Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
 
 
  12#include "xfs_mount.h"
 
 
  13#include "xfs_inode.h"
  14#include "xfs_trans.h"
  15#include "xfs_inode_item.h"
  16#include "xfs_bmap.h"
  17#include "xfs_bmap_util.h"
 
  18#include "xfs_dir2.h"
  19#include "xfs_dir2_priv.h"
  20#include "xfs_ioctl.h"
  21#include "xfs_trace.h"
  22#include "xfs_log.h"
  23#include "xfs_icache.h"
  24#include "xfs_pnfs.h"
  25#include "xfs_iomap.h"
  26#include "xfs_reflink.h"
  27
  28#include <linux/dax.h>
 
  29#include <linux/falloc.h>
  30#include <linux/backing-dev.h>
  31#include <linux/mman.h>
  32#include <linux/fadvise.h>
  33#include <linux/mount.h>
  34
  35static const struct vm_operations_struct xfs_file_vm_ops;
  36
  37/*
  38 * Decide if the given file range is aligned to the size of the fundamental
  39 * allocation unit for the file.
  40 */
  41static bool
  42xfs_is_falloc_aligned(
  43	struct xfs_inode	*ip,
  44	loff_t			pos,
  45	long long int		len)
  46{
  47	struct xfs_mount	*mp = ip->i_mount;
  48	uint64_t		mask;
 
 
  49
  50	if (XFS_IS_REALTIME_INODE(ip)) {
  51		if (!is_power_of_2(mp->m_sb.sb_rextsize)) {
  52			u64	rextbytes;
  53			u32	mod;
  54
  55			rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
  56			div_u64_rem(pos, rextbytes, &mod);
  57			if (mod)
  58				return false;
  59			div_u64_rem(len, rextbytes, &mod);
  60			return mod == 0;
  61		}
  62		mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1;
  63	} else {
  64		mask = mp->m_sb.sb_blocksize - 1;
  65	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66
  67	return !((pos | len) & mask);
 
 
 
 
 
 
 
 
 
 
  68}
  69
  70/*
  71 * Fsync operations on directories are much simpler than on regular files,
  72 * as there is no file data to flush, and thus also no need for explicit
  73 * cache flush operations, and there are no non-transaction metadata updates
  74 * on directories either.
  75 */
  76STATIC int
  77xfs_dir_fsync(
  78	struct file		*file,
  79	loff_t			start,
  80	loff_t			end,
  81	int			datasync)
  82{
  83	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
 
 
  84
  85	trace_xfs_dir_fsync(ip);
  86	return xfs_log_force_inode(ip);
  87}
  88
  89static xfs_csn_t
  90xfs_fsync_seq(
  91	struct xfs_inode	*ip,
  92	bool			datasync)
  93{
  94	if (!xfs_ipincount(ip))
  95		return 0;
  96	if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
  97		return 0;
  98	return ip->i_itemp->ili_commit_seq;
  99}
 100
 101/*
 102 * All metadata updates are logged, which means that we just have to flush the
 103 * log up to the latest LSN that touched the inode.
 104 *
 105 * If we have concurrent fsync/fdatasync() calls, we need them to all block on
 106 * the log force before we clear the ili_fsync_fields field. This ensures that
 107 * we don't get a racing sync operation that does not wait for the metadata to
 108 * hit the journal before returning.  If we race with clearing ili_fsync_fields,
 109 * then all that will happen is the log force will do nothing as the lsn will
 110 * already be on disk.  We can't race with setting ili_fsync_fields because that
 111 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
 112 * shared until after the ili_fsync_fields is cleared.
 113 */
 114static  int
 115xfs_fsync_flush_log(
 116	struct xfs_inode	*ip,
 117	bool			datasync,
 118	int			*log_flushed)
 119{
 120	int			error = 0;
 121	xfs_csn_t		seq;
 122
 123	xfs_ilock(ip, XFS_ILOCK_SHARED);
 124	seq = xfs_fsync_seq(ip, datasync);
 125	if (seq) {
 126		error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
 127					  log_flushed);
 128
 129		spin_lock(&ip->i_itemp->ili_lock);
 130		ip->i_itemp->ili_fsync_fields = 0;
 131		spin_unlock(&ip->i_itemp->ili_lock);
 132	}
 133	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 134	return error;
 
 
 
 135}
 136
 137STATIC int
 138xfs_file_fsync(
 139	struct file		*file,
 140	loff_t			start,
 141	loff_t			end,
 142	int			datasync)
 143{
 144	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
 
 145	struct xfs_mount	*mp = ip->i_mount;
 146	int			error, err2;
 147	int			log_flushed = 0;
 
 148
 149	trace_xfs_file_fsync(ip);
 150
 151	error = file_write_and_wait_range(file, start, end);
 152	if (error)
 153		return error;
 154
 155	if (xfs_is_shutdown(mp))
 156		return -EIO;
 157
 158	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 159
 160	/*
 161	 * If we have an RT and/or log subvolume we need to make sure to flush
 162	 * the write cache the device used for file data first.  This is to
 163	 * ensure newly written file data make it to disk before logging the new
 164	 * inode size in case of an extending write.
 165	 */
 166	if (XFS_IS_REALTIME_INODE(ip))
 167		error = blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
 168	else if (mp->m_logdev_targp != mp->m_ddev_targp)
 169		error = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
 
 
 
 170
 171	/*
 172	 * Any inode that has dirty modifications in the log is pinned.  The
 173	 * racy check here for a pinned inode will not catch modifications
 174	 * that happen concurrently to the fsync call, but fsync semantics
 175	 * only require to sync previously completed I/O.
 176	 */
 
 177	if (xfs_ipincount(ip)) {
 178		err2 = xfs_fsync_flush_log(ip, datasync, &log_flushed);
 179		if (err2 && !error)
 180			error = err2;
 181	}
 
 
 
 
 182
 183	/*
 184	 * If we only have a single device, and the log force about was
 185	 * a no-op we might have to flush the data device cache here.
 186	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 187	 * an already allocated file and thus do not have any metadata to
 188	 * commit.
 189	 */
 190	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
 191	    mp->m_logdev_targp == mp->m_ddev_targp) {
 192		err2 = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
 193		if (err2 && !error)
 194			error = err2;
 195	}
 196
 197	return error;
 198}
 199
 200static int
 201xfs_ilock_iocb(
 202	struct kiocb		*iocb,
 203	unsigned int		lock_mode)
 
 
 204{
 205	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 
 
 
 
 
 
 
 206
 207	if (iocb->ki_flags & IOCB_NOWAIT) {
 208		if (!xfs_ilock_nowait(ip, lock_mode))
 209			return -EAGAIN;
 210	} else {
 211		xfs_ilock(ip, lock_mode);
 212	}
 213
 214	return 0;
 215}
 216
 217static int
 218xfs_ilock_iocb_for_write(
 219	struct kiocb		*iocb,
 220	unsigned int		*lock_mode)
 221{
 222	ssize_t			ret;
 223	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 224
 225	ret = xfs_ilock_iocb(iocb, *lock_mode);
 226	if (ret)
 227		return ret;
 228
 229	if (*lock_mode == XFS_IOLOCK_EXCL)
 230		return 0;
 231	if (!xfs_iflags_test(ip, XFS_IREMAPPING))
 
 
 
 
 
 
 
 
 
 
 
 232		return 0;
 233
 234	xfs_iunlock(ip, *lock_mode);
 235	*lock_mode = XFS_IOLOCK_EXCL;
 236	return xfs_ilock_iocb(iocb, *lock_mode);
 237}
 238
 239static unsigned int
 240xfs_ilock_for_write_fault(
 241	struct xfs_inode	*ip)
 242{
 243	/* get a shared lock if no remapping in progress */
 244	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
 245	if (!xfs_iflags_test(ip, XFS_IREMAPPING))
 246		return XFS_MMAPLOCK_SHARED;
 247
 248	/* wait for remapping to complete */
 249	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
 250	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
 251	return XFS_MMAPLOCK_EXCL;
 252}
 253
 254STATIC ssize_t
 255xfs_file_dio_read(
 256	struct kiocb		*iocb,
 257	struct iov_iter		*to)
 258{
 259	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 260	ssize_t			ret;
 261
 262	trace_xfs_file_direct_read(iocb, to);
 263
 264	if (!iov_iter_count(to))
 265		return 0; /* skip atime */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 266
 267	file_accessed(iocb->ki_filp);
 268
 269	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
 270	if (ret)
 271		return ret;
 272	ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, NULL, 0);
 273	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 274
 
 275	return ret;
 276}
 277
 278static noinline ssize_t
 279xfs_file_dax_read(
 280	struct kiocb		*iocb,
 281	struct iov_iter		*to)
 
 
 
 282{
 283	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
 284	ssize_t			ret = 0;
 
 285
 286	trace_xfs_file_dax_read(iocb, to);
 287
 288	if (!iov_iter_count(to))
 289		return 0; /* skip atime */
 290
 291	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
 292	if (ret)
 293		return ret;
 294	ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
 295	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 296
 297	file_accessed(iocb->ki_filp);
 298	return ret;
 299}
 300
 301STATIC ssize_t
 302xfs_file_buffered_read(
 303	struct kiocb		*iocb,
 304	struct iov_iter		*to)
 305{
 306	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 307	ssize_t			ret;
 308
 309	trace_xfs_file_buffered_read(iocb, to);
 310
 311	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
 312	if (ret)
 313		return ret;
 314	ret = generic_file_read_iter(iocb, to);
 315	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 316
 
 317	return ret;
 318}
 319
 
 
 
 
 
 
 
 
 320STATIC ssize_t
 321xfs_file_read_iter(
 322	struct kiocb		*iocb,
 323	struct iov_iter		*to)
 
 
 
 324{
 325	struct inode		*inode = file_inode(iocb->ki_filp);
 326	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
 327	ssize_t			ret = 0;
 
 
 
 328
 329	XFS_STATS_INC(mp, xs_read_calls);
 
 330
 331	if (xfs_is_shutdown(mp))
 332		return -EIO;
 333
 334	if (IS_DAX(inode))
 335		ret = xfs_file_dax_read(iocb, to);
 336	else if (iocb->ki_flags & IOCB_DIRECT)
 337		ret = xfs_file_dio_read(iocb, to);
 338	else
 339		ret = xfs_file_buffered_read(iocb, to);
 340
 
 341	if (ret > 0)
 342		XFS_STATS_ADD(mp, xs_read_bytes, ret);
 
 
 343	return ret;
 344}
 345
 346STATIC ssize_t
 347xfs_file_splice_read(
 348	struct file		*in,
 349	loff_t			*ppos,
 350	struct pipe_inode_info	*pipe,
 351	size_t			len,
 352	unsigned int		flags)
 
 
 
 
 353{
 354	struct inode		*inode = file_inode(in);
 355	struct xfs_inode	*ip = XFS_I(inode);
 356	struct xfs_mount	*mp = ip->i_mount;
 357	ssize_t			ret = 0;
 
 
 
 
 
 358
 359	XFS_STATS_INC(mp, xs_read_calls);
 
 
 
 
 360
 361	if (xfs_is_shutdown(mp))
 362		return -EIO;
 363
 364	trace_xfs_file_splice_read(ip, *ppos, len);
 
 
 
 
 
 365
 366	xfs_ilock(ip, XFS_IOLOCK_SHARED);
 367	ret = filemap_splice_read(in, ppos, pipe, len, flags);
 368	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 369	if (ret > 0)
 370		XFS_STATS_ADD(mp, xs_read_bytes, ret);
 371	return ret;
 372}
 373
 374/*
 375 * Common pre-write limit and setup checks.
 376 *
 377 * Called with the iolocked held either shared and exclusive according to
 378 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 379 * if called for a direct write beyond i_size.
 
