Loading...
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5/*
6 * Written by Anatoly P. Pinchuk pap@namesys.botik.ru
7 * Programm System Institute
8 * Pereslavl-Zalessky Russia
9 */
10
11#include <linux/time.h>
12#include <linux/string.h>
13#include <linux/pagemap.h>
14#include <linux/bio.h>
15#include "reiserfs.h"
16#include <linux/buffer_head.h>
17#include <linux/quotaops.h>
18
19/* Does the buffer contain a disk block which is in the tree. */
20inline int B_IS_IN_TREE(const struct buffer_head *bh)
21{
22
23 RFALSE(B_LEVEL(bh) > MAX_HEIGHT,
24 "PAP-1010: block (%b) has too big level (%z)", bh, bh);
25
26 return (B_LEVEL(bh) != FREE_LEVEL);
27}
28
29/* to get item head in le form */
30inline void copy_item_head(struct item_head *to,
31 const struct item_head *from)
32{
33 memcpy(to, from, IH_SIZE);
34}
35
36/*
37 * k1 is pointer to on-disk structure which is stored in little-endian
38 * form. k2 is pointer to cpu variable. For key of items of the same
39 * object this returns 0.
40 * Returns: -1 if key1 < key2
41 * 0 if key1 == key2
42 * 1 if key1 > key2
43 */
44inline int comp_short_keys(const struct reiserfs_key *le_key,
45 const struct cpu_key *cpu_key)
46{
47 __u32 n;
48 n = le32_to_cpu(le_key->k_dir_id);
49 if (n < cpu_key->on_disk_key.k_dir_id)
50 return -1;
51 if (n > cpu_key->on_disk_key.k_dir_id)
52 return 1;
53 n = le32_to_cpu(le_key->k_objectid);
54 if (n < cpu_key->on_disk_key.k_objectid)
55 return -1;
56 if (n > cpu_key->on_disk_key.k_objectid)
57 return 1;
58 return 0;
59}
60
61/*
62 * k1 is pointer to on-disk structure which is stored in little-endian
63 * form. k2 is pointer to cpu variable.
64 * Compare keys using all 4 key fields.
65 * Returns: -1 if key1 < key2 0
66 * if key1 = key2 1 if key1 > key2
67 */
68static inline int comp_keys(const struct reiserfs_key *le_key,
69 const struct cpu_key *cpu_key)
70{
71 int retval;
72
73 retval = comp_short_keys(le_key, cpu_key);
74 if (retval)
75 return retval;
76 if (le_key_k_offset(le_key_version(le_key), le_key) <
77 cpu_key_k_offset(cpu_key))
78 return -1;
79 if (le_key_k_offset(le_key_version(le_key), le_key) >
80 cpu_key_k_offset(cpu_key))
81 return 1;
82
83 if (cpu_key->key_length == 3)
84 return 0;
85
86 /* this part is needed only when tail conversion is in progress */
87 if (le_key_k_type(le_key_version(le_key), le_key) <
88 cpu_key_k_type(cpu_key))
89 return -1;
90
91 if (le_key_k_type(le_key_version(le_key), le_key) >
92 cpu_key_k_type(cpu_key))
93 return 1;
94
95 return 0;
96}
97
98inline int comp_short_le_keys(const struct reiserfs_key *key1,
99 const struct reiserfs_key *key2)
100{
101 __u32 *k1_u32, *k2_u32;
102 int key_length = REISERFS_SHORT_KEY_LEN;
103
104 k1_u32 = (__u32 *) key1;
105 k2_u32 = (__u32 *) key2;
106 for (; key_length--; ++k1_u32, ++k2_u32) {
107 if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32))
108 return -1;
109 if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32))
110 return 1;
111 }
112 return 0;
113}
114
115inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
116{
117 int version;
118 to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
119 to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
120
121 /* find out version of the key */
122 version = le_key_version(from);
123 to->version = version;
124 to->on_disk_key.k_offset = le_key_k_offset(version, from);
125 to->on_disk_key.k_type = le_key_k_type(version, from);
126}
127
128/*
129 * this does not say which one is bigger, it only returns 1 if keys
130 * are not equal, 0 otherwise
131 */
132inline int comp_le_keys(const struct reiserfs_key *k1,
133 const struct reiserfs_key *k2)
134{
135 return memcmp(k1, k2, sizeof(struct reiserfs_key));
136}
137
138/**************************************************************************
139 * Binary search toolkit function *
140 * Search for an item in the array by the item key *
141 * Returns: 1 if found, 0 if not found; *
142 * *pos = number of the searched element if found, else the *
143 * number of the first element that is larger than key. *
144 **************************************************************************/
145/*
146 * For those not familiar with binary search: lbound is the leftmost item
147 * that it could be, rbound the rightmost item that it could be. We examine
148 * the item halfway between lbound and rbound, and that tells us either
149 * that we can increase lbound, or decrease rbound, or that we have found it,
150 * or if lbound <= rbound that there are no possible items, and we have not
151 * found it. With each examination we cut the number of possible items it
152 * could be by one more than half rounded down, or we find it.
153 */
154static inline int bin_search(const void *key, /* Key to search for. */
155 const void *base, /* First item in the array. */
156 int num, /* Number of items in the array. */
157 /*
158 * Item size in the array. searched. Lest the
159 * reader be confused, note that this is crafted
160 * as a general function, and when it is applied
161 * specifically to the array of item headers in a
162 * node, width is actually the item header size
163 * not the item size.
164 */
165 int width,
166 int *pos /* Number of the searched for element. */
167 )
168{
169 int rbound, lbound, j;
170
171 for (j = ((rbound = num - 1) + (lbound = 0)) / 2;
172 lbound <= rbound; j = (rbound + lbound) / 2)
173 switch (comp_keys
174 ((struct reiserfs_key *)((char *)base + j * width),
175 (struct cpu_key *)key)) {
176 case -1:
177 lbound = j + 1;
178 continue;
179 case 1:
180 rbound = j - 1;
181 continue;
182 case 0:
183 *pos = j;
184 return ITEM_FOUND; /* Key found in the array. */
185 }
186
187 /*
188 * bin_search did not find given key, it returns position of key,
189 * that is minimal and greater than the given one.
190 */
191 *pos = lbound;
192 return ITEM_NOT_FOUND;
193}
194
195
196/* Minimal possible key. It is never in the tree. */
197const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
198
199/* Maximal possible key. It is never in the tree. */
200static const struct reiserfs_key MAX_KEY = {
201 cpu_to_le32(0xffffffff),
202 cpu_to_le32(0xffffffff),
203 {{cpu_to_le32(0xffffffff),
204 cpu_to_le32(0xffffffff)},}
205};
206
207/*
208 * Get delimiting key of the buffer by looking for it in the buffers in the
209 * path, starting from the bottom of the path, and going upwards. We must
210 * check the path's validity at each step. If the key is not in the path,
211 * there is no delimiting key in the tree (buffer is first or last buffer
212 * in tree), and in this case we return a special key, either MIN_KEY or
213 * MAX_KEY.
214 */
215static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path,
216 const struct super_block *sb)
217{
218 int position, path_offset = chk_path->path_length;
219 struct buffer_head *parent;
220
221 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
222 "PAP-5010: invalid offset in the path");
223
224 /* While not higher in path than first element. */
225 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
226
227 RFALSE(!buffer_uptodate
228 (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
229 "PAP-5020: parent is not uptodate");
230
231 /* Parent at the path is not in the tree now. */
232 if (!B_IS_IN_TREE
233 (parent =
234 PATH_OFFSET_PBUFFER(chk_path, path_offset)))
235 return &MAX_KEY;
236 /* Check whether position in the parent is correct. */
237 if ((position =
238 PATH_OFFSET_POSITION(chk_path,
239 path_offset)) >
240 B_NR_ITEMS(parent))
241 return &MAX_KEY;
242 /* Check whether parent at the path really points to the child. */
243 if (B_N_CHILD_NUM(parent, position) !=
244 PATH_OFFSET_PBUFFER(chk_path,
245 path_offset + 1)->b_blocknr)
246 return &MAX_KEY;
247 /*
248 * Return delimiting key if position in the parent
249 * is not equal to zero.
250 */
251 if (position)
252 return internal_key(parent, position - 1);
253 }
254 /* Return MIN_KEY if we are in the root of the buffer tree. */
255 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
256 b_blocknr == SB_ROOT_BLOCK(sb))
257 return &MIN_KEY;
258 return &MAX_KEY;
259}
260
261/* Get delimiting key of the buffer at the path and its right neighbor. */
262inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
263 const struct super_block *sb)
264{
265 int position, path_offset = chk_path->path_length;
266 struct buffer_head *parent;
267
268 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
269 "PAP-5030: invalid offset in the path");
270
271 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
272
273 RFALSE(!buffer_uptodate
274 (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
275 "PAP-5040: parent is not uptodate");
276
277 /* Parent at the path is not in the tree now. */
278 if (!B_IS_IN_TREE
279 (parent =
280 PATH_OFFSET_PBUFFER(chk_path, path_offset)))
281 return &MIN_KEY;
282 /* Check whether position in the parent is correct. */
283 if ((position =
284 PATH_OFFSET_POSITION(chk_path,
285 path_offset)) >
286 B_NR_ITEMS(parent))
287 return &MIN_KEY;
288 /*
289 * Check whether parent at the path really points
290 * to the child.
291 */
292 if (B_N_CHILD_NUM(parent, position) !=
293 PATH_OFFSET_PBUFFER(chk_path,
294 path_offset + 1)->b_blocknr)
295 return &MIN_KEY;
296
297 /*
298 * Return delimiting key if position in the parent
299 * is not the last one.
300 */
301 if (position != B_NR_ITEMS(parent))
302 return internal_key(parent, position);
303 }
304
305 /* Return MAX_KEY if we are in the root of the buffer tree. */
306 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
307 b_blocknr == SB_ROOT_BLOCK(sb))
308 return &MAX_KEY;
309 return &MIN_KEY;
310}
311
312/*
313 * Check whether a key is contained in the tree rooted from a buffer at a path.
314 * This works by looking at the left and right delimiting keys for the buffer
315 * in the last path_element in the path. These delimiting keys are stored
316 * at least one level above that buffer in the tree. If the buffer is the
317 * first or last node in the tree order then one of the delimiting keys may
318 * be absent, and in this case get_lkey and get_rkey return a special key
319 * which is MIN_KEY or MAX_KEY.
320 */
321static inline int key_in_buffer(
322 /* Path which should be checked. */
323 struct treepath *chk_path,
324 /* Key which should be checked. */
325 const struct cpu_key *key,
326 struct super_block *sb
327 )
328{
329
330 RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
331 || chk_path->path_length > MAX_HEIGHT,
332 "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
333 key, chk_path->path_length);
334 RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev,
335 "PAP-5060: device must not be NODEV");
336
337 if (comp_keys(get_lkey(chk_path, sb), key) == 1)
338 /* left delimiting key is bigger, that the key we look for */
339 return 0;
340 /* if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */
341 if (comp_keys(get_rkey(chk_path, sb), key) != 1)
342 /* key must be less than right delimitiing key */
343 return 0;
344 return 1;
345}
346
347int reiserfs_check_path(struct treepath *p)
348{
349 RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
350 "path not properly relsed");
351 return 0;
352}
353
354/*
355 * Drop the reference to each buffer in a path and restore
356 * dirty bits clean when preparing the buffer for the log.
357 * This version should only be called from fix_nodes()
358 */
359void pathrelse_and_restore(struct super_block *sb,
360 struct treepath *search_path)
361{
362 int path_offset = search_path->path_length;
363
364 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
365 "clm-4000: invalid path offset");
366
367 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
368 struct buffer_head *bh;
369 bh = PATH_OFFSET_PBUFFER(search_path, path_offset--);
370 reiserfs_restore_prepared_buffer(sb, bh);
371 brelse(bh);
372 }
373 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
374}
375
376/* Drop the reference to each buffer in a path */
377void pathrelse(struct treepath *search_path)
378{
379 int path_offset = search_path->path_length;
380
381 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
382 "PAP-5090: invalid path offset");
383
384 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
385 brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--));
386
387 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
388}
389
390static int has_valid_deh_location(struct buffer_head *bh, struct item_head *ih)
391{
392 struct reiserfs_de_head *deh;
393 int i;
394
395 deh = B_I_DEH(bh, ih);
396 for (i = 0; i < ih_entry_count(ih); i++) {
397 if (deh_location(&deh[i]) > ih_item_len(ih)) {
398 reiserfs_warning(NULL, "reiserfs-5094",
399 "directory entry location seems wrong %h",
400 &deh[i]);
401 return 0;
402 }
403 }
404
405 return 1;
406}
407
408static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
409{
410 struct block_head *blkh;
411 struct item_head *ih;
412 int used_space;
413 int prev_location;
414 int i;
415 int nr;
416
417 blkh = (struct block_head *)buf;
418 if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
419 reiserfs_warning(NULL, "reiserfs-5080",
420 "this should be caught earlier");
421 return 0;
422 }
423
424 nr = blkh_nr_item(blkh);
425 if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
426 /* item number is too big or too small */
427 reiserfs_warning(NULL, "reiserfs-5081",
428 "nr_item seems wrong: %z", bh);
429 return 0;
430 }
431 ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
432 used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
433
434 /* free space does not match to calculated amount of use space */
435 if (used_space != blocksize - blkh_free_space(blkh)) {
436 reiserfs_warning(NULL, "reiserfs-5082",
437 "free space seems wrong: %z", bh);
438 return 0;
439 }
440 /*
441 * FIXME: it is_leaf will hit performance too much - we may have
442 * return 1 here
443 */
444
445 /* check tables of item heads */
446 ih = (struct item_head *)(buf + BLKH_SIZE);
447 prev_location = blocksize;
448 for (i = 0; i < nr; i++, ih++) {
449 if (le_ih_k_type(ih) == TYPE_ANY) {
450 reiserfs_warning(NULL, "reiserfs-5083",
451 "wrong item type for item %h",
452 ih);
453 return 0;
454 }
455 if (ih_location(ih) >= blocksize
456 || ih_location(ih) < IH_SIZE * nr) {
457 reiserfs_warning(NULL, "reiserfs-5084",
458 "item location seems wrong: %h",
459 ih);
460 return 0;
461 }
462 if (ih_item_len(ih) < 1
463 || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
464 reiserfs_warning(NULL, "reiserfs-5085",
465 "item length seems wrong: %h",
466 ih);
467 return 0;
468 }
469 if (prev_location - ih_location(ih) != ih_item_len(ih)) {
470 reiserfs_warning(NULL, "reiserfs-5086",
471 "item location seems wrong "
472 "(second one): %h", ih);
473 return 0;
474 }
475 if (is_direntry_le_ih(ih)) {
476 if (ih_item_len(ih) < (ih_entry_count(ih) * IH_SIZE)) {
477 reiserfs_warning(NULL, "reiserfs-5093",
478 "item entry count seems wrong %h",
479 ih);
480 return 0;
481 }
482 return has_valid_deh_location(bh, ih);
483 }
484 prev_location = ih_location(ih);
485 }
486
487 /* one may imagine many more checks */
488 return 1;
489}
490
491/* returns 1 if buf looks like an internal node, 0 otherwise */
492static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
493{
494 struct block_head *blkh;
495 int nr;
496 int used_space;
497
498 blkh = (struct block_head *)buf;
499 nr = blkh_level(blkh);
500 if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
501 /* this level is not possible for internal nodes */
502 reiserfs_warning(NULL, "reiserfs-5087",
503 "this should be caught earlier");
504 return 0;
505 }
506
507 nr = blkh_nr_item(blkh);
508 /* for internal which is not root we might check min number of keys */
509 if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
510 reiserfs_warning(NULL, "reiserfs-5088",
511 "number of key seems wrong: %z", bh);
512 return 0;
513 }
514
515 used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
516 if (used_space != blocksize - blkh_free_space(blkh)) {
517 reiserfs_warning(NULL, "reiserfs-5089",
518 "free space seems wrong: %z", bh);
519 return 0;
520 }
521
522 /* one may imagine many more checks */
523 return 1;
524}
525
526/*
527 * make sure that bh contains formatted node of reiserfs tree of
528 * 'level'-th level
529 */
530static int is_tree_node(struct buffer_head *bh, int level)
531{
532 if (B_LEVEL(bh) != level) {
533 reiserfs_warning(NULL, "reiserfs-5090", "node level %d does "
534 "not match to the expected one %d",
535 B_LEVEL(bh), level);
536 return 0;
537 }
538 if (level == DISK_LEAF_NODE_LEVEL)
539 return is_leaf(bh->b_data, bh->b_size, bh);
540
541 return is_internal(bh->b_data, bh->b_size, bh);
542}
543
544#define SEARCH_BY_KEY_READA 16
545
546/*
547 * The function is NOT SCHEDULE-SAFE!
548 * It might unlock the write lock if we needed to wait for a block
549 * to be read. Note that in this case it won't recover the lock to avoid
550 * high contention resulting from too much lock requests, especially
551 * the caller (search_by_key) will perform other schedule-unsafe
552 * operations just after calling this function.
553 *
554 * @return depth of lock to be restored after read completes
555 */
556static int search_by_key_reada(struct super_block *s,
557 struct buffer_head **bh,
558 b_blocknr_t *b, int num)
559{
560 int i, j;
561 int depth = -1;
562
563 for (i = 0; i < num; i++) {
564 bh[i] = sb_getblk(s, b[i]);
565 }
566 /*
567 * We are going to read some blocks on which we
568 * have a reference. It's safe, though we might be
569 * reading blocks concurrently changed if we release
570 * the lock. But it's still fine because we check later
571 * if the tree changed
572 */
573 for (j = 0; j < i; j++) {
574 /*
575 * note, this needs attention if we are getting rid of the BKL
576 * you have to make sure the prepared bit isn't set on this
577 * buffer
578 */
579 if (!buffer_uptodate(bh[j])) {
580 if (depth == -1)
581 depth = reiserfs_write_unlock_nested(s);
582 bh_readahead(bh[j], REQ_RAHEAD);
583 }
584 brelse(bh[j]);
585 }
586 return depth;
587}
588
589/*
590 * This function fills up the path from the root to the leaf as it
591 * descends the tree looking for the key. It uses reiserfs_bread to
592 * try to find buffers in the cache given their block number. If it
593 * does not find them in the cache it reads them from disk. For each
594 * node search_by_key finds using reiserfs_bread it then uses
595 * bin_search to look through that node. bin_search will find the
596 * position of the block_number of the next node if it is looking
597 * through an internal node. If it is looking through a leaf node
598 * bin_search will find the position of the item which has key either
599 * equal to given key, or which is the maximal key less than the given
600 * key. search_by_key returns a path that must be checked for the
601 * correctness of the top of the path but need not be checked for the
602 * correctness of the bottom of the path
603 */
604/*
605 * search_by_key - search for key (and item) in stree
606 * @sb: superblock
607 * @key: pointer to key to search for
608 * @search_path: Allocated and initialized struct treepath; Returned filled
609 * on success.
