 return 0;
954}
955
956/**
957 * load_image - load the image using the swap map handle
958 * @handle and the snapshot handle @snapshot
959 * (assume there are @nr_pages pages to load)
960 */
961
962static int load_image(struct swap_map_handle *handle,
963 struct snapshot_handle *snapshot,
964 unsigned int nr_to_read)
965{
966 unsigned int m;
967 int ret = 0;
968 struct timeval start;
969 struct timeval stop;
970 struct bio *bio;
971 int err2;
972 unsigned nr_pages;
973
974 printk(KERN_INFO "PM: Loading image data pages (%u pages)...\n",
975 nr_to_read);
976 m = nr_to_read / 10;
977 if (!m)
978 m = 1;
979 nr_pages = 0;
980 bio = NULL;
981 do_gettimeofday(&start);
982 for ( ; ; ) {
983 ret = snapshot_write_next(snapshot);
984 if (ret <= 0)
985 break;
986 ret = swap_read_page(handle, data_of(*snapshot), &bio);
987 if (ret)
988 break;
989 if (snapshot->sync_read)
990 ret = hib_wait_on_bio_chain(&bio);
991 if (ret)
992 break;
993 if (!(nr_pages % m))
994 printk(KERN_INFO "PM: Image loading progress: %3d%%\n",
995 nr_pages / m * 10);
996 nr_pages++;
997 }
998 err2 = hib_wait_on_bio_chain(&bio);
999 do_gettimeofday(&stop);
1000 if (!ret)
1001 ret = err2;
1002 if (!ret) {
1003 printk(KERN_INFO "PM: Image loading done.\n");
1004 snapshot_write_finalize(snapshot);
1005 if (!snapshot_image_loaded(snapshot))
1006 ret = -ENODATA;
1007 }
1008 swsusp_show_speed(&start, &stop, nr_to_read, "Read");
1009 return ret;
1010}
1011
1012/**
1013 * Structure used for LZO data decompression.
1014 */
1015struct dec_data {
1016 struct task_struct *thr; /* thread */
1017 atomic_t ready; /* ready to start flag */
1018 atomic_t stop; /* ready to stop flag */
1019 int ret; /* return code */
1020 wait_queue_head_t go; /* start decompression */
1021 wait_queue_head_t done; /* decompression done */
1022 size_t unc_len; /* uncompressed length */
1023 size_t cmp_len; /* compressed length */
1024 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
1025 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
1026};
1027
1028/**
1029 * Deompression function that runs in its own thread.
1030 */
1031static int lzo_decompress_threadfn(void *data)
1032{
1033 struct dec_data *d = data;
1034
1035 while (1) {
1036 wait_event(d->go, atomic_read(&d->ready) ||
1037 kthread_should_stop());
1038 if (kthread_should_stop()) {
1039 d->thr = NULL;
1040 d->ret = -1;
1041 atomic_set(&d->stop, 1);
1042 wake_up(&d->done);
1043 break;
1044 }
1045 atomic_set(&d->ready, 0);
1046
1047 d->unc_len = LZO_UNC_SIZE;
1048 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1049 d->unc, &d->unc_len);
1050 atomic_set(&d->stop, 1);
1051 wake_up(&d->done);
1052 }
1053 return 0;
1054}
1055
1056/**
1057 * load_image_lzo - Load compressed image data and decompress them with LZO.
1058 * @handle: Swap map handle to use for loading data.
1059 * @snapshot: Image to copy uncompressed data into.
1060 * @nr_to_read: Number of pages to load.
1061 */
1062static int load_image_lzo(struct swap_map_handle *handle,
1063 struct snapshot_handle *snapshot,
1064 unsigned int nr_to_read)
1065{
1066 unsigned int m;
1067 int ret = 0;
1068 int eof = 0;
1069 struct bio *bio;
1070 struct timeval start;
1071 struct timeval stop;
1072 unsigned nr_pages;
1073 size_t off;
1074 unsigned i, thr, run_threads, nr_threads;
1075 unsigned ring = 0, pg = 0, ring_size = 0,
1076 have = 0, want, need, asked = 0;
1077 unsigned long read_pages = 0;
1078 unsigned char **page = NULL;
1079 struct dec_data *data = NULL;
1080 struct crc_data *crc = NULL;
1081
1082 /*
1083 * We'll limit the number of threads for decompression to limit memory
1084 * footprint.