 
 
 
 380 */
 381STATIC ssize_t
 382xfs_file_write_checks(
 383	struct kiocb		*iocb,
 384	struct iov_iter		*from,
 385	unsigned int		*iolock)
 386{
 387	struct file		*file = iocb->ki_filp;
 388	struct inode		*inode = file->f_mapping->host;
 389	struct xfs_inode	*ip = XFS_I(inode);
 390	ssize_t			error = 0;
 391	size_t			count = iov_iter_count(from);
 392	bool			drained_dio = false;
 393	loff_t			isize;
 394
 395restart:
 396	error = generic_write_checks(iocb, from);
 397	if (error <= 0)
 398		return error;
 399
 400	if (iocb->ki_flags & IOCB_NOWAIT) {
 401		error = break_layout(inode, false);
 402		if (error == -EWOULDBLOCK)
 403			error = -EAGAIN;
 404	} else {
 405		error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
 406	}
 407
 408	if (error)
 409		return error;
 410
 411	/*
 412	 * For changing security info in file_remove_privs() we need i_rwsem
 413	 * exclusively.
 
 414	 */
 415	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
 416		xfs_iunlock(ip, *iolock);
 417		*iolock = XFS_IOLOCK_EXCL;
 418		error = xfs_ilock_iocb(iocb, *iolock);
 419		if (error) {
 420			*iolock = 0;
 421			return error;
 422		}
 423		goto restart;
 424	}
 425
 426	/*
 427	 * If the offset is beyond the size of the file, we need to zero any
 428	 * blocks that fall between the existing EOF and the start of this
 429	 * write.  If zeroing is needed and we are currently holding the iolock
 430	 * shared, we need to update it to exclusive which implies having to
 431	 * redo all checks before.
 432	 *
 433	 * We need to serialise against EOF updates that occur in IO completions
 434	 * here. We want to make sure that nobody is changing the size while we
 435	 * do this check until we have placed an IO barrier (i.e.  hold the
 436	 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.  The
 437	 * spinlock effectively forms a memory barrier once we have the
 438	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
 439	 * hence be able to correctly determine if we need to run zeroing.
 440	 *
 441	 * We can do an unlocked check here safely as IO completion can only
 442	 * extend EOF. Truncate is locked out at this point, so the EOF can
 443	 * not move backwards, only forwards. Hence we only need to take the
 444	 * slow path and spin locks when we are at or beyond the current EOF.
 445	 */
 446	if (iocb->ki_pos <= i_size_read(inode))
 447		goto out;
 
 
 
 
 
 
 
 
 
 448
 449	spin_lock(&ip->i_flags_lock);
 450	isize = i_size_read(inode);
 451	if (iocb->ki_pos > isize) {
 452		spin_unlock(&ip->i_flags_lock);
 
 
 
 
 
 
 
 453
 454		if (iocb->ki_flags & IOCB_NOWAIT)
 455			return -EAGAIN;
 456
 457		if (!drained_dio) {
 458			if (*iolock == XFS_IOLOCK_SHARED) {
 459				xfs_iunlock(ip, *iolock);
 460				*iolock = XFS_IOLOCK_EXCL;
 461				xfs_ilock(ip, *iolock);
 462				iov_iter_reexpand(from, count);
 463			}
 464			/*
 465			 * We now have an IO submission barrier in place, but
 466			 * AIO can do EOF updates during IO completion and hence
 467			 * we now need to wait for all of them to drain. Non-AIO
 468			 * DIO will have drained before we are given the
 469			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
 470			 * no-op.
 471			 */
 472			inode_dio_wait(inode);
 473			drained_dio = true;
 474			goto restart;
 475		}
 476
 477		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
 478		error = xfs_zero_range(ip, isize, iocb->ki_pos - isize, NULL);
 
 
 
 
 
 
 
 
 479		if (error)
 480			return error;
 481	} else
 482		spin_unlock(&ip->i_flags_lock);
 483
 484out:
 485	return kiocb_modified(iocb);
 
 
 
 486}
 487
 488static int
 489xfs_dio_write_end_io(
 490	struct kiocb		*iocb,
 491	ssize_t			size,
 492	int			error,
 493	unsigned		flags)
 
 
 
 
 
 
 
 494{
 495	struct inode		*inode = file_inode(iocb->ki_filp);
 496	struct xfs_inode	*ip = XFS_I(inode);
 497	loff_t			offset = iocb->ki_pos;
 498	unsigned int		nofs_flag;
 499
 500	trace_xfs_end_io_direct_write(ip, offset, size);
 501
 502	if (xfs_is_shutdown(ip->i_mount))
 503		return -EIO;
 504
 
 
 505	if (error)
 506		return error;
 507	if (!size)
 508		return 0;
 509
 510	/*
 511	 * Capture amount written on completion as we can't reliably account
 512	 * for it on submission.
 513	 */
 514	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
 515
 516	/*
 517	 * We can allocate memory here while doing writeback on behalf of
 518	 * memory reclaim.  To avoid memory allocation deadlocks set the
 519	 * task-wide nofs context for the following operations.
 520	 */
 521	nofs_flag = memalloc_nofs_save();
 522
 523	if (flags & IOMAP_DIO_COW) {
 524		error = xfs_reflink_end_cow(ip, offset, size);
 
 
 
 
 
 
 525		if (error)
 526			goto out;
 527	}
 528
 529	/*
 530	 * Unwritten conversion updates the in-core isize after extent
 531	 * conversion but before updating the on-disk size. Updating isize any
 532	 * earlier allows a racing dio read to find unwritten extents before
 533	 * they are converted.
 534	 */
 535	if (flags & IOMAP_DIO_UNWRITTEN) {
 536		error = xfs_iomap_write_unwritten(ip, offset, size, true);
 537		goto out;
 
 538	}
 539
 540	/*
 541	 * We need to update the in-core inode size here so that we don't end up
 542	 * with the on-disk inode size being outside the in-core inode size. We
 543	 * have no other method of updating EOF for AIO, so always do it here
 544	 * if necessary.
 545	 *
 546	 * We need to lock the test/set EOF update as we can be racing with
 547	 * other IO completions here to update the EOF. Failing to serialise
 548	 * here can result in EOF moving backwards and Bad Things Happen when
 549	 * that occurs.
 550	 *
 551	 * As IO completion only ever extends EOF, we can do an unlocked check
 552	 * here to avoid taking the spinlock. If we land within the current EOF,
 553	 * then we do not need to do an extending update at all, and we don't
 554	 * need to take the lock to check this. If we race with an update moving
 555	 * EOF, then we'll either still be beyond EOF and need to take the lock,
 556	 * or we'll be within EOF and we don't need to take it at all.
 557	 */
 558	if (offset + size <= i_size_read(inode))
 559		goto out;
 560
 561	spin_lock(&ip->i_flags_lock);
 562	if (offset + size > i_size_read(inode)) {
 563		i_size_write(inode, offset + size);
 564		spin_unlock(&ip->i_flags_lock);
 565		error = xfs_setfilesize(ip, offset, size);
 566	} else {
 567		spin_unlock(&ip->i_flags_lock);
 568	}
 569
 570out:
 571	memalloc_nofs_restore(nofs_flag);
 572	return error;
 573}
 574
 575static const struct iomap_dio_ops xfs_dio_write_ops = {
 576	.end_io		= xfs_dio_write_end_io,
 577};
 578
 579/*
 580 * Handle block aligned direct I/O writes
 581 */
 582static noinline ssize_t
 583xfs_file_dio_write_aligned(
 584	struct xfs_inode	*ip,
 585	struct kiocb		*iocb,
 586	struct iov_iter		*from)
 587{
 588	unsigned int		iolock = XFS_IOLOCK_SHARED;
 589	ssize_t			ret;
 590
 591	ret = xfs_ilock_iocb_for_write(iocb, &iolock);
 592	if (ret)
 593		return ret;
 594	ret = xfs_file_write_checks(iocb, from, &iolock);
 595	if (ret)
 596		goto out_unlock;
 597
 598	/*
 599	 * We don't need to hold the IOLOCK exclusively across the IO, so demote
 600	 * the iolock back to shared if we had to take the exclusive lock in
 601	 * xfs_file_write_checks() for other reasons.
 602	 */
 603	if (iolock == XFS_IOLOCK_EXCL) {
 604		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
 605		iolock = XFS_IOLOCK_SHARED;
 606	}
 607	trace_xfs_file_direct_write(iocb, from);
 608	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
 609			   &xfs_dio_write_ops, 0, NULL, 0);
 610out_unlock:
 611	if (iolock)
 612		xfs_iunlock(ip, iolock);
 613	return ret;
 614}
 615
 616/*
 617 * Handle block unaligned direct I/O writes
 618 *
 619 * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
 620 * them to be done in parallel with reads and other direct I/O writes.  However,
 621 * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
 622 * to do sub-block zeroing and that requires serialisation against other direct
 623 * I/O to the same block.  In this case we need to serialise the submission of
 624 * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
 625 * In the case where sub-block zeroing is not required, we can do concurrent
 626 * sub-block dios to the same block successfully.
 
 
 627 *
 628 * Optimistically submit the I/O using the shared lock first, but use the
 629 * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
 630 * if block allocation or partial block zeroing would be required.  In that case
 631 * we try again with the exclusive lock.
 632 */
 633static noinline ssize_t
 634xfs_file_dio_write_unaligned(
 635	struct xfs_inode	*ip,
 636	struct kiocb		*iocb,
 637	struct iov_iter		*from)
 
 
 
 638{
 639	size_t			isize = i_size_read(VFS_I(ip));
 640	size_t			count = iov_iter_count(from);
 641	unsigned int		iolock = XFS_IOLOCK_SHARED;
 642	unsigned int		flags = IOMAP_DIO_OVERWRITE_ONLY;
 643	ssize_t			ret;
 644
 645	/*
 646	 * Extending writes need exclusivity because of the sub-block zeroing
 647	 * that the DIO code always does for partial tail blocks beyond EOF, so
 648	 * don't even bother trying the fast path in this case.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649	 */
 650	if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
 651		if (iocb->ki_flags & IOCB_NOWAIT)
 652			return -EAGAIN;
 653retry_exclusive:
 654		iolock = XFS_IOLOCK_EXCL;
 655		flags = IOMAP_DIO_FORCE_WAIT;
 656	}
 657
 658	ret = xfs_ilock_iocb_for_write(iocb, &iolock);
 659	if (ret)
 660		return ret;
 661
 662	/*
 663	 * We can't properly handle unaligned direct I/O to reflink files yet,
 664	 * as we can't unshare a partial block.
 
 665	 */
 666	if (xfs_is_cow_inode(ip)) {
 667		trace_xfs_reflink_bounce_dio_write(iocb, from);
 668		ret = -ENOTBLK;
 669		goto out_unlock;
 670	}
 671
 672	ret = xfs_file_write_checks(iocb, from, &iolock);
 673	if (ret)
 674		goto out_unlock;
 675
 676	/*
 677	 * If we are doing exclusive unaligned I/O, this must be the only I/O
 678	 * in-flight.  Otherwise we risk data corruption due to unwritten extent
 679	 * conversions from the AIO end_io handler.  Wait for all other I/O to
 680	 * drain first.
 681	 */
 682	if (flags & IOMAP_DIO_FORCE_WAIT)
 683		inode_dio_wait(VFS_I(ip));
 684
 685	trace_xfs_file_direct_write(iocb, from);
 686	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
 687			   &xfs_dio_write_ops, flags, NULL, 0);
 
 
 
 
 688
 689	/*
 690	 * Retry unaligned I/O with exclusive blocking semantics if the DIO
 691	 * layer rejected it for mapping or locking reasons. If we are doing
 692	 * nonblocking user I/O, propagate the error.
 693	 */
 694	if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
 695		ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
 696		xfs_iunlock(ip, iolock);
 697		goto retry_exclusive;
 