610 * @stop_level: How far down the tree to search, Use DISK_LEAF_NODE_LEVEL to
611 * stop at leaf level.
612 *
613 * The function is NOT SCHEDULE-SAFE!
614 */
615int search_by_key(struct super_block *sb, const struct cpu_key *key,
616 struct treepath *search_path, int stop_level)
617{
618 b_blocknr_t block_number;
619 int expected_level;
620 struct buffer_head *bh;
621 struct path_element *last_element;
622 int node_level, retval;
623 int fs_gen;
624 struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
625 b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA];
626 int reada_count = 0;
627
628#ifdef CONFIG_REISERFS_CHECK
629 int repeat_counter = 0;
630#endif
631
632 PROC_INFO_INC(sb, search_by_key);
633
634 /*
635 * As we add each node to a path we increase its count. This means
636 * that we must be careful to release all nodes in a path before we
637 * either discard the path struct or re-use the path struct, as we
638 * do here.
639 */
640
641 pathrelse(search_path);
642
643 /*
644 * With each iteration of this loop we search through the items in the
645 * current node, and calculate the next current node(next path element)
646 * for the next iteration of this loop..
647 */
648 block_number = SB_ROOT_BLOCK(sb);
649 expected_level = -1;
650 while (1) {
651
652#ifdef CONFIG_REISERFS_CHECK
653 if (!(++repeat_counter % 50000))
654 reiserfs_warning(sb, "PAP-5100",
655 "%s: there were %d iterations of "
656 "while loop looking for key %K",
657 current->comm, repeat_counter,
658 key);
659#endif
660
661 /* prep path to have another element added to it. */
662 last_element =
663 PATH_OFFSET_PELEMENT(search_path,
664 ++search_path->path_length);
665 fs_gen = get_generation(sb);
666
667 /*
668 * Read the next tree node, and set the last element
669 * in the path to have a pointer to it.
670 */
671 if ((bh = last_element->pe_buffer =
672 sb_getblk(sb, block_number))) {
673
674 /*
675 * We'll need to drop the lock if we encounter any
676 * buffers that need to be read. If all of them are
677 * already up to date, we don't need to drop the lock.
678 */
679 int depth = -1;
680
681 if (!buffer_uptodate(bh) && reada_count > 1)
682 depth = search_by_key_reada(sb, reada_bh,
683 reada_blocks, reada_count);
684
685 if (!buffer_uptodate(bh) && depth == -1)
686 depth = reiserfs_write_unlock_nested(sb);
687
688 bh_read_nowait(bh, 0);
689 wait_on_buffer(bh);
690
691 if (depth != -1)
692 reiserfs_write_lock_nested(sb, depth);
693 if (!buffer_uptodate(bh))
694 goto io_error;
695 } else {
696io_error:
697 search_path->path_length--;
698 pathrelse(search_path);
699 return IO_ERROR;
700 }
701 reada_count = 0;
702 if (expected_level == -1)
703 expected_level = SB_TREE_HEIGHT(sb);
704 expected_level--;
705
706 /*
707 * It is possible that schedule occurred. We must check
708 * whether the key to search is still in the tree rooted
709 * from the current buffer. If not then repeat search
710 * from the root.
711 */
712 if (fs_changed(fs_gen, sb) &&
713 (!B_IS_IN_TREE(bh) ||
714 B_LEVEL(bh) != expected_level ||
715 !key_in_buffer(search_path, key, sb))) {
716 PROC_INFO_INC(sb, search_by_key_fs_changed);
717 PROC_INFO_INC(sb, search_by_key_restarted);
718 PROC_INFO_INC(sb,
719 sbk_restarted[expected_level - 1]);
720 pathrelse(search_path);
721
722 /*
723 * Get the root block number so that we can
724 * repeat the search starting from the root.
725 */
726 block_number = SB_ROOT_BLOCK(sb);
727 expected_level = -1;
728
729 /* repeat search from the root */
730 continue;
731 }
732
733 /*
734 * only check that the key is in the buffer if key is not
735 * equal to the MAX_KEY. Latter case is only possible in
736 * "finish_unfinished()" processing during mount.
737 */
738 RFALSE(comp_keys(&MAX_KEY, key) &&
739 !key_in_buffer(search_path, key, sb),
740 "PAP-5130: key is not in the buffer");
741#ifdef CONFIG_REISERFS_CHECK
742 if (REISERFS_SB(sb)->cur_tb) {
743 print_cur_tb("5140");
744 reiserfs_panic(sb, "PAP-5140",
745 "schedule occurred in do_balance!");
746 }
747#endif
748
749 /*
750 * make sure, that the node contents look like a node of
751 * certain level
752 */
753 if (!is_tree_node(bh, expected_level)) {
754 reiserfs_error(sb, "vs-5150",
755 "invalid format found in block %ld. "
756 "Fsck?", bh->b_blocknr);
757 pathrelse(search_path);
758 return IO_ERROR;
759 }
760
761 /* ok, we have acquired next formatted node in the tree */
762 node_level = B_LEVEL(bh);
763
764 PROC_INFO_BH_STAT(sb, bh, node_level - 1);
765
766 RFALSE(node_level < stop_level,
767 "vs-5152: tree level (%d) is less than stop level (%d)",
768 node_level, stop_level);
769
770 retval = bin_search(key, item_head(bh, 0),
771 B_NR_ITEMS(bh),
772 (node_level ==
773 DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
774 KEY_SIZE,
775 &last_element->pe_position);
776 if (node_level == stop_level) {
777 return retval;
778 }
779
780 /* we are not in the stop level */
781 /*
782 * item has been found, so we choose the pointer which
783 * is to the right of the found one
784 */
785 if (retval == ITEM_FOUND)
786 last_element->pe_position++;
787
788 /*
789 * if item was not found we choose the position which is to
790 * the left of the found item. This requires no code,
791 * bin_search did it already.
792 */
793
794 /*
795 * So we have chosen a position in the current node which is
796 * an internal node. Now we calculate child block number by
797 * position in the node.
798 */
799 block_number =
800 B_N_CHILD_NUM(bh, last_element->pe_position);
801
802 /*
803 * if we are going to read leaf nodes, try for read
804 * ahead as well
805 */
806 if ((search_path->reada & PATH_READA) &&
807 node_level == DISK_LEAF_NODE_LEVEL + 1) {
808 int pos = last_element->pe_position;
809 int limit = B_NR_ITEMS(bh);
810 struct reiserfs_key *le_key;
811
812 if (search_path->reada & PATH_READA_BACK)
813 limit = 0;
814 while (reada_count < SEARCH_BY_KEY_READA) {
815 if (pos == limit)
816 break;
817 reada_blocks[reada_count++] =
818 B_N_CHILD_NUM(bh, pos);
819 if (search_path->reada & PATH_READA_BACK)
820 pos--;
821 else
822 pos++;
823
824 /*
825 * check to make sure we're in the same object
826 */
827 le_key = internal_key(bh, pos);
828 if (le32_to_cpu(le_key->k_objectid) !=
829 key->on_disk_key.k_objectid) {
830 break;
831 }
832 }
833 }
834 }
835}
836
837/*
838 * Form the path to an item and position in this item which contains
839 * file byte defined by key. If there is no such item
840 * corresponding to the key, we point the path to the item with
841 * maximal key less than key, and *pos_in_item is set to one
842 * past the last entry/byte in the item. If searching for entry in a
843 * directory item, and it is not found, *pos_in_item is set to one
844 * entry more than the entry with maximal key which is less than the
845 * sought key.
846 *
847 * Note that if there is no entry in this same node which is one more,
848 * then we point to an imaginary entry. for direct items, the
849 * position is in units of bytes, for indirect items the position is
850 * in units of blocknr entries, for directory items the position is in
851 * units of directory entries.
852 */
853/* The function is NOT SCHEDULE-SAFE! */
854int search_for_position_by_key(struct super_block *sb,
855 /* Key to search (cpu variable) */
856 const struct cpu_key *p_cpu_key,
857 /* Filled up by this function. */
858 struct treepath *search_path)
859{
860 struct item_head *p_le_ih; /* pointer to on-disk structure */
861 int blk_size;
862 loff_t item_offset, offset;
863 struct reiserfs_dir_entry de;
864 int retval;
865
866 /* If searching for directory entry. */
867 if (is_direntry_cpu_key(p_cpu_key))
868 return search_by_entry_key(sb, p_cpu_key, search_path,
869 &de);
870
871 /* If not searching for directory entry. */
872
873 /* If item is found. */
874 retval = search_item(sb, p_cpu_key, search_path);
875 if (retval == IO_ERROR)
876 return retval;
877 if (retval == ITEM_FOUND) {
878
879 RFALSE(!ih_item_len
880 (item_head
881 (PATH_PLAST_BUFFER(search_path),
882 PATH_LAST_POSITION(search_path))),
883 "PAP-5165: item length equals zero");
884
885 pos_in_item(search_path) = 0;
886 return POSITION_FOUND;
887 }
888
889 RFALSE(!PATH_LAST_POSITION(search_path),
890 "PAP-5170: position equals zero");
891
892 /* Item is not found. Set path to the previous item. */
893 p_le_ih =
894 item_head(PATH_PLAST_BUFFER(search_path),
895 --PATH_LAST_POSITION(search_path));
896 blk_size = sb->s_blocksize;
897
898 if (comp_short_keys(&p_le_ih->ih_key, p_cpu_key))
899 return FILE_NOT_FOUND;
900
901 /* FIXME: quite ugly this far */
902
903 item_offset = le_ih_k_offset(p_le_ih);
904 offset = cpu_key_k_offset(p_cpu_key);
905
906 /* Needed byte is contained in the item pointed to by the path. */
907 if (item_offset <= offset &&
908 item_offset + op_bytes_number(p_le_ih, blk_size) > offset) {
909 pos_in_item(search_path) = offset - item_offset;
910 if (is_indirect_le_ih(p_le_ih)) {
911 pos_in_item(search_path) /= blk_size;
912 }
913 return POSITION_FOUND;
914 }
915
916 /*
917 * Needed byte is not contained in the item pointed to by the
918 * path. Set pos_in_item out of the item.
919 */
920 if (is_indirect_le_ih(p_le_ih))
921 pos_in_item(search_path) =
922 ih_item_len(p_le_ih) / UNFM_P_SIZE;
923 else
924 pos_in_item(search_path) = ih_item_len(p_le_ih);
925
926 return POSITION_NOT_FOUND;
927}
928
929/* Compare given item and item pointed to by the path. */
930int comp_items(const struct item_head *stored_ih, const struct treepath *path)
931{
932 struct buffer_head *bh = PATH_PLAST_BUFFER(path);
933 struct item_head *ih;
934
935 /* Last buffer at the path is not in the tree. */
936 if (!B_IS_IN_TREE(bh))
937 return 1;
938
939 /* Last path position is invalid. */
940 if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh))
941 return 1;
942
943 /* we need only to know, whether it is the same item */
944 ih = tp_item_head(path);
945 return memcmp(stored_ih, ih, IH_SIZE);
946}
947
948/* prepare for delete or cut of direct item */
949static inline int prepare_for_direct_item(struct treepath *path,
950 struct item_head *le_ih,
951 struct inode *inode,
952 loff_t new_file_length, int *cut_size)
953{
954 loff_t round_len;
955
956 if (new_file_length == max_reiserfs_offset(inode)) {
957 /* item has to be deleted */
958 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
959 return M_DELETE;
960 }
961 /* new file gets truncated */
962 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
963 round_len = ROUND_UP(new_file_length);
964 /* this was new_file_length < le_ih ... */
965 if (round_len < le_ih_k_offset(le_ih)) {
966 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
967 return M_DELETE; /* Delete this item. */
968 }
969 /* Calculate first position and size for cutting from item. */
970 pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
971 *cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
972
973 return M_CUT; /* Cut from this item. */
974 }
975
976 /* old file: items may have any length */
977
978 if (new_file_length < le_ih_k_offset(le_ih)) {
979 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
980 return M_DELETE; /* Delete this item. */
981 }
982
983 /* Calculate first position and size for cutting from item. */
984 *cut_size = -(ih_item_len(le_ih) -
985 (pos_in_item(path) =
986 new_file_length + 1 - le_ih_k_offset(le_ih)));
987 return M_CUT; /* Cut from this item. */
988}
989
990static inline int prepare_for_direntry_item(struct treepath *path,
991 struct item_head *le_ih,
992 struct inode *inode,
993 loff_t new_file_length,
994 int *cut_size)
995{
996 if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
997 new_file_length == max_reiserfs_offset(inode)) {
998 RFALSE(ih_entry_count(le_ih) != 2,
999 "PAP-5220: incorrect empty directory item (%h)", le_ih);
1000 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
1001 /* Delete the directory item containing "." and ".." entry. */
1002 return M_DELETE;
1003 }
1004
1005 if (ih_entry_count(le_ih) == 1) {
1006 /*
1007 * Delete the directory item such as there is one record only
1008 * in this item
1009 */
1010 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
1011 return M_DELETE;
1012 }
1013
1014 /* Cut one record from the directory item. */
1015 *cut_size =
1016 -(DEH_SIZE +
1017 entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
1018 return M_CUT;
1019}
1020
1021#define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
1022
1023/*
1024 * If the path points to a directory or direct item, calculate mode
1025 * and the size cut, for balance.
1026 * If the path points to an indirect item, remove some number of its
1027 * unformatted nodes.
1028 * In case of file truncate calculate whether this item must be
1029 * deleted/truncated or last unformatted node of this item will be
1030 * converted to a direct item.
1031 * This function returns a determination of what balance mode the
1032 * calling function should employ.
1033 */
1034static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th,
1035 struct inode *inode,
1036 struct treepath *path,
1037 const struct cpu_key *item_key,
1038 /*
1039 * Number of unformatted nodes
1040 * which were removed from end
1041 * of the file.
1042 */
1043 int *removed,
1044 int *cut_size,
1045 /* MAX_KEY_OFFSET in case of delete. */
1046 unsigned long long new_file_length
1047 )
1048{
1049 struct super_block *sb = inode->i_sb;
1050 struct item_head *p_le_ih = tp_item_head(path);
1051 struct buffer_head *bh = PATH_PLAST_BUFFER(path);
1052
1053 BUG_ON(!th->t_trans_id);
1054
1055 /* Stat_data item. */
1056 if (is_statdata_le_ih(p_le_ih)) {
1057
1058 RFALSE(new_file_length != max_reiserfs_offset(inode),
1059 "PAP-5210: mode must be M_DELETE");
1060
1061 *cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
1062 return M_DELETE;
1063 }
1064
1065 /* Directory item. */
1066 if (is_direntry_le_ih(p_le_ih))
1067 return prepare_for_direntry_item(path, p_le_ih, inode,
1068 new_file_length,
1069 cut_size);
1070
1071 /* Direct item. */
1072 if (is_direct_le_ih(p_le_ih))
1073 return prepare_for_direct_item(path, p_le_ih, inode,
1074 new_file_length, cut_size);
1075
1076 /* Case of an indirect item. */
1077 {
1078 int blk_size = sb->s_blocksize;
1079 struct item_head s_ih;
1080 int need_re_search;
1081 int delete = 0;
1082 int result = M_CUT;
1083 int pos = 0;
1084
1085 if ( new_file_length == max_reiserfs_offset (inode) ) {
1086 /*
1087 * prepare_for_delete_or_cut() is called by
1088 * reiserfs_delete_item()
1089 */
1090 new_file_length = 0;
1091 delete = 1;
1092 }
1093
1094 do {
1095 need_re_search = 0;
1096 *cut_size = 0;
1097 bh = PATH_PLAST_BUFFER(path);
1098 copy_item_head(&s_ih, tp_item_head(path));
1099 pos = I_UNFM_NUM(&s_ih);
1100
1101 while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) {
1102 __le32 *unfm;
1103 __u32 block;
1104
1105 /*
1106 * Each unformatted block deletion may involve
1107 * one additional bitmap block into the transaction,
1108 * thereby the initial journal space reservation
1109 * might not be enough.
1110 */
1111 if (!delete && (*cut_size) != 0 &&
1112 reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD)
1113 break;
1114
1115 unfm = (__le32 *)ih_item_body(bh, &s_ih) + pos - 1;
1116 block = get_block_num(unfm, 0);
1117
1118 if (block != 0) {
1119 reiserfs_prepare_for_journal(sb, bh, 1);
1120 put_block_num(unfm, 0, 0);
1121 journal_mark_dirty(th, bh);
1122 reiserfs_free_block(th, inode, block, 1);
1123 }
1124
1125 reiserfs_cond_resched(sb);
1126
1127 if (item_moved (&s_ih, path)) {
1128 need_re_search = 1;
1129 break;
1130 }
1131
1132 pos --;
1133 (*removed)++;
1134 (*cut_size) -= UNFM_P_SIZE;
1135
1136 if (pos == 0) {
1137 (*cut_size) -= IH_SIZE;
1138 result = M_DELETE;
1139 break;
1140 }
1141 }
1142 /*
1143 * a trick. If the buffer has been logged, this will
1144 * do nothing. If we've broken the loop without logging
1145 * it, it will restore the buffer
1146 */
1147 reiserfs_restore_prepared_buffer(sb, bh);
1148 } while (need_re_search &&
1149 search_for_position_by_key(sb, item_key, path) == POSITION_FOUND);
1150 pos_in_item(path) = pos * UNFM_P_SIZE;
1151
1152 if (*cut_size == 0) {
1153 /*
1154 * Nothing was cut. maybe convert last unformatted node to the
1155 * direct item?
1156 */
1157 result = M_CONVERT;
1158 }
1159 return result;
1160 }
1161}
1162
1163/* Calculate number of bytes which will be deleted or cut during balance */
1164static int calc_deleted_bytes_number(struct tree_balance *tb, char mode)
1165{
1166 int del_size;
1167 struct item_head *p_le_ih = tp_item_head(tb->tb_path);
1168
1169 if (is_statdata_le_ih(p_le_ih))
1170 return 0;
1171
1172 del_size =
1173 (mode ==
1174 M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0];
1175 if (is_direntry_le_ih(p_le_ih)) {
1176 /*
1177 * return EMPTY_DIR_SIZE; We delete emty directories only.