1085 */
1086 nr_threads = num_online_cpus() - 1;
1087 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1088
1089 page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1090 if (!page) {
1091 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
1092 ret = -ENOMEM;
1093 goto out_clean;
1094 }
1095
1096 data = vmalloc(sizeof(*data) * nr_threads);
1097 if (!data) {
1098 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
1099 ret = -ENOMEM;
1100 goto out_clean;
1101 }
1102 for (thr = 0; thr < nr_threads; thr++)
1103 memset(&data[thr], 0, offsetof(struct dec_data, go));
1104
1105 crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1106 if (!crc) {
1107 printk(KERN_ERR "PM: Failed to allocate crc\n");
1108 ret = -ENOMEM;
1109 goto out_clean;
1110 }
1111 memset(crc, 0, offsetof(struct crc_data, go));
1112
1113 /*
1114 * Start the decompression threads.
1115 */
1116 for (thr = 0; thr < nr_threads; thr++) {
1117 init_waitqueue_head(&data[thr].go);
1118 init_waitqueue_head(&data[thr].done);
1119
1120 data[thr].thr = kthread_run(lzo_decompress_threadfn,
1121 &data[thr],
1122 "image_decompress/%u", thr);
1123 if (IS_ERR(data[thr].thr)) {
1124 data[thr].thr = NULL;
1125 printk(KERN_ERR
1126 "PM: Cannot start decompression threads\n");
1127 ret = -ENOMEM;
1128 goto out_clean;
1129 }
1130 }
1131
1132 /*
1133 * Start the CRC32 thread.
1134 */
1135 init_waitqueue_head(&crc->go);
1136 init_waitqueue_head(&crc->done);
1137
1138 handle->crc32 = 0;
1139 crc->crc32 = &handle->crc32;
1140 for (thr = 0; thr < nr_threads; thr++) {
1141 crc->unc[thr] = data[thr].unc;
1142 crc->unc_len[thr] = &data[thr].unc_len;
1143 }
1144
1145 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1146 if (IS_ERR(crc->thr)) {
1147 crc->thr = NULL;
1148 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
1149 ret = -ENOMEM;
1150 goto out_clean;
1151 }
1152
1153 /*
1154 * Set the number of pages for read buffering.
1155 * This is complete guesswork, because we'll only know the real
1156 * picture once prepare_image() is called, which is much later on
1157 * during the image load phase. We'll assume the worst case and
1158 * say that none of the image pages are from high memory.
1159 */
1160 if (low_free_pages() > snapshot_get_image_size())
1161 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1162 read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1163
1164 for (i = 0; i < read_pages; i++) {
1165 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1166 __GFP_WAIT | __GFP_HIGH :
1167 __GFP_WAIT | __GFP_NOWARN |
1168 __GFP_NORETRY);
1169
1170 if (!page[i]) {
1171 if (i < LZO_CMP_PAGES) {
1172 ring_size = i;
1173 printk(KERN_ERR
1174 "PM: Failed to allocate LZO pages\n");
1175 ret = -ENOMEM;
1176 goto out_clean;
1177 } else {
1178 break;
1179 }
1180 }
1181 }
1182 want = ring_size = i;
1183
1184 printk(KERN_INFO
1185 "PM: Using %u thread(s) for decompression.\n"
1186 "PM: Loading and decompressing image data (%u pages)...\n",
1187 nr_threads, nr_to_read);
1188 m = nr_to_read / 10;
1189 if (!m)
1190 m = 1;
1191 nr_pages = 0;
1192 bio = NULL;
1193 do_gettimeofday(&start);
1194
1195 ret = snapshot_write_next(snapshot);
1196 if (ret <= 0)
1197 goto out_finish;
1198
1199 for(;;) {
1200 for (i = 0; !eof && i < want; i++) {
1201 ret = swap_read_page(handle, page[ring], &bio);
1202 if (ret) {
1203 /*
1204 * On real read error, finish. On end of data,
1205 * set EOF flag and just exit the read loop.
1206 */
1207 if (handle->cur &&
1208 handle->cur->entries[handle->k]) {
1209 goto out_finish;
1210 } else {
1211 eof = 1;
1212 break;
1213 }
1214 }
1215 if (++ring >= ring_size)
1216 ring = 0;
1217 }
1218 asked += i;
1219 want -= i;
1220
1221 /*
1222 * We are out of data, wait for some more.