 698	}
 699
 700out_unlock:
 701	if (iolock)
 702		xfs_iunlock(ip, iolock);
 703	return ret;
 704}
 705
 706static ssize_t
 707xfs_file_dio_write(
 708	struct kiocb		*iocb,
 709	struct iov_iter		*from)
 710{
 711	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 712	struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
 713	size_t			count = iov_iter_count(from);
 714
 715	/* direct I/O must be aligned to device logical sector size */
 716	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
 717		return -EINVAL;
 718	if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask)
 719		return xfs_file_dio_write_unaligned(ip, iocb, from);
 720	return xfs_file_dio_write_aligned(ip, iocb, from);
 721}
 722
 723static noinline ssize_t
 724xfs_file_dax_write(
 725	struct kiocb		*iocb,
 726	struct iov_iter		*from)
 727{
 728	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 729	struct xfs_inode	*ip = XFS_I(inode);
 730	unsigned int		iolock = XFS_IOLOCK_EXCL;
 731	ssize_t			ret, error = 0;
 732	loff_t			pos;
 733
 734	ret = xfs_ilock_iocb(iocb, iolock);
 735	if (ret)
 736		return ret;
 737	ret = xfs_file_write_checks(iocb, from, &iolock);
 738	if (ret)
 739		goto out;
 740
 741	pos = iocb->ki_pos;
 742
 743	trace_xfs_file_dax_write(iocb, from);
 744	ret = dax_iomap_rw(iocb, from, &xfs_dax_write_iomap_ops);
 745	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
 746		i_size_write(inode, iocb->ki_pos);
 747		error = xfs_setfilesize(ip, pos, ret);
 748	}
 749out:
 750	if (iolock)
 751		xfs_iunlock(ip, iolock);
 752	if (error)
 753		return error;
 754
 755	if (ret > 0) {
 756		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 757
 758		/* Handle various SYNC-type writes */
 759		ret = generic_write_sync(iocb, ret);
 760	}
 761	return ret;
 762}
 763
 764STATIC ssize_t
 765xfs_file_buffered_write(
 766	struct kiocb		*iocb,
 767	struct iov_iter		*from)
 
 
 
 768{
 769	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 
 
 770	struct xfs_inode	*ip = XFS_I(inode);
 771	ssize_t			ret;
 772	bool			cleared_space = false;
 773	unsigned int		iolock;
 
 774
 775write_retry:
 776	iolock = XFS_IOLOCK_EXCL;
 777	ret = xfs_ilock_iocb(iocb, iolock);
 778	if (ret)
 779		return ret;
 780
 781	ret = xfs_file_write_checks(iocb, from, &iolock);
 782	if (ret)
 783		goto out;
 784
 785	trace_xfs_file_buffered_write(iocb, from);
 786	ret = iomap_file_buffered_write(iocb, from,
 787			&xfs_buffered_write_iomap_ops);
 788
 789	/*
 790	 * If we hit a space limit, try to free up some lingering preallocated
 791	 * space before returning an error. In the case of ENOSPC, first try to
 792	 * write back all dirty inodes to free up some of the excess reserved
 793	 * metadata space. This reduces the chances that the eofblocks scan
 794	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
 795	 * also behaves as a filter to prevent too many eofblocks scans from
 796	 * running at the same time.  Use a synchronous scan to increase the
 797	 * effectiveness of the scan.
 798	 */
 799	if (ret == -EDQUOT && !cleared_space) {
 800		xfs_iunlock(ip, iolock);
 801		xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC);
 802		cleared_space = true;
 803		goto write_retry;
 804	} else if (ret == -ENOSPC && !cleared_space) {
 805		struct xfs_icwalk	icw = {0};
 806
 807		cleared_space = true;
 808		xfs_flush_inodes(ip->i_mount);
 809
 810		xfs_iunlock(ip, iolock);
 811		icw.icw_flags = XFS_ICWALK_FLAG_SYNC;
 812		xfs_blockgc_free_space(ip->i_mount, &icw);
 813		goto write_retry;
 814	}
 815
 
 816out:
 817	if (iolock)
 818		xfs_iunlock(ip, iolock);
 819
 820	if (ret > 0) {
 821		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 822		/* Handle various SYNC-type writes */
 823		ret = generic_write_sync(iocb, ret);
 824	}
 825	return ret;
 826}
 827
 828STATIC ssize_t
 829xfs_file_write_iter(
 830	struct kiocb		*iocb,
 831	struct iov_iter		*from)
 
 
 832{
 833	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 
 
 834	struct xfs_inode	*ip = XFS_I(inode);
 835	ssize_t			ret;
 836	size_t			ocount = iov_iter_count(from);
 837
 838	XFS_STATS_INC(ip->i_mount, xs_write_calls);
 839
 840	if (ocount == 0)
 841		return 0;
 842
 843	if (xfs_is_shutdown(ip->i_mount))
 844		return -EIO;
 845
 846	if (IS_DAX(inode))
 847		return xfs_file_dax_write(iocb, from);
 848
 849	if (iocb->ki_flags & IOCB_DIRECT) {
 850		/*
 851		 * Allow a directio write to fall back to a buffered
 852		 * write *only* in the case that we're doing a reflink
 853		 * CoW.  In all other directio scenarios we do not
 854		 * allow an operation to fall back to buffered mode.
 855		 */
 856		ret = xfs_file_dio_write(iocb, from);
 857		if (ret != -ENOTBLK)
 858			return ret;
 859	}
 860
 861	return xfs_file_buffered_write(iocb, from);
 862}
 863
 864static void
 865xfs_wait_dax_page(
 866	struct inode		*inode)
 867{
 868	struct xfs_inode        *ip = XFS_I(inode);
 869
 870	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
 871	schedule();
 872	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
 873}
 874
 875int
 876xfs_break_dax_layouts(
 877	struct inode		*inode,
 878	bool			*retry)
 879{
 880	struct page		*page;
 881
 882	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
 883
 884	page = dax_layout_busy_page(inode->i_mapping);
 885	if (!page)
 886		return 0;
 887
 888	*retry = true;
 889	return ___wait_var_event(&page->_refcount,
 890			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
 891			0, 0, xfs_wait_dax_page(inode));
 892}
 893
 894int
 895xfs_break_layouts(
 896	struct inode		*inode,
 897	uint			*iolock,
 898	enum layout_break_reason reason)
 899{
 900	bool			retry;
 901	int			error;
 902
 903	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
 904
 905	do {
 906		retry = false;
 907		switch (reason) {
 908		case BREAK_UNMAP:
 909			error = xfs_break_dax_layouts(inode, &retry);
 910			if (error || retry)
 911				break;
 912			fallthrough;
 913		case BREAK_WRITE:
 914			error = xfs_break_leased_layouts(inode, iolock, &retry);
 915			break;
 916		default:
 917			WARN_ON_ONCE(1);
 918			error = -EINVAL;
 919		}
 920	} while (error == 0 && retry);
 921
 922	return error;
 923}
 924
 925/* Does this file, inode, or mount want synchronous writes? */
 926static inline bool xfs_file_sync_writes(struct file *filp)
 927{
 928	struct xfs_inode	*ip = XFS_I(file_inode(filp));
 929
 930	if (xfs_has_wsync(ip->i_mount))
 931		return true;
 932	if (filp->f_flags & (__O_SYNC | O_DSYNC))
 933		return true;
 934	if (IS_SYNC(file_inode(filp)))
 935		return true;
 936
 937	return false;
 
 938}
 939
 940#define	XFS_FALLOC_FL_SUPPORTED						\
 941		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
 942		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
 943		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
 944
 945STATIC long
 946xfs_file_fallocate(
 947	struct file		*file,
 948	int			mode,
 949	loff_t			offset,
 950	loff_t			len)
 951{
 952	struct inode		*inode = file_inode(file);
 953	struct xfs_inode	*ip = XFS_I(inode);
 
 954	long			error;
 955	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
 956	loff_t			new_size = 0;
 957	bool			do_file_insert = false;
 958
 959	if (!S_ISREG(inode->i_mode))
 960		return -EINVAL;
 961	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
 
 962		return -EOPNOTSUPP;
 963
 964	xfs_ilock(ip, iolock);
 965	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
 966	if (error)
 967		goto out_unlock;
 968
 969	/*
 970	 * Must wait for all AIO to complete before we continue as AIO can
 971	 * change the file size on completion without holding any locks we
 972	 * currently hold. We must do this first because AIO can update both
 973	 * the on disk and in memory inode sizes, and the operations that follow
 974	 * require the in-memory size to be fully up-to-date.
 975	 */
 976	inode_dio_wait(inode);
 977
 978	/*
 979	 * Now AIO and DIO has drained we flush and (if necessary) invalidate
 980	 * the cached range over the first operation we are about to run.
 981	 *
 982	 * We care about zero and collapse here because they both run a hole
 983	 * punch over the range first. Because that can zero data, and the range
 984	 * of invalidation for the shift operations is much larger, we still do
 985	 * the required flush for collapse in xfs_prepare_shift().
 986	 *
 987	 * Insert has the same range requirements as collapse, and we extend the
 988	 * file first which can zero data. Hence insert has the same
 989	 * flush/invalidate requirements as collapse and so they are both
 990	 * handled at the right time by xfs_prepare_shift().
 991	 */
 992	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
 993		    FALLOC_FL_COLLAPSE_RANGE)) {
 994		error = xfs_flush_unmap_range(ip, offset, len);
 995		if (error)
 996			goto out_unlock;
 997	}
 998
 999	error = file_modified(file);
1000	if (error)
1001		goto out_unlock;
1002
1003	if (mode & FALLOC_FL_PUNCH_HOLE) {
1004		error = xfs_free_file_space(ip, offset, len);
1005		if (error)
1006			goto out_unlock;
1007	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1008		if (!xfs_is_falloc_aligned(ip, offset, len)) {
1009			error = -EINVAL;
 