1178 * we can't use EMPTY_DIR_SIZE, as old format dirs have a
1179 * different empty size. ick. FIXME, is this right?
1180 */
1181 return del_size;
1182 }
1183
1184 if (is_indirect_le_ih(p_le_ih))
1185 del_size = (del_size / UNFM_P_SIZE) *
1186 (PATH_PLAST_BUFFER(tb->tb_path)->b_size);
1187 return del_size;
1188}
1189
1190static void init_tb_struct(struct reiserfs_transaction_handle *th,
1191 struct tree_balance *tb,
1192 struct super_block *sb,
1193 struct treepath *path, int size)
1194{
1195
1196 BUG_ON(!th->t_trans_id);
1197
1198 memset(tb, '\0', sizeof(struct tree_balance));
1199 tb->transaction_handle = th;
1200 tb->tb_sb = sb;
1201 tb->tb_path = path;
1202 PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
1203 PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
1204 tb->insert_size[0] = size;
1205}
1206
1207void padd_item(char *item, int total_length, int length)
1208{
1209 int i;
1210
1211 for (i = total_length; i > length;)
1212 item[--i] = 0;
1213}
1214
1215#ifdef REISERQUOTA_DEBUG
1216char key2type(struct reiserfs_key *ih)
1217{
1218 if (is_direntry_le_key(2, ih))
1219 return 'd';
1220 if (is_direct_le_key(2, ih))
1221 return 'D';
1222 if (is_indirect_le_key(2, ih))
1223 return 'i';
1224 if (is_statdata_le_key(2, ih))
1225 return 's';
1226 return 'u';
1227}
1228
1229char head2type(struct item_head *ih)
1230{
1231 if (is_direntry_le_ih(ih))
1232 return 'd';
1233 if (is_direct_le_ih(ih))
1234 return 'D';
1235 if (is_indirect_le_ih(ih))
1236 return 'i';
1237 if (is_statdata_le_ih(ih))
1238 return 's';
1239 return 'u';
1240}
1241#endif
1242
1243/*
1244 * Delete object item.
1245 * th - active transaction handle
1246 * path - path to the deleted item
1247 * item_key - key to search for the deleted item
1248 * indode - used for updating i_blocks and quotas
1249 * un_bh - NULL or unformatted node pointer
1250 */
1251int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1252 struct treepath *path, const struct cpu_key *item_key,
1253 struct inode *inode, struct buffer_head *un_bh)
1254{
1255 struct super_block *sb = inode->i_sb;
1256 struct tree_balance s_del_balance;
1257 struct item_head s_ih;
1258 struct item_head *q_ih;
1259 int quota_cut_bytes;
1260 int ret_value, del_size, removed;
1261 int depth;
1262
1263#ifdef CONFIG_REISERFS_CHECK
1264 char mode;
1265#endif
1266
1267 BUG_ON(!th->t_trans_id);
1268
1269 init_tb_struct(th, &s_del_balance, sb, path,
1270 0 /*size is unknown */ );
1271
1272 while (1) {
1273 removed = 0;
1274
1275#ifdef CONFIG_REISERFS_CHECK
1276 mode =
1277#endif
1278 prepare_for_delete_or_cut(th, inode, path,
1279 item_key, &removed,
1280 &del_size,
1281 max_reiserfs_offset(inode));
1282
1283 RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
1284
1285 copy_item_head(&s_ih, tp_item_head(path));
1286 s_del_balance.insert_size[0] = del_size;
1287
1288 ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
1289 if (ret_value != REPEAT_SEARCH)
1290 break;
1291
1292 PROC_INFO_INC(sb, delete_item_restarted);
1293
1294 /* file system changed, repeat search */
1295 ret_value =
1296 search_for_position_by_key(sb, item_key, path);
1297 if (ret_value == IO_ERROR)
1298 break;
1299 if (ret_value == FILE_NOT_FOUND) {
1300 reiserfs_warning(sb, "vs-5340",
1301 "no items of the file %K found",
1302 item_key);
1303 break;
1304 }
1305 } /* while (1) */
1306
1307 if (ret_value != CARRY_ON) {
1308 unfix_nodes(&s_del_balance);
1309 return 0;
1310 }
1311
1312 /* reiserfs_delete_item returns item length when success */
1313 ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
1314 q_ih = tp_item_head(path);
1315 quota_cut_bytes = ih_item_len(q_ih);
1316
1317 /*
1318 * hack so the quota code doesn't have to guess if the file has a
1319 * tail. On tail insert, we allocate quota for 1 unformatted node.
1320 * We test the offset because the tail might have been
1321 * split into multiple items, and we only want to decrement for
1322 * the unfm node once
1323 */
1324 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) {
1325 if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) {
1326 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1327 } else {
1328 quota_cut_bytes = 0;
1329 }
1330 }
1331
1332 if (un_bh) {
1333 int off;
1334 char *data;
1335
1336 /*
1337 * We are in direct2indirect conversion, so move tail contents
1338 * to the unformatted node
1339 */
1340 /*
1341 * note, we do the copy before preparing the buffer because we
1342 * don't care about the contents of the unformatted node yet.
1343 * the only thing we really care about is the direct item's
1344 * data is in the unformatted node.
1345 *
1346 * Otherwise, we would have to call
1347 * reiserfs_prepare_for_journal on the unformatted node,
1348 * which might schedule, meaning we'd have to loop all the
1349 * way back up to the start of the while loop.
1350 *
1351 * The unformatted node must be dirtied later on. We can't be
1352 * sure here if the entire tail has been deleted yet.
1353 *
1354 * un_bh is from the page cache (all unformatted nodes are
1355 * from the page cache) and might be a highmem page. So, we
1356 * can't use un_bh->b_data.
1357 * -clm
1358 */
1359
1360 data = kmap_atomic(un_bh->b_page);
1361 off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_SIZE - 1));
1362 memcpy(data + off,
1363 ih_item_body(PATH_PLAST_BUFFER(path), &s_ih),
1364 ret_value);
1365 kunmap_atomic(data);
1366 }
1367
1368 /* Perform balancing after all resources have been collected at once. */
1369 do_balance(&s_del_balance, NULL, NULL, M_DELETE);
1370
1371#ifdef REISERQUOTA_DEBUG
1372 reiserfs_debug(sb, REISERFS_DEBUG_CODE,
1373 "reiserquota delete_item(): freeing %u, id=%u type=%c",
1374 quota_cut_bytes, inode->i_uid, head2type(&s_ih));
1375#endif
1376 depth = reiserfs_write_unlock_nested(inode->i_sb);
1377 dquot_free_space_nodirty(inode, quota_cut_bytes);
1378 reiserfs_write_lock_nested(inode->i_sb, depth);
1379
1380 /* Return deleted body length */
1381 return ret_value;
1382}
1383
1384/*
1385 * Summary Of Mechanisms For Handling Collisions Between Processes:
1386 *
1387 * deletion of the body of the object is performed by iput(), with the
1388 * result that if multiple processes are operating on a file, the
1389 * deletion of the body of the file is deferred until the last process
1390 * that has an open inode performs its iput().
1391 *
1392 * writes and truncates are protected from collisions by use of
1393 * semaphores.
1394 *
1395 * creates, linking, and mknod are protected from collisions with other
1396 * processes by making the reiserfs_add_entry() the last step in the
1397 * creation, and then rolling back all changes if there was a collision.
1398 * - Hans
1399*/
1400
1401/* this deletes item which never gets split */
1402void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1403 struct inode *inode, struct reiserfs_key *key)
1404{
1405 struct super_block *sb = th->t_super;
1406 struct tree_balance tb;
1407 INITIALIZE_PATH(path);
1408 int item_len = 0;
1409 int tb_init = 0;
1410 struct cpu_key cpu_key = {};
1411 int retval;
1412 int quota_cut_bytes = 0;
1413
1414 BUG_ON(!th->t_trans_id);
1415
1416 le_key2cpu_key(&cpu_key, key);
1417
1418 while (1) {
1419 retval = search_item(th->t_super, &cpu_key, &path);
1420 if (retval == IO_ERROR) {
1421 reiserfs_error(th->t_super, "vs-5350",
1422 "i/o failure occurred trying "
1423 "to delete %K", &cpu_key);
1424 break;
1425 }
1426 if (retval != ITEM_FOUND) {
1427 pathrelse(&path);
1428 /*
1429 * No need for a warning, if there is just no free
1430 * space to insert '..' item into the
1431 * newly-created subdir
1432 */
1433 if (!
1434 ((unsigned long long)
1435 GET_HASH_VALUE(le_key_k_offset
1436 (le_key_version(key), key)) == 0
1437 && (unsigned long long)
1438 GET_GENERATION_NUMBER(le_key_k_offset
1439 (le_key_version(key),
1440 key)) == 1))
1441 reiserfs_warning(th->t_super, "vs-5355",
1442 "%k not found", key);
1443 break;
1444 }
1445 if (!tb_init) {
1446 tb_init = 1;
1447 item_len = ih_item_len(tp_item_head(&path));
1448 init_tb_struct(th, &tb, th->t_super, &path,
1449 -(IH_SIZE + item_len));
1450 }
1451 quota_cut_bytes = ih_item_len(tp_item_head(&path));
1452
1453 retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
1454 if (retval == REPEAT_SEARCH) {
1455 PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
1456 continue;
1457 }
1458
1459 if (retval == CARRY_ON) {
1460 do_balance(&tb, NULL, NULL, M_DELETE);
1461 /*
1462 * Should we count quota for item? (we don't
1463 * count quotas for save-links)
1464 */
1465 if (inode) {
1466 int depth;
1467#ifdef REISERQUOTA_DEBUG
1468 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
1469 "reiserquota delete_solid_item(): freeing %u id=%u type=%c",
1470 quota_cut_bytes, inode->i_uid,
1471 key2type(key));
1472#endif
1473 depth = reiserfs_write_unlock_nested(sb);
1474 dquot_free_space_nodirty(inode,
1475 quota_cut_bytes);
1476 reiserfs_write_lock_nested(sb, depth);
1477 }
1478 break;
1479 }
1480
1481 /* IO_ERROR, NO_DISK_SPACE, etc */
1482 reiserfs_warning(th->t_super, "vs-5360",
1483 "could not delete %K due to fix_nodes failure",
1484 &cpu_key);
1485 unfix_nodes(&tb);
1486 break;
1487 }
1488
1489 reiserfs_check_path(&path);
1490}
1491
1492int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1493 struct inode *inode)
1494{
1495 int err;
1496 inode->i_size = 0;
1497 BUG_ON(!th->t_trans_id);
1498
1499 /* for directory this deletes item containing "." and ".." */
1500 err =
1501 reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
1502 if (err)
1503 return err;
1504
1505#if defined( USE_INODE_GENERATION_COUNTER )
1506 if (!old_format_only(th->t_super)) {
1507 __le32 *inode_generation;
1508
1509 inode_generation =
1510 &REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
1511 le32_add_cpu(inode_generation, 1);
1512 }
1513/* USE_INODE_GENERATION_COUNTER */
1514#endif
1515 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1516
1517 return err;
1518}
1519
1520static void unmap_buffers(struct page *page, loff_t pos)
1521{
1522 struct buffer_head *bh;
1523 struct buffer_head *head;
1524 struct buffer_head *next;
1525 unsigned long tail_index;
1526 unsigned long cur_index;
1527
1528 if (page) {
1529 if (page_has_buffers(page)) {
1530 tail_index = pos & (PAGE_SIZE - 1);
1531 cur_index = 0;
1532 head = page_buffers(page);
1533 bh = head;
1534 do {
1535 next = bh->b_this_page;
1536
1537 /*
1538 * we want to unmap the buffers that contain
1539 * the tail, and all the buffers after it
1540 * (since the tail must be at the end of the
1541 * file). We don't want to unmap file data
1542 * before the tail, since it might be dirty
1543 * and waiting to reach disk
1544 */
1545 cur_index += bh->b_size;
1546 if (cur_index > tail_index) {
1547 reiserfs_unmap_buffer(bh);
1548 }
1549 bh = next;
1550 } while (bh != head);
1551 }
1552 }
1553}
1554
1555static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
1556 struct inode *inode,
1557 struct page *page,
1558 struct treepath *path,
1559 const struct cpu_key *item_key,
1560 loff_t new_file_size, char *mode)
1561{
1562 struct super_block *sb = inode->i_sb;
1563 int block_size = sb->s_blocksize;
1564 int cut_bytes;
1565 BUG_ON(!th->t_trans_id);
1566 BUG_ON(new_file_size != inode->i_size);
1567
1568 /*
1569 * the page being sent in could be NULL if there was an i/o error
1570 * reading in the last block. The user will hit problems trying to
1571 * read the file, but for now we just skip the indirect2direct
1572 */
1573 if (atomic_read(&inode->i_count) > 1 ||
1574 !tail_has_to_be_packed(inode) ||
1575 !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) {
1576 /* leave tail in an unformatted node */
1577 *mode = M_SKIP_BALANCING;
1578 cut_bytes =
1579 block_size - (new_file_size & (block_size - 1));
1580 pathrelse(path);
1581 return cut_bytes;
1582 }
1583
1584 /* Perform the conversion to a direct_item. */
1585 return indirect2direct(th, inode, page, path, item_key,
1586 new_file_size, mode);
1587}
1588
1589/*
1590 * we did indirect_to_direct conversion. And we have inserted direct
1591 * item successesfully, but there were no disk space to cut unfm
1592 * pointer being converted. Therefore we have to delete inserted
1593 * direct item(s)
1594 */
1595static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
1596 struct inode *inode, struct treepath *path)
1597{
1598 struct cpu_key tail_key;
1599 int tail_len;
1600 int removed;
1601 BUG_ON(!th->t_trans_id);
1602
1603 make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4);
1604 tail_key.key_length = 4;
1605
1606 tail_len =
1607 (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
1608 while (tail_len) {
1609 /* look for the last byte of the tail */
1610 if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
1611 POSITION_NOT_FOUND)
1612 reiserfs_panic(inode->i_sb, "vs-5615",
1613 "found invalid item");
1614 RFALSE(path->pos_in_item !=
1615 ih_item_len(tp_item_head(path)) - 1,
1616 "vs-5616: appended bytes found");
1617 PATH_LAST_POSITION(path)--;
1618
1619 removed =
1620 reiserfs_delete_item(th, path, &tail_key, inode,
1621 NULL /*unbh not needed */ );
1622 RFALSE(removed <= 0
1623 || removed > tail_len,
1624 "vs-5617: there was tail %d bytes, removed item length %d bytes",
1625 tail_len, removed);
1626 tail_len -= removed;
1627 set_cpu_key_k_offset(&tail_key,
1628 cpu_key_k_offset(&tail_key) - removed);
1629 }
1630 reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct "
1631 "conversion has been rolled back due to "
1632 "lack of disk space");
1633 mark_inode_dirty(inode);
1634}
1635
1636/* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
1637int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1638 struct treepath *path,
1639 struct cpu_key *item_key,
1640 struct inode *inode,
1641 struct page *page, loff_t new_file_size)
1642{
1643 struct super_block *sb = inode->i_sb;
1644 /*
1645 * Every function which is going to call do_balance must first
1646 * create a tree_balance structure. Then it must fill up this
1647 * structure by using the init_tb_struct and fix_nodes functions.
1648 * After that we can make tree balancing.
1649 */
1650 struct tree_balance s_cut_balance;
1651 struct item_head *p_le_ih;
1652 int cut_size = 0; /* Amount to be cut. */
1653 int ret_value = CARRY_ON;
1654 int removed = 0; /* Number of the removed unformatted nodes. */
1655 int is_inode_locked = 0;
1656 char mode; /* Mode of the balance. */
1657 int retval2 = -1;
1658 int quota_cut_bytes;
1659 loff_t tail_pos = 0;
1660 int depth;
1661
1662 BUG_ON(!th->t_trans_id);
1663
1664 init_tb_struct(th, &s_cut_balance, inode->i_sb, path,
1665 cut_size);
1666
1667 /*
1668 * Repeat this loop until we either cut the item without needing
1669 * to balance, or we fix_nodes without schedule occurring
1670 */
1671 while (1) {
1672 /*
1673 * Determine the balance mode, position of the first byte to
1674 * be cut, and size to be cut. In case of the indirect item
1675 * free unformatted nodes which are pointed to by the cut
1676 * pointers.
1677 */
1678
1679 mode =
1680 prepare_for_delete_or_cut(th, inode, path,
1681 item_key, &removed,
1682 &cut_size, new_file_size);
1683 if (mode == M_CONVERT) {
1684 /*
1685 * convert last unformatted node to direct item or
1686 * leave tail in the unformatted node
1687 */
1688 RFALSE(ret_value != CARRY_ON,
1689 "PAP-5570: can not convert twice");
1690
1691 ret_value =
1692 maybe_indirect_to_direct(th, inode, page,
1693 path, item_key,
1694 new_file_size, &mode);
1695 if (mode == M_SKIP_BALANCING)
1696 /* tail has been left in the unformatted node */
1697 return ret_value;
1698
1699 is_inode_locked = 1;
1700
1701 /*
1702 * removing of last unformatted node will
1703 * change value we have to return to truncate.
1704 * Save it
1705 */
1706 retval2 = ret_value;
1707
1708 /*
1709 * So, we have performed the first part of the
1710 * conversion:
1711 * inserting the new direct item. Now we are
1712 * removing the last unformatted node pointer.
1713 * Set key to search for it.