1223 */
1224 if (!have) {
1225 if (!asked)
1226 break;
1227
1228 ret = hib_wait_on_bio_chain(&bio);
1229 if (ret)
1230 goto out_finish;
1231 have += asked;
1232 asked = 0;
1233 if (eof)
1234 eof = 2;
1235 }
1236
1237 if (crc->run_threads) {
1238 wait_event(crc->done, atomic_read(&crc->stop));
1239 atomic_set(&crc->stop, 0);
1240 crc->run_threads = 0;
1241 }
1242
1243 for (thr = 0; have && thr < nr_threads; thr++) {
1244 data[thr].cmp_len = *(size_t *)page[pg];
1245 if (unlikely(!data[thr].cmp_len ||
1246 data[thr].cmp_len >
1247 lzo1x_worst_compress(LZO_UNC_SIZE))) {
1248 printk(KERN_ERR
1249 "PM: Invalid LZO compressed length\n");
1250 ret = -1;
1251 goto out_finish;
1252 }
1253
1254 need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1255 PAGE_SIZE);
1256 if (need > have) {
1257 if (eof > 1) {
1258 ret = -1;
1259 goto out_finish;
1260 }
1261 break;
1262 }
1263
1264 for (off = 0;
1265 off < LZO_HEADER + data[thr].cmp_len;
1266 off += PAGE_SIZE) {
1267 memcpy(data[thr].cmp + off,
1268 page[pg], PAGE_SIZE);
1269 have--;
1270 want++;
1271 if (++pg >= ring_size)
1272 pg = 0;
1273 }
1274
1275 atomic_set(&data[thr].ready, 1);
1276 wake_up(&data[thr].go);
1277 }
1278
1279 /*
1280 * Wait for more data while we are decompressing.
1281 */
1282 if (have < LZO_CMP_PAGES && asked) {
1283 ret = hib_wait_on_bio_chain(&bio);
1284 if (ret)
1285 goto out_finish;
1286 have += asked;
1287 asked = 0;
1288 if (eof)
1289 eof = 2;
1290 }
1291
1292 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1293 wait_event(data[thr].done,
1294 atomic_read(&data[thr].stop));
1295 atomic_set(&data[thr].stop, 0);
1296
1297 ret = data[thr].ret;
1298
1299 if (ret < 0) {
1300 printk(KERN_ERR
1301 "PM: LZO decompression failed\n");
1302 goto out_finish;
1303 }
1304
1305 if (unlikely(!data[thr].unc_len ||
1306 data[thr].unc_len > LZO_UNC_SIZE ||
1307 data[thr].unc_len & (PAGE_SIZE - 1))) {
1308 printk(KERN_ERR
1309 "PM: Invalid LZO uncompressed length\n");
1310 ret = -1;
1311 goto out_finish;
1312 }
1313
1314 for (off = 0;
1315 off < data[thr].unc_len; off += PAGE_SIZE) {
1316 memcpy(data_of(*snapshot),
1317 data[thr].unc + off, PAGE_SIZE);
1318
1319 if (!(nr_pages % m))
1320 printk(KERN_INFO
1321 "PM: Image loading progress: "
1322 "%3d%%\n",
1323 nr_pages / m * 10);
1324 nr_pages++;
1325
1326 ret = snapshot_write_next(snapshot);
1327 if (ret <= 0) {
1328 crc->run_threads = thr + 1;
1329 atomic_set(&crc->ready, 1);
1330 wake_up(&crc->go);
1331 goto out_finish;
1332 }
1333 }
1334 }
1335
1336 crc->run_threads = thr;
1337 atomic_set(&crc->ready, 1);
1338 wake_up(&crc->go);
1339 }
1340
1341out_finish:
1342 if (crc->run_threads) {
1343 wait_event(crc->done, atomic_read(&crc->stop));
1344 atomic_set(&crc->stop, 0);
1345 }
1346 do_gettimeofday(&stop);
1347 if (!ret) {
1348 printk(KERN_INFO "PM: Image loading done.\n");
1349 snapshot_write_finalize(snapshot);
1350 if (!snapshot_image_loaded(snapshot))
1351 ret = -ENODATA;
1352 if (!ret) {
1353 if (swsusp_header->flags & SF_CRC32_MODE) {
1354 if(handle->crc32 != swsusp_header->crc32) {
1355 printk(KERN_ERR
1356 "PM: Invalid image CRC32!\n");
1357 ret = -ENODATA;
1358 }
1359 }
1360 }
1361 }
1362 swsusp_show_speed(&start, &stop, nr_to_read, "Read");
1363out_clean:
1364 for (i = 0; i < ring_size; i++)
1365 free_page((unsigned long)page[i]);
1366 if (crc) {
1367 if (crc->thr)
1368 kthread_stop(crc->thr);
1369 kfree(crc);
1370 }
1371 if (data) {
1372 for (thr = 0; thr < nr_threads; thr++)
1373 if (data[thr].thr)
1374 kthread_stop(data[thr].thr);
1375 vfree(data);
1376 }
1377 if (page) vfree(page);
1378
1379 return ret;
1380}
1381
1382/**
1383 * swsusp_read - read the hibernation image.