 
1010			goto out_unlock;
1011		}
1012
1013		/*
1014		 * There is no need to overlap collapse range with EOF,
1015		 * in which case it is effectively a truncate operation
1016		 */
1017		if (offset + len >= i_size_read(inode)) {
1018			error = -EINVAL;
1019			goto out_unlock;
1020		}
1021
1022		new_size = i_size_read(inode) - len;
1023
1024		error = xfs_collapse_file_space(ip, offset, len);
1025		if (error)
1026			goto out_unlock;
1027	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1028		loff_t		isize = i_size_read(inode);
1029
1030		if (!xfs_is_falloc_aligned(ip, offset, len)) {
1031			error = -EINVAL;
1032			goto out_unlock;
1033		}
1034
1035		/*
1036		 * New inode size must not exceed ->s_maxbytes, accounting for
1037		 * possible signed overflow.
1038		 */
1039		if (inode->i_sb->s_maxbytes - isize < len) {
1040			error = -EFBIG;
1041			goto out_unlock;
1042		}
1043		new_size = isize + len;
1044
1045		/* Offset should be less than i_size */
1046		if (offset >= isize) {
1047			error = -EINVAL;
1048			goto out_unlock;
1049		}
1050		do_file_insert = true;
1051	} else {
1052		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1053		    offset + len > i_size_read(inode)) {
1054			new_size = offset + len;
1055			error = inode_newsize_ok(inode, new_size);
1056			if (error)
1057				goto out_unlock;
1058		}
1059
1060		if (mode & FALLOC_FL_ZERO_RANGE) {
1061			/*
1062			 * Punch a hole and prealloc the range.  We use a hole
1063			 * punch rather than unwritten extent conversion for two
1064			 * reasons:
1065			 *
1066			 *   1.) Hole punch handles partial block zeroing for us.
1067			 *   2.) If prealloc returns ENOSPC, the file range is
1068			 *       still zero-valued by virtue of the hole punch.
1069			 */
1070			unsigned int blksize = i_blocksize(inode);
1071
1072			trace_xfs_zero_file_space(ip);
1073
1074			error = xfs_free_file_space(ip, offset, len);
1075			if (error)
1076				goto out_unlock;
1077
1078			len = round_up(offset + len, blksize) -
1079			      round_down(offset, blksize);
1080			offset = round_down(offset, blksize);
1081		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
1082			error = xfs_reflink_unshare(ip, offset, len);
1083			if (error)
1084				goto out_unlock;
1085		} else {
1086			/*
1087			 * If always_cow mode we can't use preallocations and
1088			 * thus should not create them.
1089			 */
1090			if (xfs_is_always_cow_inode(ip)) {
1091				error = -EOPNOTSUPP;
1092				goto out_unlock;
1093			}
1094		}
1095
1096		if (!xfs_is_always_cow_inode(ip)) {
1097			error = xfs_alloc_file_space(ip, offset, len);
1098			if (error)
1099				goto out_unlock;
1100		}
1101	}
1102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1103	/* Change file size if needed */
1104	if (new_size) {
1105		struct iattr iattr;
1106
1107		iattr.ia_valid = ATTR_SIZE;
1108		iattr.ia_size = new_size;
1109		error = xfs_vn_setattr_size(file_mnt_idmap(file),
1110					    file_dentry(file), &iattr);
1111		if (error)
1112			goto out_unlock;
1113	}
1114
1115	/*
1116	 * Perform hole insertion now that the file size has been
1117	 * updated so that if we crash during the operation we don't
1118	 * leave shifted extents past EOF and hence losing access to
1119	 * the data that is contained within them.
1120	 */
1121	if (do_file_insert) {
1122		error = xfs_insert_file_space(ip, offset, len);
1123		if (error)
1124			goto out_unlock;
1125	}
1126
1127	if (xfs_file_sync_writes(file))
1128		error = xfs_log_force_inode(ip);
1129
1130out_unlock:
1131	xfs_iunlock(ip, iolock);
1132	return error;
1133}
1134
1135STATIC int
1136xfs_file_fadvise(
1137	struct file	*file,
1138	loff_t		start,
1139	loff_t		end,
1140	int		advice)
1141{
1142	struct xfs_inode *ip = XFS_I(file_inode(file));
1143	int ret;
1144	int lockflags = 0;
1145
1146	/*
1147	 * Operations creating pages in page cache need protection from hole
1148	 * punching and similar ops
1149	 */
1150	if (advice == POSIX_FADV_WILLNEED) {
1151		lockflags = XFS_IOLOCK_SHARED;
1152		xfs_ilock(ip, lockflags);
1153	}
1154	ret = generic_fadvise(file, start, end, advice);
1155	if (lockflags)
1156		xfs_iunlock(ip, lockflags);
1157	return ret;
1158}
1159
1160STATIC loff_t
1161xfs_file_remap_range(
1162	struct file		*file_in,
1163	loff_t			pos_in,
1164	struct file		*file_out,
1165	loff_t			pos_out,
1166	loff_t			len,
1167	unsigned int		remap_flags)
1168{
1169	struct inode		*inode_in = file_inode(file_in);
1170	struct xfs_inode	*src = XFS_I(inode_in);
1171	struct inode		*inode_out = file_inode(file_out);
1172	struct xfs_inode	*dest = XFS_I(inode_out);
1173	struct xfs_mount	*mp = src->i_mount;
1174	loff_t			remapped = 0;
1175	xfs_extlen_t		cowextsize;
1176	int			ret;
1177
1178	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1179		return -EINVAL;
1180
1181	if (!xfs_has_reflink(mp))
1182		return -EOPNOTSUPP;
1183
1184	if (xfs_is_shutdown(mp))
1185		return -EIO;
1186
1187	/* Prepare and then clone file data. */
1188	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1189			&len, remap_flags);
1190	if (ret || len == 0)
1191		return ret;
1192
1193	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1194
1195	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1196			&remapped);
1197	if (ret)
1198		goto out_unlock;
1199
1200	/*
1201	 * Carry the cowextsize hint from src to dest if we're sharing the
1202	 * entire source file to the entire destination file, the source file
1203	 * has a cowextsize hint, and the destination file does not.
1204	 */
1205	cowextsize = 0;
1206	if (pos_in == 0 && len == i_size_read(inode_in) &&
1207	    (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1208	    pos_out == 0 && len >= i_size_read(inode_out) &&
1209	    !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE))
1210		cowextsize = src->i_cowextsize;
1211
1212	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1213			remap_flags);
1214	if (ret)
1215		goto out_unlock;
1216
1217	if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1218		xfs_log_force_inode(dest);
1219out_unlock:
1220	xfs_iunlock2_remapping(src, dest);
1221	if (ret)
1222		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1223	return remapped > 0 ? remapped : ret;
1224}
1225
1226STATIC int
1227xfs_file_open(
1228	struct inode	*inode,
1229	struct file	*file)
1230{
1231	if (xfs_is_shutdown(XFS_M(inode->i_sb)))
 
 
1232		return -EIO;
1233	file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC |
1234			FMODE_DIO_PARALLEL_WRITE | FMODE_CAN_ODIRECT;
1235	return generic_file_open(inode, file);
1236}
1237
1238STATIC int
1239xfs_dir_open(
1240	struct inode	*inode,
1241	struct file	*file)
1242{
1243	struct xfs_inode *ip = XFS_I(inode);
1244	unsigned int	mode;
1245	int		error;
1246
1247	error = xfs_file_open(inode, file);
1248	if (error)
1249		return error;
1250
1251	/*
1252	 * If there are any blocks, read-ahead block 0 as we're almost
1253	 * certain to have the next operation be a read there.
1254	 */
1255	mode = xfs_ilock_data_map_shared(ip);
1256	if (ip->i_df.if_nextents > 0)
1257		error = xfs_dir3_data_readahead(ip, 0, 0);
1258	xfs_iunlock(ip, mode);
1259	return error;
1260}
1261
1262STATIC int
1263xfs_file_release(
1264	struct inode	*inode,
1265	struct file	*filp)
1266{
1267	return xfs_release(XFS_I(inode));
1268}
1269
1270STATIC int
1271xfs_file_readdir(
1272	struct file	*file,
1273	struct dir_context *ctx)
1274{
1275	struct inode	*inode = file_inode(file);
1276	xfs_inode_t	*ip = XFS_I(inode);
 
1277	size_t		bufsize;
1278
1279	/*
1280	 * The Linux API doesn't pass down the total size of the buffer
1281	 * we read into down to the filesystem.  With the filldir concept
1282	 * it's not needed for correct information, but the XFS dir2 leaf
1283	 * code wants an estimate of the buffer size to calculate it's
1284	 * readahead window and size the buffers used for mapping to
1285	 * physical blocks.
1286	 *
1287	 * Try to give it an estimate that's good enough, maybe at some
1288	 * point we can change the ->readdir prototype to include the
1289	 * buffer size.  For now we use the current glibc buffer size.
1290	 */
1291	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size);
1292
1293	return xfs_readdir(NULL, ip, ctx, bufsize);
 
 
 
1294}
1295
1296STATIC loff_t
1297xfs_file_llseek(
1298	struct file	*file,
1299	loff_t		offset,
1300	int		whence)
1301{
1302	struct inode		*inode = file->f_mapping->host;
1303
1304	if (xfs_is_shutdown(XFS_I(inode)->i_mount))
1305		return -EIO;
1306
1307	switch (whence) {
1308	default:
1309		return generic_file_llseek(file, offset, whence);
1310	case SEEK_HOLE:
1311		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1312		break;
1313	case SEEK_DATA:
1314		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1315		break;
1316	}
1317
1318	if (offset < 0)
1319		return offset;
1320	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1321}
1322
1323#ifdef CONFIG_FS_DAX
1324static inline vm_fault_t
1325xfs_dax_fault(
1326	struct vm_fault		*vmf,
1327	unsigned int		order,
1328	bool			write_fault,
1329	pfn_t			*pfn)
1330{
1331	return dax_iomap_fault(vmf, order, pfn, NULL,
1332			(write_fault && !vmf->cow_page) ?
1333				&xfs_dax_write_iomap_ops :
1334				&xfs_read_iomap_ops);
1335}
1336#else
1337static inline vm_fault_t
1338xfs_dax_fault(
1339	struct vm_fault		*vmf,
1340	unsigned int		order,
1341	bool			write_fault,
1342	pfn_t			*pfn)
1343{
1344	ASSERT(0);
1345	return VM_FAULT_SIGBUS;
1346}
1347#endif
1348
1349/*
1350 * Locking for serialisation of IO during page faults. This results in a lock
1351 * ordering of:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1352 *
1353 * mmap_lock (MM)
1354 *   sb_start_pagefault(vfs, freeze)
1355 *     invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation)
1356 *       page_lock (MM)
1357 *         i_lock (XFS - extent map serialisation)
1358 */
1359static vm_fault_t
1360__xfs_filemap_fault(
1361	struct vm_fault		*vmf,
1362	unsigned int		order,
1363	bool			write_fault)
 
1364{
1365	struct inode		*inode = file_inode(vmf->vma->vm_file);
1366	struct xfs_inode	*ip = XFS_I(inode);
1367	vm_fault_t		ret;
1368	unsigned int		lock_mode = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1369
1370	trace_xfs_filemap_fault(ip, order, write_fault);
 
 
 
 
 
 
1371
1372	if (write_fault) {
1373		sb_start_pagefault(inode->i_sb);
1374		file_update_time(vmf->vma->vm_file);
1375	}
 
 
 
 
 
 
1376
1377	if (IS_DAX(inode) || write_fault)
1378		lock_mode = xfs_ilock_for_write_fault(XFS_I(inode));
 
1379
1380	if (IS_DAX(inode)) {
1381		pfn_t pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1382
1383		ret = xfs_dax_fault(vmf, order, write_fault, &pfn);
1384		if (ret & VM_FAULT_NEEDDSYNC)
1385			ret = dax_finish_sync_fault(vmf, order, pfn);
1386	} else if (write_fault) {
1387		ret = iomap_page_mkwrite(vmf, &xfs_page_mkwrite_iomap_ops);
1388	} else {
1389		ret = filemap_fault(vmf);
1390	}
 
 
1391
1392	if (lock_mode)
1393		xfs_iunlock(XFS_I(inode), lock_mode);
 
 
1394
1395	if (write_fault)
1396		sb_end_pagefault(inode->i_sb);
1397	return ret;
1398}
 
 
 
 
 
 
 
1399
1400static inline bool
1401xfs_is_write_fault(
1402	struct vm_fault		*vmf)
1403{
1404	return (vmf->flags & FAULT_FLAG_WRITE) &&
1405	       (vmf->vma->vm_flags & VM_SHARED);
1406}
 
 
1407
1408static vm_fault_t
1409xfs_filemap_fault(
1410	struct vm_fault		*vmf)
1411{
1412	/* DAX can shortcut the normal fault path on write faults! */
1413	return __xfs_filemap_fault(vmf, 0,
1414			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1415			xfs_is_write_fault(vmf));
1416}
 
 
 
1417
1418static vm_fault_t
1419xfs_filemap_huge_fault(
1420	struct vm_fault		*vmf,
1421	unsigned int		order)
1422{
1423	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1424		return VM_FAULT_FALLBACK;
1425
1426	/* DAX can shortcut the normal fault path on write faults! */
1427	return __xfs_filemap_fault(vmf, order,
1428			xfs_is_write_fault(vmf));
1429}
1430
1431static vm_fault_t
1432xfs_filemap_page_mkwrite(
1433	struct vm_fault		*vmf)
 
1434{
1435	return __xfs_filemap_fault(vmf, 0, true);
1436}
 
 
 
 
 
 
 
1437
1438/*
1439 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1440 * on write faults. In reality, it needs to serialise against truncate and
1441 * prepare memory for writing so handle is as standard write fault.
1442 */
1443static vm_fault_t
1444xfs_filemap_pfn_mkwrite(
1445	struct vm_fault		*vmf)
1446{
1447
1448	return __xfs_filemap_fault(vmf, 0, true);
1449}
 
 
 
1450
1451static const struct vm_operations_struct xfs_file_vm_ops = {
1452	.fault		= xfs_filemap_fault,
1453	.huge_fault	= xfs_filemap_huge_fault,
1454	.map_pages	= filemap_map_pages,
1455	.page_mkwrite	= xfs_filemap_page_mkwrite,
1456	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1457};
 
 
 
1458
1459STATIC int
1460xfs_file_mmap(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1461	struct file		*file,
1462	struct vm_area_struct	*vma)
1463{
1464	struct inode		*inode = file_inode(file);
1465	struct xfs_buftarg	*target = xfs_inode_buftarg(XFS_I(inode));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1467	/*
1468	 * We don't support synchronous mappings for non-DAX files and
1469	 * for DAX files if underneath dax_device is not synchronous.
 