1714 */
1715 set_cpu_key_k_type(item_key, TYPE_INDIRECT);
1716 item_key->key_length = 4;
1717 new_file_size -=
1718 (new_file_size & (sb->s_blocksize - 1));
1719 tail_pos = new_file_size;
1720 set_cpu_key_k_offset(item_key, new_file_size + 1);
1721 if (search_for_position_by_key
1722 (sb, item_key,
1723 path) == POSITION_NOT_FOUND) {
1724 print_block(PATH_PLAST_BUFFER(path), 3,
1725 PATH_LAST_POSITION(path) - 1,
1726 PATH_LAST_POSITION(path) + 1);
1727 reiserfs_panic(sb, "PAP-5580", "item to "
1728 "convert does not exist (%K)",
1729 item_key);
1730 }
1731 continue;
1732 }
1733 if (cut_size == 0) {
1734 pathrelse(path);
1735 return 0;
1736 }
1737
1738 s_cut_balance.insert_size[0] = cut_size;
1739
1740 ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL);
1741 if (ret_value != REPEAT_SEARCH)
1742 break;
1743
1744 PROC_INFO_INC(sb, cut_from_item_restarted);
1745
1746 ret_value =
1747 search_for_position_by_key(sb, item_key, path);
1748 if (ret_value == POSITION_FOUND)
1749 continue;
1750
1751 reiserfs_warning(sb, "PAP-5610", "item %K not found",
1752 item_key);
1753 unfix_nodes(&s_cut_balance);
1754 return (ret_value == IO_ERROR) ? -EIO : -ENOENT;
1755 } /* while */
1756
1757 /* check fix_nodes results (IO_ERROR or NO_DISK_SPACE) */
1758 if (ret_value != CARRY_ON) {
1759 if (is_inode_locked) {
1760 /*
1761 * FIXME: this seems to be not needed: we are always
1762 * able to cut item
1763 */
1764 indirect_to_direct_roll_back(th, inode, path);
1765 }
1766 if (ret_value == NO_DISK_SPACE)
1767 reiserfs_warning(sb, "reiserfs-5092",
1768 "NO_DISK_SPACE");
1769 unfix_nodes(&s_cut_balance);
1770 return -EIO;
1771 }
1772
1773 /* go ahead and perform balancing */
1774
1775 RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode");
1776
1777 /* Calculate number of bytes that need to be cut from the item. */
1778 quota_cut_bytes =
1779 (mode ==
1780 M_DELETE) ? ih_item_len(tp_item_head(path)) : -s_cut_balance.
1781 insert_size[0];
1782 if (retval2 == -1)
1783 ret_value = calc_deleted_bytes_number(&s_cut_balance, mode);
1784 else
1785 ret_value = retval2;
1786
1787 /*
1788 * For direct items, we only change the quota when deleting the last
1789 * item.
1790 */
1791 p_le_ih = tp_item_head(s_cut_balance.tb_path);
1792 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) {
1793 if (mode == M_DELETE &&
1794 (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) ==
1795 1) {
1796 /* FIXME: this is to keep 3.5 happy */
1797 REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
1798 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1799 } else {
1800 quota_cut_bytes = 0;
1801 }
1802 }
1803#ifdef CONFIG_REISERFS_CHECK
1804 if (is_inode_locked) {
1805 struct item_head *le_ih =
1806 tp_item_head(s_cut_balance.tb_path);
1807 /*
1808 * we are going to complete indirect2direct conversion. Make
1809 * sure, that we exactly remove last unformatted node pointer
1810 * of the item
1811 */
1812 if (!is_indirect_le_ih(le_ih))
1813 reiserfs_panic(sb, "vs-5652",
1814 "item must be indirect %h", le_ih);
1815
1816 if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
1817 reiserfs_panic(sb, "vs-5653", "completing "
1818 "indirect2direct conversion indirect "
1819 "item %h being deleted must be of "
1820 "4 byte long", le_ih);
1821
1822 if (mode == M_CUT
1823 && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
1824 reiserfs_panic(sb, "vs-5654", "can not complete "
1825 "indirect2direct conversion of %h "
1826 "(CUT, insert_size==%d)",
1827 le_ih, s_cut_balance.insert_size[0]);
1828 }
1829 /*
1830 * it would be useful to make sure, that right neighboring
1831 * item is direct item of this file
1832 */
1833 }
1834#endif
1835
1836 do_balance(&s_cut_balance, NULL, NULL, mode);
1837 if (is_inode_locked) {
1838 /*
1839 * we've done an indirect->direct conversion. when the
1840 * data block was freed, it was removed from the list of
1841 * blocks that must be flushed before the transaction
1842 * commits, make sure to unmap and invalidate it
1843 */
1844 unmap_buffers(page, tail_pos);
1845 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
1846 }
1847#ifdef REISERQUOTA_DEBUG
1848 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1849 "reiserquota cut_from_item(): freeing %u id=%u type=%c",
1850 quota_cut_bytes, inode->i_uid, '?');
1851#endif
1852 depth = reiserfs_write_unlock_nested(sb);
1853 dquot_free_space_nodirty(inode, quota_cut_bytes);
1854 reiserfs_write_lock_nested(sb, depth);
1855 return ret_value;
1856}
1857
1858static void truncate_directory(struct reiserfs_transaction_handle *th,
1859 struct inode *inode)
1860{
1861 BUG_ON(!th->t_trans_id);
1862 if (inode->i_nlink)
1863 reiserfs_error(inode->i_sb, "vs-5655", "link count != 0");
1864
1865 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
1866 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
1867 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1868 reiserfs_update_sd(th, inode);
1869 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
1870 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
1871}
1872
1873/*
1874 * Truncate file to the new size. Note, this must be called with a
1875 * transaction already started
1876 */
1877int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1878 struct inode *inode, /* ->i_size contains new size */
1879 struct page *page, /* up to date for last block */
1880 /*
1881 * when it is called by file_release to convert
1882 * the tail - no timestamps should be updated
1883 */
1884 int update_timestamps
1885 )
1886{
1887 INITIALIZE_PATH(s_search_path); /* Path to the current object item. */
1888 struct item_head *p_le_ih; /* Pointer to an item header. */
1889
1890 /* Key to search for a previous file item. */
1891 struct cpu_key s_item_key;
1892 loff_t file_size, /* Old file size. */
1893 new_file_size; /* New file size. */
1894 int deleted; /* Number of deleted or truncated bytes. */
1895 int retval;
1896 int err = 0;
1897
1898 BUG_ON(!th->t_trans_id);
1899 if (!
1900 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
1901 || S_ISLNK(inode->i_mode)))
1902 return 0;
1903
1904 /* deletion of directory - no need to update timestamps */
1905 if (S_ISDIR(inode->i_mode)) {
1906 truncate_directory(th, inode);
1907 return 0;
1908 }
1909
1910 /* Get new file size. */
1911 new_file_size = inode->i_size;
1912
1913 /* FIXME: note, that key type is unimportant here */
1914 make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode),
1915 TYPE_DIRECT, 3);
1916
1917 retval =
1918 search_for_position_by_key(inode->i_sb, &s_item_key,
1919 &s_search_path);
1920 if (retval == IO_ERROR) {
1921 reiserfs_error(inode->i_sb, "vs-5657",
1922 "i/o failure occurred trying to truncate %K",
1923 &s_item_key);
1924 err = -EIO;
1925 goto out;
1926 }
1927 if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
1928 reiserfs_error(inode->i_sb, "PAP-5660",
1929 "wrong result %d of search for %K", retval,
1930 &s_item_key);
1931
1932 err = -EIO;
1933 goto out;
1934 }
1935
1936 s_search_path.pos_in_item--;
1937
1938 /* Get real file size (total length of all file items) */
1939 p_le_ih = tp_item_head(&s_search_path);
1940 if (is_statdata_le_ih(p_le_ih))
1941 file_size = 0;
1942 else {
1943 loff_t offset = le_ih_k_offset(p_le_ih);
1944 int bytes =
1945 op_bytes_number(p_le_ih, inode->i_sb->s_blocksize);
1946
1947 /*
1948 * this may mismatch with real file size: if last direct item
1949 * had no padding zeros and last unformatted node had no free
1950 * space, this file would have this file size
1951 */
1952 file_size = offset + bytes - 1;
1953 }
1954 /*
1955 * are we doing a full truncate or delete, if so
1956 * kick in the reada code
1957 */
1958 if (new_file_size == 0)
1959 s_search_path.reada = PATH_READA | PATH_READA_BACK;
1960
1961 if (file_size == 0 || file_size < new_file_size) {
1962 goto update_and_out;
1963 }
1964
1965 /* Update key to search for the last file item. */
1966 set_cpu_key_k_offset(&s_item_key, file_size);
1967
1968 do {
1969 /* Cut or delete file item. */
1970 deleted =
1971 reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
1972 inode, page, new_file_size);
1973 if (deleted < 0) {
1974 reiserfs_warning(inode->i_sb, "vs-5665",
1975 "reiserfs_cut_from_item failed");
1976 reiserfs_check_path(&s_search_path);
1977 return 0;
1978 }
1979
1980 RFALSE(deleted > file_size,
1981 "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
1982 deleted, file_size, &s_item_key);
1983
1984 /* Change key to search the last file item. */
1985 file_size -= deleted;
1986
1987 set_cpu_key_k_offset(&s_item_key, file_size);
1988
1989 /*
1990 * While there are bytes to truncate and previous
1991 * file item is presented in the tree.
1992 */
1993
1994 /*
1995 * This loop could take a really long time, and could log
1996 * many more blocks than a transaction can hold. So, we do
1997 * a polite journal end here, and if the transaction needs
1998 * ending, we make sure the file is consistent before ending
1999 * the current trans and starting a new one
2000 */
2001 if (journal_transaction_should_end(th, 0) ||
2002 reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
2003 pathrelse(&s_search_path);
2004
2005 if (update_timestamps) {
2006 inode_set_mtime_to_ts(inode,
2007 current_time(inode));
2008 inode_set_ctime_current(inode);
2009 }
2010 reiserfs_update_sd(th, inode);
2011
2012 err = journal_end(th);
2013 if (err)
2014 goto out;
2015 err = journal_begin(th, inode->i_sb,
2016 JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
2017 if (err)
2018 goto out;
2019 reiserfs_update_inode_transaction(inode);
2020 }
2021 } while (file_size > ROUND_UP(new_file_size) &&
2022 search_for_position_by_key(inode->i_sb, &s_item_key,
2023 &s_search_path) == POSITION_FOUND);
2024
2025 RFALSE(file_size > ROUND_UP(new_file_size),
2026 "PAP-5680: truncate did not finish: new_file_size %lld, current %lld, oid %d",
2027 new_file_size, file_size, s_item_key.on_disk_key.k_objectid);
2028
2029update_and_out:
2030 if (update_timestamps) {
2031 /* this is truncate, not file closing */
2032 inode_set_mtime_to_ts(inode, current_time(inode));
2033 inode_set_ctime_current(inode);
2034 }
2035 reiserfs_update_sd(th, inode);
2036
2037out:
2038 pathrelse(&s_search_path);
2039 return err;
2040}
2041
2042#ifdef CONFIG_REISERFS_CHECK
2043/* this makes sure, that we __append__, not overwrite or add holes */
2044static void check_research_for_paste(struct treepath *path,
2045 const struct cpu_key *key)
2046{
2047 struct item_head *found_ih = tp_item_head(path);
2048
2049 if (is_direct_le_ih(found_ih)) {
2050 if (le_ih_k_offset(found_ih) +
2051 op_bytes_number(found_ih,
2052 get_last_bh(path)->b_size) !=
2053 cpu_key_k_offset(key)
2054 || op_bytes_number(found_ih,
2055 get_last_bh(path)->b_size) !=
2056 pos_in_item(path))
2057 reiserfs_panic(NULL, "PAP-5720", "found direct item "
2058 "%h or position (%d) does not match "
2059 "to key %K", found_ih,
2060 pos_in_item(path), key);
2061 }
2062 if (is_indirect_le_ih(found_ih)) {
2063 if (le_ih_k_offset(found_ih) +
2064 op_bytes_number(found_ih,
2065 get_last_bh(path)->b_size) !=
2066 cpu_key_k_offset(key)
2067 || I_UNFM_NUM(found_ih) != pos_in_item(path)
2068 || get_ih_free_space(found_ih) != 0)
2069 reiserfs_panic(NULL, "PAP-5730", "found indirect "
2070 "item (%h) or position (%d) does not "
2071 "match to key (%K)",
2072 found_ih, pos_in_item(path), key);
2073 }
2074}
2075#endif /* config reiserfs check */
2076
2077/*
2078 * Paste bytes to the existing item.
2079 * Returns bytes number pasted into the item.
2080 */
2081int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
2082 /* Path to the pasted item. */
2083 struct treepath *search_path,
2084 /* Key to search for the needed item. */
2085 const struct cpu_key *key,
2086 /* Inode item belongs to */
2087 struct inode *inode,
2088 /* Pointer to the bytes to paste. */
2089 const char *body,
2090 /* Size of pasted bytes. */
2091 int pasted_size)
2092{
2093 struct super_block *sb = inode->i_sb;
2094 struct tree_balance s_paste_balance;
2095 int retval;
2096 int fs_gen;
2097 int depth;
2098
2099 BUG_ON(!th->t_trans_id);
2100
2101 fs_gen = get_generation(inode->i_sb);
2102
2103#ifdef REISERQUOTA_DEBUG
2104 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2105 "reiserquota paste_into_item(): allocating %u id=%u type=%c",
2106 pasted_size, inode->i_uid,
2107 key2type(&key->on_disk_key));
2108#endif
2109
2110 depth = reiserfs_write_unlock_nested(sb);
2111 retval = dquot_alloc_space_nodirty(inode, pasted_size);
2112 reiserfs_write_lock_nested(sb, depth);
2113 if (retval) {
2114 pathrelse(search_path);
2115 return retval;
2116 }
2117 init_tb_struct(th, &s_paste_balance, th->t_super, search_path,
2118 pasted_size);
2119#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2120 s_paste_balance.key = key->on_disk_key;
2121#endif
2122
2123 /* DQUOT_* can schedule, must check before the fix_nodes */
2124 if (fs_changed(fs_gen, inode->i_sb)) {
2125 goto search_again;
2126 }
2127
2128 while ((retval =
2129 fix_nodes(M_PASTE, &s_paste_balance, NULL,
2130 body)) == REPEAT_SEARCH) {
2131search_again:
2132 /* file system changed while we were in the fix_nodes */
2133 PROC_INFO_INC(th->t_super, paste_into_item_restarted);
2134 retval =
2135 search_for_position_by_key(th->t_super, key,
2136 search_path);
2137 if (retval == IO_ERROR) {
2138 retval = -EIO;
2139 goto error_out;
2140 }
2141 if (retval == POSITION_FOUND) {
2142 reiserfs_warning(inode->i_sb, "PAP-5710",
2143 "entry or pasted byte (%K) exists",
2144 key);
2145 retval = -EEXIST;
2146 goto error_out;
2147 }
2148#ifdef CONFIG_REISERFS_CHECK
2149 check_research_for_paste(search_path, key);
2150#endif
2151 }
2152
2153 /*
2154 * Perform balancing after all resources are collected by fix_nodes,
2155 * and accessing them will not risk triggering schedule.
2156 */
2157 if (retval == CARRY_ON) {
2158 do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE);
2159 return 0;
2160 }
2161 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2162error_out:
2163 /* this also releases the path */
2164 unfix_nodes(&s_paste_balance);
2165#ifdef REISERQUOTA_DEBUG
2166 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2167 "reiserquota paste_into_item(): freeing %u id=%u type=%c",
2168 pasted_size, inode->i_uid,
2169 key2type(&key->on_disk_key));
2170#endif
2171 depth = reiserfs_write_unlock_nested(sb);
2172 dquot_free_space_nodirty(inode, pasted_size);
2173 reiserfs_write_lock_nested(sb, depth);
2174 return retval;
2175}
2176
2177/*
2178 * Insert new item into the buffer at the path.
2179 * th - active transaction handle
2180 * path - path to the inserted item
2181 * ih - pointer to the item header to insert
2182 * body - pointer to the bytes to insert
2183 */
2184int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
2185 struct treepath *path, const struct cpu_key *key,
2186 struct item_head *ih, struct inode *inode,
2187 const char *body)
2188{
2189 struct tree_balance s_ins_balance;
2190 int retval;
2191 int fs_gen = 0;
2192 int quota_bytes = 0;
2193
2194 BUG_ON(!th->t_trans_id);
2195
2196 if (inode) { /* Do we count quotas for item? */
2197 int depth;
2198 fs_gen = get_generation(inode->i_sb);
2199 quota_bytes = ih_item_len(ih);
2200
2201 /*
2202 * hack so the quota code doesn't have to guess
2203 * if the file has a tail, links are always tails,
2204 * so there's no guessing needed
2205 */
2206 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih))
2207 quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
2208#ifdef REISERQUOTA_DEBUG
2209 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2210 "reiserquota insert_item(): allocating %u id=%u type=%c",
2211 quota_bytes, inode->i_uid, head2type(ih));
2212#endif
2213 /*
2214 * We can't dirty inode here. It would be immediately
2215 * written but appropriate stat item isn't inserted yet...