1384 * @flags_p: flags passed by the "frozen" kernel in the image header should
1385 * be written into this memory location
1386 */
1387
1388int swsusp_read(unsigned int *flags_p)
1389{
1390 int error;
1391 struct swap_map_handle handle;
1392 struct snapshot_handle snapshot;
1393 struct swsusp_info *header;
1394
1395 memset(&snapshot, 0, sizeof(struct snapshot_handle));
1396 error = snapshot_write_next(&snapshot);
1397 if (error < PAGE_SIZE)
1398 return error < 0 ? error : -EFAULT;
1399 header = (struct swsusp_info *)data_of(snapshot);
1400 error = get_swap_reader(&handle, flags_p);
1401 if (error)
1402 goto end;
1403 if (!error)
1404 error = swap_read_page(&handle, header, NULL);
1405 if (!error) {
1406 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1407 load_image(&handle, &snapshot, header->pages - 1) :
1408 load_image_lzo(&handle, &snapshot, header->pages - 1);
1409 }
1410 swap_reader_finish(&handle);
1411end:
1412 if (!error)
1413 pr_debug("PM: Image successfully loaded\n");
1414 else
1415 pr_debug("PM: Error %d resuming\n", error);
1416 return error;
1417}
1418
1419/**
1420 * swsusp_check - Check for swsusp signature in the resume device
1421 */
1422
1423int swsusp_check(void)
1424{
1425 int error;
1426
1427 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1428 FMODE_READ, NULL);
1429 if (!IS_ERR(hib_resume_bdev)) {
1430 set_blocksize(hib_resume_bdev, PAGE_SIZE);
1431 clear_page(swsusp_header);
1432 error = hib_bio_read_page(swsusp_resume_block,
1433 swsusp_header, NULL);
1434 if (error)
1435 goto put;
1436
1437 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1438 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1439 /* Reset swap signature now */
1440 error = hib_bio_write_page(swsusp_resume_block,
1441 swsusp_header, NULL);
1442 } else {
1443 error = -EINVAL;
1444 }
1445
1446put:
1447 if (error)
1448 blkdev_put(hib_resume_bdev, FMODE_READ);
1449 else
1450 pr_debug("PM: Image signature found, resuming\n");
1451 } else {
1452 error = PTR_ERR(hib_resume_bdev);
1453 }
1454
1455 if (error)
1456 pr_debug("PM: Image not found (code %d)\n", error);
1457
1458 return error;
1459}
1460
1461/**
1462 * swsusp_close - close swap device.
1463 */
1464
1465void swsusp_close(fmode_t mode)
1466{
1467 if (IS_ERR(hib_resume_bdev)) {
1468 pr_debug("PM: Image device not initialised\n");
1469 return;
1470 }
1471
1472 blkdev_put(hib_resume_bdev, mode);
1473}
1474
1475/**
1476 * swsusp_unmark - Unmark swsusp signature in the resume device
1477 */
1478
1479#ifdef CONFIG_SUSPEND
1480int swsusp_unmark(void)
1481{
1482 int error;
1483
1484 hib_bio_read_page(swsusp_resume_block, swsusp_header, NULL);
1485 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1486 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1487 error = hib_bio_write_page(swsusp_resume_block,
1488 swsusp_header, NULL);
1489 } else {
1490 printk(KERN_ERR "PM: Cannot find swsusp signature!\n");
1491 error = -ENODEV;
1492 }
1493
1494 /*
1495 * We just returned from suspend, we don't need the image any more.
1496 */
1497 free_all_swap_pages(root_swap);
1498
1499 return error;
1500}
1501#endif
1502
1503static int swsusp_header_init(void)
1504{
1505 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1506 if (!swsusp_header)
1507 panic("Could not allocate memory for swsusp_header\n");
1508 return 0;
1509}
1510
1511core_initcall(swsusp_header_init);