 
1470	 */
1471	if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1472		return -EOPNOTSUPP;
1473
1474	file_accessed(file);
1475	vma->vm_ops = &xfs_file_vm_ops;
1476	if (IS_DAX(inode))
1477		vm_flags_set(vma, VM_HUGEPAGE);
1478	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1479}
1480
1481const struct file_operations xfs_file_operations = {
1482	.llseek		= xfs_file_llseek,
1483	.read_iter	= xfs_file_read_iter,
1484	.write_iter	= xfs_file_write_iter,
 
 
1485	.splice_read	= xfs_file_splice_read,
1486	.splice_write	= iter_file_splice_write,
1487	.iopoll		= iocb_bio_iopoll,
1488	.unlocked_ioctl	= xfs_file_ioctl,
1489#ifdef CONFIG_COMPAT
1490	.compat_ioctl	= xfs_file_compat_ioctl,
1491#endif
1492	.mmap		= xfs_file_mmap,
1493	.mmap_supported_flags = MAP_SYNC,
1494	.open		= xfs_file_open,
1495	.release	= xfs_file_release,
1496	.fsync		= xfs_file_fsync,
1497	.get_unmapped_area = thp_get_unmapped_area,
1498	.fallocate	= xfs_file_fallocate,
1499	.fadvise	= xfs_file_fadvise,
1500	.remap_file_range = xfs_file_remap_range,
1501};
1502
1503const struct file_operations xfs_dir_file_operations = {
1504	.open		= xfs_dir_open,
1505	.read		= generic_read_dir,
1506	.iterate_shared	= xfs_file_readdir,
1507	.llseek		= generic_file_llseek,
1508	.unlocked_ioctl	= xfs_file_ioctl,
1509#ifdef CONFIG_COMPAT
1510	.compat_ioctl	= xfs_file_compat_ioctl,
1511#endif
1512	.fsync		= xfs_dir_fsync,
 
 
 
 
 
 
 
1513};
v3.15
 
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_sb.h"
  25#include "xfs_ag.h"
  26#include "xfs_mount.h"
  27#include "xfs_da_format.h"
  28#include "xfs_da_btree.h"
  29#include "xfs_inode.h"
  30#include "xfs_trans.h"
  31#include "xfs_inode_item.h"
  32#include "xfs_bmap.h"
  33#include "xfs_bmap_util.h"
  34#include "xfs_error.h"
  35#include "xfs_dir2.h"
  36#include "xfs_dir2_priv.h"
  37#include "xfs_ioctl.h"
  38#include "xfs_trace.h"
  39#include "xfs_log.h"
  40#include "xfs_dinode.h"
 
 
 
  41
  42#include <linux/aio.h>
  43#include <linux/dcache.h>
  44#include <linux/falloc.h>
  45#include <linux/pagevec.h>
 
 
 
  46
  47static const struct vm_operations_struct xfs_file_vm_ops;
  48
  49/*
  50 * Locking primitives for read and write IO paths to ensure we consistently use
  51 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
  52 */
  53static inline void
  54xfs_rw_ilock(
  55	struct xfs_inode	*ip,
  56	int			type)
 
  57{
  58	if (type & XFS_IOLOCK_EXCL)
  59		mutex_lock(&VFS_I(ip)->i_mutex);
  60	xfs_ilock(ip, type);
  61}
  62
  63static inline void
  64xfs_rw_iunlock(
  65	struct xfs_inode	*ip,
  66	int			type)
  67{
  68	xfs_iunlock(ip, type);
  69	if (type & XFS_IOLOCK_EXCL)
  70		mutex_unlock(&VFS_I(ip)->i_mutex);
  71}
  72
  73static inline void
  74xfs_rw_ilock_demote(
  75	struct xfs_inode	*ip,
  76	int			type)
  77{
  78	xfs_ilock_demote(ip, type);
  79	if (type & XFS_IOLOCK_EXCL)
  80		mutex_unlock(&VFS_I(ip)->i_mutex);
  81}
  82
  83/*
  84 *	xfs_iozero
  85 *
  86 *	xfs_iozero clears the specified range of buffer supplied,
  87 *	and marks all the affected blocks as valid and modified.  If
  88 *	an affected block is not allocated, it will be allocated.  If
  89 *	an affected block is not completely overwritten, and is not
  90 *	valid before the operation, it will be read from disk before
  91 *	being partially zeroed.
  92 */
  93int
  94xfs_iozero(
  95	struct xfs_inode	*ip,	/* inode			*/
  96	loff_t			pos,	/* offset in file		*/
  97	size_t			count)	/* size of data to zero		*/
  98{
  99	struct page		*page;
 100	struct address_space	*mapping;
 101	int			status;
 102
 103	mapping = VFS_I(ip)->i_mapping;
 104	do {
 105		unsigned offset, bytes;
 106		void *fsdata;
 107
 108		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
 109		bytes = PAGE_CACHE_SIZE - offset;
 110		if (bytes > count)
 111			bytes = count;
 112
 113		status = pagecache_write_begin(NULL, mapping, pos, bytes,
 114					AOP_FLAG_UNINTERRUPTIBLE,
 115					&page, &fsdata);
 116		if (status)
 117			break;
 118
 119		zero_user(page, offset, bytes);
 120
 121		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
 122					page, fsdata);
 123		WARN_ON(status <= 0); /* can't return less than zero! */
 124		pos += bytes;
 125		count -= bytes;
 126		status = 0;
 127	} while (count);
 128
 129	return (-status);
 130}
 131
 132/*
 133 * Fsync operations on directories are much simpler than on regular files,
 134 * as there is no file data to flush, and thus also no need for explicit
 135 * cache flush operations, and there are no non-transaction metadata updates
 136 * on directories either.
 137 */
 138STATIC int
 139xfs_dir_fsync(
 140	struct file		*file,
 141	loff_t			start,
 142	loff_t			end,
 143	int			datasync)
 144{
 145	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
 146	struct xfs_mount	*mp = ip->i_mount;
 147	xfs_lsn_t		lsn = 0;
 148
 149	trace_xfs_dir_fsync(ip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 150
 151	xfs_ilock(ip, XFS_ILOCK_SHARED);
 152	if (xfs_ipincount(ip))
 153		lsn = ip->i_itemp->ili_last_lsn;
 
 
 
 
 
 
 
 154	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 155
 156	if (!lsn)
 157		return 0;
 158	return -_xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
 159}
 160
 161STATIC int
 162xfs_file_fsync(
 163	struct file		*file,
 164	loff_t			start,
 165	loff_t			end,
 166	int			datasync)
 167{
 168	struct inode		*inode = file->f_mapping->host;
 169	struct xfs_inode	*ip = XFS_I(inode);
 170	struct xfs_mount	*mp = ip->i_mount;
 171	int			error = 0;
 172	int			log_flushed = 0;
 173	xfs_lsn_t		lsn = 0;
 174
 175	trace_xfs_file_fsync(ip);
 176
 177	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
 178	if (error)
 179		return error;
 180
 181	if (XFS_FORCED_SHUTDOWN(mp))
 182		return -XFS_ERROR(EIO);
 183
 184	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 185
 186	if (mp->m_flags & XFS_MOUNT_BARRIER) {
 187		/*
 188		 * If we have an RT and/or log subvolume we need to make sure
 189		 * to flush the write cache the device used for file data
 190		 * first.  This is to ensure newly written file data make
 191		 * it to disk before logging the new inode size in case of
 192		 * an extending write.
 193		 */
 194		if (XFS_IS_REALTIME_INODE(ip))
 195			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
 196		else if (mp->m_logdev_targp != mp->m_ddev_targp)
 197			xfs_blkdev_issue_flush(mp->m_ddev_targp);
 198	}
 199
 200	/*
 201	 * All metadata updates are logged, which means that we just have
 202	 * to flush the log up to the latest LSN that touched the inode.
 
 
 203	 */
 204	xfs_ilock(ip, XFS_ILOCK_SHARED);
 205	if (xfs_ipincount(ip)) {
 206		if (!datasync ||
 207		    (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
 208			lsn = ip->i_itemp->ili_last_lsn;
 209	}
 210	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 211
 212	if (lsn)
 213		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
 214
 215	/*
 216	 * If we only have a single device, and the log force about was
 217	 * a no-op we might have to flush the data device cache here.
 218	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 219	 * an already allocated file and thus do not have any metadata to
 220	 * commit.
 221	 */
 222	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
 223	    mp->m_logdev_targp == mp->m_ddev_targp &&
 224	    !XFS_IS_REALTIME_INODE(ip) &&
 225	    !log_flushed)
 226		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 
 227
 228	return -error;
 229}
 230
 231STATIC ssize_t
 232xfs_file_aio_read(
 233	struct kiocb		*iocb,
 234	const struct iovec	*iovp,
 235	unsigned long		nr_segs,
 236	loff_t			pos)
 237{
 238	struct file		*file = iocb->ki_filp;
 239	struct inode		*inode = file->f_mapping->host;
 240	struct xfs_inode	*ip = XFS_I(inode);
 241	struct xfs_mount	*mp = ip->i_mount;
 242	size_t			size = 0;
 243	ssize_t			ret = 0;
 244	int			ioflags = 0;
 245	xfs_fsize_t		n;
 246
 247	XFS_STATS_INC(xs_read_calls);
 
 
 
 
 
 248
 249	BUG_ON(iocb->ki_pos != pos);
 
 250
 251	if (unlikely(file->f_flags & O_DIRECT))
 252		ioflags |= IO_ISDIRECT;
 253	if (file->f_mode & FMODE_NOCMTIME)
 254		ioflags |= IO_INVIS;
 
 
 
 255
 256	ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE);
 257	if (ret < 0)
 258		return ret;
 259
 260	if (unlikely(ioflags & IO_ISDIRECT)) {
 261		xfs_buftarg_t	*target =
 262			XFS_IS_REALTIME_INODE(ip) ?
 263				mp->m_rtdev_targp : mp->m_ddev_targp;
 264		/* DIO must be aligned to device logical sector size */
 265		if ((pos | size) & target->bt_logical_sectormask) {
 266			if (pos == i_size_read(inode))
 267				return 0;
 268			return -XFS_ERROR(EINVAL);
 269		}
 270	}
 271
 272	n = mp->m_super->s_maxbytes - pos;
 273	if (n <= 0 || size == 0)
 274		return 0;
 275
 276	if (n < size)
 277		size = n;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 278
 279	if (XFS_FORCED_SHUTDOWN(mp))
 280		return -EIO;
 
 
 
 
 
 
 
 281
 282	/*
 283	 * Locking is a bit tricky here. If we take an exclusive lock
 284	 * for direct IO, we effectively serialise all new concurrent
 285	 * read IO to this file and block it behind IO that is currently in
 286	 * progress because IO in progress holds the IO lock shared. We only
 287	 * need to hold the lock exclusive to blow away the page cache, so
 288	 * only take lock exclusively if the page cache needs invalidation.
 289	 * This allows the normal direct IO case of no page cache pages to
 290	 * proceeed concurrently without serialisation.
 291	 */
 292	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
 293	if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
 294		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 295		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
 296
 297		if (inode->i_mapping->nrpages) {
 298			ret = filemap_write_and_wait_range(
 299							VFS_I(ip)->i_mapping,
 300							pos, -1);
 301			if (ret) {
 302				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
 303				return ret;
 304			}
 305			truncate_pagecache_range(VFS_I(ip), pos, -1);
 306		}
 307		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
 308	}
 309
 310	trace_xfs_file_read(ip, size, pos, ioflags);
 311
 312	ret = generic_file_aio_read(iocb, iovp, nr_segs, pos);
 313	if (ret > 0)
 314		XFS_STATS_ADD(xs_read_bytes, ret);
 
 
 315
 316	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 317	return ret;
 318}
 319
 320STATIC ssize_t
 321xfs_file_splice_read(
 322	struct file		*infilp,
 323	loff_t			*ppos,
 324	struct pipe_inode_info	*pipe,
 325	size_t			count,
 326	unsigned int		flags)
 327{
 328	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
 329	int			ioflags = 0;
 330	ssize_t			ret;
 331
 332	XFS_STATS_INC(xs_read_calls);
 333
 334	if (infilp->f_mode & FMODE_NOCMTIME)
 335		ioflags |= IO_INVIS;
 336
 337	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 338		return -EIO;
 
 
 
 
 
 
 
 339
 340	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
 
 
 
 
 
 
 341
 342	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
 343
 344	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
 345	if (ret > 0)
 346		XFS_STATS_ADD(xs_read_bytes, ret);
 