2216 */
2217 depth = reiserfs_write_unlock_nested(inode->i_sb);
2218 retval = dquot_alloc_space_nodirty(inode, quota_bytes);
2219 reiserfs_write_lock_nested(inode->i_sb, depth);
2220 if (retval) {
2221 pathrelse(path);
2222 return retval;
2223 }
2224 }
2225 init_tb_struct(th, &s_ins_balance, th->t_super, path,
2226 IH_SIZE + ih_item_len(ih));
2227#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2228 s_ins_balance.key = key->on_disk_key;
2229#endif
2230 /*
2231 * DQUOT_* can schedule, must check to be sure calling
2232 * fix_nodes is safe
2233 */
2234 if (inode && fs_changed(fs_gen, inode->i_sb)) {
2235 goto search_again;
2236 }
2237
2238 while ((retval =
2239 fix_nodes(M_INSERT, &s_ins_balance, ih,
2240 body)) == REPEAT_SEARCH) {
2241search_again:
2242 /* file system changed while we were in the fix_nodes */
2243 PROC_INFO_INC(th->t_super, insert_item_restarted);
2244 retval = search_item(th->t_super, key, path);
2245 if (retval == IO_ERROR) {
2246 retval = -EIO;
2247 goto error_out;
2248 }
2249 if (retval == ITEM_FOUND) {
2250 reiserfs_warning(th->t_super, "PAP-5760",
2251 "key %K already exists in the tree",
2252 key);
2253 retval = -EEXIST;
2254 goto error_out;
2255 }
2256 }
2257
2258 /* make balancing after all resources will be collected at a time */
2259 if (retval == CARRY_ON) {
2260 do_balance(&s_ins_balance, ih, body, M_INSERT);
2261 return 0;
2262 }
2263
2264 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2265error_out:
2266 /* also releases the path */
2267 unfix_nodes(&s_ins_balance);
2268#ifdef REISERQUOTA_DEBUG
2269 if (inode)
2270 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
2271 "reiserquota insert_item(): freeing %u id=%u type=%c",
2272 quota_bytes, inode->i_uid, head2type(ih));
2273#endif
2274 if (inode) {
2275 int depth = reiserfs_write_unlock_nested(inode->i_sb);
2276 dquot_free_space_nodirty(inode, quota_bytes);
2277 reiserfs_write_lock_nested(inode->i_sb, depth);
2278 }
2279 return retval;
2280}
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5/*
6 * Written by Anatoly P. Pinchuk pap@namesys.botik.ru
7 * Programm System Institute
8 * Pereslavl-Zalessky Russia
9 */
10
11/*
12 * This file contains functions dealing with S+tree
13 *
14 * B_IS_IN_TREE
15 * copy_item_head
16 * comp_short_keys
17 * comp_keys
18 * comp_short_le_keys
19 * le_key2cpu_key
20 * comp_le_keys
21 * bin_search
22 * get_lkey
23 * get_rkey
24 * key_in_buffer
25 * decrement_bcount
26 * reiserfs_check_path
27 * pathrelse_and_restore
28 * pathrelse
29 * search_by_key_reada
30 * search_by_key
31 * search_for_position_by_key
32 * comp_items
33 * prepare_for_direct_item
34 * prepare_for_direntry_item
35 * prepare_for_delete_or_cut
36 * calc_deleted_bytes_number
37 * init_tb_struct
38 * padd_item
39 * reiserfs_delete_item
40 * reiserfs_delete_solid_item
41 * reiserfs_delete_object
42 * maybe_indirect_to_direct
43 * indirect_to_direct_roll_back
44 * reiserfs_cut_from_item
45 * truncate_directory
46 * reiserfs_do_truncate
47 * reiserfs_paste_into_item
48 * reiserfs_insert_item
49 */
50
51#include <linux/time.h>
52#include <linux/string.h>
53#include <linux/pagemap.h>
54#include "reiserfs.h"
55#include <linux/buffer_head.h>
56#include <linux/quotaops.h>
57
58/* Does the buffer contain a disk block which is in the tree. */
59inline int B_IS_IN_TREE(const struct buffer_head *bh)
60{
61
62 RFALSE(B_LEVEL(bh) > MAX_HEIGHT,
63 "PAP-1010: block (%b) has too big level (%z)", bh, bh);
64
65 return (B_LEVEL(bh) != FREE_LEVEL);
66}
67
68//
69// to gets item head in le form
70//
71inline void copy_item_head(struct item_head *to,
72 const struct item_head *from)
73{
74 memcpy(to, from, IH_SIZE);
75}
76
77/* k1 is pointer to on-disk structure which is stored in little-endian
78 form. k2 is pointer to cpu variable. For key of items of the same
79 object this returns 0.
80 Returns: -1 if key1 < key2
81 0 if key1 == key2
82 1 if key1 > key2 */
83inline int comp_short_keys(const struct reiserfs_key *le_key,
84 const struct cpu_key *cpu_key)
85{
86 __u32 n;
87 n = le32_to_cpu(le_key->k_dir_id);
88 if (n < cpu_key->on_disk_key.k_dir_id)
89 return -1;
90 if (n > cpu_key->on_disk_key.k_dir_id)
91 return 1;
92 n = le32_to_cpu(le_key->k_objectid);
93 if (n < cpu_key->on_disk_key.k_objectid)
94 return -1;
95 if (n > cpu_key->on_disk_key.k_objectid)
96 return 1;
97 return 0;
98}
99
100/* k1 is pointer to on-disk structure which is stored in little-endian
101 form. k2 is pointer to cpu variable.
102 Compare keys using all 4 key fields.
103 Returns: -1 if key1 < key2 0
104 if key1 = key2 1 if key1 > key2 */
105static inline int comp_keys(const struct reiserfs_key *le_key,
106 const struct cpu_key *cpu_key)
107{
108 int retval;
109
110 retval = comp_short_keys(le_key, cpu_key);
111 if (retval)
112 return retval;
113 if (le_key_k_offset(le_key_version(le_key), le_key) <
114 cpu_key_k_offset(cpu_key))
115 return -1;
116 if (le_key_k_offset(le_key_version(le_key), le_key) >
117 cpu_key_k_offset(cpu_key))
118 return 1;
119
120 if (cpu_key->key_length == 3)
121 return 0;
122
123 /* this part is needed only when tail conversion is in progress */
124 if (le_key_k_type(le_key_version(le_key), le_key) <
125 cpu_key_k_type(cpu_key))
126 return -1;
127
128 if (le_key_k_type(le_key_version(le_key), le_key) >
129 cpu_key_k_type(cpu_key))
130 return 1;
131
132 return 0;
133}
134
135inline int comp_short_le_keys(const struct reiserfs_key *key1,
136 const struct reiserfs_key *key2)
137{
138 __u32 *k1_u32, *k2_u32;
139 int key_length = REISERFS_SHORT_KEY_LEN;
140
141 k1_u32 = (__u32 *) key1;
142 k2_u32 = (__u32 *) key2;
143 for (; key_length--; ++k1_u32, ++k2_u32) {
144 if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32))
145 return -1;
146 if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32))
147 return 1;
148 }
149 return 0;
150}
151
152inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
153{
154 int version;
155 to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
156 to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
157
158 // find out version of the key
159 version = le_key_version(from);
160 to->version = version;
161 to->on_disk_key.k_offset = le_key_k_offset(version, from);
162 to->on_disk_key.k_type = le_key_k_type(version, from);
163}
164
165// this does not say which one is bigger, it only returns 1 if keys
166// are not equal, 0 otherwise
167inline int comp_le_keys(const struct reiserfs_key *k1,
168 const struct reiserfs_key *k2)
169{
170 return memcmp(k1, k2, sizeof(struct reiserfs_key));
171}
172
173/**************************************************************************
174 * Binary search toolkit function *
175 * Search for an item in the array by the item key *
176 * Returns: 1 if found, 0 if not found; *
177 * *pos = number of the searched element if found, else the *
178 * number of the first element that is larger than key. *
179 **************************************************************************/
180/* For those not familiar with binary search: lbound is the leftmost item that it
181 could be, rbound the rightmost item that it could be. We examine the item
182 halfway between lbound and rbound, and that tells us either that we can increase
183 lbound, or decrease rbound, or that we have found it, or if lbound <= rbound that
184 there are no possible items, and we have not found it. With each examination we
185 cut the number of possible items it could be by one more than half rounded down,
186 or we find it. */
187static inline int bin_search(const void *key, /* Key to search for. */
188 const void *base, /* First item in the array. */
189 int num, /* Number of items in the array. */
190 int width, /* Item size in the array.
191 searched. Lest the reader be
192 confused, note that this is crafted
193 as a general function, and when it
194 is applied specifically to the array
195 of item headers in a node, width
196 is actually the item header size not
197 the item size. */
198 int *pos /* Number of the searched for element. */
199 )
200{
201 int rbound, lbound, j;
202
203 for (j = ((rbound = num - 1) + (lbound = 0)) / 2;
204 lbound <= rbound; j = (rbound + lbound) / 2)
205 switch (comp_keys
206 ((struct reiserfs_key *)((char *)base + j * width),
207 (struct cpu_key *)key)) {
208 case -1:
209 lbound = j + 1;
210 continue;
211 case 1:
212 rbound = j - 1;
213 continue;
214 case 0:
215 *pos = j;
216 return ITEM_FOUND; /* Key found in the array. */
217 }
218
219 /* bin_search did not find given key, it returns position of key,
220 that is minimal and greater than the given one. */
221 *pos = lbound;
222 return ITEM_NOT_FOUND;
223}
224
225
226/* Minimal possible key. It is never in the tree. */
227const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
228
229/* Maximal possible key. It is never in the tree. */
230static const struct reiserfs_key MAX_KEY = {
231 __constant_cpu_to_le32(0xffffffff),
232 __constant_cpu_to_le32(0xffffffff),
233 {{__constant_cpu_to_le32(0xffffffff),
234 __constant_cpu_to_le32(0xffffffff)},}
235};
236
237/* Get delimiting key of the buffer by looking for it in the buffers in the path, starting from the bottom
238 of the path, and going upwards. We must check the path's validity at each step. If the key is not in
239 the path, there is no delimiting key in the tree (buffer is first or last buffer in tree), and in this
240 case we return a special key, either MIN_KEY or MAX_KEY. */
241static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path,
242 const struct super_block *sb)
243{
244 int position, path_offset = chk_path->path_length;
245 struct buffer_head *parent;
246
247 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
248 "PAP-5010: invalid offset in the path");
249
250 /* While not higher in path than first element. */
251 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
252
253 RFALSE(!buffer_uptodate
254 (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
255 "PAP-5020: parent is not uptodate");
256
257 /* Parent at the path is not in the tree now. */
258 if (!B_IS_IN_TREE
259 (parent =
260 PATH_OFFSET_PBUFFER(chk_path, path_offset)))
261 return &MAX_KEY;
262 /* Check whether position in the parent is correct. */
263 if ((position =
264 PATH_OFFSET_POSITION(chk_path,
265 path_offset)) >
266 B_NR_ITEMS(parent))
267 return &MAX_KEY;
268 /* Check whether parent at the path really points to the child. */
269 if (B_N_CHILD_NUM(parent, position) !=
270 PATH_OFFSET_PBUFFER(chk_path,
271 path_offset + 1)->b_blocknr)
272 return &MAX_KEY;
273 /* Return delimiting key if position in the parent is not equal to zero. */
274 if (position)
275 return B_N_PDELIM_KEY(parent, position - 1);
276 }
277 /* Return MIN_KEY if we are in the root of the buffer tree. */
278 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
279 b_blocknr == SB_ROOT_BLOCK(sb))
280 return &MIN_KEY;
281 return &MAX_KEY;
282}
283
284/* Get delimiting key of the buffer at the path and its right neighbor. */
285inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
286 const struct super_block *sb)
287{
288 int position, path_offset = chk_path->path_length;
289 struct buffer_head *parent;
290
291 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
292 "PAP-5030: invalid offset in the path");
293
294 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
295
296 RFALSE(!buffer_uptodate
297 (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
298 "PAP-5040: parent is not uptodate");
299
300 /* Parent at the path is not in the tree now. */
301 if (!B_IS_IN_TREE
302 (parent =
303 PATH_OFFSET_PBUFFER(chk_path, path_offset)))
304 return &MIN_KEY;
305 /* Check whether position in the parent is correct. */
306 if ((position =
307 PATH_OFFSET_POSITION(chk_path,
308 path_offset)) >
309 B_NR_ITEMS(parent))
310 return &MIN_KEY;
311 /* Check whether parent at the path really points to the child. */
312 if (B_N_CHILD_NUM(parent, position) !=
313 PATH_OFFSET_PBUFFER(chk_path,
314 path_offset + 1)->b_blocknr)
315 return &MIN_KEY;
316 /* Return delimiting key if position in the parent is not the last one. */
317 if (position != B_NR_ITEMS(parent))
318 return B_N_PDELIM_KEY(parent, position);
319 }
320 /* Return MAX_KEY if we are in the root of the buffer tree. */
321 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
322 b_blocknr == SB_ROOT_BLOCK(sb))
323 return &MAX_KEY;
324 return &MIN_KEY;
325}
326
327/* Check whether a key is contained in the tree rooted from a buffer at a path. */
328/* This works by looking at the left and right delimiting keys for the buffer in the last path_element in
329 the path. These delimiting keys are stored at least one level above that buffer in the tree. If the
330 buffer is the first or last node in the tree order then one of the delimiting keys may be absent, and in
331 this case get_lkey and get_rkey return a special key which is MIN_KEY or MAX_KEY. */
332static inline int key_in_buffer(struct treepath *chk_path, /* Path which should be checked. */
333 const struct cpu_key *key, /* Key which should be checked. */
334 struct super_block *sb
335 )
336{
337
338 RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
339 || chk_path->path_length > MAX_HEIGHT,
340 "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
341 key, chk_path->path_length);
342 RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev,
343 "PAP-5060: device must not be NODEV");
344
345 if (comp_keys(get_lkey(chk_path, sb), key) == 1)
346 /* left delimiting key is bigger, that the key we look for */
347 return 0;
348 /* if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */
349 if (comp_keys(get_rkey(chk_path, sb), key) != 1)
350 /* key must be less than right delimitiing key */
351 return 0;
352 return 1;
353}
354
355int reiserfs_check_path(struct treepath *p)
356{
357 RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
358 "path not properly relsed");
359 return 0;
360}
361
362/* Drop the reference to each buffer in a path and restore
363 * dirty bits clean when preparing the buffer for the log.
364 * This version should only be called from fix_nodes() */
365void pathrelse_and_restore(struct super_block *sb,
366 struct treepath *search_path)
367{
368 int path_offset = search_path->path_length;
369
370 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
371 "clm-4000: invalid path offset");
372
373 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
374 struct buffer_head *bh;
375 bh = PATH_OFFSET_PBUFFER(search_path, path_offset--);
376 reiserfs_restore_prepared_buffer(sb, bh);
377 brelse(bh);
378 }
379 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
380}
381
382/* Drop the reference to each buffer in a path */
383void pathrelse(struct treepath *search_path)
384{
385 int path_offset = search_path->path_length;
386
387 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
388 "PAP-5090: invalid path offset");
389
390 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
391 brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--));
392
393 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
394}
395
396static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
397{
398 struct block_head *blkh;
399 struct item_head *ih;
400 int used_space;
401 int prev_location;
402 int i;
403 int nr;
404
405 blkh = (struct block_head *)buf;
406 if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
407 reiserfs_warning(NULL, "reiserfs-5080",
408 "this should be caught earlier");
409 return 0;
410 }
411
412 nr = blkh_nr_item(blkh);
413 if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
414 /* item number is too big or too small */
415 reiserfs_warning(NULL, "reiserfs-5081",
416 "nr_item seems wrong: %z", bh);
417 return 0;
418 }
419 ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
420 used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
421 if (used_space != blocksize - blkh_free_space(blkh)) {
422 /* free space does not match to calculated amount of use space */
423 reiserfs_warning(NULL, "reiserfs-5082",
424 "free space seems wrong: %z", bh);
425 return 0;
426 }
427 // FIXME: it is_leaf will hit performance too much - we may have
428 // return 1 here
429
430 /* check tables of item heads */
431 ih = (struct item_head *)(buf + BLKH_SIZE);
432 prev_location = blocksize;
433 for (i = 0; i < nr; i++, ih++) {
434 if (le_ih_k_type(ih) == TYPE_ANY) {
435 reiserfs_warning(NULL, "reiserfs-5083",
436 "wrong item type for item %h",
437 ih);
438 return 0;
439 }
440 if (ih_location(ih) >= blocksize
441 || ih_location(ih) < IH_SIZE * nr) {
442 reiserfs_warning(NULL, "reiserfs-5084",
443 "item location seems wrong: %h",
444 ih);
445 return 0;
446 }
447 if (ih_item_len(ih) < 1
448 || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
449 reiserfs_warning(NULL, "reiserfs-5085",
450 "item length seems wrong: %h",
451 ih);
452 return 0;
453 }
454 if (prev_location - ih_location(ih) != ih_item_len(ih)) {
455 reiserfs_warning(NULL, "reiserfs-5086",
456 "item location seems wrong "
457 "(second one): %h", ih);
458 return 0;
459 }
460 prev_location = ih_location(ih);
461 }
462
463 // one may imagine much more checks
464 return 1;
465}
466
467/* returns 1 if buf looks like an internal node, 0 otherwise */
468static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
469{
470 struct block_head *blkh;
471 int nr;
472 int used_space;
473
474 blkh = (struct block_head *)buf;
475 nr = blkh_level(blkh);
476 if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
477 /* this level is not possible for internal nodes */
478 reiserfs_warning(NULL, "reiserfs-5087",
479 "this should be caught earlier");
480 return 0;
481 }
482
483 nr = blkh_nr_item(blkh);
484 if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
485 /* for internal which is not root we might check min number of keys */
486 reiserfs_warning(NULL, "reiserfs-5088",
487 "number of key seems wrong: %z", bh);
488 return 0;
489 }
490
491 used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
492 if (used_space != blocksize - blkh_free_space(blkh)) {
493 reiserfs_warning(NULL, "reiserfs-5089",
494 "free space seems wrong: %z", bh);
495 return 0;
496 }
497 // one may imagine much more checks
498 return 1;
499}
500
501// make sure that bh contains formatted node of reiserfs tree of
502// 'level'-th level
503static int is_tree_node(struct buffer_head *bh, int level)
504{
505 if (B_LEVEL(bh) != level) {
506 reiserfs_warning(NULL, "reiserfs-5090", "node level %d does "
507 "not match to the expected one %d",
508 B_LEVEL(bh), level);
509 return 0;
510 }
511 if (level == DISK_LEAF_NODE_LEVEL)
512 return is_leaf(bh->b_data, bh->b_size, bh);
513
514 return is_internal(bh->b_data, bh->b_size, bh);
515}
516
517#define SEARCH_BY_KEY_READA 16
518
519/*
520 * The function is NOT SCHEDULE-SAFE!
521 * It might unlock the write lock if we needed to wait for a block
522 * to be read. Note that in this case it won't recover the lock to avoid
523 * high contention resulting from too much lock requests, especially
524 * the caller (search_by_key) will perform other schedule-unsafe
525 * operations just after calling this function.