 
 347
 348	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 349	return ret;
 350}
 351
 352/*
 353 * xfs_file_splice_write() does not use xfs_rw_ilock() because
 354 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
 355 * couuld cause lock inversions between the aio_write path and the splice path
 356 * if someone is doing concurrent splice(2) based writes and write(2) based
 357 * writes to the same inode. The only real way to fix this is to re-implement
 358 * the generic code here with correct locking orders.
 359 */
 360STATIC ssize_t
 361xfs_file_splice_write(
 362	struct pipe_inode_info	*pipe,
 363	struct file		*outfilp,
 364	loff_t			*ppos,
 365	size_t			count,
 366	unsigned int		flags)
 367{
 368	struct inode		*inode = outfilp->f_mapping->host;
 369	struct xfs_inode	*ip = XFS_I(inode);
 370	int			ioflags = 0;
 371	ssize_t			ret;
 372
 373	XFS_STATS_INC(xs_write_calls);
 374
 375	if (outfilp->f_mode & FMODE_NOCMTIME)
 376		ioflags |= IO_INVIS;
 377
 378	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 379		return -EIO;
 380
 381	xfs_ilock(ip, XFS_IOLOCK_EXCL);
 382
 383	trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
 
 
 
 384
 385	ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
 386	if (ret > 0)
 387		XFS_STATS_ADD(xs_write_bytes, ret);
 388
 389	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
 390	return ret;
 391}
 392
 393/*
 394 * This routine is called to handle zeroing any space in the last block of the
 395 * file that is beyond the EOF.  We do this since the size is being increased
 396 * without writing anything to that block and we don't want to read the
 397 * garbage on the disk.
 398 */
 399STATIC int				/* error (positive) */
 400xfs_zero_last_block(
 401	struct xfs_inode	*ip,
 402	xfs_fsize_t		offset,
 403	xfs_fsize_t		isize)
 404{
 
 
 405	struct xfs_mount	*mp = ip->i_mount;
 406	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
 407	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
 408	int			zero_len;
 409	int			nimaps = 1;
 410	int			error = 0;
 411	struct xfs_bmbt_irec	imap;
 412
 413	xfs_ilock(ip, XFS_ILOCK_EXCL);
 414	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
 415	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 416	if (error)
 417		return error;
 418
 419	ASSERT(nimaps > 0);
 
 420
 421	/*
 422	 * If the block underlying isize is just a hole, then there
 423	 * is nothing to zero.
 424	 */
 425	if (imap.br_startblock == HOLESTARTBLOCK)
 426		return 0;
 427
 428	zero_len = mp->m_sb.sb_blocksize - zero_offset;
 429	if (isize + zero_len > offset)
 430		zero_len = offset - isize;
 431	return xfs_iozero(ip, isize, zero_len);
 
 
 432}
 433
 434/*
 435 * Zero any on disk space between the current EOF and the new, larger EOF.
 436 *
 437 * This handles the normal case of zeroing the remainder of the last block in
 438 * the file and the unusual case of zeroing blocks out beyond the size of the
 439 * file.  This second case only happens with fixed size extents and when the
 440 * system crashes before the inode size was updated but after blocks were
 441 * allocated.
 442 *
 443 * Expects the iolock to be held exclusive, and will take the ilock internally.
 444 */
 445int					/* error (positive) */
 446xfs_zero_eof(
 447	struct xfs_inode	*ip,
 448	xfs_off_t		offset,		/* starting I/O offset */
 449	xfs_fsize_t		isize)		/* current inode size */
 450{
 451	struct xfs_mount	*mp = ip->i_mount;
 452	xfs_fileoff_t		start_zero_fsb;
 453	xfs_fileoff_t		end_zero_fsb;
 454	xfs_fileoff_t		zero_count_fsb;
 455	xfs_fileoff_t		last_fsb;
 456	xfs_fileoff_t		zero_off;
 457	xfs_fsize_t		zero_len;
 458	int			nimaps;
 459	int			error = 0;
 460	struct xfs_bmbt_irec	imap;
 
 
 
 
 
 
 
 
 
 
 461
 462	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
 463	ASSERT(offset > isize);
 464
 465	/*
 466	 * First handle zeroing the block on which isize resides.
 467	 *
 468	 * We only zero a part of that block so it is handled specially.
 469	 */
 470	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
 471		error = xfs_zero_last_block(ip, offset, isize);
 472		if (error)
 
 
 
 473			return error;
 
 
 474	}
 475
 476	/*
 477	 * Calculate the range between the new size and the old where blocks
 478	 * needing to be zeroed may exist.
 
 
 
 
 
 
 
 
 
 
 
 479	 *
 480	 * To get the block where the last byte in the file currently resides,
 481	 * we need to subtract one from the size and truncate back to a block
 482	 * boundary.  We subtract 1 in case the size is exactly on a block
 483	 * boundary.
 484	 */
 485	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
 486	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
 487	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
 488	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
 489	if (last_fsb == end_zero_fsb) {
 490		/*
 491		 * The size was only incremented on its last block.
 492		 * We took care of that above, so just return.
 493		 */
 494		return 0;
 495	}
 496
 497	ASSERT(start_zero_fsb <= end_zero_fsb);
 498	while (start_zero_fsb <= end_zero_fsb) {
 499		nimaps = 1;
 500		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
 501
 502		xfs_ilock(ip, XFS_ILOCK_EXCL);
 503		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
 504					  &imap, &nimaps, 0);
 505		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 506		if (error)
 507			return error;
 508
 509		ASSERT(nimaps > 0);
 
 510
 511		if (imap.br_state == XFS_EXT_UNWRITTEN ||
 512		    imap.br_startblock == HOLESTARTBLOCK) {
 513			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
 514			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
 515			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 516		}
 517
 518		/*
 519		 * There are blocks we need to zero.
 520		 */
 521		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
 522		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
 523
 524		if ((zero_off + zero_len) > offset)
 525			zero_len = offset - zero_off;
 526
 527		error = xfs_iozero(ip, zero_off, zero_len);
 528		if (error)
 529			return error;
 
 
 530
 531		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
 532		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
 533	}
 534
 535	return 0;
 536}
 537
 538/*
 539 * Common pre-write limit and setup checks.
 540 *
 541 * Called with the iolocked held either shared and exclusive according to
 542 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 543 * if called for a direct write beyond i_size.
 544 */
 545STATIC ssize_t
 546xfs_file_aio_write_checks(
 547	struct file		*file,
 548	loff_t			*pos,
 549	size_t			*count,
 550	int			*iolock)
 551{
 552	struct inode		*inode = file->f_mapping->host;
 553	struct xfs_inode	*ip = XFS_I(inode);
 554	int			error = 0;
 
 
 
 
 
 
 555
 556restart:
 557	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
 558	if (error)
 559		return error;
 
 
 
 
 
 
 
 
 560
 561	/*
 562	 * If the offset is beyond the size of the file, we need to zero any
 563	 * blocks that fall between the existing EOF and the start of this
 564	 * write.  If zeroing is needed and we are currently holding the
 565	 * iolock shared, we need to update it to exclusive which implies
 566	 * having to redo all checks before.
 567	 */
 568	if (*pos > i_size_read(inode)) {
 569		if (*iolock == XFS_IOLOCK_SHARED) {
 570			xfs_rw_iunlock(ip, *iolock);
 571			*iolock = XFS_IOLOCK_EXCL;
 572			xfs_rw_ilock(ip, *iolock);
 573			goto restart;
 574		}
 575		error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
 576		if (error)
 577			return error;
 578	}
 579
 580	/*
 581	 * Updating the timestamps will grab the ilock again from
 582	 * xfs_fs_dirty_inode, so we have to call it after dropping the
 583	 * lock above.  Eventually we should look into a way to avoid
 584	 * the pointless lock roundtrip.
 585	 */
 586	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
 587		error = file_update_time(file);
 588		if (error)
 589			return error;
 590	}
 591
 592	/*
 593	 * If we're writing the file then make sure to clear the setuid and
 594	 * setgid bits if the process is not being run by root.  This keeps
 595	 * people from modifying setuid and setgid binaries.
 
 
 
 
 
 
 
 
 
 
 
 
 
 596	 */
 597	return file_remove_suid(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 598}
 599
 
 
 
 
 600/*
 601 * xfs_file_dio_aio_write - handle direct IO writes
 602 *
 603 * Lock the inode appropriately to prepare for and issue a direct IO write.
 604 * By separating it from the buffered write path we remove all the tricky to
 605 * follow locking changes and looping.
 606 *
 607 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 608 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 609 * pages are flushed out.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 610 *
 611 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 612 * allowing them to be done in parallel with reads and other direct IO writes.
 613 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 614 * needs to do sub-block zeroing and that requires serialisation against other
 615 * direct IOs to the same block. In this case we need to serialise the
 616 * submission of the unaligned IOs so that we don't get racing block zeroing in
 617 * the dio layer.  To avoid the problem with aio, we also need to wait for
 618 * outstanding IOs to complete so that unwritten extent conversion is completed
 619 * before we try to map the overlapping block. This is currently implemented by
 620 * hitting it with a big hammer (i.e. inode_dio_wait()).
 621 *
 622 * Returns with locks held indicated by @iolock and errors indicated by
 623 * negative return values.
 
 
 624 */
 625STATIC ssize_t
 626xfs_file_dio_aio_write(
 
 627	struct kiocb		*iocb,
 628	const struct iovec	*iovp,
 629	unsigned long		nr_segs,
 630	loff_t			pos,
 631	size_t			ocount)
 632{
 633	struct file		*file = iocb->ki_filp;
 634	struct address_space	*mapping = file->f_mapping;
 635	struct inode		*inode = mapping->host;
 636	struct xfs_inode	*ip = XFS_I(inode);
 637	struct xfs_mount	*mp = ip->i_mount;
 638	ssize_t			ret = 0;
 639	size_t			count = ocount;
 640	int			unaligned_io = 0;
 641	int			iolock;
 642	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
 643					mp->m_rtdev_targp : mp->m_ddev_targp;
 644
 645	/* DIO must be aligned to device logical sector size */
 646	if ((pos | count) & target->bt_logical_sectormask)
 647		return -XFS_ERROR(EINVAL);
 648
 649	/* "unaligned" here means not aligned to a filesystem block */
 650	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
 651		unaligned_io = 1;
 652
 653	/*
 654	 * We don't need to take an exclusive lock unless there page cache needs
 655	 * to be invalidated or unaligned IO is being executed. We don't need to
 656	 * consider the EOF extension case here because
 657	 * xfs_file_aio_write_checks() will relock the inode as necessary for
 658	 * EOF zeroing cases and fill out the new inode size as appropriate.
 659	 */
 660	if (unaligned_io || mapping->nrpages)
 
 
 
 661		iolock = XFS_IOLOCK_EXCL;
 662	else
 663		iolock = XFS_IOLOCK_SHARED;
 664	xfs_rw_ilock(ip, iolock);
 
 
 
 665
 666	/*
 667	 * Recheck if there are cached pages that need invalidate after we got
 668	 * the iolock to protect against other threads adding new pages while
 669	 * we were waiting for the iolock.
 670	 */
 671	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
 672		xfs_rw_iunlock(ip, iolock);
 673		iolock = XFS_IOLOCK_EXCL;
 674		xfs_rw_ilock(ip, iolock);
 675	}
 676
 677	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
 678	if (ret)
 679		goto out;
 
 
 
 
 
 
 
 
 
 680
 681	if (mapping->nrpages) {
 682		ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
 683						    pos, -1);
 684		if (ret)
 685			goto out;
 686		truncate_pagecache_range(VFS_I(ip), pos, -1);
 687	}
 688
 689	/*
 690	 * If we are doing unaligned IO, wait for all other IO to drain,
 691	 * otherwise demote the lock if we had to flush cached pages
 
 692	 */
 693	if (unaligned_io)
 694		inode_dio_wait(inode);
 695	else if (iolock == XFS_IOLOCK_EXCL) {
 696		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
 697		iolock = XFS_IOLOCK_SHARED;
 698	}
 699
 700	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
 701	ret = generic_file_direct_write(iocb, iovp,
 702			&nr_segs, pos, count, ocount);
 
 
 
 
 
 
 
 
 
 
 
 703
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 704out:
 705	xfs_rw_iunlock(ip, iolock);
 
 
 
 
 
 
 706
 707	/* No fallback to buffered IO on errors for XFS. */
 708	ASSERT(ret < 0 || ret == count);
 
 709	return ret;
 710}
 711
 712STATIC ssize_t
 713xfs_file_buffered_aio_write(
 714	struct kiocb		*iocb,
 715	const struct iovec	*iovp,
 716	unsigned long		nr_segs,
 717	loff_t			pos,
 718	size_t			count)
 719{
 720	struct file		*file = iocb->ki_filp;
 721	struct address_space	*mapping = file->f_mapping;
 722	struct inode		*inode = mapping->host;
 723	struct xfs_inode	*ip = XFS_I(inode);
 724	ssize_t			ret;
 725	int			enospc = 0;
 726	int			iolock = XFS_IOLOCK_EXCL;
 727	struct iov_iter		from;
 728
 729	xfs_rw_ilock(ip, iolock);
 
 
 
 
 730
 731	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
 732	if (ret)
 733		goto out;
 734
 735	iov_iter_init(&from, iovp, nr_segs, count, 0);
 736	/* We can write back this queue in page reclaim */
 737	current->backing_dev_info = mapping->backing_dev_info;
 738
 739write_retry:
 740	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
 741	ret = generic_perform_write(file, &from, pos);
 742	if (likely(ret >= 0))
 743		iocb->ki_pos = pos + ret;
 744	/*
 745	 * If we just got an ENOSPC, try to write back all dirty inodes to
 746	 * convert delalloc space to free up some of the excess reserved
 747	 * metadata space.
 748	 */
 749	if (ret == -ENOSPC && !enospc) {
 750		enospc = 1;
 
 
 
 
 
 
 
 751		xfs_flush_inodes(ip->i_mount);
 
 
 
 
 752		goto write_retry;
 753	}
 754
 755	current->backing_dev_info = NULL;
 756out:
 757	xfs_rw_iunlock(ip, iolock);
 
 
 
 
 
 
 
 758	return ret;
 759}
 760
 761STATIC ssize_t
 762xfs_file_aio_write(
 763	struct kiocb		*iocb,
 764	const struct iovec	*iovp,
 765	unsigned long		nr_segs,
 766	loff_t			pos)
 767{
 768	struct file		*file = iocb->ki_filp;
 769	struct address_space	*mapping = file->f_mapping;
 770	struct inode		*inode = mapping->host;
 771	struct xfs_inode	*ip = XFS_I(inode);
 772	ssize_t			ret;
 773	size_t			ocount = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 774
 775	XFS_STATS_INC(xs_write_calls);
 
 
 
 
 776
 777	BUG_ON(iocb->ki_pos != pos);
 
 
 
 778
 779	ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
 780	if (ret)
 781		return ret;
 
 
 
 
 
 782
 783	if (ocount == 0)
 
 784		return 0;
 785
 786	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 787		ret = -EIO;
 788		goto out;
 789	}
 
 
 
 
 
 
 
 
 
 
 
 
 790
 791	if (unlikely(file->f_flags & O_DIRECT))
 792		ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
 793	else
 794		ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
 795						  ocount);
 
 
 
 
 
 
 
 
 
 
 
 796
 797	if (ret > 0) {
 798		ssize_t err;
 799
 800		XFS_STATS_ADD(xs_write_bytes, ret);
 
 
 
 801
 802		/* Handle various SYNC-type writes */
 803		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
 804		if (err < 0)
 805			ret = err;
 806	}
 
 807
 808out:
 809	return ret;
 810}
 811
 
 
 
 
 
 812STATIC long
 813xfs_file_fallocate(
 814	struct file		*file,
 815	int			mode,
 816	loff_t			offset,
 817	loff_t			len)
 818{
 819	struct inode		*inode = file_inode(file);
 820	struct xfs_inode	*ip = XFS_I(inode);
 821	struct xfs_trans	*tp;
 822	long			error;
 
 823	loff_t			new_size = 0;
 
 824
 825	if (!S_ISREG(inode->i_mode))
 826		return -EINVAL;
 827	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
 828		     FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
 829		return -EOPNOTSUPP;
 830
 831	xfs_ilock(ip, XFS_IOLOCK_EXCL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 832	if (mode & FALLOC_FL_PUNCH_HOLE) {
 833		error = xfs_free_file_space(ip, offset, len);
 834		if (error)
 835			goto out_unlock;
 836	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
 837		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
 838
 839		if (offset & blksize_mask || len & blksize_mask) {
 840			error = EINVAL;
 841			goto out_unlock;
 842		}
 843
 844		/*
 845		 * There is no need to overlap collapse range with EOF,
 846		 * in which case it is effectively a truncate operation
 847		 */
 848		if (offset + len >= i_size_read(inode)) {
 849			error = EINVAL;
 850			goto out_unlock;
 851		}
 852
 853		new_size = i_size_read(inode) - len;
 854
 855		error = xfs_collapse_file_space(ip, offset, len);
 856		if (error)
 857			goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858	} else {
 859		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 860		    offset + len > i_size_read(inode)) {
 861			new_size = offset + len;
 862			error = -inode_newsize_ok(inode, new_size);
 863			if (error)
 864				goto out_unlock;
 865		}
 866
 867		if (mode & FALLOC_FL_ZERO_RANGE)
 868			error = xfs_zero_file_space(ip, offset, len);
 869		else
 870			error = xfs_alloc_file_space(ip, offset, len,
 871						     XFS_BMAPI_PREALLOC);
 872		if (error)
 873			goto out_unlock;
 874	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 875
 876	tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
 877	error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
 878	if (error) {
 879		xfs_trans_cancel(tp, 0);
 880		goto out_unlock;
 881	}
 882
 883	xfs_ilock(ip, XFS_ILOCK_EXCL);
 884	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 885	ip->i_d.di_mode &= ~S_ISUID;
 886	if (ip->i_d.di_mode & S_IXGRP)
 887		ip->i_d.di_mode &= ~S_ISGID;
 888
 889	if (!(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE)))
 890		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
 891
 892	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
 893	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 894
 895	if (file->f_flags & O_DSYNC)
 896		xfs_trans_set_sync(tp);
 897	error = xfs_trans_commit(tp, 0);
 898	if (error)
 899		goto out_unlock;
 900
 901	/* Change file size if needed */
 902	if (new_size) {
 903		struct iattr iattr;
 904
 905		iattr.ia_valid = ATTR_SIZE;
 906		iattr.ia_size = new_size;
 907		error = xfs_setattr_size(ip, &iattr);
 
 
 
 908	}
 909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 910out_unlock:
 911	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
 912	return -error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 913}
 914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 915
 916STATIC int
 917xfs_file_open(
 918	struct inode	*inode,
 919	struct file	*file)
 920{
 921	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
 922		return -EFBIG;
 923	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
 924		return -EIO;
 925	return 0;
 
 
 926}
 927
 928STATIC int
 929xfs_dir_open(
 930	struct inode	*inode,
 931	struct file	*file)
 932{
 933	struct xfs_inode *ip = XFS_I(inode);
 934	int		mode;
 935	int		error;
 936
 937	error = xfs_file_open(inode, file);
 938	if (error)
 939		return error;
 940
 941	/*
 942	 * If there are any blocks, read-ahead block 0 as we're almost
 943	 * certain to have the next operation be a read there.
 944	 */
 945	mode = xfs_ilock_data_map_shared(ip);
 946	if (ip->i_d.di_nextents > 0)
 947		xfs_dir3_data_readahead(NULL, ip, 0, -1);
 948	xfs_iunlock(ip, mode);
 949	return 0;
 950}
 951
 952STATIC int
 953xfs_file_release(
 954	struct inode	*inode,
 955	struct file	*filp)
 956{
 957	return -xfs_release(XFS_I(inode));
 958}
 959
 960STATIC int
 961xfs_file_readdir(
 962	struct file	*file,
 963	struct dir_context *ctx)
 964{
 965	struct inode	*inode = file_inode(file);
 966	xfs_inode_t	*ip = XFS_I(inode);
 967	int		error;
 968	size_t		bufsize;
 969
 970	/*
 971	 * The Linux API doesn't pass down the total size of the buffer
 972	 * we read into down to the filesystem.  With the filldir concept
 973	 * it's not needed for correct information, but the XFS dir2 leaf
 974	 * code wants an estimate of the buffer size to calculate it's
 975	 * readahead window and size the buffers used for mapping to
 976	 * physical blocks.
 977	 *
 978	 * Try to give it an estimate that's good enough, maybe at some
 979	 * point we can change the ->readdir prototype to include the
 980	 * buffer size.  For now we use the current glibc buffer size.
 981	 */
 982	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
 983
 984	error = xfs_readdir(ip, ctx, bufsize);
 985	if (error)
 986		return -error;
 987	return 0;
 988}
 989
 990STATIC int
 991xfs_file_mmap(
 992	struct file	*filp,
 993	struct vm_area_struct *vma)
 
 994{
 995	vma->vm_ops = &xfs_file_vm_ops;
 
 
 
 996
 997	file_accessed(filp);
 998	return 0;
 999}
 
 
 
 
 
 
 
1000
1001/*
1002 * mmap()d file has taken write protection fault and is being made
1003 * writable. We can set the page state up correctly for a writable
1004 * page, which means we can do correct delalloc accounting (ENOSPC
1005 * checking!) and unwritten extent mapping.
1006 */
1007STATIC int
1008xfs_vm_page_mkwrite(
1009	struct vm_area_struct	*vma,
1010	struct vm_fault		*vmf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011{
1012	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
 
1013}
 
1014
1015/*
1016 * This type is designed to indicate the type of offset we would like
1017 * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
1018 */
1019enum {
1020	HOLE_OFF = 0,
1021	DATA_OFF,
1022};
1023
1024/*
1025 * Lookup the desired type of offset from the given page.
1026 *
1027 * On success, return true and the offset argument will point to the
1028 * start of the region that was found.  Otherwise this function will
1029 * return false and keep the offset argument unchanged.
1030 */
1031STATIC bool
1032xfs_lookup_buffer_offset(
1033	struct page		*page,
1034	loff_t			*offset,
1035	unsigned int		type)
1036{
1037	loff_t			lastoff = page_offset(page);
1038	bool			found = false;
1039	struct buffer_head	*bh, *head;
1040
1041	bh = head = page_buffers(page);
1042	do {
1043		/*
1044		 * Unwritten extents that have data in the page
1045		 * cache covering them can be identified by the
1046		 * BH_Unwritten state flag.  Pages with multiple
1047		 * buffers might have a mix of holes, data and
1048		 * unwritten extents - any buffer with valid
1049		 * data in it should have BH_Uptodate flag set
1050		 * on it.
1051		 */
1052		if (buffer_unwritten(bh) ||
1053		    buffer_uptodate(bh)) {
1054			if (type == DATA_OFF)
1055				found = true;
1056		} else {
1057			if (type == HOLE_OFF)
1058				found = true;
1059		}
1060
1061		if (found) {
1062			*offset = lastoff;
1063			break;
1064		}
1065		lastoff += bh->b_size;
1066	} while ((bh = bh->b_this_page) != head);
1067
1068	return found;
1069}
1070
1071/*
1072 * This routine is called to find out and return a data or hole offset
1073 * from the page cache for unwritten extents according to the desired
1074 * type for xfs_seek_data() or xfs_seek_hole().
1075 *
1076 * The argument offset is used to tell where we start to search from the
1077 * page cache.  Map is used to figure out the end points of the range to
1078 * lookup pages.
1079 *
1080 * Return true if the desired type of offset was found, and the argument
1081 * offset is filled with that address.  Otherwise, return false and keep
1082 * offset unchanged.
 