526 *
527 * @return depth of lock to be restored after read completes
528 */
529static int search_by_key_reada(struct super_block *s,
530 struct buffer_head **bh,
531 b_blocknr_t *b, int num)
532{
533 int i, j;
534 int depth = -1;
535
536 for (i = 0; i < num; i++) {
537 bh[i] = sb_getblk(s, b[i]);
538 }
539 /*
540 * We are going to read some blocks on which we
541 * have a reference. It's safe, though we might be
542 * reading blocks concurrently changed if we release
543 * the lock. But it's still fine because we check later
544 * if the tree changed
545 */
546 for (j = 0; j < i; j++) {
547 /*
548 * note, this needs attention if we are getting rid of the BKL
549 * you have to make sure the prepared bit isn't set on this buffer
550 */
551 if (!buffer_uptodate(bh[j])) {
552 if (depth == -1)
553 depth = reiserfs_write_unlock_nested(s);
554 ll_rw_block(READA, 1, bh + j);
555 }
556 brelse(bh[j]);
557 }
558 return depth;
559}
560
561/**************************************************************************
562 * Algorithm SearchByKey *
563 * look for item in the Disk S+Tree by its key *
564 * Input: sb - super block *
565 * key - pointer to the key to search *
566 * Output: ITEM_FOUND, ITEM_NOT_FOUND or IO_ERROR *
567 * search_path - path from the root to the needed leaf *
568 **************************************************************************/
569
570/* This function fills up the path from the root to the leaf as it
571 descends the tree looking for the key. It uses reiserfs_bread to
572 try to find buffers in the cache given their block number. If it
573 does not find them in the cache it reads them from disk. For each
574 node search_by_key finds using reiserfs_bread it then uses
575 bin_search to look through that node. bin_search will find the
576 position of the block_number of the next node if it is looking
577 through an internal node. If it is looking through a leaf node
578 bin_search will find the position of the item which has key either
579 equal to given key, or which is the maximal key less than the given
580 key. search_by_key returns a path that must be checked for the
581 correctness of the top of the path but need not be checked for the
582 correctness of the bottom of the path */
583/* The function is NOT SCHEDULE-SAFE! */
584int search_by_key(struct super_block *sb, const struct cpu_key *key, /* Key to search. */
585 struct treepath *search_path,/* This structure was
586 allocated and initialized
587 by the calling
588 function. It is filled up
589 by this function. */
590 int stop_level /* How far down the tree to search. To
591 stop at leaf level - set to
592 DISK_LEAF_NODE_LEVEL */
593 )
594{
595 b_blocknr_t block_number;
596 int expected_level;
597 struct buffer_head *bh;
598 struct path_element *last_element;
599 int node_level, retval;
600 int right_neighbor_of_leaf_node;
601 int fs_gen;
602 struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
603 b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA];
604 int reada_count = 0;
605
606#ifdef CONFIG_REISERFS_CHECK
607 int repeat_counter = 0;
608#endif
609
610 PROC_INFO_INC(sb, search_by_key);
611
612 /* As we add each node to a path we increase its count. This means that
613 we must be careful to release all nodes in a path before we either
614 discard the path struct or re-use the path struct, as we do here. */
615
616 pathrelse(search_path);
617
618 right_neighbor_of_leaf_node = 0;
619
620 /* With each iteration of this loop we search through the items in the
621 current node, and calculate the next current node(next path element)
622 for the next iteration of this loop.. */
623 block_number = SB_ROOT_BLOCK(sb);
624 expected_level = -1;
625 while (1) {
626
627#ifdef CONFIG_REISERFS_CHECK
628 if (!(++repeat_counter % 50000))
629 reiserfs_warning(sb, "PAP-5100",
630 "%s: there were %d iterations of "
631 "while loop looking for key %K",
632 current->comm, repeat_counter,
633 key);
634#endif
635
636 /* prep path to have another element added to it. */
637 last_element =
638 PATH_OFFSET_PELEMENT(search_path,
639 ++search_path->path_length);
640 fs_gen = get_generation(sb);
641
642 /* Read the next tree node, and set the last element in the path to
643 have a pointer to it. */
644 if ((bh = last_element->pe_buffer =
645 sb_getblk(sb, block_number))) {
646
647 /*
648 * We'll need to drop the lock if we encounter any
649 * buffers that need to be read. If all of them are
650 * already up to date, we don't need to drop the lock.
651 */
652 int depth = -1;
653
654 if (!buffer_uptodate(bh) && reada_count > 1)
655 depth = search_by_key_reada(sb, reada_bh,
656 reada_blocks, reada_count);
657
658 if (!buffer_uptodate(bh) && depth == -1)
659 depth = reiserfs_write_unlock_nested(sb);
660
661 ll_rw_block(READ, 1, &bh);
662 wait_on_buffer(bh);
663
664 if (depth != -1)
665 reiserfs_write_lock_nested(sb, depth);
666 if (!buffer_uptodate(bh))
667 goto io_error;
668 } else {
669 io_error:
670 search_path->path_length--;
671 pathrelse(search_path);
672 return IO_ERROR;
673 }
674 reada_count = 0;
675 if (expected_level == -1)
676 expected_level = SB_TREE_HEIGHT(sb);
677 expected_level--;
678
679 /* It is possible that schedule occurred. We must check whether the key
680 to search is still in the tree rooted from the current buffer. If
681 not then repeat search from the root. */
682 if (fs_changed(fs_gen, sb) &&
683 (!B_IS_IN_TREE(bh) ||
684 B_LEVEL(bh) != expected_level ||
685 !key_in_buffer(search_path, key, sb))) {
686 PROC_INFO_INC(sb, search_by_key_fs_changed);
687 PROC_INFO_INC(sb, search_by_key_restarted);
688 PROC_INFO_INC(sb,
689 sbk_restarted[expected_level - 1]);
690 pathrelse(search_path);
691
692 /* Get the root block number so that we can repeat the search
693 starting from the root. */
694 block_number = SB_ROOT_BLOCK(sb);
695 expected_level = -1;
696 right_neighbor_of_leaf_node = 0;
697
698 /* repeat search from the root */
699 continue;
700 }
701
702 /* only check that the key is in the buffer if key is not
703 equal to the MAX_KEY. Latter case is only possible in
704 "finish_unfinished()" processing during mount. */
705 RFALSE(comp_keys(&MAX_KEY, key) &&
706 !key_in_buffer(search_path, key, sb),
707 "PAP-5130: key is not in the buffer");
708#ifdef CONFIG_REISERFS_CHECK
709 if (REISERFS_SB(sb)->cur_tb) {
710 print_cur_tb("5140");
711 reiserfs_panic(sb, "PAP-5140",
712 "schedule occurred in do_balance!");
713 }
714#endif
715
716 // make sure, that the node contents look like a node of
717 // certain level
718 if (!is_tree_node(bh, expected_level)) {
719 reiserfs_error(sb, "vs-5150",
720 "invalid format found in block %ld. "
721 "Fsck?", bh->b_blocknr);
722 pathrelse(search_path);
723 return IO_ERROR;
724 }
725
726 /* ok, we have acquired next formatted node in the tree */
727 node_level = B_LEVEL(bh);
728
729 PROC_INFO_BH_STAT(sb, bh, node_level - 1);
730
731 RFALSE(node_level < stop_level,
732 "vs-5152: tree level (%d) is less than stop level (%d)",
733 node_level, stop_level);
734
735 retval = bin_search(key, B_N_PITEM_HEAD(bh, 0),
736 B_NR_ITEMS(bh),
737 (node_level ==
738 DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
739 KEY_SIZE,
740 &(last_element->pe_position));
741 if (node_level == stop_level) {
742 return retval;
743 }
744
745 /* we are not in the stop level */
746 if (retval == ITEM_FOUND)
747 /* item has been found, so we choose the pointer which is to the right of the found one */
748 last_element->pe_position++;
749
750 /* if item was not found we choose the position which is to
751 the left of the found item. This requires no code,
752 bin_search did it already. */
753
754 /* So we have chosen a position in the current node which is
755 an internal node. Now we calculate child block number by
756 position in the node. */
757 block_number =
758 B_N_CHILD_NUM(bh, last_element->pe_position);
759
760 /* if we are going to read leaf nodes, try for read ahead as well */
761 if ((search_path->reada & PATH_READA) &&
762 node_level == DISK_LEAF_NODE_LEVEL + 1) {
763 int pos = last_element->pe_position;
764 int limit = B_NR_ITEMS(bh);
765 struct reiserfs_key *le_key;
766
767 if (search_path->reada & PATH_READA_BACK)
768 limit = 0;
769 while (reada_count < SEARCH_BY_KEY_READA) {
770 if (pos == limit)
771 break;
772 reada_blocks[reada_count++] =
773 B_N_CHILD_NUM(bh, pos);
774 if (search_path->reada & PATH_READA_BACK)
775 pos--;
776 else
777 pos++;
778
779 /*
780 * check to make sure we're in the same object
781 */
782 le_key = B_N_PDELIM_KEY(bh, pos);
783 if (le32_to_cpu(le_key->k_objectid) !=
784 key->on_disk_key.k_objectid) {
785 break;
786 }
787 }
788 }
789 }
790}
791
792/* Form the path to an item and position in this item which contains
793 file byte defined by key. If there is no such item
794 corresponding to the key, we point the path to the item with
795 maximal key less than key, and *pos_in_item is set to one
796 past the last entry/byte in the item. If searching for entry in a
797 directory item, and it is not found, *pos_in_item is set to one
798 entry more than the entry with maximal key which is less than the
799 sought key.
800
801 Note that if there is no entry in this same node which is one more,
802 then we point to an imaginary entry. for direct items, the
803 position is in units of bytes, for indirect items the position is
804 in units of blocknr entries, for directory items the position is in
805 units of directory entries. */
806
807/* The function is NOT SCHEDULE-SAFE! */
808int search_for_position_by_key(struct super_block *sb, /* Pointer to the super block. */
809 const struct cpu_key *p_cpu_key, /* Key to search (cpu variable) */
810 struct treepath *search_path /* Filled up by this function. */
811 )
812{
813 struct item_head *p_le_ih; /* pointer to on-disk structure */
814 int blk_size;
815 loff_t item_offset, offset;
816 struct reiserfs_dir_entry de;
817 int retval;
818
819 /* If searching for directory entry. */
820 if (is_direntry_cpu_key(p_cpu_key))
821 return search_by_entry_key(sb, p_cpu_key, search_path,
822 &de);
823
824 /* If not searching for directory entry. */
825
826 /* If item is found. */
827 retval = search_item(sb, p_cpu_key, search_path);
828 if (retval == IO_ERROR)
829 return retval;
830 if (retval == ITEM_FOUND) {
831
832 RFALSE(!ih_item_len
833 (B_N_PITEM_HEAD
834 (PATH_PLAST_BUFFER(search_path),
835 PATH_LAST_POSITION(search_path))),
836 "PAP-5165: item length equals zero");
837
838 pos_in_item(search_path) = 0;
839 return POSITION_FOUND;
840 }
841
842 RFALSE(!PATH_LAST_POSITION(search_path),
843 "PAP-5170: position equals zero");
844
845 /* Item is not found. Set path to the previous item. */
846 p_le_ih =
847 B_N_PITEM_HEAD(PATH_PLAST_BUFFER(search_path),
848 --PATH_LAST_POSITION(search_path));
849 blk_size = sb->s_blocksize;
850
851 if (comp_short_keys(&(p_le_ih->ih_key), p_cpu_key)) {
852 return FILE_NOT_FOUND;
853 }
854 // FIXME: quite ugly this far
855
856 item_offset = le_ih_k_offset(p_le_ih);
857 offset = cpu_key_k_offset(p_cpu_key);
858
859 /* Needed byte is contained in the item pointed to by the path. */
860 if (item_offset <= offset &&
861 item_offset + op_bytes_number(p_le_ih, blk_size) > offset) {
862 pos_in_item(search_path) = offset - item_offset;
863 if (is_indirect_le_ih(p_le_ih)) {
864 pos_in_item(search_path) /= blk_size;
865 }
866 return POSITION_FOUND;
867 }
868
869 /* Needed byte is not contained in the item pointed to by the
870 path. Set pos_in_item out of the item. */
871 if (is_indirect_le_ih(p_le_ih))
872 pos_in_item(search_path) =
873 ih_item_len(p_le_ih) / UNFM_P_SIZE;
874 else
875 pos_in_item(search_path) = ih_item_len(p_le_ih);
876
877 return POSITION_NOT_FOUND;
878}
879
880/* Compare given item and item pointed to by the path. */
881int comp_items(const struct item_head *stored_ih, const struct treepath *path)
882{
883 struct buffer_head *bh = PATH_PLAST_BUFFER(path);
884 struct item_head *ih;
885
886 /* Last buffer at the path is not in the tree. */
887 if (!B_IS_IN_TREE(bh))
888 return 1;
889
890 /* Last path position is invalid. */
891 if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh))
892 return 1;
893
894 /* we need only to know, whether it is the same item */
895 ih = get_ih(path);
896 return memcmp(stored_ih, ih, IH_SIZE);
897}
898
899/* unformatted nodes are not logged anymore, ever. This is safe
900** now
901*/
902#define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1)
903
904// block can not be forgotten as it is in I/O or held by someone
905#define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh)))
906
907// prepare for delete or cut of direct item
908static inline int prepare_for_direct_item(struct treepath *path,
909 struct item_head *le_ih,
910 struct inode *inode,
911 loff_t new_file_length, int *cut_size)
912{
913 loff_t round_len;
914
915 if (new_file_length == max_reiserfs_offset(inode)) {
916 /* item has to be deleted */
917 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
918 return M_DELETE;
919 }
920 // new file gets truncated
921 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
922 //
923 round_len = ROUND_UP(new_file_length);
924 /* this was new_file_length < le_ih ... */
925 if (round_len < le_ih_k_offset(le_ih)) {
926 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
927 return M_DELETE; /* Delete this item. */
928 }
929 /* Calculate first position and size for cutting from item. */
930 pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
931 *cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
932
933 return M_CUT; /* Cut from this item. */
934 }
935
936 // old file: items may have any length
937
938 if (new_file_length < le_ih_k_offset(le_ih)) {
939 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
940 return M_DELETE; /* Delete this item. */
941 }
942 /* Calculate first position and size for cutting from item. */
943 *cut_size = -(ih_item_len(le_ih) -
944 (pos_in_item(path) =
945 new_file_length + 1 - le_ih_k_offset(le_ih)));
946 return M_CUT; /* Cut from this item. */
947}
948
949static inline int prepare_for_direntry_item(struct treepath *path,
950 struct item_head *le_ih,
951 struct inode *inode,
952 loff_t new_file_length,
953 int *cut_size)
954{
955 if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
956 new_file_length == max_reiserfs_offset(inode)) {
957 RFALSE(ih_entry_count(le_ih) != 2,
958 "PAP-5220: incorrect empty directory item (%h)", le_ih);
959 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
960 return M_DELETE; /* Delete the directory item containing "." and ".." entry. */
961 }
962
963 if (ih_entry_count(le_ih) == 1) {
964 /* Delete the directory item such as there is one record only
965 in this item */
966 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
967 return M_DELETE;
968 }
969
970 /* Cut one record from the directory item. */
971 *cut_size =
972 -(DEH_SIZE +
973 entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
974 return M_CUT;
975}
976
977#define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
978
979/* If the path points to a directory or direct item, calculate mode and the size cut, for balance.
980 If the path points to an indirect item, remove some number of its unformatted nodes.
981 In case of file truncate calculate whether this item must be deleted/truncated or last
982 unformatted node of this item will be converted to a direct item.
983 This function returns a determination of what balance mode the calling function should employ. */
984static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th, struct inode *inode, struct treepath *path, const struct cpu_key *item_key, int *removed, /* Number of unformatted nodes which were removed
985 from end of the file. */
986 int *cut_size, unsigned long long new_file_length /* MAX_KEY_OFFSET in case of delete. */
987 )
988{
989 struct super_block *sb = inode->i_sb;
990 struct item_head *p_le_ih = PATH_PITEM_HEAD(path);
991 struct buffer_head *bh = PATH_PLAST_BUFFER(path);
992
993 BUG_ON(!th->t_trans_id);
994
995 /* Stat_data item. */
996 if (is_statdata_le_ih(p_le_ih)) {
997
998 RFALSE(new_file_length != max_reiserfs_offset(inode),
999 "PAP-5210: mode must be M_DELETE");
1000
1001 *cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
1002 return M_DELETE;
1003 }
1004
1005 /* Directory item. */
1006 if (is_direntry_le_ih(p_le_ih))
1007 return prepare_for_direntry_item(path, p_le_ih, inode,
1008 new_file_length,
1009 cut_size);
1010
1011 /* Direct item. */
1012 if (is_direct_le_ih(p_le_ih))
1013 return prepare_for_direct_item(path, p_le_ih, inode,
1014 new_file_length, cut_size);
1015
1016 /* Case of an indirect item. */
1017 {
1018 int blk_size = sb->s_blocksize;
1019 struct item_head s_ih;
1020 int need_re_search;
1021 int delete = 0;
1022 int result = M_CUT;
1023 int pos = 0;
1024
1025 if ( new_file_length == max_reiserfs_offset (inode) ) {
1026 /* prepare_for_delete_or_cut() is called by
1027 * reiserfs_delete_item() */
1028 new_file_length = 0;
1029 delete = 1;
1030 }
1031
1032 do {
1033 need_re_search = 0;
1034 *cut_size = 0;
1035 bh = PATH_PLAST_BUFFER(path);
1036 copy_item_head(&s_ih, PATH_PITEM_HEAD(path));
1037 pos = I_UNFM_NUM(&s_ih);
1038
1039 while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) {
1040 __le32 *unfm;
1041 __u32 block;
1042
1043 /* Each unformatted block deletion may involve one additional
1044 * bitmap block into the transaction, thereby the initial
1045 * journal space reservation might not be enough. */
1046 if (!delete && (*cut_size) != 0 &&
1047 reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD)
1048 break;
1049
1050 unfm = (__le32 *)B_I_PITEM(bh, &s_ih) + pos - 1;
1051 block = get_block_num(unfm, 0);
1052
1053 if (block != 0) {
1054 reiserfs_prepare_for_journal(sb, bh, 1);
1055 put_block_num(unfm, 0, 0);
1056 journal_mark_dirty(th, sb, bh);
1057 reiserfs_free_block(th, inode, block, 1);
1058 }
1059
1060 reiserfs_cond_resched(sb);
1061
1062 if (item_moved (&s_ih, path)) {
1063 need_re_search = 1;
1064 break;
1065 }
1066
1067 pos --;
1068 (*removed)++;
1069 (*cut_size) -= UNFM_P_SIZE;
1070
1071 if (pos == 0) {
1072 (*cut_size) -= IH_SIZE;
1073 result = M_DELETE;
1074 break;
1075 }
1076 }
1077 /* a trick. If the buffer has been logged, this will do nothing. If
1078 ** we've broken the loop without logging it, it will restore the
1079 ** buffer */
1080 reiserfs_restore_prepared_buffer(sb, bh);
1081 } while (need_re_search &&
1082 search_for_position_by_key(sb, item_key, path) == POSITION_FOUND);
1083 pos_in_item(path) = pos * UNFM_P_SIZE;
1084
1085 if (*cut_size == 0) {
1086 /* Nothing were cut. maybe convert last unformatted node to the
1087 * direct item? */
1088 result = M_CONVERT;
1089 }
1090 return result;
1091 }
1092}
1093
1094/* Calculate number of bytes which will be deleted or cut during balance */
1095static int calc_deleted_bytes_number(struct tree_balance *tb, char mode)
1096{
1097 int del_size;
1098 struct item_head *p_le_ih = PATH_PITEM_HEAD(tb->tb_path);
1099
1100 if (is_statdata_le_ih(p_le_ih))
1101 return 0;
1102
1103 del_size =
1104 (mode ==
1105 M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0];
1106 if (is_direntry_le_ih(p_le_ih)) {
1107 /* return EMPTY_DIR_SIZE; We delete emty directoris only.
1108 * we can't use EMPTY_DIR_SIZE, as old format dirs have a different
1109 * empty size. ick. FIXME, is this right? */
1110 return del_size;
1111 }
1112
1113 if (is_indirect_le_ih(p_le_ih))
1114 del_size = (del_size / UNFM_P_SIZE) *
1115 (PATH_PLAST_BUFFER(tb->tb_path)->b_size);
1116 return del_size;
1117}
1118
1119static void init_tb_struct(struct reiserfs_transaction_handle *th,
1120 struct tree_balance *tb,
1121 struct super_block *sb,
1122 struct treepath *path, int size)
1123{
1124
1125 BUG_ON(!th->t_trans_id);
1126
1127 memset(tb, '\0', sizeof(struct tree_balance));
1128 tb->transaction_handle = th;
1129 tb->tb_sb = sb;
1130 tb->tb_path = path;
1131 PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
1132 PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
1133 tb->insert_size[0] = size;
1134}
1135
1136void padd_item(char *item, int total_length, int length)
1137{
1138 int i;
1139
1140 for (i = total_length; i > length;)
1141 item[--i] = 0;
1142}
1143
1144#ifdef REISERQUOTA_DEBUG
1145char key2type(struct reiserfs_key *ih)
1146{
1147 if (is_direntry_le_key(2, ih))
1148 return 'd';
1149 if (is_direct_le_key(2, ih))
1150 return 'D';
1151 if (is_indirect_le_key(2, ih))
1152 return 'i';
1153 if (is_statdata_le_key(2, ih))
1154 return 's';
1155 return 'u';
1156}
1157
1158char head2type(struct item_head *ih)
1159{
1160 if (is_direntry_le_ih(ih))
1161 return 'd';
1162 if (is_direct_le_ih(ih))
1163 return 'D';
1164 if (is_indirect_le_ih(ih))
1165 return 'i';
1166 if (is_statdata_le_ih(ih))
1167 return 's';
1168 return 'u';
1169}
1170#endif
1171
1172/* Delete object item.
1173 * th - active transaction handle
1174 * path - path to the deleted item
1175 * item_key - key to search for the deleted item
1176 * indode - used for updating i_blocks and quotas
1177 * un_bh - NULL or unformatted node pointer
1178 */
1179int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1180 struct treepath *path, const struct cpu_key *item_key,
1181 struct inode *inode, struct buffer_head *un_bh)
1182{
1183 struct super_block *sb = inode->i_sb;
1184 struct tree_balance s_del_balance;
1185 struct item_head s_ih;
1186 struct item_head *q_ih;
1187 int quota_cut_bytes;
1188 int ret_value, del_size, removed;
1189 int depth;
1190
1191#ifdef CONFIG_REISERFS_CHECK
1192 char mode;
1193 int iter = 0;
1194#endif
1195
1196 BUG_ON(!th->t_trans_id);
1197
1198 init_tb_struct(th, &s_del_balance, sb, path,
1199 0 /*size is unknown */ );
1200
1201 while (1) {
1202 removed = 0;
1203
1204#ifdef CONFIG_REISERFS_CHECK
1205 iter++;
1206 mode =
1207#endif
1208 prepare_for_delete_or_cut(th, inode, path,
1209 item_key, &removed,
1210 &del_size,
1211 max_reiserfs_offset(inode));
1212
1213 RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
1214
1215 copy_item_head(&s_ih, PATH_PITEM_HEAD(path));
1216 s_del_balance.insert_size[0] = del_size;
1217
1218 ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
1219 if (ret_value != REPEAT_SEARCH)
1220 break;
1221
1222 PROC_INFO_INC(sb, delete_item_restarted);
1223
1224 // file system changed, repeat search
1225 ret_value =
1226 search_for_position_by_key(sb, item_key, path);
1227 if (ret_value == IO_ERROR)
1228 break;
1229 if (ret_value == FILE_NOT_FOUND) {
1230 reiserfs_warning(sb, "vs-5340",
1231 "no items of the file %K found",
1232 item_key);
1233 break;
1234 }
1235 } /* while (1) */
1236
1237 if (ret_value != CARRY_ON) {
1238 unfix_nodes(&s_del_balance);
1239 return 0;
1240 }
1241 // reiserfs_delete_item returns item length when success
1242 ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
1243 q_ih = get_ih(path);
1244 quota_cut_bytes = ih_item_len(q_ih);
1245
1246 /* hack so the quota code doesn't have to guess if the file
1247 ** has a tail. On tail insert, we allocate quota for 1 unformatted node.
1248 ** We test the offset because the tail might have been
1249 ** split into multiple items, and we only want to decrement for
1250 ** the unfm node once
1251 */
1252 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) {
1253 if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) {
1254 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1255 } else {
1256 quota_cut_bytes = 0;
1257 }
1258 }
1259
1260 if (un_bh) {
1261 int off;
1262 char *data;
1263
1264 /* We are in direct2indirect conversion, so move tail contents
1265 to the unformatted node */
1266 /* note, we do the copy before preparing the buffer because we
1267 ** don't care about the contents of the unformatted node yet.
1268 ** the only thing we really care about is the direct item's data
1269 ** is in the unformatted node.
1270 **
1271 ** Otherwise, we would have to call reiserfs_prepare_for_journal on
1272 ** the unformatted node, which might schedule, meaning we'd have to
1273 ** loop all the way back up to the start of the while loop.
1274 **
1275 ** The unformatted node must be dirtied later on. We can't be
1276 ** sure here if the entire tail has been deleted yet.
1277 **
1278 ** un_bh is from the page cache (all unformatted nodes are
1279 ** from the page cache) and might be a highmem page. So, we
1280 ** can't use un_bh->b_data.
1281 ** -clm
1282 */
1283
1284 data = kmap_atomic(un_bh->b_page);
1285 off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_CACHE_SIZE - 1));
1286 memcpy(data + off,
1287 B_I_PITEM(PATH_PLAST_BUFFER(path), &s_ih),
1288 ret_value);
1289 kunmap_atomic(data);
1290 }
1291 /* Perform balancing after all resources have been collected at once. */
1292 do_balance(&s_del_balance, NULL, NULL, M_DELETE);
1293
1294#ifdef REISERQUOTA_DEBUG
1295 reiserfs_debug(sb, REISERFS_DEBUG_CODE,
1296 "reiserquota delete_item(): freeing %u, id=%u type=%c",
1297 quota_cut_bytes, inode->i_uid, head2type(&s_ih));
1298#endif
1299 depth = reiserfs_write_unlock_nested(inode->i_sb);
1300 dquot_free_space_nodirty(inode, quota_cut_bytes);
1301 reiserfs_write_lock_nested(inode->i_sb, depth);
1302
1303 /* Return deleted body length */
1304 return ret_value;
1305}
1306
1307/* Summary Of Mechanisms For Handling Collisions Between Processes:
1308
1309 deletion of the body of the object is performed by iput(), with the
1310 result that if multiple processes are operating on a file, the
1311 deletion of the body of the file is deferred until the last process
1312 that has an open inode performs its iput().
1313
1314 writes and truncates are protected from collisions by use of
1315 semaphores.
1316
1317 creates, linking, and mknod are protected from collisions with other
1318 processes by making the reiserfs_add_entry() the last step in the
1319 creation, and then rolling back all changes if there was a collision.
1320 - Hans
1321*/
1322
1323/* this deletes item which never gets split */
1324void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1325 struct inode *inode, struct reiserfs_key *key)
1326{
1327 struct super_block *sb = th->t_super;
1328 struct tree_balance tb;
1329 INITIALIZE_PATH(path);
1330 int item_len = 0;
1331 int tb_init = 0;
1332 struct cpu_key cpu_key;
1333 int retval;
1334 int quota_cut_bytes = 0;
1335
1336 BUG_ON(!th->t_trans_id);
1337
1338 le_key2cpu_key(&cpu_key, key);
1339
1340 while (1) {
1341 retval = search_item(th->t_super, &cpu_key, &path);
1342 if (retval == IO_ERROR) {
1343 reiserfs_error(th->t_super, "vs-5350",
1344 "i/o failure occurred trying "
1345 "to delete %K", &cpu_key);
1346 break;
1347 }
1348 if (retval != ITEM_FOUND) {
1349 pathrelse(&path);
1350 // No need for a warning, if there is just no free space to insert '..' item into the newly-created subdir
1351 if (!
1352 ((unsigned long long)
1353 GET_HASH_VALUE(le_key_k_offset
1354 (le_key_version(key), key)) == 0
1355 && (unsigned long long)
1356 GET_GENERATION_NUMBER(le_key_k_offset
1357 (le_key_version(key),
1358 key)) == 1))
1359 reiserfs_warning(th->t_super, "vs-5355",
1360 "%k not found", key);
1361 break;
1362 }
1363 if (!tb_init) {
1364 tb_init = 1;
1365 item_len = ih_item_len(PATH_PITEM_HEAD(&path));
1366 init_tb_struct(th, &tb, th->t_super, &path,
1367 -(IH_SIZE + item_len));
1368 }
1369 quota_cut_bytes = ih_item_len(PATH_PITEM_HEAD(&path));
1370
1371 retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
1372 if (retval == REPEAT_SEARCH) {
1373 PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
1374 continue;
1375 }
1376
1377 if (retval == CARRY_ON) {
1378 do_balance(&tb, NULL, NULL, M_DELETE);
1379 if (inode) { /* Should we count quota for item? (we don't count quotas for save-links) */
1380 int depth;
1381#ifdef REISERQUOTA_DEBUG
1382 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
1383 "reiserquota delete_solid_item(): freeing %u id=%u type=%c",
1384 quota_cut_bytes, inode->i_uid,
1385 key2type(key));
1386#endif
1387 depth = reiserfs_write_unlock_nested(sb);
1388 dquot_free_space_nodirty(inode,
1389 quota_cut_bytes);
1390 reiserfs_write_lock_nested(sb, depth);
1391 }
1392 break;
1393 }
1394 // IO_ERROR, NO_DISK_SPACE, etc
1395 reiserfs_warning(th->t_super, "vs-5360",
1396 "could not delete %K due to fix_nodes failure",
1397 &cpu_key);
1398 unfix_nodes(&tb);
1399 break;
1400 }
1401
1402 reiserfs_check_path(&path);
1403}
1404
1405int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1406 struct inode *inode)
1407{
1408 int err;
1409 inode->i_size = 0;
1410 BUG_ON(!th->t_trans_id);
1411
1412 /* for directory this deletes item containing "." and ".." */
1413 err =
1414 reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
1415 if (err)
1416 return err;
1417
1418#if defined( USE_INODE_GENERATION_COUNTER )
1419 if (!old_format_only(th->t_super)) {
1420 __le32 *inode_generation;
1421
1422 inode_generation =
1423 &REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
1424 le32_add_cpu(inode_generation, 1);
1425 }
1426/* USE_INODE_GENERATION_COUNTER */
1427#endif
1428 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1429
1430 return err;
1431}
1432
1433static void unmap_buffers(struct page *page, loff_t pos)
1434{
1435 struct buffer_head *bh;
1436 struct buffer_head *head;
1437 struct buffer_head *next;
1438 unsigned long tail_index;
1439 unsigned long cur_index;
1440
1441 if (page) {
1442 if (page_has_buffers(page)) {
1443 tail_index = pos & (PAGE_CACHE_SIZE - 1);
1444 cur_index = 0;
1445 head = page_buffers(page);
1446 bh = head;
1447 do {
1448 next = bh->b_this_page;
1449
1450 /* we want to unmap the buffers that contain the tail, and
1451 ** all the buffers after it (since the tail must be at the
1452 ** end of the file). We don't want to unmap file data
1453 ** before the tail, since it might be dirty and waiting to
1454 ** reach disk
1455 */
1456 cur_index += bh->b_size;
1457 if (cur_index > tail_index) {
1458 reiserfs_unmap_buffer(bh);
1459 }
1460 bh = next;
1461 } while (bh != head);
1462 }
1463 }
1464}
1465
1466static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
1467 struct inode *inode,
1468 struct page *page,
1469 struct treepath *path,
1470 const struct cpu_key *item_key,
1471 loff_t new_file_size, char *mode)
1472{
1473 struct super_block *sb = inode->i_sb;
1474 int block_size = sb->s_blocksize;
1475 int cut_bytes;
1476 BUG_ON(!th->t_trans_id);
1477 BUG_ON(new_file_size != inode->i_size);
1478
1479 /* the page being sent in could be NULL if there was an i/o error
1480 ** reading in the last block. The user will hit problems trying to
1481 ** read the file, but for now we just skip the indirect2direct
1482 */
1483 if (atomic_read(&inode->i_count) > 1 ||
1484 !tail_has_to_be_packed(inode) ||
1485 !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) {
1486 /* leave tail in an unformatted node */
1487 *mode = M_SKIP_BALANCING;
1488 cut_bytes =
1489 block_size - (new_file_size & (block_size - 1));
1490 pathrelse(path);
1491 return cut_bytes;
1492 }
1493 /* Perform the conversion to a direct_item. */
1494 /* return indirect_to_direct(inode, path, item_key,
1495 new_file_size, mode); */
1496 return indirect2direct(th, inode, page, path, item_key,
1497 new_file_size, mode);
1498}
1499
1500/* we did indirect_to_direct conversion. And we have inserted direct
1501 item successesfully, but there were no disk space to cut unfm
1502 pointer being converted. Therefore we have to delete inserted
1503 direct item(s) */
1504static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
1505 struct inode *inode, struct treepath *path)
1506{
1507 struct cpu_key tail_key;
1508 int tail_len;
1509 int removed;
1510 BUG_ON(!th->t_trans_id);
1511
1512 make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4); // !!!!
1513 tail_key.key_length = 4;
1514
1515 tail_len =
1516 (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
1517 while (tail_len) {
1518 /* look for the last byte of the tail */
1519 if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
1520 POSITION_NOT_FOUND)
1521 reiserfs_panic(inode->i_sb, "vs-5615",
1522 "found invalid item");
1523 RFALSE(path->pos_in_item !=
1524 ih_item_len(PATH_PITEM_HEAD(path)) - 1,
1525 "vs-5616: appended bytes found");
1526 PATH_LAST_POSITION(path)--;
1527
1528 removed =
1529 reiserfs_delete_item(th, path, &tail_key, inode,
1530 NULL /*unbh not needed */ );
1531 RFALSE(removed <= 0
1532 || removed > tail_len,
1533 "vs-5617: there was tail %d bytes, removed item length %d bytes",
1534 tail_len, removed);
1535 tail_len -= removed;
1536 set_cpu_key_k_offset(&tail_key,
1537 cpu_key_k_offset(&tail_key) - removed);
1538 }
1539 reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct "
1540 "conversion has been rolled back due to "
1541 "lack of disk space");
1542 //mark_file_without_tail (inode);
1543 mark_inode_dirty(inode);
1544}
1545
1546/* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
1547int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1548 struct treepath *path,
1549 struct cpu_key *item_key,
1550 struct inode *inode,
1551 struct page *page, loff_t new_file_size)
1552{
1553 struct super_block *sb = inode->i_sb;
1554 /* Every function which is going to call do_balance must first
1555 create a tree_balance structure. Then it must fill up this
1556 structure by using the init_tb_struct and fix_nodes functions.
1557 After that we can make tree balancing. */
1558 struct tree_balance s_cut_balance;
1559 struct item_head *p_le_ih;
1560 int cut_size = 0, /* Amount to be cut. */
1561 ret_value = CARRY_ON, removed = 0, /* Number of the removed unformatted nodes. */
1562 is_inode_locked = 0;
1563 char mode; /* Mode of the balance. */
1564 int retval2 = -1;
1565 int quota_cut_bytes;
1566 loff_t tail_pos = 0;
1567 int depth;
1568
1569 BUG_ON(!th->t_trans_id);
1570
1571 init_tb_struct(th, &s_cut_balance, inode->i_sb, path,
1572 cut_size);
1573
1574 /* Repeat this loop until we either cut the item without needing
1575 to balance, or we fix_nodes without schedule occurring */
1576 while (1) {
1577 /* Determine the balance mode, position of the first byte to
1578 be cut, and size to be cut. In case of the indirect item
1579 free unformatted nodes which are pointed to by the cut
1580 pointers. */
1581
1582 mode =
1583 prepare_for_delete_or_cut(th, inode, path,
1584 item_key, &removed,
1585 &cut_size, new_file_size);
1586 if (mode == M_CONVERT) {
1587 /* convert last unformatted node to direct item or leave
1588 tail in the unformatted node */
1589 RFALSE(ret_value != CARRY_ON,
1590 "PAP-5570: can not convert twice");
1591
1592 ret_value =
1593 maybe_indirect_to_direct(th, inode, page,
1594 path, item_key,
1595 new_file_size, &mode);
1596 if (mode == M_SKIP_BALANCING)
1597 /* tail has been left in the unformatted node */
1598 return ret_value;
1599
1600 is_inode_locked = 1;
1601
1602 /* removing of last unformatted node will change value we
1603 have to return to truncate. Save it */
1604 retval2 = ret_value;
1605 /*retval2 = sb->s_blocksize - (new_file_size & (sb->s_blocksize - 1)); */
1606
1607 /* So, we have performed the first part of the conversion:
1608 inserting the new direct item. Now we are removing the
1609 last unformatted node pointer. Set key to search for
1610 it. */
1611 set_cpu_key_k_type(item_key, TYPE_INDIRECT);
1612 item_key->key_length = 4;
1613 new_file_size -=
1614 (new_file_size & (sb->s_blocksize - 1));
1615 tail_pos = new_file_size;
1616 set_cpu_key_k_offset(item_key, new_file_size + 1);
1617 if (search_for_position_by_key
1618 (sb, item_key,
1619 path) == POSITION_NOT_FOUND) {
1620 print_block(PATH_PLAST_BUFFER(path), 3,
1621 PATH_LAST_POSITION(path) - 1,
1622 PATH_LAST_POSITION(path) + 1);
1623 reiserfs_panic(sb, "PAP-5580", "item to "
1624 "convert does not exist (%K)",
1625 item_key);
1626 }
1627 continue;
1628 }
1629 if (cut_size == 0) {
1630 pathrelse(path);
1631 return 0;
1632 }
1633
1634 s_cut_balance.insert_size[0] = cut_size;
1635
1636 ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL);
1637 if (ret_value != REPEAT_SEARCH)
1638 break;
1639
1640 PROC_INFO_INC(sb, cut_from_item_restarted);
1641
1642 ret_value =
1643 search_for_position_by_key(sb, item_key, path);
1644 if (ret_value == POSITION_FOUND)
1645 continue;
1646
1647 reiserfs_warning(sb, "PAP-5610", "item %K not found",
1648 item_key);
1649 unfix_nodes(&s_cut_balance);
1650 return (ret_value == IO_ERROR) ? -EIO : -ENOENT;
1651 } /* while */
1652
1653 // check fix_nodes results (IO_ERROR or NO_DISK_SPACE)
1654 if (ret_value != CARRY_ON) {
1655 if (is_inode_locked) {
1656 // FIXME: this seems to be not needed: we are always able
1657 // to cut item
1658 indirect_to_direct_roll_back(th, inode, path);
1659 }
1660 if (ret_value == NO_DISK_SPACE)
1661 reiserfs_warning(sb, "reiserfs-5092",
1662 "NO_DISK_SPACE");
1663 unfix_nodes(&s_cut_balance);
1664 return -EIO;
1665 }
1666
1667 /* go ahead and perform balancing */
1668
1669 RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode");
1670
1671 /* Calculate number of bytes that need to be cut from the item. */
1672 quota_cut_bytes =
1673 (mode ==
1674 M_DELETE) ? ih_item_len(get_ih(path)) : -s_cut_balance.
1675 insert_size[0];
1676 if (retval2 == -1)
1677 ret_value = calc_deleted_bytes_number(&s_cut_balance, mode);
1678 else
1679 ret_value = retval2;
1680
1681 /* For direct items, we only change the quota when deleting the last
1682 ** item.