 
1083 */
1084STATIC bool
1085xfs_find_get_desired_pgoff(
1086	struct inode		*inode,
1087	struct xfs_bmbt_irec	*map,
1088	unsigned int		type,
1089	loff_t			*offset)
1090{
 
1091	struct xfs_inode	*ip = XFS_I(inode);
1092	struct xfs_mount	*mp = ip->i_mount;
1093	struct pagevec		pvec;
1094	pgoff_t			index;
1095	pgoff_t			end;
1096	loff_t			endoff;
1097	loff_t			startoff = *offset;
1098	loff_t			lastoff = startoff;
1099	bool			found = false;
1100
1101	pagevec_init(&pvec, 0);
1102
1103	index = startoff >> PAGE_CACHE_SHIFT;
1104	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1105	end = endoff >> PAGE_CACHE_SHIFT;
1106	do {
1107		int		want;
1108		unsigned	nr_pages;
1109		unsigned int	i;
1110
1111		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1112		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1113					  want);
1114		/*
1115		 * No page mapped into given range.  If we are searching holes
1116		 * and if this is the first time we got into the loop, it means
1117		 * that the given offset is landed in a hole, return it.
1118		 *
1119		 * If we have already stepped through some block buffers to find
1120		 * holes but they all contains data.  In this case, the last
1121		 * offset is already updated and pointed to the end of the last
1122		 * mapped page, if it does not reach the endpoint to search,
1123		 * that means there should be a hole between them.
1124		 */
1125		if (nr_pages == 0) {
1126			/* Data search found nothing */
1127			if (type == DATA_OFF)
1128				break;
1129
1130			ASSERT(type == HOLE_OFF);
1131			if (lastoff == startoff || lastoff < endoff) {
1132				found = true;
1133				*offset = lastoff;
1134			}
1135			break;
1136		}
1137
1138		/*
1139		 * At lease we found one page.  If this is the first time we
1140		 * step into the loop, and if the first page index offset is
1141		 * greater than the given search offset, a hole was found.
1142		 */
1143		if (type == HOLE_OFF && lastoff == startoff &&
1144		    lastoff < page_offset(pvec.pages[0])) {
1145			found = true;
1146			break;
1147		}
1148
1149		for (i = 0; i < nr_pages; i++) {
1150			struct page	*page = pvec.pages[i];
1151			loff_t		b_offset;
1152
1153			/*
1154			 * At this point, the page may be truncated or
1155			 * invalidated (changing page->mapping to NULL),
1156			 * or even swizzled back from swapper_space to tmpfs
1157			 * file mapping. However, page->index will not change
1158			 * because we have a reference on the page.
1159			 *
1160			 * Searching done if the page index is out of range.
1161			 * If the current offset is not reaches the end of
1162			 * the specified search range, there should be a hole
1163			 * between them.
1164			 */
1165			if (page->index > end) {
1166				if (type == HOLE_OFF && lastoff < endoff) {
1167					*offset = lastoff;
1168					found = true;
1169				}
1170				goto out;
1171			}
1172
1173			lock_page(page);
1174			/*
1175			 * Page truncated or invalidated(page->mapping == NULL).
1176			 * We can freely skip it and proceed to check the next
1177			 * page.
1178			 */
1179			if (unlikely(page->mapping != inode->i_mapping)) {
1180				unlock_page(page);
1181				continue;
1182			}
1183
1184			if (!page_has_buffers(page)) {
1185				unlock_page(page);
1186				continue;
1187			}
1188
1189			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1190			if (found) {
1191				/*
1192				 * The found offset may be less than the start
1193				 * point to search if this is the first time to
1194				 * come here.
1195				 */
1196				*offset = max_t(loff_t, startoff, b_offset);
1197				unlock_page(page);
1198				goto out;
1199			}
1200
1201			/*
1202			 * We either searching data but nothing was found, or
1203			 * searching hole but found a data buffer.  In either
1204			 * case, probably the next page contains the desired
1205			 * things, update the last offset to it so.
1206			 */
1207			lastoff = page_offset(page) + PAGE_SIZE;
1208			unlock_page(page);
1209		}
1210
1211		/*
1212		 * The number of returned pages less than our desired, search
1213		 * done.  In this case, nothing was found for searching data,
1214		 * but we found a hole behind the last offset.
1215		 */
1216		if (nr_pages < want) {
1217			if (type == HOLE_OFF) {
1218				*offset = lastoff;
1219				found = true;
1220			}
1221			break;
1222		}
1223
1224		index = pvec.pages[i - 1]->index + 1;
1225		pagevec_release(&pvec);
1226	} while (index <= end);
 
 
 
 
1227
1228out:
1229	pagevec_release(&pvec);
1230	return found;
1231}
1232
1233STATIC loff_t
1234xfs_seek_data(
1235	struct file		*file,
1236	loff_t			start)
1237{
1238	struct inode		*inode = file->f_mapping->host;
1239	struct xfs_inode	*ip = XFS_I(inode);
1240	struct xfs_mount	*mp = ip->i_mount;
1241	loff_t			uninitialized_var(offset);
1242	xfs_fsize_t		isize;
1243	xfs_fileoff_t		fsbno;
1244	xfs_filblks_t		end;
1245	uint			lock;
1246	int			error;
1247
1248	lock = xfs_ilock_data_map_shared(ip);
 
 
 
 
 
 
 
 
1249
1250	isize = i_size_read(inode);
1251	if (start >= isize) {
1252		error = ENXIO;
1253		goto out_unlock;
1254	}
1255
1256	/*
1257	 * Try to read extents from the first block indicated
1258	 * by fsbno to the end block of the file.
1259	 */
1260	fsbno = XFS_B_TO_FSBT(mp, start);
1261	end = XFS_B_TO_FSB(mp, isize);
1262	for (;;) {
1263		struct xfs_bmbt_irec	map[2];
1264		int			nmap = 2;
1265		unsigned int		i;
1266
1267		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1268				       XFS_BMAPI_ENTIRE);
1269		if (error)
1270			goto out_unlock;
1271
1272		/* No extents at given offset, must be beyond EOF */
1273		if (nmap == 0) {
1274			error = ENXIO;
1275			goto out_unlock;
1276		}
1277
1278		for (i = 0; i < nmap; i++) {
1279			offset = max_t(loff_t, start,
1280				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1281
1282			/* Landed in a data extent */
1283			if (map[i].br_startblock == DELAYSTARTBLOCK ||
1284			    (map[i].br_state == XFS_EXT_NORM &&
1285			     !isnullstartblock(map[i].br_startblock)))
1286				goto out;
1287
1288			/*
1289			 * Landed in an unwritten extent, try to search data
1290			 * from page cache.
1291			 */
1292			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1293				if (xfs_find_get_desired_pgoff(inode, &map[i],
1294							DATA_OFF, &offset))
1295					goto out;
1296			}
1297		}
1298
1299		/*
1300		 * map[0] is hole or its an unwritten extent but
1301		 * without data in page cache.  Probably means that
1302		 * we are reading after EOF if nothing in map[1].
1303		 */
1304		if (nmap == 1) {
1305			error = ENXIO;
1306			goto out_unlock;
1307		}
1308
1309		ASSERT(i > 1);
1310
1311		/*
1312		 * Nothing was found, proceed to the next round of search
1313		 * if reading offset not beyond or hit EOF.
1314		 */
1315		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1316		start = XFS_FSB_TO_B(mp, fsbno);
1317		if (start >= isize) {
1318			error = ENXIO;
1319			goto out_unlock;
1320		}
1321	}
1322
1323out:
1324	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1325
1326out_unlock:
1327	xfs_iunlock(ip, lock);
1328
1329	if (error)
1330		return -error;
1331	return offset;
1332}
1333
1334STATIC loff_t
1335xfs_seek_hole(
1336	struct file		*file,
1337	loff_t			start)
1338{
1339	struct inode		*inode = file->f_mapping->host;
1340	struct xfs_inode	*ip = XFS_I(inode);
1341	struct xfs_mount	*mp = ip->i_mount;
1342	loff_t			uninitialized_var(offset);
1343	xfs_fsize_t		isize;
1344	xfs_fileoff_t		fsbno;
1345	xfs_filblks_t		end;
1346	uint			lock;
1347	int			error;
1348
1349	if (XFS_FORCED_SHUTDOWN(mp))
1350		return -XFS_ERROR(EIO);
1351
1352	lock = xfs_ilock_data_map_shared(ip);
1353
1354	isize = i_size_read(inode);
1355	if (start >= isize) {
1356		error = ENXIO;
1357		goto out_unlock;
1358	}
1359
1360	fsbno = XFS_B_TO_FSBT(mp, start);
1361	end = XFS_B_TO_FSB(mp, isize);
1362
1363	for (;;) {
1364		struct xfs_bmbt_irec	map[2];
1365		int			nmap = 2;
1366		unsigned int		i;
1367
1368		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1369				       XFS_BMAPI_ENTIRE);
1370		if (error)
1371			goto out_unlock;
1372
1373		/* No extents at given offset, must be beyond EOF */
1374		if (nmap == 0) {
1375			error = ENXIO;
1376			goto out_unlock;
1377		}
1378
1379		for (i = 0; i < nmap; i++) {
1380			offset = max_t(loff_t, start,
1381				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1382
1383			/* Landed in a hole */
1384			if (map[i].br_startblock == HOLESTARTBLOCK)
1385				goto out;
1386
1387			/*
1388			 * Landed in an unwritten extent, try to search hole
1389			 * from page cache.
1390			 */
1391			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1392				if (xfs_find_get_desired_pgoff(inode, &map[i],
1393							HOLE_OFF, &offset))
1394					goto out;
1395			}
1396		}
1397
1398		/*
1399		 * map[0] contains data or its unwritten but contains
1400		 * data in page cache, probably means that we are
1401		 * reading after EOF.  We should fix offset to point
1402		 * to the end of the file(i.e., there is an implicit
1403		 * hole at the end of any file).
1404		 */
1405		if (nmap == 1) {
1406			offset = isize;
1407			break;
1408		}
1409
1410		ASSERT(i > 1);
1411
1412		/*
1413		 * Both mappings contains data, proceed to the next round of
1414		 * search if the current reading offset not beyond or hit EOF.
1415		 */
1416		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1417		start = XFS_FSB_TO_B(mp, fsbno);
1418		if (start >= isize) {
1419			offset = isize;
1420			break;
1421		}
1422	}
1423
1424out:
1425	/*
1426	 * At this point, we must have found a hole.  However, the returned
1427	 * offset may be bigger than the file size as it may be aligned to
1428	 * page boundary for unwritten extents, we need to deal with this
1429	 * situation in particular.
1430	 */
1431	offset = min_t(loff_t, offset, isize);
1432	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1433
1434out_unlock:
1435	xfs_iunlock(ip, lock);
1436
1437	if (error)
1438		return -error;
1439	return offset;
1440}
1441
1442STATIC loff_t
1443xfs_file_llseek(
1444	struct file	*file,
1445	loff_t		offset,
1446	int		origin)
1447{
1448	switch (origin) {
1449	case SEEK_END:
1450	case SEEK_CUR:
1451	case SEEK_SET:
1452		return generic_file_llseek(file, offset, origin);
1453	case SEEK_DATA:
1454		return xfs_seek_data(file, offset);
1455	case SEEK_HOLE:
1456		return xfs_seek_hole(file, offset);
1457	default:
1458		return -EINVAL;
1459	}
1460}
1461
1462const struct file_operations xfs_file_operations = {
1463	.llseek		= xfs_file_llseek,
1464	.read		= do_sync_read,
1465	.write		= do_sync_write,
1466	.aio_read	= xfs_file_aio_read,
1467	.aio_write	= xfs_file_aio_write,
1468	.splice_read	= xfs_file_splice_read,
1469	.splice_write	= xfs_file_splice_write,
 
1470	.unlocked_ioctl	= xfs_file_ioctl,
1471#ifdef CONFIG_COMPAT
1472	.compat_ioctl	= xfs_file_compat_ioctl,
1473#endif
1474	.mmap		= xfs_file_mmap,
 
1475	.open		= xfs_file_open,
1476	.release	= xfs_file_release,
1477	.fsync		= xfs_file_fsync,
 
1478	.fallocate	= xfs_file_fallocate,
 
 
1479};
1480
1481const struct file_operations xfs_dir_file_operations = {
1482	.open		= xfs_dir_open,
1483	.read		= generic_read_dir,
1484	.iterate	= xfs_file_readdir,
1485	.llseek		= generic_file_llseek,
1486	.unlocked_ioctl	= xfs_file_ioctl,
1487#ifdef CONFIG_COMPAT
1488	.compat_ioctl	= xfs_file_compat_ioctl,
1489#endif
1490	.fsync		= xfs_dir_fsync,
1491};
1492
1493static const struct vm_operations_struct xfs_file_vm_ops = {
1494	.fault		= filemap_fault,
1495	.map_pages	= filemap_map_pages,
1496	.page_mkwrite	= xfs_vm_page_mkwrite,
1497	.remap_pages	= generic_file_remap_pages,
1498};