1683 */
1684 p_le_ih = PATH_PITEM_HEAD(s_cut_balance.tb_path);
1685 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) {
1686 if (mode == M_DELETE &&
1687 (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) ==
1688 1) {
1689 // FIXME: this is to keep 3.5 happy
1690 REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
1691 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1692 } else {
1693 quota_cut_bytes = 0;
1694 }
1695 }
1696#ifdef CONFIG_REISERFS_CHECK
1697 if (is_inode_locked) {
1698 struct item_head *le_ih =
1699 PATH_PITEM_HEAD(s_cut_balance.tb_path);
1700 /* we are going to complete indirect2direct conversion. Make
1701 sure, that we exactly remove last unformatted node pointer
1702 of the item */
1703 if (!is_indirect_le_ih(le_ih))
1704 reiserfs_panic(sb, "vs-5652",
1705 "item must be indirect %h", le_ih);
1706
1707 if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
1708 reiserfs_panic(sb, "vs-5653", "completing "
1709 "indirect2direct conversion indirect "
1710 "item %h being deleted must be of "
1711 "4 byte long", le_ih);
1712
1713 if (mode == M_CUT
1714 && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
1715 reiserfs_panic(sb, "vs-5654", "can not complete "
1716 "indirect2direct conversion of %h "
1717 "(CUT, insert_size==%d)",
1718 le_ih, s_cut_balance.insert_size[0]);
1719 }
1720 /* it would be useful to make sure, that right neighboring
1721 item is direct item of this file */
1722 }
1723#endif
1724
1725 do_balance(&s_cut_balance, NULL, NULL, mode);
1726 if (is_inode_locked) {
1727 /* we've done an indirect->direct conversion. when the data block
1728 ** was freed, it was removed from the list of blocks that must
1729 ** be flushed before the transaction commits, make sure to
1730 ** unmap and invalidate it
1731 */
1732 unmap_buffers(page, tail_pos);
1733 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
1734 }
1735#ifdef REISERQUOTA_DEBUG
1736 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1737 "reiserquota cut_from_item(): freeing %u id=%u type=%c",
1738 quota_cut_bytes, inode->i_uid, '?');
1739#endif
1740 depth = reiserfs_write_unlock_nested(sb);
1741 dquot_free_space_nodirty(inode, quota_cut_bytes);
1742 reiserfs_write_lock_nested(sb, depth);
1743 return ret_value;
1744}
1745
1746static void truncate_directory(struct reiserfs_transaction_handle *th,
1747 struct inode *inode)
1748{
1749 BUG_ON(!th->t_trans_id);
1750 if (inode->i_nlink)
1751 reiserfs_error(inode->i_sb, "vs-5655", "link count != 0");
1752
1753 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
1754 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
1755 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1756 reiserfs_update_sd(th, inode);
1757 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
1758 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
1759}
1760
1761/* Truncate file to the new size. Note, this must be called with a transaction
1762 already started */
1763int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1764 struct inode *inode, /* ->i_size contains new size */
1765 struct page *page, /* up to date for last block */
1766 int update_timestamps /* when it is called by
1767 file_release to convert
1768 the tail - no timestamps
1769 should be updated */
1770 )
1771{
1772 INITIALIZE_PATH(s_search_path); /* Path to the current object item. */
1773 struct item_head *p_le_ih; /* Pointer to an item header. */
1774 struct cpu_key s_item_key; /* Key to search for a previous file item. */
1775 loff_t file_size, /* Old file size. */
1776 new_file_size; /* New file size. */
1777 int deleted; /* Number of deleted or truncated bytes. */
1778 int retval;
1779 int err = 0;
1780
1781 BUG_ON(!th->t_trans_id);
1782 if (!
1783 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
1784 || S_ISLNK(inode->i_mode)))
1785 return 0;
1786
1787 if (S_ISDIR(inode->i_mode)) {
1788 // deletion of directory - no need to update timestamps
1789 truncate_directory(th, inode);
1790 return 0;
1791 }
1792
1793 /* Get new file size. */
1794 new_file_size = inode->i_size;
1795
1796 // FIXME: note, that key type is unimportant here
1797 make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode),
1798 TYPE_DIRECT, 3);
1799
1800 retval =
1801 search_for_position_by_key(inode->i_sb, &s_item_key,
1802 &s_search_path);
1803 if (retval == IO_ERROR) {
1804 reiserfs_error(inode->i_sb, "vs-5657",
1805 "i/o failure occurred trying to truncate %K",
1806 &s_item_key);
1807 err = -EIO;
1808 goto out;
1809 }
1810 if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
1811 reiserfs_error(inode->i_sb, "PAP-5660",
1812 "wrong result %d of search for %K", retval,
1813 &s_item_key);
1814
1815 err = -EIO;
1816 goto out;
1817 }
1818
1819 s_search_path.pos_in_item--;
1820
1821 /* Get real file size (total length of all file items) */
1822 p_le_ih = PATH_PITEM_HEAD(&s_search_path);
1823 if (is_statdata_le_ih(p_le_ih))
1824 file_size = 0;
1825 else {
1826 loff_t offset = le_ih_k_offset(p_le_ih);
1827 int bytes =
1828 op_bytes_number(p_le_ih, inode->i_sb->s_blocksize);
1829
1830 /* this may mismatch with real file size: if last direct item
1831 had no padding zeros and last unformatted node had no free
1832 space, this file would have this file size */
1833 file_size = offset + bytes - 1;
1834 }
1835 /*
1836 * are we doing a full truncate or delete, if so
1837 * kick in the reada code
1838 */
1839 if (new_file_size == 0)
1840 s_search_path.reada = PATH_READA | PATH_READA_BACK;
1841
1842 if (file_size == 0 || file_size < new_file_size) {
1843 goto update_and_out;
1844 }
1845
1846 /* Update key to search for the last file item. */
1847 set_cpu_key_k_offset(&s_item_key, file_size);
1848
1849 do {
1850 /* Cut or delete file item. */
1851 deleted =
1852 reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
1853 inode, page, new_file_size);
1854 if (deleted < 0) {
1855 reiserfs_warning(inode->i_sb, "vs-5665",
1856 "reiserfs_cut_from_item failed");
1857 reiserfs_check_path(&s_search_path);
1858 return 0;
1859 }
1860
1861 RFALSE(deleted > file_size,
1862 "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
1863 deleted, file_size, &s_item_key);
1864
1865 /* Change key to search the last file item. */
1866 file_size -= deleted;
1867
1868 set_cpu_key_k_offset(&s_item_key, file_size);
1869
1870 /* While there are bytes to truncate and previous file item is presented in the tree. */
1871
1872 /*
1873 ** This loop could take a really long time, and could log
1874 ** many more blocks than a transaction can hold. So, we do a polite
1875 ** journal end here, and if the transaction needs ending, we make
1876 ** sure the file is consistent before ending the current trans
1877 ** and starting a new one
1878 */
1879 if (journal_transaction_should_end(th, 0) ||
1880 reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
1881 int orig_len_alloc = th->t_blocks_allocated;
1882 pathrelse(&s_search_path);
1883
1884 if (update_timestamps) {
1885 inode->i_mtime = CURRENT_TIME_SEC;
1886 inode->i_ctime = CURRENT_TIME_SEC;
1887 }
1888 reiserfs_update_sd(th, inode);
1889
1890 err = journal_end(th, inode->i_sb, orig_len_alloc);
1891 if (err)
1892 goto out;
1893 err = journal_begin(th, inode->i_sb,
1894 JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
1895 if (err)
1896 goto out;
1897 reiserfs_update_inode_transaction(inode);
1898 }
1899 } while (file_size > ROUND_UP(new_file_size) &&
1900 search_for_position_by_key(inode->i_sb, &s_item_key,
1901 &s_search_path) == POSITION_FOUND);
1902
1903 RFALSE(file_size > ROUND_UP(new_file_size),
1904 "PAP-5680: truncate did not finish: new_file_size %Ld, current %Ld, oid %d",
1905 new_file_size, file_size, s_item_key.on_disk_key.k_objectid);
1906
1907 update_and_out:
1908 if (update_timestamps) {
1909 // this is truncate, not file closing
1910 inode->i_mtime = CURRENT_TIME_SEC;
1911 inode->i_ctime = CURRENT_TIME_SEC;
1912 }
1913 reiserfs_update_sd(th, inode);
1914
1915 out:
1916 pathrelse(&s_search_path);
1917 return err;
1918}
1919
1920#ifdef CONFIG_REISERFS_CHECK
1921// this makes sure, that we __append__, not overwrite or add holes
1922static void check_research_for_paste(struct treepath *path,
1923 const struct cpu_key *key)
1924{
1925 struct item_head *found_ih = get_ih(path);
1926
1927 if (is_direct_le_ih(found_ih)) {
1928 if (le_ih_k_offset(found_ih) +
1929 op_bytes_number(found_ih,
1930 get_last_bh(path)->b_size) !=
1931 cpu_key_k_offset(key)
1932 || op_bytes_number(found_ih,
1933 get_last_bh(path)->b_size) !=
1934 pos_in_item(path))
1935 reiserfs_panic(NULL, "PAP-5720", "found direct item "
1936 "%h or position (%d) does not match "
1937 "to key %K", found_ih,
1938 pos_in_item(path), key);
1939 }
1940 if (is_indirect_le_ih(found_ih)) {
1941 if (le_ih_k_offset(found_ih) +
1942 op_bytes_number(found_ih,
1943 get_last_bh(path)->b_size) !=
1944 cpu_key_k_offset(key)
1945 || I_UNFM_NUM(found_ih) != pos_in_item(path)
1946 || get_ih_free_space(found_ih) != 0)
1947 reiserfs_panic(NULL, "PAP-5730", "found indirect "
1948 "item (%h) or position (%d) does not "
1949 "match to key (%K)",
1950 found_ih, pos_in_item(path), key);
1951 }
1952}
1953#endif /* config reiserfs check */
1954
1955/* Paste bytes to the existing item. Returns bytes number pasted into the item. */
1956int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, struct treepath *search_path, /* Path to the pasted item. */
1957 const struct cpu_key *key, /* Key to search for the needed item. */
1958 struct inode *inode, /* Inode item belongs to */
1959 const char *body, /* Pointer to the bytes to paste. */
1960 int pasted_size)
1961{ /* Size of pasted bytes. */
1962 struct super_block *sb = inode->i_sb;
1963 struct tree_balance s_paste_balance;
1964 int retval;
1965 int fs_gen;
1966 int depth;
1967
1968 BUG_ON(!th->t_trans_id);
1969
1970 fs_gen = get_generation(inode->i_sb);
1971
1972#ifdef REISERQUOTA_DEBUG
1973 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1974 "reiserquota paste_into_item(): allocating %u id=%u type=%c",
1975 pasted_size, inode->i_uid,
1976 key2type(&(key->on_disk_key)));
1977#endif
1978
1979 depth = reiserfs_write_unlock_nested(sb);
1980 retval = dquot_alloc_space_nodirty(inode, pasted_size);
1981 reiserfs_write_lock_nested(sb, depth);
1982 if (retval) {
1983 pathrelse(search_path);
1984 return retval;
1985 }
1986 init_tb_struct(th, &s_paste_balance, th->t_super, search_path,
1987 pasted_size);
1988#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1989 s_paste_balance.key = key->on_disk_key;
1990#endif
1991
1992 /* DQUOT_* can schedule, must check before the fix_nodes */
1993 if (fs_changed(fs_gen, inode->i_sb)) {
1994 goto search_again;
1995 }
1996
1997 while ((retval =
1998 fix_nodes(M_PASTE, &s_paste_balance, NULL,
1999 body)) == REPEAT_SEARCH) {
2000 search_again:
2001 /* file system changed while we were in the fix_nodes */
2002 PROC_INFO_INC(th->t_super, paste_into_item_restarted);
2003 retval =
2004 search_for_position_by_key(th->t_super, key,
2005 search_path);
2006 if (retval == IO_ERROR) {
2007 retval = -EIO;
2008 goto error_out;
2009 }
2010 if (retval == POSITION_FOUND) {
2011 reiserfs_warning(inode->i_sb, "PAP-5710",
2012 "entry or pasted byte (%K) exists",
2013 key);
2014 retval = -EEXIST;
2015 goto error_out;
2016 }
2017#ifdef CONFIG_REISERFS_CHECK
2018 check_research_for_paste(search_path, key);
2019#endif
2020 }
2021
2022 /* Perform balancing after all resources are collected by fix_nodes, and
2023 accessing them will not risk triggering schedule. */
2024 if (retval == CARRY_ON) {
2025 do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE);
2026 return 0;
2027 }
2028 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2029 error_out:
2030 /* this also releases the path */
2031 unfix_nodes(&s_paste_balance);
2032#ifdef REISERQUOTA_DEBUG
2033 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2034 "reiserquota paste_into_item(): freeing %u id=%u type=%c",
2035 pasted_size, inode->i_uid,
2036 key2type(&(key->on_disk_key)));
2037#endif
2038 depth = reiserfs_write_unlock_nested(sb);
2039 dquot_free_space_nodirty(inode, pasted_size);
2040 reiserfs_write_lock_nested(sb, depth);
2041 return retval;
2042}
2043
2044/* Insert new item into the buffer at the path.
2045 * th - active transaction handle
2046 * path - path to the inserted item
2047 * ih - pointer to the item header to insert
2048 * body - pointer to the bytes to insert
2049 */
2050int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
2051 struct treepath *path, const struct cpu_key *key,
2052 struct item_head *ih, struct inode *inode,
2053 const char *body)
2054{
2055 struct tree_balance s_ins_balance;
2056 int retval;
2057 int fs_gen = 0;
2058 int quota_bytes = 0;
2059
2060 BUG_ON(!th->t_trans_id);
2061
2062 if (inode) { /* Do we count quotas for item? */
2063 int depth;
2064 fs_gen = get_generation(inode->i_sb);
2065 quota_bytes = ih_item_len(ih);
2066
2067 /* hack so the quota code doesn't have to guess if the file has
2068 ** a tail, links are always tails, so there's no guessing needed
2069 */
2070 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih))
2071 quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
2072#ifdef REISERQUOTA_DEBUG
2073 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2074 "reiserquota insert_item(): allocating %u id=%u type=%c",
2075 quota_bytes, inode->i_uid, head2type(ih));
2076#endif
2077 /* We can't dirty inode here. It would be immediately written but
2078 * appropriate stat item isn't inserted yet... */
2079 depth = reiserfs_write_unlock_nested(inode->i_sb);
2080 retval = dquot_alloc_space_nodirty(inode, quota_bytes);
2081 reiserfs_write_lock_nested(inode->i_sb, depth);
2082 if (retval) {
2083 pathrelse(path);
2084 return retval;
2085 }
2086 }
2087 init_tb_struct(th, &s_ins_balance, th->t_super, path,
2088 IH_SIZE + ih_item_len(ih));
2089#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2090 s_ins_balance.key = key->on_disk_key;
2091#endif
2092 /* DQUOT_* can schedule, must check to be sure calling fix_nodes is safe */
2093 if (inode && fs_changed(fs_gen, inode->i_sb)) {
2094 goto search_again;
2095 }
2096
2097 while ((retval =
2098 fix_nodes(M_INSERT, &s_ins_balance, ih,
2099 body)) == REPEAT_SEARCH) {
2100 search_again:
2101 /* file system changed while we were in the fix_nodes */
2102 PROC_INFO_INC(th->t_super, insert_item_restarted);
2103 retval = search_item(th->t_super, key, path);
2104 if (retval == IO_ERROR) {
2105 retval = -EIO;
2106 goto error_out;
2107 }
2108 if (retval == ITEM_FOUND) {
2109 reiserfs_warning(th->t_super, "PAP-5760",
2110 "key %K already exists in the tree",
2111 key);
2112 retval = -EEXIST;
2113 goto error_out;
2114 }
2115 }
2116
2117 /* make balancing after all resources will be collected at a time */
2118 if (retval == CARRY_ON) {
2119 do_balance(&s_ins_balance, ih, body, M_INSERT);
2120 return 0;
2121 }
2122
2123 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2124 error_out:
2125 /* also releases the path */
2126 unfix_nodes(&s_ins_balance);
2127#ifdef REISERQUOTA_DEBUG
2128 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
2129 "reiserquota insert_item(): freeing %u id=%u type=%c",
2130 quota_bytes, inode->i_uid, head2type(ih));
2131#endif
2132 if (inode) {
2133 int depth = reiserfs_write_unlock_nested(inode->i_sb);
2134 dquot_free_space_nodirty(inode, quota_bytes);
2135 reiserfs_write_lock_nested(inode->i_sb, depth);
2136 }
2137 return retval;
2138}